Contents

1. **Structure of the Bachelor Programme in Industrial Engineering and Management (B.Sc.)**
2. **Key Skills**
3. **Module Handbook - a helpful guide throughout the studies**
4. **Actual Changes**
5. **Modules (Foundation)**
6. **Modules (Specialization)**

5. Modules (Foundation)

5.1 All Subjects

- Business Administration- W1BWL1
- Economics- W1VWL
- Introduction to Informatics- W1INFO
- Introduction to Operations Research- W1OR
- Mass and Energy Balances for Reacting Systems- W1ING1
- Materials Science- W1ING2
- Engineering Mechanics- W1ING3
- Electrical Engineering- W1ING4
- Mathematics- W1MATH
- Statistics- W1STAT

6. Modules (Specialization)

6.1 Business Administration

- Strategy and Organization- W1BWL1UO1
- Management Accounting- W1BWL1BU1
- Industrial Production I- W1BWL1IP
- Energy Economics- W1BWL1IP2
- Essentials of Finance- W1BWL1FV
- Risk and Insurance Management- W1BWL1FM
- Topics in Finance I- W1BWL1FV5
- Topics in Finance II- W1BWL1FV6
- eBusiness and Service Management- W1BWL1SMSM1
- Supply Chain Management- W1BWL1SMSM2
- eFinance- W1BWL1SMSM3
- CRM and Service Management- W1BWL1SMSM4
- Specialization in Customer Relationship Management- W1BWL1SMSM5
- Design, Construction and Sustainability Assessment of Buildings- W1BWL1SOW1
- Real Estate Management- W1BWL1SOW2
- Foundations of Marketing- W1BWL1SMAR
- Human Resources and Organizations- W1BWL1SAP2

6.2 Economics

- Public Finance- W1VWL9
- Economic Policy I- W1VWL10
- Economic Theory- W1VWL12
- Applied Microeconomics- W1VWL13

6.3 Informatics

- Emphasis Informatics- W1INFO1
- Electives in Informatics- W1INFO2

6.4 Operations Research

- Applications of Operations Research- W1OR5
- Methodical Foundations of OR- W1OR6
- Stochastic Methods and Simulation- W1OR7

6.5 Engineering Sciences

- **Mechanical Engineering**
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Engineering- WI3INGMB5</td>
<td>63</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles- WI3INGMB6</td>
<td>64</td>
</tr>
<tr>
<td>Emphasis in Fundamentals of Engineering - WI3INGMB8</td>
<td>65</td>
</tr>
<tr>
<td>Emphasis Materials Science- WI3INGMB9</td>
<td>66</td>
</tr>
<tr>
<td>Introduction to Technical Logistics- WI3INGMB13</td>
<td>67</td>
</tr>
<tr>
<td>Vehicle Development- WI3INGMB14</td>
<td>69</td>
</tr>
<tr>
<td>Mobile Machines- WI3INGMB15</td>
<td>70</td>
</tr>
<tr>
<td>Combustion Engines I - WI3INGMB34</td>
<td>71</td>
</tr>
<tr>
<td>Combustion Engines II - WI3INGMB35</td>
<td>72</td>
</tr>
<tr>
<td>Product Lifecycle Management- WI3INGMB21</td>
<td>73</td>
</tr>
<tr>
<td>Specialization in Production Engineering- WI3INGMB22</td>
<td>74</td>
</tr>
<tr>
<td>Manufacturing Technology- WI3INGMB23</td>
<td>75</td>
</tr>
<tr>
<td>Integrated Production Planning- WI3INGMB24</td>
<td>76</td>
</tr>
<tr>
<td>Rail System Technology- WI3INGMB25</td>
<td>77</td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling- WI3INGMB32</td>
<td>78</td>
</tr>
<tr>
<td>Microsystem Technology- WI3INGMB1MT1</td>
<td>79</td>
</tr>
<tr>
<td>Electrical Engineering and Information Technology</td>
<td>80</td>
</tr>
<tr>
<td>Control Engineering- WI3INGETIT2</td>
<td>80</td>
</tr>
<tr>
<td>Power Networks- WI3INGETIT3</td>
<td>81</td>
</tr>
<tr>
<td>Energy Generation and Network Components- WI3INGETIT4</td>
<td>82</td>
</tr>
<tr>
<td>Civil Engineering, Geo- and Environmental Sciences</td>
<td>83</td>
</tr>
<tr>
<td>Mobility and Infrastructure- WI3INGBGU1</td>
<td>83</td>
</tr>
<tr>
<td>Fundamentals of construction- WI3INGBGU3</td>
<td>84</td>
</tr>
<tr>
<td>Basics of Track Guided Transport Systems- WI3INGBGU4</td>
<td>85</td>
</tr>
<tr>
<td>Interdisciplinary Modules in Engineering</td>
<td>86</td>
</tr>
<tr>
<td>Understanding and Prediction of Disasters 1- WI3INGINTER6</td>
<td>86</td>
</tr>
<tr>
<td>Understanding and Prediction of Disasters 2- WI3INGINTER7</td>
<td>87</td>
</tr>
<tr>
<td>Extracurricular Module in Engineering</td>
<td>88</td>
</tr>
<tr>
<td>Extracurricular Module in Engineering- WI3INGAPL</td>
<td>88</td>
</tr>
<tr>
<td>6.6 Statistics</td>
<td>89</td>
</tr>
<tr>
<td>Statistical Applications of Financial Risk Management- WI3STAT</td>
<td>89</td>
</tr>
<tr>
<td>Statistics and Econometrics- WI3STAT1</td>
<td>90</td>
</tr>
<tr>
<td>6.7 Law</td>
<td>91</td>
</tr>
<tr>
<td>Elective Module Law- WI3JURA</td>
<td>91</td>
</tr>
<tr>
<td>6.8 Sociology</td>
<td>92</td>
</tr>
<tr>
<td>Sociology/Empirical Social Research- Wi3SOZ</td>
<td>92</td>
</tr>
<tr>
<td>Qualitative Social Research- WI3SOZ2</td>
<td>93</td>
</tr>
<tr>
<td>6.9 General Modules</td>
<td>94</td>
</tr>
<tr>
<td>Seminar Module- WI3SEM</td>
<td>94</td>
</tr>
<tr>
<td>Internship- WI3EXPRAK</td>
<td>97</td>
</tr>
<tr>
<td>Bachelor Thesis- WI3THESIS</td>
<td>99</td>
</tr>
<tr>
<td>7 Courses</td>
<td>100</td>
</tr>
<tr>
<td>All Courses</td>
<td>100</td>
</tr>
<tr>
<td>Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines- 2134150</td>
<td>100</td>
</tr>
<tr>
<td>Advanced Topics in Economic Theory- 2520527</td>
<td>101</td>
</tr>
<tr>
<td>Algorithms for Internet Applications- 2511102</td>
<td>102</td>
</tr>
<tr>
<td>Analysis of multivariate Data- 2550550</td>
<td>103</td>
</tr>
<tr>
<td>Analytical CRM- 2540522</td>
<td>104</td>
</tr>
<tr>
<td>Applied Informatics I - Modelling- 2511030</td>
<td>106</td>
</tr>
<tr>
<td>Applied Informatics II - IT Systems for e-Commerce- 2511032</td>
<td>107</td>
</tr>
<tr>
<td>Facilities and Rolling Stock- 6234802</td>
<td>108</td>
</tr>
<tr>
<td>Application of technical logistics in modern crane systems- 2117064</td>
<td>109</td>
</tr>
<tr>
<td>Application of technical logistics in sorting- and distribution technology- 2118089</td>
<td>110</td>
</tr>
<tr>
<td>Topics of Sustainable Management of Housing and Real Estate- 2585420/2586420</td>
<td>111</td>
</tr>
<tr>
<td>Asset Management- 2530219</td>
<td>112</td>
</tr>
<tr>
<td>Auction & Mechanism Design- 2560550</td>
<td>113</td>
</tr>
<tr>
<td>Engineering, Design and Operation of Power Transformers- 23390</td>
<td>114</td>
</tr>
<tr>
<td>Course Title</td>
<td>Module Code</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Constitution and Properties of Wear resistant materials</td>
<td>2194643</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics</td>
<td>2118087</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics and Project</td>
<td>2118088</td>
</tr>
<tr>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
<td>2143892</td>
</tr>
<tr>
<td>Selected Topics in Public Management and Governance</td>
<td>n.n.</td>
</tr>
<tr>
<td>Automation of Power Grids</td>
<td>23396</td>
</tr>
<tr>
<td>Automotive Engineering I</td>
<td>2113809</td>
</tr>
<tr>
<td>Automotive Engineering II</td>
<td>2114855</td>
</tr>
<tr>
<td>Bachelor Seminar in Information Engineering and Management</td>
<td>2540524</td>
</tr>
<tr>
<td>Rail System Technology</td>
<td>2115919</td>
</tr>
<tr>
<td>Construction Technology</td>
<td>6200409</td>
</tr>
<tr>
<td>Design and Construction of Buildings</td>
<td>2586404</td>
</tr>
<tr>
<td>Sustainability Assessment of Buildings</td>
<td>2585404</td>
</tr>
<tr>
<td>Design Basics in Highway Engineering</td>
<td>6200407</td>
</tr>
<tr>
<td>Operation</td>
<td>6234801</td>
</tr>
<tr>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>2133108</td>
</tr>
<tr>
<td>Business Administration: Finance and Accounting</td>
<td>2610026</td>
</tr>
<tr>
<td>Business Administration: Production Economics and Marketing</td>
<td>2600024</td>
</tr>
<tr>
<td>Business Administration: Strategic Management and Information Engineering and Management</td>
<td>2600023</td>
</tr>
<tr>
<td>Civil Law for Beginners</td>
<td>24012</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine</td>
<td>2142883</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>2142879</td>
</tr>
<tr>
<td>Bionics for Engineers and Natural Scientists</td>
<td>2142140</td>
</tr>
<tr>
<td>Exchanges</td>
<td>2530296</td>
</tr>
<tr>
<td>BUS-Controls</td>
<td>2114092</td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>2540508</td>
</tr>
<tr>
<td>Data Mining and Applications</td>
<td>2520375</td>
</tr>
<tr>
<td>Database Systems</td>
<td>2511200</td>
</tr>
<tr>
<td>Derivatives</td>
<td>2530550</td>
</tr>
<tr>
<td>Services Marketing and B2B Marketing</td>
<td>2572158</td>
</tr>
<tr>
<td>Economics and Behavior</td>
<td>2560137</td>
</tr>
<tr>
<td>Efficient Algorithms</td>
<td>2511100</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>2540454</td>
</tr>
<tr>
<td>Introduction to Operations Research I</td>
<td>2550040</td>
</tr>
<tr>
<td>Introduction to Operations Research II</td>
<td>2530043</td>
</tr>
<tr>
<td>Introduction to Energy Economics</td>
<td>2581010</td>
</tr>
<tr>
<td>Introduction to Public Finance</td>
<td>2560131</td>
</tr>
<tr>
<td>Introduction to Game Theory</td>
<td>2520525</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>2161238</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II: Dynamics</td>
<td>2162276</td>
</tr>
<tr>
<td>Basic Principles of Economic Policy</td>
<td>2560280</td>
</tr>
<tr>
<td>Introduction to GIS for students of natural, engineering and geo sciences</td>
<td>20712/13</td>
</tr>
<tr>
<td>Power Network Analysis</td>
<td>23371/23373</td>
</tr>
<tr>
<td>Technique of Electrical Installation</td>
<td>23382</td>
</tr>
<tr>
<td>Systems for Electrical Energy</td>
<td>23391/23393</td>
</tr>
<tr>
<td>Electrical Engineering I</td>
<td>23223</td>
</tr>
<tr>
<td>Electrical Engineering II</td>
<td>23224</td>
</tr>
<tr>
<td>Elements of Technical Logistics</td>
<td>2117096</td>
</tr>
<tr>
<td>Elements of Technical Logistics and Project</td>
<td>2117097</td>
</tr>
<tr>
<td>Energy efficient intralogistic systems</td>
<td>2117500</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>2581959</td>
</tr>
<tr>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines</td>
<td>2133121</td>
</tr>
<tr>
<td>Enterprise Risk Management</td>
<td>2530326</td>
</tr>
<tr>
<td>Decision Theory</td>
<td>2520365</td>
</tr>
<tr>
<td>Electric Power Generation & Power Grid</td>
<td>23356</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>2113807</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>2114838</td>
</tr>
</tbody>
</table>
Vehicle Comfort and Acoustics I- 2113806 ... 175
Vehicle Comfort and Acoustics II- 2114825 ... 176
Vehicle Mechatronics I- 2113816 .. 177
Tires and Wheel Development for Passenger Cars - 2114845 178
Remote Sensing- GEOD-BFB-1 ... 179
Remote Sensing Systems- 20241/42 ... 180
Remote Sensing Methods- 20265/66 ... 181
Manufacturing Technology- 2149657 .. 182
Financial Econometrics- 2520022 ... 183
Financial Management- 2530216 ... 184
Financial Intermediation- 2530232 ... 185
Fluid Technology- 2114093 .. 186
Foundations of Digital Services - 2595466 ... 187
Gas Engines- 2134141 .. 188
Monetary and Financial Policy - 2560122 ... 189
Geological Hazards and Risks- 2600101 .. 190
Global vehicle evaluation within virtual road test- 2114850 191
Business Strategies of Banks- 2530299 ... 192
Global Optimization I- 2550134 .. 193
Global Optimization II- 2550136 ... 194
Automotive Engineering I- 2113805 .. 195
Automotive Engineering II- 2114835 .. 196
Foundations of Informatics I- 2511010 ... 197
Foundations of Informatics II- 2511012 .. 198
Fundamentals of catalytic exhaust gas aftertreatment- 2134138 199
Introduction to Microsystem Technology I- 2141861 ... 200
Introduction to Microsystem Technology II- 2142874 .. 201
Fundamentals of Production Management- 2581950 ... 202
Basics of Technical Logistics- 2117095 ... 203
Basics of Track Guided Transport Systems- 6200517 ... 204
Fundamentals for Design of Motor-Vehicles Bodies I- 2113814 205
Fundamentals for Design of Motor-Vehicles Bodies II- 2114840 206
Fundamentals in the Development of Commercial Vehicles I- 2113812 207
Fundamentals in the Development of Commercial Vehicles II- 2114844 208
Fundamentals of Automobile Development I- 2113810 ... 209
Fundamentals of Automobile Development II- 2114842 ... 210
Hauptvermessungsübung III- 20267 .. 211
Hydrology- 6200511 ... 212
Industrial Organization- 2560238 ... 213
Information Engineering- 2122014 ... 214
Information Systems in Logistics and Supply Chain Management- 2118094 215
Seminar in Engineering Science- SemING .. 216
Integrative Strategies in Production and Development of High Performance Cars- 2150601 ... 217
Integrated production planning- 2150660 ... 218
International Marketing- 2572155 .. 219
International Finance- 2530570 ... 220
Cost and Management Accounting- 2530210 ... 221
Investments- 2530575 ... 222
Introduction to Ceramics- 2125757 ... 223
Climatology- 2501111 ... 224
Warehousing and distribution systems- 2118097 .. 225
Logistics and Supply Chain Management- 2581996 ... 227
Logistics - organisation, design and control of logistic systems- 2118078 228
Automotive Logistics- 2118085 ... 229
Airport logistics- 2117056 ... 230
Management Accounting I- 2579900 ... 231
Management Accounting 2 - 2579902 ... 232
Management of Business Networks- 2590452 ... 233
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management of Business Networks (Introduction)</td>
<td>2540496</td>
</tr>
<tr>
<td>Brand Management</td>
<td>2572177</td>
</tr>
<tr>
<td>Managing the Marketing Mix</td>
<td>2571152</td>
</tr>
<tr>
<td>Material flow in logistic systems</td>
<td>2117051</td>
</tr>
<tr>
<td>Materials and Processes for Body Lightweight Construction in the Automotive Industry</td>
<td>2149669</td>
</tr>
<tr>
<td>Mathematics I</td>
<td>01350</td>
</tr>
<tr>
<td>Mathematics II</td>
<td>01830</td>
</tr>
<tr>
<td>Mathematics III</td>
<td>01352</td>
</tr>
<tr>
<td>Seminar in Mathematics</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams</td>
<td>2143876</td>
</tr>
<tr>
<td>Novel Actuators and Sensors</td>
<td>2141865</td>
</tr>
<tr>
<td>Nonlinear Optimization I</td>
<td>2550111</td>
</tr>
<tr>
<td>Nonlinear Optimization II</td>
<td>2550113</td>
</tr>
<tr>
<td>Public Revenues</td>
<td>2560120</td>
</tr>
<tr>
<td>Public Law I - Basic Principles</td>
<td>24016</td>
</tr>
<tr>
<td>Public Law II - Public Economic Law</td>
<td>24520</td>
</tr>
<tr>
<td>Operative CRM</td>
<td>2540520</td>
</tr>
<tr>
<td>Optoelectronic Components</td>
<td>23486 / 23487</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>2577902</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>253003</td>
</tr>
<tr>
<td>Personnel Policies and Labor Market Institutions</td>
<td>2573001</td>
</tr>
<tr>
<td>Physics for Engineers</td>
<td>2142890</td>
</tr>
<tr>
<td>Physical basics of laser technology</td>
<td>2181612</td>
</tr>
<tr>
<td>PLM for product development in mechatronics</td>
<td>2122376</td>
</tr>
<tr>
<td>PLM-CAD Workshop</td>
<td>2121357</td>
</tr>
<tr>
<td>Polymer Engineering I</td>
<td>2173590</td>
</tr>
<tr>
<td>Polymer Engineering II</td>
<td>2174596</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2143875</td>
</tr>
<tr>
<td>Principles of Insurance Management</td>
<td>2550055</td>
</tr>
<tr>
<td>Problem solving, communication and leadership</td>
<td>2577910</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>2121350</td>
</tr>
<tr>
<td>Production Economics and Sustainability</td>
<td>2581960</td>
</tr>
<tr>
<td>Production and Logistics Controlling</td>
<td>2500005</td>
</tr>
<tr>
<td>Production Technology and Management in Automotive</td>
<td>2149001</td>
</tr>
<tr>
<td>Introduction to Programming with Java</td>
<td>2511000</td>
</tr>
<tr>
<td>Advanced Programming - Java Network Programming</td>
<td>2511020</td>
</tr>
<tr>
<td>Advanced Programming - Application of Business Software</td>
<td>2511026</td>
</tr>
<tr>
<td>Project Workshop: Automotive Engineering</td>
<td>2115817</td>
</tr>
<tr>
<td>Project Management</td>
<td>6200106</td>
</tr>
<tr>
<td>Project Management in Rail Industry</td>
<td>2115995</td>
</tr>
<tr>
<td>Projectseminar - SozSem</td>
<td>284</td>
</tr>
<tr>
<td>Explorative-interpretative Project Seminar</td>
<td>n.n.</td>
</tr>
<tr>
<td>Advanced powder metals</td>
<td>2126749</td>
</tr>
<tr>
<td>Quality Management</td>
<td>2149667</td>
</tr>
<tr>
<td>Spatial Planning and Planning Law</td>
<td>6200404</td>
</tr>
<tr>
<td>Real Estate Management I</td>
<td>2586400</td>
</tr>
<tr>
<td>Real Estate Management II</td>
<td>2585400</td>
</tr>
<tr>
<td>Computer Integrated Planning of New Products</td>
<td>2122387</td>
</tr>
<tr>
<td>Financial Accounting and Cost Accounting</td>
<td>2600002</td>
</tr>
<tr>
<td>Renewable Energy – Resources, Technology and Economics</td>
<td>2581012</td>
</tr>
<tr>
<td>Course Title</td>
<td>Module Code</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Rail Vehicle Technology</td>
<td>2115996</td>
</tr>
<tr>
<td>Key qualifications ZAK</td>
<td>SQ ZAK1</td>
</tr>
<tr>
<td>Academic learning</td>
<td>SQ HoC1</td>
</tr>
<tr>
<td>Presentation and communication skills</td>
<td>SQ HoC2</td>
</tr>
<tr>
<td>Working methodically</td>
<td>SQ HoC3</td>
</tr>
<tr>
<td>Scientific writing</td>
<td>SQ HoC4</td>
</tr>
<tr>
<td>Business in focus</td>
<td>SQ HoC5</td>
</tr>
<tr>
<td>Applied Econometrics</td>
<td>semSTAT1</td>
</tr>
<tr>
<td>Seminar in Enterprise Information Systems</td>
<td>SemAIFB1</td>
</tr>
<tr>
<td>Seminar Data Mining I</td>
<td>2521388</td>
</tr>
<tr>
<td>Seminar Efficient Algorithms</td>
<td>SemAIFB2</td>
</tr>
<tr>
<td>Seminar Energy Economics</td>
<td>SemEW</td>
</tr>
<tr>
<td>Seminar Public Finance</td>
<td>2560130</td>
</tr>
<tr>
<td>Seminar Conveying Technology and Logistics</td>
<td>SemiFL</td>
</tr>
<tr>
<td>Entrepreneurship Seminar</td>
<td>SemTuE1</td>
</tr>
<tr>
<td>Seminar Human Resource Management</td>
<td>2573011</td>
</tr>
<tr>
<td>Seminar in Behavioral and Experimental Economics</td>
<td>n.n.</td>
</tr>
<tr>
<td>Seminar in Finance</td>
<td>2530280</td>
</tr>
<tr>
<td>Seminar Financial Economics and Risk Management</td>
<td>2530353</td>
</tr>
<tr>
<td>Seminar in International Economy</td>
<td>SemIWW2</td>
</tr>
<tr>
<td>Seminar in Marketing and Sales (Bachelor)</td>
<td>SemETU1</td>
</tr>
<tr>
<td>Seminar in Economic Policy</td>
<td>SemIWW3</td>
</tr>
<tr>
<td>Seminar in Industrial Production</td>
<td>SemIIP2</td>
</tr>
<tr>
<td>Seminar Information Engineering and Management</td>
<td>SemiIW</td>
</tr>
<tr>
<td>Seminar Management Accounting</td>
<td>2579904</td>
</tr>
<tr>
<td>Seminar Mobility Services</td>
<td>2595475</td>
</tr>
<tr>
<td>Seminar on Morals and Social Behavior</td>
<td>SemPO1</td>
</tr>
<tr>
<td>Seminar on Topics in Experimental Economics</td>
<td>n.n.</td>
</tr>
<tr>
<td>Seminar on Topics in Political Economics</td>
<td>SemPO2</td>
</tr>
<tr>
<td>Seminar Human Resources and Organizations</td>
<td>2573010</td>
</tr>
<tr>
<td>Seminar Risk and Insurance Management</td>
<td>SemFBV1</td>
</tr>
<tr>
<td>Seminar Service Science, Management & Engineering</td>
<td>2595470</td>
</tr>
<tr>
<td>Seminar Statistics</td>
<td>SemSTAT</td>
</tr>
<tr>
<td>Seminar Stochastic Models</td>
<td>SemiWOR1</td>
</tr>
<tr>
<td>Seminar Knowledge Management</td>
<td>SemAIFB4</td>
</tr>
<tr>
<td>Seminar in strategic and behavioral marketing</td>
<td>2572197</td>
</tr>
<tr>
<td>Seminar in Discrete Optimization</td>
<td>2550491</td>
</tr>
<tr>
<td>Seminar in Experimental Economics</td>
<td>SemiWOR3</td>
</tr>
<tr>
<td>Seminar in Continuous Optimization</td>
<td>2550131</td>
</tr>
<tr>
<td>Seminar on Macroeconomic Theory</td>
<td>SemETS3</td>
</tr>
<tr>
<td>Seminar on Network Economics</td>
<td>2560263</td>
</tr>
<tr>
<td>Seminar Transport Economics</td>
<td>2561209</td>
</tr>
<tr>
<td>Seminar: Legal Studies</td>
<td>RECHT</td>
</tr>
<tr>
<td>Seminar: Management and Organization</td>
<td>2577915</td>
</tr>
<tr>
<td>Seminar paper "Production Engineering"</td>
<td>21690sem</td>
</tr>
<tr>
<td>Simulation of Coupled Systems</td>
<td>2114095</td>
</tr>
<tr>
<td>Simulation I</td>
<td>2550662</td>
</tr>
<tr>
<td>Simulation II</td>
<td>2550665</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>2511206</td>
</tr>
<tr>
<td>Software Laboratory: OR Models</td>
<td>2550490</td>
</tr>
<tr>
<td>Social structures of modern societies</td>
<td>11005</td>
</tr>
<tr>
<td>Special Topics in Management Accounting</td>
<td>2579905</td>
</tr>
<tr>
<td>Special Topics in Information Engineering & Management</td>
<td>2540498</td>
</tr>
<tr>
<td>Special Topics of Applied Informatics</td>
<td>Platzhalter</td>
</tr>
<tr>
<td>Special Sociology</td>
<td>spezSoz</td>
</tr>
<tr>
<td>Specific Aspects in Taxation</td>
<td>2560129</td>
</tr>
<tr>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>2550486</td>
</tr>
<tr>
<td>Statistics and Econometrics in Business and Economics</td>
<td>2521325</td>
</tr>
</tbody>
</table>
Statistics I- 2600008
Statistics II- 2610020
Statistical Modeling of generalized regression models- 2521350
Control Technology- 2150683
Markov Decision Models I- 2550679
Markov Decision Models II- 2550682
Mass and Energy Balances for Reacting Systems- 22130
Structural and phase analysis- 2125763
Structural Ceramics- 2126775
Systematic Materials Selection- 2174576
System Dynamics and Control Engineering- 23155
Tactical and Operational Supply Chain Management- 2550488
Metal Forming- 2150681
Corporate Governance in Energy Economics- 2581005
Management and Strategy- 2577900
Vehicle Ride Comfort & Acoustics I- 2114856
Vehicle Ride Comfort & Acoustics II- 2114857
Combustion Engines I- 2133113
Combustion Engines II- 2134151
Transportation- 6200509
Failure of Structural Materials: Fatigue and Creep- 2181715
Failure of structural materials: deformation and fracture- 2181711
Gear Cutting Technology- 2149655
Economics I: Microeconomics- 2610012
Economics II: Macroeconomics - 2600014
Economics III: Introduction in Econometrics- 2520016
Elective „Educational development for student teachers“ - SQ PEW1
Hydraulic Engineering and Water Management- 6200509
Materials Science I- 2125760
Materials Science II for Business Engineers- 2126782
Machine Tools and Industrial Handling- 2149902
Competition in Networks- 2561204
Seminar Economic Theory- SemWIOR2
Knowledge Management- 2511300
Welfare Economics- 252517

8 Appendix: Qualification objectives of the Bachelor’s degree in Industrial Engineering and Management

9 Appendix: Study- and Examination Regulation (06/03/2007, in German)

Index
1 Structure of the Bachelor Programme in Industrial Engineering and Management (B.Sc.)

The bachelor programme in Industrial Engineering and Management (B.Sc.) has 6 terms and consists of 180 credits (CP) including internship and bachelor thesis. The terms 1 to 3 of the programme are methodologically oriented and provide the student with the foundations of business, economic and engineering science. Terms 4 to 6 aim at the specialization and application of this knowledge.

Figure 1 shows the structure of the subjects and the credits (CP) allocated to the subjects. According to the European Credit Transfer System, one credit corresponds to a workload of 30 hours.

In the specialization studies of the third year of the bachelor programme the student has to choose one elective module of the following disciplines: Informatics, operations research, business science, economics, engineering science, statistics, law and sociology. Furthermore, the student has to attend two seminars with a minimum of six CP within the seminar module. In addition to the key skills gained in the seminars (3 CP), the student has to acquire additional key skills totalling at least 3 credits.

It is left to the student’s individual curriculum (taking into account the examination and module regulations), in which terms the chosen modules will be started and completed. However, it is highly recommended to follow the proposed structure and schedule of the first 3 terms and to complete all courses and seminars before beginning the bachelor thesis.

Figure 1: Structure of the Bachelor Programme(Recommendation)
2 Key Skills

The bachelor programme Industrial Engineering and Management (B.Sc.) at the Department of Economics and Management distinguishes itself by an exceptionally high level of interdisciplinarity. With the combination of business science, economics, informatics, operations research, mathematics as well as engineering and natural science, the integration of knowledge of different disciplines is an inherent element of the programme. As a result, interdisciplinary and connected thinking is encouraged in a natural way. Furthermore, tutor programs with more than 20 semester periods per week contribute significantly to the development of key skills in the bachelor programme. The integrative taught key skills, which are acquired throughout the entire programme, can be classified into the following fields:

Soft skills
1. Team work, social communication and creativity techniques
2. Presentations and presentation techniques
3. Logical and systematical arguing and writing
4. Structured problem solving and communication

Enabling skills
1. Decision making in business context
2. Project management competences
3. Fundamentals of business science
4. English as a foreign language

Orientational knowledge
1. Acquisition of interdisciplinary knowledge
2. Institutional knowledge about economic and legal systems
3. Knowledge about international organisations
4. Media, technology and innovation

The integrative acquisition of key skills especially takes place in several compulsory courses during the bachelor programme, namely
1. Basic programme in economics and business science
2. Seminar module
3. Mentoring of the bachelor thesis
4. Internship
5. Business science, economics and informatics modules

Figure 2 shows the classification of key skills within the bachelor programme at a glance. Besides the integrated key skills, the additive acquisition of key skills, which are totalling at least three credits within the seminar module, is scheduled. Students may choose freely among the offered courses of HoC, ZAK and Sprachenzentrum.
Basiskompetenzen (soft skills)

<table>
<thead>
<tr>
<th>Art der Schlüsselqualifikation</th>
<th>Bachelorstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundprogramm</td>
</tr>
<tr>
<td>REWE, BWL UI</td>
<td>BWL PM, BWL FR, VWL I,II</td>
</tr>
<tr>
<td>Teamarbeit, soziale Kommunikation und Kreativitätstechniken</td>
<td>x</td>
</tr>
<tr>
<td>Präsentationserstellung und -techniken</td>
<td></td>
</tr>
<tr>
<td>Logisches und systematisches Argumentieren und Schreiben</td>
<td></td>
</tr>
<tr>
<td>Strukturierte Problemlösung und Kommunikation</td>
<td>x</td>
</tr>
</tbody>
</table>

Praxisorientierung (enabling skills)

<table>
<thead>
<tr>
<th>Art der Schlüsselqualifikation</th>
<th>Bachelorstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundprogramm</td>
</tr>
<tr>
<td>REWE, BWL UI</td>
<td>BWL PM, BWL FR, VWL I,II</td>
</tr>
<tr>
<td>Handlungskompetenz im beruflichen Kontext</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen im Projektmanagement</td>
<td></td>
</tr>
<tr>
<td>Betriebswirtschaftliche Grundkenntnisse</td>
<td>x</td>
</tr>
<tr>
<td>Englisch als Fachsprache</td>
<td>x</td>
</tr>
</tbody>
</table>

Orientierungswissen

<table>
<thead>
<tr>
<th>Art der Schlüsselqualifikation</th>
<th>Bachelorstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundprogramm</td>
</tr>
<tr>
<td>REWE, BWL UI</td>
<td>BWL PM, BWL FR, VWL I,II</td>
</tr>
<tr>
<td>Interdisziplinäres Wissen</td>
<td>x</td>
</tr>
<tr>
<td>Institutionelles Wissen über Wirtschafts- und Rechtssysteme</td>
<td>x</td>
</tr>
<tr>
<td>Wissen über internationale Organisationen</td>
<td>x</td>
</tr>
<tr>
<td>Medien, Technik und Innovation</td>
<td>x</td>
</tr>
</tbody>
</table>

(x)*.............ist nicht zwingend SQ-vermittelnd; hängt von der Art der Aktivität ab (z.B. Auslandspraktikum, thematische Ausrichtung der Bachelorarbeit)

Figure 2: Key Skills
<table>
<thead>
<tr>
<th>Was</th>
<th>Wann</th>
<th>Hilfsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auswahl eines Kurses aus dem HoC-Angebot (Wahlbereich 1 – 5)</td>
<td>Ab September (WS) bzw. März (SS)</td>
<td>www.hoc.kit.edu oder StudiPortal</td>
</tr>
<tr>
<td>Online-Anmeldung zum Kurs direkt beim HoC (bzw. ZAK, SPZ, ...)</td>
<td>Mittwoch vor Vorlesungsbeginn („first come, first served“!)</td>
<td>www.hoc.kit.edu (und dann je nach Kursart)</td>
</tr>
<tr>
<td>Mitteilung an Kursleiter über Kursziel von 3 ECTS</td>
<td>Zum Kursbeginn</td>
<td>Prüfungsordnung (bei WiIng, TVWL werden max. 3 ECTS anerkannt)</td>
</tr>
<tr>
<td>Ablegen und Bestehen der Erfolgskontrolle (im Umfang von 3 ECTS)</td>
<td>Am Kursende</td>
<td></td>
</tr>
<tr>
<td>HoC stellt „Schein“ aus, der vom Studierenden am HoC abgeholt wird</td>
<td>Nach Bestehen der Erfolgskontrolle</td>
<td></td>
</tr>
<tr>
<td>Einreichung des „Scheins“ beim Studienbüro</td>
<td>Nach Abholung des Scheins beim HoC</td>
<td></td>
</tr>
<tr>
<td>Prüfung und ggf. Rückfragen an Prüfungsamt WiWi (Herr Hilser)</td>
<td>So schnell wie möglich</td>
<td>Zentrales Prüfungssystem (anschl. Anzeige im StudiPortal)</td>
</tr>
<tr>
<td>Verbuchung der SQ im Seminarmodul durch Studienbüro</td>
<td>So schnell wie möglich</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: Process of gaining additive key skills

Stand: 25.02.2011
3 Module Handbook - a helpful guide throughout the studies

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme. It describes:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other (e.g. if a course is selectable in two or more modules) is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0). In order to that the minimum requirement of credits of this module have been met.

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations takes place online via the self-service function for students (https://campus.studium.kit.edu/).

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.kit.edu/serviceHinweise.php.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the examinations. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to
include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme (in the appendix).

Used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/CP</td>
<td>Credit Points/ECTS</td>
<td>S</td>
<td>summer term</td>
</tr>
<tr>
<td>LV</td>
<td>course</td>
<td>SWS</td>
<td>contact hour</td>
</tr>
<tr>
<td>RÜ</td>
<td>computing lab</td>
<td>Ü</td>
<td>excercise course</td>
</tr>
<tr>
<td>Sem.</td>
<td>semester/term</td>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>ER/SPO</td>
<td>examination regulations</td>
<td>W</td>
<td>winter term</td>
</tr>
<tr>
<td>KS/SQ</td>
<td>key skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schlüsselqualifikationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Studien- und Prüfungsordnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sommernsemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rechnerübung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leistungspunkte/ECTS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist. Please also check our updates on http://www.wiwi.kit.edu/lehreMHB.php#mhb_aktuell.

WI1ING3 - Engineering Mechanics (S. 26)

Anmerkungen
Starting summer 2016 the course “Introduction to Engineering Mechanics I : Statics and Strength of Materials” [2161238] will be held in summer term.

WI3INGMB8 - Emphasis in Fundamentals of Engineering (S. 65)

Anmerkungen
Starting winter term 2016/1017 the course “Introduction to Engineering Mechanics II : Dynamics” [2162276] will be held in winter term.

WI3STAT - Statistical Applications of Financial Risk Management (S. 89)

Anmerkungen
This module will not be offered any more from winter term 2015/2016 on.

WI3STAT1 - Statistics and Econometrics (S. 90)

Anmerkungen

2595466 - Foundations of Digital Services (S. 187)

Anmerkungen
This course was formerly named “eServices”. The credits have been changed from 5 to 4,5.

2113816 - Vehicle Mechatronics I (S. 177)

Erfolgskontrolle
The assessment will consist of a written exam (90 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

2560550 - Auction & Mechanism Design (S. 113)

Erfolgskontrolle
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Students can earn a bonus to the final grade by successfully participating in the exercises.

SemPÖ1 - Seminar on Morals and Social Behavior (S. 320)

Erfolgskontrolle
Students write a seminar paper on an assigned topic (10 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades where the weighting is announced on the course syllabus.

2550491 - Seminar in Discrete Optimization (S. 330)

Erfolgskontrolle
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 35-40 minutes (according to §4(2), 3 of the examination regulation). The final mark for the seminar consists of the seminar thesis, the seminar presentation, the handout, and if applicable further material such as programming code. The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

2161238 - Introduction to Engineering Mechanics I : Statics and Strength of Materials (S.
This course was formerly named “Engineering Mechanics I [2161208].” Starting summer 2016 the course “Introduction to Engineering Mechanics I : Statics and Strength of Materials” [2161238] will be held in summer term.

2162276 - Introduction to Engineering Mechanics II : Dynamics (S. 157)

This course was formerly named “Engineering Mechanics II [2162226].” Starting winter term 2016/2017 the course “Introduction to Engineering Mechanics II : Dynamics” [2162276] will be held in winter term.

2550550 - Analysis of multivariate Data (S. 103)

New course starting winter term 2015/2016.

The lecture is offered irregularly. The curriculum of the next three years is available online.
5 Modules (Foundation)

5.1 All Subjects

Module: Business Administration [WI1BWL1]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Every term</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2610026</td>
<td>Business Administration: Finance and Accounting (p. 132)</td>
<td>2/0/2</td>
<td>W</td>
<td>4</td>
<td>M. Ruckes, M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2600023</td>
<td>Business Administration: Strategic Management and Information Engineering and Management (p. 134)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Ruckes, P. Nieken, H. Lindstädt, Ch. Weinhardt</td>
</tr>
<tr>
<td>2600024</td>
<td>Business Administration: Production Economics and Marketing (p. 133)</td>
<td>2/0/2</td>
<td>S</td>
<td>4</td>
<td>M. Ruckes, W. Fichtner, M. Klarmann, Th. Lützkendorf, F. Schultmann</td>
</tr>
<tr>
<td>2600002</td>
<td>Financial Accounting and Cost Accounting (p. 292)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>J. Strych</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures of each course of this module is defined for each course separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

None.

Recommendations

It is strongly recommended to attend the courses in the following sequence:
1st term: Business Administration: Strategic Management and Information Engineering and Management [2600023] and Business Administration: Finance and Accounting [25026/25027]
2nd term: Business Administration: Production Economics and Marketing [25024/25025]

Qualification Goals

The student

• has core skills in business administration in particular with respect to decision making and model based view of corporations
• masters the fundamentals of managerial and financial accounting as well as business administration
• is able to analyse and assess the central tasks, functions and decisions in modern corporations

This module sets the base for advanced courses in the field of business administration and management science.

Content

This module provides the fundamentals of managerial and financial accounting as well as business administration and management science. Then, the module focuses on the fields of marketing, production economics, information engineering and management, management and organization, investment and finance and the German specific term controlling.

Workload

The total workload for this module is approximately 450 hours. For further information see German version.
Remarks
The title and partly the content of each lecture within this module has changed in the winter semester 2012/13.
Module: Economics [WI1VWL]

Coordination: C. Puppe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2610012</td>
<td>Economics I: Microeconomics (p. 376)</td>
<td>3/0/2</td>
<td>W</td>
<td>5</td>
<td>C. Puppe, P. Reiss</td>
</tr>
<tr>
<td>2600014</td>
<td>Economics II: Macroeconomics (p. 377)</td>
<td>3/0/2</td>
<td>S</td>
<td>5</td>
<td>B. Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The assessment procedures of each course of this module is defined for each course separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Notice: The lecture Economics I: Microeconomics [2610012] is part of the preliminary examination concerning § 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Conditions
None.

Qualification Goals

The student

- knows and understands basic economic problems,
- understands economic policy in globalized markets,
- is able to develop elementary solution concepts.

The lectures of this module have different focuses: In Economics I, economic problems are seen as decision problems, Economics II treats the dynamics of economic processes.

Content

The basic concepts, methods and models of micro- and macroeconomics are treated. The course Economics I: Microeconomics [2610012] deals with micro-economic decision theory, questions of market theory and problems of imperfect competition and with basic principles of game theory and welfare economics. Economics II: Macroeconomics [2600014] discusses economic organization models and national accounts as well as the question of international trade and monetary policy. Furthermore, the complex growth, boom and economic speculations are dealt with.

Workload

The total workload for this module is approximately 300 hours. For further information see German version.
Module: Introduction to Informatics [WI1INFO]

Coordination: H. Schmeck, R. Studer, D. Seese

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511000</td>
<td>Introduction to Programming with Java (p. 278)</td>
<td>3/1/2</td>
<td>W</td>
<td>5</td>
<td>N. N.</td>
</tr>
<tr>
<td>2511010</td>
<td>Foundations of Informatics I (p. 197)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>R. Studer, Y. Sure-Vetter</td>
</tr>
<tr>
<td>2511012</td>
<td>Foundations of Informatics II (p. 198)</td>
<td>3/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the individual courses of this module.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. For a successful module assessment all partial exams have to be passed:

- **Introduction to Programming with Java**
 - Compulsory tests in the computer lab
 - Written exam resp. computer-based exam (60 min)
 - The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam.

- **Foundations of Informatics I**
 - Written exam in the first week of the recess period (60 min)

- **Foundations of Informatics II**
 - Written exam in the first week of the recess period (90 min)
 - It is possible to gain 0.3-0.4 grading points to the written exam by successful participation in the exercises (achieving a minimum number of points received for solutions to the exercises), or by successful completion of a bonus exam (both according to Section 4 (2), 3 of the examination regulation).

When all partial exams are passed, the overall grade of the module is the average of the grades for each course weighted by the credit points and truncated after the first decimal.

Conditions

None.

Recommendations

It is strongly recommended to attend the courses in the following sequence: *Introduction to Programming with Java [2511000], Foundations of Informatics I [2511010] Foundations of Informatics II [2511012]*

Qualification Goals

The student

- knows the main principles, methods and systems of computer science,
- can use this knowledge for applications in advanced computer science courses and other areas for situation-adequate problem solving,
- is capable of finding strategic and creative responses in the search for solutions to well defined, concrete, and abstract problems.

The student can deepen the learned concepts, methods, and systems of computer science in advanced computer science lectures.

Content

This module conveys knowledge of the widespread object-oriented programming Java language. Furthermore, the topics modeling, logic, algorithms, sorting and searching algorithms, complexity theory, problem specifications, and dynamic data
structures are addressed. From the field of theoretical computer science, formal models of automata, languages and algorithms are presented and applied to the architecture of computer systems.

Workload
The total workload for this module is approximately 450 hours. For further information see German version.
Module: Introduction to Operations Research [WI1OR]

Coordination: S. Nickel, O. Stein, K. Waldmann

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Operations Research

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550040</td>
<td>Introduction to Operations Research I (p. 151)</td>
<td>2/2/2</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel, O. Stein, K. Waldmann</td>
</tr>
<tr>
<td>2530043</td>
<td>Introduction to Operations Research II (p. 152)</td>
<td>2/2/2</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel, O. Stein, K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

The overall grade of the module is the grade of the written examination.

Conditions

None.

Recommendations

Mathematics I und II. Programming knowledge for computing exercises.

It is strongly recommended to attend the course *Introduction to Operations Research I* [2550040] before attending the course *Introduction to Operations Research II* [2530043].

Qualification Goals

The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content

This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.

This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Mass and Energy Balances for Reacting Systems [WI1ING1]

Coordination: P. Pfeifer, B. Kraushaar-Czarnetzki

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22130</td>
<td>Mass and Energy Balances for Reacting Systems (p. 358)</td>
<td>2/0</td>
<td>W</td>
<td>2,5</td>
<td>P. Pfeifer, B. Kraushaar-Czarnetzki</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out by a written exam about the lecture *Mass and Energy Balances for Reacting Systems* [22130] (according §4(2), 1 of the examination regulation).

The overall grade of this module is the grade of the written exam.

Conditions

None.

Qualification Goals

The student

- knows and understands integral mass and energy balances of simple systems in process engineering,
- can apply integral mass and balances on selected systems and processes.

Content

- Aim and approach
- Mass balance
- Water
- Nitrogen and ammonia
- Energy balance
- Natural gas
- Carbon dioxide

Workload

The total workload for this module is approximately 75.0 hours. For further information see German version.
Module: Materials Science [WI1ING2]

Coordination: M. Hoffmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125760</td>
<td>Materials Science I (p. 382)</td>
<td>2/1</td>
<td>W</td>
<td>2,5</td>
<td>M. Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the module is carried out by a written examination (150 min) about the lecture *Material Science I* [2125760] (according to Section 4(2), 1 of the examination regulation).

The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.

The grade of the module corresponds to the grade of this examination.

Conditions

None.

Qualification Goals

Students are able to specify the basics of materials science and engineering and can apply it to simple problems in various technical areas.

As major part of the module, the students know the correlation between atomic structure and bonding of solids and the macroscopic properties such as mechanical behavior or electrical conductivity. They have basic knowledge with respect to materials characterization. The students are able to analyze phase diagrams with up to two components and can derive simple correlations among composition, processing, microstructure evolution and materials properties.

Content

After an introduction to the atomic structure and interatomic bonding, elementary concepts of crystallography are given. Different types of crystal structures are explained and various types of imperfections in solids. Then, the mechanical behaviour and the physical properties of various types of materials (metals, polymers, ceramics) are discussed. The thermodynamic principles of solidification and the basic types of phase diagrams are given to understand the iron-carbon phase diagram and the manifold microstructures of steel and cast iron.

Workload

The total workload for this module is approximately 75.0 hours. For further information see German version.
Module: Engineering Mechanics [WI1ING3]

Coordination: A. Fidlin
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161238</td>
<td>Introduction to Engineering Mechanics I : Statics and Strength of Materials (p. 156)</td>
<td>2</td>
<td>W</td>
<td>2,5</td>
<td>A. Fidlin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination about the lecture Engineering Mechanics [2161208] (according to Section 4(2), 1 of the examination regulation).
The overall grade of the module is the grade of the written examination.

Conditions
None.

Qualification Goals
The student

• knows and understands the basic elements of statics,
• is able to solve basic problems in statics independently.

Content
Statics: force • moment • general equilibrium conditions • center of gravity • inner forces in structure • plane frameworks • adhesion

Workload
The total workload for this module is approximately 75.0 hours. For further information see German version.

Remarks
Starting summer 2016 the course “Introduction to Engineering Mechanics I : Statics and Strength of Materials” [2161238] will be held in summer term.
Module: Electrical Engineering [WI1ING4]

Coordination: W. Menesklou
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23223</td>
<td>Electrical Engineering I (p. 163)</td>
<td>2/2</td>
<td>W</td>
<td>2.5</td>
<td>W. Menesklou</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the module is carried out by a written examination about the lecture Electrical Engineering I [23223] (according to Section 4(2), 1 of the examination regulation). The grade of the module corresponds to the grade of this examination.

Conditions
None.

Qualification Goals
The student knows and understands basic terms of electrical engineering and should be able to carry out simple calculations of DC and AC circuits.

Content
Supporting the lecture, assignments to the curriculum are distributed. These are solved into additional (voluntary) tutorials.

Workload
The total workload for this module is approximately 75.0 hours. For further information see German version.
Module: Mathematics [WI1MATH]

Coordination: G. Last
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Every 2nd term, Winter Term</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01350</td>
<td>Mathematics I (p. 240)</td>
<td>4/2/2</td>
<td>W</td>
<td>7</td>
<td>G. Last, M. Folkers, D. Hug, S. Winter</td>
</tr>
<tr>
<td>01830</td>
<td>Mathematics II (p. 241)</td>
<td>4/2/2</td>
<td>S</td>
<td>7</td>
<td>G. Last, M. Folkers, D. Hug, S. Winter</td>
</tr>
<tr>
<td>01352</td>
<td>Mathematics III (p. 242)</td>
<td>4/2/2</td>
<td>W</td>
<td>7</td>
<td>G. Last, M. Folkers, D. Hug, S. Winter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module.
The overall grade of the module is the average of the grades for each course truncated after the first decimal.
The assessment procedures of each course of this module is defined for each course separately.

Conditions
The admission to the examinations carried out regardless of the evidence of the other examinations in the module.

Recommendations
It is strongly recommended to attend the courses in the following sequence: Mathematics I [01350], Mathematics II [01830] Mathematics III [01352]

Qualification Goals
See German version.

Content

Workload
The total workload for this module is approximately 630 hours. For further information see German version.
Module: Statistics [WI1STAT]

Coordination: W. Heller
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Statistics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600008</td>
<td>Statistics I (p. 352)</td>
<td>4/0/2</td>
<td>S</td>
<td>5</td>
<td>W. Heller</td>
</tr>
<tr>
<td>2610020</td>
<td>Statistics II (p. 353)</td>
<td>4/0/2</td>
<td>W</td>
<td>5</td>
<td>W. Heller</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II). The overall grade of the module is the average of the grades of these two written examinations.

Conditions

Notice: The lecture Statistics I [25008/25009] is part of the preliminary examination concerning Section 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Recommendations

To some extend knowledge of the content of the module Mathematics [WW1MATH/WI1MATH] is assumed. Therefore it is recommended to attend the course Mathematics I [01350] before attending the module Statistics [WI1STAT]. It ist recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021]. Each course is complemented by an exercise, a tutorium and a computing laboratory. It highly recommended to attend these too.

Qualification Goals

See German version.

Content

The module contains the fundamental methods and scopes of Statistics.

A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, convolution and limit distributions
C. Theory of estimation and testing: suffiency of statistics, point estimation (optimality, ML-method), internal estimations, theory of tests (optimality, most important examples of tests)

Workload

The total workload for this module is approximately 300 hours. For further information see German version.
6 Modules (Specialization)

6.1 Business Administration

Module: Strategy and Organization [WI3BWL01]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2577900</td>
<td>Management and Strategy (p. 367)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577902</td>
<td>Managing Organizations (p. 262)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577910</td>
<td>Problem solving, communication and leadership (p. 273)</td>
<td>1/0</td>
<td>S</td>
<td>2</td>
<td>H. Lindstädt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module "Business Administration" [WI1BWL01]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
See German version.

Content

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Management Accounting [WI3BWL1BU1]

Coordination: M. Wouters
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2579900</td>
<td>Management Accounting 1 (p. 231)</td>
<td>2/2</td>
<td>S</td>
<td>4,5</td>
<td>M. Wouters</td>
</tr>
<tr>
<td>2579902</td>
<td>Management Accounting 2 (p. 232)</td>
<td>2/2</td>
<td>W</td>
<td>4,5</td>
<td>M. Wouters</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

Students
- are familiar with various management accounting methods,
- can apply these methods for cost estimation, profitability analysis, and product costing,
- are able to analyze short-term and long-decisions with these methods,
- have the capacity to devise instruments for organizational control.

Content

The module consists of two courses “Management Accounting 1” and “Management Accounting 2”. The emphasis is on structured learning of management accounting techniques.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

Students who like this module are probably also interested in the courses
- 2530216 Financial Management
- 2530210 Management Accounting
Module: Industrial Production I [WI3BWLIIP]

Coordination: F. Schultmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581950</td>
<td>Fundamentals of Production Management (p. 202)</td>
<td>2/2</td>
<td>S</td>
<td>5.5</td>
<td>F. Schultmann</td>
</tr>
<tr>
<td>2581960</td>
<td>Production Economics and Sustainability (p. 275)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>M. Fröhling</td>
</tr>
<tr>
<td>2581996</td>
<td>Logistics and Supply Chain Management (p. 227)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>M. Wiens</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course “Fundamentals of Production Management” [2581950] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO. The course “Fundamentals of Production Management” [2581950] and one additional activity have to be chosen.

Recommendations
All courses are specifically designed to be taken independently. Bearing in mind the master programme, we recommend combining this module with “Industrial Production II” [WW4BWLIIP2] and/or “Industrial Production III” [WW4BWLIIP6].

Qualification Goals
- Students shall be aware of the important role of industrial production and logistics for production management.
- Students shall use relevant concepts of production management and logistics in an adequate manner.
- Students shall be able to reflect on decision principles in firms and their circumstances in the light of the production management aspects studied.
- Students shall be proficient in describing essential tasks, difficulties and solutions to problems in production management and logistics.
- Students shall be able to describe relevant approaches of modeling production and logistic systems.
- Students shall be aware of the important role of material and energy-flows in production systems.
- Students shall be proficient in using exemplary methods for solving selected problems.

Content
This module is designed to introduce students into the wide area of industrial production and logistics management. It focuses on strategic production management under the aspect of sustainability. The courses use interdisciplinary approaches of systems, also theory to describe the central tasks of industrial production management and logistics. Herein, attention is drawn upon strategic corporate planning, research and development as well as site selection. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Workload
Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h. The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.
Module: Energy Economics [WI3BWL1IP2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581010</td>
<td>Introduction to Energy Economics (p. 153)</td>
<td>2/2</td>
<td>S</td>
<td>5.5</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>2581012</td>
<td>Renewable Energy – Resources, Technology and Economics (p. 293)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>R. McKenna</td>
</tr>
<tr>
<td>2581005</td>
<td>Corporate Governance in Energy Economics (p. 366)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>H. Villis</td>
</tr>
<tr>
<td>2581959</td>
<td>Energy Policy (p. 168)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>M. Wietschel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture *Introduction into Energy Economics* [2581010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

The lecture *Introduction into Energy Economics* [2581010] has to be examined.

Recommendations

The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Qualification Goals

The student

- is able to understand interdependencies in energy economics and to evaluate ecological impacts in energy supply,
- is able to assess the different energy carriers and their characteristics,
- knows the energy political framework conditions,
- gains knowledge about new market-based conditions and the cost and potentials of renewable energies in particular.

Content

Introduction to Energy Economics: Characterisation (reserves, suppliers, cost, technologies) of different energy carriers (coal, gas, oil, electricity, heat etc.)

Renewable Energy - Resources, Technology and Economics: Characterisation of different renewable energy carriers (wind, solar, hydro, geothermal etc.)

Corporate Governance in Energy Economics: Challenges of the management of a large company in energy economics (superior leadership role, structures, processes and projects from a leadership perspective etc.)

Energy Policy: Management of energy flows, energy-political targets and instruments (emission trading etc.)

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

See German version.
Module: Essentials of Finance [WI3BWLFBV1]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530575</td>
<td>Investments (p. 222)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530216</td>
<td>Financial Management (p. 184)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The student

• has fundamental skills in modern finance
• has fundamental skills to support investment decisions on stock, bond and derivative markets
• applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Content
The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Risk and Insurance Management [WI3BWLFBV3]

Coordination: U. Werner

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Business Administration

ECTS Credits

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550055</td>
<td>Principles of Insurance Management (p. 272)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>J. Werner</td>
</tr>
<tr>
<td>2530326</td>
<td>Enterprise Risk Management (p. 170)</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>J. Werner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The lectures are examined by oral presentations and related term papers in the context of the lectures. Furthermore, there is a final oral examination.

The grade of each examination consists of the oral presentation and the term paper (50 percent) and the oral examination (50 percent). The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

See German version.

Content

See German version.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Topics in Finance I [WI3BWLFBV5]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530210</td>
<td>Cost and Management Accounting (p. 221)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>2530232</td>
<td>Financial Intermediation (p. 185)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 146)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 139)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530299</td>
<td>Business Strategies of Banks (p. 192)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 220)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 150)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2560129</td>
<td>Specific Aspects in Taxation (p. 349)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, Armin Bader</td>
</tr>
<tr>
<td>2530219</td>
<td>Asset Management (p. 112)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Sauer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO. It is only possible to choose this module in combination with the module Essentials in Finance [WI3BWLFBV1]. The module is passed only after the final partial exam of Essentials in Finance is additionally passed. In addition to that it is possible to choose the module Topics in Finance II [WI3BWLFBV6].

Qualification Goals
The student

• has advanced skills in modern finance
• is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content
The module Topics in Finance I is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Topics in Finance II [WI3BWLFBV6]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530210</td>
<td>Cost and Management Accounting (p. 221)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>2530232</td>
<td>Financial Intermediation (p. 185)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 146)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 139)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530299</td>
<td>Business Strategies of Banks (p. 192)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 220)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 150)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2560129</td>
<td>Specific Aspects in Taxation (p. 349)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, Armin Bader</td>
</tr>
<tr>
<td>2530219</td>
<td>Asset Management (p. 112)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Sauer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO. It is only possible to choose this module in combination with the module Essentials in Finance [WI3BWLFBV1]. The module is passed only after the final partial exam of Essentials in Finance is additionally passed.

In addition to that it is possible to choose the module Topics in Finance I [WI3BWLFBV5].

Qualification Goals

The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

The module Topics in Finance II is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.
Module: eBusiness and Service Management [WI3BWLISM1]

Coordination: C. Weinhardt
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2595466</td>
<td>Foundations of Digital Services (p. 187)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Weinhardt, H. Fromm</td>
</tr>
<tr>
<td>2590452</td>
<td>Management of Business Networks (p. 233)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 150)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2540498</td>
<td>Special Topics in Information Engineering & Management (p. 346)</td>
<td>3</td>
<td>W/S</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The students

- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Content
This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle. The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented. The lecture is complemented by exercise courses.

The courses “Management of Business Networks”, “eFinance: Information engineering and management in finance” and “eServices” constitute three different application domains in which the basic principles of the Internet Economy are deepened. In the course “Management of Business Networks” the focus is set on the strategic aspects of management and information systems. It is held in English and teaches parts of the syllabus with the support of a case study elaborated with Lecturers from Concordia University, Montreal, or if applicable, Rotterdam School of Management. Thus the matter of strategic enterprise networks, a.k.a. smart business networks is also analysed by employing an international perspective.

The course “eFinance: information engineering and management for securities trading” provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.

In “eServices” the increasing impact of electronic services compared to the traditional services is outlined. The Information- und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality. This course provides basic knowledge about the development and management of ICT-based services.

The theoretic fundamentals of Information Engineering and Management can be enriched by a practical experience in Special Topics in Information Engineering and Management. Any practical Seminar at the IM can be chosen for the course Special Topics in Information Engineering and Management.
Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
All practical Seminars offered at the IM can be chosen for *Special Topics in Information Engineering & Management*. Please update yourself on www.iism.kit.edu/im/lehre
Module: Supply Chain Management [WI3BWLISM2]

Coordination: S. Nickel
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2590452</td>
<td>Management of Business Networks (p. 233)</td>
<td>2/1 W</td>
<td></td>
<td>4.5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2540496</td>
<td>Management of Business Networks (Introduction) (p. 234)</td>
<td>2 W</td>
<td></td>
<td>3</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 350)</td>
<td>2/1 W</td>
<td></td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2118078</td>
<td>Logistics - organisation, design and control of logistic systems (p. 228)</td>
<td>3/1 S</td>
<td></td>
<td>6</td>
<td>K. Furmans</td>
</tr>
<tr>
<td>2550488</td>
<td>Tactical and Operational Supply Chain Management (p. 364)</td>
<td>2/1 S</td>
<td></td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
At least one of the courses Management of Business Networks [2590452] and Management of Business Networks (Introduction) [2540496] has to be taken.
Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Recommendations
None.

Qualification Goals
The students
- are able to understand and evaluate the control of cross-company supply chains based on a strategic and operative view,
- are able to analyse the coordination problems within the supply chains,
- are able to identify and integrate adequate information system infrastructures to support the supply chains,
- are able to apply theoretical methods from the operations research and the information management,
- learn to elaborate solutions in a team

Content
The module “Supply Chain Management” gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture “Management of Business Networks” the focus is set on the strategic aspects of management and information systems. The course is held in English and teaches parts of the syllabus with the support of a case study elaborated with Prof Kersten from Concordia University, Montreal, Canada. The course MBN introduction is consisting out of the first part of the regular MBN lecture, but as it has less credits will not include the analysis of the case study.
The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Remarks
The planned lectures in the next terms can be found on the websites of the respective institutes IISM, IFL and IOR.
Module: eFinance [WI3BWLIISM3]

Coordination: C. Weinhardt
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 150)</td>
<td>2/1 W</td>
<td>4,5</td>
<td></td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 146)</td>
<td>2/1 S</td>
<td>4,5</td>
<td></td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 139)</td>
<td>1 S</td>
<td>1,5</td>
<td></td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 220)</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module “Business Administration” [WI1BWLI]. For exceptions see § 17 Abs. 6 SPO.
The course eFinance: Information Engineering and Management for Securities Trading [2540454] is compulsory and must be examined.

Qualification Goals
The students
- are able to understand and analyse the value creation chain in stock broking,
- are able to adequately identify, design and use methods and systems to solve problems in finance,
- are able to evaluate and criticize investment decisions by traders,
- are able to apply theoretical methods of econometrics,
- learn to elaborate solutions in a team.

Content
The module “eFinance: Information engineering and management in finance” addresses current problems in the finance sector. It is investigated the role of information and knowledge in the finance sector and how information systems can solve or extenuate them. Speakers from practice will contribute to lectures with their broad knowledge. Core courses of the module deal with the background of banks and insurance companies and the electronic commerce of stocks in global finance markets. In addition the course Derivatives offers an insight into future and forward contracts as well as the assessment of options. Exchanges and International Finance are also alternatives which provide a supplementary understanding for capital markets.
Information management topics are in the focus of the lecture “eFinance: Information engineering and management for securities trading”. For the functioning of the international finance markets, it is necessary that there is an efficient information flow. Also, the regulatory frameworks play an important role. In this context, the role and the functioning of (electronic) stock markets, online brokers and other finance intermediaries and their platforms are presented. Not only IT concepts of German finance intermediaries are presented, but also international system approaches will be compared. The lecture is supplemented by speakers from the practice (and excursions, if possible) coming from the Deutsche Börse and the Stuttgart Stock Exchange.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.iism.kit.edu/im/lehre
Module: CRM and Service Management [WI3BWLISM4]

Coordination: A. Geyer-Schulz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540508</td>
<td>Customer Relationship Management (p. 141)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>2540522</td>
<td>Analytical CRM (p. 104)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>2540520</td>
<td>Operative CRM (p. 259)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Thereby every lecture is examined by a written exam (according to Section 4(2), 1 of the examination regulation) and by successful completion of exercises (according to Section 4 (2), 3 of the examination regulation).

The grades of the individual lectures consists of the grade of the written exam (approximately 90 percent resp. 100 of 112 points) and of the exercise performance (approximately 10 percent resp. 12 of 112 points). In the case of passing the written exam (50 points) the points of the exercise performance will be added to the points of the written exam. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

The student

- understands service management as the managerial foundation of customer relationship management and the resulting implications for strategic management, the organisational structure, and the functional areas of the company,
- develops and designs service concepts and service systems on a conceptual level,
- works in teams on case studies and respects project dates, integrates international literature of the discipline,
- knows the current developments in CRM in science as well as in industry,
- knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
- designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, ...).

Content

In the module CRM and Service Management [WI3BWLISM4] we teach the principles of modern customer-oriented management and its support by system architectures and CRM software packages. Choosing customer relationship management as a company's strategy requires service management and a strict implementation of service management in all parts of the company. For operative CRM we present the design of customer-oriented, IT-supported business processes based on business process modelling and we explain these processes in concrete application scenarios (e.g. marketing campaign management, call center management, sales force management, field services, ...). Analytic CRM is dedicated to improve the use of knowledge about customers in the broadest sense for decision-making (e.g. product-mix decisions, bonus programs based on customer loyalty, ...) and for the improvement of services. A requirement for this is the tight integration of operative systems with a data warehouse, the development of customer-oriented and flexible reporting systems, and – last but not least – the application of statistical methods (clustering, regression, stochastic models, ...).

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Remarks

The lecture *Customer Relationship Management* [2540508] is given in English. The courses *Analytical CRM* and *Operative CRM* will take place in an alternating way from winter term 14/15. Analytical CRM is offered for a last time in the summer term 14. Details on the cycle and on the exams can be found on http://www.em.uni-karlsruhe.de/studies/.
Module: Specialization in Customer Relationship Management [WI3BWLISM5]

Coordination: A. Geyer-Schulz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540522</td>
<td>Analytical CRM (p. 104)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>2540520</td>
<td>Operative CRM (p. 259)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>2561204</td>
<td>Competition in Networks (p. 386)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>K. Mitsusch</td>
</tr>
<tr>
<td>2595466</td>
<td>Foundations of Digital Services (p. 187)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Weinhardt, H. Fromm</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
• Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.
• It is only possible to choose this module in combination with the module CRM and Servicemanagement [WI3BWLISM4]. The module is passed only after the final partial exam of CRM and Servicemanagement is additionally passed.
• At least, one of the courses Analytic CRM [2540522] and Operative CRM [2540520] has to be taken.

Qualification Goals
The student
• knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
• gains an overview of the market for CRM software,
• designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, ...),
• is aware of the problems of protecting the privacy of customers and the implications of privacy law.

Content
In this module, analysis methods and techniques for the management and improvement of customer relations are presented. Furthermore, modelling, implementation, introduction, change, analysis and valuation of operative CRM processes are treated. Regarding the first part, we teach analysis methods and techniques suitable for the management and improvement of customer relations. For this goal we treat the principles of customer- and service-oriented management as the foundation of successful customer relationship management. In addition, we show how knowledge of the customer can be used for decision-making at an aggregate level (e.g. planning of sortiments, analysis of customer loyalty, ...). A basic requirement for this is the integration and collection of data from operative processes in a suitably defined data-warehouse in which all relevant data is kept for future analysis. The process of transferring data from the operative systems into the data warehouse is known as the ETL process (Extraction / Translation / Loading). The process of modelling a data-warehouse as well as the so-called extraction, translation, and loading process for building and maintaining a data-warehouse are discussed in-depth. The data-warehouse serves as a base for flexible management reporting. In addition, various statistic methods (e.g. cluster analysis, regression analysis, stochastic models, ...) are presented which help in computing suitable key performance indicators or which support decision-making.

Regarding the operative part, we emphasize the design of operative CRM processes. This includes the modelling, implementation, introduction and change, as well as the analysis and evaluation of operative CRM processes. Petri nets and their extensions are the scientific foundation of process modelling. The link of Petri nets to process models used in industry as e.g. UML activity diagrams is presented. In addition, a framework for process innovation which aims at a radical improvement of key business processes is introduced. The following application areas of operative CRM processes are presented and discussed:
• Strategic marketing processes
• Operative marketing processes (campaign management, permission marketing, . . .)
• Customer service processes (sales force management, field services, call center management, . . .)

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
The courses Analytical CRM and Operative CRM will take place in an alternating way from winter term 14/15. Analytical CRM is offered for a last time in the summer term 14. Details on the cycle and on the exams can be found on http://www.em.uni-karlsruhe.de/studies/.
Module: **Design, Construction and Sustainability Assessment of Buildings** [WI3BWLOOW1]

Coordination: T. Lützkendorf
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2586404</td>
<td>Design and Construction of Buildings (p. 127)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>T. Lützkendorf</td>
</tr>
<tr>
<td>2585404</td>
<td>Sustainability Assessment of Buildings (p. 128)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>T. Lützkendorf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Recommendations

The combination with the module Real Estate Management [WI3BWLOOW2] is recommended. Furthermore a combination with courses in the area of

- Industrial production (energy flow in the economy, energy politics, emissions)
- Civil engineering and architecture (building physics, building construction)

is recommended.

Qualification Goals

The student

- knows the basics of sustainable design, construction and operation of buildings with an emphasis on building ecology
- has knowledge of building ecology assessment procedures and tools for design and assessment
- is capable of applying this knowledge to assessing the ecological advantageousness of buildings as well as their contribution to a sustainable development.

Content

Sustainable design, construction and operation of buildings currently are predominant topics of the real estate sector, as well as “green buildings”. Not only designers and civil engineers, but also other actors who are concerned with project development, financing and insurance of buildings or portfolio management are interested in these topics. On the one hand the courses included in this module cover the basics of energy-efficient, resource-saving and health-supporting design and construction of buildings. On the other hand fundamental assessment procedures for analysing and communicating the ecological advantageousness of technical solutions are discussed. With the basics of green building certification systems the lectures provide presently strongly demanded knowledge. Additionally, videos and simulation tools are used for providing a better understanding of the content of teaching.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Real Estate Management [WI3BWLOOW2]

Coordination: T. Lützkendorf
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2586400</td>
<td>Real Estate Management I (p. 289)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
<tr>
<td>2585400</td>
<td>Real Estate Management II (p. 290)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO.

Recommendations
The combination with the module Design Constructions and Assessment of Green Buildings [WI3BWLOOW1] is recommended. Furthermore a combination with courses in the area of
- Finance
- Insurance
- Civil engineering and architecture (building physics, building construction, facility management)

is recommended.

Qualification Goals
The student
- possesses an overview concerning the different facets and interrelationships within the real estate business, the important decision points in real estate lifecycle and the different views and interests of the actors concerned, and
- is capable of applying basic economic methods an procedures to problems within the real estate area.

Content
The real estate business offers graduates very interesting jobs and excellent work- and advancement possibilities. This module provides an insight into the macroeconomic importance of this industry, discusses problems concerned to the administration of real estate and housing companies and provides basic knowledge for making decisions both along the lifecycle of a single building and the management of real estate portfolios. Innovative operating and financing models are illustrated, as well as the current development when looking at real estate as an asset-class.
This module is also suitable for students who want to discuss macroeconomic, business-management or financial problems in a real estate context.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Foundations of Marketing [WI3BWLMAR]

Coordination: M. Klarmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2572177</td>
<td>Brand Management (p. 235)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>2571152</td>
<td>Managing the Marketing Mix (p. 237)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Klarmann</td>
</tr>
<tr>
<td>2572158</td>
<td>Services Marketing and B2B Marketing (p. 147)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Klarmann, J. Kim</td>
</tr>
<tr>
<td>2572155</td>
<td>International Marketing (p. 219)</td>
<td>1</td>
<td>W</td>
<td>1,5</td>
<td>M. Klarmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see § 17 Abs. 6 SPO. The course Marketing Mix is compulsory and must be examined.

Qualification Goals

The aim of this module is to prepare the students properly for tasks in a marketing or sales department. Especially technical oriented companies choose engineers with technical knowledge and understanding for marketing and sales.

Students
- know the most important concepts, approaches, and theories of the marketing mix (product management, price management, communication management and sales management)
- can make decisions about current and future products (innovation management and management of established products; e.g. conjoint analysis)
- know how customers perceive brands and how to influence that
- comprehend how customers respond to prices (e.g. price-demand function)
- know how to determine prices based on conceptual and quantitative considerations
- know the basics of price differentiation
- are familiar with the instruments of communication and are able to design them accurately
- know how to allocate the communication budget
- know how to target consumers via market segmentation
- know how to position a product
- know how to analyze the significance and satisfaction of a customer
- know how create a relationship to the customer and to the retailer
- are familiar with the particularities in specific marketing contexts (Business-to-Business Marketing, Marketing of Services, International Marketing)

Content

The core course of the module is “Marketing Mix”. This course is compulsory and must be examined. “Marketing Mix” contains instruments and methods that enable you to goal-oriented decisions in the operative marketing management (product management, pricing, promotion and sales management).

To deepen the marketing knowledge students can complete the module in two ways:

- by choosing the course “Brand Management”.
- by choosing the combination of the courses “Services- and B2B-Marketing” and “International Marketing”.

Industrial Engineering and Management (B.Sc.)

Module Handbook, Date: 04.08.2015
Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Module: Human Resources and Organizations [WI3BWLIAP2]

Coordination: P. Nieken
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

ECTS Credits 9

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Policies and Labor Market Institutions (p. 264)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>P. Nieken</td>
</tr>
<tr>
<td>Human Resource Management (p. 263)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>P. Nieken</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory and statistics is recommended.

Qualification Goals
The student
- knows and analyzes basic concepts, instruments, and challenges of present human resource and organizational management.
- uses the techniques he / she has learned to evaluate strategic situations which occur in human resource management.
- knows the relevant labor market institutions and can explains their tasks.
- has basic knowledge of fit and challenges of different scientific methods in the context of personnel and organizational economics.

Content
Students’ acquire basic knowledge in the field of human resource and organizational management. Strategic as well as operative aspects of human resource management practices are analyzed. The students learn to apply methods and instruments to plan, select, and manage staff. Labor market institutions and selected aspects of personnel politics are examined and evaluated. The focus lies on the strategic analysis of decisions and the use microeconomic or behavioral approaches. Empirical results of field or lab studies are discussed critically.

Workload
The total workload for this module is approximately 270 hours.

Remarks
This module has been added summer 2015.
6.2 Economics

Module: Public Finance [WI3VWL9]

Coordination: B. Wigger
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2560120</td>
<td>Public Revenues (p. 256)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>B. Wigger, Assistenten</td>
</tr>
<tr>
<td>2560129</td>
<td>Specific Aspects in Taxation (p. 349)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, Armin Bader</td>
</tr>
<tr>
<td>2560122</td>
<td>Monetary and Financial Policy (p. 189)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, J. Nagel</td>
</tr>
<tr>
<td>2560131</td>
<td>Introduction to Public Finance (p. 154)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module Economics [WI1VWL]. For exceptions see § 17 Abs. 6 SPO.

Recommendations
It is recommended to attend the course Spezielle Steuerlehre [2560129] after having completed the course Öffentliche Einnahmen [2560120].

Qualification Goals
See German version.

Content
As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs. Special fields of Public Finance are public revenues, i.e. taxes and public debt, public expenditures for publicly provided goods, and welfare programs.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
See German version.
Module: Economic Policy I [WI3VWL10]

Coordination: I. Ott
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2561204</td>
<td>Competition in Networks (p. 386)</td>
<td>2/1 W</td>
<td>4,5</td>
<td>K. M.itsch</td>
<td></td>
</tr>
<tr>
<td>2560280</td>
<td>Basic Principles of Economic Policy (p. 158)</td>
<td>2/1 S</td>
<td>4,5</td>
<td>I. Ott</td>
<td></td>
</tr>
<tr>
<td>2560120</td>
<td>Public Revenues (p. 256)</td>
<td>2/1 S</td>
<td>4,5</td>
<td>B. Wigger, Assistenten</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module Economics [WI1VWL]. For exceptions see § 17 Abs. 6 SPO.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].

Qualification Goals
Students shall be given the ability to
- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Content
- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Workload
Total expenditure of time for 9 credits: 270 hours.
- Attendance time per lecture: 3x14h
- Preparation and wrap-up time per lecture: 3x14h
- Rest: Exam Preparation

The exact distribution is subject to the credits of the courses of the module.

Remarks
Module: Economic Theory [WI3VWL12]

Coordination: C. Puppe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520525</td>
<td>Introduction to Game Theory (p. 155)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe, P. Reiss</td>
</tr>
<tr>
<td>252517</td>
<td>Welfare Economics (p. 389)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>2560238</td>
<td>Industrial Organization (p. 213)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>P. Reiss</td>
</tr>
<tr>
<td>2520527</td>
<td>Advanced Topics in Economic Theory (p. 101)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Hillebrand, K. Mitusch</td>
</tr>
<tr>
<td>2560550</td>
<td>Auction & Mechanism Design (p. 113)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>N. Szech</td>
</tr>
<tr>
<td>2560137</td>
<td>Economics and Behavior (p. 148)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>N. Szech</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module Economics [WI1VWL]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

See German version.

Content

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Applied Microeconomics [WI3VWL13]

Composition: P. Reiss
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520525</td>
<td>Introduction to Game Theory (p. 155)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Puppe, P. Reiss</td>
</tr>
<tr>
<td>2560238</td>
<td>Industrial Organization (p. 213)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>P. Reiss</td>
</tr>
<tr>
<td>2561204</td>
<td>Competition in Networks (p. 386)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>K. Mitusch</td>
</tr>
<tr>
<td>2560120</td>
<td>Public Revenues (p. 256)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>B. Wigger, Assistenten</td>
</tr>
<tr>
<td>2560550</td>
<td>Auction & Mechanism Design (p. 113)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>N. Szech</td>
</tr>
<tr>
<td>2560137</td>
<td>Economics and Behavior (p. 148)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>N. Szech</td>
</tr>
<tr>
<td>2520365</td>
<td>Decision Theory (p. 171)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>K. Ehrhart</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module Economics [WI1VWL]. For exceptions see § 17 Abs. 6 SPO.

Recommendations
Completion of the module Economics [WW1VWL] is assumed.

Qualification Goals
Students
- are introduced to the basic theoretical analysis of strategic interaction situations and shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings. (course „Introduction to Game Theory“);
- are exposed to the basic problems of imperfect competition and its implications for policy making; (course „Industrial Organization“);
- are provided with the basic economics of network industries (e.g., telecom, utilities, IT, and transport sectors) and should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion, and state intervention, (course “Competition in Networks”).

Content
The module’s purpose is to extend and foster skills in microeconomic theory by investigating a variety of applications. Students shall be able to analyze real-life problems using microeconomics.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
Starting summer term 2015, the lecture “Decision Theory” [2520365] can be chosen in the module.
6.3 Informatics

Module: Emphasis Informatics [WI3INFO1]

Coordination: H. Schmeck, A. Oberweis, R. Studer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Informatics

ECTS Credits: 9
Cycle: Every term
Duration: 1 term

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511020</td>
<td>Advanced Programming - Java Network Programming (p. 279)</td>
<td>2/1/2</td>
<td>S</td>
<td>5</td>
<td>D. Seese, D. Ratz</td>
</tr>
<tr>
<td>2511026</td>
<td>Advanced Programming - Application of Business Software (p. 280)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis, S. Klink</td>
</tr>
<tr>
<td>2511030</td>
<td>Applied Informatics I - Modelling (p. 106)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis, Y. Sure-Vetter</td>
</tr>
<tr>
<td>2511032</td>
<td>Applied Informatics II - IT Systems for e-Commerce (p. 107)</td>
<td>2/1/1</td>
<td>S</td>
<td>5</td>
<td>J. Zöllner, N.N.</td>
</tr>
<tr>
<td>2511102</td>
<td>Algorithms for Internet Applications (p. 102)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>2511300</td>
<td>Knowledge Management (p. 388)</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>R. Studer</td>
</tr>
<tr>
<td>2511206</td>
<td>Software Engineering (p. 342)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>2511100</td>
<td>Efficient Algorithms (p. 149)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>Platzhalter</td>
<td>Special Topics of Applied Informatics (p. 347)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>A. Oberweis, H. Schmeck, R. Studer</td>
</tr>
<tr>
<td>2511200</td>
<td>Database Systems (p. 145)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Oberweis, Dr. D. Sommer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module. For passing the module exam in every single partial exam the respective minimum requirements has to be achieved.

- Partial exam II: all the rest

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the module Introduction to Informatics [WI1INFO]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The student

- has the capability of dealing with the practical application of the Java programming language (which is the dominating programming language in many application areas) or alternatively the ability to configure, parameterize and deploy enterprise software to enable, support and automate business processes,
- is familiar with methods and systems of a core topic or core application area of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.
Content
In this module, object-oriented programming skills using the Java programming language are further deepened. Alternatively, important fundamentals of business information systems are conveyed that enable, support and accelerate new forms of business processes and organizational forms. Based on a core application area, basic methods and techniques of computer science are presented.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Electives in Informatics [WI3INFO2]

Coordination: H. Schmeck, A. Oberweis, R. Studer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511030</td>
<td>Applied Informatics I - Modelling (p. 106)</td>
<td>2/1 W</td>
<td>5</td>
<td>A. Oberweis, Y. Sure-Vetter</td>
<td></td>
</tr>
<tr>
<td>2511032</td>
<td>Applied Informatics II - IT Systems for e-Commerce (p. 107)</td>
<td>2/1/1 S</td>
<td>5</td>
<td>J. Zöllner, N.N.</td>
<td></td>
</tr>
<tr>
<td>2511102</td>
<td>Algorithms for Internet Applications (p. 102)</td>
<td>2/1 W</td>
<td>5</td>
<td>H. Schmeck</td>
<td></td>
</tr>
<tr>
<td>2511100</td>
<td>Efficient Algorithms (p. 149)</td>
<td>2/1 S</td>
<td>5</td>
<td>H. Schmeck</td>
<td></td>
</tr>
<tr>
<td>2511200</td>
<td>Database Systems (p. 145)</td>
<td>2/1 S</td>
<td>5</td>
<td>A. Oberweis, Dr. D. Sommer</td>
<td></td>
</tr>
<tr>
<td>2511206</td>
<td>Software Engineering (p. 342)</td>
<td>2/1 S</td>
<td>4</td>
<td>A. Oberweis</td>
<td></td>
</tr>
<tr>
<td>2511300</td>
<td>Knowledge Management (p. 388)</td>
<td>2/1 W</td>
<td>4</td>
<td>R. Studer</td>
<td></td>
</tr>
<tr>
<td>Platzhalter</td>
<td>Special Topics of Applied Informatics (p. 347)</td>
<td>2/1 W/S</td>
<td>5</td>
<td>A. Oberweis, H. Schmeck, R. Studer</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every single partial exam the respective minimum requirements has to be achieved. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. When every single examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module Introduction to Informatics [WI1INFO]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

The student

- knows and has mastered methods and systems for core topics and core application areas of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content

The elective module conveys advanced knowledge in the area of applied computer science. This includes, for example, the efficient design and optimization of technical systems, the design and management of database applications or the systematic development of large software systems. Moreover, modeling of complex systems, the use of computer science methods to support knowledge management, and the design and implementation of service-oriented architectures are discussed in this module.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

The course “Semantic Web Technologies” will not be offered any more in this module from summer term 2015 on. The examination will be offered latest until winter term 2015/2016 (repeaters only).
6.4 Operations Research

Module: Applications of Operations Research [WI3OR5]

Coordination: S. Nickel
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Operations Research

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 350)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550488</td>
<td>Tactical and Operational Supply Chain Management (p. 364)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550490</td>
<td>Software Laboratory: OR Models I (p. 343)</td>
<td>1/2</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550134</td>
<td>Global Optimization I (p. 193)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550662</td>
<td>Simulation I (p. 340)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4,5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

At least one of the courses Facility Location and strategic Supply Chain Management [2550486] and Tactical and operational Supply Chain Management [2550488] has to be taken. Successful passing of the module Introduction to Operations Research [WI1OR]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

The student

• is familiar with basic concepts and terms of Supply Chain Management,
• knows the different areas of Supply Chain Management and their respective optimization problems,
• is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
• is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content

Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.
Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Workload

Total effort for 9 credits: ca. 270 hours.

- Presence time: 84 hours
- Preparation/Wrap-up: 112 hours
- Examination and examination preparation: 74 hours

Remarks

The planned lectures and courses for the next three years are announced online.
Module: Methodical Foundations of OR [WI3OR6]

Coordination: O. Stein
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Operations Research

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550111</td>
<td>Nonlinear Optimization I (p. 254)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550113</td>
<td>Nonlinear Optimization II (p. 255)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550134</td>
<td>Global Optimization I (p. 193)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550136</td>
<td>Global Optimization II (p. 194)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 350)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550679</td>
<td>Markov Decision Models I (p. 356)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
At least one of the lectures Nonlinear Optimization I [2550111] and Global Optimization I [2550134] has to be examined.
Successful passing of the module Introduction to Operations Research [WI1INFO]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The student
- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.

Content
The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat approaches for global solutions.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu).
For the lectures of Prof. Stein a grade of 30 % of the exercise course has to be fulfilled. The description of the particular lectures is more detailed.
Module: Stochastic Methods and Simulation [WI3OR7]

Coordination: K. Waldmann

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Operations Research

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550679</td>
<td>Markov Decision Models I (p. 356)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550682</td>
<td>Markov Decision Models II (p. 357)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550662</td>
<td>Simulation I (p. 340)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550665</td>
<td>Simulation II (p. 341)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550111</td>
<td>Nonlinear Optimization I (p. 254)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550488</td>
<td>Tactical and Operational Supply Chain Management (p. 364)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

At least one of the courses Markov Decision Models [2550679] or Simulation I [2550662] has to be attended.

Successful passing of the module Introduction to Operations Research [WI1OR]. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

The student possesses profound knowledge in modelling, analyzing and optimizing stochastic systems in economy and engineering.

Content

Markov Decision Models I: Markov Chains, Poisson Processes
Markov Decision Models II: Queueing Systems, Stochastic Decision Processes
Simulation I: Generation of random numbers, Monte Carlo integration, Discrete event simulation, Discrete and continuous random variables, Statistical analysis of simulated data.
Simulation II: Variance reduction techniques, Simulation of stochastic processes, Case studies.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

The planned lectures and courses for the next two years are announced online (http://www.ior.kit.edu/).
6.5 Engineering Sciences

Module: Automotive Engineering [WI3INGMB5]

Coordination: F. Gauterin
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113805</td>
<td>Automotive Engineering I (p. 195)</td>
<td>4 W</td>
<td>6</td>
<td>F. Gauterin, H. Unrau</td>
<td></td>
</tr>
<tr>
<td>2114835</td>
<td>Automotive Engineering II (p. 196)</td>
<td>2 S</td>
<td>3</td>
<td>F. Gauterin, H. Unrau</td>
<td></td>
</tr>
<tr>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering (p. 281)</td>
<td>3 W/S</td>
<td>4,5</td>
<td>F. Gauterin, M. Gießler, M. Frey</td>
<td></td>
</tr>
<tr>
<td>2113814</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies I (p. 205)</td>
<td>1 W</td>
<td>1,5</td>
<td>H. Bardehle</td>
<td></td>
</tr>
<tr>
<td>2114840</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies II (p. 206)</td>
<td>1 S</td>
<td>1,5</td>
<td>H. Bardehle</td>
<td></td>
</tr>
<tr>
<td>2114093</td>
<td>Fluid Technology (p. 186)</td>
<td>2 W</td>
<td>5</td>
<td>M. Geimer, M. Scherer</td>
<td></td>
</tr>
<tr>
<td>2114092</td>
<td>BUS-Controls (p. 140)</td>
<td>2 S</td>
<td>3</td>
<td>M. Geimer</td>
<td></td>
</tr>
<tr>
<td>2113809</td>
<td>Automotive Engineering I (p. 122)</td>
<td>4 W</td>
<td>6</td>
<td>F. Gauterin, M. Gießler</td>
<td></td>
</tr>
<tr>
<td>2114855</td>
<td>Automotive Engineering II (p. 123)</td>
<td>2 S</td>
<td>3</td>
<td>F. Gauterin, M. Gießler</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the engineering modules of the core programme. For exceptions see § 17 Abs. 6 SPO.

Recommendations

Qualification Goals
The student
- knows the most important components of a vehicle,
- knows and understands the functioning and the interaction of the individual components,
- knows the basics of dimensioning the components.

Content
See course descriptions.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Handling Characteristics of Motor Vehicles [WI3INGMB6]

Coordination: F. Gauterin
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113806</td>
<td>Vehicle Comfort and Acoustics I (p. 175)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2114825</td>
<td>Vehicle Comfort and Acoustics II (p. 176)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I (p. 173)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Unrau</td>
</tr>
<tr>
<td>2114838</td>
<td>Handling Characteristics of Motor Vehicles II (p. 174)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Unrau</td>
</tr>
<tr>
<td>2113816</td>
<td>Vehicle Mechatronics I (p. 177)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>D. Ammon</td>
</tr>
<tr>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering (p. 281)</td>
<td>3</td>
<td>W/S</td>
<td>4,5</td>
<td>F. Gauterin, M. Gießler, M. Frey</td>
</tr>
<tr>
<td>2114850</td>
<td>Global vehicle evaluation within virtual road test (p. 191)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>B. Schick</td>
</tr>
<tr>
<td>2114856</td>
<td>Vehicle Ride Comfort & Acoustics I (p. 368)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II (p. 369)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>F. Gauterin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations

Qualification Goals
The student
• knows and understands the characteristics of vehicles, owing to the construction and design tokens,
• knows and understands especially the factors being relevant for comfort and acoustics
• is capable of fundamentally evaluating and rating handling characteristics.

Content
See courses.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Emphasis in Fundamentals of Engineering [WI3INGMB8]

Coordination: M. Hoffmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23224</td>
<td>Electrical Engineering II (p. 164)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>W. Menesklou</td>
</tr>
<tr>
<td>2126782</td>
<td>Materials Science II for Business Engineers (p. 383)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>M. Hoffmann</td>
</tr>
<tr>
<td>2162276</td>
<td>Introduction to Engineering Mechanics II : Dynamics (p. 157)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Fidlin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is removed from the average of the partial examinations, with at least two partial exams need to be.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
Students acquire and deepen skills in engineering fundamentals and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content
The module content depends on the elected courses.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
Starting winter term 2016/1017 the course “Introduction to Engineering Mechanics II : Dynamics” [2162276] will be held in winter term.
Module: Emphasis Materials Science [WI3INGMB9]

Coordination: M. Hoffmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits: 9
Cycle: Every term
Duration: 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2194643</td>
<td>Constitution and Properties of Wear resistant materials (p. 115)</td>
<td>2 S</td>
<td></td>
<td>4</td>
<td>S. Ulrich</td>
</tr>
<tr>
<td>2125757</td>
<td>Introduction to Ceramics (p. 223)</td>
<td>3/1 W</td>
<td>6</td>
<td></td>
<td>M. Hoffmann</td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Materials Selection (p. 361)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>J. Hoffmeister</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical basics of laser technology and phase analysis (p. 266)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>J. Schneider</td>
</tr>
<tr>
<td>2173590</td>
<td>Polymer Engineering I (p. 269)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>P. Elsner</td>
</tr>
<tr>
<td>2174596</td>
<td>Polymer Engineering II (p. 270)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>P. Elsner</td>
</tr>
<tr>
<td>2181715</td>
<td>Failure of Structural Materials: Fatigue and Creep (p. 373)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>O. Kraft, P. Gumbsch, P. Gruber</td>
</tr>
<tr>
<td>2181711</td>
<td>Failure of structural materials: deformation and fracture (p. 374)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>P. Gumbsch, O. Kraft, D. Weygand</td>
</tr>
<tr>
<td>2126749</td>
<td>Advanced powder metals (p. 286)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>R. Oberacker</td>
</tr>
<tr>
<td>2126782</td>
<td>Materials Science II for Business Engineers (p. 383)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>M. Hoffmann</td>
</tr>
<tr>
<td>2126775</td>
<td>Structural Ceramics (p. 360)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>M. Hoffmann</td>
</tr>
<tr>
<td>2125763</td>
<td>Structural and phase analysis (p. 359)</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>S. Wagner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations
It is recommended to have natural science basic knowledge.

Qualification Goals
Students acquire and deepen skills in fundamentals of materials science and engineering and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content
The module content depends on the elected courses.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Introduction to Technical Logistics [WI3INGMB13]

Coordination: K. Furmans
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits: 9
Cycle: Every term
Duration: 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117051</td>
<td>Material flow in logistic systems (p. 238)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>K. Furmans</td>
</tr>
<tr>
<td>2118097</td>
<td>Warehousing and distribution systems (p. 225)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>M. Schwab, J. Weiblen</td>
</tr>
<tr>
<td>2117056</td>
<td>Airport logistics (p. 230)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>A. Richter</td>
</tr>
<tr>
<td>2118085</td>
<td>Automotive Logistics (p. 229)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>K. Furmans</td>
</tr>
<tr>
<td>2118089</td>
<td>Application of technical logistics in sorting- and distribution technology (p. 110)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>J. Föller</td>
</tr>
<tr>
<td>2118094</td>
<td>Information Systems in Logistics and Supply Chain Management (p. 215)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>C. Kilger</td>
</tr>
<tr>
<td>2117500</td>
<td>Energy efficient intralogistic systems (p. 167)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>F. Schönung, M. Braun</td>
</tr>
<tr>
<td>2117095</td>
<td>Basics of Technical Logistics (p. 203)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>M. Mittwollen, Madzharov</td>
</tr>
<tr>
<td>2117096</td>
<td>Elements of Technical Logistics (p. 165)</td>
<td>3</td>
<td>W</td>
<td>4</td>
<td>M. Mittwollen, Madzharov</td>
</tr>
<tr>
<td>2117097</td>
<td>Elements of Technical Logistics and Project (p. 166)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>M. Mittwollen, Madzharov</td>
</tr>
<tr>
<td>2117064</td>
<td>Application of technical logistics in modern crane systems (p. 109)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Golder</td>
</tr>
<tr>
<td>2118087</td>
<td>Selected Applications of Technical Logistics (p. 116)</td>
<td>3</td>
<td>S</td>
<td>4</td>
<td>M. Mittwollen, Madzharov</td>
</tr>
<tr>
<td>2118088</td>
<td>Selected Applications of Technical Logistics and Project (p. 117)</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>M. Mittwollen, Madzharov</td>
</tr>
<tr>
<td>2500005</td>
<td>Production and Logistics Controlling (p. 276)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Wlcek</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the IFL. The term paper may not be convalidated in the seminar module.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.
One of the core courses Material Flow in Logistic Systems [2117051] or Basics of Technical Logistics [2117095] or Elements and systems of Technical Logistics [2117096] is mandatory. Elements and systems of Technical Logistics is only allowed to be examined after Basics of Technical Logistics is passed successfully in this or an other module. For simultaneous attending of both courses, examination dates are sequenced accordingly.

Qualification Goals
The student acquires
- well-founded knowledge and method knowledge in the main topics of technical logistics,
- expertise and understanding about the functionality of conveyor technology,
- ability for modeling logistic systems with adequate accuracy by using simple models,
- ability to evaluate logistic systems and to identify cause-and-effects-chains within logistic systems.
Content
The module *Introduction to Technical Logistics* provides first insights into main topics of technical logistics. Within the lectures, the interaction between several components of material handling systems will be clarified. The focus will be on technical characteristics of material handling technology and basics for sizing of material handling systems. To gain a deeper understanding, the course is accompanied by exercises and further improved by case studies.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Vehicle Development [WI3INGMB14]

Coordination: F. Gauterin
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering (p. 281)</td>
<td>3</td>
<td>W/S</td>
<td>4,5</td>
<td>F. Gauterin, M. Gießler, M. Frey</td>
</tr>
<tr>
<td>2113816</td>
<td>Vehicle Mechatronics I (p. 177)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>D. Ammon</td>
</tr>
<tr>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I (p. 207)</td>
<td>1</td>
<td>W</td>
<td>1,5</td>
<td>J. Zürn</td>
</tr>
<tr>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II (p. 208)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>J. Zürn</td>
</tr>
<tr>
<td>2113810</td>
<td>Fundamentals of Automobile Development I (p. 209)</td>
<td>1</td>
<td>W</td>
<td>1,5</td>
<td>R. Frech</td>
</tr>
<tr>
<td>2114842</td>
<td>Fundamentals of Automobile Development II (p. 210)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>R. Frech</td>
</tr>
<tr>
<td>2114845</td>
<td>Tires and Wheel Development for Passenger Cars (p. 178)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>G. Leister</td>
</tr>
<tr>
<td>2114095</td>
<td>Simulation of Coupled Systems (p. 339)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations

Qualification Goals
The student
- knows and understands the procedures in automobile development,
- knows and understands the technical specifications at the development procedures,
- is aware of notable boundaries like legislation.

Content
See courses.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Mobile Machines [WI3INGMB15]

Coordination: M. Geimer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114093</td>
<td>Fluid Technology (p. 186)</td>
<td>2</td>
<td>W</td>
<td>5</td>
<td>M. Geimer, M. Scherer</td>
</tr>
<tr>
<td>2114095</td>
<td>Simulation of Coupled Systems (p. 339)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2114092</td>
<td>BUS-Controls (p. 140)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2114073</td>
<td>Mobile Machines (p. 248)</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I (p. 207)</td>
<td>1</td>
<td>W</td>
<td>1.5</td>
<td>J. Zürn</td>
</tr>
<tr>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II (p. 208)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>J. Zürn</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general oral exam (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.
The examination is offered every semester. Re-examinations are offered at every ordinary examination date.
The overall grade of the module is the grade of the oral examination.
The assessment may be carried out as partial oral exams (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. In this case the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.
The assessment procedures are described for each course of the module seperately.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations
Knowledge of Fluid Power Systems are helpful, otherwise it is recommended to take the course Fluid Power Systems [2114093].

Qualification Goals
The student
- knows and understands the basic structure of the machines
- masters the basic skills to develop the selected machines

Content
In the module of Mobile Machines [WI3INGMB15] the students will learn the structure of the machines and deepen the knowledge of the subject for developing the machines. After conclusion the module the student will know the latest developments in mobile machines and is able to evaluate the concepts and the trends of developments. The module is practically orientated and supported by industry partners.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Combustion Engines I [WI3INGMB34]

Coordination: H. Kubach
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits: 9
Cycle: Every 2nd term, Winter Term
Duration: 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2133113</td>
<td>Combustion Engines I (p. 370)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Kubach, T. Koch</td>
</tr>
<tr>
<td>2133121</td>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines (p. 169)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>T. Koch, H. Kubach</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (60 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations
None.

Qualification Goals
The student can name and explain the working principle of combustion engines. He is able to analyse and evaluate the combustion process. He is able to evaluate influences of gas exchange, mixture formation, fuels and exhaust gas aftertreatment on the combustion performance. He can solve basic research problems in the field of engine development.

The student can name all important influences on the combustion process. He can analyse and evaluate the engine process considering efficiency, emissions and potential.

Content
Introduction, History, Concepts
Working Principle and Thermodynamics
Characteristic Parameters
Air Path
Fuel Path
Energy Conversion
Fuels
Emissions
Exhaust Gas Aftertreatment
Reaction kinetics
Gas exchange
Ignition
Flow field of gasoline engines
Working process
Pressure trace analysis
Thermodynamic analysis of the high pressure process
Exergy analysis and waste heat recuperation
Aspects of sustainability

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Combustion Engines II [WI3INGMB35]

Coordination: H. Kubach
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits: 9
Cycle: Every term
Duration: 9

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2134151</td>
<td>Combustion Engines II (p. 371)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Kubach, T. Koch</td>
</tr>
<tr>
<td>2133108</td>
<td>Fuels and Lubricants for Combustion Engines (p. 131)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>B. Kehrwald</td>
</tr>
<tr>
<td>2134138</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment (p. 199)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>E. Lox</td>
</tr>
<tr>
<td>2134134</td>
<td>Analysis tools for combustion diagnostics (p. 246)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>U. Wagner</td>
</tr>
<tr>
<td>2134137</td>
<td>Engine measurement techniques (p. 251)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>S. Bernhardt</td>
</tr>
<tr>
<td>2134141</td>
<td>Gas Engines (p. 188)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>R. Golloch</td>
</tr>
<tr>
<td>2134150</td>
<td>Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines (p. 100)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>M. Gohl</td>
</tr>
<tr>
<td>2134139</td>
<td>Model based Application Methods (p. 249)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>F. Kirschbaum</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Conditions
It is only possible to choose this module in combination with the module Combustion Engines I. The module is passed only after the final partial exam of Combustion Engines I is additionally passed.
The course Combustion Engines II [2134131] has to be attended.
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations
Basic skills in thermodynamics are recommended.

Qualification Goals
See courses.

Content

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Product Lifecycle Management [WI3INGMB21]

Coordination: J. Ovtcharova
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2121350</td>
<td>Product Lifecycle Management (p. 274)</td>
<td>3/1 W</td>
<td>6</td>
<td></td>
<td>J. Ovtcharova</td>
</tr>
<tr>
<td>2122387</td>
<td>Computer Integrated Planning of New Products (p. 291)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>R. Kläger</td>
</tr>
<tr>
<td>2122376</td>
<td>PLM for product development in mechatronics (p. 267)</td>
<td>2/0 S</td>
<td>4</td>
<td></td>
<td>M. Eigner</td>
</tr>
<tr>
<td>2122014</td>
<td>Information Engineering (p. 214)</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>J. Ovtcharova, J. Ovtcharova</td>
</tr>
<tr>
<td>2121357</td>
<td>PLM-CAD Workshop (p. 268)</td>
<td>4 W/S</td>
<td>4</td>
<td></td>
<td>J. Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a written exam about Product Lifecycle Management (90 min) (according to Section 4(2), 1 of the examination regulation) and an oral exam (ca. 30 min.) about another lecture (according to Section 4(2), 2 of the examination regulation), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is made up of the grade for the written examination [67%] and the grade for the oral examination [33%].

Conditions
The course Product Lifecycle Management [2121350] is compulsory and has to be passed.
Successful passing of the engineering modules of the core programme. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The students should:

- have basic knowledge about the challenges in product and process data management regarding the whole product lifecycle;
- have understanding about challenges and functional concepts of product lifecycle management;
- be able to operate common PLM systems.

Content
This module describes management and organizational approaches of Product Lifecycle Management, their application in IT and the potential benefits of PLM system solutions. Optional courses of this module introduce current product development processes in the scope of enterprise PLM system solutions.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Specialization in Production Engineering [WI3INGMB22]

Coordination: V. Schulze
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149667</td>
<td>Quality Management (p. 287)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>G. Lanza</td>
</tr>
<tr>
<td>2149669</td>
<td>Materials and Processes for Body Lightweight Construction in the Automotive Industry (p. 239)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>D. Steegmüller, S. Kienzle</td>
</tr>
<tr>
<td>2150681</td>
<td>Metal Forming (p. 365)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Herlan</td>
</tr>
<tr>
<td>2150683</td>
<td>Control Technology (p. 355)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>C. Gönnheimer</td>
</tr>
<tr>
<td>2149655</td>
<td>Gear Cutting Technology (p. 375)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Klaiber</td>
</tr>
<tr>
<td>2149001</td>
<td>Production Technology and Management in Automotive (p. 277)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>V. Stauch, S. Peters</td>
</tr>
<tr>
<td>2150601</td>
<td>Integrative Strategies in Production and Development of High Performance Cars (p. 217)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>K. Schlichtenmayer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The students
- are able to apply the methods of production science to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- are able to use their knowledge target-oriented to achieve an efficient production technology.
- are able to analyze new situations and choose methods of production science target-oriented based on the analyses, as well as justifying their selection.
- are able to describe and compare complex production processes exemplarily.

Content
Within this module the students will get to know and learn about production science. Manifold lectures and excursions as part of several lectures provide specific insights into the field of production science.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Manufacturing Technology [WI3INGMB23]

Coordination: V. Schulze
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149657</td>
<td>Manufacturing Technology (p. 182)</td>
<td>4/2</td>
<td>W</td>
<td>9</td>
<td>V. Schulze, F. Zanger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1-3 SPO of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

Conditions

Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

The students

- can name different manufacturing processes, can describe their specific characteristics and are capable to depict the general function of manufacturing processes and are able to assign manufacturing processes to the specific main groups.
- are enabled to identify correlations between different processes and to select a process depending on possible applications.
- are capable to describe the theoretical basics for the manufacturing processes they got to know within the scope of the course and are able to compare the processes.
- are able to correlate based on their knowledge in materials science the processing parameters with the resulting material properties by taking into account the microstructural effects.
- are qualified to evaluate different processes on a material scientific basis.

Content

Within this engineering sciences-oriented module the students will get to learn principle aspects of manufacturing technology. Further information can be found at the description of the lecture “Manufacturing Technology”.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Integrated Production Planning [WI3INGMB24]

Coordination: V. Schulze, Gisela Lanza

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150660</td>
<td>Integrated production planning (p. 218)</td>
<td>4/2</td>
<td>S</td>
<td>9</td>
<td>G. Lanza</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1-3 SPO of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

Conditions

Successful passing of the engineering modules of the core programme. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

The students

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Content

Within this engineering sciences-oriented module the students will get to learn principle aspects of organization and planning of production systems. Further information can be found at the description of the lecture “Integrated Production Planning”.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Rail System Technology [WI3INGMB25]

Coordination: P. Gratzfeld
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115919</td>
<td>Rail System Technology (p. 125)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>P. Gratzfeld</td>
</tr>
<tr>
<td>2115995</td>
<td>Project Management in Rail Industry (p. 283)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>P. Gratzfeld</td>
</tr>
<tr>
<td>2115996</td>
<td>Rail Vehicle Technology (p. 294)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>P. Gratzfeld</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general oral exam (45 min.) (according to Section 4(2), 2 of the examination regulation) of the single courses of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the oral examination.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations
The lectures can be taken simultaneously.

Qualification Goals
• The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
• They deduct the fundamental requirements for rail vehicles out of it and assess concepts of rail vehicles.
• They know about major systems in a rail vehicle and evaluate their fitness in specific fields of application.
• The students realize that the typical business model in railway industry is a project. They learn main features and characteristics of project management in this area.

Content
• Overview about fundamental components of a modern rail system (vehicles, infrastructure, operation)
• History and economic impact of rail systems
• Vehicle dynamics, wheel-rail-contact, train protection, traction power supply
• Main systems of rail vehicles (electric and non-electric traction drive, bogies, brakes)
• Vehicle concepts for mass transit and main line
• Main features and characteristics of project management in railway industry (project management system, organization, main processes)

Workload
1. Regular attendance: 63 hours
2. Self-study: 63 hours
3. Exam and preparation: 144 hours
Module: Machine Tools and Industrial Handling [WI3INGMB32]

Coordination: J. Fleischer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149902</td>
<td>Machine Tools and Industrial Handling (p. 384)</td>
<td>4/2</td>
<td>W</td>
<td>9</td>
<td>J. Fleischer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1-3 SPO of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

Conditions

Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals

The students

- are capable to explain the use and application of machine tools and handling devices as well as differentiate their characteristics and structure.
- are able to name and describe the essential components (frame, main spindles, feed axis, peripheral equipment, control) of machine tools.
- are capable to distinguish and select and describe the essential components regarding structure, characteristics advantages and disadvantages.
- are enabled to dimension the main components of machine tools.
- are able to name and describe the control principles of machine tools.
- are capable to name examples of machine tools and industrial handling as well as to deduce compare the essential components. Additionally they can allocate manufacturing processes.
- are enabled to identify drawbacks as well as derive and asses measures for improvements.
- are qualified to apply methods for selection and evaluation of machine tools.
- are experienced to deduce the particular failure characteristics of a ball screw.

Content

The module overviews the assembly, dimensioning and application of machine tools and industrial handling. A consolidated and practice oriented knowledge is imparted about the choice, dimensioning and assessment of production machines. At first, the major components of machine tools are explained systematically. At this, the characteristics of dimensioning of machine tools are described in detail. Finally, the application of machine tools is demonstrated by means of example machines of the manufacturing processes turning, milling, grinding, massive forming, sheet metal forming and toothing.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Microsystem Technology [WI3INGMBIMT1]

Coordination: V. Saile
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2141861</td>
<td>Introduction to Microsystem Technology I (p. 200)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Guber, Prof. J. Korvink</td>
</tr>
<tr>
<td>2142874</td>
<td>Introduction to Microsystem Technology II (p. 201)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>A. Guber, Prof. Dr. J. Korvink</td>
</tr>
<tr>
<td>2143875</td>
<td>Introduction to Microsystem Technology - Practical Course (p. 271)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>A. Last</td>
</tr>
<tr>
<td>2142879</td>
<td>Physics for Engineers (p. 265)</td>
<td>2</td>
<td>S</td>
<td>6</td>
<td>P. Gumbsch, A. Nesterov-Müller, D. Weygand, T. Förtsch, T. Mappes</td>
</tr>
<tr>
<td>2143892</td>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers (p. 118)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>A. Guber</td>
</tr>
<tr>
<td>2142883</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II (p. 136)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>A. Guber</td>
</tr>
<tr>
<td>2142879</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III (p. 137)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>A. Guber</td>
</tr>
<tr>
<td>2142881</td>
<td>Microactuators (p. 247)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Kohl</td>
</tr>
<tr>
<td>2141865</td>
<td>Novel Actuators and Sensors (p. 253)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Kohl, M. Sommer</td>
</tr>
<tr>
<td>2143876</td>
<td>Nanotechnology with Clusterbeams (p. 252)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>J. Gspann</td>
</tr>
<tr>
<td>2142140</td>
<td>Bionics for Engineers and Natural Scientists (p. 138)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Hölscher</td>
</tr>
<tr>
<td>23486 / 23487</td>
<td>Optoelectronic Components (p. 261)</td>
<td>2 / 1</td>
<td>S</td>
<td>4.5</td>
<td>W. Freude</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the engineering modules of the core programme. For exceptions see § 17 Abs. 6 SPO. This module cannot be combined with the module Microsystem Technology in the Master studies. The course Basics of microsystem technology I [2141861] is compulsory and must be examined.

Qualification Goals

- construction and production of e.g. mechanical, optical, fluidic and sensory Microsystems.

Content

The module offers courses in microsystem technology. Knowledge is imparted in various fields like basics in construction and production of e.g. mechanical, optical, fluidic and sensory Microsystems.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

If you have any questions concerning the module, please contact Prof. Dr. Andreas E. Guber.
Module: Control Engineering [WI3INGETIT2]

Coordination: M. Kluwe, S. Hohmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23168</td>
<td>Modelling and Identification (p. 250)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Kluwe, S. Hohmann</td>
</tr>
<tr>
<td>23155</td>
<td>System Dynamics and Control Engineering (p. 362)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Kluwe, S. Hohmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the engineering modules of the core program. For exceptions see § 17 Abs. 6 SPO.

Recommendations
Knowledge of integral transformations is assumed. There it is recommended to attend the courses Complex Analysis and Integral Transformations beforehand.

Qualification Goals
The students
- get familiar with the basic concepts of control theory,
- learn and understand the elements, the structure and the behavior of dynamic systems,
- have insight in the problems of control and intuition about methods available to solve those problems as well in frequency domain as in time domain,
- get familiar with the basic principles and methods for the theoretical and experimental modelling of dynamic systems.

Content
This module familiarizes students with the basic elements, structures and the behavior of dynamic systems. Both time continuous and time discrete models are regarded. The students gain insight into the problems of control design and methods available to solve such problems in frequency and time domain. Above that, the students learn the basic principles and methods for the theoretical and experimental modelling of dynamic systems.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Power Networks [WI3INGETIT3]

Coordination: T. Leibfried, B. Hoferer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23391/23393</td>
<td>Systems for Electrical Energy (p. 162)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>T. Leibfried</td>
</tr>
<tr>
<td>23371/23373</td>
<td>Power Network Analysis (p. 160)</td>
<td>2/2</td>
<td>W</td>
<td>6</td>
<td>T. Leibfried</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Conditions
Successful passing of the engineering modules of the core program. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The student

- has basic and advanced knowledge of electrical power engineering,
- is capable to analyse, calculate and develop electrical power engineering systems.

Content
The module deals with basic knowledge about the structure and operation of electrical power networks and their needed facilities. Further lectures give an insight into specific topics, such as Automation in electric power engineering or the procedures for generating electrical energy.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Energy Generation and Network Components [WI3INGETIT4]

Coordination: T. Leibfried, B. Hoferer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23356</td>
<td>Electric Power Generation & Power Grid (p. 172)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>B. Hoferer</td>
</tr>
<tr>
<td>23390</td>
<td>Engineering, Design and Operation of Power Transformers (p. 114)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>M. Schäfer</td>
</tr>
<tr>
<td>23382</td>
<td>Technique of Electrical Installation (p. 161)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>A. Kühner</td>
</tr>
<tr>
<td>23396</td>
<td>Automation of Power Grids (p. 120)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>R. Eichler</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Conditions
It is only possible to choose this module in combination with the module Power Networks [WI3INGETIT3]. The module is passed only after the final partial exam of Power Networks is additionally passed. Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
The student
- has basic and advanced knowledge of electrical power engineering,
- is capable to analyse, calculate and develop electrical power engineering systems.

Content
The module deals with basic knowledge about the structure and operation of electrical power networks and their needed facilities. Further lectures give an insight into specific topics, such as Automation in electric power engineering or the procedures for generating electrical energy.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Mobility and Infrastructure [W13INGBGU1]

Coordination: R. Roos
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200405</td>
<td>Transportation (p. 372)</td>
<td>2 S 3</td>
<td></td>
<td>3</td>
<td>P. Vortisch</td>
</tr>
<tr>
<td>6200407</td>
<td>Design Basics in Highway Engineering (p. 129)</td>
<td>2/0 S 3</td>
<td></td>
<td>3</td>
<td>R. Roos</td>
</tr>
<tr>
<td>6200404</td>
<td>Spatial Planning and Planning Law (p. 288)</td>
<td>2/0 S 3</td>
<td></td>
<td>3</td>
<td>W. Jung</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out as a general written examination (150 minutes) according to §4(2), 1 of the examination regulation.
The exam is offered in each semester as well as the re-examination. In case of failing or to improve the examination grade an additional oral examination (according to §4(2), 2 of the examination regulation) is offered in the same examination period.
The overall grade of the module corresponds to the grade of the written examination or the average of the marks for the written and the oral assessment.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Qualification Goals
Learning the fundamental terminology and methodology of spatial and transportation planning, traffic engineering as well as highway engineering

Content
Basic tasks and contents of different planning levels, for example: Land use and conflicts, provision of services and infrastructure as well as their costs, planning on local, regional, national and European level.

Fundamentals of transportation planning (convention for analyses, surveys of travel behaviour), fundamentals of traffic engineering

Design Basics in Highway Engineering: Road network layout, driving dynamics, principles of highway design; earthworks, pavements and their dimensioning

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Fundamentals of construction [W13INGBGU3]

Coordination: S. Haghsheno
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200409</td>
<td>Construction Technology (p. 126)</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>S. Haghsheno, S. Gentes</td>
</tr>
<tr>
<td>6200106</td>
<td>Project Management (p. 282)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>S. Haghsheno, H. Schneider</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations
None.

Qualification Goals
The student

- is familiar with all substantial domains of construction
- knows and understands substantial construction methods and construction machines
- masters basic construction calculations
- knows and understands the fundamentals of project management in civil engineering

can apply his / her knowledge in a goal-oriented manner to accomplish a construction project efficiently.

Content
Courses of this module comprise methods and machines from all construction domains. Specifically, the module covers production planning as well as substantial parts of structural engineering and underground engineering, including auxiliary systems. In addition to the explanation of fundamentals, machines, and methods the courses include performance calculations. Further, students receive an introduction to project management in civil engineering which includes project phases, project organization, and the columns of project management which are schedule management, cost management, and quality management.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
We encourage students to deepen their knowledge in construction by building additional customized modules from the courses offered by TMB. Please consult with the tutors of this module. Further information is available at www.tmb.kit.edu.
Module: Basics of Track Guided Transport Systems [WI3INGBGU4]

Coordination: M. Weigel
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200517</td>
<td>Basics of Track Guided Transport Systems (p. 204)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>E. Hohnecker</td>
</tr>
<tr>
<td>6234801</td>
<td>Operation (p. 130)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>E. Hohnecker</td>
</tr>
<tr>
<td>6234802</td>
<td>Facilities and Rolling Stock (p. 108)</td>
<td>1/1</td>
<td>S</td>
<td>3</td>
<td>E. Hohnecker</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general written module exam according to Section 4 Abs. 2, Nr. 1 of the examination regulation. The module exam has a duration of 90 min.
The exam is offered each semester. The re-examination is offered upon prior agreement with the interested participants and not later than the next regular examination date.
The overall grade of the module is the grade for the exam.

Conditions
All courses are obligatory. Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

Recommendations
None.

Qualification Goals
See German version.

Content
See courses.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Understanding and Prediction of Disasters 1 [WI3INGINTER6]

Coordination: M. Kunz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2501111</td>
<td>Climatology (p. 224)</td>
<td>3/1</td>
<td>S</td>
<td>5.5</td>
<td>P. Braesicke</td>
</tr>
<tr>
<td>57535</td>
<td>Meteorological Natural Hazards (p. 244)</td>
<td>2</td>
<td>S</td>
<td>3.5</td>
<td>M. Kunz</td>
</tr>
<tr>
<td>GEOD-BFB-1</td>
<td>Remote Sensing (p. 179)</td>
<td>3/2/1</td>
<td>S</td>
<td>6</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20241/42</td>
<td>Remote Sensing Systems (p. 180)</td>
<td>1/1</td>
<td>S</td>
<td>2</td>
<td>S. Hinze, U. Weidner</td>
</tr>
<tr>
<td>20265/66</td>
<td>Remote Sensing Methods (p. 181)</td>
<td>2/1</td>
<td>S</td>
<td>3</td>
<td>S. Hinze, U. Weidner</td>
</tr>
<tr>
<td>20267</td>
<td>Hauptvermessungsaufgaben III (p. 211)</td>
<td>0/1</td>
<td>S</td>
<td>1</td>
<td>S. Hinze, Weidner</td>
</tr>
<tr>
<td>6200509</td>
<td>Hydraulic Engineering and Water Management (p. 381)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>F. Nestmann</td>
</tr>
<tr>
<td>2600101</td>
<td>Geological Hazards and Risks (p. 190)</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>Wenzel, Gottschämmers</td>
</tr>
<tr>
<td>6200511</td>
<td>Hydrology (p. 212)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>E. Zehe</td>
</tr>
<tr>
<td>20712/13</td>
<td>Introduction to GIS for students of natural, engineering and geo sciences (p. 159)</td>
<td>2/2</td>
<td>W</td>
<td>5</td>
<td>Rösch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the engineering modules of the core program. For exceptions see § 17 Abs. 6 SPO.
There are no singular exams for Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66]. Therefore it is not possible to choose Remote Sensing [GEOD-BFB-1] and additionally the courses Remote Sensing Systems, Remote Sensing Methods or the project Angewandte Fernerkundung [20267] (because they are already included). See also “Recommendations”.

Recommendations
The courses Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66] may be chosen as a minimal combination for the exam. However, it is recommended to choose the comprehensive combination Remote Sensing [GEOD-BFB-1], which includes Remote Sensing Systems [20241/42], Remote Sensing Methods [20265/66] and the project Angewandte Fernerkundung [20267].

Qualification Goals
See German version.

Content
See German version.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
Students, who successfully completed both modules “Understanding and Prediction of Disasters” I and II (alternatively: one of the modules in Bachelor and Master) can get a certificate of the module coordinator (CEDIM). This certificate lists the successful completed courses within the two modules.
Module: Understanding and Prediction of Disasters 2 [WIELINGINTER7]

Coordination: M. Kunz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits
9

Cycle
Every term

Duration
1

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2501111</td>
<td>Climatology (p. 224)</td>
<td>3/1</td>
<td>S</td>
<td>5.5</td>
<td>P. Braesicke</td>
</tr>
<tr>
<td>57535</td>
<td>Meteorological Natural Hazards</td>
<td>2</td>
<td>S</td>
<td>3.5</td>
<td>M. Kunz</td>
</tr>
<tr>
<td>GEOD-BFB-1</td>
<td>Remote Sensing (p. 179)</td>
<td>3/2/1</td>
<td>S</td>
<td>6</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20241/42</td>
<td>Remote Sensing Systems (p. 180)</td>
<td>1/1</td>
<td>S</td>
<td>2</td>
<td>S. Hinz, U. Weidner</td>
</tr>
<tr>
<td>20265/66</td>
<td>Remote Sensing Methods (p. 181)</td>
<td>2/1</td>
<td>S</td>
<td>3</td>
<td>S. Hinz, U. Weidner</td>
</tr>
<tr>
<td>20267</td>
<td>Hauptvermessungsübung III (p. 211)</td>
<td>0/1</td>
<td>S</td>
<td>1</td>
<td>S. Hinz, Weidner</td>
</tr>
<tr>
<td>6200509</td>
<td>Hydraulic Engineering and Water Management (p. 381)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>E. Zehe</td>
</tr>
<tr>
<td>2600101</td>
<td>Geological Hazards and Risks (p. 190)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Wenzel, Gottschämmer</td>
</tr>
<tr>
<td>6200511</td>
<td>Hydrology (p. 212)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>E. Zehe</td>
</tr>
<tr>
<td>20712/13</td>
<td>Introduction to GIS for students of natural, engineering and geo sciences (p. 159)</td>
<td>2/2</td>
<td>W</td>
<td>5</td>
<td>Rösch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the engineering modules of the core programm. For exceptions see § 17 Abs. 6 SPO.

There are no singular exams for Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66]. Therefore it not possible to choose Remote Sensing [GEOD-BFB-1] and additionally the courses Remote Sensing Systems, Remote Sensing Methods or the project Angewandte Fernerkundung [20267] (because they are already included). See also “Recommendations”.

Recommendations

The courses Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66] may be chosen as a minimal combination for the exam. However, it is recommended to choose the comprehensive combination Remote Sensing [GEOD-BFB-1], which includes Remote Sensing Systems [20241/42], Remote Sensing Methods [20265/66] and the project Angewandte Fernerkundung [20267].

Qualification Goals

See German version.

Content

See German version.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

Students, who successfully completed both modules “Understanding and Prediction of Disasters I and II (alternatively: one of the modules in Bachelor and Master) can get a certificate of the module coordinator (CEDIM). This certificate lists the successful completed courses within the two modules.
Module: Extracurricular Module in Engineering [WI3INGAPL]

Coordination: Prüfer einer Ingenieurwissenschaftlichen Fakultät
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is determined by the respective module coordinator. It can either be in the form of a general exam or partial exams, and must be contain at least 9 credit points and at least 6 hours per week. The examination may contain presentations, experiments, laboratories, term papers, etc. At least 50 percent of the module examination has to be in the form of a written or an oral examination (according to Section 4 (2), 1 or 2 of the examination regulation).

The formation of the overall grade of the module will be determined by the respective module coordinator.

Conditions
See German version.

Qualification Goals
See German version.

Content

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
6.6 Statistics

Module: Statistical Applications of Financial Risk Management [WI3STAT]

Coordination: M. Schienle, O. Grothe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Statistics

<table>
<thead>
<tr>
<th>Courses in module</th>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2521325/2521326</td>
<td>Statistics and Econometrics in Business and Economics (p. 351)</td>
<td>2/2</td>
<td>W</td>
<td>4,5</td>
<td>W. Heller</td>
</tr>
<tr>
<td>2520016</td>
<td>Economics III: Introduction in Econometrics (p. 378)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>M. Schienle</td>
</tr>
<tr>
<td>2550550</td>
<td>Analysis of multivariate Data (p. 103)</td>
<td>2/2</td>
<td>W</td>
<td>4,5</td>
<td>O. Grothe</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the module Statistics [WI1STAT]. For exceptions see § 17 Abs. 6 SPO.

The lecture *Statistics and Econometrics in Business and Economics* has to be taken.

Qualification Goals

See German version.

Content

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

This module will not be offered any more from winter term 2015/2016 on.
Module: Statistics and Econometrics [WI3STAT1]

Coordination: M. Schienle, O. Grothe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject:

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520016</td>
<td>Economics III: Introduction in Econometrics (p. 378)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>M. Schienle</td>
</tr>
<tr>
<td>2550550</td>
<td>Analysis of multivariate Data (p. 103)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>O. Grothe</td>
</tr>
<tr>
<td>2520022</td>
<td>Financial Econometrics (p. 183)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>M. Schienle</td>
</tr>
<tr>
<td>2521350</td>
<td>Statistical Modeling of generalized regression models (p. 354)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>W. Heller</td>
</tr>
<tr>
<td>2520375</td>
<td>Data Mining and Applications (p. 143)</td>
<td>2</td>
<td>S</td>
<td>4.5</td>
<td>G. Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The course “Economics III: Introduction in Econometrics” [2520016] is compulsory and must be examined.

Qualification Goals
The student
- shows an advanced understanding of Econometric techniques and statistical model building.
- is able to develop Econometric models for applied problems based on available data
- is able to apply techniques and models with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Content
The courses provide a solid Econometric and statistical foundation of techniques necessary to conduct valid regression, time series and multivariate analysis.

Workload
The total workload for this module is approximately 270 hours.

Remarks
6.7 Law

Module: Elective Module Law [WI3JURA]

Coordination: T. Dreier
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Law

ECTS Credits: 9
Cycle: Every term
Duration: 2

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24012</td>
<td>Civil Law for Beginners (p. 135)</td>
<td>4/0</td>
<td>W</td>
<td>4</td>
<td>T. Dreier, O. Knöfel</td>
</tr>
<tr>
<td>24016</td>
<td>Public Law I - Basic Principles (p. 257)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>G. Sydow</td>
</tr>
<tr>
<td>24520</td>
<td>Public Law II - Public Economic Law (p. 258)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>G. Sydow</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place in every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Qualification Goals
See German version.

Content

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
6.8 Sociology

Module: Sociology/Empirical Social Research [WI3SOZ]

Coordination: G. Nollmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Sociology

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11005</td>
<td>Social structures of modern societies (p. 344)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>G. Nollmann</td>
</tr>
<tr>
<td>spezSoz</td>
<td>Special Sociology (p. 348)</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>G. Nollmann, Pfadenhauer, Haupt, Grenz, Eisewicht, Kunz, Dukat, Albrecht, Enderle</td>
</tr>
<tr>
<td>SozSem</td>
<td>Projectseminar (p. 284)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>G. Nollmann, Kunz, Haupt, Grenz, Eisewicht, Enderle, Dukat, Albrecht</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
Knowledge of Statistics 1 and Statistics 2 is required.

Qualification Goals
The student

- Gains theoretical and methodical knowledge of social processes and structures
- Is able to apply acquired knowledge practically
- Is able to present work results in a precise and clear way

Content
This module offers students the possibility to get to know research problems and to answer these theoretically as well as empirically. For example: Who does earn how much in his job and why? How do subcultures emerge? Why are boys’ grades in school always worse than those of girls? Do divorces have negative influences on the development of children? How does mass consumption influence the individual? Is there a world society emerging?

In addition, this module contains courses on sociological methods that are essential to answer the above questions scientifically.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Qualitative Social Research [WI3SOZ2]

Coordination: M. Pfadenhauer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Sociology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5011015</td>
<td>Interpretative Social Research Methods</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Pfadenhauer</td>
</tr>
<tr>
<td>spezSoz</td>
<td>Special Sociology (p. 348)</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>G. Nollmann, Pfadenhauer, Haupt, Grenz, Eisewicht, Kunz, Dukat, Albrecht, Enderle</td>
</tr>
<tr>
<td>n.n.</td>
<td>Explorative-interpretative Project Seminar (p. 285)</td>
<td>2/0</td>
<td>W/S</td>
<td>4</td>
<td>M. Pfadenhauer, Kunz, Grenz, Eisewicht, Dukat, Enderle, Albrecht</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

None.

Recommendations

It is recommended to attend the lecture on interpretative methods of social research before attending the project.

Qualification Goals

The student

- possesses a basic overview of the well-established and some of the advanced explorative methods of data collection and interpretative methods of data evaluation,
- can address basic sociological questions to subjects of different types,
- and is capable of choosing and applying appropriate explorative-interpretative methods according to a research question.

Content

Qualitative Social Research is of major importance not only in (Social) Sciences but also in applied economic contexts. Within the framework of this module the student gets taught basic and advanced methods of non-standardised data collection, fixation and evaluation. Accordingly the module consists of three courses:

- the lecture 'Interpretative Social Research Methods' which ends with a written exam (4 LP).
- a course 'Special Sociology' of choice in which 2 or 4 credits have to be obtained (6 credits needed in course and project course combined).
- a project course focusing on explorative-interpretative methods in which 2 or 4 credits have to be obtained (6 credits needed in course and project course combined).

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
6.9 General Modules

Module: Seminar Module [WI3SEM]

Coordination: Studiendekan (Fak. f. Wirtschaftswissenschaften)
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: ECTS Credits 9 Cycle Every term Duration 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R. Studer, A. Oberweis, T. Wolf, R. Kneuper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H. Schmeck</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R. Studer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Uhrig-Homburg, M. Ruckes, U. Werner</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Ulrich</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Wouters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B. Neibecker</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Klarmann, S. Feurer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. Wouters, F. Stadtherr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W. Fichtner, P. Jochem, D. Kelly, R. McKenna, V. Bertsch, A. Geyer-Schulz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T. Lützkendorf, D. Lorenz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C. Puppe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N. N.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P. Reiss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P. Reiss</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N. Szech</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J. Kowalski</td>
</tr>
</tbody>
</table>
General Modules

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2560130</td>
<td>Seminar Public Finance (p. 306)</td>
<td>2</td>
<td>W/S</td>
<td>B. Wigger, Assistenten</td>
</tr>
<tr>
<td>n.n.</td>
<td>Selected Topics in Public Management and Governance (p. 119)</td>
<td>2</td>
<td>W</td>
<td>B. Wigger, N. Edwards</td>
</tr>
<tr>
<td>2560263</td>
<td>Seminar on Network Economics (p. 334)</td>
<td>2</td>
<td>W/S</td>
<td>M. Hillebrand</td>
</tr>
<tr>
<td>2561209</td>
<td>Seminar Transport Economics (p. 335)</td>
<td>2</td>
<td>W/S</td>
<td>K. Mutsch, E. Szimba</td>
</tr>
<tr>
<td>2550131</td>
<td>Seminar in Continuous Optimization (p. 322)</td>
<td>2</td>
<td>W/S</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2560263</td>
<td>Seminar in Economic Policy (p. 315)</td>
<td>2</td>
<td>W/S</td>
<td>I. Ott</td>
</tr>
<tr>
<td>2550131</td>
<td>Seminar in Engineering Science (p. 216)</td>
<td>2</td>
<td>W/S</td>
<td>Fachvertreter ingenieurwis-senschaftlicher Fakultäten</td>
</tr>
<tr>
<td>21690sem</td>
<td>Seminar paper “Production Engineering” (p. 338)</td>
<td>2</td>
<td>W/S</td>
<td>V. Schulze, G. Lanza, J. Fleischer</td>
</tr>
<tr>
<td>2550491</td>
<td>Seminar in Discrete Optimization (p. 330)</td>
<td>2</td>
<td>W/S</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2573010</td>
<td>Seminar Human Resource Management (p. 309)</td>
<td>2</td>
<td>W/S</td>
<td>P. Nieken</td>
</tr>
<tr>
<td>2573011</td>
<td>Seminar Human Resources and Organizations (p. 323)</td>
<td>2</td>
<td>W/S</td>
<td>P. Nieken</td>
</tr>
<tr>
<td>semSTAT1</td>
<td>Applied Econometrics (p. 301)</td>
<td>2</td>
<td>W</td>
<td>M. Schienle</td>
</tr>
<tr>
<td>2521388</td>
<td>Seminar Data Mining I (p. 303)</td>
<td>2</td>
<td>W</td>
<td>G. Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The modul examination consists of two seminars and of at least one key qualification (KQ) course (according to §4 (3), 3 of the examination regulation). A detailed description of every single assessment is given in the specific course characterization.

The final mark for the module is the average of the marks for each of the two seminars weighted by the credits and truncated after the first decimal. Grades of the KQ courses are not included.

Conditions

All modules of the core programme should have been absolved. Furthermore the course specific preconditions must be observed.

- **Seminars**: Two seminars out of the course list, that have at least 3 CP each and are offered by a representative of the Department of Economics and Management or of the Center for applied legal studies (Department of Informatics), have to be chosen.

- Alternatively one of the two seminars can be absolved at an engineering department or at the Department of Mathematics. The seminar has to be offered by a representative of the respective department as well. The assessment has to meet the demands of the Department of Economics and Management(active participation, term paper with a workload of at least 80 h, presentation). This alternative seminar requires an official approval and can be applied at the examination office of the Department of Economics and Management. Seminars at the institutes wbk and IFL do not require these approval.

- **Key Qualification (KQ)-course(s)**: One or more courses with at least 3 CP in total of additional key qualifications have to be chosen among the courses [HoC, ZAK, Sprachenzentrum].

Qualification Goals
• Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
• They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
• They can solve the problems in a structured manner using their interdisciplinary know-how.
• They know how to validate the obtained results.
• Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor. Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section “Key Qualifications” of the module handbook. Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu. The courses “Seminar Human Resource Management” [2573011] and “Seminar Human Resources and Organizations” [2573010] have both been added summer 2015.
Module: Internship [WI3EXPRAK]

Coordination: Der Vorsitzende des Prüfungsausschusses
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Learning Control / Examinations
The assessment is carried out by the evidence of completed full-time internships of at least eight weeks and a presentation of the internship in the form of a written report on the activities.

1. Information on evidence of completed full-time internships:

The internship is proofed by the certificate of the intern's office. The certificate has to be formally correct with official corporate letterhead and handwritten countersigned by a responsible employee of the company.

The certificate must at least contain the following information:

- Company / Location
- Duration: from ... to ...
- Hours of work (weakly)
- Working interruption, indicating the vacation and sick days
- Department
- Headwords to the activities

2. Information on to the presentation:

The internship report should be at least one page (typewritten, not handwritten) for each Location. It must be countersigned by a representative of the intern's office.

Conditions
Internships, that were completed even before studying may be recognized, if the criteria for recognition are met. After recognition of the compulsory internship, there can be taken a semester off for a voluntary, student-related internship. The possibility is particularly interesting in view of the master programme, which requires internships of at least 12 weeks.

Regarding to the election of the company, in which the internship is completed, there are no specific rules. With a view to the future professional career, it is recommended to absolve the internship in a larger, possibly international company.

Qualification Goals

- has general insight into the essential processes in a company,
- is in a position to identify operation correlations and has the knowledge and skills to facilitate a fast understanding of the processes in the company,
- in addition to practical professional experience and competences, also has key competences such as own initiative, ability to work in a team and communication skills as well as ability to integrate into corporate hierarchies and procedures,
- has the experience to accomplish complex IT and business tasks under realistic conditions within the framework of the relevant legal aspects and while applying the total acquired knowledge (interlaced thinking),
- has an idea of the professional development potential in the economy through pursuit of study-related activities,
- knows the technical and professional requirements in the individually targeted future occupation and can take this knowledge into account for the future planning of his/her studies and career,
- can assess and estimate own technical and professional strengths and weaknesses through his/her evaluation of the company.

Content
The internship may be done in economic, business and/or technical companies. At best, it is done on activities which are located at the intersection of the two fields - getting to know the specific requirements of Industrial Engineering and Management.

A commercial internship provides an insight into business or administrative processes of business transactions. Therefor departments such as controlling, organizing, marketing and planning appear particularly suitable.
Work experiences in the departments of engineering, work preparation and provision of material or IT cover more technical aspects of the internship. But work experiences in an engineering firm go with a technical internship. It remains the companies and interns left, which stations and areas the intern will eventually go through. But the focus should always be in accordance with operational realities of the company.

Workload
The total workload for this module is approximately 240 hours. For further information see German version.

Remarks
Vacation days are not figured into the internship.
Only three sick leave days may incurred at all. Any additional sick days are not figured into the internship.
A relevant vocational education of at least two years is accepted as a performance equivalent to the internship.
Module: Bachelor Thesis [WI3THESIS]

Coordination: Der Vorsitzende des Prüfungsausschusses
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The Bachelor Thesis is a written exam which shows that the student can autonomously investigate a scientific problem in Industrial Engineering and Management. The Bachelor Thesis is described in detail in § 11 of the examination regulation. The review is carried out by at least one examiner of the Department of Economics and Management, or, after approval by at least one examiner of another faculty. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme. The regular processing time takes three months. On a reasoned request of the student, the examination board can extend the processing time of a maximum of one month. If the Bachelor Thesis is not completed in time, this exam is “failed”, unless the student is not being responsible (e.g. maternity leave).

With consent of the examiner the thesis can be written in English as well. Other languages require besides the consent of the examiner the approval of the examination board. The issue of the Bachelor Thesis may only returned once and only within the first month of processing time. A new topic has to be released within four weeks.

The overall grade of the module is the grade of the Bachelor Thesis.

Conditions
Prerequisite for admission to the Bachelor thesis is that the student is usually in the 3rd Academic year (5th and 6th semester) and has at most one of the exams of the core program (according to § 17 paragraph 2 examination regulation) not been completed.

It is recommended to begin the Bachelor Thesis in the 5th or 6th Semester.
A written confirmation of the examiner about supervising the Bachelor’s Thesis is required.
Please pay regard to the institute specific rules for supervising a Bachelor Thesis.

The Bachelor Thesis has to contain the following declaration: “I hereby declare that I produced this thesis without external assistance, and that no other than the listed references have been used as sources of information. Passages taken literally or analogously from published or non published sources is marked as this.” If this declaration is not given, the Bachelor Thesis will not be accepted.

Qualification Goals
The student can independently work on a relevant topic in accordance with scientific criteria within the specified time frame. He/she is in a position to research, analyze the information, abstract and identify basic principles and regulations from less structured information.
He/she reviews the task ahead, can select scientific methods and techniques and apply them to solve a problem or identify further potential. This is basically also done under consideration of social and/or ethical aspects.
He/she can interpret, evaluate and if required, graphically present the obtained results.
He/she is in a position to clearly structure a research paper and communicate in writing using the technical terminology.

Content
The Bachelor Thesis is the first major scientific work. The topic of the Bachelor Thesis will be chosen by the student themselves and adjusted with the examiner. The topic has to be related to Industrial Engineering and Management and has to refer to subject-specific or interdisciplinary problems.

Workload
The total workload for this module is approximately 360 hours. For further information see German version.

Remarks
Q
7 Courses

7.1 All Courses

Course: Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines [2134150]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Letter of attendance or oral exam (25 minutes, no auxiliary means)

Conditions
none

Recommendations
Knowledge in the field of engine technology and measurement techniques is advantageous

Learning Outcomes
The Students can point out the challenges concerning the current emission standards in engine development. They can name and explain the basic principles of measurement techniques and methods to analyse exhaust gas components and components of engine oil. Hence, the students have the ability to choose the right methods for a given Problem and to interpret the results.

Content
The students get involved in the application of different measurement techniques in the field of exhaust gas and lubricating oil analysis. The functional principles of the systems as well as the application areas of the latter are discussed. In addition to a general overview of standard applications, current specific development and research activities are introduced.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Lecture with Powerpoint slides

Literature
The lecture documents are distributed during the courses.
Course: Advanced Topics in Economic Theory [2520527]

Coordinators: M. Hillebrand, K. Mitusch

Part of the modules: Economic Theory (p. 54)[WI3VWL12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the beginning of the recess period or at the beginning of the following semester.

Conditions
None.

Recommendations
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Learning Outcomes

The students

- will understand fundamental questions of General Equilibrium Theory and will be able to solve these questions with appropriate methods,
- will understand fundamental questions of information economics respectively contract theory and will be able to solve these questions with appropriate methods,
- will be able to apply advanced methods of formal economic modelling.

Content

The course deals with basic elements of modern economic theory. It is divided into two parts. The first part introduces the microeconomic foundations of general equilibrium à la Debreu ("The Theory of Value", 1959) and Hildenbrand/Kirman ("Equilibrium Analysis", 1988). The second part deals with asymmetric information and introduces the basic techniques of contract theory.

The course is largely based on the textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

The course is based on the excellent textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.

Remarks

The course Advanced Topics in Economic Theory will not take place in summer semester 2015.
Course: Algorithms for Internet Applications [2511102]

Coordinators: H. Schmeck

Part of the modules: Electives in Informatic (p. 58)[WI3INFO2], Emphasis Informatics (p. 56)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination (called “bonus exam”, 45 min) (according Section 4(2), 3 of the examination regulation).

The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Conditions

None.

Learning Outcomes

The students will learn to master methods and concepts of essential algorithms within Internet applications and to develop capabilities for innovative improvements. The course aims at teaching advanced concepts for the design and application of algorithms with respect to the requirements in networked systems. Based on a fundamental understanding of taught concepts and methods the students should be able to select appropriate concepts and methods for problem settings in their future professional life, and - if necessary - customize and apply them in an adequate way. The students will be capable to find appropriate arguments for their chosen approach to a problem setting. In particular, the student will

- know the structure and elementary protocols of the Internet (TCP/IP) and standard routing algorithms (distance vector and link state routing),
- know methods of information retrieval in the WWW, algorithms for searching information and be able to assess the performance of search engines,
- know how to design and use cryptographic methods and protocols to guarantee and check confidentiality, data integrity and authenticity,
- know algorithmic basics of electronic payment systems and of electronic money
- know new developments towards an Internet of Energy

Content

Internet and World Wide Web are changing our world, this core course provides the necessary background and methods for the design of central applications of the Internet. After an introduction into Internet technology the following topics are addressed: information retrieval in the www, structure and functioning of search engines, foundations of secure communication, electronic payment systems and digital money, and new developments and challenges in the Internet of Energy.

Workload

The total workload for this course is approximately 150.0 hours. For further information see German version.

Media

Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Literature

Elective literature:

- Further references will be given in the course.

Remarks

This course will not be offered after WS 2016/17
Course: Analysis of multivariate Data [2550550]

Coordinators: O. Grothe

Part of the modules: Statistical Applications of Financial Risk Management (p. 89)[WI3STAT], Statistics and Econometrics (p. 90)[WI3STAT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Conditions
None.

Recommendations
It is recommended to attend the courses Statistics 1 [2600008] und Statistics 2 [2610020] in advance.

Learning Outcomes
Students
- choose appropriate methods for the illustration of multivariate data, for structure analysis as well as dimension reduction, and apply these.
- apply software.

Content
- Multivariate Data
- Correlation Analysis
- Variance Analysis
- Factor- and Principal Component Analysis
- Discriminant function analysis
- Cluster Analysis

Workload
The total workload for this course is approximately 135 hours.
Lecture: 30 hours
Preparation of lecture: 75 hours
Exam preparation: 30 hours

Media
Script

Literature
see lecture

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online.
Course: Analytical CRM [2540522]

Coordinators: A. Geyer-Schulz
Part of the modules: CRM and Service Management (p. 43)[WI3BWLISM4], Specialization in Customer Relationship Management (p. 45)[WI3BWLISM5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>95</td>
</tr>
<tr>
<td>1.3</td>
<td>90</td>
</tr>
<tr>
<td>1.7</td>
<td>85</td>
</tr>
<tr>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>2.3</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>70</td>
</tr>
<tr>
<td>3.0</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>55</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conditions
None.

Recommendations
We expect knowledge about data models and the UML modeling language concerning information systems.

Learning Outcomes
The Student

- understands the principal scientific methods from statistics and informatics used in analytical CRM and their application to enterprise decision problems and independently applies these methods to standard cases,
- understands the components for creating and managing a data warehouse from operative system sources including the processes and steps involved and applies these methods to a simple example, and
- uses his knowledge to conduct a standard CRM analysis on enterprise data for a business decision problem and deduces and justifies a recommendation for appropriate action.

Content
The course Analytical CRM deals with methods and techniques for analysis concerning the management and improvement of customer relationships. Knowledge about customers is aggregated and used for enterprise decision problems like product line planning, customer loyalty, etc. A necessary precondition for these analyses is the transformation of data stemming from operative systems into a common data warehouse that assembles all necessary information. This requires transformation of data models and processes for creating and managing a data warehouse, like ETL processes, data quality and monitoring. The generation of customer oriented and flexible reports for different business purposes is covered. The course finally treats several different statistical analysis methods like clustering, regression etc. that are necessary for generating important indicators (like customer lifetime value, customer segmentation). As external data source, customer surveys are introduced.

Workload
The total workload for this lecture will amount to approximately 135 hours (4.5 credits).

\begin{tabular}{lcr}
\hline
\textbf{Activity} & & \\
\textbf{Workload} & & \\
\hline
Attendance time & & \\
\end{tabular}
Attendance of lecture & 15 x 90min & 22h 30m \\
Attendance of exercise & 7 x 90min & 10h 30m \\
\hline
Self-study & & \\
Preparation of lecture & & 22h 30m \\
Wrap-up of lecture & & 22h 30m \\
Preparation of exercise & & 25h 00m \\
Preparation of assessment & & 31h 00m \\
\hline
Assessment & & 1h 00m \\
\hline
\hline
\hline
Sum & & 135h 00m \\
\end{tabular}

Media

Slides

Literature

Remarks

The lecture ultimately takes place in summer term of 2014. Afterwards the lecture is hold in alternation with “2540520 - Operative CRM”. The current schedule can be seen on the chair’s website (http://www.em.uni-karlsruhe.de/studies/).
Course: Applied Informatics I - Modelling [2511030]

Coordinators: A. Oberweis, Y. Sure-Vetter

Part of the modules: Emphasis Informatics (p. 56)[WI3INFO1], Electives in Informatics (p. 58)[WI3INFO2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (60 min) in the first week after lecture period (according to Section 4 (2),1 of the examination regulation).

Conditions
None.

Learning Outcomes
Students
- explain the strengths and weaknesses of various modeling approaches for Information Systems and choose an appropriate method for a given problem,
- create UML models, ER models and Petri nets for given problems,
- model given problems in Description Logics and apply description logic rules,
- describe the main ontology concepts and languages and explain SPARQL queries,
- create and evaluate a relational database schema and express queries in relational algebra.

Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspectes, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets as well as well as event driven process chains together with their respective analysis techniques will be introduced.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Media
Slides.

Literature

Elective literature:
Course: Applied Informatics II - IT Systems for e-Commerce [2511032]

Coordinators: J. Zöllner, N.N.
Part of the modules: Electives in Informatic (p. 58)[WI3INFO2], Emphasis Informatics (p. 56)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1/1</td>
<td>lecture + exercise + tutorial</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the compulsory exercises is prerequisite for the admission to the written exam. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of content of the module [WI1INFO].

Learning Outcomes
The student learns about concepts and technologies for designing big, distributed application architectures. Students apply industry-relevant technology to solve application-oriented problems in lab classes.

Content
The course Applied Informatics II [2511032] covers various facets of electronic commerce which have to be supported by adequate and efficient distributed information systems. Key topics are middleware technologies and distributed application architectures. Document description and exchange (incl. XML), Java EE, Web technologies, and Web services are additional topics.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Media
Slides, internet resources.

Literature
Tba in the lecture.
Course: Facilities and Rolling Stock [6234802]

Coordinators: E. Hohnecker

Part of the modules: Basics of Track Guided Transport Systems (p. 85) [WI3INGBGU4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

See German version.

Conditions

See module description.

Learning Outcomes

See German version.

Content

stations and terminals for passengers and freight, basics of rolling stock and electrical drive

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Remarks

See German version.
Course: Application of technical logistics in modern crane systems [2117064]

Coordinators: M. Golder
Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral, approx. 20min, appointment after acknowledgement

Conditions
none

Recommendations
technical interest; Beneficial: Knowledge of the lecture 'Technical logistics I, basics'

Learning Outcomes
Students are capable to

- explain and apply relevant terms and their definitions like load, stress and strain
- name technical rules and standards applicable in crane design
- explain and discuss the importance of safety factors and dynamic factors
- name and describe the required verification measures in crane design
- describe the objective, approach and aspects when transferring the dynamic behavior of a crane into an elasto-kinetic model
- transfer the approach of dimensioning a bridge crane to any other material handling equipment

Content
Fundamentals of modern (bridge) crane design

- Content and application of relevant technical rules, standards and guidelines
- Terminology, definitions, dimensioning methods and verification measures in (bridge) crane design
- Concept of safety and dynamic factors
- Dimensioning of a bridge crane considering operating conditions, classification of different crane components as well as safety factors and dynamic factors
- Environmental factors on a crane system regarding strain, stability and fatigue strength
- Elasto-kinetic modelling of the dynamic behavior of a crane system and its quality

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Media
presentations, black board

Literature
None.

Remarks
none
Course: Application of technical logistics in sorting- and distribution technology [2118089]

Coordinators: J. Föller
Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Recommendations
None.

Learning Outcomes
Students are able to:

- Describe and classify basics and characteristics of application of sorting and distribution of goods,
- Solve drive and control tasks with appropriate concept selection,
- Design systems with appropriate calculation methods and evaluate them financially, and
- Judge about the confirmity of the system by using relevant standards and set of rules.

Content
Basics of goods sorting and distribution technology, employment characteristics, classification, interpretation, dimensioning, costs considerations. Relevant control, modern sets of rules and propulsion principles

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Presentations, black board

Literature
None.

Remarks
None.
Course: **Topics of Sustainable Management of Housing and Real Estate [2585420/2586420]**

Coordinators: T. Lützkendorf, D. Lorenz
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is (according to §4(2), 3 SPO) in form of an examination of the written seminar thesis and a presentation.

Conditions
None.

Learning Outcomes

- Students autonomously compile a paper treating of a marked-off subject within the area of real estate economics respectively sustainable construction, and present their results within the seminar.
- Therefore they master the principles of scientific writing, especially research, reasoning and citation, as well as handling information suspiciously.
- Through own and observed experiences they develop the ability to hold scientific presentations, including technical, formal, rithorical and didactical aspects.

Content
The seminar deals with changing up-to-date topics concerning Real Estate Economics or Sustainable Construction. Current topics and schedules are announced at the beginning of term.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
A reader dealing with the basics of scientific writing is provided (in german language).
Course: Asset Management [2530219]

Coordinators: A. Sauer
Part of the modules: Topics in Finance I (p. 36)[WI3BWLFBV5], Topics in Finance II (p. 37)[WI3BWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Proficiency of the topics covered in the course “Investments” is required.

Learning Outcomes
Students are able to name the terms and definitions of professional asset management. They are able to structure, formally describe and analyze problems of professional asset management. Students are in a position to apply the instruments and methods of asset management.

Content
The course familiarizes students with the instruments, methods and terms of professional asset management. It conveys the knowledge of applying the relevant methods to students via practical exercises.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Slides.

Literature
Course: Auction & Mechanism Design [2560550]

Coordinators: N. Szech

Part of the modules: Applied Microeconomics (p. 55)[WI3VWL13], Economic Theory (p. 54)[WI3VWL12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.
Students can earn a bonus to the final grade by successfully participating in the exercises.

Conditions
None.

Recommendations
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Learning Outcomes
The students

- can analyze strategic behavior in auctions;
- can compare auction formats with regard to efficiency and revenue;
- are familiar with the basic theory of (Bayesian) mechanism design;
- master the revenue equivalence theorem for standard auctions;
- can apply mechanism design to one object auctions and bilateral trade.

Content
The course starts with the basic theory of equilibrium behavior and revenue management in one object standard auctions. The revenue equivalence theorem for standard auctions is introduced. Thereafter, the course focuses on mechanism design and its applications to one object auctions and bilateral trade.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Remarks
The lecture will be held in English.
Course: Engineering, Design and Operation of Power Transformers [23390]

Coordinators: M. Schäfer

Part of the modules: Energy Generation and Network Components (p. 82) [WI3INGETIT4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
Students know the basics of electromagnetic lay-out design of power transformers as being used in power transformers. They know the design, the components and the technology being used, as well as the used material. The operating performance of power transformers can be calculated. Important aspects for the operation and maintenance of power transformers are known. Students are familiar with the major maintenance measures and are capable to adopt their knowledge onto other high-voltage equipment.

Content
The lecture is divided into the following clauses

- Applications and design variations of power transformers
- Components and design of power transformers
- Working principle of power transformers and shunt reactors. Induction law and its application for the precalculation of transformers. The magnetic field in iron cores, core designs, variations and air gaps in magnetic circuits. Magnetic materials and their properties, application in transformers and shunt reactors. Main and stray flux in transformers and calculation of the equivalent circuit. Stresses inside transformers during inrush and short circuits.
- Winding connections and vector groups of transformers, three phase power system, connected voltages and line to earth voltage, description of three phase systems, parallel connection of transformers.
- Precalculation of transformers.
- Losses in transformers and its origins in core and in the windings. Possible measures to influence loss generation. Cooling systems and its applications.
- High voltage DC transformers
- Factory testing of transformers. Performance of type tests, standard test and special tests.
- Overload capability of transformers. Controlled overloading and emergency overload.
- Cervive and monitoring.
- Future trends and research and development activities.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
The material is distributed during any lecture

Remarks
The course consists of seven lecture blocks and one factory visit. Date and time is announced on the blackboards.
Course: Constitution and Properties of Wear resistant materials [2194643]

Coordinators: S. Ulrich
Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
The course Material Science I [21760] has to be completed beforehand.

Recommendations
Basic knowledge of natural science and knowledge of the content Material Science II [21782] is recommended.

Learning Outcomes
Basic understanding of constitution of wear-resistant materials, of the relations between constitution, properties and performance, of principles of increasing of hardness and toughness of materials as well as of the characteristics of the various groups of wear-resistant materials.

Content
introduction
materials and wear
unalloyed and alloyed tool steels
high speed steels
stellites and hard alloys
hard materials
hard metals
ceramic tool materials
superhard materials
new developments

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Literature
Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995

Copies with figures and tables will be distributed.
Course: Selected Applications of Technical Logistics [2118087]

Coordinators: M. Mittwollen, Madzharov

Part of the modules: Introduction to Technical Logistics (p. 67) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”, latest version)

Conditions

look at Empfehlungen (en)

Recommendations

GTL/ESTL should be visited in advance, knowledge out of GTL/ESTL preconditioned

Learning Outcomes

Students are able to:

- Model the dynamic behaviour of material handling systems and based on this calculate the dynamical behaviour and
- Transfer this approach autonomous to further, different material handling installations and
- Discuss the knowledge with subject related persons.

Content

design and dimension of machines from intralogistics // static and dynamic behaviour // operation properties and specifics // visit of real intralogistic system

Inside practical lectures: sample applications and calculations in addition to the lectures

Workload

The total workload for this course is approximately 120 hours. For further information see German version.

Media

supplementary sheets, projector, blackboard

Literature

Recommendations during lessons

Remarks

-
Course: Selected Applications of Technical Logistics and Project [2118088]

Coordinators: M. Mittwollen, Madzharov
Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Lesson: after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”); (counts two-thirds);
Project: presentation, marked (counts one third)

Conditions
none

Recommendations
GTL/ESTL should be visited in advance, knowledge out of GTL/ESTL preconditioned

Learning Outcomes
Students are able to:
- Model the dynamic behaviour of material handling systems and based on this calculate the dynamical behaviour and
- Transfer this approach autonomous to further, different material handling installations,
- Discuss the knowledge with subject related persons and
- Judge about systems in place and justify it in front of subject related persons.

Content
design and dimension of machines from intralogistics // static and dynamic behaviour // operation properties and specifics // visit of real intralogistic system // self manufactured project report
Inside practical lectures: sample applications and calculations in addition to the lectures
Self manufacturing of a project report to recesses the topic.

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Media
supplementary sheets, projector, blackboard

Literature
Recommendations during lessons
Course: Selected Topics on Optics and Microoptics for Mechanical Engineers [2143892]

Coordinators: T. Mappes
Part of the modules: Microsystem Technology (p. 79) [WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (20 min) (following §4 (2), 2 of the examination regulation.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Selected Topics in Public Management and Governance [n.n.]

Coordinators: B. Wigger, N. Edwards

Part of the modules: Seminar Module (p. 94) [WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions

None.

Recommendations

Prior knowledge of public management and public governance, as evidenced by participation in courses such as Introduction to Public Management and Case Studies in Public Management, is strongly recommended.

Learning Outcomes

The student will demonstrate an advanced understanding of key topics dealt with in the seminar.

Content

Selected topics in public management and governance.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Media

Academic journal articles

Literature

Will be announced on Ilias.
Course: Automation of Power Grids [23396]

Coordinators: R. Eichler
Part of the modules: Energy Generation and Network Components (p. 82) [WI3INGETIT4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of an oral exam (20 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions

Basic knowledge of power transmission and distribution; basic knowledge of IT

Learning Outcomes

The students understand methods, equipment, standards, current and future technology, state-of-the-art and trends of power systems control from a global (i.e. worldwide) perspective. They are able to identify problems related to power system control and to develop solution approaches. They have acquired an understanding of interrelationships from both physical and IT points of view, and they are able to describe power system control problems using the subject-specific terminology.

Content

This lecture presents an introduction to the important theoretical fundamentals of digital system design, which is scheduled for the students in the first semester of Electrical Engineering. Since the lecture cannot be based on student's knowledge of circuit technology, it focuses on abstract models for behaviours and structures. In addition the lecture will also relay the fundamentals, which are needed in other lectures.

At first the lecture delves into important conceptual information and shows that digital system design represents a special technical solution for the treatment of information. After this the concept of a system will be introduced and illustrated that complex systems require a hierarchical partitioning in order to be able to understand and design them. Based on this it can be concluded then that system design can be understood as a repeated transformation from descriptions of behaviour to descriptions of structure.

The terms message and signal are subject matter of a further chapter. Starting from time and amplitude continuous signals, simple time and value discrete binary signal representations will be introduced, as well as more complex signal forms derived from binary signals.

The representation of information by signals presupposes or implies an “agreement of allocation” between distinguishable elements of information representation and signal representation, the so-called codes. Therefore the lecture delivers the fundamental concepts of codes & coding and describes a few important classes & types of codes, which serve some of the following uses: analog/digital conversion for interfaces, error detection & error correction for numerical purposes, and optimal representation of information and/or signals. Code conversion and related topics finalize the consideration of this topic.

Formal and mathematical fundamentals will be treated in an extensive chapter. To begin the subject matter of the lecture is comprised of sets and quantities, the operations on these quantities, as well as the relations between set elements.

Afterwards several fundamentals of graph theory are introduced. It will be shown that logic algebra can serve as a basis for special Boolean algebra. Building upon the associated rules the concept of switching functions, their graphical representation and classification, the standard theories, and important basis systems for the representation of Boolean expressions will be derived and considered. Expansion theory, the computation with allocation blocks and terms, as well as measures for minimization are further topics of this chapter.

Having the formal basics available, applicable technical components and structures will be developed on the basis of binary switches, which allow for a direct conversion of formal relationships into solutions. Gates, circuit networks, synchronized sequential circuits, as well as specially derived functional units such as counters, registers, and digital memories lead to complex structures. The “All-purpose Computer” from J. von Neumann will be particularly dealt with.

To accompany the lecture material, assignments and the corresponding solutions will be given out and discussed during lecture hall exercises. Furthermore tutorials in small study groups will be held to deepen the understanding of the curriculum and methods taught. Furthermore computer exercises are offered in which digital circuits and their pattern of behaviour will be modeled and simulated with the help of the program LogicWorks.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Media

Slides of the lecture presentation.

Literature

Elective literature:
• Dieter Rumpel, Ji R. Sun: Netzleittechnik. Informationstechnik für den Betrieb elektrischer Netze Springer; Berlin (Januar 1989)
• Ernst-Günther Tietze: Netzleittechnik 1. Grundlagen; VWEW Energieverlag GmbH
• Ernst-Günther Tietze: Netzleittechnik Teil 2: Systemtechnik; VDE-Verlag
• Stuart A. Boyer: SCADA: Supervisory Control and Data Acquisition; ISA 3rd edition (June 2004)
Course: Automotive Engineering I [2113809]

Course: Automotive Engineering I [2113809]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>lecture</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) (following §4(2), 1 of the examination regulation).

Conditions
Can not be combined with lecture Grundlagen der Fahrzeugtechnik I.

Recommendations
None.

Learning Outcomes
The students know the movements and the forces at the vehicle and are familiar with active and passive security. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to judge and to develop the complex system “vehicle”.

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of the longitudinal and transverse forces, collision mechanics
3. Engines: combustion engine, alternative drives (e.g. electric motor, fuel cell)
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Literature
Course: Automotive Engineering II [2114855]

ETCS Credits: 3
Hours per week: 2
Type: lecture
Term: Summer term
Instruction language: en

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Conditions
Can not be combined with lecture Grundlagen der Fahrzeugtechnik II.

Recommendations
None.

Learning Outcomes
The students have an overview of the modules, which are necessary for the road holding of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, the tyres, the steering elements and the brakes. They know different execution forms, the function and the influence on the driving or brake behavior. They are able to develop the appropriate components correctly. They are ready to analyze, to judge and to optimize the complex relationship of the different components under consideration of boundary conditions.

Content
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Steering elements of single vehicles and of trailers
3. Brakes: Disc brake, drum brake, retarder, comparison of the designs

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
3. Gnadler, R.: Script to the lecture ’Automotive Engineering II’
Course: Bachelor Seminar in Information Engineering and Management [2540524]

Coordinators: A. Geyer-Schulz
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the examination regulation in form of the written seminar thesis and a presentation.
The final mark is given, if the written seminar thesis was handed in as well as the presentation was held.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Conditions
See module description.

Recommendations
At least one of the following lectures should be successfully completed:
 • Customer Relationship Management [2540508]
 • Analytic CRM [2540522]
 • Operative CRM [2540520]

Learning Outcomes
The student is able to
 • to perform a literature search for a given topic, to identify, find, value and evaluate the relevant literature.
 • to write his seminar thesis (and later on, the bachelors/masters thesis) with the text setting system LaTeX and include format requirements as used by scientific publishers.
 • to do a presentation in an adequate scientific manner.
 • to write down the results of his investigations in the form of scientific publications.

Content
This seminar serves as an introduction into the process of scientific work. Students write a review for a selected scientific article. A profound literature search is required to judge the article. The review is written with LaTeX by using formatting styles similar to those of scientific publishers.
The seminar treats questions of Customer Relationship Management.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
A CRM-specific article is assigned to every student participating in this seminar. The chosen articles are published in the beginning of every term.

Elective literature:
Course: Rail System Technology [2115919]

Coordinators: P. Gratzfeld
Part of the modules: Rail System Technology (p. 77) [WI3INGMB25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See modul description.

Conditions
See modul description.

Recommendations
none

Learning Outcomes
The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system. They can assess the suitability of existing elements in the overall system. They deduct the fundamental requirements for rail vehicles out of it.

Content
Introduction: railway as system, history, networks, traffic development, economic impact
Vehicle dynamics: driving resistance, tractive effort diagram, load cycles
Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance
Train protection: succession of trains, guideway
Traction power supply: power networks, power distribution, substations
Vehicles: definitions, compositions
Environmental aspect: energy consumption, traffic area, noise

Workload
The total workload for this course is approximately 90.0 hours. For further information see German version.

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).

Remarks
none
Course: Construction Technology [6200409]

Coordinators: S. Haghsheno, S. Gentes

Part of the modules: Fundamentals of construction (p. 84) [WI3INGBGU3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 180 hours. For further information see German version.
Course: Design and Construction of Buildings [2586404]

Coordinators: T. Lützkendorf

Part of the modules: Design, Construction and Sustainability Assessment of Buildings (p. 47)[WI3BWLOOW1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
A combination with the module Real Estate Management [WI3BWLUO1] and with engineering science modules in the area of building physics and structural design is recommended.

Learning Outcomes
The student

- has an in-depth knowledge of aspects of energy-saving, resource-saving and health-oriented design, construction and operation of buildings (design for environment)
- has a critical understanding of the essential requirements, concepts and technical solutions for green buildings
- is able to integrate aspects of energy-saving, resource-saving and health-conscious construction into a holistic environmental design approach and to assess the advantages and disadvantages of different individual solutions.

Content
Taking low-energy buildings as an example the course is an introduction to cheap, energy-efficient, resource-saving and health-supporting design, construction and operation of buildings. Questions of the implementation of the principles of a sustainable development within the building sector are discussed on the levels of the whole building, its components, building equipment as well as the materials. Besides technical interrelationships basics dimensioning and various approaches to ecological and economical assessment play a role during the lectures, as well as the different roles of people involved into the building process. Topics are the integration of economical and ecological aspects into the design process, strategies of energy supply, low-energy and passive buildings, active and passive use of solar energy, selection and assessment of construction details, selection and assessment of insulation materials, greened roofs plus health and comfort.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
For a better clearness videos and simulation tools will be presented during the lectures.

Literature
Elective literature:
See german version.
Course: Sustainability Assessment of Buildings [2585404]

Coordinators: T. Lützkendorf
Part of the modules: Design, Construction and Sustainability Assessment of Buildings (p. 47)[WI3BWLOOW1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
A combination with the module Real Estate Management [WI3BWLOOW2] and with engineering science modules from the areas building physics and structural design is recommended.

Learning Outcomes
The student

- has an in-depth knowledge of the classification of environmental design and construction of buildings within the overall context of sustainability
- has a critical understanding of the main theories and methods of assessing the environmental performance of buildings
- is able to use methods and tools to evaluate the environmental performance in design and decision processes or to interpret existing results

Content
The course identifies problems concerning the economical and environmental assessment of buildings along their lifecycle and discusses suitable procedures and tools supporting the decision making process. For example, the course addresses topics like operating costs, heat cost allocation, comparisons of heating costs, applied economical assessment methods, life cycle assessment as well as related design and assessment tools (e.g. element catalogues, databases, emblems, tools) and assessment procedures (e.g. carbon footprint, MIPS, KEA), which are currently available.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
See german version.
Course: Design Basics in Highway Engineering [6200407]

Coordinators: R. Roos
Part of the modules: Mobility and Infrastructure (p. 83)[WI3INGBGU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
See module description.

Recommendations
None.

Learning Outcomes
Provision of first insights into methodologies and techniques in the fields of highway design and road construction.

Content
• Highway design
• Road network layout
• Driving dynamics
• Fundamental principles of highway design in location, elevation and cross section
• Road construction
• Earthworks (requirements and test methods)
• Pavements (structure, construction methods and requirements)
• Pavement design according to the German guideline RStO

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Lecture notes are provided for download (information will be made available in the lecture).
Course: Operation [6234801]

Coordinators: E. Hohnecke
Part of the modules: Basics of Track Guided Transport Systems (p. 85)[WI3INGBGU4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See module description.

Learning Outcomes
See German version.

Content
Operation systems, signalling systems, operation schedule and timetable construction

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Elective literature:
Fiedler: Grundlagen der Bahntechnik, Werner Verlag Düsseldorf
Pachl: Systemtechnik des Schienenverkehrs, Teubner-Verlag, Stuttgart

Remarks
See German version.
Course: Fuels and Lubricants for Combustion Engines [2133108]

Coordinators: B. Kehrwald
Part of the modules: Combustion Engines II (p. 72) [WI3INGMB35]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: ca. 25 min., no auxiliary means

Conditions
None.

Recommendations
None.

Learning Outcomes
The students can name and explain composition and meaning of fuels, lubricants and coolants as important components in the system of today's Otto and Diesel engines as well as definition and chemical composition of fuels and lubricants, the meaning of crude oil as basic primary product, production processes, major properties, standards and specifications, testing methods. They can point out future worldwide trends in the field of conventional and alternative fuels regarding emission standards and energy conservation.

Content
Introduction and basics

Fuels for Gasoline and Diesel engines

Hydrogen

Lubricants for Gasoline and Diesel engines

Coolants for combustion engines

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Literature
Lecturer notes
Course: Business Administration: Finance and Accounting [2610026]

Coordinators: M. Ruckes, M. Uhrig-Homburg

Part of the modules: Business Administration (p. ??)[WI1BWL], Business Administration (p. 18)[WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0/2</td>
<td>lecture + tutorial</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Students

- are able to valuate bonds and cash flows in general,
- can valuate stocks,
- can make investment decisions,
- can analyse portfolios,
- are able to recognise business events in financial reports,
- can determine depreciation expenses,
- are able to valuate inventories,
- can analyse costs,
- knows the difference between financial and management accounting,
- knows cost center accounting,
- can estimate product costs.

Content

- **Investment and Finance:**
 - Valuation of Bonds and Stocks
 - Capital Budgeting
 - Portfolio Theory
- **Financial Accounting**
- **Management Accounting**

Workload

The total workload for this course is approximately 120 hours. For further information see German version.

Literature

Extensive bibliographic information will be given in the materials to the lecture.

Remarks

Key qualifications can be shown in an active participation through presentations of solutions and discussions in the tutorials which accompany the course. Each part of the course is taught by instructors specialised in the field of that part.
Course: Business Administration: Production Economics and Marketing [2600024]

Coordinators: M. Ruckes, W. Fichtner, M. Klarmann, Th. Lützkendorf, F. Schultmann

Part of the modules: Business Administration (p. ??)[WI1BWL], Business Administration (p. 18)[WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0/2</td>
<td>lecture + tutorial</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
Students

- are able to analyse and implement the marketing strategy and marketing measures (marketing mix: 4 Ps),
- can analyse, implement and manage procurement and production processes,
- are able to plan projects, and
- have skills about selected issues in energy economics.

Content
The course is made up of the following topics:

Marketing
- Foundations of marketing
- Strategic marketing
- Consumer behaviour
- Product
- Price
- Promotion
- Sales
- Marketing Metrics

Production economics
In the part of production economics the student will learn basics in the field of production theory, procurement and resource acquisitions, production and operations management and industrial engineering. Aspects of energy economics, technological foresights, construction industry and real estate markets will be treated.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Literature
Further literature references are announced in the materials to the lecture.

Remarks
Key qualifications can be shown in an active participation through presentations of solutions and discussions in the tutorials which accompany the course.
Each part of the course is taught by instructors specialised in the field of that part.
Course: Business Administration: Strategic Management and Information Engineering and Management [2600023]

Coordinators: M. Ruckes, P. Nieken, H. Lindstädt, Ch. Weinhardt
Part of the modules: Business Administration (p. ??)[WI1BWL], Business Administration (p. 18)[WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
Students

- can explain, why firms exists,
- are able to make rational decisions under uncertainty,
- have skills about legal forms of firms,
- can analyse, develop, and implement strategies.
- can analyse organisational structures,
- are able to analyse auctions,
- understand special characteristics of information goods, and
- know how security prices are determined in stock exchanges.

Content
The following topics are treated:

Foundations of Business Administration
- Economic Principle
- Business administration as science
- Firm and company
- Functions in firms
- Constitutional decisions in firms
- Die curraxit AG - a case study for the core program

Strategic Management
- Mangarial decisions in firms
- Corporate Governance
- Organization of the firm
- Foundations of strategic management

Information Engineering and Management
- Digital economies and services
- Auctions
- Service markets und network effects
- Information processing on financial markets

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Further literature references are announced in the materials to the lecture.
Course: Civil Law for Beginners [24012]

Coordinators: T. Dreier, O. Knöfel
Part of the modules: Elective Module Law (p. 91)[WI3JURA]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4/0</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4, (2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
The Students grasp the differences between civil law, public law and criminal law. In particular, students know the fundamental notions and constructions of Civil law as laid down in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises etc. Students are able to recognize the legal problems of a given factual situation and develop solutions to simple legal problems.

Content
The course starts with a general introduction into law. What is law, why are legal rules valid, and what is the role of law in conjunction with social behavior, technological and market developments? What is the relationship between law and justice? Moreover, the distinction between civil law, public law and criminal law will be highlighted. The basics of jurisdiction, international conflicts and alternative dispute settlement will be discussed. The main focus of the course is on the fundamental notions of civil law as defined and regulated in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, agency, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises. The course ends with an outlook to the law of contracts and property law.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Transparencies/Slides

Literature
Tba at the beginning of the course,

Elective literature:
Tba at the beginning of the course,
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [2142883]

Coordinators: A. Guber
Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
It is recommended to attend course BioMEMS I [2141864] beforehand.

Learning Outcomes
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in Life-Sciences and biomedicine: Microfluidic Systems: LabCD, Protein Crystallisation
Microarrays
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Lecture script

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou
Fundamentals of Microfabrication
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [2142879]

Coordinators: A. Guber
Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
It is recommended to attend course BioMEMS I [2141864] beforehand.

Learning Outcomes
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and in medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in minimally invasive therapy
- Minimally invasive surgery (MIS)
- Endoscopic neurosurgery
- Interventional cardiology

NOTES
- OP-robots and Endosystems
- License of Medical Products and Quality Management

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Lecture script

Literature
- Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
- Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
- M. Madou
 Fundamentals of Microfabrication
Course: Bionics for Engineers and Natural Scientists [2142140]

Coordinators: H. Hölscher
Part of the modules: Microsystem Technology (p. 79) [WI3INGMBI1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The successfull attendance of the lecture is controlled by a 30 minutes written examination, and a subsequent oral examination (20 min). Passing the written exam is mandatory for the participation of the oral examination. The grade result is the result of the oral exam.

Conditions
None.

Recommendations
Basic knowledge in physics and chemistry

Learning Outcomes
The students should be able analyze, judge, plan and develop biomimetic strategies and products.

Content
Bionics focuses on the design of technical products following the example of nature. For this purpose we have to learn from nature and to understand its basic design rules. Therefore, the lecture focuses on the analysis of the fascinating effects used by many plants and animals. Possible implementations into technical products are discussed in the end.

Workload
lectures 30 h
self study 30 h
preparation for examination 30 h

Media
Slides of the lectures

Literature
Course: Exchanges [2530296]

Coordinators: J. Franke

Part of the modules: Topics in Finance II (p. 37)[WI3BWLFBV6], eFinance (p. 42)[WI3BWLISM3], Topics in Finance I (p. 36)[WI3BWLFBV5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
Students are in a position to discuss and evaluate current developments regarding the organisation of exchanges and securities trading.

Content
- Organisation of exchanges: Changing Zeitgeist - Corporates instead of cooparative structures
- Market models: order driven vs. market maker - Liquidity provision for less frequently traded securities
- Trading systems: The end of an era? - No more need for running traders?
- Clearing: Diversity instead of uniformity - Safety for all?
- Settlement: Increasing importance - Does efficient settlement assure the “value added” of exchanges in the long run?

Workload
The total workload for this course is approximately 45.0 hours. For further information see German version.

Literature
Elective literature:
Educational material will be offered within the lecture.
Course: BUS-Controls [2114092]

Coordinator: M. Geimer

Part of the modules: Mobile Machines (p. 70)[WI3INGMB15], Automotive Engineering (p. 63)[WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Assessment for the module *Mobile Machines:* See module description.

Assessment for the module *Automotive Engineering:* The assessment consists of an oral exam (20 min) taking place in the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

Learning Outcomes

The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system.

Content

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Workload

The total workload for this course is approximately 90.0 hours. For further information see German version.

Literature

Elective literature:

Remarks

The course will be replenished by interesting lectures of professionals.
Course: Customer Relationship Management [2540508]

Coordinators: A. Geyer-Schulz

Part of the modules: CRM and Service Management (p. 43)[WI3BWLISM4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from excercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>95</td>
</tr>
<tr>
<td>1.3</td>
<td>90</td>
</tr>
<tr>
<td>1.7</td>
<td>85</td>
</tr>
<tr>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>2.3</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>70</td>
</tr>
<tr>
<td>3.0</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>55</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conditions

None.

Learning Outcomes

The students

- understand service management as an economic basis for Customer Relationship Management and learn the resulting consequences for the management, the organisation itself and their departments,
- design and develop service concepts and service systems at a conceptual level,
- work on case studies in the CRM-area in small groups with limit time,
- learn English as the technical language in the area of CRM and consult internationale literature from this field for the case studies.

Content

The course begins with an introduction into Service Management as the strategic concept which also covers all CRM applications. The course is divided in the basics of Service Management as well as different topics within this concept like external and internal marketing, quality management and organizational requirements.

Workload

The total workload for this course is approximately 135 hours (4.5 credits).

<table>
<thead>
<tr>
<th>Activity</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance of lecture</td>
<td>15 x 90min & 22h 30m</td>
</tr>
<tr>
<td>Attendance of exercise</td>
<td>7 x 90min & 10h 30m</td>
</tr>
<tr>
<td>Preparation of assessment</td>
<td>1h 00m</td>
</tr>
<tr>
<td>Preparation of excercise</td>
<td>25h 00m</td>
</tr>
<tr>
<td>Preparation of lecture</td>
<td>22h 30m</td>
</tr>
<tr>
<td>Wrap-up of lecture</td>
<td>22h 30m</td>
</tr>
<tr>
<td>Self-study</td>
<td></td>
</tr>
<tr>
<td>Assessment</td>
<td>31h 00m</td>
</tr>
<tr>
<td>Preparation of lecture</td>
<td>22h 30m</td>
</tr>
<tr>
<td>Preparation of assessment</td>
<td>31h 00m</td>
</tr>
</tbody>
</table>
The integration of learning outcomes (Content, Skills) with levels and the estimated workload for an average student is intended.

Media
Slides, Audio, Reader

Literature

Elective literature:
Course: Data Mining and Applications [2520375]

Coordinators: G. Nakhaeizadeh
Part of the modules: Statistics and Econometrics (p. 90) [WI3STAT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral examination 70%
- Conduction of a small empirical study 30%

Conditions
None.

Learning Outcomes
After completing of the course the students:
- know the definition of Data Mining
- are familiar with the CRISP-DM
- are Familiar with at least six important Data Mining Tasks
- can recognize whether a given problem can be formulated as a data mining problem
- are familiar with the most important Data Mining Algorithms like Decision Tree, K-Means, Artificial Neural Networks, Association Rules, Regression Analysis
- are familiar with evaluation of DM-algorithms
- will be able to use a DM-Tool

Content
Part one: Data Mining
Why Data Mining?
- What is Data Mining?
- History of Data Mining
- Conferences and Journals on Data Mining
- Potential Applications
- Data Mining Process:
 - Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment
 - Interdisciplinary aspects of Data Mining
- Data Mining tasks
- Data Mining Algorithms (Decision Trees, Association Rules,
 - Regression, Clustering, Neural Networks)
- Fuzzy Mining
- OLAP and Data Warehouse
- Data Mining Tools
- Trends in Data Mining

Part two: Examples of application of Data Mining
- Success parameters of Data Mining Projects
- Application in industry
• Application in Commerce

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature

• Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.
• David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT Press, Fall 2000

Remarks
The credits for the course have been changed from 5 to 4.5 from summer term 2015 on.
Course: Database Systems [2511200]

Coordinators: A. Oberweis, Dr. D. Sommer

Part of the modules: Electives in Informatic (p. 58)[WI3INFO2], Emphasis Informatics (p. 56)[WI3INFO1]

ECTS Credits: 5

<table>
<thead>
<tr>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Conditions
None.

Learning Outcomes
Students

- are familiar with the concepts and principles of database models, languages and systems and their applications and explain it,
- design and model relational databases on the basis of theoretical foundations,
- create queries for relational databases,
- know how to handle enhanced database problems occurring in the enterprises.

Content
Database systems (DBS) play an important role in today's companies. Internal and external data is stored and processed in databases in every company. The proper management and organization of data helps to solve many problems, enables simultaneous queries from multiple users and is the organizational and operational base for the entire working procedures and processes of the company. The lecture leads in the area of the database theory, covers the basics of database languages and database systems, considers basic concepts of object-oriented and XML databases, conveys the principles of multi-user control of databases and physical data organization. In addition, it gives an overview of business problems often encountered in practice such as:

- Correctness of data (operational, semantic integrity)
- Restore of a consistent database state
- Synchronization of parallel transactions (phantom problem).

Workload
Lecture 30h
Exercise 15h
Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam &1h

Total: 150h

Media
Slides, Access to internet resources

Literature
Elective literature:

Further literature will be given individually.
Course: Derivatives [2530550]

Coordinators: M. Uhrig-Homburg

Part of the modules: Topics in Finance I (p. 36)[WI3BWLFBV5], eFinance (p. 42)[WI3BWLISM3], Topics in Finance II (p. 37)[WI3BWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Slides, Exercises/Exercise sheets

Literature

Elective literature:
Course: Services Marketing and B2B Marketing [2572158]

Coordinators: M. Klarmann, J. Kim

Part of the modules: Foundations of Marketing (p. 49) [WI3BWL/MAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
See German version.

Content
The aim of this course is to prepare students for two certain marketing perspectives. The service marketing is concentrated on the particularities coming up when a company sells services instead of products. Subjects in this section are for example:

- Measuring service quality
- Pricing services
- Management of service staff

The second part of the course contains a business-to-business marketing perspective. Topics are below others:

- Management of buying centers
- Competitive Bidding
- B2B-Branding

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Course: Economics and Behavior [2560137]

Coordinators: N. Szech

Part of the modules: Economic Theory (p. 54)[WI3VWL12], Applied Microeconomics (p. 55)[WI3VWL13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. The grade will be determined in a final written exam. Students can earn a bonus to the final grade by successfully participating in the exercises.

Conditions
None.

Recommendations
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Learning Outcomes
The students
- gain insight into fundamental topics in behavioral economics;
- get to know different research methods in the field of behavioral economics;
- learn to critically evaluate experimental designs;
- get introduced to current research papers in behavioral economics;
- become acquainted with the technical terminology in English.

Content
The course covers topics from behavioral economics with regard to contents and methods. In addition, the students gain insight into the design of economic experiments. Furthermore, the students will become acquainted with reading and critically evaluating current research papers in the field of behavioral economics.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Remarks
The lecture will be held in English.
Course: Efficient Algorithms [2511100]

Coordinators: H. Schmeck
Part of the modules: Electives in Informatic (p. 58)[WI3INFO2], Emphasis Informatics (p. 56)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the week after the end of the lecturing period (wrt §4 (2), 1 SPO).
If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the bonus exam will improve the mark by one level (i.e. by 0.3 or 0.4).
Deviations from this type of assessment are announced at the beginning of this course.

Conditions
credits for the Informatics modules of years 1 and 2.

Learning Outcomes
The student will learn how to use methods and concepts of efficient algorithms and how to demonstrate adequate innovative capabilities with respect to the used methods.
This course emphasizes the teaching of advanced concepts for the design and application of algorithms, data structures, and computer infrastructures in relation to their applicability in the real world. Based on a fundamental understanding of the covered concepts and methods, students should know how to select appropriate concepts and methods for problem settings in their professional life, and, if necessary, to extend and apply them in an adequate form. The students should be enabled to find adequate arguments for justifying their chosen problem solutions.

Content
In a problem oriented way the course presents systematic approaches to the design and analysis of efficient algorithms using standard tasks of information processing as generic examples. Special emphasis is put on the influence of data structures and computer architectures on the performance and cost of algorithms. In particular, the course emphasizes the design and analysis of algorithms on parallel computers and in hardware, which is increasingly important considering the growing presence of multicore architectures. The course covers algebraic problems like matrix multiplication, evaluation of polynomials, fast Fourier transformation as well as sorting and searching, computational geometry, and leader election in distributed algorithms.

Workload
The total workload for this course is approximately 150.0 hours. For further information see German version.

Media
- powerpoint slides with annotations using a tablet pc
- access to applets and Internet resources
- lecture recording (camtasia)

Literature
Borodin, Munro: The Computational Complexity of Algebraic and Numeric Problems (Elsevier 1975)
Cormen, Leiserson, Rivest: Introduction to Algorithms (MIT Press)
Sedgewick: Algorithms (Addison-Wesley) (many different versions available)

Elective literature:
will be announced in class
Course: eFinance: Information Engineering and Management for Securities Trading [2540454]

Coordinators: C. Weinhardt

Part of the modules: eFinance (p. 42)[WI3BWLISM3], Topics in Finance I (p. 36)[WI3BWLFBV5], eBusiness and Service Management (p. 38)[WI3BWLISM1], Topics in Finance II (p. 37)[WI3BWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation) and by submitting written essays as part of the exercise (according to §4(2), 3 of the examination regulation). 70% of the final grade is based on the written exam and 30% is based on assignments from the exercises. The points obtained in the exercises only apply to the first and second exam of the semester in which they were obtained.

Conditions

None.

Learning Outcomes

The students

- are able to understand the theoretical and practical aspects of securities trading,
- are able to handle the relevant electronic tools for the evaluation of financial data,
- are able to identify the incentives of the traders for participation in different market platforms,
- are able to analyse capital marketplaces concerning their efficiency, weaknesses and technical configuration,
- are able to apply theoretical methods of econometrics,
- are able to understand, criticize and present articles with a finance-scientific background,
- learn to elaborate solutions in a team.

Content

The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market microstructure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Media

- Powerpoint presentations
- recorded lecture available on the internet

Literature

Elective literature:

Course: Introduction to Operations Research I [2550040]

Coordinators: S. Nickel, O. Stein, K. Waldmann

Part of the modules: Introduction to Operations Research (p. 23) [WI1OR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/2/2</td>
<td>lecture + tutorial</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
See module information.

Learning Outcomes
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
Examples for typical OR problems.

- Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, multicriteria optimization.
- Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal flows in networks.

Workload
Berechnung des Arbeitsaufwands eines durchschnittlichen Studenten um die Lernziele zu erreichen. (Intern)
Eine Vernetzung von learningoutcomes (Wissen (content), Kompetenzen (skills) und levels mit dem dafür geschätzten Arbeitsaufwand eines durchschnittlichen Studenten ist anzustreben.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software.

Literature
Course: Introduction to Operations Research II [2530043]

Coordinators: S. Nickel, O. Stein, K. Waldmann

Part of the modules: Introduction to Operations Research (p. 23) [WI1OR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2/2</td>
<td>lecture + tutorial</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
See corresponding module information. Especially the course Introduction to Operations Research I [2550040] is assumed.

Learning Outcomes
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.
Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.
Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dyanical and stochastic inventory models, queuing theory.

Workload
Berechnung des Arbeitsaufwands eines durchschnittlichen Studenten um die Lernziele zu erreichen. (Intern)
Eine Vernetzung von learningoutcomes (Wissen (content), Kompetenzen (skills) und levels mit dem dafür geschätzten Arbeitsaufwand eines durchschnittlichen Studenten ist anzustreben.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software

Literature
Course: Introduction to Energy Economics [2581010]

Coordinators: W. Fichtner
Part of the modules: Energy Economics (p. 33)[W13BWL1IP2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Conditions
See module description.

Learning Outcomes
The student is able to
- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Content
1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

Workload
The total workload for this course is approximately 165.0 hours. For further information see German version.

Media
Media will be provided on the e-learning platform ILIAS.

Literature
Complementary literature:
Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
Course: Introduction to Public Finance [2560131]

Coordinators: B. Wigger
Part of the modules: Public Finance (p. 52)[WI3VWL9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
None.

Recommendations
None.

Learning Outcomes
Students are able to:
• critically assess the economic role of the state in a market economy
• explain and discuss key concepts in public finance, including: public goods; economic externalities; and market failure
• explain and critically discuss competing theoretical approaches to public finance, including welfare economics and public choice theory
• explain the theory of bureaucracy according to Weber and critically assess its strengths and weaknesses
• evaluate the incentives inherent in the bureaucratic model, as well as the more recent introduction of market-oriented incentives associated with public-sector reform
• analyze the strategic implications of public decision making

Content
The course Introduction to Public Finance provides an overview of the fundamental issues in public economics. The first part of the course deals with normative theories about the economic role of the state in a market economy. Welfare economics theory is offered as a base model, with which alternative normative theories are compared and contrasted. Within this theoretical framework, arguments concerning efficiency and equity are developed as justification for varying degrees of economic intervention by the state. The second part of the course deals with the positivist theory of public economics. Processes of public decision making are examined and the conditions that lead to market failures resulting from collective action problems are discussed. The third part of the course examines a variety of public spending programs, including social security systems, the public education system, and programs aimed at reducing poverty. The fifth part of the course addresses the key theoretical and political issues associated with fiscal federalism.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Lecture slides.

Literature
Course: Introduction to Game Theory [2520525]

Coordinators: C. Puppe, P. Reiss
Part of the modules: Economic Theory (p. 54)[WI3VWL12], Applied Microeconomics (p. 55)[WI3VWL13]

ECTS Credits 4.5
Hours per week 2/1
Type lecture + exercise
Term Summer term
Instruction language de

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be resited at every ordinary examination date.

Conditions
None.

Recommendations
Basic knowledge of mathematics and statistics is assumed.

Learning Outcomes
This course offers an introduction to the theoretical analysis of strategic interaction situations. At the end of the course, students shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings.

Content
The course focusses on non-cooperative game theory. It discusses models, solution concepts, and applications for simultaneous games as well as sequential games. Various solution concepts, e.g., Nash equilibrium and subgame-perfect equilibrium, are introduced along with more advanced concepts. A short introduction to cooperative game theory is given if there is sufficient time.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Slides, problem sets.

Literature
Compulsory textbook:

Additional Literature:
Course: Introduction to Engineering Mechanics I : Statics and Strength of Materials [2161238]

Coordinators: A. Fidlin

Part of the modules: Engineering Mechanics (p. 26)[W11ING3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Permitted utilities: non-programmable calculator, literature

Conditions
None.

Learning Outcomes
The student
- knows and understands the basic elements of statics,
- is able to solve basic calculations in statics independently.

Content
Statics: force · moment · general equilibrium conditions · center of mass · inner force in structure · plane frameworks · theory of adhesion

Workload
Remarks
This course was formerly named “Engineering Mechanics I [2161208].”
Starting summer 2016 the course “Introduction to Engineering Mechanics I : Statics and Strength of Materials” [2161238] will be held in summer term.
Course: Introduction to Engineering Mechanics II : Dynamics [2162276]

Coordinators: A. Fidlin
Part of the modules: Emphasis in Fundamentals of Engineering (p. 65)[WI3INGMB8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (75 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination is offered every semester. Re-examinations are offered at every ordinary examination date.
Permitted utilities: non-programmable calculator, literature.

Conditions
The module Technical Mechanics I [WI1ING3] has to be completed beforehand.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Remarks
This course was formerly named “Engineering Mechanics II [2162226]”. Starting winter term 2016/1017 the course “Introduction to Engineering Mechanics II : Dynamics” [2162276] will be held in winter term.
Course: Basic Principles of Economic Policy [2560280]

Coordinators: I. Ott
Part of the modules: Economic Policy I (p. 53) [WI3VWL10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
The course “Basic Principles of Economic Policy” is compulsory and must be examined.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].

Learning Outcomes
Students shall be given the ability to

- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Content
- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
- lecture slides
- exercises

Literature
See announcements to the lecture

Remarks
Course: Introduction to GIS for students of natural, engineering and geo sciences [20712/13]

Coordinators: Rösch

Part of the modules: Understanding and Prediction of Disasters 1 (p. 86) [WI3INGINTER6], Understanding and Prediction of Disasters 2 (p. 87) [WI3INGINTER7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Remarks
For further information, see http://www.gik.uni-karlsruhe.de/print/index.html?&no_cache=1&P=1
Course: Power Network Analysis [23371/23373]

Coordinators: T. Leibfried

Part of the modules: Power Networks (p. 81)[WIIINGETIT3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place at the beginning of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every winter semester. Re-examinations are offered at every ordinary examination date.

Conditions
See German version.

Learning Outcomes
The students are able to do calculations of load flows and short-circuit current calculations in the electric power network. They know the equivalent electric circuit of the equipment and the mathematics of the calculation methods, be it for symmetrical or asymmetrical networks.

Content
In its first part, this lecture introduces the High-Voltage technology and its basics. Especially, the reasons for the necessity for the power transmission with high voltages are given. Basic electrical configurations and stresses occurring at multi dielectric systems are presented. Finally the first chapter deals with discharge phenomena.

The second chapter deals with the three phase system. Especially, the mathematical treatment of three phase systems and the introduction of component systems are contained in this chapter.

The third and very comprehensive chapter deals with the transmission and distribution of electric energy. Firstly, the laws of power transmission via transmission lines are presented. Then, the stability of electric power systems and possibilities to increase the power transmission capacity are discussed. Finally, the physics of energy distribution in the medium and low voltage grid is shown.

The fourth chapter deals with the Calculation of electric power networks and systems. Firstly, the preparatory steps for the calculation of the power network are shown. After discussing the basic network analysis methods, the load flow calculation are shown. Especially, the method of current iteration and the Newton Raphson method are presented and the algorithms of the individual methods are shown using an example.

The fifth chapter deals with methods for the calculation of the 3 phase short circuit. Thereby, it is distinguished between the short circuit nearby the generator and far from the generator.

In the sixth chapter the unsymmetrical faults in power networks and their calculation are discussed. Therefore, the symmetrical components are introduced as a first step. Then, the circuits in symmetrical components of all important power network equipment are presented. The chapter closes with the mathematical treatment of unsymmetrical short circuits using the symmetrical component method.

To accompany the lecture, a collection of problems can be downloaded. During lecture hall exercises their solutions will be discussed.

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Media
Online material is available on: https://www.ieh.kit.edu/studium_und_lehre_ee.php and can be downloaded using a password.

Literature
Elective literature:
Will be announced in the lecture notes.

Remarks
The title of this course has been changed. Former name: Power Network Analysis (until SS2014).
Course: Technique of Electrical Installation [23382]

Coordinators: A. Kühner

Part of the modules: Energy Generation and Network Components (p. 82)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam taking place at the beginning of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
Students know the practical fundamentals of electrical installations.

Content
- Capture 1: Electrical Power Distribution and Networking
- Capture 2: Electrical Power Supply of Buildings
- Capture 3: Electrical Power Supply in Buildings
- Capture 4: Protective Equipments
- Capture 5: Electrical Energy Applications
- Capture 6: Electrical Automation and System Engineering of Buildings
- Capture 7: Powermanagement of Buildings

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Online material is available on:
https://www.ieh.kit.edu/studium_und_lehre_elektrische_installationstechnik.php
Course: Systems for Electrical Energy [23391/23393]

Coordinators: T. Leibfried

Part of the modules: Power Networks (p. 81)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place at the beginning of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions
For a successful participation knowledge of the content of the course Higher mathematics and especially of complex computation is assumed.
The course is an obligatory course within the module and has to be attended.

Learning Outcomes
The students are able to calculate electric circuits (be it with passive or with controlled sources) within the time- and frequency domain. Furthermore, the students also know the major means of mains operation, their physical mode of action and their electric equivalent electric circuit.

Content
In its first part, this lecture is a consequent continuation of the calculation of electrical networks as it is presented in the lecture “Linear electrical networks”. In the second part of this lecture, the basics of electric power network equipment are presented. This is the basis for all further lectures of power system technology.
The first chapter gives an introduction in the single phase and three phase AC system.
The second chapter deals with or is a repetition of electromagnetic basics. In a first step magnetic circuits and their calculation is treated. Subjects like main flux and stray flux are introduced, as well as self induction main inductance and stray inductance. The induction law leads directly to the transformer and the calculation of inductances and finally to the calculation of forces caused by a current flowing in a conduction which is located within a magnetic field.
The third and very comprehensive chapter deals with the mathematical description of electrical networks. Hereby, it is distinguished between networks with concentrated elements and networks with distributed elements. The calculation of networks with concentrated elements leads to differential equations with constant coefficients. Their solution as well as a special case, the sinusoidal excitation of such networks, is comprehensively demonstrated using examples. Finally, the description of electrical networks by a system of first order differential equations is shown and their solution is presented. Circuits with distributed elements are transmission lines. The transmission line theory for sinusoidal voltages and currents as well as for impulse voltages and currents is shown.
The fourth chapter deals with the Laplace Transform as a tool for electrical network analysis. First, the Duhamel integral (convolution integral) is presented. Then the Laplace Transform is derived out of the convolution integral and in a further subchapter the solution of differential equations using the Laplace Transform is demonstrated.
The fifth chapter deals with methods for network analysis. It demonstrates the mesh analysis, the nodal analysis, the superposition theorem, Norton’s theorem, Thevenin’s theorem and the Tellegen-Theorem. These formal methods are demonstrated using two examples circuits. These circuits are transistor amplifier with and without a transformer. This allows the calculation of networks with voltage or current dependent sources.
In the sixth chapter the structure of the electric power network is shown and explained.
The seventh chapter deals with power network equipment. Thereby, their steady state behaviour in the power network as well as their electrical and mechanical basic design is presented. The chapter contains synchronous generators, power transformers, reactors, capacitors, transmission lines and switch gear. For all of this power network equipment its steady state electrical circuit is derived. This gives the basis for all further lectures in the field of power network engineering.
To accompany the lecture, a collection of problems can be downloaded. During lecture hall exercises their solutions will be discussed.
The course comprises of the interleaved lecture blocks and exercises. Current information can be found on the IEH webpage.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Online material is available on: www.ieh.kit.edu and can be downloaded using a password.

Literature
Elective literature:
Will be announced in the lecture notes.
Course: Electrical Engineering I [23223]

Coordinators: W. Menesklou
Part of the modules: Electrical Engineering (p. 27)[WI1ING4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (120 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The student is supposed to develop an understanding for the basic terms of electrical engineering and should be able to carry out simple calculations of DC and AC circuits.

Content
This course introduces undergraduate students of Industrial Engineering and Management into the basics of electrical science and engineering. Supporting the lecture, assignments to the curriculum are distributed. These are solved into additional (voluntary) tutorials.

- DC: Electrical sources, resistance, circuits, Kirchhoff’s law
- Fields: Electrical and magnetic fields, dielectrics, inductance
- AC: Complex calculus, RLC circuits, filters

Workload
The total workload for this course is approximately 75.0 hours. For further information see German version.

Media
Online material is available at http://www.iwe.kit.edu

Literature
Online material is available on http://www.iwe.kit.edu/
Elective literature:
Course: Electrical Engineering II [23224]

Coordinators: W. Menesklou

Part of the modules: Emphasis in Fundamentals of Engineering (p. 65) [WI3INGMB8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
The module Electrical Engineering [WI1ING4] has to be completed beforehand.

Learning Outcomes
The student knows and understands basic components and techniques of electrical engineering.

Content
This course introduces undergraduate students of Industrial Engineering and Management into topics of advanced electrical engineering like electrical instrumentation, semiconductors, control engineering and electric motors. Within the lecture, assignments to the curriculum are discussed and are used for preparation for written examination.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Media
Online material is available at http://www.iwe.kit.edu

Literature
Online material is available on http://www.iwe.kit.edu/
Elective literature:
Will be announced during the lecture.
Course: Elements of Technical Logistics [2117096]

Coordinators: M. Mittwollen, Madzharov

Part of the modules: Introduction to Technical Logistics (p. 67) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”, latest version)

Conditions
None.

Recommendations

previous / parallel visit of LV 21177095 “Grundlagen der Technischen Logistik”

Learning Outcomes

Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively and
- Equip material flow systems with appropriate machines.

Content

material flow systems and their (conveying) technical components
mechanical behaviour of conveyors;
structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
sample applications and calculations in addition to the lectures inside practical lectures

Workload

The total workload for this course is approximately 120 hours. For further information see German version.

Media

supplementary sheets, projector, blackboard

Literature

recommendations during lectures
Course: Elements of Technical Logistics and Project [2117097]

Coordinators: M. Mittwollen, Madzharov

Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Lesson: after each lesson period; oral / written (if necessary) => (look at “Studienplan Maschinenbau”); (counts two-thirds);
Project: presentation, marked (counts one third)

Conditions

None.

Recommendations

previous / parallel visit of LV 21177095 “Grundlagen der Technischen Logistik”

Learning Outcomes

Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively,
- Equip material flow systems with appropriate machines and
- Judge about systems in place and justify it in front of subject related persons.

Content

mechanical behaviour of conveyors;
structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
sample applications and calculations in addition to the lectures inside practical lectures
Self manufacturing of a project report to recesses the topic.

Workload

The total workload for this course is approximately 180 hours. For further information see German version.

Media

supplementary sheets, projector, blackboard

Literature

recommendations during lectures
Course: Energy efficient intralogistic systems [2117500]

Coordinators: F. Schönung, M. Braun

Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Recommendations
Knowledge of Electrical Engineering and Technical Mechanics is recommended.

Learning Outcomes
Students are able to:
- Describe and choose basic measures to enhance energy efficiency,
- Specify this measures considering material handling processes like
 - steady conveyors,
 - unsteady conveyors,
 - as well as the necessary drives,
- Model based on this material handling systems and calculate their energy efficiency and
- Choose resource efficient material handling systems.

Content
The main focuses of the course are:
- green supply chain
- processes in Intralogistic systems
- evaluation of energy consumption of conveyors
- modeling of conveying systems
- methods for energy savings
- approaches for energy efficiency increasing of continuous and discontinuous conveyors
- dimensioning energy efficient drives
- new approaches for resource efficient conveying systems.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
presentations, black board

Literature
None.

Remarks
none
Course: Energy Policy [2581959]

Coordinators: M. Wietschel
Part of the modules: Energy Economics (p. 33)[WI3BWLIIP2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
See German version.

Content
The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature
Will be announced in the lecture.
Course: Energy Conversion and Increased Efficiency in Internal Combustion Engines [2133121]

Coordinators: T. Koch, H. Kubach
Part of the modules: Combustion Engines I (p. 71)[WI3INGMB34]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
None.

Recommendations
None.

Learning Outcomes
The students can name all important influences on the combustion process. They can analyse and evaluate the engine process considering efficiency, emissions and potential.

Content
1. Introduction
2. Thermodynamics of combustion engines
3. Fundamentals
4. gas exchange
5. Flow field
6. Wall heat losses
7. Combustion in gasoline engines
8. APR und DVA
9. Combustion in Diesel engines
10. Emissions
11. Waste heat recovery
12. Measures to increase efficiency

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Remarks
This course was formerly named “Thermodynamics and Energy Conversion in Internal Combustion Engines”.

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 04.08.2015

169
Course: Enterprise Risk Management [2530326]

Coordinators: U. Werner
Part of the modules: Risk and Insurance Management (p. 35)[WI3BWLFBV3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3/0</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the assessment of the oral presentations incl. term papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions
None.

Learning Outcomes
Learning to identify, to analyse and to assess business risks; this serves as a basis for strategy and policy design regarding risks and opportunities of an enterprise. Introduction to approaches that allow to consider area-specific risk objectives, risk-bearing capacity and risk acceptance.

Content
1. Concepts and practice of risk management, based on decision theory
2. Goals, strategies and policies for the identification, analysis, assessment and management of risks
3. Insurance as an instrument for loss-financing
4. Selected aspects of risk management: e.g. environmental protection, organizational failure and D&O-coverage, development of a risk management culture
5. Organisation of risk management
6. Approaches for determining optimal combinations of risk management measures considering their investment costs and outcomes.

Workload
The overall amount of work necessary for this course is approx. 135 hours (4.5 ECTS-Credits).

Literature

Elective literature:
Additional literature is recommended during the course.
Course: Decision Theory [2520365]

Coordinators: K. Ehrhart
Part of the modules: Applied Microeconomics (p. 55) [WI3VWL13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Conditions
None.

Recommendations
See corresponding module information.

Knowledge in mathematics and statistics is required.

Learning Outcomes
The student will be made familiar with the basics in modern decision making particularly under uncertainty so that she will be able to analyze concrete decision problems and to develop simple solution procedures. By being confronted with experimental results in decision making the student should also be able to evaluate the behavioral part of decision making.

Content
This course deals with problems of decision making particularly under uncertainty. We introduce the expected utility theory of Neumann/Morgenstern and the prospect theory of Kahnemann/Tversky and discuss the concepts of stochastic dominance, risk aversion, loss aversion, reference points etc. We also consider the empirical validity of the different approaches. Additionally, the lecture provides an introduction to the theory of findings (epistemology), particularly with respect to decision theory.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Script, overhead slides, additional printed material.

Literature
- Ehrhart, K.-M. und S.K. Berninghaus (2012): Decision Theory, Script, KIT.

Remarks
The course “Decision Theory” [2520365] will not be offered any more in M.Sc. from winter term 2015/2016 on.
Course: Electric Power Generation & Power Grid [23356]

Coordinators: B. Hoferer
Part of the modules: Energy Generation and Network Components (p. 82) WI3INGETIT4

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every winter semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The goal is to relay theoretical fundamentals and solid understanding of electrical power engineering. The students are able to analyse problems in the field of power generation and power grid and to develop approaches to these problems.

Content
- Energy resources
- Energy consumption
- Types and use of power plants
- Conversion of primary energy in power plants
- Thermodynamical fundamental terms
- Process in steam power plants
- Steam power plants components
- Flue gas cleaning
- Thermal power plants
- Nuclear power plants
- Hydroelectric power plants
- Wind energy converters
- Solar energy plants

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Material is available at the beginning of the lecture.

Literature
Elective literature:
Schwab; Elektroenergiesysteme; 1. Auflage 2006.
Course: Handling Characteristics of Motor Vehicles I [2113807]

Coordinators: H. Unrau

Part of the modules: Handling Characteristics of Motor Vehicles (p. 64)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30-40 min) taking place in the recess period and in the lecture period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Basics of Automotive Engineering I and II [2113805 and 2114835] beforehand.

Learning Outcomes
The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Content
1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature

Course: Handling Characteristics of Motor Vehicles II [2114838]

Coordinators: H. Unrau
Part of the modules: Handling Characteristics of Motor Vehicles (p. 64)[WINGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30-40 min) taking place in the recess period and in the lecture period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Handling Characteristics of Motor Vehicles I [2113807] and Basics of Automotive Engineering I and II [2113805 and 2114835] beforehand.

Learning Outcomes
The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behaviour from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer. Consequently they are ready to judge the driving behaviour of vehicles and to change it by specific vehicle modifications.

Content
1. Vehicle handling: Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway
2. stability behavior: Basics, stability conditions for single vehicles and for vehicles with trailer

Workload
The total workload for this course is approximately 90.0 hours. For further information see German version.

Literature
Course: Vehicle Comfort and Acoustics I [2113806]

Coordinators: F. Gauterin

Part of the modules: Handling Characteristics of Motor Vehicles (p. 64) [WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of an oral exam (30-40 min) taking place in the recess period and in the lecture period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

Can not be combined with lecture [2114856]

Recommendations

None.

Learning Outcomes

The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Content

1. Perception of noise and vibrations

3. Fundamentals of acoustics and vibrations

3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations

4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Workload

The total workload for this course is approximately 90.0 hours. For further information see German version.

Literature

2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

The script will be supplied in the lectures.
Course: Vehicle Comfort and Acoustics II [2114825]

Coordinators: F. Gauterin
Part of the modules: Handling Characteristics of Motor Vehicles (p. 64)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30-40 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
The course can be attended independently from the course Vehicle Comfort and Acoustics II [2113806].

Recommendations
None.

Learning Outcomes
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Literature
The script will be supplied in the lectures.
Course: Vehicle Mechatronics I [2113816]

Coordinators: D. Ammon
Part of the modules: Handling Characteristics of Motor Vehicles (p. 64)[WI3INGMB6], Vehicle Development (p. 69)[WI3INGMB14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a written exam (90 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to have knowledge of control engineering, technical mechanics and automobile technology.

Learning Outcomes
The students have an overview of the system science field of mechatronics and its application in the area of vehicle conception, especially in the context of vehicle system dynamics. They know the tools and methods for a systematical analysis, conception, and design of mechatronic systems, focussing on mechatronically extended suspension systems. They are ready to analyze, to judge and to optimize mechatronic systems.

Content
1. Introduction: Mechatronics in vehicle technology
2. Vehicle Control systems
 Brake- and traction controls (ABS, ASR, automated power train controls)
 Active and semiactive suspension systems, active stabilizer bars
 Vehicle dynamics controls, driver assistance systems
3. Modelling technology
 Mechanics - multi body dynamics
 Electrical and electronic systems, control systems
 Hydraulics
 Interdisciplinary coupled systems
4. Computer simulation technology
 Numerical integration methods
 Quality (validation, operating areas, accuracy, performance)
 Simulator-coupling (hardware-in-the-loop, software-in-the-loop)
5. Systemdesign (example: brake control)
 Demands, requirements (function, safety, robustness)
 Problem setup (analysis - modelling - model reduction)
 Solution approaches
 Evaluation (quality, efficiency, validation area, concept ripeness)

Workload
The total workload for this course is approximately 90.0 hours. For further information see German version.

Literature
1. Ammon, D., Modellbildung und Systementwicklung in der Fahrzeugdynamik, Teubner, Stuttgart, 1997
5. Roddeck, W., Einführung in die Mechatronik, Teubner, Stuttgart, 1997
Course: Tires and Wheel Development for Passenger Cars [2114845]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30 - 40 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of automobile technology is recommended.

Learning Outcomes
The students are informed about the interactions of tires, wheels and chassis. They have an overview of the processes regarding the tire and wheel development. They have knowledge of the physical relationships.

Content
1. The role of the tires and wheels in a vehicle
2. Geometry of Wheel and tire, Package, load capacity and endurance, Book of requirement
3. Mobility strategy, Minispare, runflat systems and repair kit.
4. Project management: Costs, weight, planning, documentation
5. Tire testing and tire properties
6. Wheel technology including Design and manufacturing methods, Wheeltesting
7. Tire pressure: Indirect and direct measuring systems
8. Tire testing subjective and objective

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Manuscript to the lecture
Course: Remote Sensing [GEOD-BFB-1]

Coordinators: Hinz, Weidner

Part of the modules: Understanding and Prediction of Disasters 1 (p. 86) [WI3INGINTER6], Understanding and Prediction of Disasters 2 (p. 87) [WI3INGINTER7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/2/1</td>
<td>lecture + exercise + tutorial</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Media
e-Learning-Modul "Fernerkundung" (geoinformation.net)
lecture notes

Literature
Elective literature:
Albertz: Fernerkundung

Remarks
The credits have been changed from 7 to 6.
For further information, see http://www.ipf.kit.edu/
Course: Remote Sensing Systems [20241/42]

Coordinators: S. Hinz, U. Weidner

Part of the modules: Understanding and Prediction of Disasters 2 (p. 87)[WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 86)[WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 60 hours. For further information see German version.

Media
e-Learning-Modul "Fernerkundung" (geoinformation.net)
lecture notes

Remarks
For further information, see www.ipf.kit.edu
Course: Remote Sensing Methods [20265/66]

Coordinators: S. Hinz, U. Weidner

Part of the modules: Understanding and Prediction of Disasters 2 (p. 87)[WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 86)[WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
It is recommended to attend the course Thermodynamics beforehand.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
e-Learning-Modul "Fernerkundung" (geoinformation.net)
lecture notes
Course: Manufacturing Technology [2149657]

Coordinators: V. Schulze, F. Zanger
Part of the modules: Manufacturing Technology (p. 75)[WI3INGMB23]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam taking place during the recess period (according to Section 4(2), 1) of the examination regulation).

The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
Successfull Completion of the modules Material Science [WI1ING2] and Engineering Mechanics [WI1ING3]

Recommendations
None

Learning Outcomes
The students ...

- are capable to specify the different manufacturing processes and to explain their functions.
- are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
- have the ability to perform a process selection based on their specific characteristics.
- are enabled to identify correlations between different processes and to select a process regarding possible applications.
- are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
- are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:

- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing

This lecture provides an excursion to an industry company.

Workload
regular attendance: 63 hours
self-study: 207 hours

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Notes

Remarks
None
Course: Financial Econometrics [2520022]

Coordinators: M. Schienle
Part of the modules: Statistics and Econometrics (p. 90) [WI3STAT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Knowledge of the contents covered by the course “Economics III: Introduction in Econometrics” [2520016]

Learning Outcomes
The student
- shows a broad knowledge of financial econometric estimation and testing techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content
ARMA, ARIMA, ARFIMA, (non)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer based exercises

Workload
The total workload for this course is approximately 135 hours (4.5 credits).
regular attendance: 30 hours
self-study: 65 hours
exam preparation: 40 hours

Media
slides

Literature
References will be provided in the lectures

Remarks
The course is offered in summer term 2016, in winter term 2017/18 and afterwards every second term
Course: Financial Management [2530216]

Coordinators: M. Ruckes
Part of the modules: Essentials of Finance (p. 34)[WI3BWLFBV1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of the content of the course Business Administration: Finance and Accounting [25026/25027] is recommended.

Learning Outcomes
Students

- are able to characterize the central questions of financial management,
- are in a position to explain the role of liquidity, compute important liquidity ratios and explain their meaning,
- are able to describe and discuss the basic principles of working capital management,
- know different types of corporate financing as well as their pros and cons,
- are in a position to analyze firms’ capital structures and to identify possible improvements,
- are familiar with basic questions of corporate distribution policy.

Content
Analytical methods and theories in the field of corporate finance with the main focus on:

- Liquidity and Working Capital Management
- Sources of short term/long term finance
- Capital Structure
- Dividend policy

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:

- Berk, De Marzo (2014): Corporate Finance, Pearson Addison Wesley
Course: Financial Intermediation [2530232]

Coordinators: M. Ruckes

Part of the modules: Topics in Finance I (p. 36)[WI3BWLFBV5], Topics in Finance II (p. 37)[WI3BWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Students

- are in a position to describe the arguments for the existence of financial intermediaries,
- are able of discuss and analyze both static and dynamic aspects of contractual relationships between banks and borrowers,
- are able to discuss the macroeconomic role of the banking system,
- are in a position to explain the fundamental principles of the prudential regulation of banks and are able to recognize and evaluate the implications of specific regulations.

Content

- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Stability of the financial system
- The macroeconomic role of financial intermediation
- Principles of the prudential regulation of banks

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:

Course: Fluid Technology [2114093]

Coordinators: M. Geimer, M. Scherer
Part of the modules: Automotive Engineering (p. 63)[WI3INGMB5], Mobile Machines (p. 70)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (2 hours) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students will be able to
- know and understand physical principles of fluid power systems
- know the current components and their operating mode
- know the advantages and disadvantages of different components
- dimension the components for a given purpose
- calculate simple systems

Content
In the range of hydrostatics the following topics will be introduced:
- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:
- Compressors
- Motors
- Valves
- Pneumatic circuits.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature
Scritum for the lecture Fluidtechnik
Institute of Vehicle System Technology
downloadable
Course: Foundations of Digital Services [2595466]

Coordinators: C. Weinhardt, H. Fromm
Part of the modules: Specialization in Customer Relationship Management (p. 45) [WI3BWLISM5], eBusiness and Service Management (p. 38) [WI3BWLISM1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation). By successful completion of the exercises (according to §4(2), 3 of the examination regulation) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4). The bonus only applies to the first and second exam of the semester in which it was obtained.

Conditions
None.

Recommendations
None.

Learning Outcomes
The student:
• understands the different perspectives on services and the concept of value generation in service networks,
• is able to understand and apply concepts, methods and tools for the design, development and management of digital services,
• gains experience in group work such as in solving case studies and in the professional presentation of those results,
• practices the use of English language as a preparation for work in an international environment

Content
The world is moving more and more towards “service-led” economies: in developed countries services already account for around 70% of gross value added. In order to design, engineer, and manage services, traditional “goods-oriented” models are often inappropriate. In addition, the rapid development of information and communication technology (ICT) pushes the economic importance of services that are rendered electronically (eServices) and, thus, drives competitive changes: increased interaction and individualization open up new dimensions of “value co-creation” between providers and customers; dynamic and scalable service value networks replace static value chains; digital services can be globally delivered and exchanged across today’s geographic boundaries;

Building on a systematic categorization of (e)Services and on the general notion of “value co-creation”, we cover concepts and foundations for engineering and managing IT-based services, allowing for further specialization in subsequent KSRI courses. Topics include service innovation, service economics, service modeling as well as the transformation and coordination of service value networks.

In addition, case studies, hands-on exercises and guest lectures will illustrate the applicability of the concepts. English language is used throughout the course to acquaint students with international environments.

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Media
lecture slides

Literature
Announced in the first session.

Remarks
This course was formerly named “eServices”.
The credits have been changed from 5 to 4.5.
Course: Gas Engines [2134141]

Coordinators: R. Golloch

Part of the modules: Combustion Engines II (p. 72)[WI3INGMB35]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination, duration 25 min., no auxiliary means

Conditions
none

Recommendations
Knowledge about „Verbrennungsmotoren A und B“ or “Fundamentals of Combustion Engines I and II”

Learning Outcomes
The student can name and explain the function, characteristics and application areas of gas and dual fuel engines. He is able to distinguish from engines using liquid fuels. The student describe and explain gaseous fuels, engine subsystems, combustion processes and exhaust gas aftertreatment technologies. He is capable to analyse and evaluate current development areas and technical challenges.

Content
Based on the basics of internal combustion engines the students learn about functions of modern gas and dual fuel engines. Core learning areas are gaseous fuels, combustion processes including abnormal combustion characteristics, subsystems like gas admission, ignition, safety and control systems. Further knowledge will be taught on emissions, exhaust gas aftertreatment, applications and operation characteristics.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Lecture with PowerPoint slides

Literature
Lecture Script, prepared by the lecturer. Obtainable at the Institut für Kolbenmaschinen
Recommended:
- Merker, Schwarz, Teichmann: Grundlagen Verbrennungsmotoren, Vieweg + Teubner Verlag 2011;
- Zacharias: Gasmotoren, Vogel Fachbuch 2001
Course: Monetary and Financial Policy [2560122]

Coordinators: B. Wigger, J. Nagel
Part of the modules: Public Finance (p. 52)[WI3VWL9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions
None.

Learning Outcomes
Successful completion of the course will enable students to . . .
- . . . understand the monetary and financial policy before the financial crisis.
- . . . explain the cause of the financial crisis.
- . . . describe and evaluate the monetary policy in crisis mode.
- . . . critically discuss the boundaries of monetary and financial policy.
- . . . discuss the challenges for monetary policy using the example of the European Monetary Union.
- . . . critically evaluate and discuss the topic “financial stability vs. monetary mandate - a contradiction?”.

Content
The current financial crisis changed the operationel implementation of financial policy within the big currency areas. Especially financial policy within the european union faces great challenges because of the dept problems of some union members. Limitations seem to disappears.
The lecture covers this range of topics and explores the question whether the financial crisis changes/will change monetary policy.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Course: Geological Hazards and Risks [2600101]

Coordinators: Wenzel, Gottschämmer

Part of the modules: Understanding and Prediction of Disasters 1 (p. 86)[WI3INGINTER6], Understanding and Prediction of Disasters 2 (p. 87)[WI3INGINTER7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The course will comprise a series of problem sets, both computational and conceptual, that need to be presented to the entire class in short presentations. These exercises form the building blocks for being able to conduct the main project of the course. Grading schemeis: Problem sets (30%); Final report (30%); Final Presentation (30%); Participation in class (10%)

Conditions
None.

Recommendations
Knowledge of basicphysics, linear algebra, advanced calculus, and some statistics; programming in MATLAB (orsimilar) is needed; students should have taken a basiccourse in seismology of geophysics.

This course is for MScand/or PhD students in Geophysics, Geology, or any engineering program that includes modules related to natura lrisk assessment due to earthquakes. The course teaches the physics of earthquakes, with focus on physica lphenomena, and their relation to seisimhazard.

Learning Outcomes
• Gain a solid understanding of the physica lprocesses leading to and acting during earthquakes;
• Understand kinematics and dynamics of earthquakes, masterseismic-wavegeneration due to earthquakes, as well as their quantification and consequences in terms of seisimhazard.

Content
The course will cover the following topics: review of dynamic elasticity, seismicwaves generation & propagation, and seismic-source theory; earthquakesource mechanics and scalingl aws; kinematics of earthquakes through inverse and forwardmodeling; earthquake dynamics in terms of friction and fracture; introduction to probabilistic seisimhazard assessment and simulation-based shaking calculations; aspects of numerical methods in earthquake seisimology are included as well. Earthquake phe-nomena from the lab-scale to the global scale and aspects of earthquake statistics complete the course.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Course: Global vehicle evaluation within virtual road test [2114850]

Coordinators: B. Schick

Part of the modules: Handling Characteristics of Motor Vehicles (p. 64)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30-40 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Previous visit of Handling Characteristics of Motor Vehicles I [21807] is recommended.

Learning Outcomes
The students have an overview of the vehicle dynamics simulation, the model parametrization and the related data sources. They have good knowledge about vehicle dynamics test methods and related execution of virtual test driving (open loop, closed loop). They are able to evaluate driving behavior based on self-created results. They have achieved knowledge about influences and interactions of components such as tires, suspension, kinematics and compliance, roll bars, steering, brakes, mass distribution and powertrain and they have the qualification to analyze, to judge and to optimize components with regard to global vehicle behavior.

Content
1. Testing and evaluation methods
2. Fundamentals of vehicle dynamics simulation
3. Execution of virtual test driving and evaluation of the results
4. Influence of several components and optimization of global driving behavior

Workload
See German version.

Literature
2. Unrau, H.-J.: Scriptum zur Vorlesung “Fahreigenschaften I”
4. IPG: User Guide CarMaker
Course: Business Strategies of Banks [2530299]

Coordinators: W. Müller

Part of the modules: Topics in Finance II (p. 37)[WI3BWLFBV6], Topics in Finance I (p. 36)[WI3BWLFBV5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Students are in a position to discuss the principles of commercial banking. They are familiar with fundamental concepts of bank management and are able to apply them.

Content

The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank’s success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Literature

Elective literature:

- A script is disseminated chapter by chapter during the course of the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 6th edition, Springer
Course: Global Optimization I [2550134]

Coordinators: O. Stein
Part of the modules: Applications of Operations Research (p. 59)[WI3OR5], Methodical Foundations of OR (p. 61)[WI3OR6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite. The examination can also be combined with the examination of Global Optimization II [2550136]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Learning Outcomes
The student
- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:
- Introduction, examples, and terminology
- Existence results
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Numerical methods

Nonconvex optimization problems are treated in part II of the lecture. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Lecture notes.

Literature
Elective literature:
- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Global Optimization II [2550136]

Coordinates: O. Stein
Part of the modules: Methodical Foundations of OR (p. 61) [W13OR6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration to the written examination is subject to fulfilling the prerequisite. The examination can also be combined with the examination of Global Optimization I [2550134]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Learning Outcomes
The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate. The global solution of convex optimization problems is subject of part I of the lecture. Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via αBB method
- Branch and bound methods
- Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Lecture notes.

Literature
Elective literature:

- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Automotive Engineering I [2113805]

Coordinators: F. Gauterin, H. Unrau

Part of the modules: Automotive Engineering (p. 63) [W3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
Can not be combined with lecture [2113809]

Recommendations
None.

Learning Outcomes
The students know the movements and the forces at the vehicle and are familiar with active and passive security. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to judge and to develop the complex system "vehicle".

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of the longitudinal and transverse forces, collision mechanics
3. Engines: combustion engine, alternative drives (e.g. electric motor, fuel cell)
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Literature
3. Gnadler, R.: Script to the lecture 'Automotive Engineering I'
Course: Automotive Engineering II [2114835]

Coordinators: F. Gauterin, H. Unrau
Part of the modules: Automotive Engineering (p. 63) [WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
Can not be combined with lecture [2114855]

Recommendations
It is recommended to attend the course Basics of Automotive Engineering I [2113805].

Learning Outcomes
The students have an overview of the modules, which are necessary for the road holding of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, the tyres, the steering elements and the brakes. They know different execution forms, the function and the influence on the driving or brake behavior. They are able to develop the appropriate components correctly. They are ready to analyze, to judge and to optimize the complex relationship of the different components under consideration of boundary conditions.

Content
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, retarder, comparison of the designs

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
3. Gnädler, R.: Script to the lecture 'Automotive Engineering II'
Course: Foundations of Informatics I [2511010]

Coordinators: R. Studer, Y. Sure-Vetter

Part of the modules: Introduction to Informatics (p. 21)[WI1INFO]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The student

- is able to formalise tasks in the domain of informatics and is able to identify solution methods
- knows the basic terminology of computer science and is capable of applying these terms to different problems.
- knows basic programming structures and is able to apply them (particularly simple data structures, object interaction and implementation of basic algorithms).

Content
The following topics are covered:

- Object Oriented Modeling
- Logic (Propositional Calculus, Predicate Logic, Boolean Algebra)
- Algorithms and Their Properties
- Sort-and Search- Algorithms
- Complexity Theory
- Problem Specification
- Dynamic Data Structures

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Media
Lecture slides

Literature
Elective literature:

Additional literature will be announced in the lecture.
Course: Foundations of Informatics II [2511012]

Coordinators: H. Schmeck
Part of the modules: Introduction to Informatics (p. 21) [W11INFO]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. If the grade obtained in the written exam is in between 1.3 and 4.0, a successful bonus exam will improve the grade by one level. The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Foundations of Informatics I [2511010] beforehand. Active participation in the practical lessons is strongly recommended.

Learning Outcomes
See German version.

Content
This course addresses formal models for automata, languages, and algorithms (theoretical informatics) as well as with real instantiations of these models (computer engineering) including computer architecture and organisation (hardware design, computer arithmetic, architectural concepts), programming languages (different language levels from micro programming up to problem oriented languages, compilation and execution), operating systems and client server systems, data organisation.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature
Multimedia cross-linked books for self-organized utilisation of exercise pool:
Lukas König, Friederike Pfeiffer, Hartmut Schmeck: 100 Übungsaufgaben zu Grundlagen der Informatik, Band I: Theoretische Informatik. Oldenbourg Wissenschaftsverlag, November 2013
Lukas König, Friederike Pfeiffer, Hartmut Schmeck: 100 Übungsaufgaben zu Grundlagen der Informatik, Band II: Technische Informatik. Oldenbourg Wissenschaftsverlag, November 2013
Elective literature:
Will be announced in class.
Course: Fundamentals of catalytic exhaust gas aftertreatment [2134138]

Coordinators: E. Lox

Part of the modules: Combustion Engines II (p. 72)[WI3INGMB35]

ECTS Credits	Hours per week	Type	Term	Instruction language
4 | 2 | Summer term | de

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Conditions
The course Combustion Engines A / Combustion Engines I has to be completed beforehand.

Recommendations
None.

Learning Outcomes
The students can name and explain the scientific fundamentals of the catalytic exhaust gas aftertreatment, as well as the technical, political and economical parameters of its application in engines for passenger cars and HD vehicles.

The students are able to point out and explain which emissions are formed in combustion engines, why these emissions are health-related critical and which measures the legislator has established to reduce the emissions.

Content
1. kind and source of emissions
2. emission legislation
3. principal of catalytic exhaust gas aftertreatment (EGA)
4. EGA at stoichiometric gasoline engines
5. EGA at gasoline engines with lean mixtures
6. EGA at diesel engines
7. economical basic conditions for catalytic EGA

Workload
regular attendance: 36 hours
self-study: 84 hours

Literature
Lecture notes available in the lectures

Course: Introduction to Microsystem Technology I [2141861]

Coordinators: A. Guber, Prof. J. Korvink

Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
The course Microsystem technology II [2142874] and the practical exercise [2143875] are recommended.

Learning Outcomes
The lecture gives an introduction into the basics of microsystems technology. In analogy to processes employed in fabrication of microelectronics circuits the core technologies as well as materials for producing microstructures and components are presented. Finally, various techniques for Silicon micromachining are explained and illustrated with examples for micro-components and micro-systems.

Content
- Introduction in Nano- and Microtechnologies
- Silicon and processes for fabricating microelectronics circuits
- Basic physics background and crystal structure
- Materials for micromachining
- Processing technologies for microfabrication
- Silicon micromachining
- Examples

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
Course: Introduction to Microsystem Technology II [2142874]

Coordinators: A. Guber, Prof. Dr. J. Korvink
Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
The course Microsystem technology I [2141861] and the practical exercise [2143875] are recommended.

Learning Outcomes
The lecture gives an introduction into the basics of microsystems technology. In the first part, methods for lithographic pattern transfer are summarized. Then specific techniques such as the LIGA process, micro-machining, and laser-patterning are explained and examples are given. Finally assembly and packaging methods are presented leading into a discussion of entire microsystems.

Content
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
Course: Fundamentals of Production Management [2581950]

Coordinators: F. Schultmann
Part of the modules: Industrial Production I (p. 32)[WI3BWLIIP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
- Students should describe the tasks of strategic corporate planning.
- Students should be able to use general approaches in order to solve these problems.

Content
This lecture focuses on strategic production management with respect to various economic aspects. Interdisciplinary approaches of systems theory will be used to describe the challenges of industrial production. This course will emphasize the importance of R&D as the central step in strategic corporate planning to ensure future long-term success. In the field of site selection and planning for firms and factories, attention will be drawn upon individual aspects of existing and greenfield sites as well as existing distribution and supply centres. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Workload
Total effort required will account for approximately 165h (5.5 credits).

Media
Media will be provided on learning platform.

Literature
will be announced in the course
Course: Basics of Technical Logistics [2117095]

Coordinators: M. Mittwollen, Madzharov

Part of the modules: Introduction to Technical Logistics (p. 67) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists due to the number of attendees, of an oral or a written exam according to Section 4 (2), 1 of the examination regulation.

Conditions
None.

Recommendations
Some technical knowledge.

Learning Outcomes
Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines and
- Model real machines applying knowledge from lessons and calculate their dimensions.

Content
Bases effect model of conveyor machines made for the change of position and orientation; conveyor processes; identification systems; drives; mechanical behaviour of conveyors; structure and function of conveyor machines; elements of intralogistics sample applications and calculations in addition to the lectures inside practical lectures

Workload
See German version.

Media
supplementary sheets, projector, blackboard

Literature
Recommendations during lessons
Course: Basics of Track Guided Transport Systems [6200517]

Coordinators: E. Hohnecker

Part of the modules: Basics of Track Guided Transport Systems (p. 85)[WI3INGBGU4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See module description.

Learning Outcomes
See German version.

Content
Definitions and classifications, basics of railway vehicles, track guided operation, railway alignment and operation

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Zilch, Diederichs, Katzenbach, Beckmann (Hrsg): Handbuch für Bauingenieure, Springer-Verlag 2012

Remarks
See German version.
Course: Fundamentals for Design of Motor-Vehicles Bodies I [2113814]

Coordinators: H. Bardehle

Part of the modules: Automotive Engineering (p. 63)[WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g. with FE-methods). They have knowledge about the fundamentals and their correlations, to be able to analyze and to judge relating components as well as to develop them accordingly.

Content
1. History and design
2. Aerodynamics
3. Design methods (CAD/CAM, FEM)
4. Manufacturing methods of body parts
5. Fastening technologie
6. Body in white / body production, body surface

Workload
The total workload for this course is approximately 45 hours. For further information see German version.

Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals for Design of Motor-Vehicles Bodies II [2114840]

Coordinators: H. Bardehle
Part of the modules: Automotive Engineering (p. 63)[WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>1</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Fundamentals for Design of Motor-Vehicle Bodies I [21814] beforehand.

Learning Outcomes
The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. Based on this they are ready to analyze and to judge the relation of these single components. They are also able to contribute competently to complex development tasks by imparted knowledge in project management.

Content
1. Body properties/testing procedures
2. External body-parts
3. Interior trim
4. Compartment air conditioning
5. Electric and electronic features
6. Crash tests
7. Project management aspects, future prospects

Workload
The total workload for this course is approximately 45 hours. For further information see German version.

Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals in the Development of Commercial Vehicles I [2113812]

Coordinators: J. Zürn

Part of the modules: Vehicle Development (p. 69)[WI3INGMB14], Mobile Machines (p. 70)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module Mobile Machines: See module description.
Assessment for the module Automotive Engineering: The assessment consists of an oral exam (20 min) taking place in the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers.
The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.

Content
1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Workload
The total workload for this course is approximately 45 hours. For further information see German version.

Literature
Course: Fundamentals in the Development of Commercial Vehicles II [2114844]

Coordinators: J. Zürn

Part of the modules: Vehicle Development (p. 69) [WI3INGMB14], Mobile Machines (p. 70) [WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module Mobile Machines: See module description.
Assessment for the module Automotive Engineering: The assessment will consist of an oral exam (20 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Fundamentals in the Development of Passenger Vehicles I [21810] beforehand.

Learning Outcomes
The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the student are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.

Content
1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Workload
The total workload for this course is approximately 45 hours. For further information see German version.

Literature
Course: Fundamentals of Automobile Development I [2113810]

Coordinators: R. Frech

Part of the modules: Vehicle Development (p. 69)[WI3INGMB14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Workload
The total workload for this course is approximately 45 hours. For further information see German version.

Literature
The scriptum will be provided during the first lessons.
Course: Fundamentals of Automobile Development II [2114842]

Coordinators: R. Frech
Part of the modules: Vehicle Development (p. 69) [WI3INGMB14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>1</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Fundamentals in the Development of Passenger Vehicles I [21810] beforehand.

Learning Outcomes
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Workload
The total workload for this course is approximately 45 hours. For further information see German version.

Literature
The scriptum will be provided during the first lessons.
Course: Hauptvermessungsübungen III [20267]

Coordinators: S. Hinz, Weidner
Part of the modules: Understanding and Prediction of Disasters 1 (p. 86)[WI3INGINTER6], Understanding and Prediction of Disasters 2 (p. 87)[WI3INGINTER7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/1</td>
<td>exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 30 hours. For further information see German version.

Media
e-Learning-Modul "Fernerkundung" (geoinformation.net)
lecture notes

Literature
Elective literature:
Albertz: Fernerkundung
Course: Hydrology [6200511]

Coordinators: E. Zehe

Part of the modules: Understanding and Prediction of Disasters 1 (p. 86), Understanding and Prediction of Disasters 2 (p. 87)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 135 hours. For further information see German version.
Course: Industrial Organization [2560238]

Coordinators: P. Reiss

Part of the modules: Applied Microeconomics (p. 55)[WI3VWL13], Economic Theory (p. 54)[WI3VWL12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Completion of the module Economics [WW1VWL] is assumed.

Learning Outcomes
The student

- understands the basic problems relating to imperfect competition and its policy implications,
- has basic skills of the game-theoretic and microeconomic modeling used in the field of Industrial Organization,
- applies these skills in the analysis of typical problems of Industrial Organization,
- understands the scope and implications of strategic behavior of firms in various market settings.

Content
This course introduces the theory of industrial organization using game theoretical models. The course is divided into two parts: The first part reviews standard market forms (monopoly, oligopoly, perfect competition). The second part discusses more advanced topics including price discrimination, strategic product differentiation, cartel formation, market entry, and research and development.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Slides, problem sets.

Literature

Compulsory Textbook:

Additional Literature:
Course: Information Engineering [2122014]

Coordinators: J. Ovtcharova, J. Ovtcharova
Part of the modules: Product Lifecycle Management (p. 73)[WI3INGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Information Systems in Logistics and Supply Chain Management [2118094]

Coordinators: C. Kilger
Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
Technical understanding is required.

Recommendations
It is recommended to attend the lecture Logistics - Organisation, Design, and Control of Logistic Systems.

Learning Outcomes
Students are able to:

- Describe requirements of logistical processes regarding IT systems,
- Choose information systems to support logistical processes and use them according to the requirements of a supply chain.

Content
1) Overview of logistics systems and processes
2) Basic concepts of information systems and information technology
3) Introduction to IS in logistics: Overview and applications
4) Detailed discussion of selected SAP modules for logistics support

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Media
presentations

Literature

Remarks
none
Course: Seminar in Engineering Science [SemING]

Coordinators: Fachvertreter ingenieurwissenschaftlicher Fakultäten
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the respective seminar.

Elective literature:
Will be announced in the seminar.
Course: Integrative Strategies in Production and Development of High Performance Cars [2150601]

Coordinators: K. Schlichtenmayer
Part of the modules: Specialization in Production Engineering [p. 74] [WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a written exam. The examination is offered every semester. Reexaminations are offered at every ordinary examination date.

Conditions
None

Learning Outcomes
The students . . .

- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Slides
Course: Integrated production planning [2150660]

Coordinators: G. Lanza

Part of the modules: Integrated Production Planning (p. 76) [WI3INGMB24]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as an written exam according §4(2), 1 SPO. The examination is offered every semester. Reexaminations are offered at every ordinary examination date.

Conditions
None

Recommendations
Attendance of the lecture ‘Manufacturing Engineering’ [21657] prior to attending this lecture is recommended.

Learning Outcomes
The students . . .

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Content
As part of this lecture further engineering aspects of production technology are taught. This includes content from the manufacturing technology, machine tools and handling techniques as well as the organization and planning.

Planning factories within the context of value networks and integrated production systems (Toyota etc.) requires an integrated perspective for the consideration of all functions included in the “factory” system. This includes the planning of manufacturing systems including the product, the value network and factory production, and the examination of SOPs, the running of a factory and maintenance. Content and theory covered by this lecture are completed with many examples from industry and exercises based on real-life situations and conditions.

Main topics covered by the lecture:
- The basic principles of production planning
- Links between product planning and production planning
- Integrating a production site into a production network
- Steps and methods of factory planning
- Approach to the integrated planning of manufacturing and assembly plants
- Layout of production sites
- Maintenance
- Material flow
- Digital factory
- Process simulation for material flow optimisation
- Start-up

Workload
regular attendance: 63 hours
self-study: 207 hours

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Notes
Course: International Marketing [2572155]

Coordinators: M. Klarmann
Part of the modules: Foundations of Marketing (p. 49)[W3BWLMAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>lecture</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
Students
- know the characteristics of international marketing
- are familiar with the Hofstede’s cultural dimensions theory
- understand basic concepts of cultural learning (the concept of acculturation, the psychic distance paradox)
- know different concepts that explain international buying behavior (e.g. country-of-origin effects)
- comprehend different concepts for market entries in an international context (‘waterfall’-strategy, ‘sprinkler’-strategy, method of analogy, chain ratio method)
- understand what needs to be considered regarding international market research (dealing with ethical dilemmas, challenges regarding primary and secondary data sources, testing measurement equivalence, linguistic equivalence, differences in the response styles of questionnaires)
- know the particularities of international product policy (standardization vs. differentiation, challenge of branding, fight against product plagiarism, brand counterfeiting and product piracy, protection of intellectual property)
- are familiar with the particularities in the international price policy (BigMac Index, how to deal with price demand functions to achieve profit maximization, arbitrage, price corridor, standardization vs. differentiation of prices, how to deal with currency risks, inflation, exchange rates and different willingness to pay)
- know the characteristics of the international communication policy (different laws, problems regarding international standardized campaigns)
- know particularities of the international sales policy (international channels, differences of contract negotiations)
- are able to organize international marketing departments and subsidiaries
- know the problems of marketing in emerging markets

Content
Doing marketing abroad creates a number of significant new challenges for firms. This class is intended to prepare you for meeting these challenges. In the first session, we will discuss the peculiarities of international marketing. The next five sessions will then be dedicated to methods that can be used to address them. For instance, we will look at the following issues:

- Internationalization strategies
- Market entry strategies
- Standardization vs. individualization (e.g. regarding products, prices, and communication)
- Measurement equivalence in international market research

In the final session, we will apply this knowledge to the case of Wal Mart. In particular, Wal Mart, despite being the largest retailing company worldwide, failed to successfully enter the German Market. We will discuss Wal Mart’s failure using the methods taught in the weeks before.

Workload
The total workload for this course is approximately 45.0 hours. For further information see German version.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Course: International Finance [2530570]

Coordinators: M. Uhrig-Homburg, Dr. Walter
Part of the modules: Topics in Finance II (p. 37)[WI3BWLFBV6], eFinance (p. 42)[WI3BWLISM3], Topics in Finance I (p. 36)[WI3BWLFBV5]

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on international markets and to manage foreign exchange risks.

Content
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First the point of view of an international investor second that of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore current exchange rate theories are discussed.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Elective literature:

Course: Cost and Management Accounting [2530210]

Coordinators: T. Lüdecke
Part of the modules: Topics in Finance II (p. 37)[WI3BWLFBV6], Topics in Finance I (p. 36)[WI3BWLFBV5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
This course aims at providing students with the understanding of the purposes of alternative costing systems as well as the use of relevant information for decision making. The course will also examine techniques for the purpose of cost management and accounting for control.

Content
• Design of Cost Systems
• Cost Classifications, Cost Behavior, and Principles of Cost Allocation
• Activity-based Costing
• Product Costing
• Production Decisions
• Cost-based Pricing
• Cost Management
• Decisions under Risk
• Cost Accounting for Control

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
• Götz, U. Kostenrechnung und Kostenmanagement. 3. Aufl. 2007.

Remarks
The examination will be offered latest until summer term 2015 (repeaters only).
Course: Investments [2530575]

Coordinators: M. Uhrig-Homburg
Part of the modules: Essentials of Finance (p. 34) [WI3BWLFBV1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (75 min) according to Section 4(2), 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date. By submitting the exercises (according to Section 4(2), 3 of the examination regulation) up to 4 bonus points can be acquired.

Conditions
None.

Recommendations
Knowledge of Business Administration: Finance and Accounting [2610026] is recommended.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on stock and bond markets. Basic economic concepts and models are discussed and applied on introductory level. Interlinkages between markets, different decision making concepts and models are demonstrated.

Content
The lecture deals with investment decisions under uncertainty, where the main emphasis is on investment decisions on stock markets. After a discussion of the basic questions of corporate valuation, the lecture focuses on portfolio theory. After that, risk and return in equilibrium are derived using the Capital Asset Pricing Model and the Arbitrage Pricing Theory. The lecture concludes with investments on bond markets.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
Course: Introduction to Ceramics [2125757]

Coordinators: M. Hoffmann
Part of the modules: Emphasis Materials Science [p. 66][WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place at a specific date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered at a specific date.

Conditions
The course Material Science I [21760] has to be completed beforehand.

Recommendations
Basic knowledge of natural science and knowledge of the content Material Science II [21782] is recommended.

Learning Outcomes
The students know the most relevant crystal structures and defects of non metallic inorganic materials, are able to read binary and ternary phase diagrams and are familiar with powdertecno logical shaping techniques, sintering and grain growth. They know the basics of the linear elastic fracture mechanics, are familiar with Weibull statistics, K-concept, subcritical crack growth, creep and the opportunities for microstructural reinforcement of ceramics. The students are able to explain the correlation among chemical bonding, crystal and defect structures and the electrical properties of ceramics.

Content
After a short introduction to interatomic bonding, fundamental concepts of crystallography, the stereographic projection and the most important symmetry elements will be given. Different types of crystal structures are explained and the relevance of imperfections are analysed with respect to the mechanical and electrical properties of ceramics. Then, the impact of surfaces, interfaces and grain boundaries for the preparation, microstructural evolution and the resulting properties is discussed. Finally, an introduction is given to ternary phase diagrams.

The second part of the course covers structure, preparation and application aspects of nonmetallic inorganic glasses, followed by an introduction to the properties and processing methods of fine-grained technical powders. The most relevant shaping methods, such as pressing, slip casting, injection moulding and extrusion are introduced. Subsequently, the basics of science of sintering and the mechanisms for normal and abnormal grain growth are discussed. Mechanical properties of ceramics are analysed using basic principles of linear elastic fracture mechanics, Weibull statistics, concepts for subcritical crack growth and creep models to explain the behaviour at elevated temperatures. Furthermore it is demonstrated that mechanical properties can be significantly enhanced by various types of microstructural toughening mechanisms. The electronic and ionic conductivity of ceramic materials are explained based on defect-chemical considerations and band structure models. Finally, the characteristics of a dielectric, pyroelectric, and piezoelectric behaviour is discussed.

Workload
regular attendance: 45 hours
self-study: 135 hours

Media
Slides for the lecture:
available under http://ilias.studium.kit.edu

Literature
• H. Salmang, H. Scholze, “Keramik”, Springer
• Kingery, Bowen, Uhlmann, “Introduction To Ceramics”, Wiley
• Y.-M. Chiang, D. Birnie III and W.D. Kingery, “Physical Ceramics”, Wiley
• S.J.L. Kang, “Sintering, Densification, Grain Growth & Microstructure”, Elsevier
Course: Climatology [2501111]

Coordinators: P. Braesicke
Part of the modules: Understanding and Prediction of Disasters 1 (p. 86), Understanding and Prediction of Disasters 2 (p. 87)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>3/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 165.0 hours. For further information see German version.

Remarks
For further information, see http://www.imk.uni-karlsruhe.de/english/17.php.
See German version.
Course: Warehousing and distribution systems [2118097]

Coordinators: M. Schwab, J. Weiblen

Part of the modules: Introduction to Technical Logistics (p. 67) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Recommendations
None.

Learning Outcomes
Students are able to:

• Describe the areas of typical warehouse and distribution systems with the respective processes and can illustrate it with sketches,
• Use and choose strategies of warehouse and distribution systems according to requirements,
• Classify typical systems using criteria discussed in the lecture, and
• Reason about the choice of appropriate technical solutions.

Content
• Introduction
• Yard management
• Receiving
• Storage and picking
• Workshop on cycle times
• Consolidation and packing
• Shipping
• Added Value
• Overhead
• Case Study: DCRM
• Planning of warehouses
• Case study: Planning of warehouses
• Distribution networks
• Lean Warehousing

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
presentations, black board

Literature
ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag
ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag
Warehouse Science
GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag
FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hänshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISSE, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe : Universitätsverlag

A comprehensive overview of scientific papers can be found at:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature

Remarks
none
Course: Logistics and Supply Chain Management [2581996]

Coordinators: M. Wiens
Part of the modules: Industrial Production I (p. 32) [WI3BWLIP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
- The students know the central tasks and challenges of modern logistics management.
- The students apply key concepts in the area of logistics.
- The students apply methods of risk evaluation and risk management in supply chains.
- The students know key incentive-schemes and planning-tools relevant to supply chain management.
- The students apply exemplary methods to solve practical problems.

Content
- Introduction: Basic Terms and Concepts
- Logistics Systems and Supply Chain Management
- Supply Chain Risk Management
- Extensions and Applications

Workload
Toatl effort required will account for approximately 105h (3.5 credits).

Media
Medie will be provided on learning platform.

Literature
will be announced in the course
Course: Logistics - organisation, design and control of logistic systems [2118078]

Coordinators: K. Furmans

Part of the modules: Supply Chain Management (p. 40)\[WI3BWLiSM2\]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The grade of the exam may be improved by passing case studies.

Conditions
None.

Recommendations
Required are lectures on “Linear Algebra” and “Stochastic”.

Learning Outcomes
Students are able to:

- Describe logistical tasks,
- Design logistical systems suitable to the respective task,
- Dimension stocastical stock models,
- Determine essential influencing parameters on the bullwhip effect and
- Use optimizing solution methods.

Content
multistage logistic process chains
transport chain in logistic networks
distribution processes
distribution centers
logistics of production systems
dependencies between production and road traffic
information flow
cooperative strategies (like kanban, just-in-time, supply chain management)

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Media
presentations, black board

Literature
None.

Remarks
none
Course: Automotive Logistics [2118085]

Coordinators: K. Furmans

Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Recommendations
None.

Learning Outcomes
Students are able to:

- Describe essential logistic questions, in a complex production network. As an example the automobile industry is used.
- Choose and apply solution possibilities for logistic problems in this area.

Content

- Logistic questions within the automobile industry
- basic model of automobile production and distribution
- relation with the suppliers
- Disposition and physical execution
- Vehicle production in the interaction of shell, paint shop and assembly
- Sequence planning
- Assembly supply
- Vehicle distribution and linkage with selling processes
- Physical execution, planning and control

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
presentations, black board

Literature
None.

Remarks
none
Course: Airport logistics [2117056]

Coordinators: A. Richter

Part of the modules: Introduction to Technical Logistics (p. 67) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
none

Recommendations
None.

Learning Outcomes
Students are able to:

- Describe material handling and informations technology activities on airports,
- Evaluate processes and systems on airports as the law stands, and
- Choose appropriate processes and material handling systems for airports.

Content
Introduction
airport installations
luggage transport
passenger transport
security on the airport
legal bases of the air traffic
freight on the airport

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
presentations

Literature
None.

Remarks
Limited number of participants: allocation of places in sequence of application (first come first served)
Application via “ILIAS” mandatory
personal presence during lectures mandatory
Course: Management Accounting 1 [2579900]

Coordinators: M. Wouters
Part of the modules: Management Accounting (p. 31)[WI3BWLIBU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation) at the end of each semester.

Conditions
None.

Learning Outcomes
Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.
We will use international material written in English.
We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).
The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
The recorded lectures and the teaching materials are available on Ilias during the current and next semester.

Literature
- In addition, several papers that will be available on ILIAS.
Course: Management Accounting 2 [2579902]

Coordinators: M. Wouters
Part of the modules: Management Accounting (p. 31)[WI3BWLIBU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation) at the end of each semester.

Conditions
None.

Recommendations
It is recommended to take part in the course “Management Accounting 1” before this course.

Learning Outcomes
Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems and customer value propositions.
We will use international material written in English.
We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).
The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
The recorded lectures and the teaching materials are available on ILIAS during the current and next semester.

Literature
- In addition, several papers that will be available on ILIAS.
Course: Management of Business Networks [2590452]

Coordinators: C. Weinhardt
Part of the modules: Supply Chain Management (p. 40)[WI3BWLISM2], eBusiness and Service Management (p. 38)[WI3BWLISM1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation) and by submitting written essays as part of the exercise (according to §4(2), 3 of the examination regulation). 65% of the final grade is based on the written exam and 35% is based on assignments from the exercises. Successful completion of the exercises is a prerequisite for admission to the written exam. The points obtained in the exercises only apply to the first and second exam of the semester in which they were obtained.

Conditions
None.

Learning Outcomes
The student
- identifies the coordination problems in a business network,
- explains the theory of strategic and operative management,
- analyses case studies in logistics considering the organization theory and network analysis,
- argues and constructs new solutions for the case studies by means of electronic tools.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
- PowerPoint
- E-learning platform ILIAS
- Recorded lecture available on the internet, if circumstances allow

Literature
Course: Management of Business Networks (Introduction) [2540496]

Coordinators: C. Weinhardt
Part of the modules: Supply Chain Management (p. 40) [WI3BWLISM2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
The student

- identifies the coordination problems in a business network,
- explains the theory of strategic and operative management,
- analyses case studies in logistics considering the organization theory and network analysis,
- argues and constructs new solutions for the case studies by means of electronic tools.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media

- PowerPoint
- E-learning platform ILIAS
- Recorded lecture available on the internet, if circumstances allow

Literature

Remarks
This version of the MBN course does not include the case study in the second part of the lecture, so that it is worth less credits.
Course: Brand Management [2572177]

Coordinators: B. Neibecker

Part of the modules: Foundations of Marketing (p. 49)[WI3BWL][MAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The examination is offered every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Learning Outcomes

Students have learned the following outcomes and competences:

- To specify the key terms in brand management
- To identify and define theoretical constructs in marketing management to build brand value
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content

The students should learn the essential scientific and practical principles of Marketing, especially branding. Branding consists of any name, design, style, words or symbols, singly or in any combination that distinguish one product from another in the eyes of the consumer. Brand positioning, brand loyalty and brand equity are discussed as important elements of a management concept. The focus of the course is not limited to short-term ROI, but also long-term benefits of communication strategies facing company’s responsibilities to all of its stakeholders, e.g. consumers, investors and public. The strategies and techniques in branding are broadened by several case studies. English as an international technical language in marketing is practiced with course readings and scientific papers. Content:

The course brand management starts with the development of the corporate objectives as the heart of the brand planning process followed by definitions of brand. Setting up on the psychological and social bases of consumer behavior, aspects of an integrated marketing communication are discussed. The students should acquire the particular value of branding strategies. The concept of brand personality is considered in two perspectives, from a practical point of view and the challenging position of the theoretical construct. Methods for the measurement of a consumer-based brand equity are compared with the financial valuation of the brand. The information provided by this equity measurements are related to the equity drivers in brand management. The marketers perspective will be accomplish with the analysis of several case studies, especially two Dove case studies. Within the limits of a knowledge based system for advertising evaluation many of the issues accomplished in the course are summarized. At the same time it is discussed as a tool to use marketing knowledge systematically.

Workload

The total workload for this course is approximately 135 hours (4.5 credits).

Media

Slides, Powerpoint presentations, Website with Online Course Readings

Literature

Course: Managing the Marketing Mix [2571152]

Coordinators: M. Klarmann
Part of the modules: Foundations of Marketing (p. 49)[WI3BWLMAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
This course is compulsory within or the module “Foundations of Marketing” and must be examined.

Learning Outcomes
See German version.

Content
The content of this course concentrates on the four elements of the marketing mix. Therefore the four main chapters are:

- Product management
- Pricing
- Promotion
- Sales management

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Course: Material flow in logistic systems [2117051]

Coordinators: K. Furmans

Part of the modules: Introduction to Technical Logistics (p. 67) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The grade of the exam may be improved by passing case studies.

Conditions
None.

Recommendations
None.

Learning Outcomes
Students are able to:

- describe material flow processes qualitativ and quantitativ,
- assign possibilities of technical solutions to a open operational task,
- plan material flow systems, illustrate them in simple models and analyse them regarding their performance,
- use methods to determine performance indicators like throughput, utilization, etc., and
- evaluate material flow systems regarding performance and availability.

Content
- elements of material flow systems (conveyor elements, fork, join elements)
- models of material flow networks using graph theory and matrices
- queueing theory, calculation of waiting time, utilization
- warehousing and order-picking
- shuttle systems
- sorting systems
- simulation
- calculation of availability and reliability
- value stream analysis

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Media
presentations, black board, book

Literature
Arnold, Dieter; Furmans, Kai : Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009

Remarks
none
Course: Materials and Processes for Body Lightweight Construction in the Automotive Industry [2149669]

Coordinators: D. Steegmüller, S. Kienzle
Part of the modules: Specialization in Production Engineering (p. 74)[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Conditions
None

Recommendations
None

Learning Outcomes
The students . . .
- are able to name the various lightweight approaches and identify possible areas of application.
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions.
- are able to perform a process selection based on the methods and their characteristics.
- are able to evaluate the different methods against lightweight applications on the basis of technical and economic aspects.

Content
The objective of the lecture is to build up an overview of the relevant materials and processes for the production of a lightweight body. This includes both the actual production and the joining for the body. The lecture covers the different lightweight approaches and possible fields of application in the automotive industry. The methods are discussed with practical examples from the automotive industry.

The following topics will be covered:
- lightweight designs
- aluminum and steel for lightweight construction
- fibre-reinforced plastics by the RTM and SMC process
- joining of steel and aluminum (clinching, riveting, welding)
- bonding
- coating
- finishing
- quality assurance
- virtual factory

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Notes

Remarks
None
Course: Mathematics I [01350]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4/2/2</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of Mathematics I consists of two written partial exams (both according to Section 4 (2), 1 of the examination regulation):

1. Midterm exam after half of the lecture time (60 min) without utilities
2. Final exam at the beginning of the following recess period (60 min) without utilities

A re-examination is offered at the beginning of the lecture period of the following summer term. Both re-examinations taking place at the same day.

For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.

Oral re-examinations (according to Section 8 (2) of the examination regulation) take place as individual examinations (ca. 20 min).

Mid-term exam as well as final exam has to be passed separately. The overall grade of Mathematics 1 consists of the grade of the midterm exam (50 percent) and the final exam (50 percent).

Conditions

None.

Learning Outcomes

Content

Workload

The total workload for this course is approximately 210 hours. For further information see German version.

Literature

Elective literature:

Course: Mathematics II [01830]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4/2/2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of Mathematics 2 consists of two written partial exams (both according to Section 4 (2), 1 of the examination regulation):

1. Midterm exam after half of the lecture time (60 min) without utilities
2. Final exam at the beginning of the following recess period (60 min) without utilities

A re-examination is offered at the beginning of the lecture period of the following winter term. Both re-examinations take place at the same day.

For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.

Oral re-examinations (according to Section 8 (2) of the examination regulation) take place as individual examinations (ca. 20 min).

Midterm exam as well as final exam has to be passed separately. The overall grade of Mathematics 2 consists of the grade of the mid-term exam (50 percent) and the final exam (50 percent).

Conditions
Good knowledge of the content of the course Mathematics I [01350].

Learning Outcomes

Content

Workload
The total workload for this course is approximately 210 hours. For further information see German version.

Literature
Elective literature:

Course: Mathematics III [01352]

Coordinators: G. Last, M. Folkers, D. Hug, S. Winter
Part of the modules: Mathematics (p. 28) [WI1MATH]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4/2/2</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (75 min) at the beginning of the recess period (according to Section 4(2), 1 of the examination regulation.
A re-examination is offered at the beginning of the lecture period of the following summer term. For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.

Conditions

Good knowledge of the content of the courses Mathematics I [01350] and Mathematics II [01830].

Learning Outcomes

Content

Workload

The total workload for this course is approximately 210 hours. For further information see German version.

Literature

Elective literature:

Course: Seminar in Mathematics [SemMath]

Coordinators: Fachvertreter der Fakultät für Mathematik

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the respective seminar.

Elective literature:
Will be announced in the seminar.

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 04.08.2015
Course: Meteorological Natural Hazards [57535]

Coordinators: M. Kunz

Part of the modules: Understanding and Prediction of Disasters 1 (p. 86)[WI3INGINTER6], Understanding and Prediction of Disasters 2 (p. 87)[WI3INGINTER7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Students
- explain the theoretical basics and concepts, which explain the occurrence of different meteorological extreme events,
- apply the learned concepts and methods to understand the formation of meteorological extreme events,
- estimate the potential for extreme events depending on the region and season based on the learned concepts,
- assess the impact of extreme events.

Content

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.

Remarks
For further information, see http://www.imk.uni-karlsruhe.de/english/17.php
Course: Interpretative Social Research Methods [5011015]

Coordinators:
M. Pfadenhauer

Part of the modules:
Qualitative Social Research (p. 93) [WI3SOZ2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation).

Conditions
The lecture is obligatory and has to be attended.

Learning Outcomes
The student

- gains a basic overview of the well-established and some of the advanced explorative methods of data collection and interpretative methods of data evaluation.
- acquires basic knowledge of methodology/the philosophy of science.
- is capable of choosing and applying appropriate explorative-interpretative methods according to a research question and arranging them in a conceptual research design.

Content
See lecture announcement.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Will be announced in the lecture.

Literature
Will be announced in the lecture.

Elective literature:
Will be announced in the lecture.
Course: Analysis tools for combustion diagnostics [2134134]

Coordinators: U. Wagner
Part of the modules: Combustion Engines II (p. 72)[WI3INGMB35]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation.

Conditions
The course Combustion Engines A / Combustion Engines I has to be completed beforehand.

Recommendations
None.

Learning Outcomes
The students can name and explain state-of-the-art methods to analyse the process in combustion as well as special measuring techniques such as optical and laser analysis. They are able to thermodynamically model, analyse and evaluate the engine process.

Content
energy balance at the engine
energy conversion in the combustion chamber
thermodynamics of the combustion process
flow velocities
flame propagation
special measurement techniques

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Literature
Lecture notes available in the lectures
Course: Microactuators [2142881]

Coordinators: M. Kohl
Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
It is recommended to attend the lecture “Novel Actuators and Sensors” [2141865].

Learning Outcomes
The student
- knows the basics of the actuation principles
- has the required knowledge on the design, fabrication and operation of microactuators
- is familiar with important microactuators in use and their application areas
- knows typical specifications, advantages and disadvantages of the different microactuators

Content
- Microrobotics: linear actuators, micromotors
- Medical and Life Sciences: Mikrovalves, Micropumps, microfluidic Systems
- Information technology: Optical Switches, mirror systems, read/write heads
- Microelectromechanical systems: Microrelais

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Script of ppt-slides

Literature
Course: Mobile Machines [2114073]

Coordinators: M. Geimer
Part of the modules: Mobile Machines (p. 70) [WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See modul description.

Conditions
Knowledge in Fluid Power is required.

Recommendations
It is recommended to attend the course Fluid Power Systems [2114093] beforehand.

Learning Outcomes
After completion of the course the students have knowledge of:

- a wide range of mobile machines
- operation modes and working cycles of important mobile machines
- selected subsystems and components

Content

- Introduction of the required components and machines
- Basics of the structure of the whole system
- Practical insight in the development techniques

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Media
Lecture notes.
Course: Model based Application Methods [2134139]

Coordinators: F. Kirschbaum
Part of the modules: Combustion Engines II (p. 72)[WI3INGMB35]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
take-home exam, short presentation with oral examination

Conditions
none

Recommendations
knowledge in Basics of combustion engines, vehicular systems, control theory and statistics.

Learning Outcomes
The student can name the most important methods for model-based calibration of powertrain ECUs. Particularly he can choose and apply the correct approach for empirical modeling for a given powertrain calibration task (fuel consumption, emissions, air path, driveability, etc.) and type of plant (linear-nonlinear, static-dynamic, etc.). He is capable to solve typical Problems of a calibration engineer of automotive OEMs or suppliers.

Content
The efforts for the calibration of automotive powertrain ECUs are increasing due to new engine or powertrain technologies and tightening emission laws. From a present view only model based calibration methods are capable to handle this situation. The lecture presents a selection of practice-proofed model-based calibration methods.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Lecture notes, blackboard, presentations and life demonstrations via projector
Course: Modelling and Identification [23168]

Coordinators: M. Kluwe, S. Hohmann

Part of the modules: Control Engineering (p. 80)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as an oral exam (20 min.) according to § 4(2), 2 of the examination regulation. The examination is offered at several dates every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The Students are able to apply the general approach for the modelling process to technical systems. They can differentiate between causal modelling and acausal modelling and can apply these two types to real world problems. Students are able to structure complex systems and to analyse systematically the interconnections of subsystems. Students have an understanding of physical phenomena across multiple domains and their interrelations. They know how to develop models for electrical, mechanical, pneumatic and hydraulic systems. Thereby, they can identify states of a system and system constraints. Also they know various model reduction methods to reduce the complexity of mathematical models. Students are able to apply several identification methods for parametric and non-parametric models to static and dynamic technical systems and can evaluate the influence of disturbances on identification results.

Content
Introduction: Overview, Motivation, Modelling procedure with top down approach, Modelling procedure with bottom up approach, Validation and Verification

Structuring: Overview, Structuring with Matlab/Simulink, structured Analysis

Generalized equivalent circuit diagrams: Method with generalized variables, basic system elements, Interconnection rules

Theoretical Modelling: Method of the generalized network analysis, Method of the variation analysis, creation of state space equations

Identification with nonparametric models: Frequency response analysis, correlation analysis

Identification with parametric models: Overview, calculation of characteristic values, model matching methods, Least-Squares method for static processes, Least-Squares method for dynamical static processes, Instrumental variables method

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Online material is available on: www.irs.kit.edu and can be downloaded using a password.

Literature

Course: Engine measurement techniques [2134137]

Coordinators: S. Bernhardt
Part of the modules: Combustion Engines II (p. 72) [WI3INGMB35]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to Section 4 (2), 2 of the examination regulation.

Conditions
The course Combustion Engines A / Combustion Engines I has to be completed beforehand.

Recommendations
None.

Learning Outcomes
The students are able to explain the principles of modern measuring devices and are able to determine the right device for a certain measuring problem. They are able to analyse and evaluate the results.

Content
Students get to know state-of-the-art measurement techniques for combustion engines. In particular basic techniques for measuring engine operating parameters such as torque, speed, power and temperature.

Possible measurement errors and aberrations are discussed.

Furthermore techniques for measuring exhaust emissions, air/fuel ratio, fuel consumption as well as pressure indication for thermodynamic analysis are covered.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Literature
Lecture notes available in the lectures or in the 'Studentenhaus'

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
Course: Nanotechnology with Clusterbeams [2143876]

Coordinators: J. Gspann
Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
None.

Learning Outcomes
Nanotechnology is presented on the basis of a technology for nano- and microstructuring by accelerated nanoparticles (clusters), mainly in view of nanomechanics.

Content
Nanotechnology in biology
Nanosystemstechnology
Cluster beam generation, ionisation and acceleration; cluster properties
Structure generation using accelerated metal clusters
Structuring via gas cluster impact; reactive accelerated cluster erosion (RACE)
Atomic force microscopy of impact structures; nanotribology
Comparison with femtosecond laser machining (Winter term only)
Simulations; Fullerene synthesis, impact structures, visionary nanomachinery

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Foil copies with short commentaries are distributed during the lectures.
Course: Novel Actuators and Sensors [2141865]

Coordinators: M. Kohl, M. Sommer

Part of the modules: Microsystem Technology (p. 79) [WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Learning Outcomes
The student
- knows physical principles and basics on novel actuators and sensors
- has the required knowledge on the design, fabrication and operation of novel actuators and sensors
- is familiar with important novel actuators and sensors in use
- can name typical fields of application
- knows typical specifications

Content
Topics of the first part:
- Piezo actuators
- Magnetostrictive actuators
- Shape memory actuators
- Electrorheological actuators

Topics of the second part:
- Nano sensors: materials, fabrication
- Nano fibres
- Examples: gas sensors, electronic nose
- Data processing /interpretation

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Script / script of ppt foils (part 2)
Course: Nonlinear Optimization I [2550111]

Coordinators: O. Stein

Part of the modules: Stochastic Methods and Simulation (p. 62)[WI3OR7], Methodical Foundations of OR (p. 61)[WI3OR6]

ECTS Credits 4.5
Hours per week 2/1
Type lecture + exercise
Term Summer term
Instruction language de

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.
The exam takes place in the semester of the lecture and in the following semester.
The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Conditions
The successful completion of a compulsory prerequisite is mandatory for admission to the exam.

Learning Outcomes
The student
• knows and understands fundamentals of unconstrained nonlinear optimization,
• is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:
• Introduction, examples, and terminology
• Existence results for optimal points
• First and second order optimality conditions for unconstrained problems
• Optimality conditions for unconstrained convex problems
• Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

Constrained problems are the contents of part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Lecture notes.

Literature
Elective literature:
• W. Alt, Nichtlineare Optimierung, Vieweg, 2002
• M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Nonlinear Optimization II [2550113]

Coordinators: O. Stein
Part of the modules: Methodical Foundations of OR (p. 61) [WI3OR6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.
The exam takes place in the semester of the lecture and in the following semester.
The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Conditions
The successful completion of a compulsory prerequisite is mandatory for admission to the exam.

Learning Outcomes
The student
- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:
- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions for constrained problems
- Optimality conditions for constrained convex problems
- Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Lecture notes.

Literature
Elective literature:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Public Revenues [2560120]

Coordinators: B. Wigger, Assistenten

Part of the modules: Public Finance (p. 52)[WI3VWL9], Applied Microeconomics (p. 55)[WI3VWL13], Economic Policy I (p. 53)[WI3VWL10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions
Basic knowledge of Public Finance is required.

Learning Outcomes
See German version.

Content
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The dept part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public dept-incurring.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:

Course: Public Law I - Basic Principles [24016]

Coordinators: G. Sydow
Part of the modules: Elective Module Law (p. 91)[WI3JURA]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam concerning the courses Public Law I [24016] and Public Law II [24520] (according to Section 4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Parallel to the lectures tutoria are offered in which legal thinking and argumentation is practised. Their attendance is strongly recommended.
During the semester, test exams to each lecture are offered with extensive coaching. During the lecture-free time, a Q-and-A-lecture is offered. Details on the homepage of the ZAR (www.kit.edu/zar).

Learning Outcomes
The lecture covers the core principles of public law. Students shall become acquainted with the basics of constitutional law, the fundamental rights which route governmental actions and the entire legal system, as well as possibilities of actions and instruments (especially law, administrative act, public-private contract) of the public authority. Furthermore the distinction between public and private law will be clarified. Moreover, possibilities of legal protection regarding administrative behavior will be addressed. Students shall learn to classify problems in public law and to solve (simple) administrative and constitutional cases.

Content
The course covers core material of constitutional and administrative law. It begins with the differentiation between public and private law. In the constitutional law part, the course will concentrate on the rule of law and individual rights, especially those protecting communication and entrepreneurship. The administrative law part will explain the different legal instruments of the administration how to act (rule, order, contract, etc.) and their propositions. Also, court proceedings to sue the administrative will be discussed. Students will learn the technique how to solve (simple) administrative and constitutional cases.

Workload
The total workload for this course is approximately 90.0 hours. For further information see German version.

Media
extensive script with cases; content structure, further information in the lectures

Literature
tba in scriptum

Elective literature:
tba in scriptum
Course: Public Law II - Public Economic Law [24520]

Coordinates: G. Sydow
Part of the modules: Elective Module Law (p. 91)[WI3JURA]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60min) according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Recommendations
Parallel to the lectures tutoria are offered in which legal thinking and argumentation is practised. Their attendance is strongly recommended.
During the semester, test exams to each lecture are offered with extensive coaching. During the lecture-free time, a Q-and-A-lecture is offered. Details on the homepage of the ZAR (www.kit.edu/zar)

Learning Outcomes
Public economic law is of significant importance to supervise the German economy. In order to understand the functionality of mandatory interventions into market mechanisms in a thoroughly normed legal system, appropriate legal knowledge is required. This knowledge is to be provided in the lecture. In doing so, substantive law ought to be dealt with in a deepened way, while responsible authorities and institutions as well as possibilities of legal protection in the area of public commercial law will be taught at a glance. The lecture's primary aim is to exercise handling the corresponding legal norms. It proceeds the lecture public law I.

Content
In a first step legal basics of the economic system (such as financial system and freedom of property and profession) will be presented. In this context, interaction between the Basic Constitutional Law and presetsings of European Community law will be elaborated on as well. Thereafter, regulatory instruments of the administrative law will be analysed extensively. As particular matters, we will deal with industrial code, further trade law (handicrafts code; law of gastronomy), basic principles of telecommunication law, state aid law and public procurement law. A last part is devoted to the institutional design of the economy's regulation.

Workload
The total workload for this course is approximately 90.0 hours. For further information see German version.

Media
extensive script with cases; content structure, further information in the lectures

Literature
Will be announced in the lecture.

Elective literature:
tba in lecture slides
Course: Operative CRM [2540520]

Coordinates: A. Geyer-Schulz

Part of the modules: CRM and Service Management (p. 43)[WI3BWLISM4], Specialization in Customer Relationship Management (p. 45)[WI3BWLISM5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>95</td>
</tr>
<tr>
<td>1.3</td>
<td>90</td>
</tr>
<tr>
<td>1.7</td>
<td>85</td>
</tr>
<tr>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>2.3</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>70</td>
</tr>
<tr>
<td>3.0</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>55</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conditions

None.

Recommendations

The attendance of courses Customer Relationship Management [2540508] and Analytical CRM [2540522] is advised.

Learning Outcomes

The Student

- understands the theory of methods for process and data analyses and applies them for the design and implementation of operative CRM-processes in the complex context of companies,
- takes privacy problems into account,
- evaluates existing operative CRM-processes in companies and gives recommendation for their improvement. This requires the knowledge of example processes and the ability to transform them according to the given setting.
- uses literature for the solution of case studies, communicates with professionals and summarizes his recommendations and drafts in precise and coherent texts.

Content

The Student should be able to understand and implement methods and applications within the operative CRM. This includes, but is not limited to the analysis of business processes, as a basis for improvements in CRM, and applications like call centers.

Workload

The total workload for this course is approximately 135 hours (4.5 credits).

\begin{tabular}{lcr}
\hline
<table>
<thead>
<tr>
<th>Activity</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance time &</td>
<td></td>
</tr>
<tr>
<td>Attendance of lecture & 15 x 90min & 22h 30m</td>
<td></td>
</tr>
<tr>
<td>Attendance of exercise & 7 x 90min & 10h 30m</td>
<td></td>
</tr>
</tbody>
</table>
| \hline
| Self-study & | |
| Preparation of lecture & 22h 30m |
| Wrap-up of lecture & 22h 30m |
| Preparation of exercise & 25h 00m |
\end{tabular}
Preparation of assessment & & 31h 00m \\
\hline
Assessment & & 1h 00m \\
\hline
\hline
Sum & & 135h 00m \\
\end{tabular}

\textbf{Literature}

\textbf{Elective literature:}

Chris Todman. Designing a Data Warehouse: Supporting Customer Relationship Management.

\textbf{Remarks}

As of winter term 2014/15 this lecture is hold in alternation with “2540522 - Analytical CRM”. The current schedule can be seen on the chair’s website (http://www.em.uni-karlsruhe.de/studies/).
Course: Optoelectronic Components [23486 / 23487]

Coordinators: W. Freude

Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2 / 1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (20 min) according to §4 (2), 1 of the examination regulation.

Conditions
This course can not be combined with the course Optical Sources and Detectors [23462 / 23463] and/or Optical Waveguides and Fibers [23464 / 23465].

Recommendations
Recommendations for lectures (but this is not mandatory for this course): “Electrodynamics and field calculations” or similar course on electrodynamics, “Semiconductor Devices” or similar course, “High-frequency Technology”.

Minimal background required: Calculus, differential equations, Fourier transforms and p-n junction physics.

Learning Outcomes
The students understand the components of the physical layer of optical communication systems. To this end, the students

- acquire the knowledge of operation principles and impairments of optical waveguides,
- know the basics of laser diodes, luminescence diodes and semiconductor optical amplifiers,
- understand pin-photodiodes, and
- know the systems’ sensitivity limits, which are caused by optical and electrical noise.

The knowledge presented is important in comprehending the physical layer of optical communication systems. It is this very basic understanding which enables a designer to read a device’s data sheet, to make most of its favourite properties, and to avoid hitting its limitations.

Learning the working principles of key components in optical communications opens the road to understand design and performance aspects of modern transmission systems. The following components are discussed:

- Light waveguides: Wave propagation, slab waveguides, strip wave-guides, integrated optical waveguides, fibre waveguides
- Light sources and amplifiers: Luminescence and laser radiation, luminescent diodes, laser diodes, stationary and dynamic behavior, semiconductor optical amplifiers
- Receivers: pin photodiodes, electronic amplifiers, noise

Content
The course concentrates on the most basic optical communication components. Emphasis is on physical understanding, exploiting results from electromagnetic field theory, (light waveguides), solid-state physics (laser diodes, LED, and photodiodes), and communication theory (receivers, noise).

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Detailed textbook-style lecture notes, and lecture slides

Literature
 Corrected reprint Karlsruhe 2005, available via W. F. (w.freude@kit.edu).
Course: Managing Organizations [2577902]

Coordinators:
H. Lindstädt

Part of the modules:
Strategy and Organization (p. 30)[WI3BWLUO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Learning Outcomes

After passing this course students are able to

- evaluate strengths and weaknesses of existing organisational structures and rules.
- compare alternatives of organisational structure in practice and assess and interpret them regarding their effectiveness and efficiency.
- assess the management of organisational changes.

Content

The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organizational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Workload

The total workload for this course is approximately 105.0 hours. For further information see German version.

Media

Slides.

Literature

The relevant excerpts and additional sources are made known during the course.

Remarks

The credits for the course “Managing Organizations” have been changed from 4 to 3,5 from summer term 2015 on.
Course: Human Resource Management [253003]

Coordinators: P. Nieken
Part of the modules: Human Resources and Organizations (p. 51)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Conditions
None.

Recommendations
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory, and statistics is recommended.

Learning Outcomes
The student
- understands the processes and instruments of human resource management.
- analyzes different methods of human resource planning and selection and evaluates their usefulness.
- analyzes different processes of talent management and evaluates the strengths and weaknesses.
- understands the challenges of human resource management and its link to corporate strategy.

Content
The students acquire basic knowledge in the fields of human resource planning, selection and talent management. Different processes and instruments and their link to corporate strategy are evaluated based on microeconomic and behavioral approaches. The results are tested and discussed based on empirical data.

Workload
The total workload for this course is approximately 135 hours.
Lecture 32h
Preparation of lecture 52h
Exam preparation 51h

Media
Slides

Literature
- Personnel Economics in Practice, Lazear & Gibbs, John Wiley & Sons, 2014
- Strategic Human Resources. Frameworks for General Managers, Baron & Kreps, John Wiley & Sons, 1999

Remarks
This course has been added summer 2015.
Course: Personnel Policies and Labor Market Institutions [2573001]

Coordinators: P. Nieken
Part of the modules: Human Resources and Organizations (p. 51)[WI3BWLIAP2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Conditions
None.

Recommendations
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory, and statistics is recommended.

Learning Outcomes
The student

- understands the process and role of agents in collective wage bargaining.
- analyzes strategic decisions in the context of corporate governance.
- understands the concept of co-determination in Germany.
- challenges statements that evaluate certain personnel politics.

Content
The students acquire knowledge about the process and the strategic aspects of collective bargaining about wages. They analyze selected aspects of corporate governance and co-determination in Germany. The lecture also addresses questions of personnel politics and issue of labor market discrimination. Microeconomic and behavioral approaches as well as empirical data is used and evaluated critically.

Workload
The total workload for this course is approximately 135 hours.
Lecture 32h
Preparation of lecture 52h
Exam preparation 51h

Media
Slides

Literature

Remarks
This course has been added summer 2015.
Course: Physics for Engineers [2142890]

Coordinators: P. Gumbsch, A. Nesterov-Müller, D. Weygand, T. Förtsch
Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Knowledge of bases in mechanics and optics are necessary.

Learning Outcomes
The student
- has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
- can describe the fundamental experiments, which allow the illustration of these principles

Content
1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom
2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode
3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Literature
- Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
Course: Physical basics of laser technology [2181612]

Coordinators: J. Schneider
Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
Basic knowledge of physics, chemistry and material science is assumed.

It is not possible, to combine this lecture with the lecture *Laser Application in Automotive Engineering* [2182642]

Recommendations
None.

Learning Outcomes
The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned. An excursion to the laser laboratory of the Institute for Applied Materials (IAM) will be offered.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

The lecture is complemented by a tutorial.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
lecture notes via ILIAS

Literature

Remarks
It is allowed to select only one of the lectures “Laser in automotive engineering” (2182642) or “Physical basics of laser technology” (2181612) during the Bachelor and Master studies.
Course: PLM for product development in mechatronics [2122376]

Coordinators: M. Eigner
Part of the modules: Product Lifecycle Management (p. 73) [WI3INGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation.

Conditions
None.

Learning Outcomes
Students have a basic overview about product data management and product lifecycle management. Students know components and core functions of PLM solutions. Students can describe trends in research and practice in the environment of PLM.

Content

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Course: PLM-CAD Workshop [2121357]

Coordinators: J. Ovtcharova

Part of the modules: Product Lifecycle Management (p. 73)[WI3INGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>practical course</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Course: Polymer Engineering I [2173590]

Coordinators:
P. Elsner

Part of the modules:
Emphasis Materials Science (p. 66) [WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Duration: 20-30 Minutes

Conditions

None.

Learning Outcomes

The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material “polymer” meeting its requirements in an economical and ecological way.

The students

- are able to describe and classify polymers based on the fundamental synthesis processing techniques
- can find practical applications for state-of-the-art polymers and manufacturing technologies
- are able to apply the processing techniques, the application of polymers and polymer composites regarding to the basic principles of material science
- can describe the special mechanical, chemical and electrical properties of polymers and correlate these properties to the chemical bindings.
- can define application areas and the limitation in the use of polymers

Content

1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers (introduction)
4. Material science of polymers
5. Synthesis

Workload

regular attendance: 21 hours
self-study: 99 hours

Literature

Recommended literature and selected official lecture notes are provided in the lecture
Course: Polymer Engineering II [2174596]

Coordinators: P. Elsner
Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination
Duration: 20-30 Minutes

Conditions
Polymerengineering I

Learning Outcomes
The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, that the students gather knowledge and technical skills to use the material “polymer” meeting its requirements in an economical and ecological way.

The students

- can describe and classify different processing techniques and can exemplify mould design principles based on technical parts.
- know about practical applications and processing of polymer parts
- are able to design polymer parts according to given restrictions
- can choose appropriate polymers based on the technical requirements
- can decide how to use polymers regarding the production, economical and ecological requirements

Content
1. Processing of polymers
2. Properties of polymer components
 Based on practical examples and components
 2.1 Selection of material
 2.2 Component design
 2.3 Tool engineering
 2.4 Production technology
 2.5 Surface engineering
 2.6 Sustainability, recycling

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
Recommended literature and selected official lecture notes are provided in the lecture
Course: Introduction to Microsystem Technology - Practical Course [2143875]

Coordinators: A. Last

Part of the modules: Microsystem Technology (p. 79)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>practical course</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 SPO).

Conditions
None.

Recommendations
Courses Microsystem technology I [2141861] and II [2142874] are recommended.

Learning Outcomes
- Deepening of the contents of the lecture MST I resp. II
- Understanding the technological processes in the micro system technology
- Experience in lab-work at real workplaces where normally research is carried out

Content
In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
4. UV-lithography
5. Optical waveguides
6. Capillarity electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy

Each student takes part in only five experiments.
The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Principles of Insurance Management [2550055]

Coordinators: U. Werner

Part of the modules: Risk and Insurance Management (p. 35) [WI3BWLFBV3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).

The overall grade consists of the assessment of the oral presentations incl. papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions

None.

Learning Outcomes

See German version.

Content

See German version.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:

Will be announced during the lecture.
Course: Problem solving, communication and leadership [2577910]

Coordinators: H. Lindstädt
Part of the modules: Strategy and Organization (p. 30)]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (30 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
After passing this course students are able to

- structure problem solving processes.
- apply the principles of focused communication based on charts and presentations.
- understand leadership in the context of situation and personality.

Content
The course deals with various aspects of problem solving and communication processes and is divided into two parts. The first part of the course addresses the fundamental steps in the problem-solving process; namely, problem identification, problem structuring, problem analysis and communication of solution. Ideas for structuring problem solving processes will be discussed and the perquisites for and principles of structured communication based on charts and presentations will be explained. The second part of the course addresses important concepts in leadership, including the context-specificity of influence, the choice of leader and the characteristics of employees. The course content reflects current issues in management and communication practice and is oriented toward the practical application of theoretical insights to these issues. In this respect, the course aims to develop interdisciplinary skills.

Workload
The total workload for this course is approximately 60 hours. For further information see German version.

Media
Slides.

Literature
The relevant excerpts and additional sources are made known during the course.
Course: Product Lifecycle Management [2121350]

Coordinators: J. Ovtcharova
Part of the modules: Product Lifecycle Management (p. 73) [W4INGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general written exam (90 min.) (according to Section 4 (2), 1 of the examination regulation) of the single course of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the written examination.

Conditions
This course Product Lifecycle Management [2121350] is compulsory for the module Product Lifecycle Management [W4INGMB21] and must be examined.

Recommendations
None.

Learning Outcomes
The students can:

• clarify the management concept of PLM, its objectives and highlight the economic benefits of the PLM concept.
• illustrate the need for an integrated and cross-departmental business process - from planning, portfolio construction and return of customer information, from the use phase to maintenance and recycling of products.
• reason the processes and functions needed to support the entire product life cycle and discuss the main operating software systems (PDM, ERP, SCM, CRM) and their functions for supporting PLM.
• argue a method to successfully introduce the concept of Management PLM in companies.

Content
Product Lifecycle Management (PLM) is an approach to the holistic and cross-company management and control of all product-related processes and data throughout the life cycle along the extended supply chain - from design and production to sales, to the dismantling and recycling.

Product Lifecycle Management is a comprehensive approach for effective and efficient design of the product life cycle. Based on all product information, which comes up across the entire value chain and across multiple partners, processes, methods and tools are made available to provide the right information at the right time, quality and the right place.

The course covers:

• A consistent description of all business processes that occur during the product life cycle (development, production, sales, dismantling, …)
• the presentation of methods for the performance of the PLM business processes,
• explaining the most important corporate information systems to support the life cycle (PDM, ERP, SCM, CRM systems) to sample the software manufacturer SAP

Workload
The total workload for this course is approximately 180 hours. For further information see German version.

Literature
Lecture slides.

Course: Production Economics and Sustainability [2581960]

Coordinators: M. Fröhling
Part of the modules: Industrial Production I (p. 32)[WI3BWLIIP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
Students shall be aware of issues concerning industrial production and sustainability and shall apply strategies to resolve these issues.

Content
The analysis and management of material flows on the company level and above will be the focus of this lecture. Herein, the discussion will be about cost-effective and environmentally acceptable steps to avoid, abate and recycle emissions and waste as well as ways of efficient resources handling. As methods material flow analysis (MFA), life cycle assessment (LCA) and OR methods, e.g. for decision support, are introduced.

Topics:
- regulations related to materials and substances
- raw materials, reserves and their availabilities/lifetimes
- material and substance flow analysis (MFA/SFA)
- material related ecoprofiles, e.g. Carbon Footprint
- LCA
- resource efficiency
- emission abatement
- waste management and closed-loop recycling
- raw material oriented production systems
- environmental management (EMAS, ISO 14001, Ecoprofit), eco-controlling

Workload
Total effort required will account for approximately 105h (3.5 credits).

Media
Media will be provided on e-learning platform.

Literature
will be announced in the course
Course: Production and Logistics Controlling [2500005]

Coordinators: H. Wlcek
Part of the modules: Introduction to Technical Logistics (p. 67)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
See German version.

Learning Outcomes
See German version.

Content
See German version.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Production Technology and Management in Automotive [2149001]

Coordinators: V. Stauch, S. Peters

Part of the modules: Specialization in Production Engineering (p. 74)[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a written exam. The examination is offered every semester. Reexaminations are offered at every ordinary examination date.

Conditions
None

Recommendations
None

Learning Outcomes
The students . . .
- are capable to specify the current challenges in automotive industry and to explain approaches to solve them.
- are able to classify the main parts of an automotive plant and its key elements (production facilities).
- are qualified to identify interlinkages between development processes and production systems (such as lean production).
- have the ability to classify modern concepts of logistics and tasks in management and design of value added networks.
- are enabled to explain the importance of an integrated quality management in product development and production as well as related methods.
- are able to characterize methodical approaches of analytical assessment and optimization of production planning tasks.

Content
The lecture deals with the technical and organizational aspects of automotive production. The course starts with an introduction to the automotive industry, current trends in vehicle technology and integrated product development. A selection of manufacturing processes are subjects of the second lecture block. Experiences of the applications of the Mercedes Production System in production, logistics and maintenance are the subject of the third event. During the last block approaches to quality management, global networks and current analytical planning methods in research are discussed. The course is strongly oriented towards the practice and is provided with many current examples. Mr. Stauch was Head of Powertrain Production Mercedes Benz Cars and plant manager Untertürkheim until 2010.

The following topics will be covered:
- Introduction to Automotive Industry and Technology
- Basics of Product Development
- Selected Automotive Manufacturing Technologies
- Automotive Production Systems
- Logistics
- Quality Assurance
- Global Networks
- Analytical Approaches of Production Planning

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
Lecture slides will be provided printed.

Literature
Lecture Slides

Remarks
The lecture will be offered in winter semester 2015/2016 for the last time. The last examination will be in August 2016. The last chance for a reexamination will be in March 2017. There are only written exams.
Course: Introduction to Programming with Java [2511000]

Coordinates: N. N.
Part of the modules: Introduction to Informatics (p. 21) [WI1INFO]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/1/2</td>
<td>lecture + exercise + tutorial</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written resp. computer-based exam (60 min) according to Section 4 (2).1 of the examination regulation.
The successful completion of the compulsory tests in the computer lab is prerequisited for admission to the written resp. computer-based exam.
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
see German version

Content
see German version

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature

Remarks
see German version
Course: Advanced Programming - Java Network Programming [2511020]

Coordinators: D. Seese, D. Ratz
Part of the modules: Emphasis Informatics (p. 56)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1/2</td>
<td>lecture + exercise + tutorial</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written exam. Further information about attendance to the exercises and practical terms will be announced in the first lecture and at the lecture homepage. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
This course cannot be taken together with Advanced Programming - Application of Business Software [2511026].

Learning Outcomes
see German version

Content
see German version

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature

Elective literature:
- Further references will be given in the lecture.
Course: Advanced Programming - Application of Business Software [2511026]

Coordinators: A. Oberweis, S. Klink
Part of the modules: Emphasis Informatics (p. 56) [WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1/2</td>
<td>lecture + exercise + tutorial</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination of 2 hours (according to Section 4 (2), 1 of the examination regulation) and of assignments during the course (according to Section 4 (2), 3 of the examination regulation). Successful participation to the computer lab is precondition for permission to the assessment. Further information will be given at the first lesson and via the homepage of the course.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
This course cannot be taken together with Advanced Programming - Java Network Programming [2511020].

Recommendations
Knowledge of the course “Grundlagen der Informatik I und II” are helpful.

Learning Outcomes
Students
- explain basic concepts and principles of enterprise information systems,
- describe the components of enterprise information systems,
- assess economical aspects of such systems,
- asseapply standard software for modelling busines processes and for analysing them to given criteria.

Content
Business information systems enable, support, and accelerate new forms of business processes and forms of organisation. They are the central infrastructure of the economy in the age of eBusiness. Thus, basic knowledge is given in lectures, in excersises and in the computer lab which deals with installation, configuration and parameterization of busines information systems. The course communicates profound knowledge in following topics:
- Analysis of cooperation scenarios and business process scenarios
- Selection of modelling methods according to defined criteria
- Implementation of business process modells and cooperation modells with the help of standard software
- Identification and assessment of challenges during the installation of information systems
- Economical evaluation of business information systems.

Workload
Lecture 30h
Exercise course 17h
Review and preparation of lectures 30h
Review and preparation of exercises 15h
Computer Lab 30h
Exam preparation 29h
Exam 1h
Total 150 h
Exercise courses are done by student tutors (size about 50 students)

Media
Slides, access to internet resources.

Literature
Further literature will be given during the course.
Course: Project Workshop: Automotive Engineering [2115817]

Coordinators: F. Gauterin, M. Gießler, M. Frey

Part of the modules: Handling Characteristics of Motor Vehicles (p. 64)[WI3INGMB6], Vehicle Development (p. 69)[WI3INGMB14], Automotive Engineering (p. 63)[WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3</td>
<td>lecture</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed on the basis of a project presentation at the end of the lecture period (according to Section 4(2), 3 of the examination regulation), the followed discussion and a final project report.
Re-examinations are offered at every ordinary examination date.

The overall grade of the course consists of the weighted grades of both assessments
- Processing and results of the project: 75%
- Oral exam: 25 percent

Conditions
None.

Recommendations
None.

Learning Outcomes
The students are familiar with typical industrial development processes and working style. They are able to apply knowledge gained at the university to a practical task. They are able to analyze and to judge complex relations. They are ready to work self-dependently, to apply different development methods and to work on approaches to solve a problem, to develop practice-oriented products or processes.

Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature

The scripts will be supplied in the start-up meeting.

Remarks
Selection procedure, applications are to submit in the end of the preceding semester.
Course: Project Management [6200106]

Coordinators: S. Haghsheno, H. Schneider
Part of the modules: Fundamentals of construction (p. 84)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
DIETHELM, G.: Projektmanagement, Band 1: Grundlagen, Verlag Neue Wirtschafts-Briefe, Herne, 2000
Course: Project Management in Rail Industry [2115995]

Coordinators: P. Gratzfeld
Part of the modules: Rail System Technology (p. 77)[WI3INGMB25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See modul description.

Conditions
See modul description.

Recommendations
None

Learning Outcomes
The students learn the basic of project management.
They learn about the roles of project manager and project core team.
They understand the project phases and know about processes and tools.
They understand the governance process behind.

Content
Rail vehicles are capital-intensive goods which are manufactured in small series (like aircraft). The work done at industry and customers is organized in “projects”. This is completely different to the way of working in large-scale production (like car industry). Everybody working in this type of business is part of a project and should be aware of the typical processes.
The lecturer provides a comprehensive overview about modern project management for small series of capital-intensive goods.
The content is not only valid for rail vehicles but also other areas.
The following topics will be discussed:
Introduction: definition of project and project management
Project management system: project phases, main processes and supporting processes, governance
Organization: organizational structure within a company, project organization, roles in a project organization
Main processes: project start, project plan, work brake down structure, detailed project schedule, risk and opportunity management, change management, project closure
Governance

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).

Remarks
None.
Course: Projectseminar [SozSem]

Coordinators: G. Nollmann, Kunz, Haupt, Grenz, Eisewicht, Enderle, Dukat, Albrecht

Part of the modules: Sociology/Empirical Social Research (p. 92)[WI3SOZ]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
The student:

- Is able to develop sociological analyses based on the topic of the seminar
- Is able to organize a small survey or to evaluate a given data set on the research problem

Content
In this class, students will conduct small empirical projects.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Course: Explorative-interpretative Project Seminar [n.n.]

Coordinators: M. Pfadenhauer, Kunz, Grenz, Eisewicht, Dukat, Enderle, Albrecht
Part of the modules: Qualitative Social Research (p. 93)[WI3SOZ2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>lecture</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The form of the assessment will be announced at the beginning of the course by the resp. lecturer. Usually at 2 Credit Points it will be an oral presentation, at 4 LP there has to be passed a term paper as well.

The modality of grading will be announced at the beginning of the course by the lecturer. Usually at 2 Credit Points the overall grade consists of the oral presentation and the active participation in the project - at 4 Credit Points it consists of the active participation and the term paper.

Conditions
Successful completion of the lecture Interpretative Social Research Methods [n.n.]. Knowledge of this lecture is required.

The lecture is compulsory in the module and has to be attended.

Learning Outcomes
The student
- is, based on the lecture 'Interpretative Social Research Methods', capable of choosing and applying appropriate explorative-interpretative methods according to a research question and arranging them in a conceptual research design.
- uses this capability to concretise a scientific question and to collect, fixate and evaluate suitable data.

Content
See seminar announcement.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Will be announced in the lecture.

Literature
Will be announced in the lecture.

Elective literature:
Will be announced in the lecture.
Course: Advanced powder metals [2126749]

Coordinators: R. Oberacker
Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
None.

Recommendations
Knowledge of basic material science is assumed. Therefore it is recommended to attend the courses Material Science I [21760] and Material Science II [21782] beforehand.

Learning Outcomes
The students know the basics of powder metallurgy. They are able to assess the conditions for applying either powder metallurgy or competing production methods. They have knowledge on production, properties and application of the most important PM materials.

Content
The lecture gives an overview on production, properties and application of structural and functional powder metallurgy material. The following groups of materials are presented: PM High Speed Steels, Cemented Carbides, PM Metal Matrix Composites, PM Specialties, PM Soft Magnetic and Hard Magnetic Materials.

Workload
regular attendance: 22 hours
self-study: 98 hours

Media
Slides for the lecture:
available under http://ilias.studium.kit.edu

Literature
- R.M. German. “Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
Course: Quality Management [2149667]

Coordinators: G. Lanza
Part of the modules: Specialization in Production Engineering (p. 74)[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed in the form of one written examination (as per §4(2), 1 SPO [study and examination regulations]) during the lecture-free period. The examination will take place once every semester and can be retaken at every official examination date.

Conditions
None

Recommendations
None

Learning Outcomes
The students . . .

• are capable to comment on the content covered by the lecture.
• are capable of substantially quality philosophies.
• are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
• are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service-related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

• The term “quality”
• Total Quality Management (TQM) and Six Sigma
• Universal methods and tools
• QM during early product stages – product definition
• QM during product development and in procurement
• QM in production – manufacturing metrology
• QM in production – statistical methods
• QM in service
• Quality management systems
• Legal aspects of QM

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Notes

Remarks
None
Course: Spatial Planning and Planning Law [6200404]

Coordinators: W. Jung

Part of the modules: Mobility and Infrastructure (p. 83)[WI3INGBGU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
None.

Recommendations
None.

Learning Outcomes
The educational aim of the lecture is to give a first view on spatial planning and its main tasks. At the end of the semester the participants should be able to work on modest issues of spatial planning on the local level. This is due to assess quantitative aspects like temporal processes and display spatial data.

Content
• Tasks and strategies of spatial planning
• Spaces, uses and conflicts of local planning
• Spatial planning on the local level: Properties and buildings including the public technical and social infrastructure
• Planning on municipality level
• Sustainable settlement structure and land use management
• Historic view on urbanism and regional development
• Planning on different levels: Regional plans, structure plans and zoning plans
• Spatial planning and the European Dimension
• Real estate economy
• Exercise: Urban Planning in Karlsruhe Nordstadt

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Real Estate Management I [2586400]

Coordinators: T. Lützkendorf
Part of the modules: Real Estate Management (p. 48)[WI3BWLOOW2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
A combination with the module Design Construction and Assessment of Green Buildings I [WI3BWLOOW1] is recommended.
Furthermore it is recommended to choose courses of the following fields
- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Learning Outcomes
The student
- has a basic understanding of the specific characteristics of real estate and real estate markets
- is able to transfer and apply in-depth knowledge in the field of business administration to construction and real estate
- is able to analyze, evaluate or to meet decisions in the life cycle of real estate

Content
The course Real Estate Management I deals with questions concerning the economy of a single building throughout its lifecycle. Among other topics this includes project development, location and market studies, German federal building codes as well as finance and assessment of economic efficiency. The tutorial recedes the contents of the course by means of practical examples and, in addition to that, goes into the possible use of software tools.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Presentation slides and supplementary material is provided partly as printout, partly online for download.

Literature
Elective literature:

Remarks
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
Course: Real Estate Management II [2585400]

Coordinators: T. Lützkendorf

Part of the modules: Real Estate Management (p. 48)[WI3BWLOOW2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Reexaminations are offered at every ordinary examination date.

Conditions
None.

Recommendations
A combination with the module Design Construction and Assessment of Green Buildings I [WI3BWLOOW1] is recommended. Furthermore it is recommended to choose courses of the following fields

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Learning Outcomes
The student

- has an in-depth knowledge on the economic classification and significance of the real estate industry
- has a critical understanding of essential theories, methods and instruments of the real estate industry
- is able to analyze and evaluate activity areas and functions in real estate companies as well as to prepare or to take decisions

Content
The course Real Estate Management II gives special attention to topics in connection to the management of large real estate portfolios. This especially includes property valuation, market and object rating, maintenance and modernization, as well as real estate portfolio and risk management. The tutorial provides examples in order to practice the application of theoretical knowledge to practical problems.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Presentation slides and supplementary material is provided partly as printout, partly online for download.

Literature
Elective literature:
See german version.

Remarks
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
Course: Computer Integrated Planning of New Products [2122387]

Coordinators: R. Kläger

Part of the modules: Product Lifecycle Management (p. 73) [WI3INGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade corresponds to the grade of the oral exam.

Conditions
Limited number of participants, for selection procedure and registration see course homepage.

Recommendations
None.

Learning Outcomes
The students get a basic understanding of relations, procedures and structure elements of standard processes in product planning and are capable of using these as guidelines for planning of new products. They acquired knowledge of requirements and options in choosing and applying the right methods and tools for an efficient and reasonable assistance for specific use cases.

The students are familiar with elements and methods of computer aided idea and innovation management. They acquired knowledge of simultaneous assistance to the product planning process by using the technologies of rapid prototyping during development phases.

Content
The increase in creativity and the strength of innovation for the planning and development of new products has become a key factor for the competitiveness of the industry. Shorter innovation cycles, an overwhelming flood of information and an increasing demand for information and communication makes the use of computer absolutely necessary. Against this background this lecture discusses the success factors for new products, and introduces a product innovation process in conjunction with planning of new products based on the concepts of system engineering. In the following the methodological assistance to this process is being discussed by introducing innovation management, idea management, problem solving strategies, creativity and rapid prototyping for instance.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Literature
Handouts during lecture
Course: Financial Accounting and Cost Accounting [2600002]

Coordinators: J. Strych

Part of the modules: Business Administration (p. ??)[WI1BWL], Business Administration (p. 18)[WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to have some skills about financial accounting on an introductory level.

Learning Outcomes
Students
- are able to understand IFRS annual reports,
- know differences between HGB and IFRS,
- are able to understand and implement selected IFRS rules,
- can analyse how liquid the firm is,
- can analyse and assess financial reports,
- are able to measure the value added in firms,
- have skills about budgeting and benchmarking, and
- can understand and implement reporting systems.

Content
1. Introduction to accounting standards (IFRS, HGB)
2. Annual report and financial statements
3. Selected topics in financial accounting
4. Operational efficiency analysis
5. Financial Statement Analysis
6. Value-based management
7. Taxes
8. Creative accounting and compliance
9. Budgeting and benchmarking
10. Reporting

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Media
slides
Course: Renewable Energy – Resources, Technology and Economics [2581012]

Coordinators: R. McKenna
Part of the modules: Energy Economics (p. 33)[WI3BWLIIP2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>lecture</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
The student:

- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Content
1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the “Energieberg” in Mühlburg

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.

Media
Media will be provided on the e-learning platform ILIAS.

Literature
Elective literature:

Course: Rail Vehicle Technology [2115996]

Coordinators: P. Gratzfeld
Part of the modules: Rail System Technology (p. 77)[W13INGMB25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See modul description.

Conditions
See modul description.

Recommendations
none

Learning Outcomes
The students learn about advantages and disadvantages of different types of traction drives and judge which one fits best for each application.
They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
They know about the basics of running dynamics and bogies.
They define suitable vehicle concepts based on requirements for modern rail vehicles.

Content
Vehicle system technology: structure and main systems of rail vehicles
Drives: Electric and non-electric traction drives
Brakes: Tasks, basics, principles, brake control
Bogies: forces, running gears, axle configuration
Vehicle concepts: trams, metros, regional trains, double deck coaches, locomotives
Examples of existing rail vehicles were discussed.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).

Remarks
None.
Course: Key qualifications ZAK [SQ ZAK1]

Coordinators: ZAK
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>k.A.</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
Learning targets can be divided into three main categories which complement each other. Learning targets for the respective courses are defined in the course description of each course

1. Orientative Knowledge
 • Students understand how their subjective position is rooted in their cultural background and they are enabled to consider the point of view and interests of others (by transgressing academic, cultural and language boundaries)
 • They gain insights into other academic disciplines and apply these insights by working together with students of various academic backgrounds in interdisciplinary course.
 • They expand their skills to participate in scientific or public discussions in an appropriate and adequate way.

2. Applied studies
 • Students acquire insights into the routines of professional work.
 • They develop individual learning skills.
 • They develop smaller projects under supervision of their teacher that can be realized (i.e. in the area of radio KIT or film studies)
 • They can apply basic questions and methods of the cultural sciences to their own fields of experience.

3. Basic skills
 • Students can acquire new knowledge independently in a planned, goal-orientated and methodologically well-founded way. They can apply these skills to the solution of tasks and problems.
 • They dispose of efficient working methods, prioritize, take decisions and assume responsibilities.
 • They learn how to work in a team and are able to reflect team processes.
 • They develop intercultural competences and apply those to team projects.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Academic learning [SQ HoC1]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94)[W3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>meist 2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See German version.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Presentation and communication skills [SQ HoC2]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>meist 2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See German version.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Working methodically [SQ HoC3]

Coordinators: HoC

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>meist 2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See German version.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Scientific writing [SQ HoC4]

Coordinators: HoC

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td></td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See German version.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Business in focus [SQ HoC5]

Coordinators: HoC

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>k.A.</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

See German version.

Conditions

See German version.

Recommendations

None.

Learning Outcomes

See German version.

Content

See German version.

Workload

The total workload for this course is approximately 88 hours. For further information see German version.
Course: Applied Econometrics [semSTAT1]

Coordinators: M. Schienle

Part of the modules: Seminar Module (p. 94)[WISEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is done according to §4(2), 3 of the examination regulation.
Students write a seminar paper on an assigned topic (10 to 12 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades. The weighting depends on the respective seminar.

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 90 hours.
- Lecture 30h
- Preparation of lecture 45h
- Exam preparation 15h
Course: Seminar in Enterprise Information Systems [SemAIFB1]

Coordinators: R. Studer, A. Oberweis, T. Wolf, R. Kneuper
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis and a presentation.

The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

The seminar is for bachelor as well as master students. The differentiation will be made by selection of different topics and different standards of evaluation.

Conditions

See corresponding module information.

Learning Outcomes

Students

- do literature search based on a given topic, identify relevant literature and evaluate this literature,
- give presentations in a scientific context in front of an auditorium to present the results of the research,
- present results of the research in a seminar thesis as a scientific publication using format requirements such as those recommended by well-known publishers.

Content

The seminar intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.

Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre

Workload

Literature

Literature will be given individually in the specific seminar.
Course: Seminar Data Mining I [2521388]

Coordinators: G. Nakhaeizadeh
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is done according to §4(2), 3 of the examination regulation. Students write a seminar paper on an assigned topic (10 to 12 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades. The weighting depends on the respective seminar.

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 90 hours.
Lecture 30h
Preparation of lecture 45h
Exam preparation 15h
Course: Seminar Efficient Algorithms [SemAIFB2]

Coordinates: H. Schmeck
Part of the modules: Seminar Module (p. 94)[W3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a talk (presentation of 45-60 minutes) about the research topic of the seminar together with discussion, a written summary about the major issues of the topic (approx. 15 pages) and attending the discussions of the seminar (according Section 4(2), 3 of the examination regulation).
The grade of this course is achieved by the weighted sum of the grades (talk 50%, written summary 30% and discussion 20%).
This seminar is for bachelor as well as master students. The difference between them is calculated according to different evaluation mechanisms for the written summary work and the talk.

Conditions
See corresponding module information.

Learning Outcomes
The students should learn to work on research papers by searching for new topics in computer science and by presenting the major issues of the papers.
The master students should deepen their ability to develop independent insight into new scientific topics and to communicate them through oral presentation and written summary to others.
The students will learn to deal with critical discussions on scientific presentations and written summaries through active participation in the seminar.

Content
Topics include the new research issues of the research group “applied Informatics”. The new topics are in the area Organic Computing, Nature-inspired optimization and service oriented architectures.
The topics of the seminars are introduced around the end of the former semester on the board A12 of the institute AIFB (building 11.40) and in Internet http://www.aifb.kit.edu/web/SeminarePraktika

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the beginning of the semester.

Remarks
There is a limited number of participants. The students have to register for the seminar.
Course: Seminar Energy Economics [SemEW]

Coordinators: W. Fichtner, P. Jochem, D. Keles, R. McKenna, V. Bertsch

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
Students shall gain insights into selected research in energy economics.
• Students search for, identify, review and evaluate relevant literature.
• Students prepare their seminar thesis (and later on bachelor/master thesis) with a minimum expense in becoming acquainted with their topic and general layout.
• Students produce an oral presentation in a scientific context by using the outlined techniques of scientific presentation.
• Students learn to present their written results in an adequate form for scientific publishing.

Students in M.Sc. studies will have to put special emphasis on a critical discussion and evaluation of their topic, since they will have to look into actual scientific results in the field of energy economics.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar Public Finance [2560130]

Coordinators: B. Wigger, Assistenten

Part of the modules: Seminar Module (p. 94) [WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
See module description.
Adequate for students in an advanced stage of their studies.

Learning Outcomes
See German version.

Content
Preparation, presentation, and discussion of recent research papers on varying Public Finance issues. The current seminar subject, including the exact topics to work on, will be announced under http://fiwi.iww.kit.edu and on the notice board prior to the start of semester.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the beginning of the seminar.
Course: Seminar Conveying Technology and Logistics [SemIFL]

Coordinators: K. Furmans

Part of the modules: Seminar Module (p. 94) [WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Participation during the information presentation. The performance review is based on the written paper and the two presentations. Active participation during the presentations is required.

Conditions
See module.

Recommendations
See German version.

Learning Outcomes
Students are able to work on scientific subjects under guidance, which includes:

- the self driven outline of the inquired subject,
- investigating and argumenting in the context of logistics and material handling,
- the presentation of the results in front of professionals and
- the written work.

Thereby presentation technique is used and enlarged.

Content
The topics of the seminar will be published under http://www.ifl.kit.edu/seminare.php one semester before. To participate it is necessary to sign in the semester before.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Entrepreneurship Seminar [SemTuE1]

Coordinators: O. Terzidis

Part of the modules: Seminar Module (p. 94)[WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>seminar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Learning Outcomes
The scope is depending on the seminars summarised hereunder.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar Human Resource Management [2573011]

Coordinators: P. Nieken
Part of the modules: Seminar Module (p. 94)[WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is done according to §4(2), 3 of the examination regulation. Students write a seminar paper on an assigned topic (10 to 12 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades. The weighting depends on the respective seminar.

Conditions
None.

Learning Outcomes
The student

- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Chair.

Workload
The total workload for this course is approximately 90 hours.
Lecture 30h
Preparation of lecture 45h
Exam preparation 15h

Literature
Selected journal articles and books.

Remarks
This course has been added summer 2015.
Course: Seminar in Behavioral and Experimental Economics [n.n.]

Coordinators: P. Reiss
Part of the modules: Seminar Module (p. 94)[WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Students write (according to Section 4 (2), 3 SPO) a seminar paper on an assigned topic (15-20 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades where the weighting is announced on the course syllabus.

Conditions
None.

Recommendations
Basic knowledge of mathematics, statistics, microeconomics, and game theory is assumed.

Learning Outcomes
The student
- works independently on a topic in Experimental Economics and/or Behavioral Economics,
- writes a seminar paper according to scientific standards,
- gives a presentation on the results of the paper,
- cultivates the discussion of research approaches.

Content
Seminar topics are announced online at http://io.econ.kit.edu (-> Studium und Forschung).

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Slides.

Literature
A selection of published papers is compulsory reading for the course.

Remarks
Language: german or english.
Course: Seminar in Finance [2530280]

Coordinators: M. Uhrig-Homburg, M. Ruckes
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
Knowledge of the content of the module Essentials of Finance [WI3BWLFBV1] is assumed.

Learning Outcomes
The student gets in touch with scientific work. Through profound working on a specific scientific topic the student is meant to learn the foundations of scientific research and reasoning in particular in finance. Through the presentations in this seminar the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures. The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the end of the foregoing semester.
Course: Seminar Financial Economics and Risk Management [2530353]

Coordinators: M. Ulrich
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Learning Outcomes
The students
- look critically into current research topics.
- train their presentation skills.
- learn to get their ideas across in a focused and concise way, both in oral and written form.
- cultivate the economic discussion of research approaches.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar in International Economy [SemIWW2]

Coordinators: J. Kowalski
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The student gets acquainted with various modern doctrines and theories pertinent to international economic policy. They should understand the structure of the institutional framework relevant for the global economy and the way it functions. They should be able to form their own judgement on the strategies, measures and outcomes of actions of various actors dealing with the international economic policy.

Content
Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar in Marketing and Sales (Bachelor) [SemETU1]

Coordinators: M. Klarmann, S. Feurer

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Grading system: written seminar paper (weighting 60%), presentation of the seminar paper (weighting 30%), oral participation (weighting 10%).

Conditions

None.

Learning Outcomes

Students
- are able to deal with academic marketing papers
- are capable to obtain literature in relevant databases
- know how academic marketing papers are structured
- comprehend statistic approaches and interpret their results
- are able to relate scientific results to practice
- know how to categorize academic papers under a research field
- are able to quote sources correctly
- are capable to present scientific findings and their results in a clear and transparent way

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Remarks

Students interested in bachelor thesis positions at the chair of marketing should participate in the marketing seminar. For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Course: Seminar in Economic Policy [SemIWW3]

Coordinators: I. Ott
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out through a term paper within the range of 12 to 15 pages, a presentation of the results of the work in a seminar meeting, and active participation in the discussions of the seminar meeting (§ 4 (2), 3 SPO).

The final grade is composed of the weighted graded examinations. (Essay 50%, 40% oral presentation, active participation 10%).

The seminar is intended for students both of bachelor and master degree program. They are differentiated by different assessment criteria for term paper and presentation grading.

Conditions
At least one of the lectures “Theory of Endogenous Growth” or “Innovation Theory and Policy” should be attended in advance, if possible.

Learning Outcomes
Students are able to

- work on an economic policy question based the scientific literature by employing fundamental methods from economics
- conduct a thorough literature research and (if applicable) illustrate their results with e.g. Mathematica
- present their results in a term paper that satisfies the requirements of a scientific publication
- give a presentation of their results together with another participant of the seminar
- discuss the term papers and presentations of the other participants

Content
The current topic of the seminar including the subjects treated will be announced before the semester begins at http://wipo.iww.kit.edu.

Previous Topics:
- Economic Aspects of General Purpose Technologies (SS 2010)
- Questions of Modern Economic Growth Theories (WS 2010/2011)
- Beans or fully automated machines? Determinants of Development and Growth in a globalized World (SS 2011)
- Technology Assessment and strategic Patent Analyses (WS 2011/2012)
- Innovation Potentials and Spatial Dimension in Cultural and Creative Industries (WS 2011/2012)
- Quantitative Methods in Economics with Mathematica (SS 2012)

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar in Industrial Production [SemIIP2]

Coordinators: F. Schultmann, M. Fröhling

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Assessment acc. to §4 (2), No.3 ER by assessing the written seminar thesis (approx. 20 pages), the oral presentation and active participation in public discussions. The final grade will be formed by weighing the individual assessment grades.

Conditions

Students should have completed the modules „Industrial Production I“ [WI3BWLIIPI] „Industrial Production II“ [WW4BWLIIPI2] or „Industrial Production III“ [WW3BWLIIPI6].

Learning Outcomes

Students shall gain insights into selected research of the Institute of Industrial Production (IIP).

- Students search for, identify, review and evaluate relevant literature.
- Students prepare their seminar thesis (and later on bachelor/master thesis) with a minimum expense in becoming acquainted with their topic and general layout.
- Students produce an oral presentation in a scientific context by using the outlined techniques of scientific presentation.
- Students learn to present their written results in an adequate form for scientific publishing.

Students in M.Sc. studies will have to put special emphasis on a critical discussion and evaluation of their topic, since they will have to look into actual scientific results in the field of industrial production.

Content

This seminar covers actual topics of industrial production, logistics, environmental science, project management and similar fields. We recommend a successful attendance of previous IIP modules (not compulsory!). Actual topics covered in this seminar will be published before the start of semester.

Workload

Total effort required will sum up to approximately 90h.
Course: Seminar Information Engineering and Management [SemIW]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Conditions
See corresponding module information.

Recommendations
At least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
Students are able to

- do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
- write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the seminar.
- present results of the research in written form generally found in scientific publications.

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
- PowerPoint
- E-learning platform ILIAS
- Software Tools, if necessary

Literature
The student will receive the necessary literature for his research topic.

Remarks
- Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
- All the seminars offered at the chair of Prof. Dr. Weinhardt can be chosen. The current topics of the seminars are available at the following homepage: www.iasm.kit.edu/im/lehre .
Course: Seminar Management Accounting [2579904]

Coordinators: M. Wouters
Part of the modules: Seminar Module (p. 94)[WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The final grade of the course is the grade awarded to the paper.

Conditions
The LV “Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen” (2610026) must have been completed before starting this seminar.

Learning Outcomes
Students
• are largely independently able to identify a distinct topic in Management Accounting,
• are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
• can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.

Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.

Meeting 4: In the third week we are going to present and discuss the final papers.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.

Remarks
Maximum of 24 students.
Course: Seminar Mobility Services [2595475]

Coordinators: G. Satzger, C. Stryja
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
A final written exam will be conducted.

Conditions
See module description.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of mobility services. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on an academic level.

Content
The seminar gives an insight in different aspects of services in the context of mobility. Changes in business models in the mobility sector as well as the adaptation of new demand patterns for mobility play a crucial role in this context. These shifts are accompanied by a technological evolution including new mobile devices that enable dynamic and flexible access to information. In the seminar, the student should learn to apply the research methods to predefined research questions; in this context, e.g. literature reviews, structured interviews, and the comparison of business models are employed.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Remarks
The credits for the course have been changed from 4 to 3 from summer term 2015 on.
Course: Seminar on Morals and Social Behavior [SemPÖ1]

Coordinators: N. Szech

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Students write a seminar paper on an assigned topic (10 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades where the weighting is announced on the course syllabus.

Conditions

None.

Recommendations

None.

Learning Outcomes

The students

- look critically into current research topics in the field of morals and social behavior in relevant economic contexts.
- train their presentation skills.
- learn to get their ideas across in a focused and concise way, both in oral and written form.
- cultivate the economic discussion of research approaches.

Content

Seminar topics are announced online at http://polit.econ.kit.edu.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Literature

A selection of published papers and books.

Remarks

The seminar will be held in English.
Course: Seminar on Topics in Experimental Economics [n.n.]

Coordinators: P. Reiss
Part of the modules: Seminar Module (p. 94) [W3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Students write (according to Section 4 (2), 3 SPO) a seminar paper on an assigned topic (15-20 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades where the weighting is announced on the course syllabus.

Conditions

None.

Recommendations

Basic knowledge of mathematics, statistics, microeconomics, and game theory is assumed.

Learning Outcomes

The student works independently on a topic in Experimental Economics, writes a seminar paper according to scientific standards, gives a presentation on the results of the paper, cultivates the discussion of research approaches.

Content

Seminar topics are announced online at http://io.econ.kit.edu (-> Studium und Forschung).

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Media

Presentation Slides.

Literature

A selection of published papers is compulsory reading for the course.

Remarks

Language: German or English.
Course: Seminar on Topics in Political Economics [SemPÖ2]

Coordinators: N. Szech
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Students write a seminar paper (about 10 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades where the weighting is announced on the course syllabus.

Conditions
None.

Recommendations
None.

Learning Outcomes
The students

- look critically into current research topics in Political Economics.
- train their presentation skills.
- learn to get their ideas across in a focused and concise way, both in oral and written form.
- cultivate the economic discussion of research approaches.

Content
Seminar topics are announced online athttp://polit.econ.kit.edu

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
A selection of published papers and books.

Remarks
The seminar will be held in English.
Course: Seminar Human Resources and Organizations [2573010]

Coordinators: P. Nieken

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is done according to §4(2), 3 of the examination regulation. Students write a seminar paper on an assigned topic (10 to 12 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades. The weighting depends on the respective seminar.

Conditions
None.

Learning Outcomes
The student

• looks critically into current research topics in the fields of human resources and organizations.
• trains his / her presentation skills.
• learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
• cultivates the discussion of research approaches.

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Chair.

Workload
The total workload for this course is approximately 90 hours.
Lecture 30h
Preparation of lecture 45h
Exam preparation 15h

Literature
Selected journal articles and books.

Remarks
This course has been added summer 2015.
Course: Seminar Risk and Insurance Management [SemFBV1]

Coordinators: U. Werner
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral presentation and written report of about 10 pages on the same topic, as well as active participation in discussion and working groups (according to §4(2), 3 SPO).
The grading consists of the weighted performance of the tasks delivered.

Conditions
See corresponding module information.
The seminar is held within the courses of Risk and Insurance Management and Insurance Management ([WI3BWLFBV3], [WW3BWLFBV4] and [WW4BWLFBV6/7], respectively.
A course taken as a seminar cannot be chosen as a part of a course module (and vice versa).

Recommendations
The seminar fits well with the bachelor modules Risk and Insurance Management [WI3BWLFBV3] as well as with the master modules Insurance Management I [WW4BWLFBV6] and Insurance Management II [WW4BWLFBV7]. These modules, though, are not required to be taken.

Learning Outcomes
See German version.

Content
The seminar is offered within the following courses:

- Principles of Insurance Management
- Insurance Marketing
- Insurance Production
- Risk Communication
- Insurance Risk Management
- Enterprise Risk Management
- Modeling, Measuring and Management of Extreme Risks
- Current Issues in the Insurance Industry

For their contents refer to the information given for these courses.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the beginning of the lecture period.

Remarks
Some of the courses mentioned above are offered on demand. For further information, see: http://insurance.fbv.kit.edu.
To attend the course please register with the secretary of the chair: thomas.mueller3@kit.edu
Course: Seminar Service Science, Management & Engineering [2595470]

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis (15-20 pages), a presentation and active participation in class.

The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Conditions
See corresponding module information.

Recommendations
Lecture eServices [2595466] is recommended.

Learning Outcomes
The student

- illustrates and evaluates classic and current research questions in service science, management and engineering,
- applies models and techniques in service science, also with regard to their applicability in practical cases,
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Content
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.

See the KSRI website for more information about this seminar: www.ksri.kit.edu

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Literature
The student will receive the necessary literature for his research topic.
Course: Seminar Statistics [SemSTAT]

Coordinators: N.N.
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar Stochastic Models [SemWIOR1]

Coordinators: K. Waldmann

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is in form of an examination of the written seminar thesis and a presentation. The final mark is the result of both the paper and its presentation.

Conditions
None.

Learning Outcomes
The participants will possess profound knowledge of modeling, evaluation and optimization of stochastic systems. They are familiar with basic principles of scientific argumentation and can cope with modern presentation techniques.

Content
The actual topic as well as the contemporary issues are available online.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Power Point and related presentation techniques.

Literature
Will be presented with the actual topic.
Course: Seminar Knowledge Management [SemAIFB4]

Coordinators: R. Studer
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The success monitoring is done through a presentation about a research topic from the current topic of the seminar (45-60 minutes) followed by a discussion, a written summary of the main points (approx. 15 pages) and of active participation in discussions (in accordance with §4(2),3 SPO).
The total mark is composed of the graded and weighted success controls (50% lecture, 30% written paper, and 20% participation and discussion).
The seminar can be attended by both bachelor and master students. A differentiation is made by different topic assignment and evaluation standards for seminar paper and presentation.

Conditions
See module description.

Learning Outcomes
The students will learn to perform literature searches on current topics in computer science and holistic knowledge management as well as preparing and presenting the contents of scientific publications.

During the work on the seminar topics the master students will deepen their skills to autonomously comprehend current scientific knowledge and to convey it to others through oral presentations and written summaries.

Through active participation in the seminar, students acquire skills in critical appraisal of research topics and in oral and written presentation of independently developed research content.

Content
Each year, the seminar will cover topics from a different selected subfield of knowledge management, e.g.:

- Ontology-based knowledge management,
- Information Retrieval and Text Mining,
- Data Mining,
- Personal Knowledge Management,
- Case Based Reasoning (CBR),
- Collaboration and Social Computing,
- Business-process Oriented Knowledge Management.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.

Media
Slides.

Literature

Remarks
The number of students is limited. Students have to observe the designated registration process.
Course: Seminar in strategic and behavioral marketing [2572197]

Coordinators:
B. Neibecker

Part of the modules:
Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The student is evaluated based on the written work, a presentation of the results in front of an audience and his contribution to the discussion.

Conditions
None.

Learning Outcomes

Students

- do literature search based on a given topic, identify relevant literature and evaluate this literature,
- give presentations in a scientific context in front of an auditorium to present the results of the research,
- present results of the research in a seminar thesis as a scientific publication using format requirements such as those recommended by well-known publishers.

Content

In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in marketing. This problem analysis requires an interdisciplinary examination. As a special option, the implementation of methodological solutions for market research can be accomplished and discussed with respect to its application.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Literature

Will be allocated according to the individual topics.

Remarks

Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
Course: Seminar in Discrete Optimization [2550491]

Coordinators: S. Nickel
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 35-40 minutes (according to §4(2), 3 of the examination regulation).
The final mark for the seminar consists of the seminar thesis, the seminar presentation, the handout, and if applicable further material such as programming code.
The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Conditions
Successful completion of the module Introduction to Operations Research [WI1OR].

Learning Outcomes
The student

- illustrates and evaluates classic and current research questions in discrete optimization,
- applies optimization models and algorithms in discrete optimization, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management),
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Content
The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Dates will be announced on the internet.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Literature and relevant sources will be announced at the beginning of the seminar.

Remarks
The seminar is offered in each term.
Course: Seminar in Experimental Economics [SemWIOR3]

Coordinators: N. N.

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Term paper and presentation

Conditions
- See corresponding module information.
- A course in the field of Game Theory should be attended beforehand.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in Experimental Economics. Students learn the technical basics of presentation and to argument scientifically. Also rethoric skills shall be amplified.

Content
The seminar's topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
- Slides.

Literature
- Will be announced at the end of the recess period.
Course: Seminar in Continuous Optimization [2550131]

Coordinators: O. Stein

Part of the modules: Seminar Module (p. 94)[W13SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation.

The total grade is composed of the equally weighted grades of the written and oral assessments.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the seminar presentation.

Conditions

See corresponding module information.

Attendance is compulsory.

Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes

The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.

The student is introduced to the style of scientific work. By focussed treatment of a scientific topic the student learns the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetorical abilities may be improved.

Content

The current seminar topics are announced under http://kop.ior.kit.edu at the end of the preceding semester.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Literature

References and relevant sources are announced at the beginning of the seminar.
Course: Seminar on Macroeconomic Theory [SemETS3]

Coordinators: M. Hillebrand
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
At least one of the courses Theory of Business Cycles [25549] and Theory of Economic Growth [2520543] should have been attended beforehand.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the end of the recess period.

Remarks
for details see German version.
Course: Seminar on Network Economics [2560263]

Coordinators: K. Mitusch

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a seminar paper of 15-20 pages, a presentation of results and active participation in the discussion during the seminar (according to §4(2), 3 ERSC). The grading is carried out primarily in reference to the seminar paper, however, divergent performance in the presentation will be accounted for by a corresponding adjustment. In particular, there is the chance to improve grades through good participation during the seminar.

Conditions

See module description.

Basic knowledge of network economics is required. The course *Competition in Networks* [26240] should be completed.

Learning Outcomes

The students

- will deepen their knowledge in network economics
- will be able to familiarize oneself with network economic topics and to examine and discuss a specific question
- will be able to present his/her results
- will get inspiration for a potential master thesis.

Content

The current theme of the seminar including the suggestion of topics for the seminar papers will be announced in KIM and on the notice board at the institute (http://netze.iww.kit.edu).

(The title of the seminar may change from term to term depending on the topic)

Workload

The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar Transport Economics [2561209]

Coordinators: K. Mitusch, E. Szimba
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The students

• have learnt how to deal with a selected aspect of European transport planning, transport policy or transport modelling and to prepare a written summary on it (potentially in team work, depending on the subject)
• are able to present and discuss their work
• acquire competent knowledge on selected aspects of European transport planning, transport policy or transport modelling
• get inspiration for a potential master thesis

Content
This seminar is about current challenges in transport planning and transport politics in the European context.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar: Legal Studies [RECHT]

Coordinators: Inst. ZAR

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Seminar: Management and Organization [2577915]

Coordinators: H. Lindstädt
Part of the modules: Seminar Module (p. 94) [WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Learning control is based on a written paper and a presentation of the results in a seminar session (according to §4(2), 3 SPO). Final grade is composed of both elements.

Conditions
Preferably, at least one of the institute's offered modules should be passed before participation in the seminar.

Learning Outcomes
After passing this course students are able to

- describe corporate and organizational management approaches and to clarify them using practical examples.
- apply the basics of scientific work.
- present selected topics to a group.

Content
The subjects are redefined each semester on the basis of current issues.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Media
Slides.

Literature
The relevant sources are made known during the course.
Course: Seminar paper “Production Engineering” [21690sem]

Coordinators: V. Schulze, G. Lanza, J. Fleischer

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The following work and performance is required for the successful completion of the seminar:

- active participation in the seminar,
- completion of a seminar paper on the topic of the seminar (minimum input: 80 h) and
- a presentation given after completion of the seminar paper.

The seminar paper can be submitted:

- for the module: seminar module [SemING] OR
- to improve the module grade of modules: Manufacturing Engineering [WI3INGMB23], Integrated Production Planning [WI3INGMB24] or Vertiefung der Produktionstechnik [WI4INGMB22].

Each seminar paper can be submitted only once. One paper cannot be submitted for both the seminar module and the improvement of the grade.

The score of the seminar paper can be used to improve the grade of one of the above-mentioned modules. The module grade can be improved by three tenths maximum. Only seminar papers written at wbk Institute of Production Science qualify for an improvement of the module grade.

One seminar paper can be used for the improvement of one module grade (named above) maximum. For the improvement of a grade, no more than one seminar paper can be submitted.

Conditions

None.

Learning Outcomes

The students are able to

- find appropriate data sources, evaluate and extract information.
- apply a predetermined citation style correctly.
- summarize information and results shortly and concisely in a written form.
- to design visual preparations of scientific problems or results and to make an oral presentation.
- to work in task-oriented cooperation as a team.

Content

Students independently deal with production engineering related problems from the fields of manufacturing engineering, machine tools and handling technology and organisation, planning and logistics with tutorial assistance. The results are aggregated in the form of a seminar paper and are then illustrated in the form of a presentation.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Media

Lecture notes of the Institute of Production Science.
Course: Simulation of Coupled Systems [2114095]

Coordinators: M. Geimer
Part of the modules: Vehicle Development (p. 69)[WI3INGMB14], Mobile Machines (p. 70)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module Mobile Machines: See module description.
Assessment for the module Automotive Engineering: The assessment consists of an oral exam (20 min) taking place in the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to have:
- Knowledge of ProE (ideally in actual version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

Learning Outcomes
After completion of the course, students are able to:
- building a coupled simulation
- parameterize models
- Perform simulations
- do Troubleshooting
- check results for plausibility

Content
- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the result in a short report

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Elective literature:
- miscellaneous guides according the software-tools pdf-shaped
- information to the wheel-type loader
Course: Simulation I [2550662]

Coordinators: K. Waldmann
Part of the modules: Applications of Operations Research (p. 59)[WI3OR5], Stochastic Methods and Simulation (p. 62)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1/2</td>
<td>lecture + exercise + tutorial</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The participants will be enabled to model discrete event systems that underlie stochastic influences and to analyze them using simulation. The discussion of practice-oriented case studies pursues two goals. On the one hand, the participants will be sensitized for different criteria to evaluate the performance of a stochastic discrete-event system. On the other hand, an overview of application areas of stochastic simulation is provided. In the context of the course, the basic elements of discrete-event simulation are introduced and a procedure model for the execution of simulation studies is developed. Properties of existing mathematical methods for the generation of random variables are discussed and are assigned to concrete application cases. Statistical methods for the description of simulation input data and for the interpretation of simulation results will be exemplified. The facultative computer exercise course using a simulation software comprises a practice-oriented case study that illustrates the opportunities and limitations of stochastic simulation.

Content
Generation of random numbers, Monte Carlo Integration, discrete event simulation, discrete random variables, continuous random variables, statistical analysis of simulated data.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Blackboard, slides, flash-animations, java tools, simulation software.

Literature
- Lecture Notes

Remarks
The course will be offered in the summer term 2015 and the summer term 2016.
Course: Simulation II [2550665]

Coordinators: K. Waldmann
Part of the modules: Stochastic Methods and Simulation (p. 62)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1/2</td>
<td>lecture + exercise + tutorial</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
Foundations in the field of Simulation I [2550662] are desired.

Learning Outcomes
The participants will be enabled to model and analyze discrete event systems that underlie stochastic influences with efficient simulation techniques. The discussion of practice-oriented case studies illustrates the limits of standard simulation techniques for stochastic discrete event systems regarding the simulation effort to obtain statistical significant results. Variance reducing techniques will be introduced in theory as modern and efficient techniques and will be exemplified by examples from quality management, financial engineering and insurance. The main scope of the applications discussed in the course is the efficient simulation of stochastic processes. The facultative computer exercise course under utilization of the programming language Java comprises a practice-oriented case study, in which the participants implement certain variance reducing techniques in order to analyze the reduction in computer effort in comparison to standard techniques.

Content
Variance reducing techniques, simulation of stochastic processes, case studies.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Blackboard, slides, flash/animations, java tools, simulation software.

Literature
- Lecture Notes

Remarks
The course will be offered in the winter term 2015/2016.
Course: Software Engineering [2511206]

Coordinators:
A. Oberweis

Part of the modules:
- Emphasis Informatics (p. 56)[WI3INFO1]
- Electives in Informatic (p. 58)[WI3INFO2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Conditions
None.

Learning Outcomes

Students

- are familiar with the concepts and principles of software engineering and can discuss it,
- know common software development process models and their strengths and weaknesses and can discuss it,
- know methods for requirements analysis and can use it and can model and evaluate use case models,
- know models for systems structuring and controlling as well as architecture principles of software systems and can discuss it.
- can model and evaluate component diagrams
- are familiar with basic concepts of software quality management and are able to apply software test and evaluation methods in concrete situations.

Content
The course deals with fundamental aspects of the systematically development of huge software systems. The course covers topics such as:

- software developing process models
- methods and tools for the开发 phases: requirements analysis, system specification, system design, programming and testing.

Workload

Lecture
- 30h

Exercise
- 15h

Review und Preparation of lectures
- 30h

Review and Preparation of exercises
- 15h

Exam preparation
- 29h

Exam
- 1h

Total: 120h

Media
Slides, access to internet resources.

Literature
Elective literature:

Further literature is given in the course.
Course: Software Laboratory: OR Models I [2550490]

Coordinators: S. Nickel

Part of the modules: Applications of Operations Research (p. 59)[WI3OR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the software laboratory and the following term.

Conditions
Firm knowledge of the contents from the lecture *Introduction to Operations Research I* [2550040] of the module *Operations Research* [WI1OR].

Learning Outcomes
The student

- evaluates the possibilities of computer usage in practical applications of Operations Research,
- is capable of classifying and utilizing the general possibilities and fields of usage of modeling and implementation software for solving OR models in practice,
- models and solves problems arising in industry applications with the aid of computer-supported optimization methods.

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, …), the software IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL will be discussed which can be used to solve OR problems on a computer-aided basis.

Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Remarks
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course.

The lecture is offered in every winter term. The planned lectures and courses for the next three years are announced online.
Course: Social structures of modern societies [11005]

Coordinators: G. Nollmann
Part of the modules: Sociology/Empirical Social Research (p. 92)[WI3SOZ]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written test according to Section 4 (2), 1 of the examination regulation. The test will be graded. The test takes place in the last lecture. Generally re-examinations are offered six weeks later.

Conditions
The lecture is obligatorily in the module and has to be completed.

Learning Outcomes
The student:
- Gains knowledge on social structures of modern societies
- Describes and explains current societal processes
- Gets to know selected research, problems and data.

Content
The lecture begins with definitions of social structures and their relation to the culture of human behaviour. Furthermore, important research, current debates, and controversies will be presented as well as continuity and change of German social structures in comparative fashion.

Important topics will be modernisation, individualisation, class structures, education and job market, social mobility, life courses and cohorts, distributions of income and wealth, family, marriage market, fertility.

The lecture stresses knowledge about data sources, official statistics, and relevant results of survey research.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Course: Special Topics in Management Accounting [2579905]

Coordinators: M. Wouters, F. Stadtherr

Part of the modules: Seminar Module (p. 94)[W3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td></td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The final grade of the course is the grade awarded to the paper.

Conditions
The LV “Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen” (2610026) must have been completed before starting this seminar.

Learning Outcomes
Students
- are largely independently able to identify a distinct topic in Management Accounting,
- are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in four meetings that are spread throughout the semester.

Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.

Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.

Meeting 4: In the third week we are going to present and discuss the final papers.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.

Remarks
Maximum of 24 students.
Course: Special Topics in Information Engineering & Management [2540498]

Coordinators: C. Weinhardt
Part of the modules: eBusiness and Service Management (p. 38)[WI3BWISM1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3</td>
<td>practical seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.
Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.
The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class)

Conditions
None.

Learning Outcomes
Students are able to

• do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
• do additional practical components in order to apply scientific methods (e.g., case studies, software implementations, surveys, or experiments).
• write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
• give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the seminar.
• present results of the research in written form generally found in scientific publications.

Content
In this course the student should learn to apply the search methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination. Experiments, case studies or software development can be part of the practical work that offers the students an opportunity to get a deeper insight into the field of Information Engineering and Management. The course also encompasses a documentation of the implemented work.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
• PowerPoint
• E-learning platform ILIAS
• Software tools for development, if needed

Literature
The basic literature will be made available to the student according to the respective topic.

Remarks
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Engineering & Management course. The current topics of the practical seminars are available at the following homepage: www.ism.kit.edu/im/lehre
The Special Topics Information Engineering and Management is equivalent to the practical seminar, as it was only offered for the major in "Information Management and Engineering" so far. With this course students majoring in "Industrial Engineering and Management" and "Economics Engineering" also have the chance of getting practical experience and enhance their scientific capabilities.
The Special Topics Information Engineering and Management can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.
Course: Special Topics of Applied Informatics [Platzhalter]

Coordinators: A. Oberweis, H. Schmeck, R. Studer

Part of the modules: Emphasis Informatics (p. 56)[WI3INFO1], Electives in Informatics (p. 58)[WI3INFO2]

ECTS Credits

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>2/1</td>
<td>other</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Learning Outcomes
Students

- explain basic knowledge and concepts in a subarea of “Applied computer science”,
- apply methods and instruments in a subarea of “Applied computer science”,
- choose the appropriate methods to solve given problems and apply them,
- find and discuss arguments for solution approaches.

Content
This course is a placeholder for special courses that are offered in an irregular sequence and cover selected topics in the field of applied informatics.

Workload
Lecture 30h
Exercise 15h
Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam &1h

Total: 150h

Media
Will be announced at the beginning of the course.

Literature
Will be announced at the beginning of the course.

Remarks
This course can be used in particular for the acceptance of external courses whose content is in the broader area of applied informatics, but is not equivalent to another course of this topic.
Course: Special Sociology [spezSoz]

Coordinators: G. Nollmann, Pfadenhauer, Haupt, Grenz, Eisewicht, Kunz, Dukat, Albrecht, Enderle

Part of the modules: Qualitative Social Research (p. 93)[WI3SOZ2], Sociology/Empirical Social Research (p. 92)[WI3SOZ]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>lecture</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Module Sociology/Empirical Social Research [WI3SOZ]: The assessment consists of lecture minutes (graded) and an oral presentation (according to Section 4 (2), 3 of the examination regulation).
Module Qualitative Social Research [WI3SOZ2]: The assessment consists of an oral exam according to Section 4(2), 2 of the examination regulation.

Conditions
The form of the lecture has to be attended and must be completed with 2 Credit Points. The form of the lecture must not be swapped by a seminar according sociological theory, according techniques of social research or any other lecture.

Learning Outcomes
The student
- gains basic knowledge of a Special Sociology.
- gains knowledge of a specific problem in the Social Sciences.
- accordingly is capable of questioning further phenomena of the Social Sciences.
- is able to specify, pursue and explain own scientific questions.

Content
The student has the choice of the broad range of course offerings at the institute. In the course specific scientific problems and their debate will be introduced and discussed.

Workload
The total workload for this course is approximately 60.0 hours. For further information see German version.

Media
Will be announced in the lecture.

Literature
Will be announced in the lecture.

Elective literature:
Will be announced in the lecture.
Course: Specific Aspects in Taxation [2560129]

Coordinators: B. Wigger, Armin Bader

Part of the modules: Public Finance (p. 52)[WI3VWL9], Topics in Finance I (p. 36)[WI3BWLFBV5], Topics in Finance II (p. 37)[WI3BWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions
None.

Recommendations
Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course "Öffentliche Einnahmen" beforehand.

Learning Outcomes
See German version.

Content
The lecture „Special Aspects of Taxation“ focuses on the effects of different taxes. The main emphasis is on German tax legislation. In addition to that, international aspects of taxation, in particular with respect to the European integration, will be discussed.

The lecture consists of four parts: First specific tax problems of corporate, income and consumption taxes are treated. Part two introduces the advantages and disadvantages of each of these taxes, in particular their incidence ("Who actually carries the tax burden?") and their effects within the value chain. The third part then deals with the question how the different taxes contribute to public revenues. Finally, the last part compares tax systems within and outside Europe.

As a special feature, guest lecturers will provide insight into practical aspects of taxation.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:

Course: Facility Location and Strategic Supply Chain Management [2550486]

Coordinators: S. Nickel
Part of the modules: Supply Chain Management (p. 40)[WI3BWLISM2], Methodical Foundations of OR (p. 61)[WI3OR6], Applications of Operations Research (p. 59)[WI3OR5]

ECTS Credits: 4.5
Hours per week: 2/1
Type: lecture + exercise
Term: Winter term
Instruction language: de

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester. Prerequisite for admission to examination is the succesful completion of the online assessments.

Conditions
Prerequisite for admission to examination is the succesful completion of the online assessments.

Learning Outcomes
The student

• knows and describes basic quantitative methods in location planning in the context of strategic Supply Chain Planning,

• applies several criteria for the evaluation of the locations of facilities in the context of classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models),

• implements the considered models in practical problems.

Content
Since the classical work “Theory of the Location of Industries” of Weber from 1909, the determination of an optimal location of a new facility with respect to existing customers is strongly connected to strategical logistics planning. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning allows an efficient flow of materials and leads to lower costs and increased customer service.

Subject of the course is an introduction to the most important terms and definitions in location planning as well as the presentation of basic quantitative location planning models. Furthermore, specialized location planning models for Supply Chain Management will be addressed as they are part in many commercial SCM tools for strategic planning tasks.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:

• Domschke, Drexl: Logistik: Standorte, 4. Auflage, Oldenbourg, 1996
• Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
• Thonemann: Operations Management - Konzepte, Methoden und Anwendungen, Pearson Studium, 2005

Remarks
The lecture is held in every winter term. The planned lectures and courses for the next three years are announced online.
Course: Statistics and Econometrics in Business and Economics [2521325/2521326]

Coordinators: W. Heller

Part of the modules: Statistical Applications of Financial Risk Management (p. 89)[WI3STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
Basic knowledge in statistics is required.

Learning Outcomes
statistically accurate use of financial market data, particularly time series analysis
Evaluation of various time series models and their applicability

Content
In Part 1 we will provide a thorough description of the quantitative part of investment theory paying attention to the mathematical, probabilistic and statistical methods now widely used in financial practice.
In Part 2 we shall study the methods of construction, identification and verification of time-series models, which are among most powerful instruments of the financial econometrics. The emphasis will be on the financial and economic indicators forecasting the financial time-series.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
transparencies lecture

Literature
e.g.

- Franke/Härdle/Hafner : Einführung in die Statistik der Finanzmärkte.
- Ruppert: Statistics and Finance
- Cochran J.H.: Time Series for Macroeconomics and Finance

Elective literature:
See reading list
Course: Statistics I [2600008]

Coordinators: W. Heller
Part of the modules: Statistics (p. 29)[WI1STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4/0/2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Conditions
None.

Learning Outcomes
The Student understands and applies

- the basic concepts of statistical data exploration,
- the basic definitions and theorems of probability theory.

Content
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities

Workload
150 hours (5.0 Credits).

Media
lecture notes

Literature
Skriptum: Kurzfassung Statistik I

Elective literature:
Course: Statistics II [2610020]

Coordinators: W. Heller
Part of the modules: Statistics (p. 29) [WI1STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4/0/2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Conditions
None.

Recommendations
It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2610020].

Learning Outcomes
The student
- understands and applies the basic definitions and theorems of probability theory,
- transfers these theoretical foundations to problems in parametrical mathematical statistics.

Content
B. Probability Theory:
- transformation of probabilities,
- parameters of location and dispersion,
- most important discrete and continuous distributions,
- covariance and correlation,
- convolution and limit distributions

C. Theory of estimation and testing:
- sufficiency of statistics,
- point estimation (optimality, ML-method),
- internal estimations,
- theory of tests (optimality, most important examples of tests)

Workload
150 hours (5.0 Credits).

Media
lecture notes

Literature
Script: Kurzfassung Statistik II
Elective literature:
Course: Statistical Modeling of generalized regression models [2521350]

Coordinators: W. Heller

Part of the modules: Statistics and Econometrics (p. 90)[WI3STAT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Conditions
None.

Recommendations
Knowledge of the contents covered by the course “Economics III: Introduction in Econometrics” [2520016]

Learning Outcomes
The student

- shows comprehensive knowledge of regression techniques

Content

Workload
The total workload for this course is approximately 135 hours (4.5 credits).
- regular attendance: 30 hours
- self-study: 65 hours
- exam preparation: 40 hours

Media
Slides

Literature
Provided in the lecture
Course: Control Technology [2150683]

Coordinators: C. Gönnheimer
Part of the modules: Specialization in Production Engineering (p. 74)[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place during the recess period (according to Section 4(2), 2) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None
Recommendations
None

Learning Outcomes
The students . . .
- are able to name the electrical controls which occur in the industrial environment and explain their function.
- can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
- are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
- can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Content
The lecture control technology gives an integral overview of available control components within the field of industrial production systems. The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states. The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems.
The lecture is very practice-oriented and illustrated with numerous examples from different branches.
The following topics will be covered
- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Process control systems
- Field bus
- Trends in the area of control technology

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Notes

Remarks
None
Course: Markov Decision Models I [2550679]

Coordinators: K. Waldmann

Part of the modules:
- Stochastic Methods and Simulation (p. 62)[WI3OR7], Methodical Foundations of OR (p. 61)[WI3OR6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1/2</td>
<td>lecture + exercise + tutorial</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The participants will be enabled to model and analyze stochastic systems with modern techniques. The discussion of practice-oriented case studies pursues two goals. On the one hand, typical problem settings are illustrated and on the other hand, criteria for the evaluation of the performance of stochastic systems are motivated. Properties and characteristics for the evaluation of the performance of Markov Chains, Poisson Processes and queuing systems are developed.

Content
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Literature
- Elective literature:
Course: Markov Decision Models II [2550682]

Coordinators: K. Waldmann
Part of the modules: Stochastic Methods and Simulation (p. 62) [WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>lecture + exercise + tutorial</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
Foundations in the field of the Markov Decision Models I [2550679] are desired.

Learning Outcomes
The participants will be enabled to utilize Markov Decision Processes as a method for analyzing, controlling and optimizing dynamic stochastic systems. The discussion of practice-oriented case studies in the area of the management of energy systems, revenue management and logistics illustrates the application fields of Markov Decision Processes. Necessary mathematical concepts like theoretical foundations, optimality criteria and the solution of the optimality equation are presented. Particularly the development of simple structured decision rules, that are desired by practitioners on the one hand, and that permit the efficient solutions of the optimality equation on the other hand, are discussed. The facultative computer exercise course using the programming language Java comprises a practice-oriented case study that illustrates the opportunities of the optimization of stochastic systems.

Content
Queuing Systems, Stochastic Decision Processes

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Mass and Energy Balances for Reacting Systems [22130]

Coordinators: P. Pfeifer, B. Kraushaar-Czarnetzki

Part of the modules: Mass and Energy Balances for Reacting Systems (p. 24)[W11ING1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>2/0</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (according §4(2), 1 of the examination regulation).

Permitted utilities: calculator.

Conditions
None.

Learning Outcomes
The student
- knows and understands energy and mass balances and the analysis of balance envelopes,
- can apply energy and mass balances on selected systems and processes,
- knows the problems, methods and processes of process engineering.

Content
- Aims and approaches
- Mass balance
- Water
- Nitrogen and ammonia
- Energy balance
- Natural gas
- Carbon dioxide

Workload
The total workload for this course is approximately 75.0 hours. For further information see German version.

Media
Lecture script (available at KIT-Studierendenportal: https://studium.kit.edu)
Exercises and accompanying lecture material (available at KIT-Studierendenportal: https://studium.kit.edu)
Course: Structural and phase analysis [2125763]

Coordinators: S. Wagner

Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
None.

Recommendations
Basic knowledge of experimental physics and chemistry is recommended.

Learning Outcomes
The students know the fundamentals of crystallography, the generation and detection of x-rays as well as their interaction with the microstructure of crystalline materials. They have detailed knowledge about the different methods of x-ray diffraction measurements and are able to analyse x-ray spectra using modern methods of x-ray analysis both qualitatively and quantitatively.

Content
The course gives an overview to generation and detection of x-rays as well as their interaction with matter. It provides an introduction to crystallography and describes modern measurement and analysis methods of x-ray diffraction. It is arranged in the following units:

- Generation and properties of X-Ray's
- Crystallography
- Fundamentals and application of different measuring methods
- Qualitative and quantitative phase analysis
- Texture analysis (pole figures)
- Residual stress measurements

Workload
The total workload for this course is approximately 120 hours.
- regular attendance: 30 hours
- self-study: 90 hours

Media
Slides for the lecture:
available unter http://ilias.studium.kit.edu

Literature
1. Moderne Röntgenbeugung - Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, Spieß, Lothar / Schwarzer, Robert / Behnken, Herfried / Teichert, Gerd B.G. Teubner Verlag 2005
Course: Structural Ceramics [2126775]

Coordinators: M. Hoffmann

Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20-30 min) taking place at a specific date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered at a specific date.

Conditions
None.

Recommendations
Basic knowledge of experimental physics and chemistry is recommended. It is recommended to attend the course Ceramics-Introduction [2125757].

Learning Outcomes
The students know the most relevant structural ceramics (silicon carbide, silicon nitride, alumina, boron nitride, zirconia, fibre-reinforced ceramics) and their applications. They are familiar with the microstructural features, fabrication methods, and mechanical properties.

Content
The lecture gives an overview on structure and properties of the technical relevant structural ceramics silicon nitride, silicon carbide, alumina, zirconia, boron nitride and fibre-reinforced ceramics. All types of structural ceramics will be discussed in detail in terms of preparation methods of the raw materials, shaping techniques, densification, microstructural development, mechanical properties and application fields.

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
Slides for the lecture:
available under http://ilias.studium.kit.edu

Literature

Remarks
The course will not take place every year.
Course: Systematic Materials Selection [2174576]

Coordinators: J. Hoffmeister
Part of the modules: Emphasis Materials Science (p. 66)[W13INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (3h) (following §4(2), 1 of the examination regulation).

Conditions
The course Material Science I [21760] has to be completed beforehand.

Recommendations
Basic knowledge of natural science and knowledge of the content Material Science II [21782] is recommended.

Learning Outcomes
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods / approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature
Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.); Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
Course: System Dynamics and Control Engineering [23155]

Course Details
- **Coordinator(s):** M. Kluwe, S. Hohmann
- **Part of the modules:** Control Engineering (p. 80)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of integral transformations is assumed. There it is recommended to attend the course *Complex Analysis and Integral Transformations* beforehand.

Learning Outcomes
The goal is to relay theoretical fundamentals in control theory. The students can recognize control theory problem statements and treat them systematically. They can name basic control structures and describe the behavior of time continuous and discrete control circuit elements as well as elements of digital control circuits.

The students can describe real processes formally and derive requirements of control structures. They can analyze the dynamic of systems using graphic and algebraic methods.

The students can name controller design methods for single input single output systems select them according to appropriate criteria as well as conduct the design steps and evaluate the designed control system. Furthermore they can compensate disturbances through appropriate control structures.

Content
- Introduction: overview and definitions, open-loop and closed-loop control, design process for control systems;
- Classification and Description of control circuit elements: introduction and basic concepts, block diagram, behaviour of elementary control circuit elements, standard control circuit and block diagram transformations, simulation of time continuous control circuits, structure of digital control circuits, description of digital control circuits discretization of time continuous control circuit elements;
- Analysis of linear control circuits in continuous time: steady-state behaviour and characteristic signals, polar plot (Nyquist diagram), Bode diagram, basic concepts of stability, algebraic stability criteria, graphic stability criteria;
- Analysis of linear control circuits in discrete time: steady-state behaviour, polar plot (Nyquist diagram) and Bode diagram, basic concepts of stability, algebraic stability criteria, graphic stability criteria;
- Synthesis of linear control circuits in continuous time: control circuit requirements, heuristic controller design, direct methods, controller design using the Bode diagram, controller design using the root locus, simple optimality-based controller design, feed forward control, secondary control and cascaded control;
- Synthesis of linear control circuits in discrete time: fast sampling design, direct methods, controller design using the Bode diagram and the root locus.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Media
Online material is available on: www.irs.kit.edu and can be downloaded using a password.

Literature
• O. Föllinger:
 Lineare Abtastsysteme
 5. Auflage, R. Oldenbourg Verlag, 1993

• K. Ogata:
 Discrete-Time control systems
 Prentice Hall Verlag, 1987

• G.C. Goodwin:
 Control System Design
 Prentice Hall Verlag,
Course: Tactical and Operational Supply Chain Management [2550488]

Coordinators: S. Nickel

Part of the modules: Supply Chain Management (p. 40)[WI3WLISM2], Applications of Operations Research (p. 59)[WI3ORS], Stochastic Methods and Simulation (p. 62)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Prerequisite for admission to examination is the successful completion of the online assessments.

Conditions
Successful completion of the module *Introduction to Operations Research* [WI1OR].

Learning Outcomes
The student

- gathers expertise in fundamental techniques from procurement and distribution logistics, methods from inventory management and lot sizing,
- acquires the ability to efficiently utilize quantitative models from transportation planning (long-distance and distribution planning), inventory management and lot sizing in production,
- applies the introduced methods in more detail and in industry-relevant case-studies.

Content
The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot.

The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:

- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005

Remarks
The lecture is held in every summer term. The planned lectures and courses for the next three years are announced online.
Course: Metal Forming [2150681]

Coordinators: T. Herlan
Part of the modules: Specialization in Production Engineering (p. 74) [WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place during the recess period (according to Section 4(2), 2) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
None

Learning Outcomes
The students
- are able to reflect the basics, forming processes, tools, Machines and equipment of metal forming in an integrated and systematic way.
- are capable to illustrate the differences between the forming processes, tools, machines and equipment with concrete examples and are qualified to analyze and assess them in terms of their suitability for the particular application.
- are also able to transfer and apply the acquired knowledge to other metal forming problems.

Content
At the beginning of the lecture the basics of metal forming are briefly introduced. The focus of the lecture is on massive forming (forging, extrusion, rolling) and sheet forming (car body forming, deep drawing, stretch drawing). This includes the systematic treatment of the appropriate metal forming Machines and the corresponding tool technology.
Aspects of tribology, as well as basics in material science and aspects of production planning are also discussed briefly. The plastic theory is presented to the extent necessary in order to present the numerical simulation method and the FEM computation of forming processes or tool design. The lecture will be completed by product samples from the forming technology.
The topics are as follows:
- Introduction and basics
- Hot forming
- Metal forming machines
- Tools
- Metallographic fundamentals
- Plastic theory
- Tribology
- Sheet forming
- Extrusion
- Numerical simulation

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Notes

Remarks
None
Course: Corporate Governance in Energy Economics [2581005]

Coordinators: H. Villis

Part of the modules: Energy Economics (p. 33) [WI3BWLIIP2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.
Course: Management and Strategy [2577900]

Coordinators: H. Lindstädt

Part of the modules: Strategy and Organization (p. 30)[WI3BWLUO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>lecture</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
After passing this course students are able to
- prepare strategic decisions along the ideal-typical strategy process in practice (“strategic analysis”).
- assess strategic options.
- explain the portfolio management (Parental advantage and best owner of business entities).
- discuss price and capacity decisions in oligopolies and explain them in examples.

Content
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration. Thereby a focus is on imparting knowledge about how price developments in oligopolistic markets can be understood, modeled and forecasted based on game theory.

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.

Media
Slides.

Literature

The relevant excerpts and additional sources are made known during the course.

Remarks
The credits for the course “Management and Strategy” have been changed from 4 to 3.5 from summer term 2015 on.
Course: Vehicle Ride Comfort & Acoustics I [2114856]

Coordinators: F. Gauterin

Part of the modules: Handling Characteristics of Motor Vehicles (p. 64)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 - 40 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation).

Conditions
Can not be combined with lecture Fahrzeugkomfort und -akustik I.

Recommendations
None.

Learning Outcomes
The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Content
1. Perception of noise and vibrations

3. Fundamentals of acoustics and vibrations

3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations

4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature

2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

The script will be supplied in the lectures.
Course: Vehicle Ride Comfort & Acoustics II [2114857]

Coordinators: F. Gauterin
Part of the modules: Handling Characteristics of Motor Vehicles (p. 64) [WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 - 40 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation).

Conditions
Can not be combined with lecture Fahrzeugkomfort und -akustik II.

Recommendations
None.

Learning Outcomes
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Content
1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
The script will be supplied in the lectures.
Course: Combustion Engines I [2133113]

Coordinators: H. Kubach, T. Koch
Part of the modules: Combustion Engines I (p. 71) [WI3INGMB34]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
None.

Recommendations
None.

Learning Outcomes
The student can name and explain the working principle of combustion engines. He is able to analyse and evaluate the combustion process. He is able to evaluate influences of gas exchange, mixture formation, fuels and exhaust gas aftertreatment on the combustion performance. He can solve basic research problems in the field of engine development.

Content
Introduction, History, Concepts
Working Principle and Thermodynamics
Characteristic Parameters
Air Path
Fuel Path
Energy Conversion
Fuels
Emissions
Exhaust Gas Aftertreatment

Workload
The total workload for this course is approximately 150.0 hours. For further information see German version.
Course: Combustion Engines II [2134151]

Coordinators: H. Kubach, T. Koch

Part of the modules: Combustion Engines II (p. 72)[WI3INGMB35]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, duration: 25 minutes, no auxiliary means

Conditions
None.

Recommendations
Fundamentals of Combustion Engines I helpful

Learning Outcomes
The students deepen and complement their knowledgement from the lecture combustion engines A. they can name and explain construction elements, development tools and latest development trends. They are be able to analyse and evaluate powertrain concepts which are subject of the lecture.

Content
- Emissions
- Fuels
- Drive Train Dynamics
- Engine Parts
- Boosting
- Alternative Powertrain Concepts

Special Engine Concepts

Power Transmission

Workload
The total workload for this course is approximately 150.0 hours. For further information see German version.
Course: Transportation [6200405]

Coordinators: P. Vortisch
Part of the modules: Mobility and Infrastructure (p. 83)[WI3INGBGU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
In the module Fundamentals of Transportation [WI4INGBGU15] the assessment consists of an oral exam according to §4(2), 2 of the examination regulation. For other modules and more information, see the corresponding module description.

Conditions
See module description.

Recommendations
None.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Course: Failure of Structural Materials: Fatigue and Creep [2181715]

Coordinators: O. Kraft, P. Gumbsch, P. Gruber
Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral examination (30 min) according to Section 4(2), 2 of the examination regulation.

Conditions
None.

Recommendations
None.

Learning Outcomes
The student
- has the basic understanding of mechanical processes to explain the relationships between externally applied load and materials strength.
- can describe the main empirical materials models for fatigue and creep and can apply them.
- has the physical understanding to describe and explain phenomena of failure.
- can use statistical approaches for reliability predictions.
- can use its acquired skills, to select and develop materials for specific applications.

Content
1 Fatigue
1.1 Introduction
1.2 Statistical Aspects
1.3 Lifetime
1.4 Fatigue Mechanisms
1.5 Material Selection
1.6 Thermomechanical Loading
1.7 Notches and Shape Optimization
1.8 Case Study: ICE-Desaster

2 Creep
2.1 Introduction
2.2 High Temperature Plasticity
2.3 Phänomenological Description of Creep
2.4 Creep Mechanisms
2.5 Alloying Effects

Workload
regular attendance: 22.5 hours
self-study: 97.5 hours

Literature
- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relatively simple but yet comprehensive overview of metallic materials
- Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); standard work on fatigue, all classes of materials, extensive, for beginners and advanced student
Course: Failure of structural materials: deformation and fracture [2181711]

Coordinators: P. Gumbsch, O. Kraft, D. Weygand

Part of the modules: Emphasis Materials Science (p. 66)[W13INGMB9]

ECTS Credits 4
Hours per week 2
Type lecture
Term Winter term
Instruction language de

Learning Control / Examinations
The assessment consists of an oral examination (30 min) according to Section 4(2), 2 of the examination regulation.

Conditions
None.

Recommendations
None.

Learning Outcomes
The student

- has the basic understanding of mechanical processes to explain the relationship between externally applied load and materials strength.
- can explain the foundation of linear elastic fracture mechanics and is able to determine if this concept can be applied to a failure by fracture.
- can describe the main empirical materials models for deformation and fracture and can apply them.
- has the physical understanding to describe and explain phenomena of failure.

Content

1. Introduction
2. linear elasticity
3. classification of stresses
4. Failure due to plasticity
 - tensile test
 - dislocations
 - hardening mechanisms
 - guidelines for dimensioning
5. composite materials
6. fracture mechanics
 - hypotheses for failure
 - linear elastic fracture mechanics
 - crack resistence
 - experimental measurement of fracture toughness
 - defect measurement
 - crack propagation
 - application of fracture mechanics
 - atomistics of fracture

Workload
regular attendance: 22,5 hours
self-study: 97,5 hours

Literature

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relatively simple but yet comprehensive overview of metallic materials
Course: Gear Cutting Technology [2149655]

Coordinator: M. Klaiber
Part of the modules: Specialization in Production Engineering (p. 74) [WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>lecture</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place during the recess period (according to Section 4(2), 2) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
None

Learning Outcomes
The students . . .

- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings.
- are able to make an appropriate selection of a process based on a given application
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

Content
Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

The following topics will be covered:

- Sample applications
- Basics of gearing geometry
- Need of gearboxes
- Soft machining processes
- Hardening processes
- Hard machining processes
- Bevel gear production
- Measurement and testing
- Manufacturing of gearbox components
- Special gearings

Workload
regular attendance: 21 hours
self-study: 99 hours

Media
Lecture slides will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Slides

Remarks
None
Course: Economics I: Microeconomics [2610012]

Coordinators: C. Puppe, P. Reiss
Part of the modules: Economics (p. 20) [W11VWL]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/0/2</td>
<td>lecture + tutorial</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. There may be offered a practice exam in the middle of the semester. The results of this exam may be used to improve the grade of the main exam. A detailed description of the examination modalities will be given by the respective lecturer. The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. Only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Conditions
None.

Learning Outcomes
It is the main aim of this course to provide basic knowledge in economic modelling. In particular, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative, more effective policy measures.

In particular, the student should learn
- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems
- to analyze the structure of microeconomics relationships and to present own problem solutions,
- solve simple economic decision problems.

Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics.

In the two main parts of the course, problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) are discussed. In the final part of the course, basics of imperfect competition (oligopolistic markets) and of game theory as well as welfare economics are presented.

Workload
see German version.

Media
downloadable from IT server

Literature
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. München, 2005

Elective literature:
- Offer for interested and top students: detailed top articles with proofs, algorithms, ... state-of-the-art surveys, industrial magazines and scientific journals, pointers to recent developments related to the course.
- Tutorials and perhaps simpler literature alternatives for students to fill in gaps in prerequisites (or to fresh up their memory). Alternatives with a different mode of explanation to help students understand ...
Course: Economics II: Macroeconomics [2600014]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/0/2</td>
<td>lecture + tutorial</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Learning Outcomes

See German version.

Content

The lecture deals with the following topics:
- Chapter 1: Macroeconomic targets
- Chapter 2: Gross domestic product: a classical model
- Chapter 3: Economic growth
- Chapter 4: Money and inflation
- Chapter 5: The open economy
- Chapter 6: IS-LM model and business cycles
- Chapter 7: Mundell-Fleming Model
- Chapter 8: Macroeconomic equilibrium
- Chapter 9: Unemployment

Workload

The total workload for this course is approximately 150 hours. For further information see German version.

Literature

Elective literature:

Course: Economics III: Introduction in Econometrics [2520016]

Coordinators: M. Schienle
Part of the modules: Statistics and Econometrics (p. 90)[WI3STAT1], Statistical Applications of Financial Risk Management (p. 89)[WI3STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation.

Conditions
Knowledge of the lectures Statistics I + II is required.

Learning Outcomes
Familiarity with the basic concepts and methods of econometrics
Preparation of simple econometric surveys

Content
Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)
Multi equation models
Dynamic models

Workload
180 hours (6.0 Credits)

Literature
- Schneeweiß: Ökonometrie ISBN 3-7908-0008-2

Elective literature:
Additional literature will be suggested in course
Course: Elective „Educational development for student teachers“ [SQ PEW1]

Coordinators: Personalentwicklung
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 / 3</td>
<td>k.A.</td>
<td>other</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Success is controlled according to §4(2), 3 SPO in the course of completion of different units of the tutorial program. These units consist of successful processing of online-units on Ilias platform, participating on the tutoring workshop and in at least one practice consulting, authoring a concluding work of reflection about own work of tutoring as well as writing a feedback on the work of reflection of another tutor. Participants will receive guidelines prior to writing the work of reflection and the feedback. If the participant works for two semesters as a tutor, 3 ECTS-points are credited. If the participant works for one semester as a tutor, only 2 ECTS-points are credited.

Conditions
Activity as tutor during the semester participating in the tutorial program is obligatory.

Recommendations
None.

Learning Outcomes
- Tutors are able to create their specific teaching situation based on their knowledge on didactical methods and learning processes.
- Tutors are able to analyze and control communications in teaching according to established models of communication (Watzlawick, Schulz von Thun).
- Tutors are able to explain and apply different instruments to purposefully intervene in learning and teaching situations in single or group settings.
- Tutors are able to name the rights and duties of their role as tutors and act according to them.
- Tutors are able to estimate their strengths and weaknesses as a teacher and are able to name strategies of further development.

Content
The tutoring program deals with theoretical and practical aspects of teaching behavior within the scope of a self-learning period by means of online-learning issues as well as in an classroom event lasting several days. The following topics are introduced and a thematical overview is given of:
- tutoring role and expectations, partly contrary, connected with it
- giving and receiving feedback
- basics of conversation
- aspects of learning process
- basics of planning a lecture/class
- evaluation/assessment and psychological sources of error connected with it
- intercultural communication during lecture/class
- moderation of a colloquium and moderation in teaching
- techniques of presentation with video feedback
- guiding teams and integrating group processes in the setting of teaching
- handling of difficult teaching-learning-situations
- guiding and evaluating scientific writing
Students get to know and practice the method of collegial coaching. They sit in on each other’s lectures/classes and give each other feedback with the aid of a guideline. Tutors reflect in written form their own development as a teacher during the semester. Moreover they give each other a written feedback on this work of reflection.

Workload
Work amount is according to the kind of lecture/class. It is individually split in study in classroom and self-study. Contents of the program can be:
- Working on online units in preparation of an in-class event
- basic/advanced workshop
- collegial coaching
- collegial sitting in on lectures/classes
- written work of reflection and peer-review
Remarks
Please note that a maximum of 3 ECTS-points in the seminar module is distributed over Bachelor and Master.
The language of all events of the tutoring program is German.
Further information on the tutoring program is found on the homepage of Personnel Development service unit www.pew.kit.edu/387.php.
Course: Hydraulic Engineering and Water Management [6200509]

Coordinators: F. Nestmann

Part of the modules: Understanding and Prediction of Disasters 1 (p. 86), Understanding and Prediction of Disasters 2 (p. 87)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (50 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes

Content
- Motivation and visit to the Theodor-Rehbock-Water engineering laboratory
- Fundamentals of Hydrology
- Hydraulic calculations in stream water systems
- Numeric flow simulation
- Floodwater and measurement of flood protection structures
- Constructions in water management; their sizing and handling

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Course: Materials Science I [2125760]

Coordinators: M. Hoffmann
Part of the modules: Materials Science (p. 25)[WI1ING2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.

Conditions
None.

Learning Outcomes
The student

• knows and understands the correlation between atomic structure, microstructure and related macroscopic properties (e.g. mechanical or electrical behaviour)
• has basic knowledge on materials development and characterization

Content

• Atomic structure and interatomic bonding
• Structure of crystalline solids
• Imperfections in solids
• Mechanical behaviour
• Physical properties
• Solidification
• Thermodynamics of heterogeneous systems
• Phase diagrams
• Ferrous alloys

Workload
The total workload for this course is approximately 75.0 hours. For further information see German version.

Literature
Elective literature:
Werkstoffwissenschaften, Schatt, Werner / Worch, Hartmut (Hrsg.) Wiley-VCH, Weinheim, ISBN-10: 3-527-30535-1
Course: Materials Science II for Business Engineers [2126782]

Coordinators: M. Hoffmann

Part of the modules: Emphasis Materials Science (p. 66)[WI3INGMB9], Emphasis in Fundamentals of Engineering (p. 65)[WI3INGMB8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the winter term is carried out by a written or oral exam.

Conditions
The module Material Science [WI1ING2] has to be completed beforehand.

Learning Outcomes
Students know how to read binary phase diagrams and are able to explain the microstructural evolution of metallic and ceramic materials under equilibrium and non-equilibrium conditions. They know the most important alloys of iron-, aluminium-, and copper-based materials. Students are aware of the principle structures of polymers, non metallic inorganic glasses and ceramics and are able to derive differences in materials properties.

Content
The course gives an overview of different heat treatments for steels to obtain defined microstructures such as martensite or pearlite and discusses their impact on the mechanical properties. Different thermally activated processes, such as diffusion, creep, recovery and recrystallization are introduced and analyzed and terms of their relevance for materials engineering. Heat treatments and thermally activated processes are also related to aluminium and copper alloys. The second part of the course covers structure, processing and applications of polymers, nonmetallic inorganic glasses and ceramics. Finally an overview is given of the most important materials testing methods.

Workload
regular attendance: 32 hours
self-study: 118 hours

Literature
Elective literature:

Course: Machine Tools and Industrial Handling [2149902]

Coordinators: J. Fleischer
Part of the modules: Machine Tools and Industrial Handling (p. 78) [WI3INGMB32]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4/2</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
None

Learning Outcomes
The students . . .

- are capable to explain the use and application of machine tools and handling devices as well as differentiate their characteristics and structure.
- are able to name and describe the essential components (frame, main spindles, feed axis, peripheral equipment, control) of machine tools.
- Are capable to distinguish and select and describe the essential components regarding structure, characteristics advantages and disadvantages.
- are enabled to dimension the main components of machine tools.
- are able to name and describe the control principles of machine tools.
- are capable to name examples of machine tools and industrial handling as well as to deduce compare the essential components. Additionally they can allocate manufacturing processes.
- are enabled to identify drawbacks as well as derive and assess measures for improvements.
- are qualified to apply methods for selection and evaluation of machine tools.
- are experienced to deduce the particular failure characteristics of a ball screw.

Content
The lecture provides an overview of machine tool and handling devices structures, use and application areas. Within the lecture based and industrially oriented knowledge for selection, dimensioning and evaluation is conveyed. First the components of machine tools are explained systematically. Here the distinctive features of dimensioning machine tools are deduced followed by the integral dimensioning of machine tools. Subsequently the use of machine tools is shown in exemplary application areas e.g. turning, milling, grinding, metal forming, sheet metal forming and gear cutting.
The lecture provides an inside view of industrial application and is illustrated with current examples.
The topics are as follows:

- Frame and frame components
- Main drives and main spindles
- Requirements for feed axes
- Electro-mechanical feed axis
- Fluidic feed axes
- Control technologies
- Peripheral components
- Metrological assessment
- Machine maintenance
- Process-diagnosis
- Machinery Directiv
- Machine tool examples
Workload
regular attendance: 63 hours
self-study: 207 hours

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).

Literature
Lecture Notes

Remarks
None
Course: Competition in Networks [2561204]

Coordinators: K. Mitusch
Part of the modules: Economic Policy I (p. 53)[WI3VWL10], Specialization in Customer Relationship Management (p. 45)[WI3BWLISM5], Applied Microeconomics (p. 55)[WI3VWL13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Conditions
None.

Recommendations
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required. Useful, but not necessary, are basic knowledge of industrial economics, principal agent theory, and contract theory.

Learning Outcomes
The Students
- will get a vivid idea of the special characteristics of network industries like telecom, utilities, IT and transport sectors.
- will acquire the basic economic understanding of network industries concerning competition, competitive distortion, state intervention, pricing and financing
- will be able to apply abstract concepts and formal methods to use in these fields

Content
Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies – competition or cooperation or both – are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims of industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Will be announced in the lecture.
Course: Seminar Economic Theory [SemWIOR2]

Coordinators: C. Puppe
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>seminar</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
See corresponding module information.
At least one of the courses Game Theory I [2520525] and Welfare Economics [2520517] should have been attended beforehand.

Learning Outcomes
See German version.

Content

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the end of the recess period.

Remarks
see German version.
Course: Knowledge Management [2511300]

Coordinators: R. Studer

Part of the modules: Electives in Informatic (p. 58)[WI3INFO2], Emphasis Informatics (p. 56)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

ECTS Credits:

Hours per week:

Type: lecture + exercise

Term: Winter term

Instruction language: de

Learning Control / Examinations

Written Examination (60 min) according to §4, Abs. 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, 2 of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Conditions

Basics in logic, e.g. from lecture Foundations of Informatics 1.

Learning Outcomes

Students

- know different application domains of knowledge management
- know different (specifically semantic and social) technologies of knowledge management
- are able to judge the applicability of business software with regard to aspects of knowledge management
- are able to judge the long term value of knowledge management in organisations and compare it to possible costs

Content

In modern companies, knowledge is increasingly important for fulfilling central tasks (such as continuous business process improvement, increasing innovation, increasing customer satisfaction, strategic planning etc). Therefore, knowledge management has become a critical success factor.

The lecture covers different types of knowledge that play a role in knowledge management, the corresponding knowledge processes (generation, capture, access and usage of knowledge) as well as methodologies for the introduction of knowledge management solutions.

The lecture will emphasize computer-based support for knowledge management, such as:

- Ontology-based Knowledge Management
- Communities of Practice, Collaboration Tools, Social Software
- Business-process Oriented Knowledge Management
- Personal Knowledge Management
- Case Based Reasoning (CBR)
- Linked Open Data

Workload

The total workload for this course is approximately 120 hours. For further information see German version.

Media

Slides and scientific publications as reading material.

Literature

- C. Beierle, G. Kern-Isberner: Methoden wissensbasierter Systeme, Vieweg, Braunschweig/Wiesbaden, 2. überarb. Auflage, 2005

Elective literature:

Course: Welfare Economics [252517]

Coordinators: C. Puppe
Part of the modules: Economic Theory (p. 54)[WI3VWL12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Type</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>lecture + exercise</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam at the end of the semester (according to Section 4 (2), 1 or 2 of the examination regulation).

Conditions
The courses Economics I: Microeconomics [2610012] and Economics II: Macroeconomics [2600014] have to be completed beforehand.

Learning Outcomes
See German version.

Content
The lecture “Welfare economics” deals with the question of efficiency and distributional properties of economic allocations, in particular allocations of market equilibria. The lecture is based on the two welfare theorems: The first welfare theorem (under weak preconditions) says that every competitive equilibrium is efficient. According to the second welfare theorem (under stronger preconditions), every efficient allocation can be preserved as a competitive equilibrium through adequate choices of initial endowments. Afterwards, the terms and definitions of envy-freeness and the related concept of egalitarian equivalence in the context of the general theory of equilibrium will be discussed. The second part of the lecture deals with the principle of “social justice” (i.e. distributational justice). The fundamental principles of utilitarianism, Rawl’s theory of justice as well as John Roemer’s theory of equality of opportunity are explained and critically analyzed.

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature
Elective literature:

Remarks
The next course will be held in the summer 2015 and afterwards every two years in the summer.
Appendix: Qualification objectives of the Bachelor’s degree in Industrial Engineering and Management

Graduates of the Bachelor’s degree in Industrial Engineering and Management are equipped with strategically oriented knowledge in economics, engineering sciences, mathematics and information technology acquired during the three-semester core program.

The economics section includes business-related topics from the financial industry, company management, information industry, production management, marketing and accounting as well as economic correlations of microeconomics and macroeconomics.

The math section is divided into mathematics, statistics and operations research. It includes analysis and linear algebra, descriptive and inductive statistics, elementary probability theory and optimization methods.

In the engineering field, the focus is on material and energy balances, material characterization and development, engineering mechanics and electrical engineering.

The technological area is covered by the Applied and Theoretical Computer Science. Through the comprehensive methodological basis, the graduates are in a position to acknowledge and apply specialized basic concepts, methods, models and approaches. They are also able to analyze and review economic and technological structures and processes.

Graduates can independently solve basic engineering calculations and are able to apply important mathematical concepts and methods to solve concrete tasks.

The graduates have deeper knowledge in business administration, economics, computer science, operations research and engineering. Specialization is either done in the field of business administration or engineering depending on one’s wishes. Additional knowledge in statistics, law or sociology is also offered depending on one’s interests. They are able to react based on this knowledge from the different subjects and disciplines. They thereby largely operate independently in economic, technical and technological topics and survey, analyze, interpret and evaluate the situations systematically.

They are able to classify specialized problems as well as model and choose appropriate methods and procedures for solving the given tasks as well as derive improvement potentials. They know how to validate, illustrate and interpret the achieved results.

This practical use of their know-how also takes into account the social, scientific and ethical aspects.

Graduates of the Bachelor’s degree in Industrial Engineering and Management master the basics of project management and are able to assume responsibility in interdisciplinary teams. They are in a position to argue and defend their position both before expert representatives and laypersons.

They have the ability to apply the acquired information on career-related activities in the industry, service sector or in the public management as well as take up a Master’s degree program in Industrial Engineering and Management or any other related course.
Neubekanntmachung der Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Bachelorstudiengang Wirtschaftsingenieurwesen

in der Fassung vom 15. August 2008

Der Rektor hat seine Zustimmung am 06. März 2007 erteilt.

Aus Gründen der Lesbarkeit ist in dieser Satzung nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich, Ziele
 § 2 Akademischer Grad
 § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
 § 4 Aufbau der Prüfungen
 § 5 Anmeldung und Zulassung zu den Prüfungen
 § 6 Durchführung von Prüfungen und Erfolgskontrollen
 § 7 Bewertung von Prüfungen und Erfolgskontrollen
 § 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfungen, Wiederholung von Prüfungen und Erfolgskontrollen
 § 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
 § 10 Mutterschutz, Elternzeit
 § 11 Bachelorarbeit
 § 12 Berufspraktikum
 § 13 Zusatzmodule, Zusatzleistungen
 § 14 Prüfungsausschuss
 § 15 Prüfer und Beisitzende
 § 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Bachelorprüfung
 § 17 Umfang und Art der Bachelorprüfung
 § 18 Leistungsnachweise für die Bachelorprüfung
 § 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
 § 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
 § 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
 § 22 Aberkennung des Bachelorgrades
 § 23 Einsicht in die Prüfungsakten
 § 24 In-Kraft-Treten
I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Ziele
(1) Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Wirtschaftsingenieurwesen an der Universität Karlsruhe (TH).

(2) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, das erworben Wissen berufsfeldbezogen anzuwenden sowie einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können.

§ 2 Akademischer Grad
Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science“ (abgekürzt: „B.Sc.”) für den Bachelorstudiengang Wirtschaftsingenieurwesen verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Die Regelstudienzeit beträgt sechs Semester. Sie umfasst ein Betriebspraktikum, Prüfungen und die Bachelorarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind auf Fächer verteilt. Die Fächer sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Studienplan oder Modulhandbuch beschreiben Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren. Die Fächer und ihr Umfang werden in § 17 definiert.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 180 Leistungspunkte.

(5) Die Leistungspunkte sind in der Regel gleichmäßig auf die Semester zu verteilen.

(6) Lehrveranstaltungen/Prüfungen können auch in englischer Sprache angeboten/abgenommen werden.

§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen,
 3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z. B. Vorträge, Markstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Modulhandbuch ausgewiesen sind.
(3) In den Fachprüfungen (nach § 17 Absatz 2 und Absatz 3 Nr. 1 bis 7) sind mindestens 50 vom Hundert einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Absatz 2 Nr. 1 und 2) abzulegen, die restliche Prüfung erfolgt durch Erfolgskontrollen anderer Art (Absatz 2 Nr. 3).

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Die Zulassung zu den Prüfungen nach § 4 Absatz 2 Nr. 1 und 2 sowie zur Bachelorarbeit erfolgt im Studienbüro.

Um zu Prüfungen in einem Modul zugelassen zu werden, muss beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgegeben werden.

(2) Die Zulassung darf nur abgelehnt werden, wenn

1. der Studierende in einem mit Wirtschaftsingenieurwesen vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat oder

2. die in § 18 genannte Voraussetzung nicht erfüllt ist.

In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrollen (§ 4 Absatz 2 Nr. 1 bis 3) eines Moduls wird im Studienplan oder Modulhandbuch in Bezug auf die Lehrinhalte der betreffenden Lehrveranstaltungen und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Grundsätze zur Bildung der Modulteilprüfungsnoten und der Modulnote sowie Prüfer müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen von Prüfer und Studierendem kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Absatz 3 zu berücksichtigen.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

Bei Einvernehmen zwischen Prüfer und Kandidat kann der Prüfungsausschuss in begründeten Ausnahmefällen auch kurzfristig die Änderung der Prüfungsform genehmigen.

Wird die Wiederholungsprüfung einer schriftlichen Prüfung in mündlicher Form abgelegt, entfällt die mündliche Nachprüfung nach § 8 Absatz 2.

(4) Macht ein Studierender glaubhaft, dass er wegen länger andauernder oder ständig körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschrriebenen Form abzulegen, entscheidet der Prüfungsausschuss über eine alternative Form der Erfolgskontrollen.

(5) Bei Lehrveranstaltungen in englischer Sprache werden die entsprechenden Erfolgskontrollen in der Regel in englischer Sprache abgenommen.

(7) Mündliche Prüfungen (§ 4 Absatz 2 Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelpfungen abzu-nehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kollegenprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studierendem.

(10) Für Erfolgskontrollen anderer Art sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Studienleistung dem Studierenden zurechenbar ist.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Bei-sitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen
(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note fest-gesetzt.

(2) Im Bachelorzeugnis dürfen nur folgende Noten verwendet werden:

1	sehr gut (very good)	hervorragende Leistung
2	gut (good)	eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt
3	befriedigend (satisfactory)	eine Leistung, die durchschnittlichen Anforderungen entspricht
4	ausreichend (sufficient)	eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt
5	nicht ausreichend (failed)	eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt

Für die Bachelorarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1	1.0, 1.3	sehr gut
2	1.7, 2.0, 2.3	gut
3	2.7, 3.0, 3.3	befriedigend
4	3.7, 4.0	ausreichend
5	4.7, 5.0	nicht ausreichend
Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann die Benotung „bestanden“ (passed) oder „nicht bestanden“ (failed) vergeben werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf jeweils nur einmal angerechnet werden.

(6) Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur angerechnet werden, wenn die Benotung nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan oder Modulhandbuch festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

(9) Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten über die im Studienplan oder Modulhandbuch definierten Modulprüfungen nachgewiesen wird.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Ergebnisse der Bachelorarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

(11) Innerhalb der Regelstudienzeit, einschließlich der Urlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Fach auch mehr Leistungspunkte erworben werden als für das Bestehen der Fachprüfung erforderlich sind. In diesem Fall werden bei der Festlegung der Fachnote nur die Modulnoten berücksichtigt, die unter Abdeckung der erforderlichen Leistungspunkte die beste Fachnote ergeben.

Die in diesem Sinne für eine Fachprüfung nicht gewerteten Erfolgskontrollen und Leistungspunkte können im Rahmen der Zusatzfachprüfung nach § 13 nachträglich geltend gemacht werden.

(12) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Note</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>sehr gut</td>
</tr>
<tr>
<td>1.6 bis 2.5</td>
<td>gut</td>
</tr>
<tr>
<td>2.6 bis 3.5</td>
<td>befriedigend</td>
</tr>
<tr>
<td>3.6 bis 4.0</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>
(13) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Bachelorprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (failed) – es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (failed) – es sind erhebliche Verbesserungen erforderlich</td>
<td></td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

§ 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfung, Wiederholung von Prüfungen und Erfolgskontrollen

(1) Die Modulteilprüfung Mikroökonomie (VWL I) im Fach Volkswirtschaftslehre (gemäß § 17 Absatz 2 Nr. 2) und die Modulteilprüfung Statistik I im Fach Statistik (gemäß § 17 Absatz 2 Nr. 7) sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass er die Fristüberschreitung nicht zu vertreten hat, hierüber entscheidet der Prüfungsausschuss auf Antrag des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

(2) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als 4.0 (ausreichend) sein.

(3) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(5) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Absatz 2 Nr. 3) wird im Modulhandbuch geregelt.

Bei nicht bestandener Erfolgskontrolle sind dem Kandidaten Umfang und Frist der Wiederholung in geeigneter Weise bekannt zu machen.

Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.

Eine Fachprüfung ist nicht bestanden, wenn mindestens ein Modul des Faches nicht bestanden ist.

Ist gemäß § 34 Absatz 2 Satz 3 LHG die Bachelorprüfung bis zum Beginn der Vorlesungszeit des zehnten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass der Studierende die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss.

Der Prüfungsanspruch erlischt endgültig, wenn mindestens einer der folgenden Gründe vorliegt:
1. Der Prüfungsausschuss lehnt einen Antrag auf Fristverlängerung nach Absatz 1 oder Absatz 10 ab.
2. Die Bachelorarbeit ist endgültig nicht bestanden.
3. Eine Erfolgskontrolle nach § 4 Absatz 2 Nr. 1 und 2 ist in einem Fach endgültig nicht bestanden.

Eine Erfolgskontrolle ist dann endgültig nicht bestanden, wenn keine Wiederholungsmöglichkeit im Sinne von Absatz 2 mehr besteht oder gemäß Absatz 6 genehmigt wird. Dies gilt auch sinngemäß für die Bachelorarbeit.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

Eine Modulprüfung wird mit „nicht ausreichend“ bewertet, wenn der Studierende einen Prüfungstermin ohne triftigen Grund versäumt oder wenn er nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der Studierende hat die Fristüberschreitung nicht zu vertreten.

Die Anerkennung des Rücktritts ist ausgeschlossen, wenn bis zum Eintritt des Hinderungsgrun-
des bereits Prüfungsleistungen erbracht worden sind und nach deren Ergebnis die Prüfung nicht
bestanden werden kann.

Wird der Grund anerkannt, wird ein neuer Termin anberaumt. Die bereits vorliegenden Prü-
fungsergebnisse sind in diesem Fall anzurechnen.

Bei Modulprüfungen, die aus mehreren Prüfungen bestehen, werden die Prüfungsleistungen
dieses Moduls, die bis zu einem anerkannten Rücktritt bzw. einem anerkannten Versäumnis ei-
er Prüfungsleistung dieses Moduls erbracht worden sind, angerechnet.

(4) Versucht der Studierende das Ergebnis einer Erfolgskontrolle durch Täuschung oder Benut-
zung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit
„nicht ausreichend“ (5.0) bewertet.

(5) Ein Studierender, der den ordnungsgemäßen Ablauf der Prüfung stört, kann vom jeweiligen
Prüfer oder der aufsichtsführenden Person von der Fortsetzung der Modulprüfung ausgeschlos-
sen werden. In diesem Fall wird die betreffende Prüfungsleistung mit „nicht ausreichend“ (5.0)
bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss den Studierenden von der
Erbringung weiterer Prüfungsleistungen ausschließen.

(6) Der Studierende kann innerhalb einer Frist von einem Monat verlangen, dass Entscheidun-
gen gemäß Absatz 4 und Absatz 5 vom Prüfungsausschuss überprüft werden. Belastende Ent-
scheidungen des Prüfungsausschusses sind unverzüglich schriftlich mitzuteilen. Sie sind zu be-
gründen und mit einer Rechtsbehelfsbelehrung zu versehen. Vor einer Entscheidung ist Gele-
genheit zur Äußerung zu geben.

(7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei
Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit

(1) Auf Antrag sind die Mutterschutzfristen, wie sie im jeweils gültigen Gesetz zum Schutz der
erwerbstätigen Mutter (MuSchG) festgelegt sind, entsprechend zu berücksichtigen. Dem Antrag
sind die erforderlichen Nachweise beizufügen. Die Mutterschutzfristen unterbrechen jede Frist
nach dieser Prüfungsordnung. Die Dauer des Mutterschutzes wird nicht in die Frist eingerechnet.

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweiligen gültigen Gesetzes
(BErzGG) auf Antrag zu berücksichtigen. Der Studierende muss bis spätestens vier Wochen vor
dem Zeitpunkt, von dem er die Elternzeit antreten will, dem Prüfungsausschuss unter Beifügung
der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum er Elternzeit in Anspruch
nehmen will. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vor-
liegen, die bei einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, und teilt dem
Studierenden das Ergebnis sowie die neu festgesetzten Prüfungszeiten unverzüglich mit. Die
Bearbeitungszeit der Bachelorarbeit kann nicht durch Elternzeit unterbrochen werden. Die ge-
stellte Arbeit gilt als nicht vergeben. Nach Ablauf der Elternzeit erhält der Studierende ein neues
Thema.

§ 11 Bachelorarbeit

(1) Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass der Studierende sich in der
Regel im 3. Studienjahr befindet und nicht mehr als eine der Fachprüfungen der ersten drei
Fachsemester laut § 17 Absatz 2 noch nachzuweisen ist.

Vor Zulassung sind Betreuer, Thema und Anmeldedatum dem Prüfungsausschuss bekannt zu
geben und im Falle einer Betreuung außerhalb der Fakultät für Wirtschaftswissenschaften durch
den Prüfungsausschuss zu genehmigen.

(2) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind vom Betreuer so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

(4) Die Bachelorarbeit kann von jedem Prüfer nach § 15 Absatz 2 vergeben und betreut werden. Soll die Bachelorarbeit außerhalb der Fakultät angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses gemäß Absatz 1. Dem Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsauftrag zur bewertende Beitrag des einzelnen Studierenden aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterschiedbar ist und die Anforderung nach Absatz 3 erfüllt.

(5) Bei der Abgabe der Bachelorarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5.0) bewertet.

§ 12 Berufspraktikum

(1) Während des Bachelorstudiums ist ein mindestens achtwöchiges Berufspraktikum, welches mit acht Leistungspunkten bewertet wird, abzuleisten.

(2) Der Studierende setzt sich dazu in eigener Verantwortung mit geeigneten Unternehmen in Verbindung. Der Praktikant wird von einem Prüfer nach § 15 Absatz 2 und einem Mitarbeiter des Unternehmens betreut.

(3) Am Ende des Berufspraktikums ist dem Prüfer ein kurzer Bericht abzugeben und eine Kurzpräsentation über die Erfahrungen im Berufspraktikum zu halten.

(4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens achtwöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Die Durchführung des Berufspraktikums ist im Studienplan oder Modulhandbuch zu regeln. Das Berufspraktikum geht nicht in die Gesamtnote ein.
§ 13 Zusatzmodule, Zusatzleistungen

(1) Der Studierende kann sich weiteren Prüfungen in Modulen unterziehen. § 3, § 4 und § 8 Absatz 10 der Prüfungsordnung bleiben davon unberührt.

(2) Maximal zwei Zusatzmodule mit jeweils mindestens neun Leistungspunkten werden auf Antrag des Studierenden in das Bachelorzeugnis aufgenommen und entsprechend gekennzeichnet.

Zusatzmodule müssen nicht im Studienplan oder Modulhandbuch definiert sein. Im Zweifelsfall entscheidet der Prüfungsausschuss.

(3) Der Studierende hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 14 Prüfungsausschuss

(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden vom Fakultätsrat bestellt, die Mitglieder der Gruppe der wissenschaftlichen Mitarbeiter nach § 10 Absatz 1 Satz 2 Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor sein. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch ein Prüfungssekretariat unterstützt.

(3) Der Prüfungsausschuss regelt die Auslegung und die Umsetzung der Prüfungsordnung in die Prüfungspraxis der Fakultät. Er achtet darauf, dass die Bestimmungen der Prüfungsordnung eingehalten werden. Er berichtet regelmäßig dem Fakultätsrat über die Entwicklung der Prüfungen und Studienzeiten sowie über die Verteilung der Fach- und Gesamtnoten und gibt Anregungen zur Reform des Studienplans und der Prüfungsordnung.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben in dringenden Angelegenheiten und für alle Regelfälle auf den Vorsitzenden des Prüfungsausschusses übertragen.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennender Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuzuziehen. Er hat in diesem Punkt Stimmrecht.

§ 15 Prüfer und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.

(2) Prüfer sind Hochschullehrer und habilitierte Mitglieder sowie wissenschaftliche Mitarbeiter der jeweiligen Fakultät, denen die Prüfungsbefugnis übertragen wurde. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Bachelorarbeit muss ein Prüfer Hochschullehrer sein.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.

(4) Zum Beisitzenden darf nur bestellt werden, wer einen dem jeweiligen Prüfungsgegenstand entsprechenden akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

(2) Werden Leistungen angerechnet, so werden die Noten – soweit die Notensysteme vergleichbar sind – übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Falls es sich dabei um Leistungen handelt, die im Rahmen eines Auslandsstudiums erbracht werden, während der Studierende an der Universität Karlsruhe (TH) für Wirtschaftsingenieurwesen immatrikuliert ist, kann der Prüfungsausschuss für ausgewählte Sprachen die Dokumentation anerkannter Studienleistungen im Transcript of Records mit ihrer fremdsprachlichen Originalbezeichnung festlegen. Liegen keine Noten vor, wird die Leistung nicht anerkannt. Der Studierende hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen und Modulprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen und Modulprüfungen, die in staatlich anerkannten Fernstudien und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien erworben wurden.

(5) Die Anerkennung von Teilen der Bachelorprüfung kann versagt werden, wenn in einem Studiengang mehr als die Hälfte aller Erfolgskontrollen und/oder mehr als die Hälfte der erforderlichen Leistungspunkte und/oder die Bachelorarbeit anerkannt werden sollen.

(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreter zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.
II. Bachelorprüfung

§ 17 Umfang und Art der Bachelorprüfung

(2) In den ersten drei Semestern sind Fachprüfungen aus folgenden Fächern durch den Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:

1. Betriebswirtschaftslehre im Umfang von 15 Leistungspunkten,
2. Volkswirtschaftslehre im Umfang von 10 Leistungspunkten,
3. Informatik im Umfang von 15 Leistungspunkten,
4. Operations Research im Umfang von 9 Leistungspunkten,
5. Ingenieurwissenschaften im Umfang von 10 Leistungspunkten,
6. Mathematik im Umfang von 21 Leistungspunkten,
7. Statistik im Umfang von 10 Leistungspunkten.

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Fächern sind im Studienplan oder Modulhandbuch festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(3) Im vierten bis sechsten Semester sind Fachprüfungen im Umfang von sieben Modulen mit je neun Leistungspunkten abzulegen. Die Module verteilen sich folgendermaßen auf die Fächer:

1. Betriebswirtschaftslehre,
2. Volkswirtschaftslehre,
3. Informatik,
4. Operations Research,
5. Ingenieurwissenschaften,
6. Betriebswirtschaftslehre oder Ingenieurwissenschaften,

Die in den Fächern zur Auswahl stehenden Module sowie die diesen zugeordneten Lehrveranstaltungen werden im Studienplan oder Modulhandbuch bekannt gegeben. Der Studienplan oder das Modulhandbuch kann auch Mehrfachmodule definieren, die aus 18 Leistungspunkten (Doppelmodul) bzw. 27 Leistungspunkten (Dreifachmodul) bestehen und für Fachprüfungen nach 1. bis 7. bei in Summe mindestens gleicher Leistungspunktezahl entsprechend anrechenbar sind. Auch die Mehrfachmodule mit ihren zugeordneten Lehrveranstaltungen, Leistungspunkten und Fächern bzw. Fächerkombinationen sind im Studienplan oder Modulhandbuch geregelt.

(6) Prüfungen nach § 17 Absatz 3 können in einem Fach nur absolviert werden, wenn eine eventuelle Prüfung dieses Fachs nach § 17 Absatz 2 erfolgreich absolviert wurde. Auf Antrag eines Studierenden kann der Prüfungsausschuss hierzu Ausnahmen genehmigen.
§ 18 Leistungsnachweise für die Bachelorprüfung

Voraussetzung für die Anmeldung zur letzten Prüfung der Bachelorprüfung nach § 17 Absatz 1 ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 12. In Ausnahmefällen, die der Studierende nicht zu vertreten hat, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote

(1) Die Bachelorprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden die Noten gemäß § 17 Absatz 3 und 4 sowie der Bachelorarbeit jeweils mit dem doppelten Gewicht der Noten gemäß § 17 Absatz 2 berücksichtigt.

(3) Hat der Studierende die Bachelorarbeit mit der Note 1.0 und die Bachelorprüfung mit einem Durchschnitt von 1.1 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

(2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen sowie dem Seminarmodul und der Bachelorarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist vom Dekan der Fakultät und vom Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(5) Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.
III. Schlussbestimmungen

§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
(1) Der Bescheid über die endgültig nicht bestandene Bachelorprüfung wird dem Studierenden durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.
(2) Hat der Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 22 Aberkennung des Bachelorgrades
(1) Hat der Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.
(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.
(3) Vor einer Entscheidung ist Gelegenheit zur Äußerung zu geben.
(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung auf Grund einer Täuschung für nicht bestanden erklärt wurde.
(6) Die Aberkennung des akademischen Grades richtet sich nach den gesetzlichen Vorschriften.

§ 23 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Bachelorprüfung wird dem Studierenden auf Antrag innerhalb eines Jahres Einsicht in seine Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.
(3) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 24 In-Kraft-Treten

Karlsruhe, den 06. März 2007

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Index

A

Academic learning ... 296
Advanced powder metals .. 286
Advanced Programming - Application of Business Software 280
Advanced Programming - Java Network Programming 279
Advanced Topics in Economic Theory 101
Airport logistics ... 230
Algorithms for Internet Applications 102
Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines ... 100
Analysis of multivariate Data 103
Analysis tools for combustion diagnostics 246
Analytical CRM ... 104
Application of technical logistics in modern crane systems 109
Application of technical logistics in sorting- and distribution technology ... 110
Applications of Operations Research (M) 59
Applied Econometrics ... 301
Applied Informatics I - Modelling 106
Applied Informatics II - IT Systems for e-Commerce 107
Applied Microeconomics (M) 55
Asset Management ... 112
Auction & Mechanism Design 113
Automation of Power Grids 120
Automotive Engineering (M) 63
Automotive Engineering I 122, 195
Automotive Engineering II 123, 196
Automotive Logistics .. 229

B

Bachelor Seminar in Information Engineering and Management .. 124
Bachelor Thesis (M) .. 99
Basic Principles of Economic Policy 158
Basics of Technical Logistics 203
Basics of Track Guided Transport Systems 204
Basics of Track Guided Transport Systems (M) 85
BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II 136
BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III 137
Bionics for Engineers and Natural Scientists 138
Brand Management .. 235
BUS-Controls ... 140
Business Administration (M) 18
Business Administration: Finance and Accounting 132
Business Administration: Production Economics and Marketing .. 133
Business Administration: Strategic Management and Information Engineering and Management 134
Business in focus ... 300
Business Strategies of Banks 192

C

Civil Law for Beginners .. 135
Climatology ... 224
Combustion Engines I .. 370
Combustion Engines I (M) 71

Computation Engines II 371
Computation Engines II (M) 72
Competition in Networks 386
Computer Integrated Planning of New Products 291
Constitution and Properties of Wear resistant materials 115
Construction Technology 126
Control Engineering (M) 80
Control Technology .. 355
Corporate Governance in Energy Economics 366
Cost and Management Accounting 221
CRM and Service Management (M) 43
Customer Relationship Management 141

D

data Mining and Applications 143
Database Systems ... 145
Decision Theory .. 171
Derivatives ... 146
Design and Construction of Buildings 127
Design Basics in Highway Engineering 129
Design, Construction and Sustainability Assessment of Buildings (M) ... 47
eBusiness and Service Management (M) 38
Economic Policy I (M) ... 53
Economic Theory (M) .. 54
Economics (M) .. 20
Economics and Behavior 148
Economics I: Microeconomics 376
Economics II: Macroeconomics 377
Economics III: Introduction in Econometrics 378
Efficient Algorithms ... 149
eFinance (M) ... 42
eFinance: Information Engineering and Management for Securities Trading 150
Elective „Educational development for student teachers“ 379
Elective Module Law (M) 91
Electives in Informatic (M) 58
Electric Power Generation & Power Grid 172
Electrical Engineering (M) 27
Electrical Engineering I 163
Electrical Engineering II 164
Elements of Technical Logistics 165
Elements of Technical Logistics and Project 166
Emphasis in Fundamentals of Engineering (M) 65
Emphasis Informatics (M) 56
Emphasis Materials Science (M) 66
Energy Conversion and Increased Efficiency in Internal Combustion Engines 169
Energy Economics (M) .. 33
Energy efficient intralogistic systems 167
Energy Generation and Network Components (M) 82
Energy Policy .. 168
Engine measurement techniques 251
Engineering Mechanics (M) 26
Engineering, Design and Operation of Power Transformers 114
Enterprise Risk Management 170
Entrepreneurship Seminar 308
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essentials of Finance (M)</td>
<td>34</td>
</tr>
<tr>
<td>Exchanges</td>
<td>139</td>
</tr>
<tr>
<td>Explorative-interpretative Project Seminar</td>
<td>285</td>
</tr>
<tr>
<td>Extracurricular Module in Engineering (M)</td>
<td>88</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Facilities and Rolling Stock</td>
<td>108</td>
</tr>
<tr>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>350</td>
</tr>
<tr>
<td>Failure of structural materials: deformation and fracture</td>
<td>374</td>
</tr>
<tr>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>373</td>
</tr>
<tr>
<td>Financial Accounting and Cost Accounting</td>
<td>292</td>
</tr>
<tr>
<td>Financial Econometrics</td>
<td>183</td>
</tr>
<tr>
<td>Financial Intermediation</td>
<td>185</td>
</tr>
<tr>
<td>Financial Management</td>
<td>184</td>
</tr>
<tr>
<td>Fluid Technology</td>
<td>186</td>
</tr>
<tr>
<td>Foundations of Digital Services</td>
<td>187</td>
</tr>
<tr>
<td>Foundations of Informatics I</td>
<td>197</td>
</tr>
<tr>
<td>Foundations of Informatics II</td>
<td>198</td>
</tr>
<tr>
<td>Foundations of Marketing (M)</td>
<td>49</td>
</tr>
<tr>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>131</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicles Bodies I</td>
<td>205</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicles Bodies II</td>
<td>206</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>207</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>208</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development I</td>
<td>209</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development II</td>
<td>210</td>
</tr>
<tr>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>199</td>
</tr>
<tr>
<td>Fundamentals of construction (M)</td>
<td>84</td>
</tr>
<tr>
<td>Fundamentals of Production Management</td>
<td>202</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Gas Engines</td>
<td>188</td>
</tr>
<tr>
<td>Gear Cutting Technology</td>
<td>375</td>
</tr>
<tr>
<td>Geological Hazards and Risks</td>
<td>190</td>
</tr>
<tr>
<td>Global Optimization I</td>
<td>193</td>
</tr>
<tr>
<td>Global Optimization II</td>
<td>194</td>
</tr>
<tr>
<td>Global vehicle evaluation within virtual road test</td>
<td>191</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles (M)</td>
<td>64</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>173</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>174</td>
</tr>
<tr>
<td>Hauptvermessungsübung III</td>
<td>211</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>263</td>
</tr>
<tr>
<td>Human Resources and Organizations (M)</td>
<td>51</td>
</tr>
<tr>
<td>Hydraulic Engineering and Water Management</td>
<td>381</td>
</tr>
<tr>
<td>Hydrology</td>
<td>212</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Industrial Organization</td>
<td>213</td>
</tr>
<tr>
<td>Industrial Production I (M)</td>
<td>32</td>
</tr>
<tr>
<td>Information Engineering</td>
<td>214</td>
</tr>
<tr>
<td>Information Systems in Logistics and Supply Chain Management</td>
<td>215</td>
</tr>
<tr>
<td>Integrated production planning</td>
<td>218</td>
</tr>
<tr>
<td>Integrated Production Planning (M)</td>
<td>76</td>
</tr>
<tr>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>217</td>
</tr>
<tr>
<td>International Finance</td>
<td>220</td>
</tr>
<tr>
<td>International Marketing</td>
<td>219</td>
</tr>
<tr>
<td>Internship (M)</td>
<td>97</td>
</tr>
<tr>
<td>Interpretative Social Research Methods</td>
<td>245</td>
</tr>
<tr>
<td>Introduction to Ceramics</td>
<td>223</td>
</tr>
<tr>
<td>Introduction to Energy Economics</td>
<td>153</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>156</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II: Dynamics</td>
<td>157</td>
</tr>
<tr>
<td>Introduction to Game Theory</td>
<td>155</td>
</tr>
<tr>
<td>Introduction to GIS for students of natural, engineering and geosciences</td>
<td>159</td>
</tr>
<tr>
<td>Introduction to Informatics (M)</td>
<td>21</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>271</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology I</td>
<td>200</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology II</td>
<td>201</td>
</tr>
<tr>
<td>Introduction to Operations Research (M)</td>
<td>23</td>
</tr>
<tr>
<td>Introduction to Operations Research I</td>
<td>151</td>
</tr>
<tr>
<td>Introduction to Operations Research II</td>
<td>152</td>
</tr>
<tr>
<td>Introduction to Programming with Java</td>
<td>278</td>
</tr>
<tr>
<td>Introduction to Public Finance</td>
<td>154</td>
</tr>
<tr>
<td>Introduction to Technical Logistics (M)</td>
<td>67</td>
</tr>
<tr>
<td>Investments</td>
<td>222</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Key qualifications ZAK</td>
<td>295</td>
</tr>
<tr>
<td>Knowledge Management</td>
<td>388</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Logistics - organisation, design and control of logistic systems</td>
<td>228</td>
</tr>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>227</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling</td>
<td>384</td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling (M)</td>
<td>78</td>
</tr>
<tr>
<td>Management Accounting (M)</td>
<td>31</td>
</tr>
<tr>
<td>Management Accounting 1</td>
<td>231</td>
</tr>
<tr>
<td>Management Accounting 2</td>
<td>232</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>367</td>
</tr>
<tr>
<td>Management of Business Networks</td>
<td>233</td>
</tr>
<tr>
<td>Management of Business Networks (Introduction)</td>
<td>234</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>262</td>
</tr>
<tr>
<td>Managing the Marketing Mix</td>
<td>237</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>182</td>
</tr>
<tr>
<td>Manufacturing Technology (M)</td>
<td>75</td>
</tr>
<tr>
<td>Markov Decision Models I</td>
<td>356</td>
</tr>
<tr>
<td>Markov Decision Models II</td>
<td>357</td>
</tr>
<tr>
<td>Mass and Energy Balances for Reacting Systems</td>
<td>358</td>
</tr>
<tr>
<td>Mass and Energy Balances for Reacting Systems (M)</td>
<td>24</td>
</tr>
<tr>
<td>Material flow in logistic systems</td>
<td>238</td>
</tr>
<tr>
<td>Materials and Processes for Body Lightweight Construction in the Automotive Industry</td>
<td>239</td>
</tr>
<tr>
<td>Materials Science (M)</td>
<td>25</td>
</tr>
<tr>
<td>Materials Science I</td>
<td>382</td>
</tr>
<tr>
<td>Materials Science II for Business Engineers</td>
<td>383</td>
</tr>
<tr>
<td>Mathematics (M)</td>
<td>28</td>
</tr>
<tr>
<td>Mathematics I</td>
<td>240</td>
</tr>
<tr>
<td>Mathematics II</td>
<td>241</td>
</tr>
<tr>
<td>Mathematics III</td>
<td>242</td>
</tr>
<tr>
<td>Metal Forming</td>
<td>365</td>
</tr>
<tr>
<td>Meteorological Natural Hazards</td>
<td>244</td>
</tr>
</tbody>
</table>
Remote Sensing Methods .. 181
Remote Sensing Systems ... 180
Renewable Energy – Resources, Technology and Economics 293
Risk and Insurance Management (M) 35

S
Scientific writing ... 299
Selected Applications of Technical Logistics 116
Selected Applications of Technical Logistics and Project . 117
Selected Topics in Public Management and Governance .. 119
Selected Topics on Optics and Microoptics for Mechanical En-
ergines ... 118
Seminar Conveying Technology and Logistics 307
Seminar Data Mining I ... 303
Seminar Economic Theory .. 387
Seminar Efficient Algorithms ... 304
Seminar Energy Economics .. 305
Seminar Financial Economics and Risk Management 312
Seminar Human Resource Management 309
Seminar Human Resources and Organizations 321
Seminar in Behavioral and Experimental Economics 310
Seminar in Continuous Optimization 322
Seminar in Discrete Optimization 330
Seminar in Economic Policy .. 315
Seminar in Engineering Science 216
Seminar in Enterprise Information Systems 302
Seminar in Experimental Economics 331
Seminar in Finance .. 311
Seminar in Industrial Production 316
Seminar in International Economy 313
Seminar in Marketing and Sales (Bachelor) 314
Seminar in Mathematics ... 243
Seminar in strategic and behavioral marketing 329
Seminar Information Engineering and Management 317
Seminar Knowledge Management 328
Seminar Management Accounting 318
Seminar Mobility Services .. 319
Seminar Module (M) .. 94
Seminar on Macroeconomic Theory 333
Seminar on Morals and Social Behavior 320
Seminar on Network Economics 334
Seminar on Topics in Experimental Economics 321
Seminar on Topics in Political Economics 322
Seminar paper “Production Engineering” 338
Seminar Public Finance .. 306
Seminar Risk and Insurance Management 324
Seminar Service Science, Management & Engineering 325
Seminar Statistics ... 326
Seminar Stochastic Models .. 327
Seminar Transport Economics .. 335
Seminar: Legal Studies .. 336
Seminar: Management and Organization 337
Services Marketing and B2B Marketing 340
Simulation I ... 340
Simulation II ... 341
Simulation of Coupled Systems 339
Social structures of modern societies 344
Sociology/Empirical Social Research (M) 92
Software Engineering .. 342
Software Laboratory: OR Models (M) 343
Spatial Planning and Planning Law 288
Special Sociology ... 348
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Topics in Information Engineering & Management</td>
<td>346</td>
</tr>
<tr>
<td>Special Topics in Management Accounting</td>
<td>345</td>
</tr>
<tr>
<td>Special Topics of Applied Informatics</td>
<td>347</td>
</tr>
<tr>
<td>Specialization in Customer Relationship Management (M)</td>
<td>45</td>
</tr>
<tr>
<td>Specialization in Production Engineering (M)</td>
<td>74</td>
</tr>
<tr>
<td>Specific Aspects in Taxation</td>
<td>349</td>
</tr>
<tr>
<td>Statistical Applications of Financial Risk Management (M)</td>
<td>89</td>
</tr>
<tr>
<td>Statistical Modeling of generalized regression models</td>
<td>354</td>
</tr>
<tr>
<td>Statistics (M)</td>
<td>29</td>
</tr>
<tr>
<td>Statistics and Econometrics (M)</td>
<td>90</td>
</tr>
<tr>
<td>Statistics and Econometrics in Business and Economics</td>
<td>351</td>
</tr>
<tr>
<td>Statistics I</td>
<td>352</td>
</tr>
<tr>
<td>Statistics II</td>
<td>353</td>
</tr>
<tr>
<td>Stochastic Methods and Simulation (M)</td>
<td>62</td>
</tr>
<tr>
<td>Strategy and Organization (M)</td>
<td>30</td>
</tr>
<tr>
<td>Structural and phase analysis</td>
<td>359</td>
</tr>
<tr>
<td>Structural Ceramics</td>
<td>360</td>
</tr>
<tr>
<td>Supply Chain Management (M)</td>
<td>40</td>
</tr>
<tr>
<td>Sustainability Assessment of Buildings</td>
<td>128</td>
</tr>
<tr>
<td>System Dynamics and Control Engineering</td>
<td>362</td>
</tr>
<tr>
<td>Systematic Materials Selection</td>
<td>361</td>
</tr>
<tr>
<td>Systems for Electrical Energy</td>
<td>162</td>
</tr>
<tr>
<td>Tactical and Operational Supply Chain Management</td>
<td>364</td>
</tr>
<tr>
<td>Technique of Electrical Installation</td>
<td>161</td>
</tr>
<tr>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>178</td>
</tr>
<tr>
<td>Topics in Finance I (M)</td>
<td>36</td>
</tr>
<tr>
<td>Topics in Finance II (M)</td>
<td>37</td>
</tr>
<tr>
<td>Topics of Sustainable Management of Housing and Real Estate</td>
<td>111</td>
</tr>
<tr>
<td>Transportation</td>
<td>372</td>
</tr>
<tr>
<td>Understanding and Prediction of Disasters 1 (M)</td>
<td>86</td>
</tr>
<tr>
<td>Understanding and Prediction of Disasters 2 (M)</td>
<td>87</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics I</td>
<td>175</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics II</td>
<td>176</td>
</tr>
<tr>
<td>Vehicle Development (M)</td>
<td>69</td>
</tr>
<tr>
<td>Vehicle Mechatronics I</td>
<td>177</td>
</tr>
<tr>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>368</td>
</tr>
<tr>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>369</td>
</tr>
<tr>
<td>Warehousing and distribution systems</td>
<td>225</td>
</tr>
<tr>
<td>Welfare Economics</td>
<td>389</td>
</tr>
<tr>
<td>Working methodically</td>
<td>298</td>
</tr>
</tbody>
</table>