Module Handbook
Industrial Engineering and Management (B.Sc.)
SPO 2007/2015
Winter term 18/19
Date: 09/18/2018
Contents

I About this handbook
- Notes and rules 11
- Online Version 12
- Contact 13

II The Bachelor's degree program in Industrial Engineering and Management
- Qualification objectives 14
- SPO 2015 14
- SPO 2007 15
- Key Skills 15

III Field structure
- Bachelor Thesis 19
- Internship 19
- Business Administration 19
 - Basic Program 19
 - Specialisation Program 19
- Economics 20
 - Basic Program 20
 - Specialisation Program 20
- Informatics 20
 - Basic Program 20
 - Specialisation Program 20
- Operations Research 21
 - Basic Program 21
 - Specialisation Program 21
- Engineering Sciences 21
 - Basic Program 21
 - Specialisation Program 21
- Mathematics 22
- Statistics 22
- Compulsory Elective Modules 22
 - Seminar Module 22
 - Elective Module 1 22
 - Business Administration 22
 - Engineering Sciences 23
 - Elective Module 2 24
 - Business Administration 24
 - Economics 24
10.3.3 Informatics .. 24
10.3.4 Operations Research .. 25
10.3.5 Engineering Sciences ... 25
10.3.6 Statistics ... 25
10.3.7 Law .. 25
10.3.8 Sociology ... 26

11 Additional Examinations .. 26

12 Master Transfer Account ... 27

IV Modules ... 28

Fundamentals of construction - M-BGU-101004 28
Mobility and Infrastructure - M-BGU-101067 29
Control Engineering - M-ETIT-101156 30
Electrical Engineering - M-ETIT-101155 31
Energy Generation and Network Components - M-ETIT-101165 32
Power Network - M-ETIT-102379 33
Sociology/ Empirical Social Research - M-GEISTSOZ-101167 34
Elective Module Law - M-INFO-101187 35
Automotive Engineering - M-MACH-101266 36
Combustion Engines I - M-MACH-101275 38
Combustion Engines II - M-MACH-101303 39
Emphasis in Fundamentals of Engineering - M-MACH-101261 41
Emphasis Materials Science - M-MACH-101262 42
Engineering Mechanics - M-MACH-101259 43
Handling Characteristics of Motor Vehicles - M-MACH-101264 44
Integrated Production Planning - M-MACH-101272 46
Introduction to Technical Logistics - M-MACH-101269 47
Machine Tools and Industrial Handling - M-MACH-101286 49
Manufacturing Technology - M-MACH-101276 50
Materials Science - M-MACH-101260 51
Mechanical Design - M-MACH-101299 52
Microsystem Technology - M-MACH-101287 55
Mobile Machines - M-MACH-101267 57
Product Lifecycle Management - M-MACH-101270 59
Rail System Technology - M-MACH-101274 61
Specialization in Production Engineering - M-MACH-101284 62
Vehicle Development - M-MACH-101265 63
Mathematics 1 - M-MATH-101676 65
Mathematics 2 - M-MATH-101677 66
Mathematics 3 - M-MATH-101679 67
Additional Fundamentals of Engineering - M-WIWI-101839 68
Applications of Operations Research - M-WIWI-101413 69
Applied Microeconomics - M-WIWI-101499 71
CRM and Service Management - M-WIWI-101460 73
Design, Construction and Sustainability Assessment of Buildings - M-WIWI-101467 75
eBusiness and Service Management - M-WIWI-101434 77
Economic Policy I - M-WIWI-101668 79
Economic Theory - M-WIWI-101501 81
eFinance - M-WIWI-101402 .. 82
Electives in Informatics - M-WIWI-101426 84
Electives in Informatics - M-WIWI-101630 86
Emphasis in Informatics - M-WIWI-101628 88
Emphasis Informatics - M-WIWI-101399 90
Energy Economics - M-WIWI-101464 92
Essentials of Finance - M-WIWI-101435 94
Extracurricular Module in Engineering - M-WIWI-101404 95
CONTENTS

<table>
<thead>
<tr>
<th>Module Component Exams</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations of Informatics - M-WIWI-101417</td>
<td>96</td>
</tr>
<tr>
<td>Foundations of Marketing - M-WIWI-101424</td>
<td>97</td>
</tr>
<tr>
<td>Fundamentals of Business Administration 1 - M-WIWI-101494</td>
<td>99</td>
</tr>
<tr>
<td>Fundamentals of Business Administration 2 - M-WIWI-101578</td>
<td>100</td>
</tr>
<tr>
<td>Fundamentals of Digital Service Systems - M-WIWI-102752</td>
<td>101</td>
</tr>
<tr>
<td>Human Resources and Organizations - M-WIWI-101513</td>
<td>103</td>
</tr>
<tr>
<td>Industrial Production I - M-WIWI-101437</td>
<td>105</td>
</tr>
<tr>
<td>Internship - M-WIWI-101419</td>
<td>107</td>
</tr>
<tr>
<td>Introduction to Economics - M-WIWI-101398</td>
<td>109</td>
</tr>
<tr>
<td>Introduction to Natural Hazards and Risk Analysis 1 - M-WIWI-101646</td>
<td>110</td>
</tr>
<tr>
<td>Introduction to Natural Hazards and Risk Analysis 2 - M-WIWI-101648</td>
<td>112</td>
</tr>
<tr>
<td>Introduction to Operations Research - M-WIWI-101418</td>
<td>114</td>
</tr>
<tr>
<td>Introduction to Programming - M-WIWI-101581</td>
<td>115</td>
</tr>
<tr>
<td>Introduction to Statistics - M-WIWI-101432</td>
<td>116</td>
</tr>
<tr>
<td>Management Accounting - M-WIWI-101498</td>
<td>117</td>
</tr>
<tr>
<td>Methodical Foundations of OR - M-WIWI-101414</td>
<td>118</td>
</tr>
<tr>
<td>Module Bachelor Thesis - M-WIWI-101601</td>
<td>120</td>
</tr>
<tr>
<td>Optimization under Uncertainty - M-WIWI-103278</td>
<td>123</td>
</tr>
<tr>
<td>Public Finance - M-WIWI-101403</td>
<td>125</td>
</tr>
<tr>
<td>Real Estate Management - M-WIWI-101466</td>
<td>127</td>
</tr>
<tr>
<td>Risk and Insurance Management - M-WIWI-101436</td>
<td>129</td>
</tr>
<tr>
<td>Seminar Module - M-WIWI-101816</td>
<td>131</td>
</tr>
<tr>
<td>Specialization in Customer Relationship Management - M-WIWI-101422</td>
<td>133</td>
</tr>
<tr>
<td>Statistics and Econometrics - M-WIWI-101599</td>
<td>135</td>
</tr>
<tr>
<td>Strategy and Organization - M-WIWI-101425</td>
<td>137</td>
</tr>
<tr>
<td>Supply Chain Management - M-WIWI-101421</td>
<td>139</td>
</tr>
<tr>
<td>Topics in Finance I - M-WIWI-101465</td>
<td>141</td>
</tr>
<tr>
<td>Topics in Finance II - M-WIWI-101423</td>
<td>143</td>
</tr>
</tbody>
</table>

V Differing Module Descriptions SPO 2007

<table>
<thead>
<tr>
<th>Module Component Exams</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Administration - WI1BWL1</td>
<td>145</td>
</tr>
<tr>
<td>Economics - M-WIWI-101398</td>
<td>147</td>
</tr>
<tr>
<td>Introduction to Informatics - WI1INFO</td>
<td>148</td>
</tr>
<tr>
<td>Mass and Energy Balances for Reacting Systems - WI1ING1</td>
<td>150</td>
</tr>
<tr>
<td>Materials Science - WI1ING2</td>
<td>151</td>
</tr>
<tr>
<td>Engineering Mechanics - WI1ING3</td>
<td>152</td>
</tr>
<tr>
<td>Electrical Engineering - WI1ING4</td>
<td>153</td>
</tr>
<tr>
<td>Mathematics - WI1MATH</td>
<td>154</td>
</tr>
<tr>
<td>Statistics - M-WIWI-101432</td>
<td>155</td>
</tr>
<tr>
<td>Seminar Module - WI3EXPRAK</td>
<td>158</td>
</tr>
</tbody>
</table>

VI Module Component Exams

<table>
<thead>
<tr>
<th>Module Component Exams</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Lab Informatics - T-WIWI-103523</td>
<td>160</td>
</tr>
<tr>
<td>Advanced Lab Security, Usability and Society - T-WIWI-108439</td>
<td>164</td>
</tr>
<tr>
<td>Advanced Lab User Studies in Security - T-WIWI-109271</td>
<td>165</td>
</tr>
<tr>
<td>Advanced Programming - Application of Business Software - T-WIWI-102748</td>
<td>166</td>
</tr>
<tr>
<td>Advanced Programming - Java Network Programming - T-WIWI-102747</td>
<td>168</td>
</tr>
<tr>
<td>Advanced Topics in Economic Theory - T-WIWI-102609</td>
<td>170</td>
</tr>
<tr>
<td>Agile product innovation management - value-driven planning of new products - T-MACH-106744</td>
<td>171</td>
</tr>
<tr>
<td>Airport Logistics - T-MACH-105175</td>
<td>172</td>
</tr>
<tr>
<td>Analysis of Social Structures (WiWi) - T-GEISTSOZ-109047</td>
<td>173</td>
</tr>
<tr>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines - T-MACH-105173</td>
<td>174</td>
</tr>
<tr>
<td>Analysis of multivariate Data - T-WIWI-103063</td>
<td>175</td>
</tr>
<tr>
<td>Analysis Tools for Combustion Diagnostics - T-MACH-105167</td>
<td>176</td>
</tr>
<tr>
<td>Analytical CRM - T-WIWI-102596</td>
<td>177</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Applications of Artificial Intelligence</td>
<td>T-WIWI-109263</td>
</tr>
<tr>
<td>Applied Asset Management</td>
<td>T-WIWI-108445</td>
</tr>
<tr>
<td>Applied Informatics I – Modelling</td>
<td>T-WIWI-102652</td>
</tr>
<tr>
<td>Applied Informatics II - IT Systems for eCommerce</td>
<td>T-WIWI-102651</td>
</tr>
<tr>
<td>Auction & Mechanism Design</td>
<td>T-WIWI-102876</td>
</tr>
<tr>
<td>Automotive Engineering I - T-MACH-100092</td>
<td></td>
</tr>
<tr>
<td>Automotive Engineering II - T-MACH-102117</td>
<td></td>
</tr>
<tr>
<td>Automotive Logistics - T-MACH-105165</td>
<td></td>
</tr>
<tr>
<td>Bachelor Thesis</td>
<td>T-WIWI-103067</td>
</tr>
<tr>
<td>Basic Principles of Economic Policy</td>
<td>T-WIWI-103213</td>
</tr>
<tr>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>T-WIWI-108711</td>
</tr>
<tr>
<td>Basics of Technical Logistics</td>
<td>T-MACH-102163</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>T-MACH-100967</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>T-MACH-100968</td>
</tr>
<tr>
<td>Bionics for Engineers and Natural Scientists</td>
<td>T-MACH-102172</td>
</tr>
<tr>
<td>BUS-Controls</td>
<td>T-MACH-102150</td>
</tr>
<tr>
<td>BUS-Controls - Advance</td>
<td>T-MACH-108889</td>
</tr>
<tr>
<td>Business Administration: Finance and Accounting</td>
<td>T-WIWI-102819</td>
</tr>
<tr>
<td>Business Administration: Production Economics and Marketing</td>
<td>T-WIWI-102818</td>
</tr>
<tr>
<td>Business Administration: Strategic Management and Information Engineering and Management</td>
<td>T-WIWI-102817</td>
</tr>
<tr>
<td>Business Process Modelling</td>
<td>T-WIWI-102697</td>
</tr>
<tr>
<td>Business Strategies of Banks</td>
<td>T-WIWI-102626</td>
</tr>
<tr>
<td>CAD-NX Training Course</td>
<td>T-MACH-102187</td>
</tr>
<tr>
<td>Civil Law for Beginners</td>
<td>T-INFO-103339</td>
</tr>
<tr>
<td>Climatology</td>
<td>T-PHYS-101092</td>
</tr>
<tr>
<td>Combustion Engines I</td>
<td>T-MACH-102194</td>
</tr>
<tr>
<td>Combustion Engines II</td>
<td>T-MACH-104609</td>
</tr>
<tr>
<td>Competition in Networks</td>
<td>T-WIWI-100005</td>
</tr>
<tr>
<td>Computational Economics</td>
<td>T-WIWI-102680</td>
</tr>
<tr>
<td>Constitution and Properties of Wearresistant Materials</td>
<td>T-MACH-102141</td>
</tr>
<tr>
<td>Construction Technology</td>
<td>T-BGU-101691</td>
</tr>
<tr>
<td>Control Technology</td>
<td>T-MACH-105185</td>
</tr>
<tr>
<td>Critical Information Infrastructures</td>
<td>T-WIWI-109248</td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>T-WIWI-102595</td>
</tr>
<tr>
<td>Data Mining and Applications</td>
<td>T-WIWI-103066</td>
</tr>
<tr>
<td>Database Systems</td>
<td>T-WIWI-102660</td>
</tr>
<tr>
<td>Database Systems and XML</td>
<td>T-WIWI-102661</td>
</tr>
<tr>
<td>Decision Theory</td>
<td>T-WIWI-102792</td>
</tr>
<tr>
<td>Derivatives</td>
<td>T-WIWI-102643</td>
</tr>
<tr>
<td>Design and Operation of Power Transformers</td>
<td>T-ETIT-101925</td>
</tr>
<tr>
<td>Design, Construction and Sustainability Assessment of Buildings I</td>
<td>T-WIWI-102742</td>
</tr>
<tr>
<td>Design, Construction and Sustainability Assessment of Buildings II</td>
<td>T-WIWI-102743</td>
</tr>
<tr>
<td>Digital Health</td>
<td>T-WIWI-109246</td>
</tr>
<tr>
<td>Economics and Behavior</td>
<td>T-WIWI-102892</td>
</tr>
<tr>
<td>Economics I: Microeconomics</td>
<td>T-WIWI-102708</td>
</tr>
<tr>
<td>Economics II: Macroeconomics</td>
<td>T-WIWI-102709</td>
</tr>
<tr>
<td>Economics III: Introduction in Econometrics</td>
<td>T-WIWI-102736</td>
</tr>
<tr>
<td>Efficient Algorithms</td>
<td>T-WIWI-102655</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>T-WIWI-102600</td>
</tr>
<tr>
<td>Electric Energy Systems</td>
<td>T-ETIT-101923</td>
</tr>
<tr>
<td>Electrical Engineering for Business Engineers, Part I</td>
<td>T-ETIT-100533</td>
</tr>
<tr>
<td>Electrical Engineering for Business Engineers, Part II</td>
<td>T-ETIT-100534</td>
</tr>
<tr>
<td>Elements and Systems of Technical Logistics</td>
<td>T-MACH-102159</td>
</tr>
<tr>
<td>Elements and Systems of Technical Logistics - Project</td>
<td>T-MACH-108946</td>
</tr>
<tr>
<td>Emerging Trends in Critical Information Infrastructures</td>
<td>T-WIWI-109250</td>
</tr>
<tr>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines</td>
<td>T-MACH-105564</td>
</tr>
<tr>
<td>Energy Efficient Intralogistic Systems</td>
<td>T-MACH-105151</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>T-WIWI-102607</td>
</tr>
<tr>
<td>Engine Measurement Techniques</td>
<td>T-MACH-105169</td>
</tr>
<tr>
<td>Enterprise Architecture Management</td>
<td>T-WIWI-102668</td>
</tr>
<tr>
<td>Enterprise Risk Management</td>
<td>T-WIWI-102608</td>
</tr>
<tr>
<td>Exam on Climatology</td>
<td>T-PHYS-105594</td>
</tr>
<tr>
<td>Exam on Meteorological Hazards</td>
<td>T-PHYS-105954</td>
</tr>
<tr>
<td>Exchanges</td>
<td>T-WIWI-102625</td>
</tr>
<tr>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>T-WIWI-102704</td>
</tr>
<tr>
<td>Failure of Structural Materials: Deformation and Fracture</td>
<td>T-MACH-102140</td>
</tr>
<tr>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>T-MACH-102139</td>
</tr>
<tr>
<td>Financial Accounting and Cost Accounting</td>
<td>T-WIWI-102816</td>
</tr>
<tr>
<td>Financial Accounting for Global Firms</td>
<td>T-WIWI-107505</td>
</tr>
<tr>
<td>Financial Econometrics</td>
<td>T-WIWI-103064</td>
</tr>
<tr>
<td>Financial Intermediation</td>
<td>T-WIWI-102623</td>
</tr>
<tr>
<td>Financial Management</td>
<td>T-WIWI-102605</td>
</tr>
<tr>
<td>Fluid Power Systems</td>
<td>T-MACH-102093</td>
</tr>
<tr>
<td>Foundations of Digital Services A</td>
<td>T-WIWI-105771</td>
</tr>
<tr>
<td>Foundations of Digital Services B</td>
<td>T-WIWI-105775</td>
</tr>
<tr>
<td>Foundations of Informatics I</td>
<td>T-WIWI-102749</td>
</tr>
<tr>
<td>Foundations of Informatics II</td>
<td>T-WIWI-102707</td>
</tr>
<tr>
<td>Foundations of mobile Business</td>
<td>T-WIWI-104679</td>
</tr>
<tr>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>T-MACH-105184</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>T-MACH-102116</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>T-MACH-102119</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>T-MACH-105160</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>T-MACH-105161</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development I</td>
<td>T-MACH-105162</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development II</td>
<td>T-MACH-105163</td>
</tr>
<tr>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>T-MACH-105044</td>
</tr>
<tr>
<td>Fundamentals of Production Management</td>
<td>T-WIWI-102606</td>
</tr>
<tr>
<td>Gas Engines</td>
<td>T-MACH-102197</td>
</tr>
<tr>
<td>Gear Cutting Technology</td>
<td>T-MACH-102148</td>
</tr>
<tr>
<td>Geological Hazards and Risks for external students</td>
<td>T-PHYS-103117</td>
</tr>
<tr>
<td>Global Optimization I</td>
<td>T-WIWI-102726</td>
</tr>
<tr>
<td>Global optimization I and II</td>
<td>T-WIWI-103638</td>
</tr>
<tr>
<td>Global Optimization II</td>
<td>T-WIWI-102727</td>
</tr>
<tr>
<td>Global Vehicle Evaluation within Virtual Road Test</td>
<td>T-MACH-102177</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>T-MACH-105152</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>T-MACH-105153</td>
</tr>
<tr>
<td>High Performance Powder Metallurgy Materials</td>
<td>T-MACH-102157</td>
</tr>
<tr>
<td>Human Factors in Security and Privacy</td>
<td>T-WIWI-109270</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>T-WIWI-102909</td>
</tr>
<tr>
<td>Hydraulic Engineering and Water Management</td>
<td>T-BGU-101667</td>
</tr>
<tr>
<td>Hydrology</td>
<td>T-BGU-101693</td>
</tr>
<tr>
<td>I4.0 Systems platform</td>
<td>T-MACH-106457</td>
</tr>
<tr>
<td>Industrial Organization</td>
<td>T-WIWI-102844</td>
</tr>
<tr>
<td>Information Engineering</td>
<td>T-MACH-102209</td>
</tr>
<tr>
<td>Information Security</td>
<td>T-WIWI-108387</td>
</tr>
<tr>
<td>Information Service Engineering</td>
<td>T-WIWI-106423</td>
</tr>
<tr>
<td>Information Systems and Supply Chain Management</td>
<td>T-MACH-102128</td>
</tr>
<tr>
<td>Integrated Information Systems for Engineers</td>
<td>T-MACH-102083</td>
</tr>
<tr>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>T-MACH-109054</td>
</tr>
<tr>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>T-MACH-105188</td>
</tr>
<tr>
<td>Interdisciplinary approach to verifiable e-voting</td>
<td>T-WIWI-108716</td>
</tr>
<tr>
<td>International Finance</td>
<td>T-WIWI-102646</td>
</tr>
<tr>
<td>International Marketing</td>
<td>T-WIWI-102807</td>
</tr>
<tr>
<td>Internship</td>
<td>T-WIWI-102611</td>
</tr>
<tr>
<td>Introduction to Ceramics</td>
<td>T-MACH-100287</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Introduction to Energy Economics</td>
<td>T-WIWI-102746</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>T-MACH-102208</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II: Dynamics</td>
<td>T-MACH-102210</td>
</tr>
<tr>
<td>Introduction to Game Theory</td>
<td>T-WIWI-102850</td>
</tr>
<tr>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>T-BGU-101681</td>
</tr>
<tr>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>T-BGU-103541</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology II</td>
<td>T-MACH-105183</td>
</tr>
<tr>
<td>Introduction to Operations Research I and II</td>
<td>T-WIWI-102758</td>
</tr>
<tr>
<td>Introduction to Programming with Java</td>
<td>T-WIWI-102735</td>
</tr>
<tr>
<td>Introduction to Public Finance</td>
<td>T-WIWI-102877</td>
</tr>
<tr>
<td>Introduction to Stochastic Optimization</td>
<td>T-WIWI-106546</td>
</tr>
<tr>
<td>Investments</td>
<td>T-WIWI-102604</td>
</tr>
<tr>
<td>Knowledge Discovery</td>
<td>T-WIWI-102666</td>
</tr>
<tr>
<td>Laboratory Production Metrology</td>
<td>T-MACH-108878</td>
</tr>
<tr>
<td>Learning Factory “Global Production”</td>
<td>T-MACH-105783</td>
</tr>
<tr>
<td>Logistics - Organisation, Design and Control of Logistic Systems</td>
<td>T-MACH-102089</td>
</tr>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>T-WIWI-102870</td>
</tr>
<tr>
<td>Machine Learning 1 - Basic Methods</td>
<td>T-WIWI-106340</td>
</tr>
<tr>
<td>Machine Learning 2 - Advanced Methods</td>
<td>T-WIWI-106341</td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling</td>
<td>T-MACH-102158</td>
</tr>
<tr>
<td>Macroeconomic Theory</td>
<td>T-WIWI-109121</td>
</tr>
<tr>
<td>Management Accounting 1</td>
<td>T-WIWI-102800</td>
</tr>
<tr>
<td>Management Accounting 2</td>
<td>T-WIWI-102801</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>T-WIWI-102629</td>
</tr>
<tr>
<td>Management of IT-Projects</td>
<td>T-WIWI-102667</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>T-WIWI-102630</td>
</tr>
<tr>
<td>Managing the Marketing Mix</td>
<td>T-WIWI-102805</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>T-MACH-102105</td>
</tr>
<tr>
<td>Material Flow in Logistic Systems</td>
<td>T-MACH-102157</td>
</tr>
<tr>
<td>Material Science II for Business Engineers</td>
<td>T-MACH-102079</td>
</tr>
<tr>
<td>Materials and Processes for Body Light-weight Construction in the Automotive</td>
<td>T-MACH-105166</td>
</tr>
<tr>
<td>Materials Science I</td>
<td>T-MACH-102078</td>
</tr>
<tr>
<td>Mathematics I - Final Exam</td>
<td>T-MATH-102261</td>
</tr>
<tr>
<td>Mathematics I - Midterm Exam</td>
<td>T-MATH-102260</td>
</tr>
<tr>
<td>Mathematics II - Final Exam</td>
<td>T-MATH-102263</td>
</tr>
<tr>
<td>Mathematics II - Midterm Exam</td>
<td>T-MATH-102262</td>
</tr>
<tr>
<td>Mathematics III - Final Exam</td>
<td>T-MATH-102264</td>
</tr>
<tr>
<td>Mechanical Design I and II</td>
<td>T-MACH-104739</td>
</tr>
<tr>
<td>Mechanical Design I, Tutorial</td>
<td>T-MACH-102132</td>
</tr>
<tr>
<td>Mechanical Design II, Tutorial</td>
<td>T-MACH-102133</td>
</tr>
<tr>
<td>Metal Forming</td>
<td>T-MACH-105177</td>
</tr>
<tr>
<td>Meteorological Hazards</td>
<td>T-PHYS-101557</td>
</tr>
<tr>
<td>Microactuators</td>
<td>T-MACH-101910</td>
</tr>
<tr>
<td>Mobile Machines</td>
<td>T-MACH-105168</td>
</tr>
<tr>
<td>Mobility and Infrastructure</td>
<td>T-BGU-101791</td>
</tr>
<tr>
<td>Model Based Application Methods</td>
<td>T-MACH-102199</td>
</tr>
<tr>
<td>Modeling and OR-Software: Introduction</td>
<td>T-WIWI-106199</td>
</tr>
<tr>
<td>Modelling and Identification</td>
<td>T-ETIT-100699</td>
</tr>
<tr>
<td>Municipal Finance</td>
<td>T-WIWI-107763</td>
</tr>
<tr>
<td>Nanotechnology with Clusterbeams</td>
<td>T-MACH-102080</td>
</tr>
<tr>
<td>Nature-Inspired Optimisation Methods</td>
<td>T-WIWI-102679</td>
</tr>
<tr>
<td>Nonlinear Optimization I</td>
<td>T-WIWI-102724</td>
</tr>
<tr>
<td>Nonlinear Optimization I and II</td>
<td>T-WIWI-103637</td>
</tr>
<tr>
<td>Nonlinear Optimization II</td>
<td>T-WIWI-102725</td>
</tr>
<tr>
<td>Novel Actuators and Sensors</td>
<td>T-MACH-102152</td>
</tr>
<tr>
<td>Operative CRM</td>
<td>T-WIWI-102597</td>
</tr>
<tr>
<td>Optimization under uncertainty</td>
<td>T-WIWI-106545</td>
</tr>
<tr>
<td>Optoelectronic Components</td>
<td>T-ETIT-101907</td>
</tr>
<tr>
<td>Course</td>
<td>Course Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Personnel Policies and Labor Market Institutions</td>
<td>T-WIWI-102908</td>
</tr>
<tr>
<td>PH APL-ING-TL01 - T-WIWI-106291</td>
<td>408</td>
</tr>
<tr>
<td>PH APL-ING-TL02 - T-WIWI-106292</td>
<td>409</td>
</tr>
<tr>
<td>PH APL-ING-TL03 - T-WIWI-106293</td>
<td>410</td>
</tr>
<tr>
<td>PH APL-ING-TL04 ub - T-WIWI-106294</td>
<td>411</td>
</tr>
<tr>
<td>PH APL-ING-TL05 ub - T-WIWI-106295</td>
<td>412</td>
</tr>
<tr>
<td>PH APL-ING-TL06 ub - T-WIWI-106296</td>
<td>413</td>
</tr>
<tr>
<td>PH APL-ING-TL07 - T-WIWI-108384</td>
<td>414</td>
</tr>
<tr>
<td>Physical Basics of Laser Technology</td>
<td>T-MACH-102102</td>
</tr>
<tr>
<td>Physics for Engineers</td>
<td>T-MACH-100530</td>
</tr>
<tr>
<td>Platform Economy</td>
<td>T-WIWI-107506</td>
</tr>
<tr>
<td>PLM for Product Development in Mechatronics</td>
<td>T-MACH-102181</td>
</tr>
<tr>
<td>PLM-CAD Workshop</td>
<td>T-MACH-102153</td>
</tr>
<tr>
<td>Polymer Engineering I</td>
<td>T-MACH-102137</td>
</tr>
<tr>
<td>Polymerengineering II</td>
<td>T-MACH-102138</td>
</tr>
<tr>
<td>Power Generation</td>
<td>T-ETIT-101924</td>
</tr>
<tr>
<td>Power Network</td>
<td>T-ETIT-100830</td>
</tr>
<tr>
<td>Practical Seminar Digital Services</td>
<td>T-WIWI-105711</td>
</tr>
<tr>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>T-MACH-102164</td>
</tr>
<tr>
<td>Principles of Insurance Management</td>
<td>T-WIWI-102603</td>
</tr>
<tr>
<td>Problem Solving, Communication and Leadership</td>
<td>T-WIWI-102871</td>
</tr>
<tr>
<td>Procedures of Remote Sensing</td>
<td>T-BGU-103542</td>
</tr>
<tr>
<td>Procedures of Remote Sensing, Prerequisite</td>
<td>T-BGU-101638</td>
</tr>
<tr>
<td>Process fundamentals by the example of food production</td>
<td>T-CIWVT-106058</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>T-MACH-105147</td>
</tr>
<tr>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>T-MACH-102155</td>
</tr>
<tr>
<td>Production and Logistics Controlling</td>
<td>T-WIWI-103091</td>
</tr>
<tr>
<td>Production Economics and Sustainability</td>
<td>T-WIWI-102820</td>
</tr>
<tr>
<td>Project in Applied Remote Sensing</td>
<td>T-WIWI-101814</td>
</tr>
<tr>
<td>Project Management</td>
<td>T-BGU-101675</td>
</tr>
<tr>
<td>Project Workshop: Automotive Engineering</td>
<td>T-MACH-102156</td>
</tr>
<tr>
<td>Public Law I - Basic Principles</td>
<td>T-INFO-101963</td>
</tr>
<tr>
<td>Public Law II - T-INFO-102042</td>
<td>445</td>
</tr>
<tr>
<td>Public Revenues</td>
<td>T-WIWI-102739</td>
</tr>
<tr>
<td>Quality Management</td>
<td>T-MACH-102107</td>
</tr>
<tr>
<td>Rail System Technology</td>
<td>T-MACH-102143</td>
</tr>
<tr>
<td>Real Estate Management I</td>
<td>T-WIWI-102744</td>
</tr>
<tr>
<td>Real Estate Management II</td>
<td>T-WIWI-102745</td>
</tr>
<tr>
<td>Remote Sensing, exam</td>
<td>T-BGU-101636</td>
</tr>
<tr>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>T-WIWI-100806</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics</td>
<td>T-MACH-102160</td>
</tr>
<tr>
<td>Selected Applications of Technical Logistics - Project</td>
<td>T-MACH-108945</td>
</tr>
<tr>
<td>Selected Issues in Critical Information Infrastructures</td>
<td>T-WIWI-109251</td>
</tr>
<tr>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
<td>T-MACH-102165</td>
</tr>
<tr>
<td>Semantic Web Technologies</td>
<td>T-WIWI-102874</td>
</tr>
<tr>
<td>Seminar Creating a Patent Specification</td>
<td>T-ETIT-100754</td>
</tr>
<tr>
<td>Seminar Data-Mining in Production</td>
<td>T-MACH-108737</td>
</tr>
<tr>
<td>Seminar in Business Administration (Bachelor)</td>
<td>T-WIWI-103486</td>
</tr>
<tr>
<td>Seminar in Economics (Bachelor)</td>
<td>T-WIWI-103487</td>
</tr>
<tr>
<td>Seminar in Engineering Science Master (approval)</td>
<td>T-WIWI-103486</td>
</tr>
<tr>
<td>Seminar in Informatics (Bachelor)</td>
<td>T-WIWI-103485</td>
</tr>
<tr>
<td>Seminar in Mathematics (Bachelor)</td>
<td>T-MATH-102265</td>
</tr>
<tr>
<td>Seminar in Operations Research (Bachelor)</td>
<td>T-WIWI-103488</td>
</tr>
<tr>
<td>Seminar in Statistics (Bachelor)</td>
<td>T-WIWI-103489</td>
</tr>
<tr>
<td>Seminar Production Technology</td>
<td>T-MACH-100962</td>
</tr>
<tr>
<td>Seminar: Legal Studies I</td>
<td>T-INFO-101997</td>
</tr>
<tr>
<td>Service Oriented Computing</td>
<td>T-WIWI-105801</td>
</tr>
<tr>
<td>Services Marketing and B2B Marketing</td>
<td>T-WIWI-102806</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation of Coupled Systems</td>
<td>T-MACH-105172</td>
<td>487</td>
</tr>
<tr>
<td>Simulation of Coupled Systems - Advance</td>
<td>T-MACH-108888</td>
<td>489</td>
</tr>
<tr>
<td>Social Science A (WiWi)</td>
<td>T-GEISTSOZ-109048</td>
<td>490</td>
</tr>
<tr>
<td>Social Science B (WiWi)</td>
<td>T-GEISTSOZ-109049</td>
<td>491</td>
</tr>
<tr>
<td>Sociotechnical Information Systems Development</td>
<td>T-WIWI-109249</td>
<td>492</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>T-WIWI-100809</td>
<td>493</td>
</tr>
<tr>
<td>Software Quality Management</td>
<td>T-WIWI-102895</td>
<td>495</td>
</tr>
<tr>
<td>Special Topics in Information Engineering & Management</td>
<td>T-WIWI-102706</td>
<td>497</td>
</tr>
<tr>
<td>Special Topics of Applied Informatics</td>
<td>T-WIWI-102910</td>
<td>498</td>
</tr>
<tr>
<td>Special Topics of Efficient Algorithms</td>
<td>T-WIWI-102657</td>
<td>499</td>
</tr>
<tr>
<td>Special Topics of Enterprise Information Systems</td>
<td>T-WIWI-102676</td>
<td>500</td>
</tr>
<tr>
<td>Special Topics of Software- and Systemsengineering</td>
<td>T-WIWI-102678</td>
<td>501</td>
</tr>
<tr>
<td>Special Topics of Web Science</td>
<td>T-WIWI-108751</td>
<td>502</td>
</tr>
<tr>
<td>Statistical Modeling of generalized regression models</td>
<td>T-WIWI-103065</td>
<td>503</td>
</tr>
<tr>
<td>Statistics I</td>
<td>T-WIWI-102737</td>
<td>504</td>
</tr>
<tr>
<td>Statistics II</td>
<td>T-WIWI-102738</td>
<td>505</td>
</tr>
<tr>
<td>Strategic Management of Information Technology</td>
<td>T-WIWI-102669</td>
<td>506</td>
</tr>
<tr>
<td>Structural and Phase Analysis</td>
<td>T-MACH-102170</td>
<td>507</td>
</tr>
<tr>
<td>Structural Ceramics</td>
<td>T-MACH-102179</td>
<td>508</td>
</tr>
<tr>
<td>System Dynamics and Control Engineering</td>
<td>T-ETIT-101921</td>
<td>509</td>
</tr>
<tr>
<td>Systematic Materials Selection</td>
<td>T-MACH-100531</td>
<td>510</td>
</tr>
<tr>
<td>Systems of Remote Sensing, Prerequisite</td>
<td>T-BGU-101637</td>
<td>512</td>
</tr>
<tr>
<td>Tactical and Operational Supply Chain Management</td>
<td>T-WIWI-102714</td>
<td>513</td>
</tr>
<tr>
<td>Technical conditions met</td>
<td>T-WIWI-106623</td>
<td>514</td>
</tr>
<tr>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>T-MACH-102207</td>
<td>515</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics I</td>
<td>T-MACH-105154</td>
<td>516</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics II</td>
<td>T-MACH-105155</td>
<td>518</td>
</tr>
<tr>
<td>Vehicle Mechatronics I</td>
<td>T-MACH-105156</td>
<td>520</td>
</tr>
<tr>
<td>Virtual Reality Practical Course</td>
<td>T-MACH-102149</td>
<td>522</td>
</tr>
<tr>
<td>Warehousing and Distribution Systems</td>
<td>T-MACH-105174</td>
<td>523</td>
</tr>
<tr>
<td>Web Science</td>
<td>T-WIWI-103112</td>
<td>525</td>
</tr>
<tr>
<td>Welfare Economics</td>
<td>T-WIWI-102610</td>
<td>526</td>
</tr>
<tr>
<td>Workflow-Management</td>
<td>T-WIWI-102662</td>
<td>527</td>
</tr>
</tbody>
</table>

VII Appendix: Study- and Examination Regulation SPO 2015 (2015/09/24 in german) 529

VIII Appendix: Study- and Examination Regulation SPO 2007 (2008/08/15 in german) 546
Part I

About this handbook

1 Notes and rules

The program consists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student’s "binding declaration" on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive at http://www.wiwi.kit.edu/Archiv_MHB.php.

General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/exams/index.php:
Types of exams

Following SPO 2015 exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded. According to SPO 2007/2009 exams are split into written exams, oral exams and non exam assessments. Non exam assessments are graded or not.

Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim. A counseling interview is mandatory.

For further information see http://www.wiwi.kit.edu/hinweiseZweitwdh.php.

Additional accomplishments

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Additional accomplishments with at most 30 CP may appear additionally in the certificate.

Further information

More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

2 Online Version

A new webbased version of the module handbook is now available. This online handbook offers more comfort in browsing modules and courses and allows a smart switching between the english and german version. Try it out!

- Industrial Engineering and Management (B.Sc.): http://www.wiwi.kit.edu/english/mhbWiingBsc_en.php
- Industrial Engineering and Management (M.Sc.): http://www.wiwi.kit.edu/english/mhbWiingMsc_en.php
- Economics Engineering (B.Sc.): http://www.wiwi.kit.edu/english/mhbTVWLbSc_eng.php
- Economics Engineering (M.Sc.): http://www.wiwi.kit.edu/english/mhbTVWLmSc_en.php
- Information Engineering and Management (B.Sc.): http://www.wiwi.kit.edu/english/mhbInwiBsc_en.php
- Information Engineering and Management (M.Sc.): http://www.wiwi.kit.edu/english/mhbInwiMsc_en.php
- Economathematics (M.Sc.): http://www.wiwi.kit.edu/english/mhbWimaMsc_en.php
3 Contact

If you have any questions about modules or exams, please contact the examination office of the KIT Department of Economics and Management:

Ralf Hilser
Anabela Relvas
Phone: +49 721 608-43768
E-Mail: pruefungssekretariat@wiwi.kit.edu

Editorial responsibility:

Dr. André Wiesner
Phone: +49 721 608-44061
Email: modul@wiwi.kit.edu
Part II
The Bachelor’s degree program in Industrial Engineering and Management

1 Qualification objectives

Graduates of the Bachelor’s degree in Industrial Engineering and Management are equipped with strategically oriented knowledge in economics, engineering sciences, mathematics and information technology acquired during the three-semester core program.

The economics section includes business-related topics from the financial industry, company management, information industry, production management, marketing and accounting as well as economic correlations of microeconomics and macroeconomics.

The math section is divided into mathematics, statistics and operations research. It includes analysis and linear algebra, descriptive and inductive statistics, elementary probability theory and optimization methods.

In the engineering field, the focus is on material and energy balances, material characterization and development, engineering mechanics and electrical engineering.

The technological area is covered by the Applied and Theoretical Computer Science. Through the comprehensive methodological basis, the graduates are in a position to acknowledge and apply specialized basic concepts, methods, models and approaches. They are also able to analyze and review economic and technological structures and processes.

Graduates can independently solve basic engineering calculations and are able to apply important mathematical concepts and methods to solve concrete tasks.

The graduates have deeper knowledge in business administration, economics, computer science, operations research and engineering. Specialization is either done in the field of business administration or engineering depending on one’s wishes. Additional knowledge in statistics, law or sociology is also offered depending on one’s interests. They are able to react based on this knowledge from the different subjects and disciplines. They thereby largely operate independently in economic, technical and technological topics and survey, analyze, interpret and evaluate the situations systematically.

They are able to classify specialized problems as well as model and choose appropriate methods and procedures for solving the given tasks as well as derive improvement potentials. They know how to validate, illustrate and interpret the achieved results.

This practical use of their know-how also takes into account the social, scientific and ethical aspects.

Graduates of the Bachelor’s degree in Industrial Engineering and Management master the basics of project management and are able to assume responsibility in interdisciplinary teams. They are in a position to argue and defend their position both before expert representatives and laypersons.

They have the ability to apply the acquired information on career-related activities in the industry, service sector or in the public management as well as take up a Master’s degree program in Industrial Engineering and Management or any other related course.

2 SPO 2015

The Bachelor’s degree program in Industrial Engineering and Management entails a six-semester standard study period. The basic program in the first three semesters is systematically structured. In the fourth to fifth semesters, a more advanced, specialization program that can be structured depending on one’s personal interests and goals is offered.

The following figure 2 shows the course and module structure with the respective credit points as well as an example of a possible distribution of modules and courses in the basic program over the semesters, which has proven to be useful.

In the basic program (blue), the business administration, economics, informatics, operations research, engineering sciences, statistics and mathematics modules are compulsory. In the 3rd semester, one can choose between Material Transformation and Balances, Engineering Mechanics and Material Science in the engineering basic module.
In the specialization program (green), a module must be selected from each of the following areas: business administration, economics, informatics, operations research and engineering. As part of the mandatory courses, one seminar module (independent of the course) and two modules must be completed. One module can be selected from business administration or engineering subjects and the other from business administration, economics, informatics, operations research, engineering, statistics, law or sociology.

The internship can be completed before or during the Bachelor’s program. The performance record of the completed internship is required for registration for the final module examination in the course. One is free to structure his/her individual course plan as he/she wishes (taking into account the respective provisions of the study and examination regulations as well as applicable module regulations) and choose the semester he/she wishes to start and/or complete the selected modules. It is however strongly recommended to adhere to the proposal for the first three semesters. The content of the courses is interdisciplinary and coordinated accordingly; the intersection freedom of lectures and examination dates is guaranteed for the recommended study semester. All modules of the basic and advanced program, including the various alternatives within the module, can be found in this module handbook. Seminars that can be taken up as part of the seminar module are published at the WiWi portal at https://portal.wiwi.kit.edu/Seminare.

3 SPO 2007

The structure of the Bachelor’s degree program in Industrial Engineering and Management (B.Sc.) slightly differs from the structure following SPO 2015. Offered modules and courses are quite similar and equal the presentation in this module handbook. Nevertheless, there are minor specificities, summarized in illustration 3. The differing modules of the Bachelor’s degree program in Industrial Engineering and Management SPO 2007 are listed in chapter V. Illustration 4 shows the structure of fields and modules and their correlated credit points following SPO 2007. The Study- and Examination Regulation SPO 2007 is part of the appendix.

4 Key Skills

The Bachelor’s degree course in Industrial Engineering and Management at the Department of Economics and Management distinguishes itself by an exceptionally high level of interdisciplinarity. With the combination of business science, economics, informatics, operations research, mathematics as well as engineering and natural science, the integration of knowledge of different disciplines is an inherent element of the programme. As a result, interdisciplinary and connected thinking is encouraged in a natural way. Furthermore, tutor programs with more than 20 semester periods per week contribute...
KEY SKILLS

SPO 2007

<table>
<thead>
<tr>
<th>Terms</th>
<th>SPO 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>The structure of the Bachelor’s degree course in Industrial Engineering and Management is subdivided into a Core Program and Specialization Program.</td>
<td>The structure of the Bachelor’s degree course in Industrial Engineering and Management is subdivided into a Basic Program and Specialization Program.</td>
</tr>
<tr>
<td>The exams are split into written exams, oral exams and non exam assessments.</td>
<td>The exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.</td>
</tr>
</tbody>
</table>

Key skills

Besides the integrated key skills, the additive acquisition of key skills within the seminar module is an inherent element of the program. Students may choose freely among the offered courses of HoC and ZAK.

Seminar module

Students have to attend two seminars with a minimum of 6 CP (Credit Points) within the seminar module. Furthermore one has to acquire additional key skills of at least 3 credits.

Internship

The internship has an amount of 8 CP.

Modules of the Core- and Basic Program

<table>
<thead>
<tr>
<th>SPO 2007</th>
<th>SPO 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within the Core Program the module “Business Administration” (15 CP) is scheduled.</td>
<td>The module “Business Administration” has been divided into two modules: “Fundamentals of Business Administration 1” and “Fundamentals of Business Administration 2”.</td>
</tr>
<tr>
<td>Within the Core Program the module “Mathematics” (21 CP) is scheduled.</td>
<td>The module “Mathematics” has been divided into three modules: “Mathematics 1”, “Mathematics 2” and “Mathematics 3”.</td>
</tr>
<tr>
<td>Within the Core Program the module “Introduction to Informatics” (15 CP) is scheduled.</td>
<td>The module “Introduction to Informatics” has been divided into two modules: “Introduction to Programming” and “Foundations of Informatics”.</td>
</tr>
<tr>
<td>Within the Core Program the modules “Economics” (10 CP) and “Statistics” (10 Credits) are scheduled.</td>
<td>The modules “Economics” and “Statistics” have been renamed to “Introduction to Economics” and “Introduction to Statistics”.</td>
</tr>
<tr>
<td>Within the Core Program the four modules of Engineering Sciences “Mass and Energy Balances for Reacting Systems”, “Materials Science”, “Engineering Mechanics” and “Electrical Engineering” (all of them with an amount of 2,5 CP) are scheduled.</td>
<td>Within the Basic Program the four modules of Engineering Sciences “Materials Science”, “Engineering Mechanics”, “Electrical Engineering” and “Additional Fundamentals of Engineering” (all of them with an amount of 3 CP) are scheduled. The course T-CIWVT-106058 “Process fundamentals by the example of food production” replaces the course “Mass and Energy Balances for Reacting Systems” and is part of the (new) module “Additional Fundamentals of Engineering”.</td>
</tr>
</tbody>
</table>

Figure 3: Differences between SPO 2007 and SPO 2015

Significantly to the development of key skills in the bachelor programme. The integrative taught key skills, which are acquired throughout the entire programme, can be classified into the following fields:

Soft skills

1. Team work, social communication and creativity techniques
2. Presentations and presentation techniques
3. Logical and systematical arguing and writing
4. Structured problem solving and communication

Enabling skills
1. Decision making in business context
2. Project management competences
3. Fundamentals of business science
4. English as a foreign language

Orientational knowledge
1. Acquisition of interdisciplinary knowledge
2. Institutional knowledge about economic and legal systems
3. Knowledge about international organisations
4. Media, technology and innovation

The integrative acquisition of key skills especially takes place in several compulsory courses during the bachelor programme, namely
1. Basic programme in economics and business science
2. Seminar module
3. Mentoring of the bachelor thesis
4. Internship
5. Business science, economics and informatics modules

In SPO 2007, besides the integrated key skills, the additive acquisition of key skills, which are totalling at least three credits within the seminar module, is scheduled. Students may choose freely among the offered courses of HoC, ZAK and Sprachenzentrum.
Part III

Field structure

1 Bachelor Thesis

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101601</td>
<td>Module Bachelor Thesis (S. 120)</td>
<td>12 Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>

2 Internship

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101419</td>
<td>Internship (S. 107)</td>
<td>10 Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>

3 Business Administration

3.1 Basic Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101494</td>
<td>Fundamentals of Business Administration 1 (S. 99)</td>
<td>7 Martin Ruckes, Marliese Uhrig-Homburg, Marcus Wouters</td>
</tr>
<tr>
<td>M-WIWI-101578</td>
<td>Fundamentals of Business Administration 2 (S. 100)</td>
<td>8 Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

3.2 Specialisation Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101460</td>
<td>CRM and Service Management (S. 73)</td>
<td>9 Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>M-WIWI-101467</td>
<td>Design, Construction and Sustainability Assessment of Buildings (S. 75)</td>
<td>9 Thomas Lützkendorf</td>
</tr>
<tr>
<td>M-WIWI-101434</td>
<td>eBusiness and Service Management (S. 77)</td>
<td>9 Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101402</td>
<td>eFinance (S. 82)</td>
<td>9 Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101464</td>
<td>Energy Economics (S. 92)</td>
<td>9 Wolf Fichtner</td>
</tr>
<tr>
<td>M-WIWI-101435</td>
<td>Essentials of Finance (S. 94)</td>
<td>9 Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>M-WIWI-101424</td>
<td>Foundations of Marketing (S. 97)</td>
<td>9 Martin Klarmann</td>
</tr>
<tr>
<td>M-WIWI-102752</td>
<td>Fundamentals of Digital Service Systems (S. 101)</td>
<td>9 Gerhard Satzger, Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101513</td>
<td>Human Resources and Organizations (S. 103)</td>
<td>9 Petra Nieken</td>
</tr>
<tr>
<td>M-WIWI-101437</td>
<td>Industrial Production I (S. 105)</td>
<td>9 Frank Schultmann</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Management Accounting (S. 117)</td>
<td>9 Marcus Wouters</td>
</tr>
<tr>
<td>M-WIWI-101466</td>
<td>Real Estate Management (S. 127)</td>
<td>9 Thomas Lützkendorf</td>
</tr>
</tbody>
</table>
4 Economics

4.1 Basic Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101398</td>
<td>Introduction to Economics (S. 147)</td>
<td>10</td>
<td>Clemens Puppe</td>
</tr>
</tbody>
</table>

4.2 Specialisation Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101499</td>
<td>Applied Microeconomics (S. 71)</td>
<td>9</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>M-WIWI-101668</td>
<td>Economic Policy I (S. 79)</td>
<td>9</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>M-WIWI-101501</td>
<td>Economic Theory (S. 81)</td>
<td>9</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>M-WIWI-101403</td>
<td>Public Finance (S. 125)</td>
<td>9</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

5 Informatics

5.1 Basic Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101417</td>
<td>Foundations of Informatics (S. 96)</td>
<td>10</td>
<td>Pradyumn Kumar Shukla,York Sure-Vetter</td>
</tr>
<tr>
<td>M-WIWI-101581</td>
<td>Introduction to Programming (S. 115)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

5.2 Specialisation Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101399</td>
<td>Emphasis Informatics (S. 90)</td>
<td>9</td>
<td>Andreas Oberweis,Ali Sunyaev,York Sure-Vetter,Melanie Volkamer</td>
</tr>
</tbody>
</table>
6 Operations Research

6.1 Basic Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101418</td>
<td>Introduction to Operations Research (S. 114)</td>
<td>9</td>
<td>Stefan Nickel, Steffen Rebennack, Oliver Stein</td>
</tr>
</tbody>
</table>

6.2 Specialisation Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101413</td>
<td>Applications of Operations Research (S. 69)</td>
<td>9</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>M-WIWI-101414</td>
<td>Methodical Foundations of OR (S. 118)</td>
<td>9</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>M-WIWI-103278</td>
<td>Optimization under Uncertainty (S. 123)</td>
<td>9</td>
<td>Steffen Rebennack</td>
</tr>
</tbody>
</table>

7 Engineering Sciences

7.1 Basic Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-101155</td>
<td>Electrical Engineering (S. 31)</td>
<td>3</td>
<td>Wolfgang Menesklou</td>
</tr>
<tr>
<td>M-MACH-101259</td>
<td>Engineering Mechanics (S. 43)</td>
<td>3</td>
<td>Alexander Fidlin</td>
</tr>
<tr>
<td>M-MACH-101260</td>
<td>Materials Science (S. 51)</td>
<td>3</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-WIWI-101839</td>
<td>Additional Fundamentals of Engineering (S. 68)</td>
<td>3</td>
<td>Alexander Fidlin, Volker Gaukel, Michael Hoffmann</td>
</tr>
</tbody>
</table>

7.2 Specialisation Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101004</td>
<td>Fundamentals of construction (S. 28)</td>
<td>9</td>
<td>Shervin Haghsheno</td>
</tr>
<tr>
<td>M-BGU-101067</td>
<td>Mobility and Infrastructure (S. 29)</td>
<td>9</td>
<td>Ralf Roos</td>
</tr>
<tr>
<td>M-ETIT-101156</td>
<td>Control Engineering (S. 30)</td>
<td>9</td>
<td>Sören Hohmann, Mathias Kluwe</td>
</tr>
<tr>
<td>M-ETIT-101165</td>
<td>Energy Generation and Network Components (S. 32)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-ETIT-102379</td>
<td>Power Network (S. 33)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-MACH-101266</td>
<td>Automotive Engineering (S. 36)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Combustion Engines I (S. 38)</td>
<td>9</td>
<td>Thomas Koch, Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Combustion Engines II (S. 39)</td>
<td>9</td>
<td>Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Emphasis in Fundamentals of Engineering (S. 41)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Emphasis Materials Science (S. 42)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101264</td>
<td>Handling Characteristics of Motor Vehicles (S. 44)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrated Production Planning (S. 46)</td>
<td>9</td>
<td>Gisela Lanza</td>
</tr>
<tr>
<td>M-MACH-101269</td>
<td>Introduction to Technical Logistics (S. 47)</td>
<td>9</td>
<td>Kai Furmans</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Machine Tools and Industrial Handling (S. 49)</td>
<td>9</td>
<td>Jürgen Fleischer</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Manufacturing Technology (S. 50)</td>
<td>9</td>
<td>Volker Schulze</td>
</tr>
<tr>
<td>M-MACH-101299</td>
<td>Mechanical Design (S. 52)</td>
<td>9</td>
<td>Sven Matthiesien</td>
</tr>
</tbody>
</table>
8 Mathematics

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101676</td>
<td>Mathematics 1 (S. 65)</td>
<td>7</td>
<td>Günter Last</td>
</tr>
<tr>
<td>M-MATH-101677</td>
<td>Mathematics 2 (S. 66)</td>
<td>7</td>
<td>Günter Last</td>
</tr>
<tr>
<td>M-MATH-101679</td>
<td>Mathematics 3 (S. 67)</td>
<td>7</td>
<td>Günter Last</td>
</tr>
</tbody>
</table>

9 Statistics

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101432</td>
<td>Introduction to Statistics (S. 155)</td>
<td>10</td>
<td>Oliver Grothe,Melanie Schienle</td>
</tr>
</tbody>
</table>

10 Compulsory Elective Modules

10.1 Seminar Module

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101816</td>
<td>Seminar Module (S. 131)</td>
<td>3</td>
<td>Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>

10.2 Elective Module 1

10.2.1 Business Administration

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101460</td>
<td>CRM and Service Management (S. 73)</td>
<td>9</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>M-WIWI-101467</td>
<td>Design, Construction and Sustainability Assessment of Buildings (S. 75)</td>
<td>9</td>
<td>Thomas Lützkendorf</td>
</tr>
</tbody>
</table>
Elective Module 1

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101434</td>
<td>eBusiness and Service Management (S. 77)</td>
<td>9</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101402</td>
<td>eFinance (S. 82)</td>
<td>9</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101464</td>
<td>Energy Economics (S. 92)</td>
<td>9</td>
<td>Wolf Fichtner</td>
</tr>
<tr>
<td>M-WIWI-101435</td>
<td>Essentials of Finance (S. 94)</td>
<td>9</td>
<td>Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>M-WIWI-101424</td>
<td>Foundations of Marketing (S. 97)</td>
<td>9</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>M-WIWI-102752</td>
<td>Fundamentals of Digital Service Systems (S. 101)</td>
<td>9</td>
<td>Gerhard Satzger, Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101513</td>
<td>Human Resources and Organizations (S. 103)</td>
<td>9</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>M-WIWI-101437</td>
<td>Industrial Production I (S. 105)</td>
<td>9</td>
<td>Frank Schultmann</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Management Accounting (S. 117)</td>
<td>9</td>
<td>Marcus Wouters</td>
</tr>
<tr>
<td>M-WIWI-101466</td>
<td>Real Estate Management (S. 127)</td>
<td>9</td>
<td>Thomas Lützkendor</td>
</tr>
<tr>
<td>M-WIWI-101436</td>
<td>Risk and Insurance Management (S. 129)</td>
<td>9</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>M-WIWI-101422</td>
<td>Specialization in Customer Relationship Management (S. 133)</td>
<td>9</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>M-WIWI-101425</td>
<td>Strategy and Organization (S. 137)</td>
<td>9</td>
<td>Hagen Lindstädt</td>
</tr>
<tr>
<td>M-WIWI-101421</td>
<td>Supply Chain Management (S. 139)</td>
<td>9</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>M-WIWI-101465</td>
<td>Topics in Finance I (S. 141)</td>
<td>9</td>
<td>Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>M-WIWI-101423</td>
<td>Topics in Finance II (S. 143)</td>
<td>9</td>
<td>Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

10.2.2 Engineering Sciences

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101004</td>
<td>Fundamentals of construction (S. 28)</td>
<td>9</td>
<td>Shervin Haghsheno</td>
</tr>
<tr>
<td>M-BGU-101067</td>
<td>Mobility and Infrastructure (S. 29)</td>
<td>9</td>
<td>Ralf Roos</td>
</tr>
<tr>
<td>M-ETIT-101156</td>
<td>Control Engineering (S. 30)</td>
<td>9</td>
<td>Sören Hohmann, Mathias Kluwe</td>
</tr>
<tr>
<td>M-ETIT-101165</td>
<td>Energy Generation and Network Components (S. 32)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-ETIT-102379</td>
<td>Power Network (S. 33)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-MACH-101266</td>
<td>Automotive Engineering (S. 36)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Combustion Engines I (S. 38)</td>
<td>9</td>
<td>Thomas Koch, Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Combustion Engines II (S. 39)</td>
<td>9</td>
<td>Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Emphasis in Fundamentals of Engineering (S. 41)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Emphasis Materials Science (S. 42)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101264</td>
<td>Handling Characteristics of Motor Vehicles (S. 44)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrated Production Planning (S. 46)</td>
<td>9</td>
<td>Gisela Lanza</td>
</tr>
<tr>
<td>M-MACH-101269</td>
<td>Introduction to Technical Logistics (S. 47)</td>
<td>9</td>
<td>Kai Furmans</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Machine Tools and Industrial Handling (S. 49)</td>
<td>9</td>
<td>Jürgen Fleischer</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Manufacturing Technology (S. 50)</td>
<td>9</td>
<td>Volker Schulze</td>
</tr>
<tr>
<td>M-MACH-101299</td>
<td>Mechanical Design (S. 52)</td>
<td>9</td>
<td>Sven Matthiesen</td>
</tr>
<tr>
<td>M-MACH-101287</td>
<td>Microsystem Technology (S. 55)</td>
<td>9</td>
<td>Jan Gerrit Korvink</td>
</tr>
<tr>
<td>M-MACH-101267</td>
<td>Mobile Machines (S. 57)</td>
<td>9</td>
<td>Marcus Geimer</td>
</tr>
<tr>
<td>M-MACH-101270</td>
<td>Product Lifecycle Management (S. 59)</td>
<td>9</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Rail System Technology (S. 61)</td>
<td>9</td>
<td>Peter Gratzfeld</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Specialization in Production Engineering (S. 62)</td>
<td>9</td>
<td>Volker Schulze</td>
</tr>
<tr>
<td>M-MACH-101265</td>
<td>Vehicle Development (S. 63)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-WIWI-101404</td>
<td>Extracurricular Module in Engineering (S. 95)</td>
<td>9</td>
<td>Prüfungsausschuss der KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>M-WIWI-101646</td>
<td>Introduction to Natural Hazards and Risk Analysis 1 (S. 110)</td>
<td>9</td>
<td>Michael Kunz</td>
</tr>
<tr>
<td>M-WIWI-101648</td>
<td>Introduction to Natural Hazards and Risk Analysis 2 (S. 112)</td>
<td>9</td>
<td>Michael Kunz</td>
</tr>
</tbody>
</table>
10.3 Elective Module 2

10.3.1 Business Administration

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101460</td>
<td>CRM and Service Management (S. 73)</td>
<td>9</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>M-WIWI-101467</td>
<td>Design, Construction and Sustainability Assessment of Buildings (S. 75)</td>
<td>9</td>
<td>Thomas Lützkendorf</td>
</tr>
<tr>
<td>M-WIWI-101434</td>
<td>eBusiness and Service Management (S. 77)</td>
<td>9</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101402</td>
<td>eFinance (S. 82)</td>
<td>9</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101464</td>
<td>Energy Economics (S. 92)</td>
<td>9</td>
<td>Wolf Fichtner</td>
</tr>
<tr>
<td>M-WIWI-101435</td>
<td>Essentials of Finance (S. 94)</td>
<td>9</td>
<td>Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>M-WIWI-101424</td>
<td>Foundations of Marketing (S. 97)</td>
<td>9</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>M-WIWI-102752</td>
<td>Fundamentals of Digital Service Systems (S. 101)</td>
<td>9</td>
<td>Gerhard Satzger, Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101513</td>
<td>Human Resources and Organizations (S. 103)</td>
<td>9</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>M-WIWI-101437</td>
<td>Industrial Production I (S. 105)</td>
<td>9</td>
<td>Frank Schultmann</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Management Accounting (S. 117)</td>
<td>9</td>
<td>Marcus Wouters</td>
</tr>
<tr>
<td>M-WIWI-101466</td>
<td>Real Estate Management (S. 127)</td>
<td>9</td>
<td>Thomas Lützkendorf</td>
</tr>
<tr>
<td>M-WIWI-101436</td>
<td>Risk and Insurance Management (S. 129)</td>
<td>9</td>
<td>Ute Werner</td>
</tr>
<tr>
<td>M-WIWI-101422</td>
<td>Specialization in Customer Relationship Management (S. 133)</td>
<td>9</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>M-WIWI-101425</td>
<td>Strategy and Organization (S. 137)</td>
<td>9</td>
<td>Hagen Lindstädt</td>
</tr>
<tr>
<td>M-WIWI-101421</td>
<td>Supply Chain Management (S. 139)</td>
<td>9</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>M-WIWI-101465</td>
<td>Topics in Finance I (S. 141)</td>
<td>9</td>
<td>Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>M-WIWI-101423</td>
<td>Topics in Finance II (S. 143)</td>
<td>9</td>
<td>Martin Ruckes, Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

10.3.2 Economics

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101499</td>
<td>Applied Microeconomics (S. 71)</td>
<td>9</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>M-WIWI-101668</td>
<td>Economic Policy I (S. 79)</td>
<td>9</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>M-WIWI-101501</td>
<td>Economic Theory (S. 81)</td>
<td>9</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>M-WIWI-101403</td>
<td>Public Finance (S. 125)</td>
<td>9</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

10.3.3 Informatics

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101426</td>
<td>Electives in Informatics (S. 84)</td>
<td>9</td>
<td>Andreas Oberweis, Ali Sunyaev, York Sure-Vetter, Melanie Volkamer</td>
</tr>
</tbody>
</table>
10.3.4 Operations Research

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101413</td>
<td>Applications of Operations Research (S. 69)</td>
<td>9</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>M-WIWI-101414</td>
<td>Methodical Foundations of OR (S. 118)</td>
<td>9</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>M-WIWI-103278</td>
<td>Optimization under Uncertainty (S. 123)</td>
<td>9</td>
<td>Steffen Rebbennack</td>
</tr>
</tbody>
</table>

10.3.5 Engineering Sciences

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101004</td>
<td>Fundamentals of construction (S. 28)</td>
<td>9</td>
<td>Shervin Haghsheno</td>
</tr>
<tr>
<td>M-BGU-101067</td>
<td>Mobility and Infrastructure (S. 29)</td>
<td>9</td>
<td>Ralf Roos</td>
</tr>
<tr>
<td>M-ETIT-101156</td>
<td>Control Engineering (S. 30)</td>
<td>9</td>
<td>Sören Hohmann, Mathias Kluwe</td>
</tr>
<tr>
<td>M-ETIT-101165</td>
<td>Energy Generation and Network Components (S. 32)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-ETIT-102379</td>
<td>Power Network (S. 33)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-MACH-101266</td>
<td>Automotive Engineering (S. 36)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Combustion Engines I (S. 38)</td>
<td>9</td>
<td>Thomas Koch, Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Combustion Engines II (S. 39)</td>
<td>9</td>
<td>Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Emphasis in Fundamentals of Engineering (S. 41)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Emphasis Materials Science (S. 42)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101264</td>
<td>Handling Characteristics of Motor Vehicles (S. 44)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrated Production Planning (S. 46)</td>
<td>9</td>
<td>Gisela Lanza</td>
</tr>
<tr>
<td>M-MACH-101269</td>
<td>Introduction to Technical Logistics (S. 47)</td>
<td>9</td>
<td>Kai Furmans</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Machine Tools and Industrial Handling (S. 49)</td>
<td>9</td>
<td>Jürgen Fleischer</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Manufacturing Technology (S. 50)</td>
<td>9</td>
<td>Volker Schulze</td>
</tr>
<tr>
<td>M-MACH-101299</td>
<td>Mechanical Design (S. 52)</td>
<td>9</td>
<td>Sven Matthiesen</td>
</tr>
<tr>
<td>M-MACH-101287</td>
<td>Microsystem Technology (S. 55)</td>
<td>9</td>
<td>Jan Gerrit Korvink</td>
</tr>
<tr>
<td>M-MACH-101267</td>
<td>Mobile Machines (S. 57)</td>
<td>9</td>
<td>Marcus Geimer</td>
</tr>
<tr>
<td>M-MACH-101270</td>
<td>Product Lifecycle Management (S. 59)</td>
<td>9</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Rail System Technology (S. 61)</td>
<td>9</td>
<td>Peter Gratzfeld</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Specialization in Production Engineering (S. 62)</td>
<td>9</td>
<td>Volker Schulze</td>
</tr>
<tr>
<td>M-MACH-101265</td>
<td>Vehicle Development (S. 63)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-WIWI-101404</td>
<td>Extracurricular Module in Engineering (S. 95)</td>
<td>9</td>
<td>Prüfungsaußschuss der KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>M-WIWI-101646</td>
<td>Introduction to Natural Hazards and Risk Analysis 1 (S. 110)</td>
<td>9</td>
<td>Michael Kunz</td>
</tr>
<tr>
<td>M-WIWI-101648</td>
<td>Introduction to Natural Hazards and Risk Analysis 2 (S. 112)</td>
<td>9</td>
<td>Michael Kunz</td>
</tr>
</tbody>
</table>

10.3.6 Statistics

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101599</td>
<td>Statistics and Econometrics (S. 135)</td>
<td>9</td>
<td>Oliver Grothe, Melanie Schienle</td>
</tr>
</tbody>
</table>

10.3.7 Law
11 ADDITIONAL EXAMINATIONS

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101187</td>
<td>Elective Module Law (S. 35)</td>
<td>9</td>
<td>Thomas Dreier</td>
</tr>
</tbody>
</table>

10.3.8 Sociology

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-101167</td>
<td>Sociology/Empirical Social Research (S. 34)</td>
<td>9</td>
<td>Gerd Nollmann</td>
</tr>
</tbody>
</table>

11 Additional Examinations

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101004</td>
<td>Fundamentals of construction (S. 28)</td>
<td>9</td>
<td>Shervin Haghsheno</td>
</tr>
<tr>
<td>M-BGU-101067</td>
<td>Mobility and Infrastructure (S. 29)</td>
<td>9</td>
<td>Ralf Roos</td>
</tr>
<tr>
<td>M-ETIT-101165</td>
<td>Energy Generation and Network Components (S. 32)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-ETIT-102379</td>
<td>Power Network (S. 33)</td>
<td>9</td>
<td>Bernd Hoferer, Thomas Leibfried</td>
</tr>
<tr>
<td>M-MACH-101266</td>
<td>Automotive Engineering (S. 36)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Combustion Engines I (S. 38)</td>
<td>9</td>
<td>Thomas Koch, Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Combustion Engines II (S. 39)</td>
<td>9</td>
<td>Heiko Kubach</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Emphasis in Fundamentals of Engineering (S. 41)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Emphasis Materials Science (S. 42)</td>
<td>9</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>M-MACH-101264</td>
<td>Handling Characteristics of Motor Vehicles (S. 44)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrated Production Planning (S. 46)</td>
<td>9</td>
<td>Gisela Lanza</td>
</tr>
<tr>
<td>M-MACH-101269</td>
<td>Introduction to Technical Logistics (S. 47)</td>
<td>9</td>
<td>Kai Furmans</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Machine Tools and Industrial Handling (S. 49)</td>
<td>9</td>
<td>Jürgen Fleischer</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Manufacturing Technology (S. 50)</td>
<td>9</td>
<td>Volker Schulze</td>
</tr>
<tr>
<td>M-MACH-101287</td>
<td>Microsystem Technology (S. 55)</td>
<td>9</td>
<td>Jan Gerrit Korvink</td>
</tr>
<tr>
<td>M-MACH-101267</td>
<td>Mobile Machines (S. 57)</td>
<td>9</td>
<td>Marcus Geimer</td>
</tr>
<tr>
<td>M-MACH-101270</td>
<td>Product Lifecycle Management (S. 59)</td>
<td>9</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Rail System Technology (S. 61)</td>
<td>9</td>
<td>Peter Gratfeld</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Specialization in Production Engineering (S. 62)</td>
<td>9</td>
<td>Volker Schulze</td>
</tr>
<tr>
<td>M-MACH-101265</td>
<td>Vehicle Development (S. 63)</td>
<td>9</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>M-WIWI-101413</td>
<td>Applications of Operations Research (S. 69)</td>
<td>9</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>M-WIWI-101499</td>
<td>Applied Microeconomics (S. 71)</td>
<td>9</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>M-WIWI-101460</td>
<td>CRM and Service Management (S. 73)</td>
<td>9</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>M-WIWI-101467</td>
<td>Design, Construction and Sustainability Assessment of Buildings (S. 75)</td>
<td>9</td>
<td>Thomas Lützkendorf</td>
</tr>
<tr>
<td>M-WIWI-101434</td>
<td>eBusiness and Service Management (S. 77)</td>
<td>9</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101668</td>
<td>Economic Policy I (S. 79)</td>
<td>9</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>M-WIWI-101501</td>
<td>Economic Theory (S. 81)</td>
<td>9</td>
<td>Clemens Puppe</td>
</tr>
<tr>
<td>M-WIWI-101402</td>
<td>eFinance (S. 82)</td>
<td>9</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>M-WIWI-101464</td>
<td>Energy Economics (S. 92)</td>
<td>9</td>
<td>Wolf Fichtner</td>
</tr>
</tbody>
</table>
12 Master Transfer Account

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101404</td>
<td>Extracurricular Module in Engineering (S. 95)</td>
<td>9</td>
<td>Prüfungsausschuss der KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Part IV

Modules

Module: Fundamentals of construction [M-BGU-101004]

Responsibility: Shervin Haghsheno

Organisation: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101691</td>
<td>Construction Technology (S. 219)</td>
<td>6</td>
<td>Shervin Haghsheno</td>
</tr>
<tr>
<td>T-BGU-101675</td>
<td>Project Management (S. 442)</td>
<td>3</td>
<td>Shervin Haghsheno</td>
</tr>
</tbody>
</table>

Conditions
Successful passing of the corresponding modules of the basic program.

Qualification Objectives
The student
- is familiar with all substantial domains of construction
- knows and understands substantial construction methods and construction machines
- masters basic construction calculations
- knows and understands the fundamentals of project management in civil engineering
- can apply his / her knowledge in a goal-oriented manner to accomplish a construction project efficiently

Recommendations
None

Remarks
We encourage students to deepen their knowledge in construction by building additional customized modules from the courses offered by TMB. Please consult with the tutors of this module. Further information is available at www.tmb.kit.edu.
Module: Mobility and Infrastructure [M-BGU-101067]

Responsibility: Ralf Roos

Organisation: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility
T-BGU-101791 Mobility and Infrastructure (S. 389) 9 Ralf Roos, Peter Vortisch

Conditions
Successful passing of the corresponding modules of the basic program.

Recommendations
None

Remarks
None
Module: Control Engineering [M-ETIT-101156]

Responsibility: Sören Hohmann, Mathias Kluwe

Organisation: KIT-Fakultät für Elektrotechnik und Informationstechnik

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program

Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100699</td>
<td>Modelling and Identification (S. 392)</td>
<td>4</td>
<td>Sören Hohmann</td>
</tr>
<tr>
<td>T-ETIT-101921</td>
<td>System Dynamics and Control Engineering (S. 509)</td>
<td>6</td>
<td>Sören Hohmann</td>
</tr>
</tbody>
</table>

Conditions
Successful passing of the corresponding modules of the basic program.

Qualification Objectives
The students

- get familiar with the basic concepts of control theory,
- learn and understand the elements, the structure and the behavior of dynamic systems,
- have insight in the problems of control and intuition about methods available to solve those problems as well in frequency domain as in time domain,
- get familiar with the basic principles and methods for the theoretical and experimental modelling of dynamic systems.

Content
This module familiarizes students with the basic elements, structures and the behavior of dynamic systems. Both time continuous and time discrete models are regarded. The students gain insight into the problems of control design and methods available to solve such problems in frequency and time domain. Above that, the students learn the basic principles and methods for the theoretical and experimental modelling of dynamic systems.
Module: Electrical Engineering [M-ETIT-101155]

Responsibility: Wolfgang Menesklou
Organisation: KIT-Fakultät für Elektrotechnik und Informationstechnik
Curricular Anchorage: Compulsory
Contained in: Engineering Sciences / Basic Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each winter term</td>
<td>1 term</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility
T-ETIT-100533 Electrical Engineering for Business Engineers, Part I 3 Wolfgang Menesklou

Learning Control / Examinations
The assessment of the module is carried out by a written examination about the lecture Electrical Engineering I [23223] (according to Section 4(2), 1 of the examination regulation). The grade of the module corresponds to the grade of this examination.

Qualification Objectives
The student knows and understands basic terms of electrical engineering and should be able to carry out simple calculations of DC and AC circuits.

Content
Supporting the lecture, assignments to the curriculum are distributed. These are solved into additional (voluntary) tutorials.

Workload
See German version.
Module: Energy Generation and Network Components [M-ETIT-101165]

Responsibility: Bernd Hoferer, Thomas Leibfried

Organisation: KIT-Fakultät für Elektrotechnik und Informationstechnik

Curricular Anchorage: Compulsory Elective

Contained in:
- Engineering Sciences / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
- Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
- Additional Examinations

ECTS 9
Recurrence Each term
Duration 2 terms
Level 3
Version 1

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101924</td>
<td>Power Generation (S. 425) 3</td>
<td>Bernd Hoferer</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101925</td>
<td>Design and Operation of Power Transformers (S. 232) 3</td>
<td>Mitarbeiter, N. N.</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Conditions
It is only possible to choose this module in combination with the module Power Networks [WW3INGETIT3]. The module is passed only after the final partial exam of Power Networks is additionally passed. Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
- The module [M-ETIT-102379] Power Network must have been started.

Qualification Objectives
The student
- has basic and advanced knowledge of electrical power engineering,
- is capable to analyse, calculate and develop electrical power engineering systems.

Content
The module deals with basic knowledge about the structure and operation of electrical power networks and their needed facilities. Further lectures give an insight into specific topics, such as Automation in electric power engineering or the procedures for generating electrical energy.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Power Network [M-ETIT-102379]

Responsibility: Bernd Hoferer, Thomas Leibfried

Organisation: KIT-Fakultät für Elektrotechnik und Informationstechnik
Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>German</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101923</td>
<td>Electric Energy Systems (S. 246)</td>
<td>5</td>
<td>Thomas Leibfried</td>
</tr>
<tr>
<td>T-ETIT-100830</td>
<td>Power Network (S. 426)</td>
<td>6</td>
<td>Thomas Leibfried</td>
</tr>
</tbody>
</table>

Conditions
Successful passing of the corresponding modules of the basic program.
Module: Sociology/Empirical Social Research [M-GEISTSOZ-101167]

Responsibility: Gerd Nollmann
Organisation: KIT-Fakultät für Geistes- und Sozialwissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Compulsory Elective Modules / Elective Module 2 / Sociology

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-109047</td>
<td>Analalysis of Social Structurs (WiWi) (S. 173)</td>
<td>3</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-GEISTSOZ-109048</td>
<td>Social Science A (WiWi) (S. 490)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-GEISTSOZ-109049</td>
<td>Social Science B (WiWi) (S. 491)</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualification Objectives
The student

- Gains theoretical and methodical knowledge of social processes and structures
- Is able to apply acquired knowledge practically
- Is able to present work results in a precise and clear way

Content
This module offers students the possibility to get to know research problems and to answer these theoretically as well as empirically. For example: Who does earn how much in his job and why? How do subcultures emerge? Why are boys’ grades in school always worse than those of girls? Do divorces have negative influences on the development of children? How does mass consumption influence the individual? Is there a world society emerging? In addition, this module contains courses on sociological methods that are essential to answer such questions scientifically.

The lecture on social structure analysis gives an overview of large social structures such as the education system, labour market, institutions, demography, etc. for Germany and in international comparison. The content of the social research seminars is determined individually by the lecturers. Students are free to choose one seminar each for Social Research A/B.
Module: Elective Module Law [M-INFO-101187]

Responsibility: Thomas Dreier
Organisation: KIT-Fakultät für Informatik
Curricular Anchorage: Compulsory Elective
Contained in: Compulsory Elective Modules / Elective Module 2 / Law

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101963</td>
<td>Public Law I - Basic Principles (S. 445)</td>
<td>3</td>
<td>Nikolaus Marsch</td>
</tr>
<tr>
<td>T-INFO-102042</td>
<td>Public Law II (S. 446)</td>
<td>3</td>
<td>Nikolaus Marsch</td>
</tr>
<tr>
<td>T-INFO-103339</td>
<td>Civil Law for Beginners (S. 209)</td>
<td>4</td>
<td>Thomas Dreier</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place in every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None

Workload
See German version.
Module: Automotive Engineering [M-MACH-101266]

Responsibility: Frank Gauterin
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective
Contained in: Engineering Sciences / Specialisation Program
 Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
 Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
 Additional Examinations

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092</td>
<td>Automotive Engineering I (S. 185)</td>
<td>6</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Automotive Engineering II (S. 187)</td>
<td>3</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering (S. 443)</td>
<td>4,5</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I</td>
<td>1,5</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II</td>
<td>1,5</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems (S. 273)</td>
<td>5</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls (S. 198)</td>
<td>3</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Controls - Advance (S. 200)</td>
<td>0</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fahrzeugtechnik
Non-Compulsory Block; You must choose at least 9 credits.

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-MACH-101259] Engineering Mechanics must have been passed.
2. The module [M-MACH-101260] Materials Science must have been passed.
3. The module [M-ETIT-101155] Electrical Engineering must have been passed.
4. The module [M-WIWI-101839] Additional Fundamentals of Engineering must have been passed.

Qualification Objectives
The student
- knows the most important components of a vehicle,
• knows and understands the functioning and the interaction of the individual components,
• knows the basics of dimensioning the components.

Content
In the module Automotive Engineering the basics are taught, which are important for the development, the design, the production and the operation of vehicles. Particularly the primary important aggregates like engine, gear, drive train, chasis and auxiliary equipment are explained, but also all technical equipment, which make the operation safer and easier. Additionally the interior equipment is examined, which shall provide a preferably comfortable, optimum ambience to the user.

In the module Automotive Engineering the focus is on passenger cars and commercial vehicles, which are designed for road applications.

Recommendations
Knowledge of the content of the courses *Engineering Mechanics I* [2161238] and *Engineering Mechanics II* [1262276] is helpful.

Workload
The total work load for this module is about 270 Hours (9 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 6 credit points is about 180 hours, for courses with 4.5 credit points about 135 hours, for courses with 3 credit points about 90 hours, and for courses with 1.5 credit points about 45 hours. The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam duration and the time that is required to achieve the objectives of the module as an average student with an average performance.
Module: Combustion Engines I [M-MACH-101275]

Responsibility: Thomas Koch, Heiko Kubach

Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102194</td>
<td>Combustion Engines I (S. 212)</td>
<td>5</td>
<td>Thomas Koch, Heiko Kubach</td>
</tr>
<tr>
<td>T-MACH-105564</td>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines (S. 252)</td>
<td>4</td>
<td>Thomas Koch, Heiko Kubach</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The module examination contains of two oral examinations. The module score results from the two scores weighted according to the ECTS.

Conditions
Successful passing of the corresponding modules of the basic program.

Qualification Objectives
The student can name and explain the working principle of combustion engines. He is able to analyse and evaluate the combustion process. He is able to evaluate influences of gas exchange, mixture formation, fuels and exhaust gas aftertreatment on the combustion performance. He can solve basic research problems in the field of engine development. The student can name all important influences on the combustion process. He can analyse and evaluate the engine process considering efficiency, emissions and potential.

Content
Introduction, History, Concepts
Working Principle and Thermodynamics
Characteristic Parameters
Air Path
Fuel Path
Energy Conversion
Fuels
Emissions
Exhaust Gas Aftertreatment
Reaction kinetics
Gas exchange
Ignition
Flow field of gasoline engines
Working process
Pressure trace analysis
Thermodynamic analysis of the high pressure process
Exergy analysis and waste heat recuperation
Aspects of sustainability
Module: Combustion Engines II [M-MACH-101303]

Responsibility: Heiko Kubach
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective
Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104609</td>
<td>Combustion Engines II (S. 213)</td>
<td>5</td>
<td>Rainer Koch, Heiko Kubach</td>
</tr>
</tbody>
</table>

Verbrennungsmotoren II
Non-Compulsory Block; You must choose at least 4 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment (S. 294)</td>
<td>4</td>
<td>Olaf Deutschmann, Jan-Dierk Grunwaldt, Heiko Kubach, Egbert Lox</td>
</tr>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines (S. 174)</td>
<td>4</td>
<td>Marcus Gohl</td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines (S. 281)</td>
<td>4</td>
<td>Bernhard Ulrich Kehrwald, Heiko Kubach</td>
</tr>
<tr>
<td>T-MACH-105167</td>
<td>Analysis Tools for Combustion Diagnostics (S. 176)</td>
<td>4</td>
<td>Jürgen Pfeil</td>
</tr>
<tr>
<td>T-MACH-102197</td>
<td>Gas Engines (S. 297)</td>
<td>4</td>
<td>Rainer Golloch</td>
</tr>
<tr>
<td>T-MACH-102199</td>
<td>Model Based Application Methods (S. 390)</td>
<td>4</td>
<td>Frank Kirschbaum</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques (S. 255)</td>
<td>4</td>
<td>Sören Bernhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (60 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Conditions
It is only possible to choose this module in combination with the module Combustion Engines I. The module is passed only after the final partial exam of Combustion Engines I is additionally passed.

The course Combustion Engines II [2134131] has to be attended.
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
- The module [M-MACH-101275] Combustion Engines I must have been started.

Qualification Objectives
See courses.
Content
Compulsory:
Supercharging and air management
Engine maps
Emissions and Exhaust gas aftertreatment
Transient engine operation
ECU application
Electrification and alternative powertrains
Elective:
Fuels and lubricants for ICE
Fundamentals of catalytic EGA
Analysis tools for combustion diagnostics
Engine measurement techniques
Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines

Workload
regular attendance: 62 h
self-study: 208 h
Module: Emphasis in Fundamentals of Engineering [M-MACH-101261]

Responsibility: Michael Hoffmann

Organisation: KIT-Fakultät für Maschinenbau

Curricular An-chorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Vertiefung ingenieurwissenschaftlicher Grundlagen
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100534</td>
<td>Electrical Engineering for Business Engineers, Part II (S. 248)</td>
<td>5</td>
<td>Wolfgang Menesklou</td>
</tr>
<tr>
<td>T-MACH-102079</td>
<td>Material Science II for Business Engineers (S. 372)</td>
<td>5</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102210</td>
<td>Introduction to Engineering Mechanics II : Dynamics (S. 336)</td>
<td>5</td>
<td>Alexander Fidlin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is removed from the average of the partial examinations, with at least two partial exams need to be.

Conditions
Successful passing of the corresponding modules of the basic program.

Qualification Objectives
Students acquire and deepen skills in engineering fundamentals and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content
The module content depends on the elected courses.

Remarks
Starting winter term 2016/1017 the course “Introduction to Engineering Mechanics II : Dynamics” [2162276] will be held in winter term.

Workload
See German version.
Module: Emphasis Materials Science [M-MACH-101262]

Responsibility: Michael Hoffmann

Organisation: KIT-Fakultät für Maschinenbau

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
 Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
 Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
 Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Vertiefung Werkstoffkunde
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102079</td>
<td>Material Science II for Business Engineers (S. 372)</td>
<td>5</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102141</td>
<td>Constitution and Properties of W earresistant Materials (S. 217)</td>
<td>4</td>
<td>Sven Ulrich</td>
</tr>
<tr>
<td>T-MACH-100287</td>
<td>Introduction to Ceramics (S. 333)</td>
<td>6</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physical Basics of Laser Technology (S. 416)</td>
<td>5</td>
<td>Johannes Schneider</td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymer Engineering I (S. 423)</td>
<td>4</td>
<td>Peter Elsner</td>
</tr>
<tr>
<td>T-MACH-102138</td>
<td>Polymerengineering II (S. 424)</td>
<td>4</td>
<td>Peter Elsner</td>
</tr>
<tr>
<td>T-MACH-102139</td>
<td>Failure of Structural Materials: Fatigue and Creep (S. 265)</td>
<td>4</td>
<td>Patric Gruber, Peter Gumbsch</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Failure of Structural Materials: Deformation and Fracture (S. 263)</td>
<td>4</td>
<td>Peter Gumbsch, Daniel Weygand</td>
</tr>
<tr>
<td>T-MACH-102157</td>
<td>High Performance Powder Metallurgy Materials (S. 310)</td>
<td>4</td>
<td>Rainer Oberacker</td>
</tr>
<tr>
<td>T-MACH-102179</td>
<td>Structural Ceramics (S. 508)</td>
<td>4</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102170</td>
<td>Structural and Phase Analysis (S. 507)</td>
<td>4</td>
<td>Susanne Wagner</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematic Materials Selection (S. 510)</td>
<td>5</td>
<td>Stefan Dietrich</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is removed from the average of the partial examinations, with at least two partial exams need to be.

Conditions
Successful passing of the corresponding modules of the basic program.

Qualification Objectives
Students acquire and deepen skills in fundamentals of materials science and engineering and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content
The module content depends on the elected courses.

Workload
The module requires an average workload of 270 hours.

Responsibility: Alexander Fidlin
Organisation: Institut für Technische Mechanik
Curricular Anchorage: Compulsory
Contained in: Engineering Sciences / Basic Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility
T-MACH-102208 Introduction to Engineering Mechanics I: Statics and Strength of Materials (S. 335) 3 Alexander Fidlin

Learning Control / Examinations
The assessment consists of a written examination taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.
Permitted utilities: non-programmable calculator, literature
Conditions
None

Qualification Objectives
The student
- knows and understands the basic elements of statics,
- is able to solve basic problems in statics independently.

Content
Statics: force · moment · general equilibrium conditions · center of gravity · inner forces in structure · plane frameworks · adhesion

Remarks
Starting summer 2016 the course “Introduction to Engineering Mechanics I: Statics and Strength of Materials” [2162238] will be held in summer term.

Workload
The total workload for this module is approximately 90 hours.
Module: Handling Characteristics of Motor Vehicles [M-MACH-101264]

Responsibility: Frank Gauterin
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective

Contained in:
Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fahrzeugeigenschaften
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105152</td>
<td>Handling Characteristics of Motor Vehicles I (S. 307)</td>
<td>3</td>
<td>Hans-Joachim Unrau</td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Handling Characteristics of Motor Vehicles II (S. 309)</td>
<td>3</td>
<td>Hans-Joachim Unrau</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Vehicle Comfort and Acoustics I (S. 516)</td>
<td>3</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Vehicle Comfort and Acoustics II (S. 518)</td>
<td>3</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>T-MACH-105156</td>
<td>Vehicle Mechatronics I (S. 520)</td>
<td>3</td>
<td>Dieter Ammon</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering (S. 443)</td>
<td>4,5</td>
<td>Michael Frey, Frank Gauterin, Martin Gießler</td>
</tr>
<tr>
<td>T-MACH-102177</td>
<td>Global Vehicle Evaluation within Virtual Road Test (S. 306)</td>
<td>3</td>
<td>Bernhard Schick</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-MACH-101259] Engineering Mechanics must have been passed.
2. The module [M-MACH-101260] Materials Science must have been passed.
3. The module [M-ETIT-101155] Electrical Engineering must have been passed.
4. The module [M-WIWI-101839] Additional Fundamentals of Engineering must have been passed.

Qualification Objectives
The student

- knows and understands the characteristics of vehicles, owing to the construction and design tokens,
- knows and understands especially the factors being relevant for comfort and acoustics
- is capable of fundamentally evaluating and rating handling characteristics.
Content
See courses.

Recommendations

Workload
The total work load for this module is about 270 Hours (9 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 4.5 credit points is about 135 hours, and for courses with 3 credit points about 90 hours. The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam duration and the time that is required to achieve the objectives of the module as an average student with an average performance.
Module: Integrated Production Planning [M-MACH-101272]

Responsibility: Gisela Lanza

Organisation: KIT-Fakultät für Maschinenbau

Curricular Anchorage: Compulsory Elective

Contained in:
- Engineering Sciences / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
- Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
- Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Identifier

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109054</td>
<td>Integrated Production Planning in the Age of Industry 4.0 (S. 324)</td>
<td>9</td>
<td>Gisela Lanza</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written Exam (120 min)

Conditions

Successful passing of the corresponding modules of the basic program.

Qualification Objectives

The students

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Content

Within this engineering sciences-oriented module the students will get to learn principle aspects of organization and planning of production systems.

Workload

- regular attendance: 63 hours
- self-study: 207 hours
Module: Introduction to Technical Logistics [M-MACH-101269]

Responsibility: Kai Furmans

Organisation: KIT-Fakultät für Maschinenbau

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

ECTS
9
Recurrence
Each term
Duration
1 term
Language
German
Level
3
Version
2

Einführung in die Technische Logistik (Kernbereich)
Non-Compulsory Block; You must choose between 1 und 2 courses and 6 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102151</td>
<td>Material Flow in Logistic Systems (S. 370)</td>
<td>6</td>
<td>Kai Furmans</td>
</tr>
<tr>
<td>T-MACH-102163</td>
<td>Basics of Technical Logistics (S. 193)</td>
<td>6</td>
<td>Martin Mittwollen, Jan Oellerich</td>
</tr>
</tbody>
</table>

Einführung in die Technische Logistik (Ergänzungsbereich)
Non-Compulsory Block; You must choose one course and at least 3 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management (S. 322)</td>
<td>4</td>
<td>Christoph Kilger</td>
</tr>
<tr>
<td>T-MACH-102160</td>
<td>Selected Applications of Technical Logistics (S. 457)</td>
<td>4</td>
<td>Viktor Milushev, Martin Mittwollen</td>
</tr>
<tr>
<td>T-MACH-105174</td>
<td>Warehousing and Distribution Systems (S. 523)</td>
<td>4</td>
<td>Kai Furmans</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems (S. 253)</td>
<td>4</td>
<td>Meike Braun, Frank Schönung</td>
</tr>
<tr>
<td>T-MACH-105165</td>
<td>Automotive Logistics (S. 189)</td>
<td>4</td>
<td>Kai Furmans</td>
</tr>
<tr>
<td>T-MACH-105175</td>
<td>Airport Logistics (S. 172)</td>
<td>4</td>
<td>André Richter</td>
</tr>
<tr>
<td>T-WIWI-103091</td>
<td>Production and Logistics Controlling (S. 439)</td>
<td>3</td>
<td>Helmut Wlcek</td>
</tr>
<tr>
<td>T-MACH-102159</td>
<td>Elements and Systems of Technical Logistics (S. 249)</td>
<td>4</td>
<td>Georg Fischer, Martin Mittwollen</td>
</tr>
<tr>
<td>T-MACH-108946</td>
<td>Elements and Systems of Technical Logistics - Project (S. 250)</td>
<td>2</td>
<td>Georg Fischer, Martin Mittwollen</td>
</tr>
<tr>
<td>T-MACH-108945</td>
<td>Selected Applications of Technical Logistics - Project (S. 458)</td>
<td>2</td>
<td>Viktor Milushev, Martin Mittwollen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the IFL. The term paper may not be convalidated in the seminar module.

Conditions
none

Qualification Objectives
The student acquires
• well-founded knowledge and method knowledge in the main topics of technical logistics,
• expertise and understanding about the functionality of conveyor technology,
• ability for modeling logistic systems with adequate accuracy by using simple models,
• ability to evaluate logistic systems and to identify cause-and-effects-chains within logistic systems.

Content
The module *Introduction to Technical Logistics* provides first insights into main topics of technical logistics. Within the lectures, the interaction between several components of material handling systems will be clarified. The focus will be on technical characteristics of material handling technology and basics for sizing of material handling systems. To gain a deeper understanding, the course is accompanied by exercises and further improved by case studies.

Workload
270 hours
Module: Machine Tools and Industrial Handling [M-MACH-101286]

Responsibility: Jürgen Fleischer
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective

Contained in:
- Engineering Sciences / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
- Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
- Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility

T-MACH-102158 Machine Tools and Industrial Handling (S. 358) 9 Jürgen Fleischer

Learning Control / Examinations
Written exam (120 minutes)

Conditions
Successful passing of the corresponding modules of the basic program.

Qualification Objectives
The students

- are capable to explain the use and application of machine tools and handling devices as well as differentiate their characteristics and structure.
- are able to name and describe the essential components (frame, main spindles, feed axis, peripheral equipment, control) of machine tools.
- are capable to distinguish and select and describe the essential components regarding structure, characteristics advantages and disadvantages.
- are enabled to dimension the main components of machine tools.
- are able to name and describe the control principles of machine tools.
- are capable to name examples of machine tools and industrial handling as well as to deduce compare the essential components. Additionally they can allocate manufacturing processes.
- are enabled to identify drawbacks as well as derive and asses measures for improvements.
- are qualified to apply methods for selection and evaluation of machine tools.
- are experienced to deduce the particular failure characteristics of a ball screw.

Content
The module overviews the assembly, dimensioning and application of machine tools and industrial handling. A consolidated and practice oriented knowledge is imparted about the choice, dimensioning and assessment of production machines. At first, the major components of machine tools are explained systematically. At this, the characteristics of dimensioning of machine tools are described in detail. Finally, the application of machine tools is demonstrated by means of example machines of the manufacturing processes turning, milling, grinding, massive forming, sheet metal forming and toothing.

Workload
regular attendance: 63 hours
self-study: 207 hours
Module: Manufacturing Technology [M-MACH-101276]

Responsibility: Volker Schulze

Organisation: KIT-Fakultät für Maschinenbau

Curricular Anchorage: Compulsory Elective

Contained in:
- Engineering Sciences / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
- Compulsory Elective Modules / Elective Module 2 / Engineering Sciences

Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory

Identifier T-MACH-102105 **Course** Manufacturing Technology (S. 368) **ECTS** 9 **Responsibility** Volker Schulze, Frederik Zanger

Learning Control / Examinations

Written Exam (180 min)

Conditions

Successful passing of the corresponding modules of the basic program.

Qualification Objectives

The students

- can name different manufacturing processes, can describe their specific characteristics and are capable to depict the general function of manufacturing processes and are able to assign manufacturing processes to the specific main groups.
- are enabled to identify correlations between different processes and to select a process depending on possible applications.
- are capable to describe the theoretical basics for the manufacturing processes they got to know within the scope of the course and are able to compare the processes.
- are able to correlate based on their knowledge in materials science the processing parameters with the resulting material properties by taking into account the microstructural effects.
- are qualified to evaluate different processes on a material scientific basis.

Content

Within this engineering sciences-oriented module the students will get to learn principle aspects of manufacturing technology. Further information can be found at the description of the lecture “Manufacturing Technology”.

Workload

regular attendance: 63 hours
self-study: 207 hours
Module: Materials Science [M-MACH-101260]

Responsibility: Michael Hoffmann
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory
Contained in: Engineering Sciences / Basic Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each winter term</td>
<td>1 term</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Identifier Course ECTS Responsibility
T-MACH-102078 Materials Science I (S. 374) 3 Michael Hoffmann

Learning Control / Examinations
The assessment of the module is carried out by a written examination (150 min) about the lecture Materials Science (according to Section 4(2), 1 of the examination regulation).
The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.
The grade of the module corresponds to the grade of this examination.

Conditions
None.

Qualification Objectives
Students are able to specify the basics of materials science and engineering and can apply it to simple problems in various technical areas.
As major part of the module, the students know the correlation between atomic structure and bonding of solids and the macroscopic properties such as mechanical behavior or electrical conductivity. They have basic knowledge with respect to materials characterization. The students are able to analyze phase diagrams with up to two components and can derive simple correlations among composition, processing, microstructure evolution and materials properties.

Content
After an introduction to the atomic structure and interatomic bonding, elementary concepts of crystallography are given. Different types of crystal structures are explained and various types of imperfections in solids. Then, the mechanical behaviour and the physical properties of various types of materials (metals, polymers, ceramics) are discussed. The thermodynamic principles of solidification and the basic types of phase diagrams are given to understand to iron-carbon phase diagram and the manifold microstructures of steel and cast iron.

Workload
The total workload for this module is approximately 90 hours.
Module: Mechanical Design [M-MACH-101299]

Responsibility: Sven Matthiesen

Organisation: KIT-Fakultät für Maschinenbau

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104739</td>
<td>Mechanical Design I and II - CIW (S. 380)</td>
<td>7</td>
<td>Sven Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102132</td>
<td>Mechanical Design I, Tutorial (S. 383)</td>
<td>1</td>
<td>Sven Matthiesen</td>
</tr>
<tr>
<td>T-MACH-102133</td>
<td>Mechanical Design II, Tutorial (S. 384)</td>
<td>1</td>
<td>Sven Matthiesen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written examination on the contents of Mechanical Design I&II
Duration: 90 min plus reading time
Preliminary examination: Successful participation in the preliminary work in the field of Mechanical Design I&II

Conditions
None

Qualification Objectives

Learning object springs:
- be able to recognize spring types and explain stress
- Identify and describe the properties of a resilient LSS in machine elements presented later on
- Understanding and explaining the principle of action
- Know and list areas of application for springs
- graphically illustrate the load and the resulting stresses
- be able to describe the degree of species usefulness as a means of lightweight construction
- be able to analyse different solution variants with regard to lightweight construction (use species efficiency)
- Being able to explain several springs as a circuit and calculate total spring stiffness

Learning objects Technical Systems:
- Being able to explain what a technical system is
- “Thinking in systems.”
- Using system technology as an abstraction tool for handling complexity
- Recognizing functional relationships of technical systems
- Getting to know the concept of function
- be able to use C&C²-A as a means of system technology

Learning objects Visualization:
- Ability to create and interpret schematics
- Using freehand technical drawing as a means of communication
- To be able to apply the technical basics of freehand drawing
- Derivation of 2D representations into different perspective representations of technical structures and vice versa
- Master reading of technical drawings
- Dedicated dimensioning of technical drawings
- Create sectional views of technical systems as a technical sketch

Learning objects Bearings:
- be able to recognize bearings in machine systems and explain their basic functions
- name bearings (type/type/function) and recognize them in machine systems and technical drawings
- Being able to name areas of application and selection criteria for the various bearings and bearing arrangements and explain interrelationships
- Ability to functionally explain the design of the bearing definitions in different directions radially/axially and circumferentially
- Know and describe selection as an iterative process as an example
- be able to perform dimensioning of bearing arrangements as an example of the engineer’s approach to dimensioning machine elements
- Develop first ideas for probabilities in predicting the life of machine elements
- Recognise from the damage pattern whether static or dynamic overload was the cause of material failure
- Calculate equivalent static and dynamic bearing loads from the catalogue and given external forces on the bearing
- Being able to name, explain and transfer the basic equation of the dimensioning to the bearing dimensioning

Learning objectives seals:
- The students...
 - can discuss the basic functions of seals
 - can describe the physical causes for mass transfer
 - can apply the C&C-Model on seals
 - can name, describe and apply the three most important classification criteria of seals
 - can explain the function of a contacting seal and a non-contacting seal.
 - can differentiate the seal types and organize them to the classification criteria.
 - can discuss the structure and the effect of a radial shaft seal
 - can evaluate radial shaft seals, compression packings, mechanical seals, gap seals and labyrinth seals
 - can describe and apply the constructional principle of selffortification
 - can describe the stick-slip phenomenon during the movement sequences of a reciprocating seal

Learning design:
- The students...
 - understand the meaning of design
 - are able to recognize and implement basic rules and principles of design
 - are able to design the connection of partial systems into the total system
 - can name requirements of design and take them into account
 - know the main groups of manufacturing methods
 - are able to explain the manufacturing processes
 - are able to depict a casted design in a drawing clearly, e.g. draft of the mold, no material accumulation, ...
 - know how components are designed
 - Know how the production of the components has an effect on their design
 - Know the requirements and boundary conditions on design

Learning bolted connections:
- The students...
 - can list and explain various bolt applications.
 - can recognize bolt types and explain their function
 - can build a C&C² model of a bolted joint and discuss the influences on its function
 - can explain the function of a bolted connection with the help of a spring model
 - can reproduce, apply and discuss the screw equation.
 - Can estimate the load-bearing capacity of low-loaded bolted joints for dimensioning purposes
 - Can indicate which bolted joint is to be calculated and which only roughly dimensioned.
 - Can carry out the dimensioning of bolted connections as flange connections
 - Can create, explain and discuss the force deflection diagram of a bolted connection
Content
MKL I:
Introduction to product development
Tools for visualization (technical drawing)
Product creation as a problem solution
Technical Systems Product Development
 • Systems theorie
 • Contact and Channel Approach C&C²-A

Basics of selected construction and machine elements
 • Federn
 • bearings and fence
 • sealings

The lecture is accompanied by exercises with the following content:
gear workshop
Tools for visualization (technical drawing)
Technical Systems Product Development
 • Systemtheorie
 • Contact and Channel Approach C&C²-A

Exercises for springs
Exercises for bearings and fence
MKL II:
 • sealings
 • design
 • dimensioning
 • component connections
 • bolts

Recommendations
An in-depth study of machine design (parts 3 + 4) can be carried out as part of the “Extracurricular Module in Engineering”.

Workload
MKL1:
Attendance at lectures (15 VL): 22.5h
Presence exercises (8 exercises): 12h
Attendance (3x 2h) and preparation (3x3h) Workshop sessions: 15h
Preparation and execution of online test: 6h
Personal preparation and follow-up of lecture and exercise: 34.5h

MKL2:
Attendance lectures (15 VL): 22.5h
Presence exercises (7 ÜB): 10.5h
Personal preparation and follow-up of lecture and exercise, incl. prerequisite and preparation for the exam: 117h
Module: Microsystem Technology [M-MACH-101287]

Responsibility: Jan Gerrit Korvink
Organisation: Institut für Mikrostrukturtechnik
Curricular Anchorage: Compulsory Elective
Contained in: Engineering Sciences / Specialisation Program
 Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
 Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
 Additional Examinations

Mikrosystemtechnik
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102165</td>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers (S. 460)</td>
<td>3</td>
<td>Timo Mappes</td>
</tr>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II (S. 194)</td>
<td>3</td>
<td>Andreas Guber</td>
</tr>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III (S. 196)</td>
<td>3</td>
<td>Andreas Guber</td>
</tr>
<tr>
<td>T-MACH-102172</td>
<td>Bionics for Engineers and Natural Scientists (S. 197)</td>
<td>3</td>
<td>Hendrik Hölscher</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Introduction to Microsystem Technology II (S. 340)</td>
<td>3</td>
<td>Mazin Jouda, Jan Gerrit Korvink</td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Microactuators (S. 387)</td>
<td>3</td>
<td>Manfred Kohl</td>
</tr>
<tr>
<td>T-MACH-102080</td>
<td>Nanotechnology with Clusterbeams (S. 394)</td>
<td>3</td>
<td>Jürgen Gspann</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors (S. 402)</td>
<td>4</td>
<td>Manfred Kohl, Martin Sommer</td>
</tr>
<tr>
<td>T-ETIT-101907</td>
<td>Optoelectronic Components (S. 407)</td>
<td>4</td>
<td>Wolfgang Freude</td>
</tr>
<tr>
<td>T-MACH-100530</td>
<td>Physics for Engineers (S. 418)</td>
<td>6</td>
<td>Martin Dienwiebel, Peter Gumbsch, Alexander Nesterov-Müller, Daniel Weygand</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Practical Training in Basics of Microsystem Technology (S. 428)</td>
<td>3</td>
<td>Arndt Last</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
none

Qualification Objectives
construction and production of e. g. mechanical, optical, fluidic and sensory microsystems.

Content
The module offers courses in microsystem technology. Knowledge is imparted in various fields like basics in construction and production of e. g. mechanical, optical, fluidic and sensory microsystems.
Workload

270 hours
Module: Mobile Machines [M-MACH-101267]

Responsibility: Marcus Geimer

Organisation: KIT-Fakultät für Maschinenbau

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mobile Arbeitsmaschinen
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102093</td>
<td>Fluid Power Systems (S. 273)</td>
<td>5</td>
<td>Marcus Geimer, Felix Pult</td>
</tr>
<tr>
<td>T-MACH-105172</td>
<td>Simulation of Coupled Systems (S. 487)</td>
<td>4</td>
<td>Marcus Geimer, Yusheng Xiang</td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Controls (S. 198)</td>
<td>3</td>
<td>Simon Becker, Marcus Geimer</td>
</tr>
<tr>
<td>T-MACH-105168</td>
<td>Mobile Machines (S. 388)</td>
<td>9</td>
<td>Marcus Geimer</td>
</tr>
<tr>
<td>T-MACH-105160</td>
<td>Fundamentals in the Development of Commercial Vehicles I (S. 286)</td>
<td>1.5</td>
<td>Jörg Zürn</td>
</tr>
<tr>
<td>T-MACH-105161</td>
<td>Fundamentals in the Development of Commercial Vehicles II (S. 288)</td>
<td>1.5</td>
<td>Jörg Zürn</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general oral exam (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the oral examination. The assessment may be carried out as partial oral exams (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. In this case the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. The assessment procedures are described for each course of the module separately.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
1. The module [M-MACH-101259] Engineering Mechanics must have been passed.
2. The module [M-MACH-101260] Materials Science must have been passed.
3. The module [M-ETIT-101155] Electrical Engineering must have been passed.
4. The module [M-WIWI-101839] Additional Fundamentals of Engineering must have been passed.

Qualification Objectives
The student
- knows and understands the basic structure of the machines
- masters the basic skills to develop the selected machines
Content
In the module of Mobile Machines [WI4INGMB15] the students will learn the structure of the machines and deepen the knowledge of the subject for developing the machines. After conclusion the module the student will know the latest developments in mobile machines and is able to evaluate the concepts and the trends of developments. The module is practically orientated and supported by industry partners.

Recommendations
Knowledge of Fluid Power Systems are helpful, otherwise it is recommended to take the course Fluid Power Systems [2114093].

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Product Lifecycle Management [M-MACH-101270]

Responsibility: Jivka Ovtcharova
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective

Contained in:
- Engineering Sciences / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
- Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
- Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Product Lifecycle Management (Kernbereich)
Non-Compulsory Block; You must choose one course.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management (S. 435)</td>
<td>4</td>
<td>Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Product Lifecycle Management
Non-Compulsory Block; You must choose 2 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102153</td>
<td>PLM-CAD Workshop (S. 422)</td>
<td>4</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102181</td>
<td>PLM for Product Development in Mechatronics (S. 421)</td>
<td>4</td>
<td>Martin Eigner</td>
</tr>
<tr>
<td>T-MACH-102209</td>
<td>Information Engineering (S. 318)</td>
<td>3</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-106744</td>
<td>Agile product innovation management - value-driven planning of new products (S. 171)</td>
<td>4</td>
<td>Roland Kläger</td>
</tr>
<tr>
<td>T-MACH-106457</td>
<td>I4.0 Systems platform (S. 316)</td>
<td>4</td>
<td>Thomas Maier, Jivka Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Integrated Information Systems for Engineers (S. 323)</td>
<td>4</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Product, Process and Resource Integration in the Automotive Industry (S. 437)</td>
<td>4</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Practical Course (S. 522)</td>
<td>4</td>
<td>Jivka Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102187</td>
<td>CAD-NX Training Course (S. 208)</td>
<td>2</td>
<td>Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None

Qualification Objectives
The students should:
- have basic knowledge about the challenges in product and process data management regarding the whole product lifecycle;
- have understanding about challenges and functional concepts of product lifecycle management;
- be able to rudimental operate common PLM/CAx/VR - systems,
- develop and present prototype solutions in teams of different domains.

Content
Product Lifecycle Management (PLM), Generation and management of information, Architecture and functionality of information systems, Industry 4.0, CAx and VR-systems.

Workload
270 hours
Module: Rail System Technology [M-MACH-101274]

Responsibility: Peter Gratzfeld
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective
Contained in:
- Engineering Sciences / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
- Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
- Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102143</td>
<td>Rail System Technology (S. 449)</td>
<td>9</td>
<td>Peter Gratzfeld</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as a general oral exam (45 min.) (according to Section 4(2), 2 of the examination regulation) of the single courses of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the oral examination.

Conditions

Successful passing of the corresponding modules of the basic program.

Qualification Objectives

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- They deduct the fundamental requirements for rail vehicles out of it and assess concepts of rail vehicles.
- They know about major systems in a rail vehicle and evaluate their fitness in specific fields of application.
- The students realize that the typical business model in railway industry is a project. They learn main features and characteristics of project management in this area.

Content

- Overview about fundamental components of a modern rail system (vehicles, infrastructure, operation)
- History and economic impact of rail systems
- Vehicle dynamics, wheel-rail-contact, train protection, traction power supply
- Main systems of rail vehicles (electric and non-electric traction drive, bogies, brakes)
- Vehicle concepts for mass transit and main line
- Main features and characteristics of project management in railway industry (project management system, organization, main processes)

Recommendations

The lectures can be taken simultaneously.

Workload

1. Regular attendance: 63 hours
2. Self-study: 63 hours
3. Exam and preparation: 144 hours
Module: Specialization in Production Engineering [M-MACH-101284]

Responsibility: Volker Schulze
Organisation: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective
Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
</tr>
</tbody>
</table>

Vertiefung der Produktionstechnik
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars (S. 326)</td>
<td>4</td>
<td>Karl-Hubert Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105783</td>
<td>Learning Factory “Global Production” (S. 350)</td>
<td>4</td>
<td>Gisela Lanza</td>
</tr>
<tr>
<td>T-MACH-105166</td>
<td>Materials and Processes for Body Lightweight Construction in the Automotive Industry (S. 373)</td>
<td>4</td>
<td>Stefan Kienzle, Dieter Steegmüller</td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Laboratory Production Metrology (S. 349)</td>
<td>4</td>
<td>Benjamin Häfner</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management (S. 448)</td>
<td>4</td>
<td>Gisela Lanza</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Control Technology (S. 220)</td>
<td>4</td>
<td>Christoph Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105177</td>
<td>Metal Forming (S. 385)</td>
<td>3</td>
<td>Thomas Herlan</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Gear Cutting Technology (S. 298)</td>
<td>4</td>
<td>Markus Klaiber</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Conditions
none

Qualification Objectives
The students
- are able to apply the methods of production science to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- are able to use their knowledge target-oriented to achieve an efficient production technology.
- are able to analyze new situations and choose methods of production science target-oriented based on the analyses, as well as justifying their selection.
- are able to describe and compare complex production processes exemplarily.

Content
Within this module the students will get to know and learn about production science. Manifold lectures and excursions as part of several lectures provide specific insights into the field of production science.

Workload
The work load is about 270 hours, corresponding to 9 credit points.
Module: Vehicle Development [M-MACH-101265]

Responsibility: Frank Gauterin
Organization: KIT-Fakultät für Maschinenbau
Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fahrzeugentwicklung
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105156</td>
<td>Vehicle Mechatronics I (S. 520)</td>
<td>3</td>
<td>Dieter Ammon</td>
</tr>
<tr>
<td>T-MACH-105160</td>
<td>Fundamentals in the Development of Commercial Vehicles I (S. 286)</td>
<td>1,5</td>
<td>Jörg Zürn</td>
</tr>
<tr>
<td>T-MACH-105161</td>
<td>Fundamentals in the Development of Commercial Vehicles II (S. 288)</td>
<td>1,5</td>
<td>Jörg Zürn</td>
</tr>
<tr>
<td>T-MACH-102207</td>
<td>Tires and Wheel Development for Passenger Cars (S. 515)</td>
<td>3</td>
<td>Günter Leister</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Fundamentals of Automobile Development I (S. 290)</td>
<td>1,5</td>
<td>Rolf Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Fundamentals of Automobile Development II (S. 292)</td>
<td>1,5</td>
<td>Rolf Frech</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering (S. 443)</td>
<td>4,5</td>
<td>Michael Frey, Frank Gauterin, Martin Gießler</td>
</tr>
<tr>
<td>T-MACH-105172</td>
<td>Simulation of Coupled Systems (S. 487)</td>
<td>4</td>
<td>Marcus Geimer, Yusheng Xiang</td>
</tr>
<tr>
<td>T-MACH-108888</td>
<td>Simulation of Coupled Systems - Advance (S. 489)</td>
<td>0</td>
<td>Marcus Geimer, Yusheng Xiang</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Qualification Objectives
The student
- knows and understands the procedures in automobile development,
- knows and understands the technical specifications at the development procedures,
- is aware of notable boundaries like legislation.

Content
By taking the module Vehicle Development the students get to know the methods and processes applied in the automobile industry. They learn the technical particularities which have to be considered during the vehicle development and it is shown how the numerous single components cooperate in a harmoniously balanced complete vehicle. There is also paid attention on special boundary conditions like legal requirements.
Recommendations

Workload
The total work load for this module is about 270 Hours (9 Credits). The partition of the work load is carried out according to the credit points of the courses of the module. The work load for courses with 6 credit points is about 180 hours, for courses with 4.5 credit points about 135 hours, for courses with 3 credit points about 90 hours, and for courses with 1.5 credit points about 45 hours. The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam duration and the time that is required to achieve the objectives of the module as an average student with an average performance.
Module: Mathematics 1 [M-MATH-101676]

Responsibility: Günter Last
Organisation: KIT-Fakultät für Mathematik
Curricular Anchorage: Compulsory
Contained in: Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102260</td>
<td>Mathematics I - Midterm Exam (S. 376)</td>
<td>3.5</td>
<td>Martin Folkers, Daniel Hug, Günter Last, Steffen Winter</td>
</tr>
<tr>
<td>T-MATH-102261</td>
<td>Mathematics I - Final Exam (S. 375)</td>
<td>3.5</td>
<td>Martin Folkers, Daniel Hug, Günter Last, Steffen Winter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of two written exams of 60 min each (in accordance with §4(2), 1 of the examination regulations). The first (midterm) exam takes place after half of the course, the second (final) exam takes place shortly after the end of the lectures. Auxiliary means such as literature or calculators are not allowed. Resit exams for both exams are offered in the first weeks of the subsequent semester.

Module Grade
The examination mark for Mathematics 1 is the average of the marks obtained in the midterm exam and final exam.

Qualification Objectives
Students
- are confident with basic terms and definitions of mathematical language (propositions, sets, number systems, mappings, etc.).
- have a basic knowledge of differentiable calculus for functions of a single variable.

Content
The course Mathematics 1 is the first part of the three semester basic training in higher mathematics. Topics are
- Propositional logic and basic set theory,
- Combinatorics and principles of counting,
- Number systems and basic arithmetics,
- Systems of linear equations,
- Convergence of sequences and series,
- Mappings and functions,
- Continuous functions,
- Differentiable functions,
- Power series and special functions,
- Taylor’s theorem.

Recommendations
There are no Prerequisites. We strongly recommend to attend the three maths courses in the order Mathematics 1, Mathematics 2, Mathematics 3.

Workload
work load: 210 hours (7 ECTS)
classes: 60 hours lectures + 30 hours exercises
Module: Mathematics 2 [M-MATH-101677]

Responsibility: Günter Last
Organisation: KIT-Fakultät für Mathematik
Curricular Anchorage: Compulsory
Contained in: Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102262</td>
<td>Mathematics II - Midterm Exam (S. 378)</td>
<td>3.5</td>
<td>Martin Folkers, Daniel Hug, Günter Last, Steffen Winter</td>
</tr>
<tr>
<td>T-MATH-102263</td>
<td>Mathematics II - Final Exam (S. 377)</td>
<td>3.5</td>
<td>Martin Folkers, Daniel Hug, Günter Last, Steffen Winter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of two written exams of 60 min each (in accordance with §4(2), 1 of the examination regulations). The first (midterm) exam takes place after half of the course, the second (final) exam takes place shortly after the end of the lectures. Auxiliary means such as literature or calculators are not allowed. Resit exams for both exams are offered in the first weeks of the subsequent semester.

Module Grade
The examination mark for Mathematics 2 is the average of the marks obtained in the midterm exam and final exam.

Qualification Objectives
Students
- know basic concepts of matrix theory.
- have a basic knowledge of integral calculus in a single variable.
- have a basic knowledge of multivariate differential calculus.

Content
The course Mathematics 2 is the second part of the three semester basic training in higher mathematics. Topics are
- Riemann integral,
- n-dimensional vector spaces,
- scalar product, length and angle,
- linear mappings and matrices,
- determinants,
- eigenvalue theory,
- multivariate calculus.

Recommendations
There are no Prerequisites. We strongly recommend to attend the three maths courses in the order Mathematics 1, Mathematics 2, Mathematics 3.

Workload
work load: 210 hours (7 ECTS)
classes: 60 hours lectures + 30 hours exercises
Module: Mathematics 3 [M-MATH-101679]

Responsibility: Günter Last
Organisation: KIT-Fakultät für Mathematik
Curricular Anchorage: Compulsory
Contained in: Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility
T-MATH-102264 Mathematics III - Final Exam (S. 379) 7 Martin Folkers, Daniel Hug, Günter Last, Steffen Winter

Learning Control / Examinations
The assessment consists of a written exams of 105 min (in accordance with §4(2), 1 of the examination regulations). The exam takes place shortly after the end of the lectures. Auxiliary means such as literature or calculators are allowed. A resit exam is offered in the first weeks of the subsequent semester.

Module Grade
The examination mark for Mathematics 3 is the mark of the written exam.

Qualification Objectives
Students
- are confident with important concepts in the theory of normed vector spaces.
- have some basic knowledge of ordinary differential equations.
- have some basic knowledge of Fourier analysis.

Content
The course Mathematics 3 is the third part of the three semester basic training in higher mathematics. Topics are
- Multiple integrals,
- Implicit functions,
- General linear spaces,
- Normed vector spaces,
- Banach’s fixed point theorem,
- Ordinary differential equations,
- Linear differential equations,
- Fourier analysis,
- Integral transformations.

Workload
work load: 210 hours (7 ECTS)
classes: 60 hours lectures + 30 hours exercises
Module: Additional Fundamentals of Engineering [M-WIWI-101839]

Responsibility: Alexander Fidlin, Volker Gaukel, Michael Hoffmann

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory

Contained in: Engineering Sciences / Basic Program

ECTS 3 Recurrence Each term Duration 1 term Language German Version 4

Wahlpflichtangebot
Non-Compulsory Block; You must choose between 3 and 5 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102079</td>
<td>Material Science II for Business Engineers (S. 372)</td>
<td>5</td>
<td>Michael Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102210</td>
<td>Introduction to Engineering Mechanics II : Dynamics (S. 336)</td>
<td>5</td>
<td>Alexander Fidlin</td>
</tr>
<tr>
<td>T-CIWVT-106058</td>
<td>Process fundamentals by the example of food production (S. 434)</td>
<td>3</td>
<td>Volker Gaukel</td>
</tr>
<tr>
<td>T-ETIT-100534</td>
<td>Electrical Engineering for Business Engineers, Part II (S. 248)</td>
<td>5</td>
<td>Wolfgang Menesklou</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See course description.

Conditions
None

Qualification Objectives
See German version.

Content
The module focuses on basic engineering topics related to materials science, engineering mechanics and food processing.

Remarks
The course T-ETIT-100534 “Electrical Engineering for Business Engineers, Part II” is only offered temporarily in the module. It should be pointed out that “Material Science II for Business Engineers” and “Electrical Engineering for Business Engineers, Part II” are not offered in winter term, but only in summer term.

Workload
The total workload for this module is approximately 90 hours.

Responsibility: Stefan Nickel
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Operations Research / Specialisation Program
Compulsory Elective Modules / Elective Module 2 / Operations Research
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose between 1 und 2 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management (S. 261)</td>
<td>4.5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management (S. 513)</td>
<td>4.5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose at most 1 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I (S. 300)</td>
<td>4.5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-106199</td>
<td>Modeling and OR-Software: Introduction (S. 391)</td>
<td>4.5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under uncertainty (S. 406)</td>
<td>5</td>
<td>Steffen Rebennek</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.
The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
At least one of the courses Facility Location and strategic Supply Chain Management and Tactical and operational Supply Chain Management has to be taken.
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
- The module [M-WIWI-101418] Introduction to Operations Research must have been passed.

Qualification Objectives
The student
- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of Supply Chain Management and their respective optimization problems,
- is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.
This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.
Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Recommendations
The courses Introduction to Operations Research I and II are helpful.

Remarks
The planned lectures and courses for the next three years are announced online.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Applied Microeconomics [M-WIWI-101499]

Responsibility: Johannes Philipp Reiß

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Economics / Specialisation Program
 Compulsory Elective Modules / Elective Module 2 / Economics
 Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory (S. 337)</td>
<td>4,5</td>
<td>Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization (S. 317)</td>
<td>4,5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks (S. 214)</td>
<td>4,5</td>
<td>Kay Mitsch</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues (S. 447)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design (S. 184)</td>
<td>4,5</td>
<td>Nora Szech</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior (S. 236)</td>
<td>4,5</td>
<td>Nora Szech</td>
</tr>
<tr>
<td>T-WIWI-102792</td>
<td>Decision Theory (S. 230)</td>
<td>4,5</td>
<td>Karl-Martin Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics (S. 241)</td>
<td>5</td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the corresponding modules of the basic program.

Modeled Conditions

The following conditions must be met:

- The module [M-WIWI-101398] *Introduction to Economics* must have been passed.

Qualification Objectives

Students

- are introduced to the basic theoretical analysis of strategic interaction situations and shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings, (course “Introduction to Game Theory”);
- are exposed to the basic problems of imperfect competition and its implications for policy making; (course “Industrial Organization”);
- are provided with the basic economics of network industries (e.g., telecom, utilities, IT, and transport sectors) and should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion, and state intervention, (course “Competition in Networks”).
Content
The module’s purpose is to extend and foster skills in microeconomic theory by investigating a variety of applications. Students shall be able to analyze real-life problems using microeconomics.

Recommendations
Completion of the module Economics is assumed.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: CRM and Service Management [M-WIWI-101460]

Responsibility: Andreas Geyer-Schulz

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose 2 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102596</td>
<td>Analytical CRM (S. 177)</td>
<td>4.5</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>T-WIWI-102597</td>
<td>Operative CRM (S. 404)</td>
<td>4.5</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>T-WIWI-102595</td>
<td>Customer Relationship Management (S. 222)</td>
<td>4.5</td>
<td>Andreas Geyer-Schulz</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4 (1) S. 2 2nd clause of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The student

- understands service management as the managerial foundation of customer relationship management and the resulting implications for strategic management, the organisational structure, and the functional areas of the company,
- develops and designs service concepts and service systems on a conceptual level,
- works in teams on case studies and respects project dates, integrates international literature of the discipline,
- knows the current developments in CRM in science as well as in industry,
- knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
- designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, ...).

Content
In the module CRM and Service Management we teach the principles of modern customer-oriented management and its support by system architectures and CRM software packages. Choosing customer relationship management as a company's strategy requires service management and a strict implementation of service management in all parts of the company.
For operative CRM we present the design of customer-oriented, IT-supported business processes based on business process modeling and we explain these processes in concrete application scenarios (e.g. marketing campaign management, call center management, sales force management, field services, ...).

Analytic CRM is dedicated to improve the use of knowledge about customers in the broadest sense for decision-making (e.g. product-mix decisions, bonus programs based on customer loyalty, ...) and for the improvement of services. A requirement for this is the tight integration of operative systems with a data warehouse, the development of customer-oriented and flexible reporting systems, and – last but not least – the application of statistical methods (clustering, regression, stochastic models, ...).

Remarks
The lecture Customer Relationship Management [2540508] is given in English.

Workload
The total amount of work for this module is approximately 270 hours (9 credits). The subdivision is based on the credits of the courses of the module.
The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam periods and the time that is required to achieve the objectives of the module as an average student with an average performance.
Module: Design, Construction and Sustainability Assessment of Buildings
[M-WIWI-101467]

Responsibility: Thomas Lützkendorf
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

ECTS

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102742</td>
<td>Design, Construction and Sustainability Assessment of Buildings I (S. 233)</td>
<td>4,5</td>
<td>Thomas Lützkendorf</td>
</tr>
<tr>
<td>T-WIWI-102743</td>
<td>Design, Construction and Sustainability Assessment of Buildings II (S. 234)</td>
<td>4,5</td>
<td>Thomas Lützkendorf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The student
- knows the basics of sustainable design, construction and operation of buildings with an emphasis on building ecology
- has knowledge of building ecology assessment procedures and tools for design and assessment
- is capable of applying this knowledge to assessing the ecological advantageousness of buildings as well as their contribution to a sustainable development.

Content
Sustainable design, construction and operation of buildings currently are predominant topics of the real estate sector, as well as “green buildings”. Not only designers and civil engineers, but also other actors who are concerned with project development, financing and insurance of buildings or portfolio management are interested in these topics. On the one hand the courses included in this module cover the basics of energy-efficient, resource-saving and health-supporting design and construction of buildings. On the other hand fundamental assessment procedures for analysing and communicating the ecological advantageousness of technical solutions are discussed. With the basics of green building certification systems the lectures provide presently strongly demanded knowledge.
Additionally, videos and simulation tools are used for providing a better understanding of the content of teaching.

Recommendations
The combination with the module *Real Estate Management* is recommended. Furthermore a combination with courses in the area of

- Industrial production (energy flow in the economy, energy politics, emissions)
- Civil engineering and architecture (building physics, building construction)

is recommended.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: eBusiness and Service Management [M-WIWI-101434]

Responsibility: Christof Weinhardt
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Business Administration / Specialisation Program
 Compulsory Elective Modules / Elective Module 1 / Business Administration
 Compulsory Elective Modules / Elective Module 2 / Business Administration
 Additional Examinations

ECTS 9 Recurrence Each term Duration 1 term Language German Level 3 Version 4

Wahlpflichtangebot
Non-Compulsory Block; You must choose 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 244)</td>
<td>4.5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105771</td>
<td>Foundations of Digital Services A (S. 274)</td>
<td>4.5</td>
<td>Gerhard Satzger, Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107506</td>
<td>Platform Economy (S. 420)</td>
<td>4.5</td>
<td>Florian Glaser, Jella Pfeiffer, Tim Straub, Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102706</td>
<td>Special Topics in Information Engineering & Management (S. 497)</td>
<td>4.5</td>
<td>Christof Weinhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
1. The module [M-WIWI-101494] *Fundamentals of Business Administration 1* must have been passed.
2. The module [M-WIWI-101578] *Fundamentals of Business Administration 2* must have been passed.

Qualification Objectives
The students
- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Content
This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle.
The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented. The lecture is complemented by exercise courses. The courses “Platform Economy”, “eFinance: Information engineering and management in finance” and “eServices” constitute three different application domains in which the basic principles of the Internet Economy are deepened. In the core lecture “Platform Economy” the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and marketdesign. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform. The course “eFinance: information engineering and management for securities trading” provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.
In “eServices” the increasing impact of electronic services compared to the traditional services is outlined. The Information-und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality. This course provides basic knowledge about the development and management of ICT-based servies.
The theortic fundamentals of Information Engineering and Management can be enriched by a practical experience in Special Topics in Information Engineering and Management. Any practical Seminar at the IM can be chosen for the course Special Topics in Information Engineering and Management.

Remarks
All practical Seminars offered at the IM can be chosen for Special Topics in Information Engineering & Management. Please update yourself on www.iism.kit.edu/im/lehre

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Economic Policy I [M-WIWI-101668]

Responsibility: Ingrid Ott
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Economics / Specialisation Program
 Compulsory Elective Modules / Elective Module 2 / Economics
 Additional Examinations

ECTS	Recurrence	Duration	Language	Version
9 | Each term | 1 term | German | 6

Wahlpflichtangebot
Non-Compulsory Block; You must choose 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103213</td>
<td>Basic Principles of Economic Policy (S. 191)</td>
<td>4,5</td>
<td>Ingrid Ott</td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory (S. 360)</td>
<td>4,5</td>
<td>Johannes Brumm</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues (S. 447)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personnel Policies and Labor Market Institutions (S. 408)</td>
<td>4,5</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks (S. 214)</td>
<td>4,5</td>
<td>Kay Mitusch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
- The module [M-WIWI-101398] Introduction to Economics must have been passed.

Qualification Objectives
Students shall be given the ability to
- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Content
- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].

Workload
Total expenditure of time for 9 credits: 270 hours.

Attendance time per lecture: 3x14h

Preparation and wrap-up time per lecture: 3x14h

Rest: Exam Preparation

The exact distribution is subject to the credits of the courses of the module.
Module: Economic Theory [M-WIWI-101501]

Responsibility: Clemens Puppe

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Economics / Specialisation Program
Compulsory Elective Modules / Elective Module 2 / Economics

Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory (S. 170)</td>
<td>4.5</td>
<td>Kay Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design (S. 184)</td>
<td>4.5</td>
<td>Nora Szech</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior (S. 236)</td>
<td>4.5</td>
<td>Nora Szech</td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory (S. 337)</td>
<td>4.5</td>
<td>Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization (S. 317)</td>
<td>4.5</td>
<td>Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory (S. 360)</td>
<td>4.5</td>
<td>Johannes Brumm</td>
</tr>
<tr>
<td>T-WIWI-102610</td>
<td>Welfare Economics (S. 526)</td>
<td>4.5</td>
<td>Clemens Puppe</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:
- The module [M-WIWI-101398] Introduction to Economics must have been passed.

Qualification Objectives
See German version.

Recommendations
None

Remarks
The course T-WIWI-102609 - Advanced Topics in Economic Theory is currently not available.
Module: eFinance [M-WIWI-101402]

Responsibility: Christof Weinhardt

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 244)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose 4,5 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102625</td>
<td>Exchanges (S. 260)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives (S. 231)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance (S. 329)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.
The course **eFinance: Information Engineering and Management for Securities Trading** [2540454] is compulsory and must be examined.

Modeled Conditions
The following conditions must be met:
1. The module [M-WIWI-101494] **Fundamentals of Business Administration 1** must have been passed.
2. The module [M-WIWI-101578] **Fundamentals of Business Administration 2** must have been passed.

Qualification Objectives
The students
- are able to understand and analyse the value creation chain in stock broking,
- are able to adequately identify, design and use methods and systems to solve problems in finance,
- are able to evaluate and criticize investment decisions by traders,
- are able to apply theoretical methods of econometrics,
- learn to elaborate solutions in a team.
Content
The module “eFinance: Information engineering and management in finance” addresses current problems in the finance sector. It is investigated the role of information and knowledge in the finance sector and how information systems can solve or extenuate them. Speakers from practice will contribute to lectures with their broad knowledge. Core courses of the module deal with the background of banks and insurance companies and the electronic commerce of stocks in global finance markets. In addition the course Derivatives offers an insight into future and forward contracts as well as the assessment of options. Exchanges and International Finance are also alternatives which provide a supplementary understanding for capital markets.

Information management topics are in the focus of the lecture “eFinance: information engineering and management for securities trading”. For the functioning of the international finance markets, it is necessary that there is an efficient information flow. Also, the regulatory frameworks play an important role. In this context, the role and the functioning of (electronic) stock markets, online brokers and other finance intermediaries and their platforms are presented. Not only IT concepts of German finance intermediaries are presented, but also international system approaches will be compared. The lecture is supplemented by speakers from the practice (and excursions, if possible) coming from the Deutsche Börse and the Stuttgart Stock Exchange.

Remarks
The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.iism.kit.edu/im/lehre

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Electives in Informatics [M-WIWI-101426]

Responsibility: Andreas Oberweis, Ali Sunyaev, York Sure-Vetter, Melanie Volkamer

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Compulsory Elective Modules / Elective Module 2 / Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose between 9 and 10 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109263</td>
<td>Applications of Artificial Intelligence (S. 179)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102652</td>
<td>Applied Informatics I - Modelling (S. 181)</td>
<td>5</td>
<td>Andreas Oberweis, York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102651</td>
<td>Applied Informatics II - IT Systems for eCommerce (S. 183)</td>
<td>5</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102660</td>
<td>Database Systems (S. 226)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102655</td>
<td>Efficient Algorithms (S. 242)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-108716</td>
<td>Interdisciplinary approach to verifiable e-voting (S. 327)</td>
<td>4</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-104679</td>
<td>Foundations of mobile Business (S. 279)</td>
<td>5</td>
<td>Andreas Oberweis, Gunther Schiefer</td>
</tr>
<tr>
<td>T-WIWI-108387</td>
<td>Information Security (S. 319)</td>
<td>5</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-100809</td>
<td>Software Engineering (S. 493)</td>
<td>4</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102910</td>
<td>Special Topics of Applied Informatics (S. 498)</td>
<td>5</td>
<td>Andreas Oberweis, Harald Sack,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Melanie Volkamer, York Sure-Vetter, Ali Sunyaev, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every single partial exam the respective minimum requirements has to be achieved. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101581] Introduction to Programming must have been passed.
2. The module [M-WIWI-101417] Foundations of Informatics must have been passed.

Qualification Objectives
The student
- knows and has mastered methods and systems for core topics and core application areas of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content
The elective module conveys advanced knowledge in the area of applied computer science. This includes, for example, the efficient design and optimization of technical systems, the design and management of database applications or the systematic development of large software systems. Moreover, modeling of complex systems, the use of computer science methods to support knowledge management, and the design and implementation of service-oriented architectures are discussed in this module.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Electives in Informatics [M-WIWI-101630]

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose between 9 and 10 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102661</td>
<td>Applied Informatics II - IT Systems for eCommerce (S. 183)</td>
<td>5</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102680</td>
<td>Computational Economics (S. 215)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-109248</td>
<td>Critical Information Infrastructures (S. 221)</td>
<td>5</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102661</td>
<td>Database Systems and XML (S. 228)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-109246</td>
<td>Digital Health (S. 235)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102655</td>
<td>Efficient Algorithms (S. 242)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-109250</td>
<td>Emerging Trends in Critical Information Infrastructures (S. 251)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102668</td>
<td>Enterprise Architecture Management (S. 256)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-109270</td>
<td>Human Factors in Security and Privacy (S. 311)</td>
<td>5</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-106423</td>
<td>Information Service Engineering (S. 320)</td>
<td>5</td>
<td>Harald Sack</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery (S. 348)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management of IT-Projects (S. 364)</td>
<td>5</td>
<td>Roland Schätzle</td>
</tr>
<tr>
<td>T-WIWI-106340</td>
<td>Machine Learning 1 - Basic Methods (S. 355)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods (S. 356)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling (S. 205)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Nature-Inspired Optimisation Methods (S. 395)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-109271</td>
<td>Advanced Lab User Studies in Security (S. 165)</td>
<td>4</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-108439</td>
<td>Advanced Lab Security, Usability and Society (S. 164)</td>
<td>4</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-109251</td>
<td>Selected Issues in Critical Information Infrastructures (S. 459)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102874</td>
<td>Semantic Web Technologies (S. 461)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-105801</td>
<td>Service Oriented Computing (S. 485)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-109249</td>
<td>Sociotechnical Information Systems Development (S. 492)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software Quality Management (S. 495)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102676</td>
<td>Special Topics of Enterprise Information Systems (S. 500)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102657</td>
<td>Special Topics of Efficient Algorithms (S. 499)</td>
<td>5</td>
<td>Hartmut Schmec</td>
</tr>
<tr>
<td>T-WIWI-102678</td>
<td>Special Topics of Software- and Systemsengineering (S. 501)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-108751</td>
<td>Special Topics of Web Science (S. 502)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategic Management of Information Technology (S. 506)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-103112</td>
<td>Web Science (S. 525)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
</tbody>
</table>
Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Qualification Objectives
The student
- has the ability to master methods and tools in a complex discipline and to demonstrate innovativeness regarding the methods used,
- knows the principles and methods in the context of their application in practice,
- is able to grasp and apply the rapid developments in the field of computer science, which are encountered in work life, quickly and correctly, based on a fundamental understanding of the concepts and methods of computer science,
- is capable of finding and defending arguments for solving problems.

Content
The thematic focus will be based on the choice of courses in the areas of Effiziente Algorithmen, Betriebliche Informations- und Kommunikationssysteme, Wissensmanagement, Komplexitätsmanagement and Software- und Systems Engineering.

Remarks
The course T-WIWI-102759 “Requirements Analysis and Requirements Management” will no longer be offered in the module as of winter semester 2018/2019.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Emphasis in Informatics [M-WIWI-101628]

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Additional Examinations

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102651</td>
<td>Applied Informatics II - IT Systems for eCommerce (S. 183)</td>
<td>5</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102680</td>
<td>Computational Economics (S. 215)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-109248</td>
<td>Critical Information Infrastructures (S. 221)</td>
<td>5</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102661</td>
<td>Database Systems and XML (S. 228)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-109246</td>
<td>Digital Health (S. 235)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102655</td>
<td>Efficient Algorithms (S. 242)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-109250</td>
<td>Emerging Trends in Critical Information Infrastructures (S. 251)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102668</td>
<td>Enterprise Architecture Management (S. 256)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-109270</td>
<td>Human Factors in Security and Privacy (S. 311)</td>
<td>5</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-106423</td>
<td>Information Service Engineering (S. 320)</td>
<td>5</td>
<td>Harald Sack</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery (S. 348)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management of IT-Projects (S. 364)</td>
<td>5</td>
<td>Roland Schätzle</td>
</tr>
<tr>
<td>T-WIWI-106340</td>
<td>Machine Learning 1 - Basic Methods (S. 355)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods (S. 356)</td>
<td>5</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling (S. 205)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Nature-Inspired Optimisation Methods (S. 395)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-109271</td>
<td>Advanced Lab User Studies in Security (S. 165)</td>
<td>4</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-108439</td>
<td>Advanced Lab Security, Usability and Society (S. 164)</td>
<td>4</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-109251</td>
<td>Selected Issues in Critical Information Infrastructures (S. 459)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102874</td>
<td>Semantic Web Technologies (S. 461)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-105801</td>
<td>Service Oriented Computing (S. 485)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-109249</td>
<td>Sociotechnical Information Systems Development (S. 492)</td>
<td>4</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software Quality Management (S. 495)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102676</td>
<td>Special Topics of Enterprise Information Systems (S. 500)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102657</td>
<td>Special Topics of Efficient Algorithms (S. 499)</td>
<td>5</td>
<td>Hartmut Schmeck</td>
</tr>
<tr>
<td>T-WIWI-102678</td>
<td>Special Topics of Software- and Systemsengineering (S. 501)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-108751</td>
<td>Special Topics of Web Science (S. 502)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategic Management of Information Technology (S. 506)</td>
<td>5</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>T-WIWI-103112</td>
<td>Web Science (S. 525)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
</tbody>
</table>
Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every single partial exam the respective minimum requirements has to be achieved.
The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Qualification Objectives
The student
- has the ability to master methods and tools in a complex discipline and to demonstrate innovativeness regarding the methods used,
- knows the principles and methods in the context of their application in practice,
- is able to grasp and apply the rapid developments in the field of computer science, which are encountered in work life, quickly and correctly, based on a fundamental understanding of the concepts and methods of computer science,
- is capable of finding and defending arguments for solving problems.

Content
The thematic focus will be based on the choice of courses in the areas of Effiziente Algorithmen, Betriebliche Informations- und Kommunikationssysteme, Wissensmanagement, Komplexitätsmanagement and Software- und Systems Engineering.

Remarks
The course T-WIWI-102759 “Requirements Analysis and Requirements Management” will no longer be offered in the module as of winter semester 2018/2019.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Emphasis Informatics [M-WIWI-101399]

Responsibility: Andreas Oberweis, Ali Sunyaev, York Sure-Vetter, Melanie Volkamer
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Informatics / Specialisation Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose 5 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102747</td>
<td>Advanced Programming - Java Network Programming (S. 168)</td>
<td>5</td>
<td>Dietmar Ratz</td>
</tr>
<tr>
<td>T-WIWI-102748</td>
<td>Advanced Programming - Application of Business Software (S. 166)</td>
<td>5</td>
<td>Stefan Klink, Andreas Oberweis</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose between 4 and 5 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102652</td>
<td>Applied Informatics I - Modeling (S. 181)</td>
<td>5</td>
<td>Andreas Oberweis, York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-109263</td>
<td>Applications of Artificial Intelligence (S. 179)</td>
<td>5</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102651</td>
<td>Applied Informatics II - IT Systems for eCommerce (S. 183)</td>
<td>5</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102660</td>
<td>Database Systems (S. 226)</td>
<td>5</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102655</td>
<td>Efficient Algorithms (S. 242)</td>
<td>5</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td>T-WIWI-108716</td>
<td>Interdisciplinary approach to verifiable e-voting (S. 327)</td>
<td>4</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-104679</td>
<td>Foundations of mobile Business (S. 279)</td>
<td>5</td>
<td>Andreas Oberweis, Gunther Schiefer</td>
</tr>
<tr>
<td>T-WIWI-108387</td>
<td>Information Security (S. 319)</td>
<td>5</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>T-WIWI-100809</td>
<td>Software Engineering (S. 493)</td>
<td>4</td>
<td>Andreas Oberweis</td>
</tr>
</tbody>
</table>
Learning Control / Examinations
The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

- Partial exam I: Advanced Programming - Java Network Programming or alternatively Advanced Programming - Application of Business Software
- Partial exam II: all the rest

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program (except Advanced Programming - Java Network Programming and Advanced Programming - Application of Business Software).

Qualification Objectives
The student

- has the capability of dealing with the practical application of the Java programming language (which is the dominating programming language in many application areas) or alternatively the ability to configure, parameterize and deploy enterprise software to enable, support and automate business processes,
- is familiar with methods and systems of a core topic or core application area of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content
In this module, object-oriented programming skills using the Java programming language are further deepened. Alternatively important fundamentals of business information systems are conveyed that enable, support and accelerate new forms of business processes and organizational forms. Based on a core application area, basic methods and techniques of computer science are presented.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Energy Economics [M-WIWI-101464]

Responsibility: Wolf Fichtner
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics (S. 334)</td>
<td>5,5</td>
<td>Wolf Fichtner</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose 3.5 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100806</td>
<td>Renewable Energy-Resources, Technologies and Economics (S. 455)</td>
<td>3,5</td>
<td>Patrick Jochem, Russell McKenna</td>
</tr>
<tr>
<td>T-WIWI-102607</td>
<td>Energy Policy (S. 254)</td>
<td>3,5</td>
<td>Martin Wietschel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture Introduction into Energy Economics [2581010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.
The lecture Introduction into Energy Economics [2581010] has to be examined.

Modeled Conditions
The following conditions must be met:
1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The student
- is able to understand interdependencies in energy economics and to evaluate ecological impacts in energy supply,
- is able to assess the different energy carriers and their characteristics,
- knows the energy political framework conditions,
- gains knowledge about new market-based conditions and the cost and potentials of renewable energies in particular.
Content
Introduction to Energy Economics: Characterisation (reserves, suppliers, cost, technologies) of different energy carriers (coal, gas, oil, electricity, heat etc.)
Renewable Energy - Resources, Technology and Economics: Characterisation of different renewable energy carriers (wind, solar, hydro, geothermal etc.)
Energy Policy: Management of energy flows, energy-political targets and instruments (emission trading etc.)

Recommendations
The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Remarks
Additional study courses (E.g. from other universities) can be transferred to the grade of the module on special request at the institute.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Essentials of Finance [M-WIWI-101435]

Responsibility: Martin Ruckes, Marliese Uhrig-Homburg

Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>1 term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The student

- has fundamental skills in modern finance
- has fundamental skills to support investment decisions on stock, bond and derivative markets
- applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Content
The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Extracurricular Module in Engineering [M-WIWI-101404]

Responsibility: Prüfungsausschuss der KIT-Fakultät für Wirtschaftswissenschaften

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program
 Compulsory Elective Modules / Elective Module 1 / Engineering Sciences
 Compulsory Elective Modules / Elective Module 2 / Engineering Sciences
 Master Transfer Account

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Once</td>
<td>1 term</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose between 9 and 12 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106291</td>
<td>PH APL-ING-TL01 (S. 409)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106292</td>
<td>PH APL-ING-TL02 (S. 410)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106293</td>
<td>PH APL-ING-TL03 (S. 411)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106294</td>
<td>PH APL-ING-TL04 ub (S. 412)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106295</td>
<td>PH APL-ING-TL05 ub (S. 413)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106296</td>
<td>PH APL-ING-TL06 ub (S. 414)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108384</td>
<td>PH APL-ING-TL07 (S. 415)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is determined by the respective module coordinator. It can either be in the form of a general exam or partial exams, and must contain at least 9 credit points (max. 12 credits) and at least 6 hours per week (max. 8 hours per week). The examination may contain presentations, experiments, laboratories, term papers, etc. At least 50 percent of the module examination has to be in the form of a written or an oral examination (according to Section 4 (2), 1 or 2 of the examination regulation).

The formation of the overall grade of the module will be determined by the respective module coordinator.

Conditions
See German version.

Qualification Objectives
See German version.
Module: Foundations of Informatics [M-WIWI-101417]

Responsibility: Pradyumn Kumar Shukla, York Sure-Vetter

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory

Contained in: Informatics / Basic Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102749</td>
<td>Foundations of Informatics I (S. 277)</td>
<td>5</td>
<td>Each term</td>
<td>2 terms</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-WIWI-102707</td>
<td>Foundations of Informatics II (S. 278)</td>
<td>5</td>
<td>Each term</td>
<td>2 terms</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the individual courses of this module.
The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. For a successful module assessment both partial exams have to be passed.

- Foundations of Informatics I: Written exam in the first week of the recess period (60 min)
- Foundations of Informatics II: Written exam in the first week of the recess period (90 min). It is possible to gain 0.3-0.4 additional grading points for a passed exam by successful completion of a bonus exam.

When both partial exams are passed, the overall grade of the module is the average of the grades for each course weighted by the credit points and truncated after the first decimal.

Conditions
None

Qualification Objectives
The student

- knows the main principles, methods and systems of computer science,
- can use this knowledge for applications in advanced computer science courses and other areas for situation-adequate problem solving,
- is capable of finding strategic and creative responses in the search for solutions to well defined, concrete, and abstract problems.

The student can deepen the learned concepts, methods, and systems of computer science in advanced computer science lectures.

Content
This module conveys knowledge about modeling, logic, algorithms, sorting and searching algorithms, complexity theory, problem specifications, and data structures. From the field of theoretical computer science, formal models of automata, languages and algorithms are presented and applied to the architecture of computer systems.

Recommendations
It is strongly recommended to attend the courses of the core program in the following sequence: Introduction to Programming with Java, Foundations of Informatics I, Foundations of Informatics II

Workload
The total workload for this module is approximately 300 hours.
Module: Foundations of Marketing [M-WIWI-101424]

Responsibility: Martin Klarmann

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102805</td>
<td>Managing the Marketing Mix (S. 367)</td>
<td>4,5</td>
<td>Martin Klarmann</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose at least 4,5 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102806</td>
<td>Services Marketing and B2B Marketing (S. 486)</td>
<td>3</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102807</td>
<td>International Marketing (S. 330)</td>
<td>1,5</td>
<td>Sven Feurer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.
The course Marketing Mix is compulsory and must be examined.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Content
The core course of the module is “Marketing Mix”. This course is compulsory and must be examined. “Marketing Mix” contains instruments and methods that enable you to goal-oriented decisions in the operative marketing management (product management, pricing, promotion and sales management).
To deepen the marketing knowledge students can complete the courses “Services- and B2B-Marketing” and “International Marketing”.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Fundamentals of Business Administration 1 [M-WIWI-101494]

Responsibility: Martin Ruckes, Marliese Uhrig-Homburg, Marcus Wouters

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory

Contained in: Business Administration / Basic Program

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102817</td>
<td>Business Administration: Strategic Management and Information Engineering and Management (S. 204)</td>
<td>3</td>
<td>Each term</td>
<td>1 term</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-WIWI-102819</td>
<td>Business Administration: Finance and Accounting (S. 201)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the individual courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedure of each course of this module is defined for each course separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None

Qualification Objectives
The student
- has core skills in business administration in particular with respect to decision making and the model based view of business corporations
- masters the fundamentals of business and information management as well as the fundamentals business finance and the principles of business accounting
- is able to analyze and assess central tasks, functions and decisions in modern corporations

The knowledge of the two fundamentals modules in business administration forms the basis for the successful completion of advanced courses in the field of business administration and management.

Content
This module provides the fundamentals of business administration and management. Further, the module focuses on the fields of management and organization, information engineering and management, investment and financing as well as of the principles of management and financial accounting.

Recommendations
It is strongly recommended to take the courses in the first semester of study.

Workload
The total workload of the module is about 210 hours. The workload is proportional to the credit points of the individual courses.
Module: Fundamentals of Business Administration 2 [M-WIWI-101578]

Responsibility: Martin Ruckes, Marliese Uhrig-Homburg

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory

Contained in: Business Administration / Basic Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility

T-WIWI-102818 Business Administration: Production Economics and Marketing (S. 202) 4 Wolf Fichtner, Martin Klar- mann, Thomas Lützkendorf, Martin Ruckes, Frank Schult- mann

T-WIWI-102816 Financial Accounting and Cost Accounting (S. 267) 4 Jan-Oliver Strych

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures of each course of this module is defined for each course separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

None

Qualification Objectives

The student

- has core skills in business administration in particular with respect to decision making and the model based view of business corporations
- masters the fundamentals of production and operations management and marketing as well as the fundamentals of management and financial accounting
- is able to analyze and assess central tasks, functions and decisions in modern corporations

The knowledge of the two fundamentals modules in business administration forms the basis for the successful completion of advanced courses in the field of business administration and management.

Content

The basics of internal and external accounting and general business administration are taught as the theory of business in the company. Building on this, the focus will be on marketing and production management.

Recommendations

It is strongly recommended to take the courses in the second semester (Betriebswirtschaftslehre: Produktionswirtschaft und Marketing) and third semester (Rechnungswesen) of study.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.

Responsibility: Gerhard Satzger, Christof Weinhardt

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in:
- Business Administration / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Business Administration
- Compulsory Elective Modules / Elective Module 2 / Business Administration
- Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-105771</td>
<td>Foundations of Digital Services A (S. 274)</td>
<td>4,5</td>
<td>Gerhard Satzger, Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105775</td>
<td>Foundations of Digital Services B (S. 276)</td>
<td>4,5</td>
<td>Alexander Mädche, Stefan Morana, Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-105711</td>
<td>Practical Seminar Digital Services (S. 427)</td>
<td>4,5</td>
<td>Wolf Fichtner, Alexander Mädche, Stefan Nickel, Gerhard Satzger, York Sure-Vetter, Christof Weinhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] *Fundamentals of Business Administration 1* must have been passed.
2. The module [M-WIWI-101578] *Fundamentals of Business Administration 2* must have been passed.

Qualification Objectives
Students

- understand services from different perspectives and the concept of value creation in service networks
- know about the concepts, methods and tools for the design, modelling, development and management of digital services and are able to use them
- understand the basic characteristics and effects of integrated information system as an integral element of digital services
- gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
- practice skills in the English language in preparation of jobs in an international environment

Content
Global economy is increasingly determined by services: in industrialized countries nearly 70% of gross value added is achieved in the tertiary sector. Unfortunately, for the design, development and the management of services traditional concepts focused on goods are often insufficient or inappropriate. Besides, the rapid technical advance in the information and communication technology sector pushesthe economic importance of digital services even further thus changing the competition environment. ICT-based interaction and individualization open up completely new dimensions of shared value between clients and providers, dynamic and scalable “service value networks” replace established value chains, digital services are provided globally crossing geographical boundaries. This module establishes a basis for further specialization in service innovation, service economics, service design, service modelling, service analytics as well as the transformation and coordination of service networks.

Recommendations
None

Remarks
This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Human Resources and Organizations [M-WIWI-101513]

Responsibility: Petra Nieken

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

ECTS 9 Recurrence Duration Level Version
 Each term 2 terms 3 3

Compulsory

Identifier Course ECTS Responsibility
T-WIWI-102909 Human Resource Management (S. 313) 4,5 Petra Nieken

Ergänzungsangebot
Non-Compulsory Block; You must choose between 4,5 and 5,5 credits.

Identifier Course ECTS Responsibility
T-WIWI-102908 Personnel Policies and Labor Market Institutions 4,5 Petra Nieken
(S. 408)
T-WIWI-102630 Managing Organizations (S. 366) 3,5 Hagen Lindstädt
T-WIWI-102871 Problem Solving, Communication and Leadership 2 Hagen Lindstädt
(S. 431)

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.
The course Personalmanagement (Human Resource Management) is compulsory and must be examined.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The student

- knows and analyzes basic concepts, instruments, and challenges of present human resource and organizational management.
- uses the techniques he / she has learned to evaluate strategic situations which occur in human resource and organizational management.
- evaluates the strengths and weaknesses of existing structures and rules based on systematic criterions.
- Discusses and evaluates the practical use of models and methods by using case studies.
- has basic knowledge of fit and challenges of different scientific methods in the context of personnel and organizational economics.

Content
Students acquire basic knowledge in the field of human resource and organizational management. Strategic as well as operative aspects of human resource management practices are analyzed. The module offers an up-to-date overview over basic concepts and models. It also shows the strengths and weaknesses of rational concepts in human resources and organizational management.
The students learn to apply methods and instruments to plan, select, and manage staff. Current issues of organizational management or selected aspects of personnel politics are examined and evaluated.
The focus lies on the strategic analysis of decisions and the use microeconomic or behavioral approaches. Empirical results of field or lab studies are discussed critically.

Recommendations
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory and statistics is recommended.

Workload
The total workload for this module is approximately 270 hours.
Module: Industrial Production I [M-WIWI-101437]

Responsibility: Frank Schultmann
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective

Contained in:
- Business Administration / Specialisation Program
 - Compulsory Elective Modules / Elective Module 1 / Business Administration
 - Compulsory Elective Modules / Elective Module 2 / Business Administration
 - Additional Examinations

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102606</td>
<td>Fundamentals of Production Management (S. 296)</td>
<td>5,5</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose 3,5 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102820</td>
<td>Production Economics and Sustainability (S. 440)</td>
<td>3,5</td>
<td>Jérémy Rimbon</td>
</tr>
<tr>
<td>T-WIWI-102870</td>
<td>Logistics and Supply Chain Management (S. 354)</td>
<td>3,5</td>
<td>Marcus Wiens</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course “Fundamentals of Production Management” [2581950] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.
The course “Fundamentals of Production Management” [2581950] and one additional activity have to be chosen.

Modeled Conditions
The following conditions must be met:
1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
- Students shall be aware of the important role of industrial production and logistics for production management.
- Students shall use relevant concepts of production management and logistics in an adequate manner.
- Students shall be able to reflect on decision principles in firms and their circumstances in the light of the production management aspects studied.
- Students shall be proficient in describing essential tasks, difficulties and solutions to problems in production management and logistics.
- Students shall be able to describe relevant approaches of modeling production and logistic systems.
- Students shall be aware of the important role of material and energy-flows in production systems.
- Students shall be proficient in using exemplary methods for solving selected problems.

Content
This module is designed to introduce students into the wide area of industrial production and logistics management. It focuses on strategic production management under the aspect of sustainability. The courses use interdisciplinary approaches of systems, also theory to describe the central tasks of industrial production management and logistics. Herein, attention is drawn upon strategic corporate planning, research and development as well as site selection. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Workload
Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h. The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.
Module: Internship [M-WIWI-101419]

Responsibility: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory
Contained in: Internship

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Once</td>
<td>1 term</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out by the evidence of completed full-time internships of at least 12 weeks with at least 20 working hours per week and a presentation of the internship in the form of a written report on the activities. The internship is not graded.

1. Information on evidence of completed full-time internships:

The internship is proofed by the certificate of the intern’s office. The certificate has to be formally correct with official corporate letterhead and handwritten countersigned by a responsible employee of the company.

The certificate must at least contain the following information:

* Company / Location
Duration: from ... to ...
Hours of work (weekly)
Working interruption, indicating the vacation and sick days
Department
Headwords to the activities

2. Information on to the presentation:

The internship report should be at least one page (typewritten, not handwritten) for each Location. It must be countersigned by a representative of the intern’s office.

Conditions
None

Qualification Objectives

- has general insight into the essential processes in a company,
• is in a position to identify operation correlations and has the knowledge and skills to facilitate a fast understanding of the processes in the company,
• in addition to practical professional experience and competences, also has key competences such as own initiative, ability to work in a team and communication skills as well as ability to integrate into corporate hierarchies and procedures,
• has the experience to accomplish complex IT and business tasks under realistic conditions within the framework of the relevant legal aspects and while applying the total acquired knowledge (interlaced thinking),
• has an idea of the professional development potential in the economy through pursuit of study-related activities,
• knows the technical and professional requirements in the individually targeted future occupation and can take this knowledge into account for the future planning of his/her studies and career,
• can assess and estimate own technical and professional strengths and weaknesses through his/her evaluation of the company.

Content
The internship may be done in economic, business and/or technical companies. At best, it is done on activities which are located at the intersection of the two fields - getting to know the specific requirements of Industrial Engineering and Management.

A commercial internship provides an insight into business or administrative processes of business transactions. Therefore departments such as controlling, organizing, marketing and planning appear particularly suitable.

Work experiences in the departments of engineering, work preparation and provision of material or IT cover more technical aspects of the internship. But work experiences in an engineering firm go with a technical internship.

It remains the companies and interns left, which stations and areas the intern will eventually go through. But the focus should always be in accordance with operational realities of the company.

Remarks
Internships, that were completed even before studying may be recognized, if the criteria for recognition are met. After recognition of the compulsory internship, there can be taken a semester off for a voluntary, student-related internship.

Regarding to the election of the company, in which the internship is completed, there are no specific rules. With a view to the future professional career, it is recommended to absolve the internship in a larger, possibly international company.

Vacation days are not figured into the internship.

Only three sick leave days may incurred at all. Any additional sick days are not figured into the internship.

A relevant vocational education of at least two years is accepted as a performance equivalent to the internship.

Workload
The total workload for this module is approximately 300 hours.
Module: Introduction to Economics [M-WIWI-101398]

Responsibility: Clemens Puppe

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory

Contained in: Economics / Basic Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Each term</td>
<td>2 terms</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102708</td>
<td>Economics I: Microeconomics (S. 237)</td>
<td>5</td>
<td>Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102709</td>
<td>Economics II: Macroeconomics (S. 239)</td>
<td>5</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The assessment procedures of each course of this module is defined for each course separately.

Module Grade

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Qualification Objectives

The student

- knows and understands basic economic problems,
- understands economic policy in globalized markets,
- is able to develop elementary solution concepts.

The lectures of this module have different focuses: In Economics I, economic problems are seen as decision problems, Economics II treats the dynamics of economic processes.

Content

The basic concepts, methods and models of micro- and macroeconomics are treated. The course *Economics I: Microeconomics [2600012]* deals with micro-economic decision theory, questions of market theory and problems of imperfect competition and with basic principles of game theory and welfare economics. *Economics II: Macroeconomics [2600014]* discusses economic organization models and national accounts as well as the question of international trade and monetary policy. Furthermore, the complex growth, boom and economic speculations are dealt with.

Remarks

Notice: The lecture *Economics I: Microeconomics [2600012]* is part of the preliminary examination concerning § 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Workload

See German version.
Module: Introduction to Natural Hazards and Risk Analysis 1 [M-WIWI-101646]

Responsibility: Michael Kunz

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program

Compulsory Elective Modules / Elective Module 1 / Engineering Sciences

Compulsory Elective Modules / Elective Module 2 / Engineering Sciences

Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose between 9 and 12 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103117</td>
<td>Geological Hazards and Risks for external students (S. 299)</td>
<td>4</td>
<td>Ellen Gottschämmer</td>
</tr>
<tr>
<td>T-BGU-101693</td>
<td>Hydrology (S. 315)</td>
<td>4</td>
<td>Erwin Zehe</td>
</tr>
<tr>
<td>T-BGU-101667</td>
<td>Hydraulic Engineering and Water Management (S. 314)</td>
<td>4</td>
<td>Franz Nestmann</td>
</tr>
<tr>
<td>T-BGU-101636</td>
<td>Remote Sensing, exam (S. 454)</td>
<td>4</td>
<td>Stefan Hinz</td>
</tr>
<tr>
<td>T-BGU-101637</td>
<td>Systems of Remote Sensing, Prerequisite (S. 512)</td>
<td>1</td>
<td>Stefan Hinz</td>
</tr>
<tr>
<td>T-BGU-101638</td>
<td>Procedures of Remote Sensing, Prerequisite (S. 433)</td>
<td>1</td>
<td>Uwe Weidner</td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences (S. 338)</td>
<td>3</td>
<td>Norbert Rösch, Sven Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences (S. 339)</td>
<td>3</td>
<td>Norbert Rösch, Sven Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103542</td>
<td>Procedures of Remote Sensing (S. 432)</td>
<td>3</td>
<td>Uwe Weidner</td>
</tr>
<tr>
<td>T-PHYS-101092</td>
<td>Climatology (S. 211)</td>
<td>0</td>
<td>Joaquim José Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-105594</td>
<td>Exam on Climatology (S. 258)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101557</td>
<td>Meteorological Hazards (S. 386)</td>
<td>0</td>
<td>Michael Kunz</td>
</tr>
<tr>
<td>T-PHYS-105954</td>
<td>Exam on Meteorological Hazards (S. 259)</td>
<td>3</td>
<td>Michael Kunz</td>
</tr>
<tr>
<td>T-BGU-101814</td>
<td>Project in Applied Remote Sensing (S. 441)</td>
<td>1</td>
<td>Stefan Hinz</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
There are no singular exams for Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66]. Therefore it is not possible to choose Remote Sensing [GEOD-BFB-1] and additionally the courses Remote Sensing Systems, Remote Sensing Methods or the project Angewandte Fernerkundung [20267] (because they are already included). See also “Recommendations”.

Qualification Objectives
See German version
Content
See German version

Recommendations
The courses Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66] may be chosen as a minimal combination for the exam. However, it is recommended to choose the comprehensive combination Remote Sensing [GEOD-BFB-1], which includes Remote Sensing Systems [20241/42], Remote Sensing Methods [20265/66] and the project Angewandte Fernerkundung [20267].

Remarks
Students, who successfully completed both modules “Understanding and Prediction of Disasters” I and II (alternatively: one of the modules in Bachelor and Master) can get a certificate of the module coordinator (CEDIM). This certificate lists the successful completed courses within the two modules.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Introduction to Natural Hazards and Risk Analysis 2 [M-WIWI-101648]

Responsibility: Michael Kunz

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Engineering Sciences / Specialisation Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot

Non-Compulsory Block; You must choose between 9 and 12 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103117</td>
<td>Geological Hazards and Risks for external students (S. 299)</td>
<td>4</td>
<td>Ellen Gottschämmer</td>
</tr>
<tr>
<td>T-BGU-101667</td>
<td>Hydraulic Engineering and Water Management (S. 314)</td>
<td>4</td>
<td>Franz Nestmann</td>
</tr>
<tr>
<td>T-BGU-101693</td>
<td>Hydrology (S. 315)</td>
<td>4</td>
<td>Erwin Zehe</td>
</tr>
<tr>
<td>T-BGU-101636</td>
<td>Remote Sensing, exam (S. 454)</td>
<td>4</td>
<td>Stefan Hinz</td>
</tr>
<tr>
<td>T-BGU-101637</td>
<td>Systems of Remote Sensing, Prerequisite (S. 512)</td>
<td>1</td>
<td>Stefan Hinz</td>
</tr>
<tr>
<td>T-BGU-101638</td>
<td>Procedures of Remote Sensing, Prerequisite (S. 433)</td>
<td>1</td>
<td>Uwe Weidner</td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences (S. 338)</td>
<td>3</td>
<td>Norbert Rösch, Sven Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101814</td>
<td>Project in Applied Remote Sensing (S. 441)</td>
<td>1</td>
<td>Stefan Hinz</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences (S. 339)</td>
<td>3</td>
<td>Norbert Rösch, Sven Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103542</td>
<td>Procedures of Remote Sensing (S. 432)</td>
<td>3</td>
<td>Uwe Weidner</td>
</tr>
<tr>
<td>T-PHYS-101092</td>
<td>Climatology (S. 211)</td>
<td>0</td>
<td>Joaquim José Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-105594</td>
<td>Exam on Climatology (S. 258)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-101557</td>
<td>Meteorological Hazards (S. 386)</td>
<td>0</td>
<td>Michael Kunz</td>
</tr>
<tr>
<td>T-PHYS-105954</td>
<td>Exam on Meteorological Hazards (S. 259)</td>
<td>3</td>
<td>Michael Kunz</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

There are no singular exams for Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66]. Therefore it is not possible to choose Remote Sensing [GEOD-BFB-1] and additionally the courses Remote Sensing Systems, Remote Sensing Methods or the project Angewandte Fernerkundung [20267] (because they are already included). See also “Recommendations”.

Modeled Conditions

The following conditions must be met:

- The module [M-WIWI-101646] *Introduction to Natural Hazards and Risk Analysis 1* must have been started.

Qualification Objectives

See German version

Content

See German version

Recommendations

The courses Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66] may be chosen as a minimal combination for the exam. However, it is recommended to choose the comprehensive combination Remote Sensing [GEOD-BFB-1], which includes Remote Sensing Systems [20241/42], Remote Sensing Methods [20265/66] and the project Angewandte Fernerkundung [20267].

Remarks

Students, who successfully completed both modules Introduction to Natural Hazards and Risk Analysis 1/2 (alternatively: one of the modules in Bachelor and Master) can get a certificate of the module coordinator (CEDIM). This certificate lists the successful completed courses within the two modules.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Introduction to Operations Research [M-WIWI-101418]

Responsibility: Stefan Nickel, Steffen Rebennack, Oliver Stein

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory

Contained in: Operations Research / Basic Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

Identifier Course ECTS Responsibility
T-WIWI-102758 Introduction to Operations Research I and II (S. 341) 9 Stefan Nickel, Steffen Rebennack, Oliver Stein

Learning Control / Examinations
The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.
In each term (usually in March and July), one examination is held for both courses.

Module Grade
The overall grade of the module is the grade of the written examination.

Conditions
None

Qualification Objectives
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.
This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Introduction to Programming [M-WIWI-101581]

Responsibility: Johann Marius Zöllner
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory
Contained in: Informatics / Basic Program

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102735</td>
<td>Introduction to Programming with Java (S. 343)</td>
<td>5</td>
<td>N.N., Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written resp. computer-based exam (60 min) according to Section 4 (2),1 of the examination regulation.
The successful completion of the compulsory tests in the computer lab is prerequisited for admission to the written resp. computer-based exam.
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Qualification Objectives
see german version

Content
see german version

Workload
The total workload for this course is approximately 150 hours. For further information see German version.
Module: Introduction to Statistics [M-WIWI-101432]

Responsibility: Oliver Grothe, Melanie Schienle

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory

Contained in: Statistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Each term</td>
<td>2 terms</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

Learning Control / Examinations

The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II).

The overall grade of the module is the average of the grades of these two written examinations.

Module Grade

The overall grade of the module is the average of the grades of these two written examinations.

Conditions

Notice: The lecture Statistics I [25008/25009] is part of the preliminary examination concerning Section 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Qualification Objectives

See German version.

Content

The module contains the fundamental methods and scopes of Statistics.
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, linear regression

Workload

The total workload for this module is approximately 300 hours. For further information see German version.
Module: Management Accounting [M-WIWI-101498]

Responsibility: Marcus Wouters
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102800</td>
<td>Management Accounting 1 (S. 361)</td>
<td>4,5</td>
<td>Marcus Wouters</td>
</tr>
<tr>
<td>T-WIWI-102801</td>
<td>Management Accounting 2 (S. 362)</td>
<td>4,5</td>
<td>Marcus Wouters</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
Students
- are familiar with various management accounting methods,
- can apply these methods for cost estimation, profitability analysis, and product costing,
- are able to analyze short-term and long-decisions with these methods,
- have the capacity to devise instruments for organizational control.

Content
The module consists of two courses “Management Accounting 1” and “Management Accounting 2”. The emphasis is on structured learning of management accounting techniques.

Remarks
The following courses are part of this module:

- The course Management Accounting 1, which is offered in every summer semester
- The course Management Accounting 2, which is offered in every winter semester

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Methodical Foundations of OR [M-WIWI-101414]

Responsibility: Oliver Stein

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Operations Research / Specialisation Program
Compulsory Elective Modules / Elective Module 2 / Operations Research
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose at least 1 courses and between 4,5 and 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I (S. 300)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Global optimization I and II (S. 302)</td>
<td>9</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I (S. 396)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nonlinear Optimization I and II (S. 398)</td>
<td>9</td>
<td>Oliver Stein</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block;

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization (S. 346)</td>
<td>4,5</td>
<td>Steffen Rebennack</td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Global Optimization II (S. 304)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nonlinear Optimization II (S. 400)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management (S. 261)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
At least one of the courses Nonlinear Optimization I [2550111] and Global Optimization I [2550134] has to be examined. Successful passing of the corresponding modules of the basic program.

Qualification Objectives
The student
- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.
Content
The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat approaches for global solutions.

Recommendations
The courses Introduction to Operations Research I and II are helpful.

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu).

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Module Bachelor Thesis [M-WIWI-101601]

Responsibility: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory
Contained in: Bachelor Thesis

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103067</td>
<td>Bachelor Thesis (S. 190)</td>
<td>12</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory

Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften
Learning Control / Examinations

The Bachelor Thesis is a written exam which shows that the student can autonomously investigate a scientific problem in Industrial Engineering and Management. The Bachelor Thesis is described in detail in § 11 (SPO 2007) and § 14 (SPO 2015) of the examination regulation. The review is carried out

- according to SPO 2007 by at least one examiner of the Department of Economics and Management, or, after approval by at least one examiner of another faculty. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme.
- according to SPO 2015 by at least two examiners of the Department of Economics and Management.

The regular processing time takes three/six months (SPO 2007/SPO2015). On a reasoned request of the student, the examination board can extend the processing time of a maximum of one month. If the Bachelor Thesis is not completed in time, this exam is “failed”, unless the student is not being responsible (e.g. maternity leave).

With consent of the examiner the thesis can be written in English as well. Other languages require besides the consent of the examiner the approval of the examination board. The issue of the Bachelor Thesis may only returned once and only within the first month of processing time. A new topic has to be released within four weeks.

The overall grade of the module is the grade of the Bachelor Thesis.

Conditions

Prerequisites for admission to the Bachelor Thesis:

- according to SPO 2007: the student is in the 3rd Academic year (5th and 6th semester) and has not been completed at most one of the exams of the basic program.
- according to SPO 2015: A minimum of 120 credits must be earned. All module examinations of the basic program must be passed.

At the request of the student, the examination committee decides on exceptions to these regulations. It is recommended to begin the Bachelor Thesis in the 5th or 6th Semester.

A written confirmation of the examiner about supervising the Bachelor’s Thesis is required. Please pay regard to the institute specific rules for supervising a Bachelor Thesis.

The Bachelor Thesis has to contain the following declaration: “I hereby declare that I produced this thesis without external assistance, and that no other than the listed references have been used as sources of information. Passages taken literally or analogously from published or non published sources are marked as this.” If this declaration is not given, the Bachelor Thesis will not be accepted.

Modeled Conditions

The following conditions must be met:

1. The field Basic Program must have been passed.
2. The field Basic Program must have been passed.
3. The field Basic Program must have been passed.
4. The field Basic Program must have been passed.
5. The field Basic Program must have been passed.

Qualification Objectives

The student can independently work on a relevant topic in accordance with scientific criteria within the specified time frame.

He/she is in a position to research, analyze the information, abstract and identify basic principles and regulations from less structured information.

He/she reviews the task ahead, can select scientific methods and techniques and apply them to solve a problem or identify further potential. This is basically also done under consideration of social and/or ethical aspects.

He/she can interpret, evaluate and if required, graphically present the obtained results.

He/she is in a position to clearly structure a research paper and communicate in writing using the technical terminology.

Content

The Bachelor Thesis is the first major scientific work. The topic of the Bachelor Thesis will be chosen by the student.
themselves and adjusted with the examinor. The topic has to be related to Industrial Engineering and Management and has to refer to subject-specific or interdisciplinary problems.

Workload
The total workload for this module is approximately 360 hours. For further information see German version.
Module: Optimization under Uncertainty [M-WIWI-103278]

Responsibility: Steffen Rebennack
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Operations Research / Specialisation Program
Compulsory Elective Modules / Elective Module 2 / Operations Research

Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose between 1 and 2 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization (S. 346)</td>
<td>4,5</td>
<td>Steffen Rebennack</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under uncertainty (S. 406)</td>
<td>5</td>
<td>Steffen Rebennack</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose at most 1 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I (S. 396)</td>
<td>4,5</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management (S. 513)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
At least one of the courses Introduction to Stochastic Optimization and Optimization approaches under uncertainty has to be taken.

Modeled Conditions
The following conditions must be met:

- The module [M-WIWI-101418] Introduction to Operations Research must have been passed.

Qualification Objectives
The student

- denominates and describes basic notions for optimization methods under uncertainty, in particular from stochastic optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems under uncertainty and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions, in particular of stochastic optimization problems.
Content
The module focuses on modeling and analyzing mathematical optimization problems where certain data is not fully present at the time of decision-making. The lectures on the introduction to stochastic optimization deal with methods to integrate distribution information into the mathematical model. The lectures on the optimization approaches under uncertainty offer alternative approaches such as robust optimization.

Recommendations
Knowledge from the lectures “Introduction to Operations Research I” and “Introduction to Operations Research II” are helpful.

Remarks
The curriculum, planned for three years in advance, can be found on the Internet at http://sop.ior.kit.edu/28.php.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Public Finance [M-WIWI-101403]

Responsibility: Berthold Wigger

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Economics / Specialisation Program
Compulsory Elective Modules / Elective Module 2 / Economics

Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpfllichtangebot
Non-Compulsory Block; You must choose 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102877</td>
<td>Introduction to Public Finance (S. 345)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning (S. 192)</td>
<td>4,5</td>
<td>Gerd Gutekunst, Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-107763</td>
<td>Municipal Finance (S. 393)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues (S. 447)</td>
<td>4,5</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

- The module [M-WIWI-101398] Introduction to Economics must have been passed.

Qualification Objectives
See German version.

Content
As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs. Special fields of Public Finance are public revenues, i.e. taxes and public debt, public expenditures for publicly provided goods, and welfare programs.

Recommendations
It is recommended to attend the course 2560129 after having completed the course 2560120.

Remarks
The course T-WIWI-102790 “Specific Aspects in Taxation” will no longer be offered in the module as of winter semester...

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Real Estate Management [M-WIWI-101466]

Responsibility: Thomas Lützkendorf

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program

Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102744</td>
<td>Real Estate Management I (S. 452)</td>
<td>4,5</td>
<td>Thomas Lützkendorf</td>
</tr>
<tr>
<td>T-WIWI-102745</td>
<td>Real Estate Management II (S. 453)</td>
<td>4,5</td>
<td>Thomas Lützkendorf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The student

- possesses an overview concerning the different facets and interrelationships within the real estate business, the important decision points in real estate lifecycle and the different views and interests of the actors concerned, and
- is capable of applying basic economic methods an procedures to problems within the real estate area.

Content
The real estate business offers graduates very interesting jobs and excellent work- and advancement possibilities. This module provides an insight into the macroeconomic importance of this industry, discusses problems concerned to the administration of real estate and housing companies and provides basic knowledge for making decisions both along the lifecycle of a single building and the management of real estate portfolios. Innovative operating and financing models are illustrated, as well as the current development when looking at real estate as an asset-class.

This module is also suitable for students who want to discuss macroeconomic, business-management or financial problems in a real estate context.

Recommendations
The combination with the module Design Constructions and Assessment of Green Buildings is recommended. Furthermore a combination with courses in the area of
• Finance
• Insurance
• Civil engineering and architecture (building physics, building construction, facility management)

is recommended.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Risk and Insurance Management [M-WIWI-101436]

Responsibility: Ute Werner
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Identifier Course ECTS Responsibility
T-WIWI-102603 Principles of Insurance Management (S. 430) 4,5 Ute Werner
T-WIWI-102608 Enterprise Risk Management (S. 257) 4,5 Ute Werner

Learning Control / Examinations
From winter term 2017/2018 the module is not offered anymore.
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The lectures are examined by oral presentations and related term papers in the context of the lectures. Furthermore, there is a final oral examination.

The grade of each examination consists of the oral presentation and the term paper (50 percent) and the oral examination (50 percent). The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The student
- can identify, analyze and evaluate entrepreneurial risks.
- is able to design suitable strategies and packages of measures for operational risk management
- can assess the role of insurance protection as a risk-policy tool at macroeconomic and macroeconomic level,
- knows and understands the legal framework and techniques of the production of insurance protection as well as other services of insurance companies (risk consulting, claims management).

Content
The module introduces the various functions of insurance protection at individual and macroeconomic level, as well as the legal framework and the technology of insurance coverage production. In addition, knowledge is provided that serves to identify, analyze and assess entrepreneurial risks. Building on this, we discuss strategies and measures for optimizing the company-wide opportunity and risk potential, taking into account sector-specific goals for optimizing risk-bearing capacity and acceptance.
Remarks
Please note:

- The examination T-WIWI-102603 Principles of Insurance Management will be offered latest until summer term 2017 (beginners only).
- The examination T-WIWI-102608 Enterprise Risk Management will be offered latest until winterterm 2017/2018 (beginners only).

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Wahlpflichtangebot

Non-Compulsory Block; You must choose 3 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103486</td>
<td>Seminar in Business Administration (Bachelor) (S. 465)</td>
<td>3</td>
<td>Wolf Fichtner, Hansjörg Fromm, Andreas Geyer-Schulz, Jungh Young Kim, Martin Klarmann, Peter Knauth, Hagen Lindstädt, David Lorenz, Torsten Luedecke, Thomas Lützkendorf, Alexander Mäder, Bruno Neibecker, Stefan Nickel, Petra Nieken, Martin Ruckes, Gerhard Satzger, Frank Schultmann, Thomas Setzer, Orestis Terzidis, Marliese Uhrig-Homburg, Maxim Ulrich, Christof Weinhardt, Marion Weissenberger-Eibl, Ute Werner, Marcus Wouters</td>
</tr>
<tr>
<td>T-WIWI-103485</td>
<td>Seminar in Informatics (Bachelor) (S. 474)</td>
<td>3</td>
<td>Andreas Oberweis, Harald Sack, Ali Sunyaev, York Sure-Vetter, Melanie Volkamer, Johann Marius Zöllner</td>
</tr>
<tr>
<td>T-WIWI-108763</td>
<td>Seminar in Engineering Science Master (approval) (S. 473)</td>
<td>3</td>
<td>Fachvertreter ingenieurwissenschaftlicher Fakultäten</td>
</tr>
<tr>
<td>T-MATH-102265</td>
<td>Seminar in Mathematics (Bachelor) (S. 478)</td>
<td>3</td>
<td>Martin Foklers, Günter Last</td>
</tr>
<tr>
<td>T-WIWI-103488</td>
<td>Seminar in Operations Research (Bachelor) (S. 479)</td>
<td>3</td>
<td>Stefan Nickel, Steffen Rebenack, Oliver Stein</td>
</tr>
<tr>
<td>T-INFO-101997</td>
<td>Seminar: Legal Studies I (S. 483)</td>
<td>3</td>
<td>Thomas Dreier</td>
</tr>
<tr>
<td>T-WIWI-103489</td>
<td>Seminar in Statistics (Bachelor) (S. 481)</td>
<td>3</td>
<td>Oliver Grothe, Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103487</td>
<td>Seminar in Economics (Bachelor) (S. 471)</td>
<td>3</td>
<td>Johannes Brumm, Jan Kowalski, Kay Mitusch, Ingrid Ott, Clemens Puppe, Johannes Philipp Reiß, Nora Szech, Berthold Wigger</td>
</tr>
<tr>
<td>T-MACH-109062</td>
<td>Seminar Production Technology (S. 482)</td>
<td>3</td>
<td>Jürgen Fleischer, Gisela Lanza, Volker Schulze</td>
</tr>
<tr>
<td>T-MACH-108737</td>
<td>Seminar Data-Mining in Production (S. 464)</td>
<td>3</td>
<td>Gisela Lanza</td>
</tr>
<tr>
<td>T-ETIT-100754</td>
<td>Seminar Creating a Patent Specification (S. 463)</td>
<td>3</td>
<td>Wilhelm Stork</td>
</tr>
</tbody>
</table>
Learning Control / Examinations

SPO 2015: The module examination consists of one seminar (according to §4 (3), 3 of the examination regulation). A detailed description of the assessment is given in the specific course characterization.

SPO 2007: The module examination consists of two seminars and of at least one key qualification (KQ) course (according to §4 (3), 3 of the examination regulation). As key qualification one of the following courses must be chosen: Academic Learning HoC (2-3 credits), Key Qualifikations ZAK (1-3 credits), Elective „Educational development for student teachers“ (2-3 credits) or language courses SpZ. A detailed description of every single assessment is given in the specific course characterization.

Conditions
All modules of the basic program should be completed. For further information see German version.

Qualification Objectives

- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
- They can solve the problems in a structured manner using their interdisciplinary know-how.
- They know how to validate the obtained results.
- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor.

Besides advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section “Key Qualifications” of the module handbook. Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.

Workload
See German version.
Module: Specialization in Customer Relationship Management [M-WIWI-101422]

Responsibility: Andreas Geyer-Schulz
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlplichtangebot

Non-Compulsory Block; You must choose between 1 and 2 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102596</td>
<td>Analytical CRM (S. 177)</td>
<td>4,5</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>T-WIWI-102597</td>
<td>Operative CRM (S. 404)</td>
<td>4,5</td>
<td>Andreas Geyer-Schulz</td>
</tr>
</tbody>
</table>

Ergänzungsangebot

Non-Compulsory Block; You must choose at most 1 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks (S. 214)</td>
<td>4,5</td>
<td>Kay Mitusch</td>
</tr>
<tr>
<td>T-WIWI-105771</td>
<td>Foundations of Digital Services A (S. 274)</td>
<td>4,5</td>
<td>Gerhard Satzger, Christof Weinhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(1), S. 2 2nd clause of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the corresponding modules of the basic program.

- It is only possible to choose this module in combination with the module *CRM and Servicemanagement*. The module is passed only after the final partial exam of *CRM and Servicemanagement* is additionally passed.
- At least, one of the courses *Analytic CRM* [2540522] and *Operative CRM* [2540520] has to be taken.

Modeled Conditions

The following conditions must be met:

1. The module [M-WIWI-101460] *CRM and Service Management* must have been started.
2. The module [M-WIWI-101494] *Fundamentals of Business Administration 1* must have been passed.
3. The module [M-WIWI-101578] *Fundamentals of Business Administration 2* must have been passed.

Qualification Objectives

The student
- knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
- gains an overview of the market for CRM software,
- designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, . . .),
- is aware of the problems of protecting the privacy of customers and the implications of privacy law.

Content
In this module, analysis methods and techniques for the management and improvement of customer relations are presented. Furthermore, modelling, implementation, introduction, change, analysis and valuation of operative CRM processes are treated. Regarding the first part, we teach analysis methods and techniques suitable for the management and improvement of customer relations. For this goal we treat the principles of customer- and service-oriented management as the foundation of successful customer relationship management. In addition, we show how knowledge of the customer can be used for decision-making at an aggregate level (e.g. planning of sortiments, analysis of customer loyalty, . . .). A basic requirement for this is the integration and collection of data from operative processes in a suitably defined data-warehouse in which all relevant data is kept for future analysis. The process of transferring data from the operative systems into the data warehouse is known as the ETL process (Extract / Transform / Load). The process of modelling a data-warehouse as well as the so-called extraction, transformation, and loading process for building and maintaining a data-warehouse are discussed in-depth. The data-warehouse serves as a base for flexible management reporting. In addition, various statistic methods (e.g. cluster analysis, regression analysis, stochastic models, . . .) are presented which help in computing suitable key performance indicators or which support decision-making.

Regarding the operative part, we emphasize the design of operative CRM processes. This includes the modelling, implementation, introduction and change, as well as the analysis and evaluation of operative CRM processes. Petri nets and their extensions are the scientific foundation of process modelling. The link of Petri nets to process models used in industry as e.g. UML activity diagrams is presented. In addition, a framework for process innovation which aims at a radical improvement of key business processes is introduced. The following application areas of operative CRM processes are presented and discussed:

Strategic marketing processes
Operative marketing processes (campaign management, permission marketing, . . .)
Customer service processes (sales force management, field services, call center management, . . .)

Workload
The total amount of work for this module is approximately 270 hours (9 credits). The subdivision is based on the credits of the courses of the module.
The total number of hours per course results from the time of visiting the lectures and exercises, as well as from the exam periods and the time that is required to achieve the objectives of the module as an average student with an average performance.
Module: Statistics and Econometrics [M-WIWI-101599]

Responsibility: Oliver Grothe, Melanie Schienle

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Compulsory Elective Modules / Elective Module 2 / Statistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose one course.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics (S. 241)</td>
<td>5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-106623</td>
<td>Technical conditions met (S. 514)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose between 1 und 2 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of multivariate Data (S. 175)</td>
<td>4,5</td>
<td>Oliver Grothe</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics (S. 270)</td>
<td>4,5</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of generalized regression models (S. 503)</td>
<td>4,5</td>
<td>Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications (S. 224)</td>
<td>4,5</td>
<td>Rheza Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program.
The course „Economics III: Introduction in Econometrics“ is compulsory and must be examined. In case the course „Economics III: Introduction in Econometrics“ has already been examined within the module „Applied Microeconomics“, the course „Economics III: Introduction in Econometrics“ is not compulsory.

Modeled Conditions
The following conditions must be met:
- The module [M-WIWI-101432] Introduction to Statistics must have been passed.

Qualification Objectives
The student
- shows an advanced understanding of Econometric techniques and statistical model building.
- is able to develop Econometric models for applied problems based on available data
- is able to apply techniques and models with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.
Content
The courses provide a solid Econometric and statistical foundation of techniques necessary to conduct valid regression, time series and multivariate analysis.

Workload
The total workload for this module is approximately 270 hours.
Module: Strategy and Organization [M-WIWI-101425]

Responsibility: Hagen Lindstädt

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
 Compulsory Elective Modules / Elective Module 1 / Business Administration
 Compulsory Elective Modules / Elective Module 2 / Business Administration
 Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Strategie und Organisation
Non-Compulsory Block; You must choose at least 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102629</td>
<td>Management and Strategy (S. 363)</td>
<td>3.5</td>
<td>Hagen Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-102630</td>
<td>Managing Organizations (S. 366)</td>
<td>3.5</td>
<td>Hagen Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problem Solving, Communication and Leadership (S. 431)</td>
<td>2</td>
<td>Hagen Lindstädt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Conditions
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
- The student describes both central concepts of strategic management as well as concepts and models for the design of organizational structures.
- He / she evaluates the strengths and weaknesses of existing organizational structures and regulations on the basis of systematic criteria.
- The management of organizational changes discusses and examines the students by means of case studies to what extent the models can be used in practice and what conditions must apply to them.
- In addition, students plan to use IT to support corporate governance.

Content
The module has a practical and action-oriented structure and provides the student with an up-to-date overview of basic skills concepts and models of strategic management and a realistic picture of possibilities and limitations rational design approaches of the organization.

The focus is firstly on internal and external strategic analysis, concept and sources of competitive advantage, Formulation of competitive and corporate strategies as well as strategy assessment and implementation. Secondly strengths and weaknesses of organizational structures and regulations are assessed on the basis of systematic criteria. Concepts for the organization of organizational structures, the regulation of organizational processes and the control organizational changes are presented.
Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Supply Chain Management [M-WIWI-101421]

Responsibility: Stefan Nickel

Organisation: KIT-Fakultät für Wirtschaftswissenschaften

Curricular Anchorage: Compulsory Elective

Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-107506</td>
<td>Platform Economy (S. 420)</td>
<td>4,5</td>
<td>Florian Glaser, Jella Pfeiffer, Tim Straub, Christof Weinhardt</td>
</tr>
</tbody>
</table>

Ergänzungsangebot
Non-Compulsory Block; You must choose at most 4 courses.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management (S. 261)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management (S. 513)</td>
<td>4,5</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>T-MACH-102089</td>
<td>Logistics - Organisation, Design and Control of Logistic Systems (S. 352)</td>
<td>6</td>
<td>Kai Furmans</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
This module is only available in the elective field. In the specialization program Business Administration, the election is not permitted.

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The course T-WIWI-107506 “Platform Economy” has to be taken.
Successful passing of the corresponding modules of the basic program.

Modeled Conditions
The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.

Qualification Objectives
The students

- are able to understand and evaluate the control of cross-company supply chains based on a strategic and operative...
are able to analyse the coordination problems within the supply chains,
• are able to identify and integrate adequate information system infrastructures to support the supply chains,
• are able to apply theoretical methods from the operations research and the information management,
• learn to elaborate solutions in a team

Content
The module “Supply Chain Management” gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture “Platform Economy” the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and market design. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform.

The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Remarks
The planned lectures in the next terms can be found on the websites of the respective institutes IISM, IFL and IOR.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Topics in Finance I [M-WIWI-101465]

Responsibility: Martin Ruckes, Marliese Uhrig-Homburg
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in: Business Administration / Specialisation Program
Compulsory Elective Modules / Elective Module 1 / Business Administration
Compulsory Elective Modules / Elective Module 2 / Business Administration
Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108445</td>
<td>Applied Asset Management (S. 180)</td>
<td>3</td>
<td>Andreas Sauer</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Exchanges (S. 260)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives (S. 231)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 244)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation (S. 271)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms (S. 268)</td>
<td>4,5</td>
<td>Torsten Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks (S. 207)</td>
<td>3</td>
<td>Wolfgang Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning (S. 192)</td>
<td>4,5</td>
<td>Gerd Gutekunst, Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance (S. 329)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful passing of the corresponding modules of the basic program. It is only possible to choose this module in combination with the module Essentials in Finance. The module is passed only after the final partial exam of Essentials in Finance is additionally passed. In addition to that it is possible to choose the module Topics in Finance II.

Modeled Conditions
The following conditions must be met:
1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.
3. The module [M-WIWI-101435] Essentials of Finance must have been started.

Qualification Objectives
The student
- has advanced skills in modern finance
is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content
The module *Topics in Finance I* is based on the module *Essentials of Finance*. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Remarks
The course T-WIWI-102790 “Specific Aspects in Taxation” will no longer be offered in the module as of winter semester 2018/2019.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Topics in Finance II [M-WIWI-101423]

Responsibility: Martin Ruckes, Marliese Uhrig-Homburg
Organisation: KIT-Fakultät für Wirtschaftswissenschaften
Curricular Anchorage: Compulsory Elective
Contained in:
- Business Administration / Specialisation Program
- Compulsory Elective Modules / Elective Module 1 / Business Administration
- Compulsory Elective Modules / Elective Module 2 / Business Administration
- Additional Examinations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 term</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot
Non-Compulsory Block; You must choose 9 credits.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108445</td>
<td>Applied Asset Management (S. 180)</td>
<td>3</td>
<td>Andreas Sauer</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Exchanges (S. 260)</td>
<td>1,5</td>
<td>Jörg Franke</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives (S. 231)</td>
<td>4,5</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102600</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 244)</td>
<td>4,5</td>
<td>Christof Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation (S. 271)</td>
<td>4,5</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms (S. 268)</td>
<td>4,5</td>
<td>Torsten Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks (S. 207)</td>
<td>3</td>
<td>Wolfgang Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning (S. 192)</td>
<td>4,5</td>
<td>Gerd Gutekunft, Berthold Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance (S. 329)</td>
<td>3</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful passing of the corresponding modules of the basic program.

It is only possible to choose this module in combination with the module Essentials in Finance. The module is passed only after the final partial exam of Essentials in Finance is additionally passed.

In addition to that it is possible to choose the module Topics in Finance I.

Modeled Conditions

The following conditions must be met:

1. The module [M-WIWI-101494] Fundamentals of Business Administration 1 must have been passed.
2. The module [M-WIWI-101578] Fundamentals of Business Administration 2 must have been passed.
3. The module [M-WIWI-101435] Essentials of Finance must have been started.

Qualification Objectives

The student

- has advanced skills in modern finance
is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content
The module *Topics in Finance II* is based on the module *Essentials of Finance*. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Remarks
The course T-WIWI-102790 “Special Taxation” will no longer be offered in the module as of winter semester 2018/1019.

Workload
The total workload for this module is approximately 270 hours.
Part V

Differing module descriptions SPO 2007

Module: Business Administration [WI1BW1]

Responsibility: M. Uhrig-Homburg, M. Ruckes

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Every term</td>
<td>3 terms</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102819</td>
<td>Business Administration: Finance and Accounting (S. 201)</td>
<td>4.0</td>
<td>Marliese Uhrig-Homburg, Martin Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102817</td>
<td>Business Administration: Strategic Management and Information Engineering and Management (S. 204)</td>
<td>3.0</td>
<td>Martin Ruckes, Petra Nieken</td>
</tr>
<tr>
<td>T-WIWI-102818</td>
<td>Business Administration: Production Economics and Marketing (S. 202)</td>
<td>4.0</td>
<td>Frank Schultmann, Martin Klarmann, Martin Ruckes, Thomas Lützkendorf, Wolf Fichtner</td>
</tr>
<tr>
<td>T-WIWI-102816</td>
<td>Financial Accounting and Cost Accounting (S. 267)</td>
<td>4.0</td>
<td>Jan-Oliver Strych</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures of each course of this module is defined for each course separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
It is strongly recommended to attend the courses in the following sequence:
1st term: Business Administration: Strategic Management and Information Engineering and Management [260023] and Business Administration: Finance and Accounting [25026/25027]
2nd term: Business Administration: Production Economics and Marketing [25024/25025]

Qualification Objectives
The student

- has core skills in business administration in particular with respect to decision making and model based view of corporations
- masters the fundamentals of managerial and financial accounting as well as business administration
- is able to analyse and assess the central tasks, functions and decisions in modern corporations

This module sets the base for advanced courses in the field of business administration and management science.

Content
This module provides the fundamentals of managerial and financial accounting as well as business administration and management science. Then, the module focuses on the fields of marketing, production economics, information engineering and management, management and organization, investment and finance and the german specific term controlling.
Workload
The total workload for this module is approximately 450 hours. For further information see German version.

Remarks
The title and partly the content of each lecture within this module has changed in the winter semester 2012/13.
Module: Economics [M-WIWI-101398]

Responsibility: Clemens Puppe

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Every term</td>
<td>2 semester</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102708</td>
<td>Economics I: Microeconomics (S. 237)</td>
<td>5,0</td>
<td>Clemens Puppe, Johannes Philipp Reiß</td>
</tr>
<tr>
<td>T-WIWI-102709</td>
<td>Economics II: Macroeconomics (S. 239)</td>
<td>5,0</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The assessment procedures of each course of this module is defined for each course separately.

Module Grade
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Qualification Objectives
The student

- knows and understands basic economic problems,
- understands economic policy in globalized markets,
- is able to develop elementary solution concepts.

The lectures of this module have different focuses: In Economics I, economic problems are seen as decision problems, Economics II treats the dynamics of economic processes.

Content
The basic concepts, methods and models of micro- and macroeconomics are treated. The course Economics I: Microeconomics [2600012] deals with micro-economic decision theory, questions of market theory and problems of imperfect competition and with basic principles of game theory and welfare economics. Economics II: Macroeconomics [2600014] discusses economic organization models and national accounts as well as the question of international trade and monetary policy. Furthermore, the complex growth, boom and economic speculations are dealt with.

Workload
See German version.
Module: Introduction to Informatics [WI1INFO]

Responsibility: H. Schmeck, R. Studer, Y. Sure-Vetter, M. Zöllner

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Every term</td>
<td>2 terms</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102735</td>
<td>Introduction to Programming with Java (S. 343)</td>
<td>5,0</td>
<td>M. Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102749</td>
<td>Foundations of Informatics I (S. 277)</td>
<td>5,0</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102707</td>
<td>Foundations of Informatics II (S. 278)</td>
<td>5,0</td>
<td>Hartmut Schmeck</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the individual courses of this module.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. For a successful module assessment all partial exams have to be passed:

- Introduction to Programming with Java
 Compulsory tests in the computer lab
 Written exam resp. computer-based exam (60 min)
 The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam.

- Foundations of Informatics I
 Written exam in the first week of the recess period (60 min)

- Foundations of Informatics II
 Written exam in the first week of the recess period (90 min)
 It is possible to gain 0.3-0.4 grading points to the written exam by successful participation in the exercises (achieving a minimum number of points received for solutions to the exercises), or by successful completion of a bonus exam (both according to Section 4 (2), 3 of the examination regulation).

When all partial exams are passed, the overall grade of the module is the average of the grades for each course weighted by the credit points and truncated after the first decimal.

Conditions

None.

Recommendations

It is strongly recommended to attend the courses in the following sequence: Introduction to Programming with Java [2511000], Foundations of Informatics I [2511010] Foundations of Informatics II [2511012]

Qualification Objectives

The student

- knows the main principles, methods and systems of computer science,
- can use this knowledge for applications in advanced computer science courses and other areas for situation-adequate problem solving,
- is capable of finding strategic and creative responses in the search for solutions to well defined, concrete, and abstract problems.

The student can deepen the learned concepts, methods, and systems of computer science in advanced computer science lectures.
Content
This module conveys knowledge of the widespread object-oriented programming Java language. Furthermore, the topics modeling, logic, algorithms, sorting and searching algorithms, complexity theory, problem specifications, and dynamic data structures are addressed. From the field of theoretical computer science, formal models of automata, languages and algorithms are presented and applied to the architecture of computer systems.

Workload
The total workload for this module is approximately 450 hours. For further information see German version.
Module: Mass and Energy Balances for Reacting Systems [WI1ING1]

Responsibility: P. Pfeifer, B. Kraushaar-Czarnetzki

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>Every 2nd term, Winter Term</td>
<td>1 term</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101873</td>
<td>Mass and Energy Balances for Reacting Systems (S. ??)</td>
<td>2,5</td>
<td>Peter Pfeifer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out by a written exam about the lecture Mass and Energy Balances for Reacting Systems [22130] (according §4(2), 1 of the examination regulation).
The overall grade of this module is the grade of the written exam.

Conditions
None.

Qualification Objectives
The student
- knows and understands integral mass and energy balances of simple systems in process engineering,
- can apply integral mass and balances on selected systems and processes.

Content
- Aim and approach
- Mass balance
- Water
- Nitrogen and ammonia
- Energy balance
- Natural gas
- Carbon dioxide

Workload
The total workload for this module is approximately 75.0 hours. For further information see German version.
Module: Materials Science [WI1ING2]

Responsibility: M. Hoffmann

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Every 2nd term, Winter Term</td>
<td>1 term</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102078</td>
<td>Materials Science I (S. 374)</td>
<td>2.5</td>
<td>Michael Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination (150 min) about the lecture *Materials Science I* [2125760] (according to Section 4(2), 1 of the examination regulation).
The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.
The grade of the module corresponds to the grade of this examination.

Conditions
None.

Qualification Objectives
Students are able to specify the basics of materials science and engineering and can apply it to simple problems in various technical areas.
As major part of the module, the students know the correlation between atomic structure and bonding of solids and the macroscopic properties such as mechanical behavior or electrical conductivity. They have basic knowledge with respect to materials characterization. The students are able to analyze phase diagrams with up to two components and can derive simple correlations among composition, processing, microstructure evolution and materials properties.

Content
After an introduction to the atomic structure and interatomic bonding, elementary concepts of crystallography are given. Different types of crystal structures are explained and various types of imperfections in solids. Then, the mechanical behaviour and the physical properties of various types of materials (metals, polymers, ceramics) are discussed. The thermodynamic principles of solidification and the basic types of phase diagrams are given to understand to iron-carbon phase diagram and the manifold microstructures of steel and cast iron.

Workload
The total workload for this module is approximately 75.0 hours. For further information see German version.
Module: Engineering Mechanics [WI1NG3]

Responsibility: A. Fidlin

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Every 2nd term, Winter Term</td>
<td>1 term</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102208</td>
<td>Introduction to Engineering Mechanics I : Statics and Strength of Materials (S. 335)</td>
<td>2.5</td>
<td>Alexander Fidlin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination about the lecture Engineering Mechanics [2161208] (according to Section 4(2), 1 of the examination regulation).
The overall grade of the module is the grade of the written examination.

Conditions
None.

Qualification Objectives
The student
- knows and understands the basic elements of statics,
- is able to solve basic problems in statics independently.

Content
Statics: force • moment • general equilibrium conditions • center of gravity • inner forces in structure • plane frameworks • adhesion

Workload
The total workload for this module is approximately 75.0 hours. For further information see German version.

Remarks
Starting summer 2016 the course “Introduction to Engineering Mechanics I : Statics and Strength of Materials” [2161238] will be held in summer term.
Module: Electrical Engineering [WI1ING4]

Responsibility: W. Menesklou

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Every 2nd term, Winter Term</td>
<td>1 term</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100533</td>
<td>Electrical Engineering I (S. 247)</td>
<td>2.5</td>
<td>Wolfgang Menesklou</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination about the lecture Electrical Engineering I [23223] (according to Section 4(2), 1 of the examination regulation).
The grade of the module corresponds to the grade of this examination.

Conditions
None.

Qualification Objectives
The student knows and understands basic terms of electrical engineering and should be able to carry out simple calculations of DC and AC circuits.

Content
Supporting the lecture, assignments to the curriculum are distributed. These are solved into additional (voluntary) tutorials.

Workload
The total workload for this module is approximately 75.0 hours. For further information see German version.
Module: Mathematics [WI1MATH]

Responsibility: G. Last

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Every 2nd term, Winter Term</td>
<td>3 terms</td>
</tr>
</tbody>
</table>

Compulsory

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102260</td>
<td>Mathematics I - Midterm Exam (S. 376)</td>
<td>3.5</td>
<td>Daniel Hug, Günter Last, Martin Folkers, Steffen Winter</td>
</tr>
<tr>
<td>T-MATH-102261</td>
<td>Mathematics I - Final Exam (S. 375)</td>
<td>3.5</td>
<td>Daniel Hug, Günter Last, Martin Folkers, Steffen Winter</td>
</tr>
<tr>
<td>T-MATH-102262</td>
<td>Mathematics II - Midterm Exam (S. 378)</td>
<td>3.5</td>
<td>Daniel Hug, Günter Last, Martin Folkers, Steffen Winter</td>
</tr>
<tr>
<td>T-MATH-102263</td>
<td>Mathematics II - Final Exam (S. 377)</td>
<td>3.5</td>
<td>Daniel Hug, Günter Last, Martin Folkers, Steffen Winter</td>
</tr>
<tr>
<td>T-MATH-102264</td>
<td>Mathematics III - Final Exam (S. 379)</td>
<td>7.0</td>
<td>Daniel Hug, Günter Last, Martin Folkers, Steffen Winter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module.
The overall grade of the module is the average of the grades for each course truncated after the first decimal.
The assessment procedures of each course of this module is defined for each course separately.

Conditions
The admission to the examinations carried out regardless of the evidence of the other examinations in the module.

Recommendations
It is strongly recommended to attend the courses in the following sequence: Mathematics I [01350], Mathematics II [01830] Mathematics III [01352]

Qualification Objectives
See German version.

Content

Workload
The total workload for this module is approximately 630 hours. For further information see German version.
Module: Statistics [M-WIWI-101432]

Responsibility: Melanie Schienle

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102737</td>
<td>Statistics I (S. 504)</td>
<td>5.0</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>T-WIWI-102738</td>
<td>Statistics II (S. 505)</td>
<td>5.0</td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II).
The overall grade of the module is the average of the grades of these two written examinations.

Module Grade
The overall grade of the module is the average of the grades of these two written examinations.

Conditions
Notice: The lecture Statistics I [25008/25009] is part of the preliminary examination concerning Section 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Qualification Objectives
See German version.

Content
The module contains the fundamental methods and scopes of Statistics.
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, convolution and limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, theory of tests (optimality, most important examples of tests)

Workload
The total workload for this module is approximately 300 hours. For further information see German version.
Module: Seminar Module [WI3SEM]

Responsibility: Studiendekan (Fak. f. Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103485</td>
<td>Seminar in Informatics (Bachelor) (S. 474)</td>
<td>3,0</td>
<td>Andreas Oberweis, Hartmut Schmeck, Johann Marius Zöllner, Rudi Studer, York Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-103486</td>
<td>Seminar in Business Administration (Bachelor) (S. 465)</td>
<td>3,0</td>
<td>Andreas Geyer-Schulz, Bruno Neibecker, Christof Weinhardt, David Lorenz, Frank Schultmann, Gerhard Satzger, Hagen Lindstädt, Hansjörg Fromm, Ju-Young Hinz, Marcus Wouters, Marion Weissenberger-Eibl, Marliese Uhlig-Homburg, Martin Klarmann, Martin Ruckes, Orestis Terzidis, Petra Nieken, Stefan Nickel, Thomas Lützkendorf, Ute Werner, Wolf Fichtner</td>
</tr>
<tr>
<td>T-WIWI-103487</td>
<td>Seminar in Economics (Bachelor) (S. 471)</td>
<td>3,0</td>
<td>Berthold Wigger, Clemens Puppe, Ingrid Ott, Jan Kowalski, Johannes Philipp Reiß, Kay Mitsch, Marten Hillebrand</td>
</tr>
<tr>
<td>T-WIWI-103488</td>
<td>Seminar in Operations Research (Bachelor) (S. 479)</td>
<td>3,0</td>
<td>Karl-Heinz Waldmann, Oliver Stein, Stefan Nickel</td>
</tr>
<tr>
<td>T-WIWI-103489</td>
<td>Seminar in Statistics (Bachelor) (S. 481)</td>
<td>3,0</td>
<td>Melanie Schienle, Oliver Grothe, Wolf-Dieter Heller</td>
</tr>
<tr>
<td>T-WIWI-102755</td>
<td>Seminar in Seminar in Engineering Science (Bachelor) (S. ??)</td>
<td>3,0</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>T-MATH-102265</td>
<td>Seminar in Mathematics (Bachelor) (S. 478)</td>
<td>3,0</td>
<td>Günter Last, Martin Folkers</td>
</tr>
<tr>
<td>T-INFO-101997</td>
<td>Seminar: Legal Studies I (S. 483)</td>
<td>3,0</td>
<td>Thomas Dreier</td>
</tr>
<tr>
<td>SemSQ (Bachelor)</td>
<td>Seminar Key Skills (Bachelor)</td>
<td>1-3</td>
<td>ZAK, HoC</td>
</tr>
</tbody>
</table>
Learning Control / Examinations

The modul examination consists of two seminars and of at least one key qualification (KQ) course (according to §4 (3), 3 of the examination regulation). A detailed description of every singled assessment is given in the specific course characterization.

The final mark for the module is the average of the marks for each of the two seminars weighted by the credits and truncated after the first decimal. Grades of the KQ courses are not included.

Conditions

All modules of the core programme should have been absolved. Furthermore the course specific preconditions must be observed.

- **Seminars**: Two seminars out of the course list, that have at least 3 CP each and are offered by a representative of the Department of Economics and Management or of the Center for applied legal studies (Department of Informatics), have to be chosen.

- Alternatively one of the two seminars can be absolved at a engineering department or at the Department of Mathematics. The seminar has to be offered by a representative of the respective department as well. The assessment has to meet the demands of the Department of Economics and Management (active participation, term paper with a workload of at least 80 h, presentation). This alternative seminar requires an official approval and can be applied at the examination office of the Department of Economics and Management. Seminars at the institutes wbk and IFL do not require these approval.

- **Key Qualification (KQ)-course(s)**: One or more courses with at least 3 CP in total of additional key qualifications have to be chosen among the courses [HoC, ZAK, Sprachenzentrum].

Qualification Objectives

- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.

- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.

- They can solve the problems in a structured manner using their interdisciplinary know-how.

- They know how to validate the obtained results.

- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content

Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor.

Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section “Key Qualifications” of the module handbook. Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Remarks

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

The courses “Seminar Human Resource Management” [2573011] and “Seminar Human Resources and Organizations” [2573010] have both been added summer 2015.
Module: Internship [WI3EXPRAK]

Responsibility: Der Vorsitzende des Prüfungsausschusses

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Course</th>
<th>ECTS</th>
<th>Recurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102611</td>
<td>Internship (S. 332)</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out by the evidence of completed full-time internships of at least eight weeks and a presentation of the internship in the form of a written report on the activities.

1. Information on evidence of completed full-time internships:

The internship is proofed by the certificate of the intern's office. The certificate has to be formally correct with official corporate letterhead and handwritten countersigned by a responsible employee of the company.

The certificate must at least contain the following information:

* Company / Location
* Duration: from ... to ...
* Hours of work (weakly)
* Working interruption, indicating the vacation and sick days
* Department
* Headwords to the activities

2. Information on to the presentation:

The internship report should be at least one page (typewritten, not handwritten) for each Location. It must be countersigned by a representative of the intern's office.

Conditions
Internships, that were completed even before studying may be recognized, if the criteria for recognition are met. After recognition of the compulsory internship, there can be taken a semester off for a voluntary, student-related internship. The possibility is particularly interesting in view of the master programme, which requires internships of at least 12 weeks. Regarding to the election of the company, in which the internship is completed, there are no specific rules. With a view to the future professional career, it is recommended to absolve the internship in a larger, possibly international company.

Qualification Objectives

- has general insight into the essential processes in a company,
- is in a position to identify operation correlations and has the knowledge and skills to facilitate a fast understanding of the processes in the company,
- in addition to practical professional experience and competences, also has key competences such as own initiative, ability to work in a team and communication skills as well as ability to integrate into corporate hierarchies and procedures,
• has the experience to accomplish complex IT and business tasks under realistic conditions within the framework of the relevant legal aspects and while applying the total acquired knowledge (interlaced thinking),

• has an idea of the professional development potential in the economy through pursuit of study-related activities,

• knows the technical and professional requirements in the individually targeted future occupation and can take this knowledge into account for the future planning of his/her studies and career,

• can assess and estimate own technical and professional strengths and weaknesses through his/her evaluation of the company.

Content
The internship may be done in economic, business and/or technical companies. At best, it is done on activities which are located at the intersection of the two fields - getting to know the specific requirements of Industrial Engineering and Management.
A commercial internship provides an insight into business or administrative processes of business transactions. Therefore departments such as controlling, organizing, marketing and planning appear particularly suitable.
Work experiences in the departments of engineering, work preparation and provision of material or IT cover more technical aspects of the internship. But work experiences in an engineering firm go with a technical internship.
It remains the companies and interns left, which stations and areas the intern will eventually go through. But the focus should always be in accordance with operational realities of the company.

Workload
The total workload for this module is approximately 240 hours. For further information see German version.

Remarks
Vacation days are not figured into the internship.
Only three sick leave days may incurred at all. Any additional sick days are not figured into the internship.
A relevant vocational education of at least two years is accepted as a performance equivalent to the internship.

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Part VI
Module component exams

Course: Advanced Lab Informatics [T-WIWI-103523]

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch/englisch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2400115</td>
<td>Machine Learning Practical Course</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Rüdiger Dillmann, Johann Marius Zöllner</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2512101</td>
<td></td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Andreas Drescher, Andreas Oberweis, Frederic Toussaint, Meike Ulrich</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2512300</td>
<td></td>
<td>Seminar / Praktikum (S/P)</td>
<td>3</td>
<td>Aditya Mogadala, Achim Rettinger, York Sure-Vetter, Steffen Thoma, Theresa Kromat, Ali Sunyaev, Johann Marius Zöllner</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2512400</td>
<td></td>
<td>Praktikum (P)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2512500</td>
<td></td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2512550</td>
<td>Advanced Lab Privacy Friendly Apps</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Oksana Kulyk, Peter Mayer, Melanie Volkamer</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2513306</td>
<td>Data Science & Real-time Big Data Analyt-</td>
<td>Seminar / Praktikum (S/P)</td>
<td>2</td>
<td>Dominik Riemer, Suad Sejdovic, York Sure-Vetter, Ingrid Bauer, Mariel Acosta, Deibe, Lars Heling, Tobias Christof, Käfer, York Sure-Vetter, Tobias Weller</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512100</td>
<td>Security</td>
<td>Praktikum (P)</td>
<td>4</td>
<td>Ingmar Baumgart, Sven Maier, Melanie Volkamer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512301</td>
<td>Linked Data and the Semantic Web</td>
<td>Seminar / Praktikum (S/P)</td>
<td>3</td>
<td>David Bälz, Ingrid Ott, York Sure-Vetter, Tobias Weller</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512311</td>
<td>Data Science with Open Data</td>
<td>Seminar / Praktikum (S/P)</td>
<td>3</td>
<td>Matthias Frank, York Sure-Vetter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512312</td>
<td>Cooperation seminar: Innovative applications on single board computers as well as their economic relevance</td>
<td>Seminar / Praktikum (S/P)</td>
<td>3</td>
<td>David Bälz, Ingrid Ott, York Sure-Vetter, Tobias Weller</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512400</td>
<td></td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Theresa Kromat, Ali Sunyaev</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512501</td>
<td></td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Johann Marius Zöllner</td>
</tr>
</tbody>
</table>
Learning Control / Examinations
Advanced Lab “Privacy Friendly Apps”:
The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:
- a practical work
- three interim submissions of the software to be developed.
- The weighting of the individual components will be announced during the first meeting.

All other courses of the Institute AIFB:
The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:
- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Conditions
None

Remarks
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu.

Event excerpt: Linked Data and the Semantic Web (WS 18/19)

Workload
Topics of interest include, but are not limited to:
- Travel Security
- Geo data
- Linked News
- Social Media

Event excerpt: Machine Learning Practical Course (SS 2018)

Aim
Umsetzung einzelner, durch die Studenten ausgewählter Verfahren des Maschinellen Lernens an einer konkreten Aufgabenstellung entweder aus dem Bereich Robotik oder kognitive Automobile.

Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Verfahren, Spezifikation und Implementierung und Evaluierung eines Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Die Studierenden können Kenntnisse aus der Vorlesung Maschinelles Lernen auf einem ausgewählten Gebiet der aktuellen Forschung im Bereich Robotik oder kognitive Automobile praktisch anwenden.

Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team.

Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Event excerpt: (SS 2018)

Content
Domains of interest include, but are not limited to:
- Medicine
- Social Media
- Finance Market
Literature
Detailed references are indicated together with the respective subjects. For general background information look up the following textbooks:

- Mitchell, T.; Machine Learning

Event excerpt: (WS 18/19)

Aim

- Independent and self-organized realization of a software development project
- Evaluation and selection of suitable development tools and methods
- Application of modern software development methods
- Planning and execution of different development tasks: requirements assessment, system design, implementation, and quality assurance
- Project documentation
- Presentation of project results in an comprehensible and structured form

Workload
4 ECTS = approx. 120 h

Event excerpt: Cooperation seminar: Innovative applications on single board computers as well as their economic relevance (WS 18/19)

Content
Topics of interest include, but are not limited to:

- Smart Home Applications
- Environmental measurements
- Gesture control
- Security systems

Event excerpt: Advanced Lab Privacy Friendly Apps (SS 2018)

Aim
The students

- are able to identify privacy-critical parts of an app and to model and implement them in a privacy-friendly way,
- know frameworks for the development of mobile apps as well as the dedicated development environments,
- have the ability to use “git” (on the example of Github) as a basis for software development,
- have experience in software development using “Human Centered Design”.

Content
The Privacy Friendly Apps (PFAs) are a group of Android apps that are optimized regarding privacy. In the past, more than 20 Privacy Friendly Apps have been developed at the Technische Universität Darmstadt and published in the Google Playstore as well as in the alternative App Store F-Droid. The source code of each Privacy Friendly App is available on Github and licensed “open-source”. The “Privacy Friendly QR Scanner” was downloaded more than 15,000 times from the Playstore. Further information can be found at https://secuso.org/pfa.

In the practical course “Privacy Friendly Apps”, apps are implemented in small groups or existing Privacy Friendly Apps are extended. Initially, Android apps will be in the foreground. In the medium term, it is planned to develop IOS apps as well.

The focus of the practical course is on the privacy-friendly and user-centered implementation of the respective task as an app. Therefore, privacy-critical points are identified and technical measures for the protection of privacy (for example the
blocking of screenshots) as well as for the support of the user (for example explanations) are determined. These will be implemented during the internship.

Event excerpt: (WS 18/19)

Aim
Die Studierenden können Kenntnisse aus der Vorlesung Maschinelles Lernen auf einem ausgewählten Gebiet der aktuellen Forschung im Bereich Robotik oder kognitive Automobile praktisch anwenden. Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team. Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Workload
Der Arbeitsaufwand von 3 SWS setzt sich zusammen aus Präsenzzeit am Versuchsort zur praktischen Umsetzung der gewählten Lösung, sowie der Zeit für Literaturrecherchen und Planung/Spesifikation der geplanten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Event excerpt: (SS 2018)

Aim
Die Studierenden können Kenntnisse aus der Vorlesung Maschinelles Lernen auf einem ausgewählten Gebiet der aktuellen Forschung im Bereich Robotik oder kognitive Automobile praktisch anwenden. Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team. Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Content
Umsetzung einzelner, durch die Studenten ausgewählter Verfahren des Maschinellen Lernens an einer konkreten Aufgabenstellung entweder aus dem Bereich Robotik oder kognitive Automobile.

Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Lernverfahren, Spezifikation und Implementierung und Evaluatorung eines Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Workload
Der Arbeitsaufwand von 3 SWS setzt sich zusammen aus Präsenzzeit am Versuchsort zur praktischen Umsetzung der gewählten Lösung, sowie der Zeit für Literaturrecherchen und Planung/Spesifikation der geplanten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.
Course: Advanced Lab Security, Usability and Society [T-WIWI-108439]

Responsibility: Melanie Volkamer

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The non examassessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Conditions
None

Recommendations
Knowledge from the lecture “Information Security” is recommended.

Remarks
The course is expected to be offered from winter term 2018/2019.

Contents:
In the course of the programming lab, changing topics from the field of Human Factors in Security und Privacy will be worked on.

Learning goals:
The student

- can apply the basics of information security
- is able to implement appropriate measures to achieve different protection goals
- can structure a software project in the field of information security
- can use the Human Centred Security and Privacy by Design technique to develop user-friendly software
- can explain and present technical facts and the results of the programming lab in oral and written form

Responsibility: Melanie Volkamer

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Conditions
None
Course: Advanced Programming - Application of Business Software
[T-WIWI-102748]

Responsibility: Stefan Klink, Andreas Oberweis

Contained in: [M-WIWI-101399] Emphasis Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511026</td>
<td>Advanced Programming - Application of Business Software</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Klink</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511027</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td>Stefan Klink, Meike Ullrich</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511028</td>
<td>Übung (U)</td>
<td></td>
<td>2</td>
<td>Meike Ullrich</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination of 2 hours (Section 4 (2), 1 of the examination regulations) and of assignments during the course (Section 4 (2), 3 SPO 2007 respectively Section 4 (3) SPO 2015).
Successful participation to the computer lab is precondition for permission to the assessment. Further information will be given at the first lesson and via the homepage of the course.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
This course cannot be taken together with Advanced Programming - Java Network Programming.

Modeled Conditions
The following conditions must be met:
- The course [T-WIWI-102747] Advanced Programming - Java Network Programming must not have been started.

Recommendations
Knowledge of the course “Grundlagen der Informatik I und II” are helpful.

Event excerpt: Advanced Programming - Application of Business Software (WS 18/19)

Aim
Students
- explain basic concepts and principles of enterprise information systems,
- describe the components of enterprise information systems,
- assess economical aspects of such systems,
- asseapply standard software for modelling business processes and for analysing them to given criteria.

Content
Business information systems enable, support, and accelerate new forms of business processes and forms of organisation. They are the central infrastructure of the economy in the age of eBusiness. Thus, basic knowledge is given in lectures, in exercises and in the computer lab which deals with installation, configuration and parameterization of business information systems. The course communicates profound knowledge in following topics:
- Analysis of cooperation scenarios and business process scenarios
- Selection of modelling methods according to defined criteria
- Implementation of business process models and cooperation models with the help of standard software
- Identification and assessment of challenges during the installation of information systems
Economical evaluation of business information systems.

Workload
Lecture 30h
Exercise course 17h
Review and preparation of lectures 30h
Review and preparation of exercises 15h
Computer Lab 30h
Exam preparation 29h
Exam 1h
Total 150 h

Exercise courses are done by student tutors (size about 50 students)

Literature

Further literature will be given during the course.
Course: Advanced Programming - Java Network Programming [T-WIWI-102747]

Responsibility: Dietmar Ratz
Contained in: [M-WIWI-101399] Emphasis Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511020</td>
<td>Advanced Programming - Java Network Programming</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Dietmar Ratz</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511021</td>
<td></td>
<td>Tutorium (Tu)</td>
<td>1</td>
<td>Dietmar Ratz, Lukas Struppek, Janna Ulrich</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511023</td>
<td></td>
<td>Praktische (PÜ)</td>
<td>Übung 2</td>
<td>Dietmar Ratz, Lukas Struppek, Janna Ulrich</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

At the end of the lecture period, a written examination (90 min.) (according to§4(2), 1 SPO) will be held for which admission must be granted during the semester after successful participation in the practices. The exact details will be announced in the lecture.

The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

This course cannot be taken together with *Advanced Programming - Application of Business Software* [2511026].

Modeled Conditions

The following conditions must be met:

- The course [T-WIWI-102748] *Advanced Programming - Application of Business Software* must not have been started.

Remarks

The registration for the participation in the computer lab (precondition for the exam participation) already takes place in the first lecture week!

Aim

- Students learn the practical use of the object-oriented programming language Java and are enabled to design and implement component-based Internet applications using the latest technologies and tools.
- The ability to select and design these methods and systems appropriate to the situation and to use them for solving problems is imparted.
- Students are empowered to find strategic and creative answers in the search for solutions to well-defined, concrete and abstract problems.

Content

In the lecture, the exercises and computer labs to this course the practical handling with the programming language Java dominating within the range of economical applications is obtained. The basis for this is the current language standard. The knowledge from the lecture Introduction to Programming with Java will be deepened and extended. This is done, among other things, by addressing commercially relevant topics such as object-oriented modeling and programming, class hierarchy and inheritance, threads, applications and applets, AWT and Swing components for graphical user interfaces, exception
and event processing, lambda expressions, input/output via streams, applications in networks, Internet communication, client and server programming, remote method invocation, servlets, Java Server Pages and Enterprise Java Beans.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature
Course: Advanced Topics in Economic Theory [T-WIWI-102609]

Responsibility: Kay Mitusch

Contained in: [M-WIWI-101501] Economic Theory

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Unregelmäßig</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The course T-WIWI-102609 “Advanced Topics in Economic Theory” restarts in summer term 2019. The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the end of the lecture period or at the beginning of the following semester.

Conditions
None

Recommendations
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.
Course: Agile product innovation management - value-driven planning of new products [T-MACH-106744]

Responsibility: Roland Kläger
Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2122300</td>
<td>Agile product innovation management - value-driven planning of new products</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Roland Kläger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination, 20 min.

Conditions

None
Course: Airport Logistics [T-MACH-105175]

Responsibility: André Richter
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117056</td>
<td>Airport logistics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>André Richter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Conditions
none

Event excerpt: Airport logistics (WS 18/19)

Aim
Students are able to:

- Describe material handling and informations technology activities on airports,
- Evaluate processes and systems on airports as the law stands, and
- Choose appropriate processes and material handling systems for airports.

Content
Introduction
airport installations
luggage transport
passenger transport
security on the airport
legal bases of the air traffic
freight on the airport

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
Course: Analalysis of Social Structures (WiWi) [T-GEISTSOZ-109047]

Responsibility: Gerd Nollmann
Contained in: [M-GEISTSOZ-101167] Sociology/Empirical Social Research

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>5011007</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Gerd Nollmann</td>
<td></td>
</tr>
</tbody>
</table>
Course: Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines
[T-MACH-105173]

Responsibility: Marcus Gohl

Contained in: [M-MACH-101303] Combustion Engines II

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2134150</td>
<td>Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marcus Gohl</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Letter of attendance or oral exam (25 minutes, no auxillary means)

Conditions

none

Event excerpt: Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines (SS 2018)

Aim

The Students can point out the challenges concerning the current emission standards in engine development. They can name and explain the basic principles of measurement techniques and methods to analyse exhaust gas components and components of engine oil. Hence, the students have the ability to choose the right methods for a given Problem and to interpret the results.

Content

The students get involved in the application of different measurement techniques in the field of exhaust gas and lubricating oil analysis. The functional principles of the systems as well as the application areas of the latter are discussed. In addition to a general overview of standard applications, current specific development and research activities are introduced.

Workload

regular attendance: 24 hrs
self study: 96 hrs

Literature

The lecture documents are distributed during the courses.
Course: Analysis of multivariate Data [T-WIWI-103063]

Responsibility: Oliver Grothe
Contained in: [M-WIWI-101599] Statistics and Econometrics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Unregelmäßig</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Conditions
None

Recommendations
It is recommended to attend the courses Statistics 1 [2600008] und Statistics 2 [2610020] in advance.

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online.
Course: Analysis Tools for Combustion Diagnostics [T-MACH-105167]

Responsibility: Jürgen Pfeil
Contained in: [M-MACH-101303] Combustion Engines II

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2134134</td>
<td>Analysis tools for combustion diagnostics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Jürgen Pfeil</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral examination, Duration: 25 min., no auxiliary means

Conditions

none

Event excerpt: Analysis tools for combustion diagnostics (SS 2018)

Aim

The students can name and explain state-of-the-art methods to analyse the process in combustion as well as special measuring techniques such as optical and laser analysis. They are able to thermodynamically model, analyse and evaluate the engine process.

Content

- energy balance at the engine
- energy conversion in the combustion chamber
- thermodynamics of the combustion process
- flow velocities
- flame propagation
- special measurement techniques

Workload

- regular attendance: 24 hours
- self-study: 96 hours

Literature

Lecture notes available in the lectures
Course: Analytical CRM [T-WIWI-102596]

Responsibility: Andreas Geyer-Schulz

Contained in: [M-WIWI-101422] Specialization in Customer Relationship Management
[M-WIWI-101460] CRM and Service Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2540522</td>
<td>Analytical CRM</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2540523</td>
<td>Übung (U)</td>
<td>2</td>
<td></td>
<td>Andreas Geyer-Schulz</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation (versions prior 2015) or following §4 (3) of the examination regulation (version 2015), respectively. The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added.

Grade: Minimum points

- 1.0: 95
- 1.3: 90
- 1.7: 85
- 2.0: 80
- 2.3: 75
- 2.7: 70
- 3.0: 65
- 3.3: 60
- 3.7: 55
- 4.0: 50
- 5.0: <50

The grade consists of approximately 91% of exam points and 9% of exercise points. Occasionally, it is possible to achieve an additional bonus of up to 3 points (e.g. in the context of experiments) which depends on performance. Note that this bonus is a purely voluntary additional achievement. Possibly gained bonus points are added to a passed exam within the current examination period.

Conditions

None

Recommendations

We expect knowledge about data models and the UML modelling language concerning information systems.

Event excerpt: Analytical CRM (SS 2018)

Aim

The Student

- understands the principal scientific methods from statistics and informatics used in analytical CRM and their application to enterprise decision problems and independently applies these methods to standard cases,
- understands the components for creating and managing a data warehouse from operative system sources including the processes and steps involved and applies these methods to a simple example, and
• uses his knowledge to conduct a standard CRM analysis on enterprise data for a business decision problem and deduces and justifies a recommendation for appropriate action.

Content
The course Analytical CRM deals with methods and techniques for analysis concerning the management and improvement of customer relationships. Knowledge about customers is aggregated and used for enterprise decision problems like product line planning, customer loyalty, etc. A necessary precondition for these analyses is the transformation of data stemming from operative systems into a common data warehouse that assembles all necessary information. This requires transformation of data models and processes for creating and managing a data warehouse, like ETL processes, data quality and monitoring. The generation of customer oriented and flexible reports for different business purposes is covered. The course finally treats several different statistical analysis methods like clustering, regression etc. that are necessary for generating important indicators (like customer lifetime value, customer segmentation). As external data source, customer surveys are introduced.

Workload
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance

• Attending the lecture: 15 x 90min = 22h 30m
• Attending the exercise classes: 7 x 90min = 10h 30m
• Examination: 1h 00m

Self-study

• Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
• Preparing the exercises: 25h 00m
• Preparation of the examination: 31h 00m

Sum: 135h 00m

Literature
Course: Applications of Artificial Intelligence [T-WIWI-109263]

Responsibility: York Sure-Vetter

Contained in:
- [M-WIWI-101399] Emphasis Informatics
- [M-WIWI-101426] Electives in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511314</td>
<td>Applications of Artificial Intelligence</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511315</td>
<td>Exercises to Applications of Artificial Intelli-</td>
<td>Übung (U)</td>
<td>1</td>
<td>York Sure-Vetter, Tobias Weller</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written Examination (60 min) according to §4, Abs. 2, 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, 2 of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Conditions
None.

Modeled Conditions
The following conditions must be met:
1. The module [M-WIWI-101581] Introduction to Programming must have been passed.
2. The module [M-WIWI-101417] Foundations of Informatics must have been passed.

Recommendations
Basics in logic, e.g. from lecture Foundations of Informatics 1 are important.

V Event excerpt: Applications of Artificial Intelligence (WS 18/19)

Aim
The students
- consider current research topics in the field of artificial intelligence and in particular learn about the topics of knowledge modeling, machine learning, text mining and uninformed search.
- interdisciplinary thinking.
- technological approaches to current problems.

Content
This lecture aims to provide students with a basic knowledge and understanding of the structure, analysis and application of selected methods and technologies on artificial intelligence. The topics include, among others, knowledge modeling, machine learning, text mining, uninformed search, and intelligent agents.

Workload
- The total workload for this course is approximately 150 hours
- Time of presentness: 45 hours
- Time of preperation and postprocessing: 67.5 hours
- Exam and exam preperation: 37.5 hours
Course: Applied Asset Management [T-WIWI-108445]

Responsibility: Andreas Sauer

Contained in:
- [M-WIWI-101423] Topics in Finance II
- [M-WIWI-101465] Topics in Finance I

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2530219</td>
<td>Applied Asset Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Sauer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
Proficiency of the topics covered in the course “Investments” is required.

Remarks
Former title of the course until winter term 2017/2018: “Asset Management”

Event excerpt: Applied Asset Management (WS 18/19)

Aim
Students are able to name the terms and definitions of professional asset management. They are able to structure, formally describe and analyze problems of professional asset management. Students are in a position to apply the instruments and methods of asset management.

Content
The course familiarizes students with the instruments, methods and terms of professional asset management. It conveys the knowledge of applying the relevant methods to students via practical exercises.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Course: Applied Informatics I - Modelling [T-WIWI-102652]

Responsibility: Andreas Oberweis, York Sure-Vetter

Contained in: [M-WIWI-101399] Emphasis Informatics
[M-WIWI-101426] Electives in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511030</td>
<td>Applied Informatics I - Modelling</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Agnes Koschmider, Andreas Oberweis, Gunther Schiefer, York Sure-Vetter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tobias Christof Käfer, Agnes Koschmider, Gunther Schiefer, York Sure-Vetter, Steffen Thoma</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511031</td>
<td>Exercises to Applied Informatics I - Modelling</td>
<td>Übung (U)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (60 min) in the first week after lecture period (according to Section 4 (2), 1 of the examination regulation).

Conditions
None

Modeled Conditions
1 of 2 conditions must be met:
1. The module [M-WIWI-101581] Introduction to Programming must have been passed.
2. The module [M-WIWI-101417] Foundations of Informatics must have been passed.

Event excerpt: Applied Informatics I - Modelling (WS 18/19)

Aim
Students

- explain the strengths and weaknesses of various modeling approaches for Information Systems and choose an appropriate method for a given problem,
- create UML models, ER models and Petri nets for given problems,
- model given problems in Description Logics and apply description logic rules,
- describe the main ontology concepts and languages and explain SPARQL queries,
- create and evaluate a relational database schema and express queries in relational algebra.

Content
The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets together with their respective analysis techniques will be introduced.

Workload
- The total workload for this course is approximately 150 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 67.5 hours
- Exam and exam preparation: 37.5 hours

Literature

Additional literature:

Course: Applied Informatics II - IT Systems for eCommerce [T-WIWI-102651]

Responsibility: Ali Sunyaev

Contained in:
- [M-WIWI-101399] Emphasis Informatics
- [M-WIWI-101426] Electives in Informatics
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511032</td>
<td>Applied Informatics II: IT Systems for e-Commerce</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ali Sunyaev</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511033</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Ali Sunyaev</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the compulsory exercises is prerequisite for the admission to the written exam. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. By successful processing the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Conditions

None

Modeled Conditions

1 of 2 conditions must be met:
1. The module [M-WIWI-101417] Foundations of Informatics must have been passed.
2. The module [M-WIWI-101581] Introduction to Programming must have been passed.

Recommendations

Knowledge of content of the modules Foundations in Informatics [IW1INF1] and Algorithms I [IW2INF2] is expected.

Aim
The student learns about concepts and technologies for designing big, distributed application architectures. Students apply industryrelevant technology to solve application-oriented problems in lab classes.

Content
The course Applied Informatics II [2511032] covers various facets of electronic commerce which have to be supported by adequate and efficient distributed information systems. Key topics are middleware technologies and distributed application architectures. Document description and exchange (incl. XML), Java EE, Web technologies, and Web services are additional topics.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature
Tba in the lecture.
Course: Auction & Mechanism Design [T-WIWI-102876]

Responsibility: Nora Szech

Contained in: [M-WIWI-101499] Applied Microeconomics
[M-WIWI-101501] Economic Theory

ECTS 4.5
Language englisch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung schriftlich
Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2560550</td>
<td>Auction and Mechanism Design</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Nora Szech</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2560551</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Nora Szech</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.
Students can earn a bonus to the final grade by successfully participating in the exercises.

Conditions
None

Recommendations
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Remarks
The lecture will be held in English.

V Event excerpt: Auction and Mechanism Design (SS 2018)

Aim
The students

- can analyze strategic behavior in auctions;
- can compare auction formats with regard to efficiency and revenue;
- are familiar with the basic theory of (Bayesian) mechanism design;
- master the revenue equivalence theorem for standard auctions;
- can apply mechanism design to one object auctions and bilateral trade.

Content
The course starts with the basic theory of equilibrium behavior and revenue management in one object standard auctions.
The revenue equivalence theorem for standard auctions is introduced. Thereafter, the course focuses on mechanism design
and its applications to one object auctions and bilateral trade.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Mathews, S.: A Technical Primer on Auction Theory I: Independent Private Values No. 1096. Northwestern University,
Course: Automotive Engineering I [T-MACH-100092]

Responsibility: Frank Gauterin, Hans-Joachim Unrau

Contained in: [M-MACH-101266] Automotive Engineering

ECTS: 6
Language: deutsch/englisch
Recurrence: Jedes Wintersemester
Exam type: Prüfungsleistung schriftlich
Version: 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113805</td>
<td>Automotive Engineering I</td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Frank Gauterin, Hans-Joachim Unrau</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2113809</td>
<td>Automotive Engineering I</td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Frank Gauterin, Martin Gießler</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written examination

Duration: 120 minutes

Auxiliary means: none

Conditions
The brick “T-MACH-102203 - Automotive Engineering I” is not started or finished. The bricks “T-MACH-100092 - Grundlagen der Fahrzeugtechnik I” and “T-MACH-102203 - Automotive Engineering I” can not be combined.

Event excerpt: Automotive Engineering I (WS 18/19)

Aim
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system “vehicle”.

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performance, mechanics of longitudinal and lateral forces, active and passive safety

3. Drive systems: combustion engine, hybrid and electric drive systems

4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)

5. Power transmission and distribution: drive shafts, cardon joints, differentials

Workload
regular attendance: 45 hours
self-study: 195 hours
Literature

V Event excerpt: Automotive Engineering I (WS 18/19)

Aim
The students know the movements and the forces at the vehicle and are familiar with active and passive safety. They have proper knowledge about operation of engines and alternative drives, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and have the basic knowledge, to analyze, to evaluate, and to develop the complex system “vehicle”.

Content
1. History and future of the automobile
2. Driving mechanics: driving resistances and driving performances, mechanics of longitudinal and lateral forces, active and passive safety
3. Drive systems: combustion engine, hybrid and electric drive systems
4. Transmission: clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
5. Power transmission and distribution: drive shafts, cardon joints, differentials

Workload
regular attendance: 45 hours
self-study: 195 hours

Literature
Course: Automotive Engineering II [T-MACH-102117]

Responsibility: Frank Gauterin, Hans-Joachim Unrau

Contained in: [M-MACH-101266] Automotive Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch/englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114835</td>
<td>Automotive Engineering II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Hans-Joachim Unrau</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2114855</td>
<td>Automotive Engineering II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Gießler</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written Examination

Duration: 90 minutes

Auxiliary means: none

Conditions: none

Event excerpt: Automotive Engineering II (SS 2018)

Aim
The students have an overview of the modules which are necessary for the tracking of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, tyres, steering elements, and brakes. They know different design versions, functions and the influence on driving and braking behavior. They are able to correctly develop the appropriate components. They are ready to analyze, to evaluate, and to optimize the complex interaction of the different components under consideration of boundary conditions.

Content
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Manual steering, servo steering, steer by wire
3. Brakes: Disc brake, drum brake, comparison of designs

Workload
regular attendance: 22.5 hours
self-study: 97.5 hours

Literature

Event excerpt: Automotive Engineering II (SS 2018)

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Aim
The students have an overview of the modules, which are necessary for the road holding of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, the tyres, the steering elements and the brakes. They know different execution forms, the function and the influence on the driving or brake behavior. They are able to construct the appropriate components correctly.

Content
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Steering elements of single vehicles and of trailers
3. Brakes: Disc brake, drum brake, retarder, comparison of the designs

Literature
Elective literature:
Course: Automotive Logistics [T-MACH-105165]

Responsibility: Kai Furmans

Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2118085</td>
<td>Automotive Logistics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Kai Furmans</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

Conditions
None

Event excerpt: Automotive Logistics (SS 2018)

Aim

Students are able to:
- Describe essential logistic questions, in a complex production network. As an example the automobile industry is used.
- Choose and apply solution possibilities for logistic problems in this area.

Content

- Logistic questions within the automobile industry
- Basic model of automobile production and distribution
- Relation with the suppliers
- Disposition and physical execution
- Vehicle production in the interaction of shell, paint shop and assembly
- Sequence planning
- Assembly supply
- Vehicle distribution and linkage with selling processes
- Physical execution, planning and control

Workload

Regular attendance: 21 hours
Self-study: 99 hours

Literature
None.
Course: Bachelor Thesis [T-WIWI-103067]

Responsibility: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften
Contained in: [M-WIWI-101601] Module Bachelor Thesis

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Abschlussarbeit</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
see module description

Conditions
see module description
Course: Basic Principles of Economic Policy [T-WIWI-103213]

Responsibility: Ingrid Ott
Contained in: [M-WIWI-101668] Economic Policy I

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2560281</td>
<td>Übung (U)</td>
<td>1</td>
<td></td>
<td>David Bälz, Ingrid Ott</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].
Course: Basics of German Company Tax Law and Tax Planning [T-WIWI-108711]

Responsibility: Gerd Gutekunst, Berthold Wigger

Contained in:
- [M-WIWI-101423] Topics in Finance II
- [M-WIWI-101465] Topics in Finance I
- [M-WIWI-101403] Public Finance

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560134</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Gerd Gutekunst, Berthold Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Conditions
None

Recommendations
Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course “Öffentliche Einnahmen” beforehand.
Course: Basics of Technical Logistics [T-MACH-102163]

Responsibility: Martin Mittwollen, Jan Oellerich

Contains in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117095</td>
<td>Basics of Technical Logistics</td>
<td>Vorlesung / Übung 4</td>
<td></td>
<td>Martin Mittwollen, Jan Oellerich</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Conditions

none

Event excerpt: Basics of Technical Logistics (WS 18/19)

Aim

Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines
- Model real machines applying knowledge from lessons and calculate their dimensions.

Content

- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Workload

presence: 48h
rework: 132h

Literature

Recommendations during lessons
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II

[T-MACH-100967]

Responsibility: Andreas Guber

Contained in: [M-MACH-101287] Microsystem Technology

ECTS 3
Language deutsch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung mündlich
Version 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2142883</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Guber</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written exam (75 Min.)

Conditions

none

Event excerpt: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II (SS 2018)

Aim
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
LabCD, Protein Cristallisation
Microarray
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery

Workload
Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II;
Springer-Verlag, 1994
Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III

Responsibility: Andreas Guber

Contained in: Microsystem Technology

ECTS: 3
Language: deutsch
Recurrence: Jedes Sommersemester
Exam type: Prüfungsleistung mündlich
Version: 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2142879</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Guber</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written exam (75 Min.)

Conditions
none

Event excerpt: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III (SS 2018)

Aim
The lecture will first shortly address some relevant microtechnical manufacturing methods. Then, selected biomedical applications will be presented, as the increasing use of microstructures and microsystems in Life-Sciences and medicine leads to improved medico-technical products, instruments, and operation and analysis systems.

Content
Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Workload
Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
Event excerpt: Bionics for Engineers and Natural Scientists (SS 2018)

Aim
The students should be able to analyze, judge, plan and develop biomimetic strategies and products.

Content
Bionics focuses on the design of technical products following the example of nature. For this purpose we have to learn from nature and to understand its basic design rules. Therefore, the lecture focuses on the analysis of the fascinating effects used by many plants and animals. Possible implementations into technical products are discussed in the end.

Workload
lectures 30 h
self study 30 h
preparation for examination 30 h

Literature
Learning Control / Examinations

The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108889 must have been passed.

Modeled Conditions

The following conditions must be met:

- The course [T-MACH-108889] BUS-Controls - Advance must have been passed.

Recommendations

Basic knowledge of electrical engineering is recommended. Programming skills are also helpful. The number of participants is limited. A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Remarks

The students will get an overview of the theoretic and practical functioning of different bus systems. After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system. Hereunto the students program in the practical orientated lessons IFM-controllers using the programming environment CoDeSys.

Content:

- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Literature:

Aim
The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system.

Content
- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Workload
- regular attendance: 21 hours
- self-study: 92 hours

Literature
Elective literature:
Course: BUS-Controls - Advance [T-MACH-108889]

Responsibility: Kevin Daiß, Marcus Geimer
Contained in: [M-MACH-101266] Automotive Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Creation of control program

Conditions

none
Course: Business Administration: Finance and Accounting [T-WIWI-102819]

Responsibility: Martin Ruckes, Marliese Uhrig-Homburg, Marcus Wouters

Contained in: [M-WIWI-101494] Fundamentals of Business Administration 1

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2610026</td>
<td>Business Administration: Finance and Accounting</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Ruckes, Marcus Wouters</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2610027</td>
<td></td>
<td>Tutorium (Tu)</td>
<td>2</td>
<td>Jan-Oliver Strych</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Remarks

Key qualifications can be shown in an active participation through presentations of solutions and discussions in the tutorials which accompany the course. Each part of the course is taught by instructors specialised in the field of that part.

Event excerpt: Business Administration: Finance and Accounting (WS 18/19)

Aim

Students

- are able to valuate bonds and cash flows in general,
- can valuate stocks,
- can make investment decisions,
- can analyse portfolios,
- are able to recognise business events in financial reports,
- can determine depreciation expenses,
- are able to valuate inventories,
- can analyse costs,
- knows the difference between financial and management accounting,
- knows cost center accounting,
- can estimate product costs.

Content

- Investment and Finance:
 - Valuation of Bonds and Stocks
 - Capital Budgeting
 - Portfolio Theory
- Financial Accounting
- Management Accounting

Workload

The total workload for this course is approximately 120 hours. For further information see German version.

Literature

Extensive bibliographic information will be given in the materials to the lecture.
Course: Business Administration: Production Economics and Marketing
[T-WIWI-102818]

Responsibility: Wolf Fichtner, Martin Klarmann, Thomas Lützkendorf, Martin Ruckes, Frank Schultmann

Contained in: [M-WIWI-101578] Fundamentals of Business Administration 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2500025</td>
<td>Tutorium (Tu)</td>
<td>2</td>
<td></td>
<td>Assistenten, Martin Klarmann, Jan-Oliver Strych, Wolf Fichtner, Martin Klarmann, Frank Schultmann</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2600024</td>
<td>Business Administration: Production Economics and Marketing</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolf Fichtner, Martin Klarmann, Frank Schultmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 minutes) according to Section 4(2), 1 of the examination regulation.

Conditions
None

Event excerpt: Business Administration: Production Economics and Marketing (SS 2018)

Aim
Students

- are able to analyse and implement the marketing strategy and marketing measures (marketing mix: 4 Ps),
- can analyse, implement and manage procurement and production processes,
- are able to plan projects, and
- have skills about selected issues in energy economics.

Content
The course is made up of the following topics:

Marketing

- Foundations of marketing
- Strategic marketing
- Consumer behaviour
- Product
- Price
- Promotion
- Sales
- Marketing Metrics

Production economics
In the part of production economics the student will learn basics in the field of production theory, procurement and resource acquisitions, production and operations management and industrial engineering. Aspects of energy economics, technological foresights, construction industry and real estate markets will be treated.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Literature
Further literature references are announced in the materials to the lecture.
Course: Business Administration: Strategic Management and Information Engineering and Management [T-WIWI-102817]

Responsibility: Petra Nieken, Martin Ruckes

Contained in: [M-WIWI-101494] Fundamentals of Business Administration 1

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2600023</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Hagen Lindstädt, Jan-Oliver Strych, Christof Weinhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None
Course: Business Process Modelling [T-WIWI-102697]

Responsibility: Andreas Oberweis

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511210</td>
<td>Business Process Modelling</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Drescher, Andreas Oberweis</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511211</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Andreas Drescher, Agnes Koschmider</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions
None

Event excerpt: Business Process Modelling (WS 18/19)

Aim
Students

- describe goals of business process modeling and apply different modeling languages,
- choose the appropriate modeling language according to a given context,
- use suitable tools for modeling business processes,
- apply methods for analyzing and assessing process models to evaluate specific quality characteristics of the process model.

Content
The proper modeling of relevant aspects of business processes is essential for an efficient and effective design and implementation of processes. This lecture presents different classes of modeling languages and discusses the respective advantages and disadvantages of using actual application scenarios. For that simulative and analytical methods for process analysis are introduced. In the accompanying exercise the use of process modeling tools is practiced.

Workload
Lecture 30h
Exercise 15h

Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam 1h

Total: 150h

Literature
Further Literature will be given in the lecture.
Course: Business Strategies of Banks [T-WIWI-102626]

Responsibility: Wolfgang Müller

Contained in: [M-WIWI-101423] Topics in Finance II
[M-WIWI-101465] Topics in Finance I

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2530299</td>
<td>Business Strategies of Banks</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolfgang Müller</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None

Recommendations
None

Event excerpt: Business Strategies of Banks (WS 18/19)

Aim

Students are in a position to discuss the principles of commercial banking. They are familiar with fundamental concepts of bank management and are able to apply them.

Content

The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank’s success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Literature

Elective literature:

- A script is disseminated chapter by chapter during the course of the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 6th edition, Springer
Course: CAD-NX Training Course [T-MACH-102187]

Responsibility: Jivka Ovtcharova
Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Studienleistung</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2123357</td>
<td>CAD-NX training course</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Mitarbeiter, Jivka Ovtcharova</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2123357</td>
<td>CAD-NX training course</td>
<td>Praktikum (P)</td>
<td>2</td>
<td>Mitarbeiter, Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Practical examination on CAD computer, duration: 60 min.

Conditions
None

Recommendations
Dealing with technical drawings is required.

Remarks
For the practical course compulsory attendance exists.

Event excerpt: CAD-NX training course (WS 18/19)

Aim
Students are able to:

- create their own 3D geometric models in the CAD system NX and generate drawings due to the created geometry
- carry out FE-studies and kinematic simulations using the integrated CAE tools
- use advanced, knowledge-based functionalities of NX to automate the creation of geometry and thus to ensure the reusability of the models.

Content
The participant will learn the following knowledge:

- Overview of the functional range
- Introduction to the work environment of NX
- Basics of 3D-CAD modelling
- Feature-based modelling
- Freeform modelling
- Generation of technical drawings
- Assembly modelling
- Finite element method (FEM) and multi-body simulation (MBS) with NX

Workload
Regular attendance: 35 hours,
Self-study: 12 hours

Literature
Practical course skript
Course: Civil Law for Beginners [T-INFO-103339]

Responsibility: Thomas Dreier
Contained in: [M-INFO-101187] Elective Module Law

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>24012</td>
<td>Civil Law for Beginners</td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Yvonne Matz</td>
</tr>
</tbody>
</table>

Event excerpt: Civil Law for Beginners (WS 18/19)

Aim

Content

Workload
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 120 Stunden (4.0 Credits) davon 45 h Präsenz, 45 h Vor- und Nachbereitung sowie 30 h für die Klausurvorbereitung.

Literature
Wird in der Vorlesung bekannt gegeben.
Weiterführende Literatur

Literaturangaben werden in den Vorlesungsfolien angekündigt.
Course: Climatology [T-PHYS-101092]

Responsibility: Joaquim José Ginete Werner Pinto

Contained in:
- [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
- [M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>4051111</td>
<td></td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Joaquim José Ginete Werner Pinto</td>
</tr>
<tr>
<td>SS 2018</td>
<td>4051112</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Joaquim José Ginete Werner Pinto, N. N.</td>
</tr>
</tbody>
</table>

Conditions

none
Course: Combustion Engines I [T-MACH-102194]

Responsibility: Thomas Koch, Heiko Kubach
Contained in: [M-MACH-101275] Combustion Engines I

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2133113</td>
<td>Combustion Engines I</td>
<td>Vorlesung (VU) / Übung 4</td>
<td></td>
<td>Thomas Koch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral examination, Duration: 25 min., no auxiliary means
Conditions
none

Event excerpt: Combustion Engines I (WS 18/19)

Aim
The student can name and explain the working principle of combustion engines. He is able to analyse and evaluate the combustion process. He is able to evaluate influences of gas exchange, mixture formation, fuels and exhaust gas aftertreatment on the combustion performance. He can solve basic research problems in the field of engine development.

Content
- Introduction, History, Concepts
- Working Principle and Thermodynamics
- Characteristic Parameters
- Air Path
- Fuel Path
- Energy Conversion
- Fuels
- Emissions
- Exhaust Gas Aftertreatment

Workload
- regular attendance: 32 hours
- self-study: 88 hours

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
212
Event excerpt: Combustion Engines II (SS 2018)

Aim
The students deepen and complement their knowledge from the lecture combustion engines A. They can name and explain construction elements, development tools and latest development trends. They are able to analyse and evaluate powertrain concepts which are subject of the lecture.

Content
- Emissions
- Fuels
- Drive Train Dynamics
- Engine Parts
- Boosting
- Alternative Powertrain Concepts

Special Engine Concepts

Power Transmission

Workload
- regular attendance: 31.5 hours
- self-study: 90 hours
Course: Competition in Networks [T-WIWI-100005]

Responsibility: Kay Mitusch

Contained in: [M-WIWI-101422] Specialization in Customer Relationship Management
[M-WIWI-101499] Applied Microeconomics

ECTS 4.5 Language deutsch
Recurrence Jedes Wintersemester Exam type Prüfungsleistung schriftlich Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2561204</td>
<td>Competition in Networks</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Kay Mitusch</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2561205</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Christina Wisotzky</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Recommendations
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Event excerpt: Competition in Networks (WS 18/19)

Aim
Bachelor
The Students
- will use their basic knowledge of microeconomic in a problem-oriented way and learn to apply theoretical instruments to practical issues.
- will have a vivid idea of economics characteristics and basic questions of network industries as telecom, utilities and transport sectors
- understand the special characteristics of network industries regarding the cost situation and competitive conditions

Master
The Students
- will know the basic understanding of network industries concerning competition, competitive distortion, state intervention, pricing and financing
- will know the special characteristics of network industries like telecom, utilities, IT and transport sectors
- will be able to apply and adjust abstract concepts and formal methods to these fields

Content
Anknüpfend an die Mikroökonomie im Grundstudium (VWL 1) wird zunächst das “partialökonomische Modell” dargestellt, welches der adäquate Analyserahmen für die Industrieökonomik und viele wirtschaftspolitische Anwendungen ist. Sodann wird der für die Netzwerkökonomie zentrale Begriff der Kostensubadditivität (bzw. natürliches Monopol) dargestellt und in seinen Implikationen diskutiert. Weitere Themen: vertikale Beziehungen in Netzsektoren, Verkehrsmodellierung, Preise in Stromnetzen und Prinzipien der Infrastrukturfinanzierung nach Ramsey und Shapley.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Will be announced in the lecture.
Course: Computational Economics [T-WIWI-102680]

Responsibility: Pradyumn Kumar Shukla

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2590458</td>
<td>Computational Economics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
<tr>
<td></td>
<td>2590459</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td>Pradyumn Kumar Shukla</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4). The bonus only applies to the first and second exam of the semester in which it was obtained.

Conditions
None

Remarks
The credits have been changed to 5 starting summer term 2016.

Event excerpt: Computational Economics (WS 18/19)

Aim

The student

- understands the methods of Computational Economics and applies them on practical issues,
- evaluates agent models considering bounded rational behaviour and learning algorithms,
- analyses agent models based on mathematical basics,
- knows the benefits and disadvantages of the different models and how to use them,
- examines and argues the results of a simulation with adequate statistical methods,
- is able to support the chosen solutions with arguments and can explain them.

Content

Examining complex economic problems with classic analytical methods usually requires making numerous simplifying assumptions, for example that agents behave rationally or homogeneously. Recently, widespread availability of computing power gave rise to a new field in economic research that allows the modeling of heterogeneity and forms of bounded rationality: Computational Economics. Within this new discipline, computer based simulation models are used for analyzing complex economic systems. In short, an artificial world is created which captures all relevant aspects of the problem under consideration. Given all exogenous and endogenous factors, the modelled economy evolves over time and different scenarios can be analyzed. Thus, the model can serve as a virtual testbed for hypothesis verification and falsification.

Literature

Elective literature:

Course: Constitution and Properties of Wearresistant Materials [T-MACH-102141]

Responsibility: Sven Ulrich
Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2194643</td>
<td>Constitution and Properties of Wear resistant materials</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Sven Ulrich</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination (about 30 min)

no tools or reference materials

Conditions
none

Event excerpt: Constitution and Properties of Wear resistant materials (SS 2018)

Aim
Basic understanding of constitution of wear-resistant materials, of the relations between constitution, properties and performance, of principles of increasing of hardness and toughness of materials as well as of the characteristics of the various groups of wear-resistant materials.

Content
introduction

materials and wear

unalloyed and alloyed tool steels

high speed steels

stellites and hard alloys

hard materials

hard metals

ceramic tool materials

superhard materials
new developments

Workload
regular attendance: 22 hours
self-study: 98 hours

Literature

Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995

Copies with figures and tables will be distributed
Course: Construction Technology [T-BGU-101691]

Responsibility: Shervin Haghsheno
Contained in: [M-BGU-101004] Fundamentals of construction

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6200410</td>
<td></td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Sascha Gentes, Shervin Haghsheno, Harald Schneider</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200411</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Sascha Gentes, Shervin Haghsheno, Harald Schneider, Dominik Waleczko</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written exam with 90 minutes

Conditions
None

Recommendations
None

Remarks
None
Course: Control Technology [T-MACH-105185]

Responsibility: Christoph Gönnheimer

Contained in: [M-MACH-101284] Specialization in Production Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2150683</td>
<td>Control Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Christoph Gönnheimer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Exam (20 min)

Conditions

none

V Event excerpt: Control Technology (SS 2018)

Aim

The students

- are able to name the electrical controls which occur in the industrial environment and explain their function.
- can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
- are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
- can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Content

The lecture control technology gives an integral overview of available control components within the field of industrial production systems. The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states. The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems.

The lecture is very practice-oriented and illustrated with numerous examples from different branches.

The following topics will be covered:

- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Process control systems
- Field bus
- Trends in the area of control technology

Workload

regular attendance: 21 hours
self-study: 99 hours
Course: Critical Information Infrastructures [T-WIWI-109248]

Responsibility: Ali Sunyaev
Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch/englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511400</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ali Sunyaev</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511401</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Ali Sunyaev</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions

None.

Remarks

Event excerpt: (WS 18/19)

Aim

Students know concepts and technologies relevant for the design and reliable operation of critical information infrastructures and can leverage them to develop solutions for real-world challenges.
Course: Customer Relationship Management [T-WIWI-102595]

Responsibility: Andreas Geyer-Schulz
Contained in: [M-WIWI-101460] CRM and Service Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch/englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2540508</td>
<td>Customer Relationship Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Victoria-Anne Schweigert</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2540509</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation (versions prior 2015) or following §4 (3) of the examination regulation (version 2015), respectively.
The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added.
Grade: Minimum points

- 1.0: 95
- 1.3: 90
- 1.7: 85
- 2.0: 80
- 2.3: 75
- 2.7: 70
- 3.0: 65
- 3.3: 60
- 3.7: 55
- 4.0: 50
- 5.0: <50

The grade consists of approximately 91% of exam points and 9% of exercise points.
Occasionally, it is possible to achieve an additional bonus of up to 3 points (e.g. in the context of experiments) which depends on performance. Note that this bonus is a purely voluntary additional achievement. Possibly gained bonus points are added to a passed exam within the current examination period.

Conditions
None

Event excerpt: Customer Relationship Management (WS 18/19)

Aim
The students
- understand service management as an economic basis for Customer Relationship Management and learn the resulting consequences for the management, the organisation itself and their departments,
- design and develop service concepts and service systems at a conceptual level,
- work on case studies in the CRM-area in small groups with limit time,
- learn English as the technical language in the area of CRM and consult internationale literature from this field for the case studies.
Content
The course begins with an introduction into Service Management as the strategic concept which also covers all CRM applications. The course is divided in the basics of Service Management as well as different topics within this concept like external and internal marketing, quality management and organizational requirements.

Workload
The total workload for this course is approximately 135 hours (4.5 credits):
Time of attendance

- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study

- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Literature

Elective literature:
Course: Data Mining and Applications [T-WIWI-103066]

Responsibility: Rheza Nakhaeizadeh
Contained in: [M-WIWI-101599] Statistics and Econometrics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2520375</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2/4</td>
<td>Rheza Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- Conduction of a larger empirical study in groups
- Reporting of milestones
- Final presentation (app. 45 minutes)

Conditions

None

Event excerpt: (SS 2018)

Aim

After completing of the course the students:

- know the definition of Data Mining
- are familiar with the CRISP-DM
- are familiar with at least six important Data Mining Tasks
- can recognize whether a given problem can be formulated as a data mining problem
- are familiar with the most important Data Mining Algorithms like Decision Tree, K-Means, Artificial Neural Networks, Association Rules, Regression Analysis
- are familiar with evaluation of DM-algorithms
- will be able to use a DM-Tool

Content

Part one: Data Mining
Why Data Mining?

- What is Data Mining?
- History of Data Mining
- Conferences and Journals on Data Mining
- Potential Applications
- Data Mining Process:
- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment
- Interdisciplinary aspects of Data Mining
- Data Mining tasks
- Data Mining Algorithms (Decision Trees, Association Rules,
- Regression, Clustering, Neural Networks
- Fuzzy Mining
- OLAP and Data Warehouse
- Data Mining Tools
- Trends in Data Mining

Part two: Examples of application of Data Mining

- Success parameters of Data Mining Projects
- Application in industry
- Application in Commerce

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature

- Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.
- David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT Press, Fall 2000
Course: Database Systems [T-WIWI-102660]

Responsibility: Andreas Oberweis
Contained in:
- [M-WIWI-101399] Emphasis Informatics
- [M-WIWI-101426] Electives in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511200</td>
<td>Database Systems</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Daniel Sommer</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511201</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Daniel Sommer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 1h written exam in the first week after lecture period.

Conditions
None

Modeled Conditions
1 of 2 conditions must be met:

1. The module [M-WIWI-101417] *Foundations of Informatics* must have been passed.
2. The module [M-WIWI-101581] *Introduction to Programming* must have been passed.

Event excerpt: Database Systems (SS 2018)

Aim

Students

- are familiar with the concepts and principles of data base models, languages and systems and their applications and explain it,
- design and model relational data bases on the basis of theoretical foundations,
- create queries for relational databases,
- know how to handle enhanced data base problems occurring in the enterprises.

Content

Database systems (DBS) play an important role in today's companies. Internal and external data is stored and processed in databases in every company. The proper management and organization of data helps to solve many problems, enables simultaneous queries from multiple users and is the organizational and operational base for the entire working procedures and processes of the company. The lecture leads in the area of the database theory, covers the basics of database languages and database systems, considers basic concepts of object-oriented and XML databases, conveys the principles of multi-user control of databases and physical data organization. In addition, it gives an overview of business problems often encountered in practice such as:

- Correctness of data (operational, semantic integrity)
- Restore of a consistent database state
- Synchronization of parallel transactions (phantom problem).

Workload

Lecture 30h
Exercise 15h
Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam &1h

Total: 150h

Literature

Further literature will be given individually.
Course: Database Systems and XML [T-WIWI-102661]

Responsibility: Andreas Oberweis

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511202</td>
<td>Database Systems and XML</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Oberweis, Gunther Schiefer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511203</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Andreas Fritsch, Andreas Oberweis, Gunther Schiefer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions
None

Event excerpt: Database Systems and XML (WS 18/19)

Aim
Students
- know the basics of XML and generate XML documents,
- are able to use XML database systems and to formulate queries to XML documents,
- know to assess the use of XML in operational practice in different application contexts.

Content
Databases are a proven technology for managing large amounts of data. The oldest database model, the hierarchical model, was replaced by different models such as the relational or the object-oriented data model. The hierarchical model became particularly more important with the emergence of the extensible Markup Language XML. XML is a data format for structured, semi-structured, and unstructured data. In order to store XML documents consistently and reliably, databases or extensions of existing data base systems are required. Among other things, this lecture covers the data model of XML, concepts of XML query languages, aspects of storage of XML documents, and XML-oriented database systems.

Workload
Lecture 30h
Exercise 15h
Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam 1h

Total: 150h

Literature
Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2008

Further literature will be given individually.
Course: Decision Theory [T-WIWI-102792]

Responsibility: Karl-Martin Ehrhart
Contained in: [M-WIWI-101499] Applied Microeconomics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2520365</td>
<td>Decision Theory</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Karl-Martin Ehrhart</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2520366</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Karl-Martin Ehrhart</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Conditions
None

Recommendations
Knowledge in mathematics and statistics is required.

Event excerpt: Decision Theory (SS 2018)

Aim
The student will be made familiar with the basics in modern decision making particularly under uncertainty so that she will be able to analyze concrete decision problems and to develop simple solution procedures. By being confronted with experimental results in decision making the student should also be able to evaluate the behavioral part of decision making.

Content
This course deals with problems of decision making particularly under uncertainty. We introduce the expected utility theory of Neumann/Morgenstern and the prospect theory of Kahnemann/Tversky and discuss the concepts of stochastic dominance, risk aversion, loss aversion, reference points etc. We also consider the empirical validity of the different approaches. Additionally, the lecture provides an introduction to the theory of findings (epistemology), particularly with respect to decision theory.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- Ehrhart, K.-M. und S.K. Berninghaus (2012): Decision Theory, Script, KIT.
Course: Derivatives [T-WIWI-102643]

Responsibility: Marliese Uhrig-Homburg

Contained in: [M-WIWI-101423] Topics in Finance II
[M-WIWI-101465] Topics in Finance I
[M-WIWI-101402] eFinance

ECTS 4.5 Language deutsch Recurrence Jedes Sommersemester Exam type Prüfungsleistung schriftlich Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2530550</td>
<td>Derivatives</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2530551</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Stefan Fiesel, Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None

Recommendations
None

Event excerpt: Derivatives (SS 2018)

Aim
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
• Hull (2012): Options, Futures, & Other Derivatives, Prentice Hall, 8th Edition

Elective literature:
Course: Design and Operation of Power Transformers [T-ETIT-101925]

Responsibility: Mitarbeiter, N. N.

Contained in: [M-ETIT-101165] Energy Generation and Network Components

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2307390</td>
<td>Design and Operation of Power Transformers</td>
<td>Block (B)</td>
<td>2</td>
<td>Michael Schäfer</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Design, Construction and Sustainability Assessment of Buildings I
[T-WIWI-102742]

Responsibility: Thomas Lützkendorf

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2586404</td>
<td>Design and Construction of Buildings</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Lützkendorf, Benjamin Ströbele</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2586405</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td>Benjamin Ströbele</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
A combination with the module Real Estate Management and with engineering science modules in the area of building physics and structural design is recommended.

Event excerpt: Design and Construction of Buildings (WS 18/19)

Aim
The student

- has an in-depth knowledge of aspects of energy-saving, resource-saving and health-oriented design, construction and operation of buildings (design for environment)
- has a critical understanding of the essential requirements, concepts and technical solutions for green buildings
- is able to integrate aspects of energy-saving, resource-saving and health-conscious construction into a holistic environmental design approach and to assess the advantages and disadvantages of different individual solutions.

Content
Taking low-energy buildings as an example the course is an introduction to cheap, energy-efficient, resource-saving and health-supporting design, construction and operation of buildings. Questions of the implementation of the principles of a sustainable development within the building sector are discussed on the levels of the whole building, its components, building equipment as well as the materials. Besides technical interrelationships basics dimensioning and various approaches to ecological and economical assessment play a role during the lectures, as well as the different roles of people involved into the building process. Topics are the integration of economical and ecological aspects into the design process, strategies of energy supply, low-energy and passive buildings, active and passive use of solar energy, selection and assessment of construction details, selection and assessment of insulation materials, greened roofs plus health and comfort.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
See german version.
Course: Design, Construction and Sustainability Assessment of Buildings II [T-WIWI-102743]

Responsibility: Thomas Lützkendorf

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2585403</td>
<td>Übung</td>
<td>Übung (U)</td>
<td>1</td>
<td>Benjamin Ströbele</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2585404</td>
<td>Sustainability Assessment of Buildings</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Lützkendorf, Benjamin Ströbele</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2). 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Re-examinations are offered at every ordinary examination date.

Conditions

None

Recommendations

A combination with the module Real Estate Management and with engineering science modules from the areas building physics and structural design is recommended.

Event excerpt: Sustainability Assessment of Buildings (SS 2018)

Aim

The student

- has an in-depth knowledge of the classification of environmental design and construction of buildings within the overall context of sustainability
- has a critical understanding of the main theories and methods of assessing the environmental performance of buildings
- is able to use methods and tools to evaluate the environmental performance in design and decision processes or to interpret existing results

Content

The course identifies problems concerning the economical and environmental assessment of buildings along their lifecycle and discusses suitable procedures and tools supporting the decision making process. For example, the course addresses topics like operating costs, heat cost allocation, comparisons of heating costs, applied economical assessment methods, life cycle assessment as well as related design and assessment tools (e.g. element catalogues, databases, emblems, tools) and assessment procedures (e.g. carbon footprint, MIPS, KEA), which are currently available.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:

See german version.
Course: Digital Health [T-WIWI-109246]

Responsibility: Ali Sunyaev

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch/englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511402</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Theresa Kromat, Ali Sunyaev</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Remarks

Event excerpt: (WS 18/19)

Aim
Students are able to: (1) know theoretical foundations of various topics in digital health; (2) know current topics in research on digital health; (3) combine theoretical and practical contents of this lecture.

Workload
4 ECTS = approx. 120 h.
Course: Economics and Behavior [T-WIWI-102892]

Responsibility: Nora Szech
Contained in:
- [M-WIWI-101499] Applied Microeconomics
- [M-WIWI-101501] Economic Theory

ECTS 4.5
Language englisch
Recurrence Jedes Wintersemester
Exam type Prüfungsleistung schriftlich
Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560137</td>
<td>Economics and Behavior</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Nora Szech</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560138</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Nora Szech</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. The grade will be determined in a final written exam. Students can earn a bonus to the final grade by successfully participating in the exercises.

Conditions

None

Recommendations

Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Remarks

The lecture will be held in English.

Event excerpt: Economics and Behavior (WS 18/19)

Aim

The students

- gain insight into fundamental topics in behavioral economics;
- get to know different research methods in the field of behavioral economics;
- learn to critically evaluate experimental designs;
- get introduced to current research papers in behavioral economics;
- become acquainted with the technical terminology in English.

Content

The course covers topics from behavioral economics with regard to contents and methods. In addition, the students gain insight into the design of economic experiments. Furthermore, the students will become acquainted with reading and critically evaluating current research papers in the field of behavioral economics.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Course: Economics I: Microeconomics [T-WIWI-102708]

Responsibility: Clemens Puppe, Johannes Philipp Reiß

Contained in: [M-WIWI-101398] Introduction to Economics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2610012</td>
<td>Economics I: Microeconomics</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Johannes Philipp Reiß</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. There may be offered a practice exam in the middle of the semester. The results of this exam may be used to improve the grade of the main exam. A detailed description of the examination modalities will be given by the respective lecturer. The main exam takes place subsequent to the lectur. The re-examination is offered at the same examination period. As a rule, only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Conditions
None

Event excerpt: Economics I: Microeconomics (WS 18/19)

Aim
It is the main aim of this course to provide basic knowledge in economic modelling. In particular, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative, more effective policy measures. In particular, the student should learn

- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems

- to analyze the structure of microeconomics relationships and to present own problem solutions,
- solve simple economic decision problems.

Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics. In the two main parts of the course, problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) are discussed. In the final part of the course, basics of imperfect competition (oligopolistic markets) and of game theory as well as welfare economics are presented.
Workload
The total workload for this course is approximately 150 hours.

Literature
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. München, 2005
Course: Economics II: Macroeconomics [T-WIWI-102709]

Responsibility: Berthold Wigger

Contained in: [M-WIWI-101398] Introduction to Economics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2560015</td>
<td>Tutorium (Tu)</td>
<td>Ingrid Ott, Fenja Scheu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2600014</td>
<td>Economics II: Macroeconomics</td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Ingrid Ott</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Event excerpt: Economics II: Macroeconomics (SS 2018)

Aim

Die Studierenden...

- können die grundlegenden Kennzahlen, Fachbegriffe und Konzepte der Makroökonomie nennen.
- können mithilfe von Modellen komplexe Zusammenhänge auf ihre Grundbestandteile reduzieren.
- können wirtschaftspolitische Debatten analysieren und sich selbstständig eine Meinung dazu bilden.

Content

Klassische Theorie der Gesamtwirtschaftlichen Produktion

Kapitel 1: Bruttoinlandsprodukt
Kapitel 2: Geld und Inflation
Kapitel 3: Offene Volkswirtschaft I
Kapitel 4: Arbeitslosigkeit

Wachstum: Die Ökonomie in der langen Frist

Kapitel 5: Wachstum I
Kapitel 6: Wachstum II

Konjunktur: Die Ökonomie in der kurzen Frist

Kapitel 7: Konjunktur und die gesamtwirtschaftliche Nachfrage I
Kapitel 8: Konjunktur und die gesamtwirtschaftliche Nachfrage II
Kapitel 9: Offene Volkswirtschaft II
Kapitel 10: Gesamtwirtschaftliches Angebot

Fortgeschrittene Themen der Makroökonomie

Kapitel 11: Dynamisches Modell der Gesamtwirtschaft
Kapitel 12: Mikroökonomische Fundierung
Kapitel 13: Makroökonomische Wirtschaftspolitik

Workload

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 45 Stunden
Vor- und Nachbereitung der LV: 67,5 Stunden
Prüfung und Prüfungsvorbereitung: 37,5 Stunden
Literatur
Als Grundlage dieser Veranstaltung dient das bekannte Lehrbuch „Makroökonomik“ von Greg Mankiw vom Schäffer Poeschel Verlag in der aktuellen Fassung.
Course: Economics III: Introduction in Econometrics [T-WIWI-102736]

Responsibility: Melanie Schienle

Contained in: [M-WIWI-101499] Applied Microeconomics
[M-WIWI-101599] Statistics and Econometrics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2520016</td>
<td>Economics III: Introduction in Econometrics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2520017</td>
<td></td>
<td>Übung (U)</td>
<td>2</td>
<td>Rebekka Buse,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lotta Rüter,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation.

Conditions
None

Aim
Familiarity with the basic concepts and methods of econometrics
Preparation of simple econometric surveys

Content
Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)
Multi equation models
Dynamic models

Workload
180 hours (6.0 Credits)

Literature
- Schneeweß: Ökonometrie ISBN 3-7908-0008-2

Elective literature:
Additional literature will be suggested in course
Learning Control / Examinations
The examination will be offered only in summer term 2018.
The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the
week after the end of the lecturing period (wrt §4 (2), 1 SPO).
If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the
bonus exam will improve the mark by one level (i.e. by 0.3 or 0.4).
Deviations from this type of assessment are announced at the beginning of this course.

Conditions
None

Event excerpt: Efficient Algorithms (SS 2018)

Aim
The student will learn how to use methods and concepts of efficient algorithms and how to demonstrate adequate
innovative capabilities with respect to the used methods.
This course emphasizes the teaching of advanced concepts for the design and application of algorithms, data structures,
and computer infrastructures in relation to their applicability in the real world. Based on a fundamental understanding of
the covered concepts and methods, students should know how to select appropriate concepts and methods for problem
settings in their professional life, and, if necessary, to extend and apply them in an adequate form. The students should
be enabled to find adequate arguments for justifying their chosen problem solutions.

Content
In a problem oriented way the course presents systematic approaches to the design and analysis of efficient algorithms
using standard tasks of information processing as generic examples. Special emphasis is put on the influence of data
structures and computer architectures on the performance and cost of algorithms. In particular, the course emphasizes the
design and analysis of algorithms on parallel computers and in hardware, which is increasingly important considering the
growing presence of multicore architectures.

Workload
The total workload for this course is approximately 150.0 hours. For further information see German version.

Literature
Borodin, Munro: The Computational Complexity of Algebraic and Numeric Problems (Elsevier 1975)
Cormen, Leiserson, Rivest: Introduction to Algorithms (MIT Press)
Sedgewick: Algorithms (Addison-Wesley) (many different versions available)

Elective literature:
will be announced in class
Course: eFinance: Information Engineering and Management for Securities Trading
[T-WIWI-102600]

Responsibility: Christof Weinhardt

Contained in:
- [M-WIWI-101423] Topics in Finance II
- [M-WIWI-101465] Topics in Finance I
- [M-WIWI-101434] eBusiness and Service Management
- [M-WIWI-101402] eFinance

ECTS: 4.5
Language: englisch
Recurrence: Jedes Wintersemester
Exam type: Prüfungsleistung schriftlich
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Florian Glaser, Benedikt Notheisen, Christof Weinhardt</td>
</tr>
<tr>
<td></td>
<td>2540455</td>
<td>Übung (Ü)</td>
<td></td>
<td>1</td>
<td>Florian Glaser, Benedikt Notheisen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (§4(2), 1 of the examination regulations) and by submitting written essays as part of the exercise (§4(2), 3 SPO 2007 respectively §4(3) SPO 2015). 70% of the final grade is based on the written exam and 30% is based on assignments from the exercises. The points obtained in the exercises only apply to the first and second exam of the semester in which they were obtained.

Conditions
None

Recommendations
None

Event excerpt: eFinance: Information Engineering and Management for Securities Trading (WS 18/19)

Aim
The students
- are able to understand the theoretical and practical aspects of securities trading,
- are able to handle the relevant electronic tools for the evaluation of financial data,
- are able to identify the incentives of the traders for participation in different market platforms,
- are able to analyse capital marketplaces concerning their efficiency, weaknesses and technical configuration,
- are able to apply theoretical methods of econometrics,
- are able to understand, criticize and present articles with a finance-scientific background,
- learn to elaborate solutions in a team.

Content
The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.
Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:
Course: Electric Energy Systems [T-ETIT-101923]

Responsibility: Thomas Leibfried

Contained in: [M-ETIT-102379] Power Network

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
</tr>
<tr>
<td>SS 2018</td>
</tr>
<tr>
<td>SS 2018</td>
</tr>
</tbody>
</table>

Conditions
none
Course: Electrical Engineering for Business Engineers, Part I [T-ETIT-100533]

Responsibility: Wolfgang Menesklou
Contained in: [M-ETIT-101155] Electrical Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2304223</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolfgang Menesklou</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2304225</td>
<td></td>
<td>Übung (U)</td>
<td>2</td>
<td>Wolfgang Menesklou</td>
</tr>
</tbody>
</table>
Course: Electrical Engineering for Business Engineers, Part II [T-ETIT-100534]

Responsibility: Wolfgang Menesklou

Contained in:
- [M-MACH-101261] Emphasis in Fundamentals of Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2304224</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Wolfgang Menesklou</td>
<td></td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Elements and Systems of Technical Logistics [T-MACH-102159]

Responsibility: Georg Fischer, Martin Mittwollen
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117096</td>
<td>Elements and systems of Technical Logistics</td>
<td>Vorlesung (VU) / Übung 3</td>
<td>3</td>
<td>Georg Fischer, Martin Mittwollen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Conditions
none

Recommendations
Knowledge out of Basics of Technical Logistics (T-MACH-102163) preconditioned

Event excerpt: Elements and systems of Technical Logistics (WS 18/19)

Aim
Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively
- Equip material flow systems with appropriate machines.

Content

- material flow systems and their (conveying) technical components
- mechanical behaviour of conveyors;
- structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
- sample applications and calculations in addition to the lectures inside practical lectures

Workload
presence: 36h
rework: 84h

Literature
recommendations during lectures
Course: Elements and Systems of Technical Logistics - Project [T-MACH-108946]

Responsibility: Georg Fischer, Martin Mittwollen
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117097</td>
<td>Elements and systems of Technical Logistics Projekt (PRO) - project</td>
<td>Georg Fischer, Martin Mittwollen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Presentation of performed project and defense (30min) according to §4 (2), No. 3 of the examination regulation

Conditions

T-MACH-102159 (Elements and Systems of Technical Logistics) must have been started

Modeled Conditions

The following conditions must be met:

- The course [T-MACH-102159] *Elements and Systems of Technical Logistics* must have been started.

Recommendations

Knowledge out of Basics of Technical Logistics (T-MACH-102163) preconditioned

Replaces

T-MACH-102178
Course: Emerging Trends in Critical Information Infrastructures [T-WIWI-109250]

Responsibility: Ali Sunyaev

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

ECTS

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2513400</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Sebastian Lins, Ali Sunyaev, Scott Thiebes</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Remarks

The course is usually held as a block course.

Event excerpt: (WS 18/19)

Aim

Students (1) independently analyze current questions in the field of information systems; (2) work on the respective scientific question with recognized scientific methods and write a seminar thesis on it; (3) can combine already learned theoretical and practical lecture contents of the respective question.
Course: Energy Conversion and Increased Efficiency in Internal Combustion Engines

Responsibility: Thomas Koch, Heiko Kubach

Contained in: [M-MACH-101275] Combustion Engines I

ECTS: 4
Language: deutsch
Recurrence: Jedes Wintersemester
Exam type: Prüfungsleistung mündlich
Version: 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2133121</td>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Koch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam, 25 minutes, no auxiliary means

Conditions
none

Event excerpt: Energy Conversion and Increased Efficiency in Internal Combustion Engines (WS 18/19)

Aim
The students can name all important influences on the combustion process. They can analyse and evaluate the engine process considering efficiency, emissions and potential.

Content
1. Introduction
2. Thermodynamics of combustion engines
3. Fundamentals
4. gas exchange
5. Flow field
6. Wall heat losses
7. Combustion in gasoline engines
8. APR und DVA
9. Combustion in Diesel engines
10. Emissions
11. Waste heat recovery
12. Measures to increase efficiency

Workload
regular attendance: 24 hours, self-study: 96 hours
Course: Energy Efficient Intralogistic Systems [T-MACH-105151]

Responsibility: Meike Braun, Frank Schönung
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117500</td>
<td>Energy efficient intralogistic systems</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Meike Braun, Frank Schönung</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral, 30 min. examination dates after the end of each lesson period.

Conditions
none

Recommendations
The content of course “Basics of Technical Logistics” should be known.

Remarks
Visit the IFL homepage of the course for the course dates and/or possible limitations of course participation.

Event excerpt: Energy efficient intralogistic systems (WS 18/19)

Aim
Students are able to:

- Describe and choose basic measures to enhance energy efficiency,
- Specify these measures considering material handling processes like
 - steady conveyors,
 - unsteady conveyors,
 - as well as the necessary drives,
- Model based on this material handling systems and calculate and measure their energy efficiency and
- Choose ressource efficient material handling systems.

Content
The main focuses of the course are:

- green supply chain
- processes in Intralogistic systems
- evaluation of energy consumption of conveyors
- modeling of conveying systems
- methods for energy savings
- approaches for energy efficiency increasing of continuous and discontinuous conveyors
- dimensioning energy efficient drives
- new approaches for resource efficient conveying systems.

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
None.
Course: Energy Policy [T-WIWI-102607]

Responsibility: Martin Wietschel

Contained in: [M-WIWI-101464] Energy Economics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2581959</td>
<td>Energy Policy</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Wietschel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

In all Master's degree programs the following applies: The exam is offered to first-time applicants for the last time in the winter semester 2017/18. The exam will continue to be offered in the bachelor's degree programs. The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation.

Conditions

None.

Event excerpt: Energy Policy (SS 2018)

Aim

See German version.

Content

The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Workload

The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature

Will be annonced in the lecture.
Course: Engine Measurement Techniques [T-MACH-105169]

Responsibility: Sören Bernhardt
Contained in: [M-MACH-101303] Combustion Engines II

ECTS 4 Language deutsch Recurrence Jedes Sommersemester Exam type Prüfungsleistung mündlich Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2134137</td>
<td>Engine measurement techniques</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Sören Bernhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: 0.5 hours, no auxiliary means

Conditions
The course Combustion Engines A / Combustion Engines I has to be completed beforehand.

Modeled Conditions
The following conditions must be met:

- The course [T-MACH-102194] Combustion Engines I must have been passed.

Event excerpt: Engine measurement techniques (SS 2018)

Aim
The students are able to explain the principles of modern measuring devices and are able to determine the right device for a certain measuring problem. They are able to analyse and evaluate the results.

Content
Students get to know state-of-the-art measurement techniques for combustion engines. In particular basic techniques for measuring engine operating parameters such as torque, speed, power and temperature.

Possible measurement errors and aberrations are discussed.

Furthermore techniques for measuring exhaust emissions, air/fuel ratio, fuel consumption as well as pressure indication for thermodynamic analysis are covered.

Workload
regular attendance: 21 hours
self-study: 100 hours

Literature
1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
Course: Enterprise Architecture Management [T-WIWI-10268]

Responsibility: Thomas Wolf

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511600</td>
<td>Enterprise Architecture Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511601</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Thomas Wolf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written (60 min.) or (if necessary) oral examination (30 min.) according to §4(2) of the examination regulation.

Conditions
None

Event excerpt: Enterprise Architecture Management (WS 18/19)

Aim
Students understand the connection between enterprise strategy, business processes and business objects and IT architecture; they know methods to depict these connections and how they can be developed based on each other.

Content
The following topics will be covered: components of enterprise architecture, enterprise strategy including methods to develop strategies, business process (re)engineering, methods to implement changes within enterprises (management of change).

Literature
- Doppler, K., Lauterburg, Ch.: Change Management. Campus Verlag 1997
Course: Enterprise Risk Management [T-WIWI-102608]

Responsibility: Ute Werner
Contained in: [M-WIWI-101436] Risk and Insurance Management

ECTS

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).

The overall grade consists of the assessment of the oral presentations incl. term papers (50 percent) and the assessment of the oral exam (50 percent).

The examination will be offered latest until winter term 2017/2018 (beginners only).

Conditions

None

Recommendations

None
Course: Exam on Climatology [T-PHYS-105594]

Responsibility:

Contained in:
[M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
[M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

ECTS 6
Exam type Prüfungsleistung mündlich
Version 1

Modeled Conditions
The following conditions must be met:

- The course [T-PHYS-101092] Climatology must have been passed.
Course: Exam on Meteorological Hazards [T-PHYS-105954]

Responsibility: Michael Kunz
Contained in:
- [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
- [M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions must be met:

- The course [T-PHYS-101557] *Meteorological Hazards* must have been passed.
Course: Exchanges [T-WIWI-102625]

Responsibility: Jörg Franke

Contained in:
- [M-WIWI-101423] Topics in Finance II
- [M-WIWI-101465] Topics in Finance I
- [M-WIWI-101402] eFinance

ECTS

<table>
<thead>
<tr>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2530296</td>
<td>Exchanges</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Jörg Franke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The examination will be offered latest until winter term 2018/2019 (repeaters only).

Conditions

None

Recommendations

None

Event excerpt: Exchanges (SS 2018)

Aim

Students are in a position to discuss and evaluate current developments regarding the organisation of exchanges and securities trading.

Content

- Organisation of exchanges: Changing Zeitgeist - Corporates instead of cooparative structures
- Market models: order driven vs. market maker - Liquidity provision for less frequently traded securities
- Trading systems: The end of an era? - No more need for running traders?
- Clearing: Diversity instead of uniformity - Safety for all?
- Settlement: Increasing importance - Does efficient settlement assure the “value added” of exchanges in the long run?

Workload

The total workload for this course is approximately 45.0 hours. For further information see German version.

Literature

Elective literature:

Educational material will be offered within the lecture.
Course: Facility Location and Strategic Supply Chain Management
[T-WIWI-102704]

Responsibility: Stefan Nickel

Contained in:
[M-WIWI-101421] Supply Chain Management
[M-WIWI-101414] Methodical Foundations of OR

ECTS 4.5 Language deutsch Recurrence Jedes Wintersemester Exam type Prüfungsleistung schriftlich Version 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550487</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Hannah Bakker</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester. Prerequisite for admission to examination is the successful completion of the online assessments.

Conditions
Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendations
None

Remarks
The lecture is held in every winter term. The planned lectures and courses for the next three years are announced online.

Event excerpt: Facility Location and Strategic Supply Chain Management (WS 18/19)

Aim
The student

- knows and describes basic quantitative methods in location planning in the context of strategic Supply Chain Planning,
- applies several criteria for the evaluation of the locations of facilities in the context of classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models),
- implements the considered models in practical problems.

Content
Since the classical work “Theory of the Location of Industries” of Weber from 1909, the determination of an optimal location of a new facility with respect to existing customers is strongly connected to strategical logistics planning. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning allows an efficient flow of materials and leads to lower costs and increased customer service.

Subject of the course is an introduction to the most important terms and definitions in location planning as well as the presentation of basic quantitative location planning models. Furthermore, specialized location planning models for Supply Chain Management will be addressed as they are part in many commercial SCM tools for strategic planning tasks.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature
Elective literature:

- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
Course: Failure of Structural Materials: Deformation and Fracture
[T-MACH-102140]

Responsibility: Peter Gumbsch, Daniel Weygand

Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2181711</td>
<td>Failure of structural materials: deformation and fracture</td>
<td>Vorlesung / Übung 3</td>
<td>3</td>
<td>Peter Gumbsch, Daniel Weygand</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam ca. 30 minutes
no tools or reference materials

Conditions
none

Recommendations
preliminary knowledge in mathematics, mechanics and materials science

Event excerpt: Failure of structural materials: deformation and fracture (WS 18/19)

Aim
The student
- has the basic understanding of mechanical processes to explain the relationship between externally applied load and materials strength.
- can explain the foundation of linear elastic fracture mechanics and is able to determine if this concept can be applied to a failure by fracture.
- can describe the main empirical materials models for deformation and fracture and can apply them.
- has the physical understanding to describe and explain phenomena of failure.

Content
1. Introduction
2. linear elasticity
3. classification of stresses
4. Failure due to plasticity
 - tensile test
 - dislocations
 - hardening mechanisms
 - guidelines for dimensioning
5. composite materials
6. fracture mechanics
 - hypotheses for failure
 - linear elastic fracture mechanics
 - crack resistance
 - experimental measurement of fracture toughness
 - defect measurement
 - crack propagation
- application of fracture mechanics
- atomistics of fracture

Workload

regular attendance: 22.5 hours
self-study: 97.5 hours

Literature

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relatively simple but yet comprehensive overview of metallic materials
Course: Failure of Structural Materials: Fatigue and Creep [T-MACH-102139]

Responsibility: Patric Gruber, Peter Gumbsch

Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2181715</td>
<td>Failure of Structural Materials: Fatigue and Creep</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Patric Gruber, Peter Gumbsch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam ca. 30 minutes
no tools or reference materials

Conditions
none

Recommendations
preliminary knowledge in mathematics, mechanics and materials science

Event excerpt: Failure of Structural Materials: Fatigue and Creep (WS 18/19)

Aim
The student
- has the basic understanding of mechanical processes to explain the relationships between externally applied load and materials strength.
- can describe the main empirical materials models for fatigue and creep and can apply them.
- has the physical understanding to describe and explain phenomena of failure.
- can use statistical approaches for reliability predictions.
- can use its acquired skills, to select and develop materials for specific applications.

Content
1 Fatigue
1.1 Introduction
1.2 Statistical Aspects
1.3 Lifetime
1.4 Fatigue Mechanisms
1.5 Material Selection
1.6 Thermomechanical Loading
1.7 Notches and Shape Optimization
1.8 Case Study: ICE-Desaster

2 Creep
2.1 Introduction
2.2 High Temperature Plasticity
2.3 Phänomenologien DEsciption of Creep
2.4 Creep Mechanisms
2.5 Alloying Effects
Workload
regular attendance: 22.5 hours
self-study: 97.5 hours

Literature
- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relatively simple but yet comprehensive overview of metallic materials
- Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); standard work on fatigue, all classes of materials, extensive, for beginners and advanced student
Course: Financial Accounting and Cost Accounting [T-WIWI-102816]

Responsibility: Jan-Oliver Strych

Contained in: [M-WIWI-101578] Fundamentals of Business Administration 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2600002</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Jan-Oliver Strych</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2600003</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Jan-Oliver Strych</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam following §4, Abs. 2, 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Event excerpt: (WS 18/19)

Aim

Students

- are able to understand IFRS annual reports,
- know differences between HGB and IFRS,
- are able to understand and implement selected IFRS rules,
- can analyse how liquid the firm is,
- can analyse and assess financial reports,
- are able to measure the value added in firms,
- have skills about budgeting and benchmarking, and
- can understand and implement reporting systems.

Content

1. Introduction to accounting standards (IFRS, HGB)
2. Annual report and financial statements
3. Selected topics in financial accounting
4. Operational efficiency analysis
5. Financial Statement Analysis
6. Value-based management
7. Taxes
8. Creative accounting and compliance
9. Budgeting and benchmarking
10. Reporting

Workload

The total workload for this course is approximately 120 hours. For further information see German version.

Literature

Course: Financial Accounting for Global Firms [T-WIWI-107505]

Responsibility: Torsten Luedecke

Contained in: [M-WIWI-101423] Topics in Finance II
[M-WIWI-101465] Topics in Finance I

ECTS: 4.5 Language: englisch Recurrence: Jedes Wintersemester Exam type: Prüfungsleistung schriftlich Version: 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2530242</td>
<td>Financial Accounting for Global Firms</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Torsten Luedecke</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2530243</td>
<td>Übung zu Financial Accounting for Global Firms</td>
<td>Übung (U)</td>
<td></td>
<td>Torsten Luedecke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Conditions
None

Recommendations
Basic knowledge in corporate finance and accounting.

Remarks
New lecture in the winter term 2017/18.

Event excerpt: Financial Accounting for Global Firms (WS 18/19)

Aim
Students are able to

- understand the framework of IFRS and its significance for global firms,
- read and accurately interpret financial statements,
- appreciate substantial differences between IFRS and U.S. GAAP,
- apply the multi-step model to recognize revenues from contracts with customers,
- use and evaluate measurement bases for assets and liabilities,
- employ the control model to identify intercorporate investments and apply the appropriate method of consolidation,
- recognize the effects of foreign currency translation on financial statements.

Content
The lecture covers the following topics:

- The context of financial accounting for global firms
- The mechanics of financial accounting
- Accounting frameworks and concepts
- Content and presentation of financial statements
- Preparing financial statements
- Revenue recognition from contracts
- Tangible and intangible non-current assets
- Financial assets, liabilities, and equity
- Consolidation and the assessment of control
- Investment in associates and joint arrangements
- Business combinations
- Foreign currency translation
Literature
Course: Financial Econometrics [T-WIWI-103064]

Responsibility: Melanie Schienle
Contained in: [M-WIWI-101599] Statistics and Econometrics

ECTS: 4.5
Recurrence: Unregelmäßig
Exam type: Prüfungsleistung schriftlich
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2520022</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Melanie Schienle</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2520023</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Chong Liang,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Melanie Schienle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4, 1 of the examination regulation).

Conditions
None

Recommendations
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics"[2520016]

Remarks
The course takes place each second summer term: 2018/2020....

Event excerpt: (SS 2018)

Aim
The student
- shows a broad knowledge of financial econometric estimation and testing techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content
ARMA, ARIMA, ARFIMA, (non)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer based exercises

Workload
The total workload for this course is approximately 135 hours (4.5 credits).
- regular attendance: 30 hours
- self-study: 65 hours
- exam preparation: 40 hours
Course: Financial Intermediation [T-WIWI-102623]

Responsibility: Martin Ruckes
Contained in:
[M-WIWI-101423] Topics in Finance II
[M-WIWI-101465] Topics in Finance I

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2530232</td>
<td>Financial Intermediation</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2530233</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Andreas Benz, Daniel Hoang, Martin Ruckes</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Conditions
None

Recommendations
None

Event excerpt: Financial Intermediation (WS 18/19)

Aim
Students

- are in a position to describe the arguments for the existence of financial intermediaries,
- are able of discuss and analyze both static and dynamic aspects of contractual relationships between banks and borrowers,
- are able to discuss the macroeconomic role of the banking system,
- are in a position to explain the fundamental principles of the prudential regulation of banks and are able to recognize and evaluate the implications of specific regulations.

Content

- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Stability of the financial system
- The macroeconomic role of financial intermediation
- Principles of the prudential regulation of banks

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:

Course: Financial Management [T-WIWI-102605]

Responsibility: Martin Ruckes
Contained in: [M-WIWI-101435] Essentials of Finance

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2530216</td>
<td>Financial Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Ruckes</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2530217</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Martin Ruckes, Richard Schubert</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
Knowledge of the content of the course Business Administration: Finance and Accounting [25026/25027] is recommended.

Event excerpt: Financial Management (SS 2018)

Aim
Students
- are able to characterize the central questions of financial management,
- are in a position to explain the role of liquidity, compute important liquidity ratios and explain their meaning,
- are able to describe and discuss the basic principles of working capital management,
- know different types of corporate financing as well as their pros and cons,
- are in a position to analyze firms’ capital structures and to identify possible improvements,
- are familiar with basic questions of corporate distribution policy.

Content
Analytical methods and theories in the field of corporate finance with the main focus on:
- Liquidity and Working Capital Management
- Sources of short term/ long term finance
- Capital Structure
- Dividend policy

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
Course: Fluid Power Systems [T-MACH-102093]

Responsibility: Marcus Geimer, Felix Pult

Contained in: [M-MACH-101266] Automotive Engineering
[M-MACH-101267] Mobile Machines

ECTS 5 Language deutsch Recurrence Jedes Wintersemester Exam type Prüfungsleistung schriftlich Version 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2114093</td>
<td>Fluid Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marcus Geimer, Felix Pult</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
none

Event excerpt: Fluid Technology (WS 18/19)

Aim
The students will be able to
- know and understand physical principles of fluid power systems
- know the current components and their operating mode
- know the advantages and disadvantages of different components
- dimension the components for a given purpose
- calculate simple systems

Content
In the range of hydrostatics the following topics will be introduced:
- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:
- Compressors
- Motors
- Valves
- Pneumatic circuits.

Workload
- regular attendance: 21 hours
- self-study: 92 hours

Literature
Scritum for the lecture Fluidtechnik
Institute of Vehicle System Technology
downloadable

Responsibility: Gerhard Satzger, Christof Weinhardt

Contained in:
- [M-WIWI-101422] Specialization in Customer Relationship Management
- [M-WIWI-101434] eBusiness and Service Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2595466</td>
<td>Foundations of Digital Services A</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Niklas Kühl, Gerhard Satzger, York Sure-Vetter, Christof Weinhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) (§4(2), 1 of the examination regulations). By successful completion of the exercises (§4(2), 3 SPO 2007 respectively §4(3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Conditions

None

Remarks

Aim

This course conveys the fundamental knowledge to understand the importance of services in our economy and the impact of information and communication technology (ICT) on existing and emerging service industries. Combining theoretical models with multiple case studies and application scenarios, this course will enable students:

- to understand different service perspectives and apply the general concept of “value co-creation”
- to know and to be able to apply concepts, methods and tools used for the design, engineering and management of eServices
- to be familiar with current research topics
- to gain experience in group work and to improve their presentation skills
- to be exposed to English language in preparation for working in international environments

Content

The world is moving more and more towards “service-led” economies: in developed countries services already account for around 70% of gross value added. In order to design, engineer, and manage services, traditional “goods-oriented” models are often inappropriate. In addition, the rapid development of information and communication technology (ICT) pushes the economic importance of services that are rendered electronically (eServices) and, thus, drives competitive changes: increased interaction and individualization open up new dimensions of “value co-creation” between providers and customers; dynamic and scalable service value networks replace static value chains; digital services can be globally delivered and exchanged across today’s geographic boundaries;

Building on a systematic categorization of (e)Services and on the general notion of “value co-creation”, we cover concepts and foundations for engineering and managing IT-based services, allowing for further specialization in subsequent
KSRI courses. Topics include service innovation, service economics, service modeling as well as the transformation and coordination of service value networks.

In addition, case studies, hands-on exercises and guest lectures will illustrate the applicability of the concepts. English language is used throughout the course to acquaint students with international environments.

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature

- Stauss, B. et al. (Hrsg.) (2007), Service Science – Fundamentals Challenges and Future Developments.
Course: Foundations of Digital Services B [T-WIWI-105775]

Responsibility: Alexander Mädche, Stefan Morana, Stefan Nickel

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2540423</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Alexander Mädche, Stefan Morana, Stefan Nickel</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2540425</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Dominik Augenstein, Alexander Mädche</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The lecture will be offered for the last time in the winter semester 2018/2019. Students can take the examination in the first attempt for the last time in March 2019. In August 2019 the examination will take place for the last time and only for repeaters.

The assessment consists of a written exam (60 min) (§4(2), 1 of the examination regulations). A successful participation of the exercises is a necessary prerequisite for taking part in the exam.

Conditions

A successful participation of the exercises is a necessary prerequisite for taking part in the exam.

Remarks

Please note that the course will be offered for the last time in winter semester 2018/19.

Event excerpt: (WS 18/19)

Aim

- The students get an overview on basic concepts and definitions of digital service systems.
- Understand key characteristics and impact of digital service systems.
- Understand typical tasks of functional areas (e.g. marketing, logistics, finance & accounting) and how they are supported by contemporary digital service systems.

Content

During the last decades, we witnessed a growing importance of Information Systems (IS) in the business world along with faster and faster innovation cycles. Ranging from the enrichment of routine working tasks (e.g., employee portals to integrate disparate applications, data, and processes to the e-enabled integration of entire business eco-systems - IS have become a vital backbone of businesses and a fundamental backbone of digital service systems.

The course is designed to introduce students to the nature, role, and potentials of digital service systems. The lecture and exercises address contemporary challenges and functionalities of digital service systems including real-time data reporting, integration of data and processes across functions, as well as modern user interfaces. The exercises include hands-on-sessions with SAP S/4HANA. The students execute various tasks within this system.

Workload

The total workload for this course is approximately 135 hours.

Literature

Provided in the lecture
Course: Foundations of Informatics I [T-WIWI-102749]

Responsibility: York Sure-Vetter
Contained in: [M-WIWI-101417] Foundations of Informatics

ECTS 5
Language deutsch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung schriftlich
Version 1

 EVENTS

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511010</td>
<td>Foundations of Informatics I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Achim Rettinger, York Sure-Vetter</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511011</td>
<td>Exercises to Foundations of Informatics I</td>
<td>Übung (U)</td>
<td>2</td>
<td>Achim Rettinger, York Sure-Vetter, Tobias Weller</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

V Event excerpt: Foundations of Informatics I (SS 2018)

Aim
The student
- is able to formalise tasks in the domain of informatics and is able to identify solution methods
- knows the basic terminology of computer science and is capable of applying these terms to different problems.
- knows basic programming structures and is able to apply them (particularly simple data structures, object interaction and implementation of basic algorithms).

Content
The following topics are covered:
- Object Oriented Modeling
- Logic (Propositional Calculus, Predicate Logic, Boolean Algebra)
- Algorithms and Their Properties
- Sort-and Search-Algorithms
- Complexity Theory
- Problem Specification
- Dynamic Data Structures

Workload
- The total workload for this course is approximately 150 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 67.5 hours
- Exam and exam preparation: 37.5 hours

Literature

Additional literature will be announced in the lecture.
Course: Foundations of Informatics II [T-WIWI-102707]

Responsibility: Pradyumn Kumar Shukla

Contained in: [M-WIWI-101417] Foundations of Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511012</td>
<td>Foundations of Informatics II</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Achim Rettinger</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511013</td>
<td>Tutorium (Tu)</td>
<td></td>
<td>1</td>
<td>Anna Nguyen,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Achim Rettinger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. The grade of the exam can be improved by successfully participating in the tutorials. The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
It is recommended to attend the course Foundations of Informatics I [2511010] beforehand. Active participation in the practical lessons is strongly recommended.

Event excerpt: Foundations of Informatics II (WS 18/19)

Aim
- Students acquire vast knowledge of methods and concepts in theoretical computer science and computer architectures.
- Based on the acquired knowledge and skills, students are capable of choosing and applying the appropriate methods and concepts for well-defined problem instances.
- Active participation in the tutorials enables students to acquire the necessary knowledge for developing appropriate solutions cooperatively.

Content
The lecture deals with formal models for automata, languages and algorithms as well as real instances of these models, i.e. computer architecture and organization (hardware development, computer arithmetic, architecture models), programing languages (different language levels, from microprogramming to higher programming languages, as well as compiling and execution), operating systems and modes (architecture and properties of operating systems, operating system tasks, client-server systems), data organization and management (types of data organization, primary and secondary organization).

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature
Elective literature:
Will be announced in the lecture.
Course: Foundations of mobile Business [T-WIWI-104679]

Responsibility: Andreas Oberweis, Gunther Schiefer

Contained in: [M-WIWI-101399] Emphasis Informatics
[M-WIWI-101426] Electives in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511226</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Gunther Schiefer</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511227</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Gunther Schiefer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written (60 min.) or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None

Modeled Conditions
1 of 2 conditions must be met:

1. The module [M-WIWI-101581] Introduction to Programming must have been passed.
2. The module [M-WIWI-101417] Foundations of Informatics must have been passed.

Remarks
Lecture and exercises are integrated.

Event excerpt: (SS 2018)

Aim
Wenn Sie im Beruf mit einer Fragestellung konfrontiert werden, welche „Mobile Business“ tangiert, sollen Sie in der Lage sein, schnell und kompetent entsprechende Antworten zu geben.
Dazu ist ein breiter Überblick über das Themenfeld nötig:

- Marktstrukturen
- Technik
- Möglichkeiten für Anwendungen
- Prozesse
- Probleme

Content
Die Vorlesung behandelt die Grundlagen für Mobile Business mit Schwerpunkt auf den (informations-)technischen Grundlagen. Diese werden mit dem wirtschaftlichen Hintergrund in Deutschland verknüpft.
Geplanter Inhalt:
1. Organisatorisches
2. Einführung & Definitionen
3. Mobile Geräte
4. Mobilfunktechnologie
5. Mobilfunkmarkt
6. Mobile Anwendungen
7. Digitale Funktechnologien
8. Ortung & Kontext
Anmerkung: Die oben angegebenen Lehreinheiten haben jeweils einen unterschiedlichen Umfang.

Workload
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
Vorlesung 24h
Übungseinheiten 12h
Vor- bzw. Nachbereitung der Vorlesung 36h
Vor- bzw. Nachbereitung der Übungen 24h
Prüfungsvorbereitung 53h
Prüfung 1h
Summe: 150h

Literature
 http://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/resources/Mobile_Communications/course_Material/index.html
- Martin Sauter: Grundkurs Mobile Kommunikationssysteme (6. Aufl. 2015)
- Dodel, H., Häupler, D.: Satellitennavigation

Einige relevante Informationen im Web
- Bundesnetzagentur http://www.bundesnetzagentur.de
 u.a. Jahresbericht und Marktbeobachtung
- VATM-Marktstudien http://www.vatm.de/vatm-marktstudien.html
- Verbände, bspw. BITKOM (bitkom.org), eco e.V. (eco.de)
- Presse, bspw. Teltarif, Heise, Golem, …
- Statistiken (Statista Lizenz des KIT)
Course: Fuels and Lubricants for Combustion Engines [T-MACH-105184]

Responsibility: Bernhard Ulrich Kehrwald, Heiko Kubach

Contained in: [M-MACH-101303] Combustion Engines II

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2133108</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Bernhard Ulrich Kehrwald</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: ca. 25 min., no auxiliary means

Conditions
none

Event excerpt: Fuels and Lubricants for Combustion Engines (WS 18/19)

Aim
The students can name and explain composition and meaning of fuels, lubricants and coolants as important components in the system of today's Otto and Diesel engines as well as definition and chemical composition of fuels and lubricants, the meaning of crude oil as basic primary product, production processes, major properties, standards and specifications, testing methods.

They can point out future worldwide trends in the field of conventional and alternative fuels regarding emission standards and energy conservation

Content
Introduction and basics

Fuels for Gasoline and Diesel engines

Hydrogen

Lubricants for Gasoline and Diesel engines

Coolants for combustion engines

Workload
regular attendance: 24 hours
self-study: 96 hours

Literature
Lecturer notes
Course: Fundamentals for Design of Motor-Vehicle Bodies I [T-MACH-102116]

Responsibility: Horst Dietmar Bardehle

Contained in: [M-MACH-101266] Automotive Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113814</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies I</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Horst Dietmar Bardehle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral group examination

Duration: 30 minutes

Auxiliary means: none

Conditions

none

Event excerpt: Fundamentals for Design of Motor-Vehicles Bodies I (WS 18/19)

Aim

The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g. with FE-methods). They have knowledge about the fundamentals and their correlations, to be able to analyze and to judge relating components as well as to develop them accordingly.

Content

1. History and design

2. Aerodynamics

3. Design methods (CAD/CAM, FEM)

4. Manufacturing methods of body parts

5. Fastening technologie

6. Body in white / body production, body surface

Workload

regular attendance: 10,5 hours
self-study: 49,5 hours
Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals for Design of Motor-Vehicle Bodies II [T-MACH-102119]

Responsibility: Horst Dietmar Bardehle
Contained in: [M-MACH-101266] Automotive Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114840</td>
<td>Fundamentals for Design of Motor-Vehicles Bodies II</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Horst Dietmar Bardehle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral group examination

Duration: 30 minutes

Auxiliary means: none

Conditions

none

Event excerpt: Fundamentals for Design of Motor-Vehicles Bodies II (SS 2018)

Aim

The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. Based on this they are ready to analyze and to judge the relation of these single components. They are also able to contribute competently to complex development tasks by imparted knowledge in project management.

Content

1. Body properties/testing procedures

2. External body-parts

3. Interior trim

4. Compartment air conditioning

5. Electric and electronic features

6. Crash tests

7. Project management aspects, future prospects
Workload
regular attendance: 10,5 hours
self-study: 49,5 hours

Literature
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals in the Development of Commercial Vehicles I
[T-MACH-105160]

Responsibility: Jörg Zürn

Contained in: [M-MACH-101265] Vehicle Development
[M-MACH-101267] Mobile Machines

ECTS: 1.5
Language: deutsch
Recurrence: JedesWintersemester
Exam type: Prüfungsleistung mündlich
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Jörg Zürn</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral group examination

Duration: 30 minutes

Auxiliary means: none

Conditions
none

Event excerpt: Fundamentals in the Development of Commercial Vehicles I (WS 18/19)

Aim
The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers. The students are able to develop parts and components. Furthermore they have knowledge about different cab concepts, the interior and the interior design process. Consequently they are ready to analyze and to judge concepts of commercial vehicles as well as to participate competently in the commercial vehicle development.

Content
1. Introduction, definitions, history
2. Development tools
3. Complete vehicle
4. Cab, bodyshell work
5. Cab, interior fitting
6. Alternative drive systems
7. Drive train
8. Drive system diesel engine
9. Intercooled diesel engines

Workload
regular attendance: 10,5 hours
self-study: 49,5 hours

Literature

Course: Fundamentals in the Development of Commercial Vehicles II

Course Code: [T-MACH-105161]
Responsibility: Jörg Zürn
Contained in:
- [M-MACH-101265] Vehicle Development
- [M-MACH-101267] Mobile Machines

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Jörg Zürn</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral group examination

- **Duration:** 30 minutes
- **Auxiliary means:** none
- **Conditions:** none

Event excerpt: Fundamentals in the Development of Commercial Vehicles II (SS 2018)

Aim

The students know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems are known. Consequently the students are able to analyze and to judge the general concepts as well as to adjust them precisely with the area of application.

Content

1. Gear boxes of commercial vehicles
2. Intermediate elements of the drive train
3. Axle systems
4. Front axles and driving dynamics
5. Chassis and axle suspension
6. Braking System
7. Systems
8. Excursion

Workload

- **Regular attendance:** 10.5 hours
- **Self-study:** 49.5 hours

Literature

Course: Fundamentals of Automobile Development I [T-MACH-105162]

Responsibility: Rolf Frech
Contained in: [M-MACH-101265] Vehicle Development

ECTS 1.5
Language deutsch/englisch
Recurrence Jedes Wintersemester
Exam type Prüfungsleistung schriftlich
Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113810</td>
<td>Fundamentals of Automobile Development I</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Rolf Frech</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Rolf Frech</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written examination

Duration: 90 minutes

Auxiliary means: none

Conditions none

Event excerpt: Fundamentals of Automobile Development I (WS 18/19)

Aim
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Content

1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Workload

regular attendance: 10,5 hours
self-study: 49,5 hours

Literature

The scriptum will be provided during the first lessons

Event excerpt: Principles of Whole Vehicle Engineering I (WS 18/19)

Aim
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile. They are ready to judge goal conflicts in the field of automobile development and to work out approaches to solving a problem.

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations – National and international boundary conditions
4. Aero dynamical dimensioning and design of an automobile I
5. Aero dynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Workload
regular attendance: 10,5 hours
self-study: 49,5 hours

Literature
The scriptum will be provided during the first lessons
Course: Fundamentals of Automobile Development II [T-MACH-105163]

Responsibility: Rolf Frech
Contained in: [M-MACH-101265] Vehicle Development

- **ECTS:** 1.5
- **Language:** deutsch/englisch
- **Recurrence:** Jedes Sommersemester
- **Exam type:** Prüfungsleistung schriftlich
- **Version:** 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114842</td>
<td>Fundamentals of Automobile Development II</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Rolf Frech</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2114860</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>Block-Vorlesung (BV)</td>
<td>1</td>
<td>Rolf Frech</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written examination

- **Duration:** 90 minutes
- **Auxiliary means:** none
- **Conditions:** none

Event excerpt: Principles of Whole Vehicle Engineering II (SS 2018)

Aim
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Workload
- regular attendance: 10,5 hours
- self-study: 49,5 hours

Literature
The scriptum will be provided during the first lessons.

Event excerpt: Fundamentals of Automobile Development II (SS 2018)

Aim
The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise.
They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile. They are ready to participate competently in the development process of the complete vehicle.

Content
1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Workload
regular attendance: 10,5 hours
self-study: 49,5 hours

Literature
The scriptum will be provided during the first lessons.
Course: Fundamentals of Catalytic Exhaust Gas Aftertreatment [T-MACH-105044]

Responsibility: Olaf Deutschmann, Jan-Dierk Grunwaldt, Heiko Kubach, Egbert Lox

Contained in: [M-MACH-101303] Combustion Engines II

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2134138</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Olaf Deutschmann, Jan-Dierk Grunwaldt, Egbert Lox</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral examination, Duration: 25 min., no auxiliary means

Conditions
none

Event excerpt: Fundamentals of catalytic exhaust gas aftertreatment (SS 2018)

Aim
The students can name and explain the scientific fundamentals of the catalytic exhaust gas aftertreatment, as well as the technical, political and economical parameters of its application in engines for passenger cars and HD vehicles.

The students are able to point out and explain which emissions are formed in combustion engines, why these emissions are health-related critical and which measures the legislator has established to reduce the emissions.

Content
1. kind and source of emissions
2. emission legislation
3. principal of catalytic exhaust gas aftertreatment (EGA)
4. EGA at stoichiometric gasoline engines
5. EGA at gasoline engines with lean mixtures
6. EGA at diesel engines
7. economical basic conditions for catalytic EGA

Workload
regular attendance: 36 hours
self-study: 84 hours

Literature
Lecture notes available in the lectures

Course: Fundamentals of Production Management [T-WIWI-102606]

Responsibility: Frank Schultmann

Contained in: [M-WIWI-101437] Industrial Production I

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2581950</td>
<td>Fundamentals of Production Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Frank Schultmann, Rebekka Volk</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2581951</td>
<td>Übung (Ü)</td>
<td>Übung (U)</td>
<td>2</td>
<td>Richard Carl Müller, Elias Naber</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Event excerpt: Fundamentals of Production Management (SS 2018)

Aim

- Students should describe the tasks of strategic corporate planning.
- Students should be able to use general approaches in order to solve these problems.

Content

This lecture focuses on strategic production management with respect to various economic aspects. Interdisciplinary approaches of systems theory will be used to describe the challenges of industrial production. This course will emphasize the importance of R&D as the central step in strategic corporate planning to ensure future long-term success. In the field of site selection and planning for firms and factories, attention will be drawn upon individual aspects of existing and greenfield sites as well as existing distribution and supply centres. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Workload

Total effort required will account for approximately 165h (5.5 credits).

Literature

will be announced in the course
Course: Gas Engines [T-MACH-102197]

Responsibility: Rainer Golloch
Contained in: [M-MACH-101303] Combustion Engines II

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination, duration 25 min., no auxiliary means

Conditions
none
Course: Gear Cutting Technology [T-MACH-102148]

Responsibility: Markus Klaiber
Contained in: [M-MACH-101284] Specialization in Production Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2149655</td>
<td>Gear Cutting Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Markus Klaiber</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Exam (20 min)

Conditions

none

Event excerpt: Gear Cutting Technology (WS 18/19)

Aim

- The students . . .
- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings. are able to make an appropriate selection of a process based on a given application
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

Content

Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

Workload

regular attendance: 21 hours
self-study: 99 hours
Course: Geological Hazards and Risks for external students [T-PHYS-103117]

Responsibility: Ellen Gottschämmer

Contained in:
- [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
- [M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>englisch</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4060121</td>
<td>Geological Hazards and Risk</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>James Daniell, Ellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gottschämmer</td>
</tr>
<tr>
<td></td>
<td>4060122</td>
<td>Übung (Ü)</td>
<td></td>
<td>2</td>
<td>James Daniell, Ellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>
Course: Global Optimization I [T-WIWI-102726]

Responsibility: Oliver Stein

Contained in:
- [M-WIWI-101414] Methodical Foundations of OR

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2550134</td>
<td>2550134</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2550135</td>
<td>2550135</td>
<td>Übung (U)</td>
<td>1</td>
<td>Robert Mohr, Christoph Neumann, Oliver Stein</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Success is in the form of a written examination (60 min.) (according to § 4(2), 1 SPO) and possibly of a compulsory prerequisite. The exam is offered in the lecture of semester and the following semester. The success check can be done also with the success control for “Global optimization II”. In this case, the duration of the written exam is 120 min.

Conditions
None

Modeled Conditions
The following conditions must be met:
- The course [T-WIWI-103638] Global optimization I and II must not have been started.

Recommendations
None

Remarks
Part I and II of the lecture are held consecutively in the same semester.

Event excerpt: (SS 2018)

Aim
The student
- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:
- Introduction, examples, and terminology
- Existence results
Nonconvex optimization problems are treated in part II of the lecture. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature

- W. Alt *Numerische Verfahren der konvexen, nichtglatten Optimierung* Teubner 2004
- C.A. Floudas *Deterministic Global Optimization* Kluwer 2000
- R. Horst, H. Tuy *Global Optimization* Springer 1996
Course: Global optimization I and II [T-WIWI-103638]

Responsibility: Oliver Stein

Contained in: [M-WIWI-101414] Methodical Foundations of OR

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2550134</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2550136</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the lecture is a written examination (120 minutes) according to §4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.

The examination is held in the semester of the lecture and in the following semester.

Conditions

None

Modeled Conditions

The following conditions must be met:

1. The course [T-WIWI-102726] Global Optimization I must not have been started.
2. The course [T-WIWI-102727] Global Optimization II must not have been started.

Recommendations

None

Remarks

Part I and II of the lecture are held consecutively in the same semester.

Event excerpt: (SS 2018)

Aim

The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Content

In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Numerical methods
Nonconvex optimization problems are treated in part II of the lecture. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature

- W. Alt *Numerische Verfahren der konvexen, nichtglatten Optimierung* Teubner 2004
- C.A. Floudas *Deterministic Global Optimization* Kluwer 2000
- R. Horst, H. Tuy *Global Optimization* Springer 1996

Event excerpt: (SS 2018)

Aim
The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Content

In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The global solution of convex optimization problems is subject of part I of the lecture. Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via αBB method
- Branch and bound methods
- Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature

- W. Alt *Numerische Verfahren der konvexen, nichtglatten Optimierung* Teubner 2004
- C.A. Floudas *Deterministic Global Optimization* Kluwer 2000
- R. Horst, H. Tuy *Global Optimization* Springer 1996
Course: Global Optimization II [T-WIWI-102727]

Responsibility: Oliver Stein
Contained in: [M-WIWI-101414] Methodical Foundations of OR

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2550135</td>
<td>Übung (U)</td>
<td>1</td>
<td>Robert Mohr, Christoph Neu-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mann, Oliver Stein</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2550136</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation and possibly of a compulsory prerequisite. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of “Global optimization I”. In this case, the duration of the written examination takes 120 minutes.

Conditions

None

Modeled Conditions

The following conditions must be met:

- The course [T-WIWI-103638] Global optimization I and II must not have been started.

Remarks

Part I and II of the lecture are held consecutively in the same semester.

Event excerpt: (SS 2018)

Aim

The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Content

In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The global solution of convex optimization problems is subject of part I of the lecture.

Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via αBB method
• Branch and bound methods
• Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature

• W. Alt *Numerische Verfahren der konvexen, nichtglatten Optimierung* Teubner 2004
• C.A. Floudas *Deterministic Global Optimization* Kluwer 2000
• R. Horst, H. Tuy *Global Optimization* Springer 1996
Course: Global Vehicle Evaluation within Virtual Road Test [T-MACH-102177]

Responsibility: Bernhard Schick
Contained in: [M-MACH-101264] Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: CarMaker Simulation Environment

Conditions
none
Course: Handling Characteristics of Motor Vehicles I [T-MACH-105152]

Responsibility: Hans-Joachim Unrau

Contained in: [M-MACH-101264] Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I Vorlesung (V)</td>
<td>2</td>
<td></td>
<td>Hans-Joachim Unrau</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Verbally

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions
none

Event excerpt: Handling Characteristics of Motor Vehicles I (WS 18/19)

Aim
The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation. Consequently they are ready to analyze the most important influencing factors on the driving behaviour and to contribute to the optimization of the handling characteristics.

Content
1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)

2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)

3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Workload
regular attendance: 22,5 hours
self-study: 97,5 hours

Literature

Course: Handling Characteristics of Motor Vehicles II [T-MACH-105153]

Responsibility: Hans-Joachim Unrau

Contained in: [M-MACH-101264] Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114838</td>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Hans-Joachim Unrau</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

none

Event excerpt: Handling Characteristics of Motor Vehicles II (SS 2018)

Aim

The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behaviour from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer. Consequently they are ready to judge the driving behaviour of vehicles and to change it by specific vehicle modifications.

Content

1. Vehicle handling: Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway

2. Stability behavior: Basics, stability conditions for single vehicles and for vehicles with trailer

Workload

regular attendance: 22,5 hours
self-study: 97,5 hours

Literature

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: High Performance Powder Metallurgy Materials [T-MACH-102157]

Responsibility: Rainer Oberacker
Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2126749</td>
<td>Advanced powder metals</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Günter Schell</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam

Conditions
none

Event excerpt: Advanced powder metals (SS 2018)

Aim
The students know the basics of powder metallurgy. They are able to assess the conditions for applying either powder metallurgy or competing production methods. They have knowledge on production, properties and application of the most important PM materials.

Content
The lecture gives an overview on production, properties and application of structural and functional powder metallurgy material. The following groups of materials are presented: PM High Speed Steels, Cemented Carbides, PM Metal Matrix Composites, PM Specialities, PM Soft Magnetic and Hard Magnetic Materials.

Workload
regular attendance: 22 hours
self-study: 98 hours

Literature
- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Human Factors in Security and Privacy [T-WIWI-109270]

Responsibility: Melanie Volkamer

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

ECTS 5
Recurrence Jedes Wintersemester
Exam type Prüfungsleistung schriftlich
Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511554</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511555</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Melanie Volkamer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (30 min) following §4, Abs. 2, 2 of the examination regulation. The exam takes place every semester and can be repeated at every regular examination date.

Conditions
Successful participation in the exercises.

Remarks

Event excerpt: (WS 18/19)

Aim
Students ...

• know why many existing security and privacy mechanisms are not usable and why many awareness/education/training approaches are not effective
• can explain for concrete examples why these are not usable/not effective including why people are likely to face problems with these
• can explain what mental models are, why they are important and how they can be identified
• know how to conduct a cognitive walkthrough to identify problems with existing mechanisms and approaches
• know how to conduct semi-structured interviews
• know how user studies in the security context differ from those conducted in other contexts
• can explain the process of human centered security/privacy by design
• know the advantages and disadvantages of various graphical password schemes
• know concepts such as just in time and place security interventions

Content
This lecture and the corresponding exercises discuss the various problems of existing security and privacy mechanisms and security and privacy awareness/education/training approaches. The lecture addresses relevant psychological and sociological aspects which are important to know and to consider when developing more usable security/privacy mechanisms and more effective awareness/education/training approaches. This includes the importance of mental models. The human centered security and privacy by design approach is introduced. Furthermore, some of the methodologies used in this area are explained and a subset of them is also applied. Finally, positive examples, such as graphical passwords, are introduced and discussed. Note, the main part of the exercise is replicating an interview based study.

Literature
- Security and Usability: Designing Secure Systems that People Can Use von Lorrie Faith Cranor und Simson Garfinkel. 2005
Course: Human Resource Management [T-WIWI-102909]

Responsibility: Petra Nieken
Contained in: [M-WIWI-101513] Human Resources and Organizations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2573003</td>
<td>Human Resource Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2573004</td>
<td>Übung zu Human Resource Management</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Mitarbeiter, Petra Nieken</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Conditions
None

Recommendations
Completion of module Business Administration is recommended. Basic knowledge of microeconomics, game theory, and statistics is recommended.

Event excerpt: Human Resource Management (WS 18/19)

Aim
The student

- understands the processes and instruments of human resource management.
- analyzes different methods of human resource planning and selection and evaluates their usefulness.
- analyzes different processes of talent management and evaluates the strengths and weaknesses.
- understands the challenges of human resource management and its link to corporate strategy.

Content
The students acquire basic knowledge in the fields of human resource planning, selection and talent management. Different processes and instruments and their link to corporate strategy are evaluated based on microeconomic and behavioral approaches. The results are tested and discussed based on empirical data.

Workload
The total workload for this course is approximately 135 hours.
Lecture 32h
Preparation of lecture 52h
Exam preparation 51h

Literature
- Personnel Economics in Practice, Lazear & Gibbs, John Wiley & Sons, 2014
- Strategic Human Resources. Frameworks for General Managers, Baron & Kreps, John Wiley & Sons, 1999
Course: Hydraulic Engineering and Water Management [T-BGU-101667]

Responsibility: Franz Nestmann

Contained in: [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
[M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6200511</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Franz Nestmann</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>6200512</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Frank Seidel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written exam with 60 minutes

Conditions
None

Recommendations
None

Remarks
None
Course: Hydrology [T-BGU-101693]

Responsibility: Erwin Zehe

Contained in: [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
[M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

ECTS Language Recurrence Exam type Version
4 deutsch Jedes Wintersemester Prüfungsleistung schriftlich 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6200513</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Jan Wienhöfer, Erwin Zehe</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>6200514</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Jan Wienhöfer, Erwin Zehe</td>
</tr>
</tbody>
</table>

Conditions
None

Recommendations
None

Remarks
None
Course: I4.0 Systems platform [T-MACH-106457]

Responsibility: Thomas Maier, Jivka Ovtcharova
Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>Event-No.</th>
<th>Events</th>
<th>Term</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2123900</td>
<td>I4.0 Systems platform</td>
<td>SS 2018</td>
<td>Sonstige (sonst.)</td>
<td>4</td>
<td>Thomas Maier, Jivka Ovtcharova</td>
</tr>
<tr>
<td>2123900</td>
<td>I4.0 Systems platform</td>
<td>WS 18/19</td>
<td>Projekt (PJ/S) / Seminar</td>
<td>4</td>
<td>Thomas Maier, Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Alternative exam assessment (project work)
Conditions
None
Remarks
Limited number of participants.

Event excerpt: I4.0 Systems platform (SS 2018)

Aim
- Students are able to describe the fundamental concepts, challenges, and objectives of Industrie 4.0. The essential terms in context of information management can be named and explained.
- Students can explain the necessary information flow between the different IT systems. They get practically knowledge about using current IT systems in context of I4.0, from order to production.
- In context of I4.0 students are able to represent and analyze processes using specialized methods of process management.
- Teams of students are able to understand practice-relevant I4.0 issues concerning continuous information flow and discuss and provide proposals for solutions.
- Student teams can also provide prototypically implementation of the obtained solutions using given IT systems and present the final results.

Content
Industry 4.0, IT systems for fabrication (e.g.: CAx, PDM, CAM, ERP, MES), process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.
Course: Industrial Organization [T-WIWI-102844]

Responsibility: Johannes Philipp Reiß

Contained in: [M-WIWI-101499] Applied Microeconomics
[M-WIWI-101501] Economic Theory

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Unregelmäßig</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Recommendations
Completion of the module Economics [WW1VWL] is assumed.

Remarks
This course is not given in summer 2017.
Course: Information Engineering [T-MACH-102209]

Responsibility: Jivka Ovtcharova
Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2122014</td>
<td>Information Engineering</td>
<td>Seminar ($)</td>
<td>2</td>
<td>Mitarbeiter, Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Alternative exam assessment (written composition and speech)

Conditions
None
Course: Information Security [T-WIWI-108387]

Responsibility: Melanie Volkamer

Contained in: [M-WIWI-101399] Emphasis Informatics
[M-WIWI-101426] Electives in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511550</td>
<td>Information Security</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Melanie Volkamer</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511551</td>
<td>Exercise Information Security</td>
<td>Übung (U)</td>
<td>1</td>
<td>Melanie Volkamer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (30 min) following §4, Abs. 2, 2 of the examination regulation. The exam takes place every semester and can be repeated at every regular examination date.

Conditions
None.

Remarks
New course starting summer term 2018.

Event excerpt: Information Security (SS 2018)

Aim
The student
- can explain the basics of information security
- knows suitable measures to achieve different protection goals
- can assess the quality of organisational protective measures, i. e. among other things knows what has to be taken into account when using the individual measures
- understands the differences between information security in the organisational and in the private context
- knows the areas of application of different standards and knows their weaknesses
- knows and can explain the problems of information security that which arise from human-machine interaction
- is able to deal with messages concerning found security problems in a critical way.

Content
- Basics and concepts of information security
- Understanding the protection objectives of information security and various attack models (including associated assumptions)
- introduction of measures to achieve the respective protection goals, taking into account different attack models
- Note: In contrast to the IT Security lecture, measures such as encryption algorithms are treated only abstractly, i. e. the idea of the measure, assumptions to the attacker and the deployment environment.
- Presentation and analysis of problems of information security arising from human-machine interaction and presentation of the Human Centered Security by Design approach.
- Introduction into organisational protective measures and standards to be observed for companies.

Literature
Course: Information Service Engineering [T-WIWI-106423]

Responsibility: Harald Sack

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Language & Recurrence:
- **5 ECTS**
- **Englisch**
- **Jedes Sommersemester**
- **Prüfungsleistung schriftlich**
- **Version 1**

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511606</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Harald Sack</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511607</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Harald Sack</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.
The exam takes place every semester and can be repeated at every regular examination date.

Conditions
None

Remarks
New course starting summer term 2017.

Event excerpt: (SS 2018)

Aim
- The students know the fundamentals and measures of information theory and are able to apply those in the context of Information Service Engineering.
- The students have basic skills of natural language processing and are enabled to apply natural language processing technology to solve and evaluate simple text analysis tasks.
- The students have fundamental skills of knowledge representation with ontologies as well as basic knowledge of Semantic Web and Linked Data technologies. The students are able to apply these skills for simple representation and analysis tasks.
- The students have fundamental skills of information retrieval and are enabled to conduct and to evaluate simple information retrieval tasks.
- The students apply their skills of natural language processing, Linked Data engineering, and Information Retrieval to conduct and evaluate simple knowledge mining tasks.
- The students know the fundamentals of recommender systems as well as of semantic and exploratory search.

Content
- Information, Natural Language and the Web
- Natural Language Processing
 - NLP and Basic Linguistic Knowledge
 - NLP Applications, Techniques & Challenges
 - Evaluation, Precision and Recall
 - Regular Expressions and Automata
 - Tokenization
 - Language Model and N-Grams
 - Part-of-Speech Tagging
- Linked Data Engineering
• Knowledge Representations and Ontologies
• What’s in an URI?
• Resource Description Framework (RDF)
• Creating new Models with RDFS
• Querying RDF(S) with SPARQL
• More Expressivity with Web Ontology Language (OWL)
• The Web of Data
• Vocabularies and Ontologies in the Web of Data
• Wikipedia, DBpedia, and Wikidata

- Information Retrieval
 • Information Retrieval Models
 • Retrieval Evaluation
 • Web Information Retrieval
 • Document Crawling, Text Processing, and Indexing
 • Query Processing and Result Representation
 • Question Answering

- Knowledge Mining
 • From Data to Knowledge
 • Data Mining
 • Machine Learning Basics for Knowledge Mining
 • Mining Knowledge from Wikipedia
 • Named Entity Resolution

- Exploratory Search and Recommender Systems
 • Semantic Search and Entity Centric Search
 • Collaborative Filtering and Content Based Recommendations
 • From Search to Intelligent Browsing
 • Linked Data Based Exploratory Search
 • Fact Ranking

Literature
Course: Information Systems and Supply Chain Management [T-MACH-102128]

Responsibility: Christoph Kilger

Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2118094</td>
<td>Information Systems in Logistics and Supply Chain Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Christoph Kilger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Conditions
none

Event excerpt: Information Systems in Logistics and Supply Chain Management (SS 2018)

Aim
Students are able to:

- Describe requirements of logistical processes regarding IT systems,
- Choose information systems to support logistical processes and use them according to the requirements of a supply chain.

Content
1) Overview of logistics systems and processes
2) Basic concepts of information systems and information technology
3) Introduction to IS in logistics: Overview and applications
4) Detailed discussion of selected SAP modules for logistics support

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
Course: Integrated Information Systems for Engineers [T-MACH-102083]

Responsibility: Jivka Ovtcharova
Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2121001</td>
<td>Integrated Information Systems for engineers</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Mitarbeiter, Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination 20 min.

Conditions
None

Event excerpt: Integrated Information Systems for engineers (SS 2018)

Aim
Students can:

- illustrate the structure and operating mode of information systems
- explain different goals of specific IT systems in product development (CAD, CAP, CAM, PPS, ERP, PDM) and assign product development processes
- describe the fundamentals of knowledge management and its application in engineering and deploy ontology as knowledge representation
- describe different types of process modelling and their application and illustrate and execute simple work flows and processes with selected tools

Content

- Information systems, information management
- CAD, CAP and CAM systems
- PPS, ERP and PDM systems
- Knowledge management and ontology
- Process modeling

Workload
Regular attendance: 31.5 hours, self-study: 108 hours

Literature
Lecture slides
Course: Integrated Production Planning in the Age of Industry 4.0
[T-MACH-109054]

Responsibility: Gisela Lanza

Contained in: Integrated Production Planning

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2150660</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>Vorlesung (VU) / Übung 6</td>
<td>6</td>
<td>Gisela Lanza</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written Exam (120 min)

Conditions
“T-MACH-108849 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0” as well as “T-MACH-102106 Integrierte Produktionsplanung” must not be commenced.

Event excerpt: Integrated Production Planning in the Age of Industry 4.0 (SS 2018)

Aim
The students ...

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Content
Integrated production planning in the age of industry 4.0 will be taught in the context of this engineering science lecture. In addition to a comprehensive introduction to Industry 4.0, the following topics will be addressed at the beginning of the lecture:

- Basics, history and temporal development of production
- Integrated production planning and integrated digital engineering
- Principles of integrated production systems and further development with Industry 4.0

Building on this, the phases of integrated production planning are taught in accordance with VDI Guideline 5200, whereby special features of parts production and assembly are dealt with in the context of case studies:

- Factory planning system
- Definition of objectives
- Data collection and analysis
- Concept planning (structural development, structural dimensioning and rough layout)
- Detailed planning (production planning and control, fine layout, IT systems in an industry 4.0 factory)
- Preparation and monitoring of implementation
- Start-up and series support

The lecture contents are rounded off by numerous current practical examples with a strong industry 4.0 reference. Within the exercises the lecture contents are deepened and applied to specific problems and tasks.
Workload

MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Literature
Lecture Notes
Event excerpt: Integrative Strategies in Production and Development of High Performance Cars (SS 2018)

Aim
The students ...
- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples. The main topics are:
- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
Lecture Slides
Course: Interdisciplinary approach to verifiable e-voting [T-WIWI-108716]

Responsibility: Melanie Volkamer

Contained in: [M-WIWI-101399] Emphasis Informatics
[M-WIWI-101426] Electives in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511552</td>
<td>Interdisciplinary approach to verifiable e-voting</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oksana Kulyk</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511552</td>
<td>Interdisciplinary approach to verifiable e-voting</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oksana Kulyk</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Event excerpt: Interdisciplinary approach to verifiable e-voting (WS 18/19)

Aim
The students will be able to...

- describe different types of e-voting systems and their comparative advantages and disadvantages
- describe common security requirements and risks in e-voting, as well as possible countermeasures
- explain on an abstract level how a given e-voting system works and interpret its security model provided a description for the system.
- report on the usage of an e-voting system in a real-world election.

Content
The course consists of two parts. The first part is a lecture explaining the background of e-voting technologies and their applications in real-life elections. The lecture will consist of six parts, covering the following topics:

- Overview, including different types of e-voting systems, their advantages and disadvantages and real-world examples.
- Security of e-voting: requirements, adversary models, common risks.
- Verifiability of e-voting: definition and motivation of verifiability as well as its limitations.
- Further relevant topics, including long-term privacy, usability, use of new technologies such as blockchain.

The second part of the course takes part as a seminar, where the students have to present and discuss a specific topic with other participants. The seminar talk is a prerequisite for the participation in the final exam. The seminar topics will be distributed after all the foundations are covered in the lecture. After the topics are distributed, the students have three weeks to prepare their seminar talks. The talks will take place within one or several block seminars, depending on the number of the participating students.

The seminar includes following topics:

- Report on a specific e-voting system or state of e-voting in specific country. The report can focus either on technological aspects such as the cryptographic protocol, or on practical experiences.
- A more in-depth talk on one of the issues from the lecture, such as cryptographical aspects or studies on usability and acceptance of e-voting systems

Workload
Präsenz-Vorlesung: 12 St.
Vor- und Nachbereitungszeit: 48 St.
Präsenz-Seminar: 10 St.
Klausurvorbereitung: 20 St.

Literature

Literatur wird in der Vorlesung verteilt.
Course: International Finance [T-WIWI-102646]

Responsibility: Marliese Uhrig-Homburg

Contained in:
- [M-WIWI-101423] Topics in Finance II
- [M-WIWI-101465] Topics in Finance I
- [M-WIWI-101402] eFinance

ECTS 3

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2530570</td>
<td>International Finance</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marliese Uhrig-Homburg, Ulrich Walter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None

Recommendations
None

Remarks
See German version.

Event excerpt: International Finance (SS 2018)

Aim
The objective of this course is to become familiar with the basics of investment decisions on international markets and to manage foreign exchange risks.

Content
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First the point of view of an international investor second that, of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore current exchange rate theories are discussed.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Elective literature:
T Course: International Marketing [T-WIWI-102807]

Responsibility: Sven Feurer
Contained in: [M-WIWI-101424] Foundations of Marketing

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2572155</td>
<td>International Marketing</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Sven Feurer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

V Event excerpt: International Marketing (WS 18/19)

Aim

Students

- know the characteristics of international marketing
- are familiar with the Hofstede’s cultural dimensions theory
- understand basic concepts of cultural learning (the concept of acculturation, the psychic distance paradox)
- know different concepts that explain international buying behavior (e.g. country-of-origin effects)
- comprehend different concepts for market entries in an international context (“waterfall”-strategy, “sprinkler”-strategy, method of analogy, chain ratio method)
- understand what needs to be considered regarding international market research (dealing with ethical dilemmas, challenges regarding primary and secondary data sources, testing measurement equivalence, linguistic equivalence, differences in the response styles of questionnaires)
- know the particularities of international product policy (standardization vs. differentiation, challenge of branding, fight against product plagiarism, brand counterfeiting and product piracy, protection of intellectual property)
- are familiar with the particularities in the international price policy (BigMac Index, how to deal with price demand functions to achieve profit maximization, arbitrage, price corridor, standardization vs. differentiation of prices, how to deal with currency risks, inflation, exchange rates and different willingness to pay)
- know the characteristics of the international communication policy (different laws, problems regarding international standardized campaigns)
- know particularities of the international sales policy (international channels, differences of contract negotiations)
- are able to organize international marketing departments and subsidiaries
- know the problems of marketing in emerging markets

Content

Doing marketing abroad creates a number of significant new challenges for firms. This class is intended to prepare you for meeting these challenges. In the first session, we will discuss the peculiarities of international marketing. The next five sessions will then be dedicated to methods that can be used to address them. For instance, we will look at the following issues:

- Internationalization strategies
- Market entry strategies
- Standardization vs. individualization (e.g. regarding products, prices, and communication)
• Measurement equivalence in international market research

In the final session, we will apply this knowledge to the case of Wal Mart. In particular, Wal Mart, despite being the largest retailing company worldwide, failed to successfully enter the German Market. We will discuss Wal Mart’s failure using the methods taught in the weeks before.

Workload
The total workload for this course is approximately 45.0 hours. For further information see German version.

Literature
Course: Internship [T-WIWI-102611]

Responsibility: Martin Ruckes

Contained in: [M-WIWI-101419] Internship

ECTS: 10

Exam type: Leistungsnachweis

Version: 1

Learning Control / Examinations
see module description

Conditions
Kein
Course: Introduction to Ceramics [T-MACH-100287]

Responsibility: Michael Hoffmann
Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2125757</td>
<td>Introduction to Ceramics</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Michael Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place at a specific date. The re-examination is offered at a specific date.

Conditions
None

Event excerpt: Introduction to Ceramics (WS 18/19)

Aim
The students know the most relevant crystal structures and defects of non metallic inorganic materials, are able to read binary and ternary phase diagrams and are familiar with powdertechnological shaping techniques, sintering and grain growth. They know the basics of the linear elastic fracture mechanics, are familiar with Weibull statistics, K-concept, subcritical crack growth, creep and the opportunities for microstructural reinforcement of ceramics. The students are able to explain the correlation among chemical bonding, crystal and defect structures and the electrical properties of ceramics.

Content
After a short introduction to interatomic bonding, fundamental concepts of crystallography, the stereographic projection and the most important symmetry elements will be given. Different types of crystal structures are explained and the relevance of imperfections are analysed with respect to the mechanical and electrical properties of ceramics. Then, the impact of surfaces, interfaces and grain boundaries for the preparation, microstructural evolution and the resulting properties is discussed. Finally, an introduction is given to ternary phase diagrams.

The second part of the course covers structure, preparation and application aspects of nonmetallic inorganic glasses, followed by an introduction to the properties and processing methods of fine-grained technical powders. The most relevant shaping methods, such as pressing, slip casting, injection moulding and extrusion are introduced. Subsequently, the basics of science of sintering and the mechanisms for normal and abnormal grain growth are discussed. Mechanical properties of ceramics are analysed using basic principles of linear elastic fracture mechanics, Weibull statistics, concepts for subcritical crack growth and creep models to explain the behaviour at elevated temperatures. Furthermore it is demonstrated that mechanical properties can be significantly enhanced by various types of microstructural toughening mechanisms. The electronic and ionic conductivity of ceramic materials are explained based on defect-chemical considerations and band structure models. Finally, the characteristics of a dielectric, pyroelectric, and piezoelectric behaviour is discussed.

Workload
regular attendance: 45 hours
self-study: 135 hours

Literature
- Kingery, Bowen, Uhlmann, “Introduction To Ceramics”, Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, “Physical Ceramics”, Wiley
Course: Introduction to Energy Economics [T-WIWI-102746]

Responsibility: Wolf Fichtner
Contained in: [M-WIWI-101464] Energy Economics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2581010</td>
<td>Introduction to Energy Economics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolf Fichtner</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2581011</td>
<td>Introduction to Energy Economics</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Patrick Jochem, Nico Lehmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Conditions
None.

Event excerpt: Introduction to Energy Economics (SS 2018)

Aim
The student is able to

• characterize and judge the different energy carriers and their peculiarities,
• understand contexts related to energy economics.

Content
1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

Workload
The total workload for this course is approximately 165.0 hours. For further information see German version.

Literature
Complementary literature:
Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
Course: Introduction to Engineering Mechanics I: Statics and Strength of Materials
[T-MACH-102208]

Responsibility: Alexander Fidlin

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2162238</td>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Alexander Fidlin</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2162239</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td>Alexander Fidlin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (120 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.
Permitted utilities: non-programmable calculator

Conditions
None

Aim
The student
- knows and understands the basic elements of statics,
- is able to solve basic calculations in statics independently.

Content
Statics: force · moment · general equilibrium conditions · center of mass · inner force in structure · plane frameworks · theory of adhesion
Course: Introduction to Engineering Mechanics II : Dynamics [T-MACH-102210]

Responsibility: Alexander Fidlin

Contained in:
- [M-MACH-101261] Emphasis in Fundamentals of Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2161276</td>
<td>Introduction to Engineering Mechanics II : Dynamics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Alexander Fidlin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (75 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination is offered every semester. Re-examinations are offered at every ordinary examination date.

Permitted utilities: non-programmable calculator, literature.

Conditions
None

Event excerpt: Introduction to Engineering Mechanics II : Dynamics (WS 18/19)

Aim
Der Studierende versteht die grundlegenden Elemente der Technischen Dynamik. Er ist in der Lage einfache dynamische Modelle aufzustellen und Berechnungen selbständig durchzuführen.

Content
- Kinematische Grundbegriffe
- Kinetik des Massenpunktes
- Kinematik starrer Körper
- Ebene
- Kinetik des starren Körpers
- Stoßvorgänge
- Schwingungssysteme

Workload
Gesamtaufwand bei 4,5 LP ca. 90 Std.
- Präsenzzeit: 45 Stunden
- Vor- /Nachbereitung: 20 Stunden
- Prüfung und Prüfungsvorbereitung: 25 Stunden
Course: Introduction to Game Theory [T-WIWI-102850]

Responsibility: Clemens Puppe, Johannes Philipp Reiß

ECTS 4.5 **Language** deutsch **Recurrence** Jedes Sommersemester **Exam type** Prüfungsleistung schriftlich **Version** 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2520525</td>
<td>Introduction to Game Theory</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Clemens Puppe, Jana Rollmann</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2520526</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td>Clemens Puppe, Jana Rollmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2).1 of the examination regulation. The exam takes place in the recess period and can be resited at every ordinary examination date.

Conditions
None

Recommendations
Basic knowledge of mathematics and statistics is assumed.

V Event excerpt: Introduction to Game Theory (SS 2018)

Aim
This course offers an introduction to the theoretical analysis of strategic interaction situations. At the end of the course, students shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings.

Content
The course focuses on non-cooperative game theory. It discusses models, solution concepts, and applications for simultaneous games as well as sequential games. Various solution concepts, e.g., Nash equilibrium and subgame-perfect equilibrium, are introduced along with more advanced concepts. A short introduction to cooperative game theory is given if there is sufficient time.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Compulsory textbook:

Additional Literature:
Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences
[T-BGU-101681]

Responsibility: Norbert Rösch, Sven Wursthorn

Contained in: [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
[M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung / Übung 4 (VÜ)</td>
<td>Norbert Rösch, Sven Wursthorn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modeled Conditions
The following conditions must be met:

- The course [T-BGU-103541] Introduction to GIS for Students of Natural, Engineering and Geo Sciences must have been passed.
Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences
[T-BGU-103541]

Responsibility: Norbert Rösch, Sven Wursthorn
Contained in:
[M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
[M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6071101</td>
<td>Vorlesung (VU) / Übung 4</td>
<td>Norbert Rösch, Sven Wursthorn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Introduction to Microsystem Technology II [T-MACH-105183]

Responsibility: Mazin Jouda, Jan Gerrit Korvink

Contained in: [M-MACH-101287] Microsystem Technology

ECTS 3
Language englisch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung schriftlich
Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2142874</td>
<td>Introduction to Microsystem Technology II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Vlad Badilita, Jan Gerrit Korvink</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written examination for major field, oral exam (30 min) for elective field

Conditions
none

Event excerpt: Introduction to Microsystem Technology II (SS 2018)

Aim
The lecture gives an introduction into the basics of microsystems technology. In the first part, methods for lithographic pattern transfer are summarized. Then specific techniques such as the LIGA process, micro-machining, and laser-patterning are explained and examples are given. Finally assembly and packaging methods are presented leading into a discussion of entire microsystems.

Content
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Workload
Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
Course: Introduction to Operations Research I and II [T-WIWI-102758]

Responsibility: Stefan Nickel, Steffen Rebennack, Oliver Stein
Contained in: [M-WIWI-101418] Introduction to Operations Research

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>deutsch</td>
<td>siehe Anmerkungen</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2550040</td>
<td>Introduction to Operations Research I</td>
<td>Vorlesung (V)</td>
<td>2+2</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2530043</td>
<td>Introduction to Operations Research II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2530044</td>
<td></td>
<td>Tutorium (Tu)</td>
<td></td>
<td>Fabian Dunke, Stefan Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.
In each term (usually in March and July), one examination is held for both courses.
The overall grade of the module is the grade of the written examination.

Conditions
None

Recommendations
Mathematics I und II. Programming knowledge for computing exercises.
It is strongly recommended to attend the course *Introduction to Operations Research I* [2550040] before attending the course *Introduction to Operations Research II* [2530043].

Event excerpt: Introduction to Operations Research I (SS 2018)

Aim
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
Examples for typical OR problems.
Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, multicriteria optimization.
Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal flows in networks.

Workload
Berechnung des Arbeitsaufwands eines durchschnittlichen Studenten um die Lernziele zu erreichen. (Intern)
Eine Vernetzung von learningoutcomes (Wissen (content), Kompetenzen (skills) und levels mit dem dafür geschätzten Arbeitsaufwand eines durchschnittlichen Studenten ist anzustreben.

Literature

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Event excerpt: Introduction to Operations Research II (WS 18/19)

Aim
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.
Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.
Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynamical and stochastic inventory models, queuing theory.

Workload
Berechnung des Arbeitsaufwands eines durchschnittlichen Studenten um die Lernziele zu erreichen. (Intern)
Eine Vernetzung von learningoutcomes (Wissen (content), Kompetenzen (skills) und levels mit dem dafür geschätzten Arbeitsaufwand eines durchschnittlichen Studenten ist anzustreben.

Literature
Course: Introduction to Programming with Java [T-WIWI-102735]

Responsibility: N.N., Johann Marius Zöllner
Contained in: [M-WIWI-101581] Introduction to Programming

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511000</td>
<td>Introduction to Programming with Java</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511002</td>
<td></td>
<td>Tutorium (Tu)</td>
<td>1</td>
<td>Lukas Struppek, Janna Ulrich, Johann Marius Zöllner</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511003</td>
<td></td>
<td>Praktische Übung (PÜ)</td>
<td>2</td>
<td>Lukas Struppek, Janna Ulrich, Johann Marius Zöllner</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511004</td>
<td></td>
<td>Tutorium (Tu)</td>
<td>1</td>
<td>Lukas Struppek, Janna Ulrich, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written resp. computer-based exam (60 min) according to Section 4 (2),1 of the examination regulation.
The successful completion of the compulsory tests in the computer lab is prerequisited for admission to the written resp. computer-based exam.
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Remarks
see german version

Event excerpt: Introduction to Programming with Java (WS 18/19)

Aim
- Knowledge of the fundamentals, methods and systems of computer science.
- The students acquire the ability to independently solve algorithmic problems in the programming language Java, which dominates in business applications.
- In doing so, they will be able to find strategic and creative answers in finding solutions to well-defined, concrete and abstract problems.

Content
The lecture “Introduction to Programming with Java” introduces systematic programming and provides essential practical basics for all advanced computer science lectures.
Based on considerations of the structured and systematic design of algorithms, the most important constructs of modern higher programming languages as well as programming methods are explained and illustrated with examples. One focus of the lecture is on teaching the concepts of object-oriented Programming. Java is used as the programming language. Knowledge of this language is required in advanced computer science lectures.
At the end of the lecture period, a written examination will be held for which admission must be granted during the semester after successful participation in the practices. The exact details will be announced in the lecture.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.
Literature
Course: Introduction to Public Finance [T-WIWI-102877]

Responsibility: Berthold Wigger
Contained in: [M-WIWI-101403] Public Finance

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560131</td>
<td>Introduction to Public Finance</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation SPO 2015.

Conditions

None

Event excerpt: Introduction to Public Finance (WS 18/19)

Aim

Students are able to:

- critically assess the economic role of the state in a market economy
- explain and discuss key concepts in public finance, including: public goods; economic externalities; and market failure
- explain and critically discuss competing theoretical approaches to public finance, including welfare economics and public choice theory
- explain the theory of bureaucracy according to Weber and critically assess its strengths and weaknesses
- evaluate the incentives inherent in the bureaucratic model, as well as the more recent introduction of market-oriented incentives associated with public-sector reform
- analyze the strategic implications of public decision making

Content

The course *Introduction to Public Finance* provides an overview of the fundamental issues in public economics. The first part of the course deals with normative theories about the economic role of the state in a market economy. Welfare economics theory is offered as a base model, with which alternative normative theories are compared and contrasted. Within this theoretical framework, arguments concerning efficiency and equity are developed as justification for varying degrees of economic intervention by the state. The second part of the course deals with the positivist theory of public economics. Processes of public decision making are examined and the conditions that lead to market failures resulting from collective action problems are discussed. The third part of the course examines a variety of public spending programs, including social security systems, the public education system, and programs aimed at reducing poverty. The fifth part of the course addresses the key theoretical and political issues associated with fiscal federalism.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Course: Introduction to Stochastic Optimization [T-WIWI-106546]

Responsibility: Steffen Rebennack

Contained in: [M-WIWI-101414] Methodical Foundations of OR
[M-WIWI-103278] Optimization under Uncertainty

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| SS 2018 | 2550470 | Vorlesung (V) | Steffen Rebennack
| SS 2018 | 2550471 | Übung (U) | Assistenten, Steffen Rebennack |

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Conditions
None.
Course: Investments [T-WIWI-102604]

Responsibility: Marliese Uhrig-Homburg
Contained in: [M-WIWI-101435] Essentials of Finance

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2530575</td>
<td>Investments</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2530576</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td>Jelena Eberbach, Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (75 min) according to Section 4(2), 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date. By submitting the exercises (according to Section 4(2), 3 of the examination regulation) up to 4 bonus points can be acquired.

Conditions
None

Recommendations
Knowledge of Business Administration: Finance and Accounting [2610026] is recommended.

Event excerpt: Investments (SS 2018)

Aim
The objective of this course is to become familiar with the basics of investment decisions on stock and bond markets. Basic economic concepts and models are discussed and applied on introductory level. Interlinkages between markets, different decision making concepts and models are demonstrated.

Content
The lecture deals with investment decisions under uncertainty, where the main emphasis is on investment decisions on stock markets. After a discussion of the basic questions of corporate valuation, the lecture focuses on portfolio theory. After that, risk and return in equilibrium are derived using the Capital Asset Pricing Model and the Arbitrage Pricing Theory. The lecture concludes with investments on bond markets.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
Course: Knowledge Discovery [T-WIWI-102666]

Responsibility: York Sure-Vetter

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511302</td>
<td>Knowledge Discovery</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Achim Rettinger, York Sure-Vetter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511303</td>
<td>Exercises to Knowledge Discovery</td>
<td>Übung (U)</td>
<td>1</td>
<td>Achim Rettinger, York Sure-Vetter, Steffen Thoma, Tobias Weller</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of an 1h written exam following §4, Abs. 2. 1 of the examination regulation. Students can be awarded a bonus on their final grade if they successfully complete special assignments.

Conditions

None

Event excerpt: Knowledge Discovery (WS 18/19)

Aim

Students

- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery.
- are able to design, train and evaluate adaptive systems.
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.

Content

Topics of the lectures comprise the whole Machine Learning and Data Mining process like CRISP, data warehousing, OLAP-techniques, learning algorithms, visualization and empirical evaluation. Covered learning techniques range from traditional approaches like decision trees, neural networks and support vector machines to selected approaches resulting from current research. Discussed learning problems are amongst others featurevector-based learning, text mining and social network analysis.

Workload

- The total workload for this course is approximately 150 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 67.5 hours
- Exam and exam preparation: 37.5 hours

Literature

- M. Berhold, D. Hand (eds). Intelligent Data Analysis - An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Laboratory Production Metrology [T-MACH-108878]

Responsibility: Benjamin Häfner
Contained in: [M-MACH-101284] Specialization in Production Engineering

ECTS
Language: deutsch
Recurrence: Jedes Sommersemester
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2150550</td>
<td>Laboratory Production Metrology</td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Benjamin Häfner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Alternative test achievement:
Group presentation

Conditions
none

Event excerpt: Laboratory Production Metrology (SS 2018)

Aim
The students . . .
- are able to name, describe and mark out different measurement technologies that are relevant in a production environment.
- are able to conduct measurements with the presented in-line and laboratory based measurement systems.
- are able to analyze measurement results and assess the measurement uncertainty of these.
- are able to deduce whether a work piece fulfills quality relevant specifications by analysing measurement results.
- are able to use the presented measurement technologies for a new task.

Content
During this course, students get to know measurement systems that are used in a production system. In the age of Industry 4.0, sensors are becoming more important. Therefore, the application of in-line measurement technology such as machine vision and non-destructive testing is focussed. Additionally, laboratory based measurement technologies such as computed tomography are addressed. The student learn the theoretical background as well as practical applications for industrial examples. The students use sensors by themselves during the course. Additionally, they are trained on how to integrate sensors in production processes and how to analyze measurement data with suitable software. The following topics are addressed:

- Classification and examples for different measurement technologies in a production environment
- Machine vision with optical sensors
- Information fusion based on optical measurements
- Robot-based optical measurements
- Non-destructive testing by means of acoustic measurements
- Coordinate measurement technology
- Industrial computed tomography
- Measurement uncertainty evaluation
- Analysis of production data by means of data mining

Workload
regular attendance: 31,5 hours
self-study: 88,5 hours
Course: Learning Factory “Global Production” [T-MACH-105783]

Responsibility: Gisela Lanza
Contained in: [M-MACH-101284] Specialization in Production Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2149612</td>
<td>Seminar / Praktikum 2 (S/P)</td>
<td></td>
<td></td>
<td>Gisela Lanza</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam (45 min group examination with 3 students)

Conditions
Successful completion of one of the following courses:
- Integrated Production Planning [T-MACH-102106]
- Global Production and Logistics – Part 1: Global Production [T-MACH-105158]
- Quality Management [T-MACH-102107]

Modeled Conditions
1 of 1 conditions must be met:
- The course [T-MACH-102107] Quality Management must have been passed.

Recommendations
Participation in the following courses:
- Integrated Production Planning [T-MACH-102106]
- Global Production and Logistics – Part 1: Global Production [T-MACH-105158]
- Quality Management [T-MACH-102107]

Remarks
For organizational reasons the number of participants for the course is limited to 20. Hence a selection process will take place. Applications are made via the homepage of wbk.

Event excerpt: (WS 18/19)

Aim
Students are able to . . .

- evaluate and select alternative locations using appropriate methods.
- use methods and tools of lean management to plan and manage production systems that are suitable for the location.
- use the Six Sigma method and apply goal-oriented process management.
- select an appropriate level of automation of the production units based on quantitative variables.
- make use of well-established methods for the evaluation and selection of suppliers.
- apply methods for planning a global production network depending on company-specific circumstances to sketch a suitable network and classify and evaluating it according to specific criteria.
- apply the learned methods and approaches with regard to problem solving in a global production environment and able to reflect their effectiveness.
Content
The learning factory “Global Production” serves as a modern teaching environment for the challenges of global production. To make this challenges come alive, students can run a production of electric motors under real production conditions. The course is divided into e-learning units and presence dates. The e-learning units help to learn essential basics and to immerse themselves in specific topics (e.g. selection of location, supplier selection and planning of production networks). The focus of the presence appointments is the case-specific application of relevant methods for planning and control of production systems that are suitable for the location. In addition to traditional methods and tools to organize lean production systems (e.g. Kanban and JIT / JIS, Line Balancing) the lecture in particular deals with site-specific quality assurance and scalable automation. Essential methods for quality assurance in complex production systems are taught and brought to practical experience by a Six Sigma project. In the area of scalable automation, it is important to find solutions for the adaption of the level of automation of the production system to the local production conditions (e.g. automated workpiece transport, integration of lightweight robots for process linking) and to implement them physically. At the same time safety concepts should be developed and implemented as enablers for human-robot collaboration.

The course also includes an excursion to the production plant for the manufacturing of electric motors of an industrial partner.

Main focus of the lecture:
- site selection
- site-specific factory planning
- site-specific quality assurance
- scalable automation
- supplier selection

Workload
- e-Learning: ~ 24 h
- regular attendance: ~ 36 h
- self-study: ~ 60 h
Course: Logistics - Organisation, Design and Control of Logistic Systems
[T-MACH-102089]

Responsibility: Kai Furmans
Contained in: [M-WIWI-101421] Supply Chain Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2118078</td>
<td>Logistics - Organisation, Design, and Control of Logistic Systems</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Kai Furmans</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 90 minutes written examination (according to §4(2), 1 of the examination regulation).

Conditions
None

Recommendations
Required are lectures on “Linear Algebra” and “Stochastic”.

Aim
Students are able to:

- Describe logistical tasks,
- Design logistical systems suitable to the respective task,
- Dimension stocastical stock models,
- Determine essential influencing parameters on the bullwhip effect and
- Use optimizing solution methods.

Content
Introduction

- historical overview
- lines of development

Structure of logistics systems
Distribution logistics

- location planning
- Vehicle Routing Planning
- distribution centers

Inventory management

- demand forecasting
- Inventory management policies
- Bullwhip effect

Production logistics

- layout planning
- material handling
- flow control

Supply Management
- information flow
- transportation organization
- controlling and development of a logistics system
- co-operation mechanisms
- Lean SCM
- SCOR model

Identification Technologies

Workload
180 hrs

Literature
- Arnold/Isermann/Kuhn/Tempelmeier. Handbuch Logistik, Springer Verlag, 2002 (Neuauflage in Arbeit)
- Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
- Domschke/Drexl. Logistik, Standorte, Oldenbourg Verlag, 1996
- Gudehus. Logistik, Springer Verlag, 2007
- Tempelmeier. Bestandsmanagement in Supply Chains, Books on Demand 2006
Course: Logistics and Supply Chain Management [T-WIWI-102870]

Responsibility: Marcus Wiens
Contained in: [M-WIWI-101437] Industrial Production I

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2581996</td>
<td>Logistics and Supply Chain Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marcus Wiens</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2581997</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Florian Diehlmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None

Event excerpt: Logistics and Supply Chain Management (SS 2018)

Aim

- The students know the central tasks and challenges of modern logistics management.
- The students apply key concepts in the area of logistics.
- The students apply methods of risk evaluation and risk management in supply chains.
- The students know key incentive-schemes and planning-tools relevant to supply chain management.
- The students apply exemplary methods to solve practical problems.

Content

- Introduction: Basic Terms and Concepts
- Logistics Systems and Supply Chain Management
- Supply Chain Risk Management
- Extensions and Applications

Workload
Toatl effort required will account for approximately 105h (3.5 credits).

Literature
will be announced in the course
Course: Machine Learning 1 - Basic Methods [T-WIWI-106340]

Responsibility: Johann Marius Zöllner

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>24150</td>
<td>Machine Learning 1 - Basic methods</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Rüdiger Dillmann, Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation. The exam takes place every semester and can be repeated at every regular examination date.

Conditions
None.

Remarks

Event excerpt: Machine Learning 1 - Basic methods (WS 18/19)

Aim
- Studierende erlangen Kenntnis der grundlegenden Methoden im Bereich des Maschinellen Lernens.
- Studierende können Methoden des Maschinellen Lernens einordnen, formal beschreiben und bewerten.
- Die Studierenden können ihr Wissen für die Auswahl geeigneter Modelle und Methoden für ausgewählte Probleme im Bereich des Maschinellen Lernens einsetzen.

Content
Das Themenfeld Wissensakquisition und Maschinelles Lernen ist ein stark expandierendes Wissensgebiet und Gegenstand zahlreicher Forschungs- und Entwicklungsvorhaben. Der Wissenserwerb kann dabei auf unterschiedliche Weise erfolgen. So kann ein System Nutzen aus bereits gemachten Erfahrungen ziehen, es kann trainiert werden, oder es zieht Schlüsse aus umfangreichem Hintergrundwissen.

Workload
Vorlesung mit 2 SWS, plus Nachbereitung durch die Studierenden.
Course: Machine Learning 2 – Advanced Methods [T-WIWI-106341]

Responsibility: Johann Marius Zöllner

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511502</td>
<td>Machine Learning 2 - Advanced methods</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Johann Marius Zöllner</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511503</td>
<td>Exercises for Machine Learning 2 - Advanced Methods</td>
<td>Übung (U)</td>
<td>1</td>
<td>Johann Marius Zöllner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation. The exam takes place every semester and can be repeated at every regular examination date.

Conditions
None.

Remarks
New course starting summer term 2017.

Event excerpt: Machine Learning 2 - Advanced methods (SS 2018)

Aim
- Students understand extended concepts of machine learning and their possible applications.
- Students can classify, formally describe and evaluate methods of machine learning.
- In detail, methods of machine learning can be embedded and applied in complex decision and inference systems.
- Students can use their knowledge to select suitable models and methods of machine learning for existing problems in the field of machine intelligence.

Content
The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture “Machine Learning 2” deals with advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning), pulsed networks, hierarchical approaches, e.g. As well as dynamic, probabilistic relational methods. Another focus is the embedding and application of machine learning methods in real systems.

The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (robotics, neurorobotics, image processing, etc.).

Workload
Vorlesung mit 2 SWS, plus Nachbereitung durch die Studierenden.

Literature
The slides are available as a PDF

Related Literature
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Machine Learning - Tom Mitchell
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Further (specific) literature on individual topics will be given in the lecture.
Course: Machine Tools and Industrial Handling [T-MACH-102158]

Responsibility: Jürgen Fleischer
Contained in: [M-MACH-101286] Machine Tools and Industrial Handling

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2149902</td>
<td>Machine Tools and Industrial Handling</td>
<td>Vorlesung (VU) / Übung 6</td>
<td>Jürgen Fleischer</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written exam (120 minutes)

Conditions
“T-MACH-109055 - Werkzeugmaschinen und Handhabungstechnik” must not be commenced.

Event excerpt: Machine Tools and Industrial Handling (WS 18/19)

Aim
The students ...

- are able to assess the use and application of machine tools and handling equipment and to differentiate between them in terms of their characteristics and design,
- can describe and discuss the essential elements of the machine tool (frame, main spindle, feed axes, peripheral equipment, control unit),
- are able to select and dimension the essential components of a machine tool,
- are capable of selecting and evaluating machine tools according to technical and economic criteria.

Content
The lecture gives an overview of the construction, use and application of machine tools and industrial handling equipment. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools is conveyed. First, the main components of the machine tools are systematically explained and their design principles as well as the integral machine tool design are discussed. Subsequently, the use and application of machine tools will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0.

The individual topics are:
- Frames and frame components
- Feed axes
- Spindles
- Peripheral equipment
- Control unit
- Metrological evaluation and machine testing
- Process monitoring
- Maintenance of machine tools
- Safety assessment of machine tools
- Machine examples

Workload
MACH:
regular attendance: 63 hours
self-study: 177 hours
Wi/ing: TVWL
regular attendance: 63 hours
self-study: 207 hours
Course: Macroeconomic Theory [T-WIWI-109121]

Responsibility: Johannes Brumm

Contained in: [M-WIWI-101501] Economic Theory

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560404</td>
<td>Macroeconomic Theory</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Johannes Brumm</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560405</td>
<td>Übung zu Macroeconomic Theory</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Luca Pegorari</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Conditions
Successful completion of all relevant modules from the basic program.

Event excerpt: Macroeconomic Theory (WS 18/19)

Aim

Students
- deepen their knowledge and understanding of basic macroeconomic theories
- learn important mathematical tools and concepts
- are able to analyze and discuss fiscal and monetary issues
- are prepared for an advanced study in (macro)economics

Workload
The total workload for this course is approximately 135 hours. For further information see the German version.

Literature
Literature and lecture notes are provided during the course.
Course: Management Accounting 1 [T-WIWI-102800]

Responsibility: Marcus Wouters
Contained in: [M-WIWI-101498] Management Accounting

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2579900</td>
<td>Management Accounting 1</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marcus Wouters</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2579901</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>N.N., Marcus Wouters</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation) at the end of each semester.

Conditions

None

Event excerpt: Management Accounting 1 (SS 2018)

Aim

Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Content

The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

- In addition, several papers that will be available on ILIAS.
Course: Management Accounting 2 [T-WIWI-102801]

Responsibility: Marcus Wouters
Contained in: [M-WIWI-101498] Management Accounting

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2579902</td>
<td>Management Accounting 2</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Marcus Wouters</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2579903</td>
<td></td>
<td>Übung (U)</td>
<td>2</td>
<td>Ana Mickovic, Marcus Wouters</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation) at the end of each semester.

Conditions
None

Recommendations
It is recommended to take part in the course “Management Accounting 1” before this course.

Event excerpt: Management Accounting 2 (WS 18/19)

Aim
Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems and customer value propositions.
We will use international material written in English.
We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).
The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- In addition, several papers that will be available on ILIAS.
Course: Management and Strategy [T-WIWI-102629]

Responsibility: Hagen Lindstädt
Contained in: [M-WIWI-101425] Strategy and Organization

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2577900</td>
<td>Management and Strategy</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Nicolas Burkardt, Kerstin Fehre, Hagen Lindstädt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Event excerpt: Management and Strategy (SS 2018)

Aim

After passing this course students are able to

- prepare strategic decisions along the ideal-typical strategy process in practice (“strategic analysis”).
- assess strategic options.
- explain the portfolio management (Parental advantage and best owner of business entities).
- discuss price and capacity decisions in oligopolies and explain them in examples.

Content

The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration. Thereby a focus is on imparting knowledge about how price developments in oligopolistic markets can be understood, modeled and forecasted based on game theory.

Workload

The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature

The relevant excerpts and additional sources are made known during the course.
Course: Management of IT-Projects [T-WIWI-102667]

Responsibility: Roland Schätzle

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511214</td>
<td>Management of IT-Projects</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Roland Schätzle</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511215</td>
<td>Management of IT-Projects</td>
<td>Übung (U)</td>
<td>1</td>
<td>Roland Schätzle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written examination (60 min) in the first week after lecture period according to Section 4(2), 1 of the examination regulation.

Conditions

None.

Event excerpt: Management of IT-Projects (SS 2018)

Aim

Students

- explain the terminology of IT project management and typical used methods for planning, handling and controlling,
- apply methods appropriate to current project phases and project contexts,
- consider organisational and social impact factors.

Content

The lecture deals with the general framework, impact factors and methods for planning, handling, and controlling of IT projects. Especially following topics are addressed:

- project environment
- project organisation
- project planning including the following items:
 - plan of the project structure
 - flow chart
 - project schedule
 - plan of resources
- effort estimation
- project infrastructure
- project controlling
- risk management
- feasibility studies
- decision processes, conduct of negotiations, time management.

Workload

Lecture 30h
Exercise 15h
Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam & 1h

Total: 150h

Literature

- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004

Further literature is given in each lecture individually.
Course: Managing Organizations [T-WIWI-102630]

Responsibility: Hagen Lindstädt

Contained in:
- [M-WIWI-101425] Strategy and Organization
- [M-WIWI-101513] Human Resources and Organizations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2577902</td>
<td>Managing Organizations</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Nicolas Burkardt, Hagen Lindstädt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Event excerpt: Managing Organizations (WS 18/19)

Aim

After passing this course students are able to

- evaluate strengths and weaknesses of existing organisational structures and rules.
- compare alternatives of organisational structure in practice and assess and interpret them regarding their effectiveness and efficiency.
- assess the management of organisational changes.

Content

The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organizational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Workload

The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature

The relevant excerpts and additional sources are made known during the course.
Course: Managing the Marketing Mix [T-WIWI-102805]

Responsibility: Martin Klarmann
Contained in: [M-WIWI-101424] Foundations of Marketing

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2571152</td>
<td>Managing the Marketing Mix</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Klarmann</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2571153</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Ingo Halbauer, Martin Moosbrugger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Event excerpt: Managing the Marketing Mix (SS 2018)

Aim
See German version.

Content
The content of this course concentrates on the four elements of the marketing mix. Therefore the four main chapters are:

- Product management
- Pricing
- Promotion
- Sales management

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Course: Manufacturing Technology [T-MACH-102105]

Responsibility: Volker Schulze, Frederik Zanger

Contained in: [M-MACH-101276] Manufacturing Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2149657</td>
<td>Manufacturing Technology</td>
<td>Vorlesung / Übung 6 (VÜ)</td>
<td>Volker Schulze, Frederik Zanger</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written Exam (180 min)

Conditions
none

Event excerpt: Manufacturing Technology (WS 18/19)

Aim
The students . . .

- are capable to specify the different manufacturing processes and to explain their functions.
- are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
- have the ability to perform a process selection based on their specific characteristics.
- are enabled to identify correlations between different processes and to select a process regarding possible applications.
- are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
- are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:

- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
• Heat treatment and surface treatment
• Process chains in manufacturing

This lecture provides an excursion to an industry company.

Workload
regular attendance: 63 hours
self-study: 177 hours

Literature
Lecture Notes

Course: Material Flow in Logistic Systems [T-MACH-102151]

Responsibility: Kai Furmans
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117051</td>
<td>Material flow in logistic systems</td>
<td>Sonstige (sonst.)</td>
<td>4</td>
<td>Kai Furmans</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

Recommendations

Recommended elective subject: Probability Theory and Statistics

Remarks

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Event excerpt: Material flow in logistic systems (WS 18/19)

Aim

After successful completion of the course, you are able (alone and in a team) to:

- Accurately describe a material handling system in a conversation with an expert.
- Model and parameterize the system load and the typical design elements of a material handling system.
- Design a material handling system for a task.
- Assess the performance of a material handling system in terms of the requirements.
- Change the main lever for influencing the performance.
- Expand the boundaries of today's methods and system components conceptually if necessary.

Content

- Elements of material flow systems (conveyor elements, fork, join elements)
- Models of material flow networks using graph theory and matrices
- Queueing theory, calculation of waiting time, utilization
- Warehouseing and order-picking
- Shuttle systems
- Sorting systems
- Simulation
- Calculation of availability and reliability
- Value stream analysis

Workload
Regular attendance: 30 h
Self-study: 100 h
Group work: 50 h

Literature
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009
Course: Material Science II for Business Engineers [T-MACH-102079]

Responsibility: Michael Hoffmann

Contained in:
- [M-MACH-101262] Emphasis Materials Science
- [M-MACH-101261] Emphasis in Fundamentals of Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2126782</td>
<td>Materials Science II for Business Engineers</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Michael Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the winter term is carried out by a written or oral exam.

Conditions
The module Material Science has to be completed beforehand.

Modeled Conditions
The following conditions must be met:
- The module [M-MACH-101260] Materials Science must have been passed.

Event excerpt: Materials Science II for Business Engineers (SS 2018)

Aim
Students know how to read binary phase diagrams and are able to explain the microstructural evolution of metallic and ceramic materials under equilibrium and non-equilibrium conditions. They know the most important alloys of iron-, aluminium-, and copper-based materials. Students are aware of the principle structures of polymers, non metallic inorganic glasses and ceramics and are able to derive differences in materials properties.

Content
The course gives an overview of different heat treatments for steels to obtain defined microstructures such as martensite or pearlite and discusses their impact on the mechanical properties. Different thermally activated processes, such as diffusion, creep, recovery and recrystallization are introduced and analyzed and terms of their relevance for materials engineering. Heat treatments and thermally activated processes are also related to aluminium and copper alloys. The second part of the course covers structure, processing and applications of polymers, nonmetallic inorganic glasses and ceramics. Finally an overview is given of the most important materials testing methods.

Workload
regular attendance: 32 hours
self-study: 118 hours

Literature
Elective literature:
Course: Materials and Processes for Body Lightweight Construction in the Automotive Industry [T-MACH-105166]

Responsibility: Stefan Kienzle, Dieter Steegmüller

Contained in: [M-MACH-101284] Specialization in Production Engineering

ECTS 4 Language deutsch Recurrence Jedes Wintersemester Exam type Prüfungsleistung mündlich Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2149669</td>
<td>Materials and Processes for Body Lightweight Construction in the Automot-</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Kienzle, Dieter Steegmüller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ive Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Exam (20 min)

Conditions

none

Event excerpt: Materials and Processes for Body Lightweight Construction in the Automotive Industry (WS 18/19)

Aim

The students...

- are able to name the various lightweight approaches and identify possible areas of application.
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions.
- are able to perform a process selection based on the methods and their characteristics.
- are able to evaluate the different methods against lightweight applications on the basis of technical and economic aspects.

Content

The objective of the lecture is to build up an overview of the relevant materials and processes for the production of a lightweight body. This includes both the actual production and the joining for the body. The lecture covers the different lightweight approaches and possible fields of application in the automotive industry. The methods are discussed with practical examples from the automotive industry.

The following topics will be covered:

- lightweight designs
- aluminium and steel for lightweight construction
- fiber-reinforced plastics by the RTM and SMC process
- joining of steel and aluminium (clinching, riveting, welding)
- bonding
- coating
- finishing
- quality assurance
- virtual factory

Workload

regular attendance: 21 hours
self-study: 99 hours
Course: Materials Science I [T-MACH-102078]

Responsibility: Michael Hoffmann

Contained in: [M-MACH-101260] Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2125760</td>
<td>Materials Science I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Michael Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.

Conditions
None

Event excerpt: Materials Science I (WS 18/19)

Aim
The student

- knows and understands the correlation between atomic structure, microstructure and related macroscopic properties (e.g. mechanical or electrical behaviour)
- has basic knowledge on materials development and characterization

Content

- Atomic structure and interatomic bonding
- Structure of crystalline solids
- Imperfections in solids
- Mechanical behaviour
- Physical properties
- Solidification
- Thermodynamics of heterogeneous systems
- Phase diagrams
- Ferrous alloys

Workload
The total workload for this course is approximately 75.0 hours. For further information see German version.

Literature

Elective literature:
<table>
<thead>
<tr>
<th>ECTS</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Mathematics I - Midterm Exam [T-MATH-102260]

Responsibility: Martin Folkers, Daniel Hug, Günter Last, Steffen Winter
Contained in: [M-MATH-101676] Mathematics 1

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>deutsch</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>0135000</td>
<td></td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Martin Folkers</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>0135100</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Martin Folkers</td>
</tr>
</tbody>
</table>
Course: Mathematics II - Final Exam [T-MATH-102263]

Responsibility: Martin Folkers, Daniel Hug, Günter Last, Steffen Winter

Contained in: [M-MATH-101677] Mathematics 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Mathematics II - Midterm Exam [T-MATH-102262]

Responsibility: Martin Folkers, Daniel Hug, Günter Last, Steffen Winter

Contained in: [M-MATH-101677] Mathematics 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>0183000</td>
<td></td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Martin Folkers</td>
</tr>
<tr>
<td>SS 2018</td>
<td>0183100</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Martin Folkers</td>
</tr>
</tbody>
</table>
Course: Mathematics III - Final Exam [T-MATH-102264]

Responsibility: Martin Folkers, Daniel Hug, Günter Last, Steffen Winter
Contained in: [M-MATH-101679] Mathematics 3

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>deutsch</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>0135200</td>
<td></td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Steffen Winter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>0135300</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Steffen Winter</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Mechanical Design I and II - CIW [T-MACH-104739]

Responsibility: Sven Matthiesen
Contained in: [M-MACH-101299] Mechanical Design

ECTS 7 Language deutsch
Recurrence Jedes Wintersemester Exam type Prüfungsleistung schriftlich
Version 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2146195</td>
<td>Mechanical Design II (CIW/VT/MIT/IP-M) Vorlesung (V)</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Sven Matthiesen</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2145179</td>
<td>Mechanical Design I (CIW/VT/MIT/IP-M) Vorlesung (V)</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Albert Albers, Matthias Behrendt, Sven Matthiesen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written Exam (90min) on the topics of MKLI and MKLII for CIW.

Conditions
The bricks "T-MACH-102132 - Maschinenkonstruktionslehre I, Vorleistung" and “T-MACH-102133 - Maschinenkonstruktionslehre II, Vorleistung” must be passed successfully.

Modeled Conditions
The following conditions must be met:
1. The course [T-MACH-102133] Mechanical Design II, Tutorial must have been passed.
2. The course [T-MACH-102132] Mechanical Design I, Tutorial must have been passed.

Event excerpt: Mechanical Design I (CIW/VT/MIT/IP-M) (WS 18/19)

Aim
The students are able to . . .

- describe complex systems using the system technique.
- identify and formulate functional connections of a technical system.
- use the contact and channel approach (C&C²-A).
- chose a spring and to calculate it.
- identify different bearings and bearing arrangements and to select a suitable one for the particular situation.
- dimension bearing arrangements for different load cases.
- use the basic rules and prinicipales of visualization and to create a technical drawing.
- describe the functional connections of a technical system using the C&C²-A approach and sytem theorie.

Furthermore the students can describe as a team technical solutions with a gear and draw chosen components in different technical expositions.

Content
Introduction in product engineering
Tools of visualization (technical drawing)
Product manufacturing as problem solving
Product manufacturing of technical systems:

- system theory
- Contact and Channel C&C²-A

Basics of chosen design- and machining elements
• springs
• bearings
• sealings

Concomitant to the lectures tutorials take place with the following contents:

Gear workshop
Tutorial "tools of visualization (technical drawing)"
Tutorial "technical systems product development, sytem theory, Contact and Chanel C&C²-A"
Tutorial "springs"
Tutorial "bearing and bearing arrangements"

Workload
regular attendance: 42 h
self-study: 80 h

Literature
Lecture notes:
The lecture notes can be downloaded via the eLearning platform Ilias.

Literature:
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von
Maschinenelementen;
or per full text access provided by university library
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Event excerpt: Mechanical Design II (CIW/VT/MIT/IP-M) (SS 2018)

Aim
The students are able to ...
Tutorials take place in concomitant to the lectures.

Workload

regular attendance: 42 h
self-study: 80 h

Literature

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-22033-X,
also available as electronic paper at the KIT catalogue.

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Course: Mechanical Design I, Tutorial [T-MACH-102132]

Responsibility: Sven Matthiesen
Contained in: [M-MACH-101299] Mechanical Design

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Studienleistung</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2145195</td>
<td>Tutorials Mechanical Design I (CIW/VT/MIT/IP-M)</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Albert Albers, Matthias Behrendt, Sven Matthiesen, Mitarbeiter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

To pass the preliminary work, attendance at 3 workshop sessions of the MKL1 transmission workshop and the passing of a colloquium at the beginning of each workshop are prerequisites. In addition, participation in an online test is a prerequisite.

Conditions

None
Course: Mechanical Design II, Tutorial [T-MACH-102133]

Responsibility: Sven Matthiesen
Contained in: [M-MACH-101299] Mechanical Design

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2146196</td>
<td>Tutorials Mechanical Design II (CIW/VT/MIT/IP-M)</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Sven Matthiesen, Mitarbeiter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

IP-MATH-CIW-NWT: For passing the prerequisite it is necessary that a design task is successfully completed as a technical hand drawing.

MIT: To pass the preliminary examination, attendance at workshop sessions and a colloquium at the beginning of each workshop are required.

Conditions

None
Course: Metal Forming [T-MACH-105177]

Responsibility: Thomas Herlan

Contained in: [M-MACH-101284] Specialization in Production Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2150681</td>
<td>Metal Forming</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Herlan</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Exam (20 min)

Conditions

none

Event excerpt: Metal Forming (SS 2018)

Aim

The students

- are able to reflect the basics, forming processes, tools, Machines and equipment of metal forming in an integrated and systematic way.
- are capable to illustrate the differences between the forming processes, tools, machines and equipment with concrete examples and are qualified to analyze and assess them in terms of their suitability for the particular application.
- are also able to transfer and apply the acquired knowledge to other metal forming problems.

Content

At the beginning of the lecture the basics of metal forming are briefly introduced. The focus of the lecture is on massive forming (forging, extrusion, rolling) and sheet forming (car body forming, deep drawing, stretch drawing). This includes the systematic treatment of the appropriate metal forming Machines and the corresponding tool technology. Aspects of tribology, as well as basics in material science and aspects of production planning are also discussed briefly. The plastic theory is presented to the extent necessary in order to present the numerical simulation method and the FEM computation of forming processes or tool design. The lecture will be completed by product samples from the forming technology.

The topics are as follows:

- Introduction and basics
- Hot forming
- Metal forming machines
- Tools
- Metallographic fundamentals
- Plastic theory
- Tribology
- Sheet forming
- Extrusion
- Numerical simulation

Workload

regular attendance: 21 hours
self-study: 99 hours
Course: Meteorological Hazards [T-PHYS-101557]

Responsibility: Michael Kunz

Contained in:
- [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
- [M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>4052121</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Michael Kunz</td>
</tr>
</tbody>
</table>

Conditions
none
Course: Microactuators [T-MACH-101910]

Responsibility: Manfred Kohl
Contained in: [M-MACH-101287] Microsystem Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2142881</td>
<td>Microactuators</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Manfred Kohl</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam

Conditions
none

Event excerpt: Microactuators (SS 2018)

Aim
- Knowledge of the actuation principles including pros and cons
- Knowledge of important fabrication technologies
- Explanation of layout and function of the microactuators
- Calculation of important properties (time constants, forces, displacements, etc.)
- Development of a layout based on specifications

Content
- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications
The lecture includes amongst others the following topics:

- Microelectromechanical systems: linear actuators, microrelais, micromotors
- Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
- Microrobotics: Microgrippers, polymer actuators (smart muscle)
- Information technology: Optical switches, mirror systems, read/write heads

Workload
lecture time 1.5 h/week
self preparation: 8.5 h/week

Literature
- Lecture notes
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
Course: Mobile Machines [T-MACH-105168]

Responsibility: Marcus Geimer
Contained in: [M-MACH-101267] Mobile Machines

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114073</td>
<td>Mobile Machines</td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Chris Geiger, Marcus Geimer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
none

Event excerpt: Mobile Machines (SS 2018)

Aim
After completion of the course the students have knowledge of:

- a wide range of mobile machines
- operation modes and working cycles of important mobile machines
- selected subsystems and components

Content

- Introduction of the required components and machines
- Basics of the structure of the whole system
- Practical insight in the development techniques

Workload

- regular attendance: 42 hours
- self-study: 184 hours
Course: Mobility and Infrastructure [T-BGU-101791]

Responsibility: Ralf Roos, Peter Vortisch
Contained in: [M-BGU-101067] Mobility and Infrastructure

ECTS 9
Language deutsch
Recurrence Jedes Semester
Exam type Prüfungsleistung schriftlich
Version 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6200404</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Sebastian Wilske</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200405</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Mitarbeiter/innen, Sebastian Wilske</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200406</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Vortisch</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200407</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Mitarbeiter/innen, Peter Vortisch</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200408</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Ralf Roos, Matthias Zimmermann</td>
</tr>
<tr>
<td>SS 2018</td>
<td>6200409</td>
<td></td>
<td>Übung (Ü)</td>
<td></td>
<td>Plamena Plachkova-Dzhurova, Matthias Zimmermann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

written exam, 150 min.

Conditions

None

Recommendations

None

Remarks

None
Course: Model Based Application Methods [T-MACH-102199]

Responsibility: Frank Kirschbaum
Contained in: [M-MACH-101303] Combustion Engines II

ECTS: 4
Recurrence: Jedes Sommersemester
Exam type: Prüfungsleistung mündlich
Version: 1

Learning Control / Examinations
take-home exam, short presentation with oral examination

Conditions
none
Course: Modeling and OR-Software: Introduction [T-WIWI-106199]

Responsibility: Stefan Nickel

ECTS: 4.5
Language: deutsch
Recurrence: Jedes Semester
Exam type: Prüfungsleistung anderer Art
Version: 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550490</td>
<td></td>
<td>Praktikum (P)</td>
<td>3</td>
<td>Stefan Nickel, Melanie Reuter-Oppermann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the software laboratory and the following term.

Conditions
None

Recommendations
Firm knowledge of the contents from the lecture Introduction to Operations Research I [2550040] of the module Operations Research [WW1OR].

Remarks
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course.
The lecture is offered in every term. The planned lectures and courses for the next three years are announced online.

V Event excerpt: (WS 18/19)

Aim
The student

- evaluates the possibilities of computer usage in practical applications of Operations Research,
- is capable of classifying and utilizing the general possibilities and fields of usage of modeling and implementation software for solving OR models in practice,
- models and solves problems arising in industry applications with the aid of computer-supported optimization methods.

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, ...), the software IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL will be discussed which can be used to solve OR problems on a computer-aided basis.

Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Course: Modelling and Identification [T-ETIT-100699]

Responsibility: Sören Hohmann
Contained in: [M-ETIT-101156] Control Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2303166</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Sören Hohmann</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2303168</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Felix Strehle</td>
<td></td>
</tr>
</tbody>
</table>

Conditions
none
Course: Municipal Finance [T-WIWI-107763]

Responsibility: Berthold Wigger
Contained in: [M-WIWI-101403] Public Finance

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560120</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td></td>
<td>Manfred Groh, Berthold Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation SPO 2015.

Conditions
None

Remarks

Event excerpt: (WS 18/19)

Aim
The students:

- are familiar with the theory and policy of municipal revenues and spending,
- are able to evaluate the allocative and distributive effects of different kinds of municipal revenues and spending,
- understand the extent, structure and variety of municipal budgeting and are able to assess long term consequences of municipal revenues and spending.

Content
The course *Municipal Finance* addresses the theory and policy of municipal revenues and spending including grants, municipal revenue equalisation, taxation as well as municipal and public enterprises. At the beginning of the course, fundamental concepts of taxation theory as well as key elements of the German taxation system are introduced. The allocative and distributive effects of different taxation methods are examined thereafter and are combined within the theory of optimal taxation. The following chapter is concerned with municipal borrowing and illustrates ways to acquire additional funding. After addressing the extent, structure and variety of municipal borrowing, macroeconomic theories are introduced and applied to the municipal sector. In the course of this final chapter, special attention will be paid to the long term consequences and the sustainability of municipal borrowing as a means of budgeting.

Literature

- Several publications of the Ministry of Interior and the Ministry of Finance Baden-Württemberg.
Course: Nanotechnology with Clusterbeams [T-MACH-102080]

Responsibility: Jürgen Gspann
Contained in: [M-MACH-101287] Microsystem Technology

ECTS	Recurrence	Exam type	Version
3 | Jedes Wintersemester | Prüfungsleistung schriftlich | 1

Learning Control / Examinations
written examination
presence in more than 70% of the lectures
Duration: 1 h

aids: none

Conditions
none
Course: Nature-Inspired Optimisation Methods [T-WIWI-102679]

Responsibility: Pradyumn Kumar Shukla

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511106</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Pradyumn Kumar Shukla</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination called “bonus exam”, 60 min (according Section 4(2), 3 of the examination regulation) or a selection of exercises. The bonus exam may be split into several shorter written tests.

The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Conditions

None

Event excerpt: (SS 2018)

Aim

To learn:

1. Different nature-inspired methods: local search, simulated annealing, tabu search, evolutionary algorithms, ant colony optimization, particle swarm optimization
2. Different aspects and limitation of the methods
3. Applications of such methods
4. Multi-objective optimization methods
5. Constraint handling methods
6. Different aspects in parallelization and computing platforms

Content

Many optimization problems are too complex to be solved to optimality. A promising alternative is to use stochastic heuristics, based on some fundamental principles observed in nature. Examples include evolutionary algorithms, ant algorithms, or simulated annealing. These methods are widely applicable and have proven very powerful in practice. During the course, such optimization methods based on natural principles are presented, analyzed and compared. Since the algorithms are usually quite computational intensive, possibilities for parallelization are also investigated.

Literature

* E. Bonabeau, M. Dorigo, G. Theraulaz: ‘Swarm Intelligence’. Oxford University Press, 1999
Course: Nonlinear Optimization I [T-WIWI-102724]

Responsibility: Oliver Stein

Contained in: [M-WIWI-101414] Methodical Foundations of OR
[M-WIWI-103278] Optimization under Uncertainty

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
</table>
| WS 18/19 | 2550111 | Vorlesung (V) | 2 | Oliver Stein
| WS 18/19 | 2550112 | Übung (U) | | Robert Mohr, Oliver Stein |
| WS 18/19 | 2550142 | Übung (U) | | Robert Mohr, Oliver Stein |

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.
The exam takes place in the semester of the lecture and in the following semester.
The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Conditions
The module component exam T-WIWI-103637 “Nonlinear Optimization I and II” may not be selected.

Modeled Conditions
The following conditions must be met:
- The course [T-WIWI-103637] Nonlinear Optimization I and II must not have been started.

Remarks
Part I and II of the lecture are held consecutively in the same semester.

Event excerpt: (WS 18/19)

Aim
The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions for unconstrained problems
- Optimality conditions for unconstrained convex problems
- Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)
Constrained problems are the contents of part II of the lecture. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature

Elective literature:

Course: Nonlinear Optimization I and II [T-WIWI-103637]

Responsibility: Oliver Stein
Contained in: [M-WIWI-101414] Methodical Foundations of OR

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550111</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550112</td>
<td>Übung (Ü)</td>
<td></td>
<td>Robert Mohr, Oliver Stein</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550113</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550142</td>
<td>Übung (Ü)</td>
<td></td>
<td>Robert Mohr, Oliver Stein</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.

The exam takes place in the semester of the lecture and in the following semester.

Conditions
None.

Modeled Conditions
The following conditions must be met:

1. The course [T-WIWI-102724] Nonlinear Optimization I must not have been started.
2. The course [T-WIWI-102725] Nonlinear Optimization II must not have been started.

Remarks
Part I and II of the lecture are held consecutively in the same semester.

Event excerpt: (WS 18/19)

Aim
The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions for unconstrained problems
- Optimality conditions for unconstrained convex problems
- Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Constrained problems are the contents of part II of the lecture. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature

Elective literature:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Event excerpt: (WS 18/19)

Aim

The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Content

The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions for constrained problems
- Optimality conditions for constrained convex problems
- Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature

Elective literature:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
Course: Nonlinear Optimization II [T-WIWI-102725]

Responsibility: Oliver Stein
Contained in: [M-WIWI-101414] Methodical Foundations of OR

ECTS
4.5
Recurrence
Jedes Wintersemester
Exam type
Prüfungsleistung schriftlich
Version
2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550112</td>
<td>Übung (Ü)</td>
<td>Robert Mohr</td>
<td>2</td>
<td>Oliver Stein</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550113</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Oliver Stein</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.
The exam takes place in the semester of the lecture and in the following semester.
The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Conditions
None.

Modeled Conditions
The following conditions must be met:
- The course [T-WIWI-103637] Nonlinear Optimization I and II must not have been started.

Remarks
Part I and II of the lecture are held consecutively in the same semester.

Event excerpt: (WS 18/19)

Aim
The student
- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:
- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions for constrained problems
- Optimality conditions for constrained convex problems
- Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Literature
- Elective literature:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
Course: Novel Actuators and Sensors [T-MACH-102152]

Responsibility: Manfred Kohl, Martin Sommer

Contained in: [M-MACH-101287] Microsystem Technology

ECTS: 4
Language: deutsch
Recurrence: Jedes Wintersemester
Exam type: Prüfungsleistung mündlich
Version: 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2141865</td>
<td>Novel actuators and sensors</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Manfred Kohl, Martin Sommer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
oral exam (30 Min.)

Conditions
none

Event excerpt: Novel actuators and sensors (WS 18/19)

Aim
- Knowledge of the principles of actuation and sensing including pros and cons
- Explanation of layout and function of important actuators and sensors
- Calculation of important properties (time constants, forces, displacements, sensitivity, etc.)
- Development of a layout based on specifications

Content
Contents: - Basic knowledge in the material science of actuator and sensor principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications

Index: The lecture includes amongst others the following topics:

- Piezo actuators
- Magnetostrictive actuators
- Shape memory actuators
- Electro-/magnetorheological actuators
- Sensors: Concepts, materials, fabrication
- Micromechanical sensors: Pressure, force, inertia sensors
- Temperature sensors
- Micro sensors for bio analytics
- Mechano-magnetic sensors

The lecture addresses students in the fields of mechanical engineering, mechatronics and information technology, materials science and engineering, electrical engineering and economic sciences. A comprehensive introduction is given in the basics and current developments on the macroscopic length scale.
The lecture is core subject of the major course “Actuators and Sensors” of the specialization “Mechatronics and Microsystems Technology” in Mechanical Engineering.

Workload
Work Lecture:
time of attendance: 21 hours
Self-study: 99 hours
Literature
- Lecture notes
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
Course: Operative CRM [T-WIWI-102597]

Responsibility: Andreas Geyer-Schulz

Contained in: [M-WIWI-101422] Specialization in Customer Relationship Management
[M-WIWI-101460] CRM and Service Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2540522</td>
<td>Operative CRM</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Geyer-Schulz</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2540523</td>
<td>Übung (U)</td>
<td></td>
<td>1</td>
<td>Victoria-Anne Schweigert</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation (versions prior 2015) or following §4 (3) of the examination regulation (version 2015), respectively.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added.

Grade: Minimum points

- 1.0: 95
- 1.3: 90
- 1.7: 85
- 2.0: 80
- 2.3: 75
- 2.7: 70
- 3.0: 65
- 3.3: 60
- 3.7: 55
- 4.0: 50
- 5.0: <50

The grade consists of approximately 91% of exam points and 9% of exercise points.

Occasionally, it is possible to achieve an additional bonus of up to 3 points (e.g. in the context of experiments) which depends on performance. Note that this bonus is a purely voluntary additional achievement. Possibly gained bonus points are added to a passed exam within the current examination period.

Conditions

None

Recommendations

The attendance of courses Customer Relationship Management and Analytical CRM is advised.

Event excerpt: Operative CRM (WS 18/19)

Aim

The Student

- understands the theory of methods for process and data analyses and applies them for the design and implementation of operative CRM-processes in the complex context of companies,
- takes privacy problems into account,
- evaluates existing operative CRM-processes in companies and gives recommendation for their improvement. This requires the knowledge of example processes and the ability to transform them according to the given setting.
- uses literature for the solution of case studies, communicates with professionals and summarizes his recommendations and drafts in precise and coherent texts.

Content
The Student should be able to understand and implement methods and applications within the operative CRM. This includes, but is not limited to the analysis of business processes, as a basis for improvements in CRM, and applications like call centers.

Workload
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance
- Attending the lecture: $15 \times 90\text{min} = 22\text{h} 30\text{m}$
- Attending the exercise classes: $7 \times 90\text{min} = 10\text{h} 30\text{m}$
- Examination: $1\text{h} 00\text{m}$

Self-study
- Preparation and wrap-up of the lecture: $15 \times 180\text{min} = 45\text{h} 00\text{m}$
- Preparing the exercises: $25\text{h} 00\text{m}$
- Preparation of the examination: $31\text{h} 00\text{m}$

Sum: 135h 00m

Literature

Elective literature:
Course: Optimization under uncertainty [T-WIWI-106545]

Responsibility: Steffen Rebennack

Contents:
- [M-WIWI-103278] Optimization under Uncertainty

ECTS: 5
Recurrence: Unregelmäßig
Exam type: Prüfungsleistung schriftlich
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550464</td>
<td></td>
<td>Vorlesung (V)</td>
<td></td>
<td>Marcel Sinske</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550465</td>
<td></td>
<td>Übung (U)</td>
<td></td>
<td>Christian Füllner</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550466</td>
<td></td>
<td>Übung (U)</td>
<td>2</td>
<td>Christian Füllner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Conditions

None.
Course: Optoelectronic Components [T-ETIT-101907]

Responsibility: Wolfgang Freude
Contained in: [M-MACH-101287] Microsystem Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>englisch</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2309486</td>
<td>Optoelectronic Components</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolfgang Freude</td>
</tr>
</tbody>
</table>

Conditions
none
Course: Personnel Policies and Labor Market Institutions [T-WIWI-102908]

Responsibility:
Petra Nieken

Contained in:
- [M-WIWI-101513] Human Resources and Organizations
- [M-WIWI-101668] Economic Policy I

ECTS
4.5

Language
Deutsch

Recurrence
Jedes Sommersemester

Exam type
Prüfungsleistung schriftlich

Version
1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2573001</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Petra Nieken</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2573002</td>
<td>Übungen zu Personalpolitik und Arbeitsmarktinstitutionen</td>
<td>Übung (U)</td>
<td>1</td>
<td>Mitarbeiter, Petra Nieken</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Conditions
None

Recommendations
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory, and statistics is recommended.

Event excerpt: Personnel Policies and Labor Market Institutions (SS 2018)

Aim
The student

- understands the process and role of agents in collective wage bargaining.
- analyzes strategic decisions in the context of corporate governance.
- understands the concept of co-determination in Germany.
- challenges statements that evaluate certain personnel politics.

Content
The students acquire knowledge about the process and the strategic aspects of collective bargaining about wages. They analyze selected aspects of corporate governance and co-determination in Germany. The lecture also addresses questions of personnel politics and issue of labor market discrimination. Microeconomic and behavioral approaches as well as empirical data is used and evaluated critically.

Workload
The total workload for this course is approximately 135 hours.
Lecture 32h
Preparation of lecture 52h
Exam preparation 51h

Literature
Course: PH APL-ING-TL01 [T-WIWI-106291]

Responsibility:

Contained in: [M-WIWI-101404] Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Einmalig</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: PH APL-ING-TL02 [T-WIWI-106292]

Responsibility:

Contained in: [M-WIWI-101404] Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Einmalig</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: PH APL-ING-TL03 [T-WIWI-106293]

Responsibility:

Contained in: [M-WIWI-101404] Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Einmalig</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: PH APL-ING-TL04 ub [T-WIWI-106294]

Responsibility:
Contained in: [M-WIWI-101404] Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Einmalig</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
<tr>
<td>ECTS</td>
<td>Recurrence</td>
<td>Exam type</td>
<td>Version</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>Einmalig</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Course: PH APL-ING-TL05 ub [T-WIWI-106295]

Responsibility: [M-WIWI-101404] Extracurricular Module in Engineering

Contained in: Extracurricular Module in Engineering

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: PH APL-ING-TL06 ub [T-WIWI-106296]

Responsibility:
Contained in: [M-WIWI-101404] Extracurricular Module in Engineering

ECTS: 0 Recurrence: Einmalig Exam type: Studienleistung Version: 1
Course: PH APL-ING-TL07 [T-WIWI-108384]

Responsibility:

Contained in: [M-WIWI-101404] Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Einmalig</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Physical Basics of Laser Technology [T-MACH-102102]

Responsibility: Johannes Schneider
Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2181612</td>
<td>Physical basics of laser technology</td>
<td>Vorlesung / Übung 3</td>
<td></td>
<td>Johannes Schneider</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

oral examination (30 min)

no tools or reference materials

Conditions

It is not possible to combine this brick with brick Laser Application in Automotive Engineering [T-MACH-105164] and brick Physical Basics of Laser Technology [T-MACH-109084]

Recommendations

Basic knowledge of physics, chemistry and material science

Event excerpt: Physical basics of laser technology (WS 18/19)

Aim

The student

- can explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- can describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- can illustrate the possible applications of laser sources in measurement and medicine technology
- can explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Content

Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focuses on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned. An excursion to the laser laboratory of the Institute for Applied Materials (IAM) will be offered.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
• safety aspects

The lecture is complemented by a tutorial.

Workload
regular attendance: 33.5 hours
self-study: 146.5 hours

Literature
Course: Physics for Engineers [T-MACH-100530]

Responsibility: Martin Dienwiebel, Peter Gumbsch, Alexander Nesterov-Müller, Daniel Weygand

Contained in: [M-MACH-101287] Microsystem Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2142890</td>
<td>Physics for Engineers</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Dienwiebel, Peter Gumbsch, Alexander Nesterov-Müller, Daniel Weygand</td>
</tr>
<tr>
<td>SS 2018</td>
<td>8030087</td>
<td></td>
<td>Klausur</td>
<td></td>
<td>Martin Dienwiebel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written exam 90 min

Conditions
none

Event excerpt: Physics for Engineers (SS 2018)

Aim
The student

- has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
- can describe the fundamental experiments, which allow the illustration of these principles

Content
1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom

2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode

3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Exercises (2142891, 2 SWS) are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.
Workload
regular attendance: 22.5 hours (lecture) and 22.5 hours (exercises 2142891)
self-study: 97.5 hours and 49 hours (exercises 2142891)

Literature

- Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
- Harris, Moderne Physik, Pearson Verlag, 2013
Course: Platform Economy [T-WIWI-107506]

Responsibility: Florian Glaser, Jella Pfeiffer, Tim Straub, Christof Weinhardt

Contained in: [M-WIWI-101421] Supply Chain Management
[M-WIWI-101434] eBusiness and Service Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation and an alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation. The grade is determined by 2/3 through the written exam and by 1/3 through the alternative exam assessment (e.g., presentation).

Conditions
None

Recommendations
None

Remarks
Course: PLM for Product Development in Mechatronics [T-MACH-102181]

Responsibility: Martin Eigner
Contained in: [M-MACH-101270] Product Lifecycle Management

ECTS 4
Language deutsch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung mündlich
Version 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2122376</td>
<td>PLM for product development in mechatronics</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Martin Eigner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination 20 min.

Conditions none

Event excerpt: PLM for product development in mechatronics (SS 2018)

Aim
Students have a basic overview about product data management and product lifecycle management.
Students know components and core functions of PLM solutions
Students can describe trends in research and practice in the environment of PLM

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Course: PLM-CAD Workshop [T-MACH-102153]

Responsibility: Jivka Ovtcharova
Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>Praktikum (P)</td>
<td>4</td>
<td>Mitarbeiter, Jivka Ovtcharova</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>Seminar / Praktikum (S/P)</td>
<td>4</td>
<td>Mitarbeiter, Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Alternative exam assessment (graded)

Conditions
None

Remarks
Number of participants is limited, compulsory attendance

Event excerpt: PLM-CAD Workshop (WS 18/19)

Aim
Ziel des Workshops ist es, den Nutzen der kollaborativen Produktentwicklung mit PLM aufzuzeigen und deren Mehrwert gegenüber einer klassischen CAD-Entwicklung hervorzuheben. Den Studierenden wird im Einzelnen vermittelt, wie durch PLM produktbeschreibende Daten, wie z. B. Stücklisten und Zeichnungen, ganzheitlich und transparent verwaltet werden, sowie Abläufe in der Produktentwicklung automatisiert gesteuert werden können.

Content
Im Rahmen des Workshops wird eine Produktentwicklung als Projektauftrag innerhalb des Produktlebenszyklus durch den Einsatz moderner PLM/PDM- und CAD-Systeme abgewickelt.
Course: Polymer Engineering I [T-MACH-102137]

Responsibility: Peter Elsner
Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2173590</td>
<td>Polymer Engineering I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Elsner, Kay Weidenmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral exam, about 25 minutes
Conditions

none

Event excerpt: Polymer Engineering I (WS 18/19)

Aim

The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material “polymer” meeting its requirements in an economical and ecological way. The students

- are able to describe and classify polymers based on the fundamental synthesis processing techniques
- can find practical applications for state-of-the-art polymers and manufacturing technologies
- are able to apply the processing techniques, the application of polymers and polymer composites regarding to the basic principles of material science
- can describe the special mechanical, chemical and electrical properties of polymers and correlate these properties to the chemical bindings.
- can define application areas and the limitation in the use of polymers

Content

1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers (introduction)
4. Material science of polymers
5. Synthesis

Workload

regular attendance: 21 hours
self-study: 99 hours

Literature

Recommended literature and selected official lecture notes are provided in the lecture
Course: Polymerengineering II [T-MACH-102138]

Responsibility: Peter Elsner
Contained in: [M-MACH-101262] Emphasis Materials Science

ECTS 4 Language deutsch
Recurrence Jedes Sommersemester Exam type Prüfungsleistung mündlich
Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2174596</td>
<td>Polymer Engineering II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Elsner, Kay Weidenmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral exam, about 25 minutes

Conditions
none

Recommendations
Knowledge in Polymerengineering I

Event excerpt: Polymer Engineering II (SS 2018)

Aim
The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, that the students gather knowledge and technical skills to use the material "polymer" meeting its requirements in an economical and ecological way.

The students
- can describe and classify different processing techniques
 and can exemplify mould design principles based on technical parts.
- know about practical applications and processing of polymer parts
- are able to design polymer parts according to given restrictions
- can choose appropriate polymers based on the technical requirements
- can decide how to use polymers regarding the production, economical and ecological requirements

Content
1. Processing of polymers
2. Properties of polymer components
 Based on practical examples and components
 2.1 Selection of material
 2.2 Component design
 2.3 Tool engineering
 2.4 Production technology
 2.5 Surface engineering
 2.6 Sustainability, recycling

Workload
The workload for the lecture Polymerengineering II is 120 h per semester and consists of the presence during the lecture (21 h) as well as preparation and rework time at home (99 h).

Literature
Recommended literature and selected official lecture notes are provided in the lecture.
Course: Power Generation [T-ETIT-101924]

Responsibility: Bernd Hoferer
Contained in: [M-ETIT-101165] Energy Generation and Network Components

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2307356</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Bernd Hoferer</td>
</tr>
</tbody>
</table>

Conditions

none
Course: Power Network [T-ETIT-100830]

Responsibility: Thomas Leibfried
Contained in: [M-ETIT-102379] Power Network

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2307371</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Leibfried</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2307373</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Yannick Rink</td>
</tr>
</tbody>
</table>
Course: Practical Seminar Digital Services [T-WIWI-105711]

Responsibility: Wolf Fichtner, Alexander Mädche, Stefan Nickel, Gerhard Satzger, York Sure-Vetter, Christof Weinhardt

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Conditions
None

Recommendations
None

Remarks
The current range of seminar topics is announced on the KSRI website www.ksri.kit.edu.
Course: Practical Training in Basics of Microsystem Technology [T-MACH-102164]

Responsibility: Arndt Last
Contained in: [M-MACH-101287] Microsystem Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2143875</td>
<td>Introduction to Microsystem Technology -</td>
<td>Praktikum (P)</td>
<td>2</td>
<td>Arndt Last</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2143877</td>
<td>Introduction to Microsystem Technology -</td>
<td>Praktikum (P)</td>
<td>2</td>
<td>Arndt Last</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2143875</td>
<td>Introduction to Microsystem Technology -</td>
<td>Praktikum (P)</td>
<td>2</td>
<td>Arndt Last</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2143877</td>
<td>Introduction to Microsystem Technology -</td>
<td>Praktikum (P)</td>
<td>2</td>
<td>Arndt Last</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam.

Conditions

None

Event excerpt: Introduction to Microsystem Technology - Practical Course (WS 18/19)

Aim

- Deepening of the contents of the lecture MST I resp. II
- Understanding the technological processes in the micro system technology
- Experience in lab-work at real workplaces where normally research is carried out

Content

In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
4. UV-lithography
5. Optical waveguides
6. Capillary electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy

Each student takes part in only five experiments. The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Workload

Time of attendance: 21 h + 2 h exam
Privat studies: 5 h preparing experiments + 10 h preparing the exam

Literature

Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung ‘Grundlagen der Mikrosystemtechnik’

Event excerpt: Introduction to Microsystem Technology - Practical Course (WS 18/19)
Aim

- Deepening of the contents of the lecture MST I resp. II
- Understanding the technological processes in the micro system technology
- Experience in lab-work at real workplaces where normally research is carried out

Content

In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
4. UV-lithography
5. Optical waveguides
6. Capillary electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy

Each student takes part in only five experiments.

The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Workload

Time of attendance: 21 h + 2 h exam
Privat studies: 5 h preparing experiments + 10 h preparing the exam

Literature

Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung ‘Grundlagen der Mikrosystemtechnik’
Course: Principles of Insurance Management [T-WIWI-102603]

Responsibility: Ute Werner

Contained in: [M-WIWI-101436] Risk and Insurance Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the assessment of the oral presentations incl. papers (50 percent) and the assessment of the oral exam (50 percent).
The examination will be offered latest until summer term 2017 (beginners only).

Conditions
None

Recommendations
None
Course: Problem Solving, Communication and Leadership [T-WIWI-102871]

Responsibility: Hagen Lindstädt

Contained in:
- [M-WIWI-101425] Strategy and Organization
- [M-WIWI-101513] Human Resources and Organizations

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2577910</td>
<td>Problem solving, communication and leadership - Vorlesung (V)</td>
<td>1</td>
<td>Alexander Klopfer, Hagen Lindstädt</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (30 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Event excerpt: Problem solving, communication and leadership (SS 2018)

Aim

After passing this course students are able to

- structure problem solving processes.
- apply the principles of focused communication based on charts and presentations.
- understand leadership in the context of situation and personality.

Content

The course deals with various aspects of problem solving and communication processes and is divided into two parts. The first part of the course addresses the fundamental steps in the problem-solving process; namely, problem identification, problem structuring, problem analysis and communication of solution. Ideas for structuring problem solving processes will be discussed and the perquisites for and principles of structured communication based on charts and presentations will be explained. The second part of the course addresses important concepts in leadership, including the context-specificity of influence, the choice of leader and the characteristics of employees. The course content reflects current issues in management and communication practice and is oriented toward the practical application of theoretical insights to these issues. In this respect, the course aims to develop interdisciplinary skills.

Workload

The total workload for this course is approximately 60 hours. For further information see German version.

Literature

The relevant excerpts and additional sources are made known during the course.
Course: Procedures of Remote Sensing [T-BGU-103542]

Responsibility: Uwe Weidner
Contained in:
- [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
- [M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Modeled Conditions
The following conditions must be met:
- The course [T-BGU-101638] *Procedures of Remote Sensing, Prerequisite* must have been passed.
Course: Procedures of Remote Sensing, Prerequisite [T-BGU-101638]

Responsibility: Uwe Weidner
Contained in:
- [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
- [M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6020244</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Uwe Weidner</td>
<td></td>
</tr>
</tbody>
</table>

Conditions

None

Recommendations

None

Remarks

None
Course: Process fundamentals by the example of food production
[T-CIWVT-106058]

Responsibility: Volker Gaukel
Contained in: [M-WIWI-101839] Additional Fundamentals of Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>22213</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Volker Gaukel</td>
</tr>
</tbody>
</table>

Conditions

none
Course: Product Lifecycle Management [T-MACH-105147]

Responsibility: Jivka Ovtcharova
Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2121350</td>
<td>Product Lifecycle Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written examination 90 min.

Conditions
None

Event excerpt: Product Lifecycle Management (WS 18/19)

Aim
The students can:

- clarify the management concept of PLM, its objectives and highlight the economic benefits of the PLM concept.
- illustrate the need for an integrated and cross-departmental business process - from planning, portfolio construction and return of customer information, from the use phase to maintenance and recycling of products.
- reason the processes and functions needed to support the entire product life cycle and discuss the main operating software systems (PDM, ERP, SCM, CRM) and their functions for supporting PLM.
- argue a method to successfully introduce the concept of Management PLM in companies.

Content
Product Lifecycle Management (PLM) is an approach to the holistic and cross-company management and control of all product-related processes and data throughout the life cycle along the extended supply chain - from design and production to sales, to the dismantling and recycling.

Product Lifecycle Management is a comprehensive approach for effective and efficient design of the product life cycle.

Based on all product information, which comes up across the entire value chain and across multiple partners, processes, methods and tools are made available to provide the right information at the right time, quality and the right place.

The course covers:

- A consistent description of all business processes that occur during the product life cycle (development, production, sales, dismantling, ...)
- the presentation of methods for the performance of the PLM business processes,
- explaining the most important corporate information systems to support the life cycle (PDM, ERP, SCM, CRM systems) to sample the software manufacturer SAP

Workload
regular attendance: 42 hours
self-study: 128 hours

Literature
Lecture slides.

Course: Product, Process and Resource Integration in the Automotive Industry
[T-MACH-102155]

Responsibility: Jivka Ovtcharova
Contained in: [M-MACH-101270] Product Lifecycle Management

ECTS: 4
Language: deutsch
Recurrence: Jedes Sommersemester
Exam type: Prüfungsleistung mündlich
Version: 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2123364</td>
<td>Product, Process and Resource Integration in the Automotive Industry</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Sama Mbang</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Oral examination, Durations: 20 min, Auxiliary Means: none
Conditions: none

Aim
A considerable aspect of this lecture is to combine engineering knowledge with the practical, real industrial problems and applications.
Thus, the objectives of the lecture are:

- collaborative drafting of industrial and academic state of the art regarding the basics.
- specification of exigencies, requirements and concepts for an integrated CAx-process chain,
- introduction in the paradigms of the integrated process-oriented product development
- to convey practical industrial knowledge about the integrated product development in the automotive sector

Content
The lecture

- Overview of product development in the automotive sector (process- and work cycle, IT-Systems)
- Integrated product models in the automotive industry (product, process and resource)
- New CAx modeling methods (intelligent feature technology, templates & functional modeling)
- Automation and knowledge-based mechanism for product design and production planning
- Product development in accordance with defined process and requirement (3D-master principle, tolerance models)
- Concurrent Engineering, shared working
- Enhanced concepts: the digital and virtual factory (application of virtual technologies and methods in the product development)
- Systems: Siemens NX

Additionally, A practical industrial project study is offered, which is based on an integrated application scenario (from design of production resources, over testing and validation method planning to the manufacturing and implementation of the production resources).
Since the student will be divided in small teams, this study will also teach the students about team work and distributed development.

Workload
regular attendance: 32 hours
self-study: 72 hours
Literature
Lecture slides
Course: Production and Logistics Controlling [T-WIWI-103091]

Responsibility: Helmut Wlcek
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2500005</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Alexander Rausch</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) following §4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None

Aim

Die Studierenden...
- können den Aufbau und Funktion von Controlling-Regelkreisen (Planung, Analyse, Überwachung, Einleitung von Maßnahmen, Reporting etc.) erläutern,
- verstehen die spezifischen Anforderungen von Produktion und Logistik an das Controlling,
- kennen grundlegende Methoden zur Evaluierung der Performance

Content

1. Overview of Controlling
2. Performance Measurement
3. Planning
4. Reporting
5. Deviation Analysis

Workload

Gesamtaufwand: ca. 90 Stunden
32 SWS Vorlesung, zusätzlich ca. 65 Stunden Vor- und Nachbereitung der Vorlesungen und Übungen einschl. Klausurvorbereitung

Literature

Vorlesungsbegleitendes Skript in ILIAS zum Download
Tafelanschriebe
Course: Production Economics and Sustainability [T-WIWI-102820]

Responsibility: Jérémy Rimbon
Contained in: [M-WIWI-101437] Industrial Production I

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2581960</td>
<td>Production Economics and Sustainability</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Jérémy Rimbon</td>
</tr>
</tbody>
</table>

Event excerpt: Production Economics and Sustainability (WS 18/19)

Aim

Students shall be aware of issues concerning industrial production and sustainability and shall apply strategies to resolve these issues.

Content

The analysis and management of material flows on the company level and above will be the focus of this lecture. Herein, the discussion will be about cost-effective and environmentally acceptable steps to avoid, abate and recycle emissions and waste as well as ways of efficient resources handling. As methods material flow analysis (MFA), life cycle assessment (LCA) and OR methods, e.g. for decision support, are introduced.

Topics:
- regulations related to materials and substances
- raw materials, reserves and their availabilities/lifetimes
- material and substance flow analysis (MFA/SFA)
- material related ecoprofiles, e.g. Carbon Footprint
- LCA
- resource efficiency
- emission abatement
- waste management and closed-loop recycling
- raw material oriented production systems
- environmental management (EMAS, ISO 14001, Ecoprofit), eco-controlling

Workload

Total effort required will account for approximately 105h (3.5 credits).

Literature

will be announced in the course
Course: Project in Applied Remote Sensing [T-BGU-101814]

Responsibility: Stefan Hinz

Contained in: [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
[M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

ECTS 1
Language deutsch
Exam type Studienleistung
Version 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6020245</td>
<td>Übung (Ü)</td>
<td>2</td>
<td></td>
<td>Assistenten, Stefan Hinz</td>
</tr>
</tbody>
</table>

Modeled Conditions
The following conditions must be met:

- The course [T-BGU-101638] Procedures of Remote Sensing, Prerequisite must have been passed.
Course: Project Management [T-BGU-101675]

Responsibility: Shervin Haghsheno

Contained in: [M-BGU-101004] Fundamentals of construction

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6200106</td>
<td></td>
<td>Vorlesung / Übung 2</td>
<td></td>
<td>Shervin Haghsheno, Harald Schneider</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

written exam with 60 minutes

Conditions

None

Recommendations

None

Remarks

None
Course: Project Workshop: Automotive Engineering [T-MACH-102156]

Responsibility: Michael Frey, Frank Gauterin, Martin Gießler

Contained in:
- Automotive Engineering [M-MACH-101266]
- Vehicle Development [M-MACH-101265]
- Handling Characteristics of Motor Vehicles [M-MACH-101264]

ECTS: 4.5
Language: deutsch
Recurrence: Jedes Semester
Exam type: Prüfungsleistung mündlich
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Michael Frey, Frank Gauterin, Martin Gießler</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Michael Frey, Frank Gauterin, Martin Gießler</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination
Duration: 30 up to 40 minutes
Auxiliary means: none

Conditions
none

Event excerpt: Project Workshop: Automotive Engineering (WS 18/19)

Aim
The students are familiar with typical industrial development processes and working style. They are able to apply knowledge gained at the university to a practical task. They are able to analyze and to judge complex relations. They are ready to work self-dependently, to apply different development methods and to work on approaches to solve a problem, to develop practice-oriented products or processes.

Content
During the Project Workshop Automotive Engineering a team of six persons will work on a task given by an German industrial partner using the instruments of project management. The task is relevant for the actual business and the results are intended to be industrialized after the completion of the project workshop.

The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute.

At the beginning in a start-up meeting goals and structure of the project will be specified. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Workload
regular attendance: 49 hours
self-study: 131 hours

Literature
Steinle, Claus; Bruch, Heike; Lawa, Dieter (Hrsg.), Projektmanagement, Instrument moderner Innovation, FAZ Verlag,
The scripts will be supplied in the start-up meeting.
Course: Public Law I - Basic Principles [T-INFO-101963]

Responsibility: Nikolaus Marsch

Contains in: [M-INFO-101187] Elective Module Law

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>24016</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Nikolaus Marsch</td>
</tr>
</tbody>
</table>

Event excerpt: (WS 18/19)

Aim

Content

Workload
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits).

- Präsenzzeit: Besuch der Vorlesung 15 x 90 min = 22 h 30 min
- Vor-/Nachbereitung der Vorlesung 15 x 120 min = 30 h 00 min
- Skript 2 x wiederholen & 2 x 10 h = 20 h 00 min
- Prüfung vorbereiten = 17 h 30 min
- Summe 90 h 00 min
Aim

Content
In einem ersten Schritt werden die wirtschaftsverfassungsrechtlichen Grundlagen (wie die Finanzverfassung und die Eigentums- und Berufs­freiheit) dargestellt. In diesem Rahmen wird auch das Zusammenspiel zwischen dem Grundgesetz und den Vorgaben des europäischen Gemeinschaftsrechts näher erläutert. Sodann werden die verwaltungsrechtlichen Steuerungsinstrumente analysiert. Als besondere Materien werden u.a. die Gewerbeordnung, das sonstige Gewerberecht (Handwerks­ordnung; Gaststättenrecht), die Grundzüge des Telekommunikationsgesetzes, die Förder­regulierung und das Vergaberecht behandelt. Ein letzter Teil widmet sich der institutionellen Ausgestaltung der hoheitlichen Wirtschaftsregulierung.

Workload
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits).

<table>
<thead>
<tr>
<th>Aktivität & Arbeitsaufwand</th>
<th>Arbeitsaufwand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Besuch der Vorlesung & 15 x 90min & 22h 30m</td>
<td>22h 30m</td>
<td></td>
</tr>
<tr>
<td>Vor­-/ Nachbereitung der Vorlesung & 15 x 120min & 30h 00m</td>
<td>30h 00m</td>
<td></td>
</tr>
<tr>
<td>Skript 2x wiederholen & 2 x 10h & 20h 00m</td>
<td>20h 00m</td>
<td></td>
</tr>
<tr>
<td>Prüfung vorbereiten & & 17h 30m</td>
<td>17h 30m</td>
<td></td>
</tr>
<tr>
<td>Summe & & 90h 00m</td>
<td>90h 00m</td>
<td></td>
</tr>
</tbody>
</table>

Literature
Wird in der Vorlesung bekannt gegeben.

Weiterführende Literatur
Wird in der Vorlesung bekannt gegeben.
Course: Public Revenues [T-WIWI-102739]

Responsibility: Berthold Wigger

Contained in: [M-WIWI-101499] Applied Microeconomics
[M-WIWI-101403] Public Finance

ECTS 4.5 Language deutsch Recurrence Jedes Sommersemester Exam type Prüfungsleistung schriftlich Version 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2560120</td>
<td>Public Revenues</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Berthold Wigger</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2560121</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Berthold Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions
None

Recommendations
Basic knowledge of Public Finance is required.

Event excerpt: Public Revenues (SS 2018)

Aim
See German version.

Content
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
Course: Quality Management [T-MACH-102107]

Responsibility: Gisela Lanza
Contained in: [M-MACH-101284] Specialization in Production Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2149667</td>
<td>Quality Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Gisela Lanza</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written Exam (60 min)

Conditions

none

Event excerpt: Quality Management (WS 18/19)

Aim

The students...

- are capable to comment on the content covered by the lecture.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specifc problem.

Content

Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-spefic elds of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service-related quality management. The content is completed with the presentation of certication possibilities and legal quality aspects.

Main topics of the lecture:

- The term “quality”
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product denition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Workload

regular attendance: 21 hours
self-study: 99 hours
Course: Rail System Technology [T-MACH-102143]

Responsibility: Peter Gratzfeld
Contained in: [M-MACH-101274] Rail System Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Gratzfeld</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2115995</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Gratzfeld</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Gratzfeld</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2115919</td>
<td>Rail System Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Gratzfeld</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2115995</td>
<td>Project Management in Rail Industry</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Gratzfeld</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2115996</td>
<td>Rail Vehicle Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Peter Gratzfeld</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination
Duration: 20 minutes
No tools or reference materials may be used during the exam.

Event excerpt: Project Management in Rail Industry (WS 18/19)

Aim
- The students are familiar with the fundamentals and relevance of project management.
- They understand the necessary prerequisites in the organization of a company.
- They learn about the roles of project manager and project core team.
- They understand the project phases and know the most important project management processes and tools.
- They understand the governance process behind.

Content
Rail vehicles are capital-intensive goods which are manufactured in small series (like aircraft). The work done at industry and customers is organized in “projects”. This is completely different to the way of working in large-scale production (like car industry). Everybody working in this type of business is part of a project and should be aware of the typical processes. The lecturer provides a comprehensive overview about modern project management for small series of capital-intensive goods. The content is valid not for rail vehicle business but also for other areas with similar business processes.

The following topics will be discussed:

1. Introduction: definition of project and project management
2. Project management system: project phases, main processes and supporting processes, governance
3. Organization: organizational structure within a company, project organization, roles in a project organization
4. Main processes: project start, project plan, work brake down structure, detailed project schedule, risk and opportunity management, change management, project closure
5. Governance

Workload
Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours
Event excerpt: Rail Vehicle Technology (WS 18/19)

Aim

The students are familiar with concept and structure of modern rail vehicles. They learn about advantages and disadvantages of different types of traction drives and judge which one fits best for each application. They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems. They know about the basics of running dynamics and bogies. They define suitable vehicle concepts based on requirements for modern rail vehicles.

Content

1. System structure of rail vehicles: tasks and classification of rail vehicles, main systems, vehicle system technology
2. Drives: Electric and non-electric traction drives
3. Brakes: Tasks, basics, principles, brake control
4. Bogies: forces, running gears, axle configuration
 Examples of existing rail vehicles were discussed.

Workload

Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours

Literature

A bibliography is available for download (Ilias-platform).

Event excerpt: Rail System Technology (WS 18/19)

Aim

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- Based on operating requirements and legal framework they derive the requirements concerning a capable infrastructure and suitable concepts of rail vehicles.
- They recognize the impact of alignment, understand the important function of the wheel-rail-contact and estimate the impact of driving dynamics on the operating program.
- They evaluate the impact of operating concepts on safety and capacity of a rail system.

Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signalling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)

Workload

Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours

Literature
A bibliography is available for download (Ilias-platform).
Course: Real Estate Management I [T-WIWI-102744]

Responsibility: Thomas Lützkendorf

Contained in: [M-WIWI-101466] Real Estate Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2586400</td>
<td>Real Estate Management I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Lützkendorf</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2586401</td>
<td>Übung (U)</td>
<td></td>
<td>2</td>
<td>Thomas Worschech</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Conditions
None

Remarks
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

Event excerpt: Real Estate Management I (WS 18/19)

Aim
The student
- has a basic understanding of the specific characteristics of real estate and real estate markets
- is able to transfer and apply in-depth knowledge in the field of business administration to construction and real estate
- is able to analyze, evaluate or to meet decisions in the life cycle of real estate

Content
The course Real Estate Management I deals with questions concerning the economy of a single building throughout its lifecycle. Among other topics this includes project development, location and market studies, german federal building codes as well as finance and assessment of economic efficiency. The tutorial recesses the contents of the course by means of practical examples and, in addition to that, goes into the possible use of software tools.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:
Course: Real Estate Management II [T-WIWI-102745]

Responsibility: Thomas Lützkendorf
Contained in: [M-WIWI-101466] Real Estate Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2585400</td>
<td>Real Estate Management II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Lützkendorf, Peter Michl</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2585401</td>
<td>Übung (U)</td>
<td></td>
<td>2</td>
<td>Peter Michl</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Reexaminations are offered at every ordinary examination date.

Conditions

None

Recommendations

A combination with the module *Design Construction and Assessment of Green Buildings I* is recommended. Furthermore it is recommended to choose courses of the following fields:

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Remarks

The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

Event excerpt: Real Estate Management II (SS 2018)

Aim

The student

- has an in-depth knowledge on the economic classification and significance of the real estate industry
- has a critical understanding of essential theories, methods and instruments of the real estate industry
- is able to analyze and evaluate activity areas and functions in real estate companies as well as to prepare or to take decisions

Content

The course Real Estate Management II gives special attention to topics in connection to the management of large real estate portfolios. This especially includes property valuation, market and object rating, maintenance and modernization, as well as real estate portfolio and risk management. The tutorial provides examples in order to practice the application of theoretical knowledge to practical problems.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:
See german version.
Course: Remote Sensing, exam [T-BGU-101636]

Responsibility: Stefan Hinz

Contained in: [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
[M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6020241</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Stefan Hinz</td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>6020242</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Uwe Weidner</td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>6020243</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Uwe Weidner</td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>6020244</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Uwe Weidner</td>
<td></td>
</tr>
</tbody>
</table>

Modeled Conditions

The following conditions must be met:

1. The course [T-BGU-101637] *Systems of Remote Sensing, Prerequisite* must have been passed.
2. The course [T-BGU-101638] *Procedures of Remote Sensing, Prerequisite* must have been passed.

Recommendations

None
Course: Renewable Energy-Resources, Technologies and Economics
[T-WIWI-100806]

Responsibility: Patrick Jochem, Russell McKenna
Contained in: [M-WIWI-101464] Energy Economics

ECTS 3.5 Language englisch Recurrence Jedes Wintersemester Exam type Prüfungsleistung schriftlich Version 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2581012</td>
<td>Renewable Energy – Resources, Technologies and Economics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Patrick Jochem, Russell McKenna</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min., in English, answers in English or German) according to § 4 paragraph 2 Nr. 1 of the examination regulation SPO2015.

Event excerpt: Renewable Energy – Resources, Technologies and Economics (WS 18/19)

Aim
The student:
- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Content
1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the “Energieberg” in Mühlburg

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature
Elective literature:
Course: Selected Applications of Technical Logistics [T-MACH-102160]

Responsibility: Viktor Milushev, Martin Mittwollen

Contained in: [M-MACH-101269] Introduction to Technical Logistics

ECTS 4
Language deutsch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung mündlich
Version 1

Term	Event-No.	Events	Type	SWS	Lecturers
SS 2018 | 2118087 | Selected Applications of Technical Logistics | Vorlesung (V) | 3 | Viktor Milushev, Martin Mittwollen

Learning Control / Examinations
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Conditions
none

Recommendations
Knowledge out of Basics of Technical Logistics (T-MACH-102163) / Elements and Systems of Technical Logistics (T-MACH-102159) preconditioned

Event excerpt: Selected Applications of Technical Logistics (SS 2018)

Aim
Students are able to:

- Model the dynamic behaviour of material handling systems
- Based on this calculate the dynamical behavior
- Transfer this approach autonomous to further, different material handling installations
- Discuss the knowledge with subject related persons

Content
- design and dimension of machines from intralogistics
- static and dynamic behaviour
- operation properties and specifics
- Inside practical lectures: sample applications and calculations in addition to the lectures

Workload
presence: 36h
rework: 84h

Literature
Recommendations during lessons
Course: Selected Applications of Technical Logistics - Project [T-MACH-108945]

Responsibility: Viktor Milushev, Martin Mittwollen
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Presentation of performed project and defense (30min) according to §4 (2), No. 3 of the examination regulation

Conditions
T-MACH-102160 (selected applications of technical logistics) must have been started

Modeled Conditions
The following conditions must be met:

- The course [T-MACH-102160] *Selected Applications of Technical Logistics* must have been started.

Recommendations
Knowledge out of Basics of Technical Logistics (T-MACH-102163) / Elements and Systems of Technical Logistics (T-MACH-102159) preconditioned

Replaces
T-MACH-102161
Course: Selected Issues in Critical Information Infrastructures [T-WIWI-109251]

Responsibility: Ali Sunyaev

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015). Details will be announced in the respective course.

Conditions
None.
Course: Selected Topics on Optics and Microoptics for Mechanical Engineers
[T-MACH-102165]

Responsibility: Timo Mappes
Contained in: [M-MACH-101287] Microsystem Technology

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2143892</td>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
<td>Block-Vorlesung (BV)</td>
<td>2</td>
<td>Timo Mappes</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Conditions

none

Event excerpt: Selected Topics on Optics and Microoptics for Mechanical Engineers (SS 2018)

Aim
Die Vorlesung “Ausgewählte Kapitel der Optik und Mikrooptik für Maschinenbauer” verfolgt folgende Lernziele:
(a) Die Studierenden können den Aufbau eines optischen Instruments beschreiben und erklären.
(b) Die Studierenden können Fertigungsverfahren (mikro)optischer Bauteile gegeneinander abwägen und bewerten sowie Ansätze zu neuen Fertigungsprozessen entwickeln.
(c) Die Studierenden können die Ursachen von Aberrationen beschreiben und unterschiedliche optische Effekte in die technische Nutzung übertragen.
(d) Die Studierenden können Kontrastverfahren zur optimalen Sichtbarmachung mikroskopischer Strukturen im Auf- und Durchlicht problemorientiert auswählen.
(e) Die Studierenden wenden das Wissen um den Aufbau und die Fertigungsverfahren eines optischen Instruments im Design eines Instruments mit ungewöhnlichen Anforderungen konkret an und skizzieren die Vor- und Nachteile der entwickelten Konstruktionsansätze.
(f) Die Studierenden können die erlernten Techniken (Auslegung eines optischen Strahlengangs, Funktionsweisen einfacher mikroskopischer Kontrastverfahren und zudem des Projektmanagements) in einem der Aufgabe entsprechenden Format präsentieren.

Content

Workload
Präsenzzeit: 26 Stunden
Selbststudium: 94 Stunden

Literature
(a) Hecht Eugene: Optik; 5., überarb. Aufl.; Oldenbourg Verlag, München und Wien, 2009
(b) Folien der Vorlesung als *.pdf
Course: Semantic Web Technologies [T-WIWI-102874]

Responsibility: York Sure-Vetter

Contained in: [M-WIWI-101630] Electives in Informatics
 [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511310</td>
<td>Semantic Web Technologies</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Maribel Acosta Deibe, York Sure-Vetter</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511311</td>
<td>Exercises to Semantic Web Technologies</td>
<td>Übung (U)</td>
<td>1</td>
<td>Maribel Acosta Deibe, Tobias Christof Käfer, York Sure-Vetter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.
The exam takes place every semester and can be repeated at every regular examination date.

Conditions
None

Recommendations
Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent are required.

Event excerpt: Semantic Web Technologies (SS 2018)

Aim
The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Content
The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Workload

- The total workload for this course is approximately 150 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 67.5 hours
- Exam and exam preparation: 37.5 hours

Literature

Additional Literature

Course: Seminar Creating a Patent Specification [T-ETIT-100754]

Responsibility: Wilhelm Stork
Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2311633</td>
<td>Seminar Creating a Patent Specification</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Wilhelm Stork</td>
</tr>
</tbody>
</table>

Conditions
none
Course: Seminar Data-Mining in Production [T-MACH-108737]

Responsibility: Gisela Lanza

Contained in: [M-WIWI-101816] Seminar Module

ECTS Language Recurrence Version
3 deutsch Jedes Semester 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2151643</td>
<td>Seminar Data Mining in Production</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Gisela Lanza</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
alternative test achievement (graded):

- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Conditions
none

Remarks
The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Event excerpt: Seminar Data Mining in Production (WS 18/19)

Aim
The students …

- can name, describe and distinguish between different methods, procedures and techniques of production data analysis.
- can perform basic data analyses with the data mining tool KNIME.
- can analyze and evaluate the results of data analyses in the production environment.
- are able to derive suitable recommendations for action.
- are able to explain and apply the CRISP-DM model.

Content
In the age of Industry 4.0, large amounts of production data are generated by the global production networks and value chains. Their analysis enables valuable conclusions about production and lead to an increasing process efficiency. The aim of the seminar is to get to know production data analysis as an important component of future industrial projects. The students get to know the data mining tool KNIME and use it for analyses. A specific industrial use case with real production data enables practical work and offers direct references to industrial applications. The participants learn selected methods of data mining and apply them to the production data. The work within the seminar takes place in small groups on the computer. Subsequently, presentations on specific data mining methods have to be prepared.

Workload
regular attendance: 10 hours
self-study: 80 hours
Course: Seminar in Business Administration (Bachelor) [T-WIWI-103486]

Responsibility: Wolf Fichtner, Hansjörg Fromm, Andreas Geyer-Schulz, Ju-Young Kim, Martin Klarmann, Peter Knauth, Hagen Lindstädt, David Lorenz, Torsten Luedecke, Thomas Lützkendorf, Alexander Mädche, Bruno Neibecker, Stefan Nickel, Petra Nieken, Martin Ruckes, Gerhard Satzger, Frank Schultmann, Thomas Setzer, Orestis Terzidis, Marliese Uhrig-Homburg, Maxim Ulrich, Christof Weinhardt, Marion Weissenberger-Eibl, Ute Werner, Marcus Wouters

Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch/englisch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2500003</td>
<td>Screencast Seminar on Banking Regulation</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Stephan Florig, Maxim Ulrich</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2530293</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Benz, Daniel Hoang, Torsten Luedecke, Martin Ruckes, Meik Scholz-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Daneshgari, Richard Schubert, Jan-Oliver Strych</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2530365</td>
<td>Applied Computational Finance</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Stephan Florig, Maxim Ulrich</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2530580</td>
<td>Seminar in Finance (Master, Prof. Uhrig-Homburg)</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Jelena Eberbach, Stefan Fiesel, Michael Hofmann, Marcel Müller, Michael Reichenbacher, Philipp Schuster, Marliese Uhrig-Homburg</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2540524</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td>Fabian Ball, Andreas Geyer-Schulz, Victoria-Anne Schweigert</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2571180</td>
<td>Seminar Human Resource Management</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Martin Klarmann, Mitarbeiter, Petra Nieken</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2573011</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td>N.N., Marcus Wouters</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2579904</td>
<td>Seminar Management Accounting</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Ana Mickovic, Markus Kirchberger, Fritz Braeuer, Russell McKenna, Jann</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Weinand, Frank Schultmann, Patrick Jochem, Dorothea Wagner, Franziska</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2579905</td>
<td>Special Topics in Management Accounting</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Lukas Barth, Wolf Fichtner, Sascha Gritzbach, Veit Hagenmeyer, Patrick</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2579908</td>
<td>Innovation in Management Accounting</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Jochem, Dorothea Wagner, Franziska Wegner, Matthias Wolf</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2581030</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2581977</td>
<td>Seminar: Energy Informatics</td>
<td>Seminar (S)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2400013</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>Code</td>
<td>Title</td>
<td>Type</td>
<td>Credits</td>
<td>Supervisor(s)</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2530372</td>
<td>Investment Case Studies</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Maxim Ulrich, Marliese Uhrig-Homburg</td>
</tr>
</tbody>
</table>
| WS 18/19 | 2530580 | Seminar (S) | Seminar (S) | 2 | Fabian Ball, Andreas Geyer-Schulz, Victoria-Anne Schweigert, Marvin Schweizer, Christian Schwarzkopf, Orestis Terzidis, Markus Böhrer, Orestis Terzidis, Despoina Ntagiakou, Orestis Terzidis, Christian Ziegler, Sven Feurer, Petra Nieken |}

Learning Control / Examinations

The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions
None.

Recommendations
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Event excerpt: Seminar Human Resource Management (WS 18/19)

Aim

The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is approximately 90 hours.
Lecture 30h
Preparation of lecture 45h
Exam preparation 15h

V Event excerpt: Special Topics in Management Accounting (WS 18/19)

Aim
Students
- are largely independently able to identify a distinct topic in Management Accounting,
- are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in four meetings that are spread throughout the semester.
Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.
Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.
Meeting 4: In the third week we are going to present and discuss the final papers.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.

V Event excerpt: Seminar Human Resources and Organizations (WS 18/19)

Aim
The student
- looks critically into current research topics in the fields of Human Resources an Organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Chair.

Workload
The total workload for this course is approximately 90 hours.
Lecture 30h
Preparation of lecture 45h
Exam preparation 15h

Event excerpt: Seminar: Energy Informatics (WS 18/19)

Aim
Der/die Studierende besitzt einen vertieften Einblick in Themenbereiche der Energieinformatik und hat grundlegende Kenntnisse in den Bereichen der Modellierung, Simulation und Algorithmen in Energienetzen. Ausgehend von einem vorgegebenen Thema kann er/sie mithilfe einer Literaturrecherche relevante Literatur identifizieren, auffinden, bewerten und schließlich auswerten. Er/sie kann das Thema in den Themenkomplex einordnen und in einen Gesamtzusammenhang bringen. Er/sie ist in der Lage eine Seminararbeit (und später die Bachelor-/Masterarbeit) mit minimalem Einarbeitungsaufwand anzufertigen und dabei Formatvorgaben zu berücksichtigen, wie sie von allen Verlagen bei der Veröffentlichung von Dokumenten vorgegeben werden. Außerdem versteht er/sie das vorgegebene Thema in Form einer wissenschaftlichen Präsentation auszuarbeiten und kennt Techniken um die vorzustellenden Inhalte auditoriumsgerecht aufzuarbeiten und vorzutragen. Somit besitzt er/sie die Kenntnis wissenschaftliche Ergebnisse der Recherche in schriftlicher Form derart zu präsentieren, wie es in wissenschaftlichen Publikationen der Fall ist.

Content

Workload
4 LP entspricht ca. 120 Stunden
c.a. 21 Std. Besuch des Seminars,
c.a. 45 Std. Analyse und Bearbeitung des Themas,
c.a. 27 Std. Vorbereitung und Erstellung der Präsentation, und
c.a. 27 Std. Schreiben der Ausarbeitung.

Event excerpt: Seminar in Finance (Master, Prof. Uhrig-Homburg) (SS 2018)

Aim
The student gets in touch with scientific work. Through profound working on a specific scientific topic the student is meant to learn the foundations of scientific research and reasoning in particular in finance. Through the presentations in this seminar the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures. The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the end of the foregoing semester.

Event excerpt: Bachelor Seminar in CRM (WS 18/19)

Aim
The student is able to

- to perform a literature search for a given topic, to identify, find, value and evaluate the relevant literature.
- to write his seminar thesis (and later on, the bachelors/masters thesis) with the text setting system LaTeX and include format requirements as used by scientific publishers.
- to do a presentation in an adequate scientific manner.
- to write down the results of his investigations in the form of scientific publications.

Content

This seminar serves as an introduction into the process of scientific work. As a consequence, four (mandatory) introductory lessons are given that will give insight to philosophy of science, researching literature, typesetting with LaTeX and writing/presenting of content.

The seminar roughly treats questions of Customer Relationship Management. Exact topics are announced with the beginning of the application period.

Workload

The total workload for this course is approximately 90 hours (3 credits):

Time of attendance

- Introductory lessons: $4 \times 90\text{min} = 6\text{h 00m}$
- Presentations: $4 \times 90\text{min} = 6\text{h 00m}$

Selbststudium

- Preparing the presentation: 8h
- Literature research: 40h
- Writing the seminar paper: 30h

Summe: 90h 00m

Literature

Elective literature:

Event excerpt: (WS 18/19)

Aim

Students

- are able to write an academic paper in a formally correct way
- can assess the relevance and quality of sources
- are able to get an overview of sources very quickly
- know how to find relevant sources for a literature field
- are capable to write a convincing outline
- can discuss the theoretical and practical implications of a topic

Content

The seminary teaches students to gain a systematic overview of a field of literature in Marketing - an important prerequisite for a successful thesis. Central aspects are identification of relevant literature sources, systematization of the field, working out central insights, and writing comprehensively.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.

Literature

will be announced in the seminarary

Event excerpt: Seminar Management Accounting (SS 2018)
Aim
Students
- are largely independently able to identify a distinct topic in Management Accounting,
- are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources.

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.
Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.
Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.
Meeting 4: In the third week we are going to present and discuss the final papers.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.
Course: Seminar in Economics (Bachelor) [T-WIWI-103487]

Responsibility: Johannes Brumm, Jan Kowalski, Kay Mitusch, Ingrid Ott, Clemens Puppe, Johannes Philipp Reiß, Nora Szech, Berthold Wigger

Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch/englisch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2560241</td>
<td>Digital IT Solutions and Services transforming the Field of Public Transportation</td>
<td>Prüfung (PR)</td>
<td>2</td>
<td>Tom Janoshalmi</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2560552</td>
<td>Topics in Political Economics</td>
<td>Seminar (S)</td>
<td></td>
<td>Jeroen Jannis Engel, Nora Szech</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2560553</td>
<td>Morals and Social Behavior</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Jeroen Jannis Engel, David Huber, Nora Szech</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512312</td>
<td>Cooperation seminar: Innovative applications on single board computers as well as their economic relevance</td>
<td>Seminar / Praktikum (S/P)</td>
<td>3</td>
<td>David Bälz, Ingrid Ott, York Sure-Vetter, Tobias Weller</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Rebekka Buse, Konstantin Görgen</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560140</td>
<td>Topics on Political Economics</td>
<td>Seminar (S)</td>
<td>2</td>
<td>David Huber, Nora Szech</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560141</td>
<td>Seminar (S)</td>
<td></td>
<td>2</td>
<td>Jeroen Jannis Engel, Nora Szech</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560400</td>
<td>Seminar in Macroeconomics</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Johannes Brumm, Christopher Krause, Luca Pegorari</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2561208</td>
<td>Seminar (S)</td>
<td></td>
<td>1</td>
<td>Eckhard Szimba</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions

None.

Recommendations

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Remarks

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.

Event excerpt: Topics in Political Economics (SS 2018)
Aim
The student develops an own idea for an economic experiment or field study in this research direction.

Workload
About 90 hours

Literature

Event excerpt: Morals and Social Behavior (SS 2018)

Aim
During the seminar, students develop their own research idea about or including aspects of creativity. Using their own creative abilities, students design an economic experimental or field study that answers their research question. Important: We do not assign or provide pre-developed topics in this seminar! Finding a topic and your own research idea is substantial to this seminar.

Workload
About 90 hours.

Event excerpt: Cooperation seminar: Innovative applications on single board computers as well as their economic relevance (WS 18/19)

Content
Topics of interest include, but are not limited to:

- Smart Home Applications
- Environmental measurements
- Gesture control
- Security systems

Event excerpt: Topics on Political Economics (WS 18/19)

Aim
The student develops an own idea for an economic experiment in this research direction.

Workload
About 90 hours.
Course: Seminar in Engineering Science Master (approval) [T-WIWI-108763]

Responsibility: Fachvertreter ingenieurwissenschaftlicher Fakultäten
Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See module description.

Recommendations
None
Course: Seminar in Informatics (Bachelor) [T-WIWI-103485]

Responsibility: Andreas Oberweis, Harald Sack, Ali Sunyaev, York Sure-Vetter, Melanie Volkamer, Johann Marius Zöllner

Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch/englisch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type / Praktikum</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2512300</td>
<td>Seminar / Praktikum</td>
<td>3</td>
<td></td>
<td>Aditya Mogadala, Achim Rettinger, York Sure-Vetter, Steffen Thoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S/P)</td>
<td></td>
<td></td>
<td>Tobias Heuser, Andreas Oberweis, Meike Ullrich</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2513208</td>
<td>Seminar (S)</td>
<td>2</td>
<td></td>
<td>Jürgen Beyerer, Jürgen Beyerer, York Sure-Vetter, Daniel Szentes</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2513300</td>
<td>Technology-enhanced Learning</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Dominik Riemer, Suad Sejdovic, York Sure-Vetter, Sebastian Lins,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ali Sunyaev, Scott Thiebes, Wolf Fichtner, Hansjörg Fromm, Stefan Nickel,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gerhard Satzger, York Sure-Vetter, Christof Weinhardt, Lukas Barth,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wolf Fichtner, Sascha Gritzbach, Veit Hagenmeyer, Patrick Jochem, Dorothea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wagner, Franziska Wegner, Matthias Wolf, Maribel Acosta, Deibe, Lars</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heling, Tobias Christof Käfer, York Sure-Vetter, Tobias Weller</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2400013</td>
<td>Seminar: Energy Informatics</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Lukas Barth, Wolf Fichtner, Sascha Gritzbach, Veit Hagenmeyer, Patrick</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jochem, Dorothea Wagner, Franziska Wegner, Matthias Wolf, Maribel Acosta,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deibe, Lars Heling, Tobias Christof Käfer, York Sure-Vetter, Tobias</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weller, Matthias Frank, York Sure-Vetter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512301</td>
<td>Linked Data and the Semantic Web</td>
<td>Seminar / Praktikum</td>
<td>3</td>
<td>Maribel Acosta, Deibe, Lars Heling, Tobias Christof Käfer, York Sure-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(S/P)</td>
<td></td>
<td>Vetter, Tobias Weller, Matthias Frank, York Sure-Vetter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512311</td>
<td>Data Science with Open Data</td>
<td>Seminar / Praktikum</td>
<td>3</td>
<td>Matthias Frank, York Sure-Vetter</td>
</tr>
</tbody>
</table>
Learning Control / Examinations

The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions
None.

Recommendations
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Remarks
Placeholder for seminars offered by the Institute AIFB. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Event excerpt: Linked Data and the Semantic Web (WS 18/19)

Workload
Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

Event excerpt: Seminar Service Science, Management & Engineering (WS 18/19)

Aim
The student

- illustrates and evaluates classic and current research questions in service science, management and engineering,
• applies models and techniques in service science, also with regard to their applicability in practical cases,
• successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes
 the student familiar with scientific literature research and argumentation methods,
• acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the
seminar topic.

Content
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management &
Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of
service value networks as well as collaboration for knowledge intensive services.

See the KSRI website for more information about this seminar: www.ksri.kit.edu

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

Literature
The student will receive the necessary literature for his research topic.

Event excerpt: Seminar: Energy Informatics (WS 18/19)

Aim
Der/die Studierende besitzt einen vertieften Einblick in Themenbereiche der Energieinformatik und hat grundlegende
Kenntnisse in den Bereichen der Modellierung, Simulation und Algorithmen in Energienetzen. Ausgehend von einem
vorgegebenen Thema kann er/sie mithilfe einer Literaturrecherche relevante Literatur identifizieren, auffinden, bewerten
und schließlich auswerten. Er/sie kann das Thema in den Themenkomplex einordnen und in einen Gesamtzusammenhang
bringen.
Er/sie ist in der Lage eine Seminararbeit (und später die Bachelor-/Masterarbeit) mit minimalem Einarbeitungsaufwand
anzufertigen und dabei Formatvorgaben zu berücksichtigen, wie sie von allen Verlagen bei der Veröffentlichung von
Dokumenten vorgegeben werden. Außerdem versteht er/sie das vorgegebene Thema in Form einer wissenschaftlichen
Präsentation auszuarbeiten und kennt Techniken um die vorzustellenden Inhalte auditoriumsgerecht aufzuarbeiten und
vorzutragen. Somit besitzt er/sie die Kenntnisse wissenschaftliche Ergebnisse der Recherche in schriftlicher Form derart zu
präsentieren, wie es in wissenschaftlichen Publikationen der Fall ist.

Content
Energieinformatik ist eine junges Forschungsgebiet, welches verschiedene Bereiche ausserhalb der Informatik beinhaltet wie
der Wirtschaftswissenschaft, Elektrotechnik und Rechtswissenschaften. Bedingt durch die Energiewende wird vermehrt
Strom aus erneuerbaren Erzeugern in das Netz eingespeist. Der Trend hin zu dezentralen und volatile Stromerzeu-
gung führt jedoch schon heute zu Engpässen in Stromnetzen, da diese für ein bidirektionales Szenario nicht ausgelegt
wurden. Mithilfe der Energieinformatik und der dazugehörigen Vernetzung der verschiedenen Kompetenzen soll eine in-
telligente Steuerung der Netzerzeugung—von Stromverbrauchern, -erzeugern, -speichern und Netzkomponenten—zu
einer umweltfreundlichen, nachhaltigen, effizienten und verlässlichen Energieversorgung beitragen.
Daher sollen im Rahmen des Seminars „Seminar: Energieinformatik“, unterschiedliche Algorithmen, Simulationen und
Modellierungen bzgl. ihrer Vor- und Nachteile in den verschiedenen Bereichen der Netzerzeugung untersucht werden.

Workload
4 LP entspricht ca. 120 Stunden
ca. 21 Std. Besuch des Seminars,
ca. 45 Std. Analyse und Bearbeitung des Themas,
ca. 27 Std. Vorbereitung und Erstellung der Präsentation, und
ca. 27 Std. Schreiben der Ausarbeitung.

Event excerpt: Technology-enhanced Learning (SS 2018)

Content
Die Liste der Seminarthemen finden Sie unter https://portal.wiwi.kit.edu/ys/1868
Event excerpt: (SS 2018)

Content
Domains of interest include, but are not limited to:

- Medicine
- Social Media
- Finance Market

Literature
Detailed references are indicated together with the respective subjects. For general background information look up the following textbooks:

- Mitchell, T.: Machine Learning

Event excerpt: Cooperation seminar: Innovative applications on single board computers as well as their economic relevance (WS 18/19)

Content
Topics of interest include, but are not limited to:

- Smart Home Applications
- Environmental measurements
- Gesture control
- Security systems

Event excerpt: (WS 18/19)

Aim
Students (1) independently analyze current questions in the field of information systems; (2) work on the respective scientific question with recognized scientific methods and write a seminar thesis on it; (3) can combine already learned theoretical and practical lecture contents of the respective question.
Course: Seminar in Mathematics (Bachelor) [T-MATH-102265]

Responsibility: Martin Folkers, Günter Last

Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Seminar in Operations Research (Bachelor) [T-WIWI-103488]

Responsibility: Stefan Nickel, Steffen Rebennack, Oliver Stein

Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2550131</td>
<td>Seminar (S)</td>
<td>Robert Mohr,</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Christoph Neu-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mann, Oliver Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2550132</td>
<td>Seminar (S)</td>
<td>Robert Mohr,</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Christoph Neu-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mann, Oliver Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2550472</td>
<td>Seminar (S)</td>
<td>Peter Kirst,</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steffen Rebennack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2018</td>
<td>2550491</td>
<td>Seminar: Recent Topics in OR</td>
<td>Mitarbeiter, Stefan Nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550131</td>
<td>Seminar (S)</td>
<td>Robert Mohr,</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Christoph Neu-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mann, Oliver Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550491</td>
<td>Seminar: Recent Topics in OR</td>
<td>Mitarbeiter, Stefan Nickel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The non examassessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of:

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions

None.

Recommendations

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Remarks

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Event excerpt: (WS 18/19)

Aim

The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application. The student is introduced to the style of scientific work. By focussed treatment of a scientific topic the student learns the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.
With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetoric abilities may be improved.

Content
The current seminar topics are announced under http://kop.ior.kit.edu at the end of the preceding semester.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
References and relevant sources are announced at the beginning of the seminar.

Event excerpt: Seminar: Recent Topics in OR (WS 18/19)

Aim
The student

- illustrates and evaluates classic and current research questions in discrete optimization,
- applies optimization models and algorithms in discrete optimization, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management),
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Content
The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Dates will be announced on the internet.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Literature and relevant sources will be announced at the beginning of the seminar.
Course: Seminar in Statistics (Bachelor) [T-WIWI-103489]

Responsibility: Oliver Grothe, Melanie Schienle

Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>englisch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>Seminar ($)</td>
<td>2</td>
<td>Rebekka Buse, Konstantin Görgen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions

None.

Recommendations

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Remarks

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.
Course: Seminar Production Technology [T-MACH-109062]

Responsibility: Jürgen Fleischer, Gisela Lanza, Volker Schulze

Contained in: [M-WIWI-101816] Seminar Module

ECTS
Language
Recurrence
Version
3
deutsch
Jedes Semester
1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2149665</td>
<td>Seminar Production Technology</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Jürgen Fleischer, Gisela Lanza, Volker Schulze, Frederik Zanger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

alternative test achievement (graded):

- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Conditions

none

Remarks

The specific topics are published on the homepage of the wbk Institute of Production Science.

Event excerpt: Seminar Production Technology (SS 2018)

Aim

The students...

- are in a position to independently handle current, research-based tasks according to scientific criteria.
- are able to research, analyze, abstract and critically review the information.
- can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content

In course of the seminar Production Technology current issues of the wbk main fields of research “Manufacturing and Materials Technology”, “Machines, Equipment and Process Automation” as well as “Production Systems” are discussed

Workload

regular attendance: 10 hours
self-study: 80 hours
Course: Seminar: Legal Studies I [T-INFO-101997]

Responsibility: Thomas Dreier
Contained in: [M-WIWI-101816] Seminar Module

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2400041</td>
<td>Governance, Risk & Compliance</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Andreas Herzig</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2400088</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td>Franziska Boehm, Alexander Mädche, Martina Zitterbart</td>
</tr>
<tr>
<td>SS 2018</td>
<td>24820</td>
<td>Current Issues in Patent Law</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Klaus-Jürgen Melullis</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>24389</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td>Martin Schallbruch</td>
</tr>
</tbody>
</table>

Event excerpt: Governance, Risk & Compliance (SS 2018)

Aim

Der/die Studierende hat vertiefte Kenntnisse hinsichtlich der Thematik “Governance, Risk & Compliance” sowohl auf regulatorischer Ebene als auch auf betriebswirtschaftlicher Ebene. Er/sie ist in der Lage, eine konkrete Fragestellung schriftlich in Form einer Seminararbeit auszuarbeiten sowie anschließend im mündlichen Vortrag zu präsentieren.

Content

Workload

21 h Präsenzzeit, 60 h schriftliche Ausarbeitung, 9 h Vortrag vorbereiten.

Aim

Workload

Der gesamte Arbeitsaufwand beträgt ca. 75-100 h, davon sind 22,5 h Präsenzzeit.

Event excerpt: (WS 18/19)
Aim

Content
Die Sicherheit der Informationstechnik ist zu einer Schlüssel Frage der Gestaltung der Informationsgesellschaft geworden. Die Abhängigkeit der Wirtschaft und des Staates vom Funktionieren von IT-Systemen und Internet, die zunehmende Komplexität der IT-Systeme, die Verteilung der Verantwortung auf unterschiedliche Beteiligte und die steigende Zahl von Cyberangriffen durch verschiedenste Akteure erschweren die IT-Sicherheit.

Themen für Seminararbeiten:
1. Das Recht auf Gewährleistung der Integrität und Vertraulichkeit informationstechnischer Systeme als “IT-Sicherheitsgrundrecht”
2. Datenschutz und Datensicherheit - IT-Sicherheit als Hilfsmittel zum Schutz des Persönlichkeitsrechts
3. Deutsches Computerstrafrecht und die Umsetzung der Cybercrime-Konvention des Europarats
4. IT-Sicherheit im Zivilrecht - wer haftet für Sicherheitsvorfälle?
5. Online-Shopping und seine Tücken (Fernabsatzrecht)
6. Schutz des Verbrauchers gegen unlautere Methoden im Internet (Spam, Abofallen)
7. IT-Sicherheit kritischer Infrastrukturen - rechtliche Absicherung unter besonderer Berücksichtigung des IT-Sicherheitsgesetzes
8. Das Bundesamt für Sicherheit in der Informationstechnik und seine rechtlichen Grundlagen nach Verabschiedung des IT-Sicherheitsgesetzes
9. Pässe und Personalausweise als gesicherte elektronische Identitäten
10. Elektronische Signaturen - praxisgerecht und überreguliert?
11. De-Mail und das De-Mail-Gesetz - ein sicherer elektronischer Kommunikationsraum?
12. IT-Sicherheit in der öffentlichen Verwaltung - Art. 91c GG und der IT-Planungsrat
13. Cyberabwehr als Aufgabe der Bundeswehr?
14. Europäische IT-Sicherheitsstrukturen - die IT-Sicherheitsagentur ENISA und die Diskussion über eine EU-Richtlinie für Netzwerk- und Informationssicherheit
15. Behördenverantwortung für Cybersicherheit in Deutschland - Zuständigkeiten, Zusammenarbeitsformen, Trennungsgelbe

Bitte melden Sie sich elektronisch an unter helga.scherer@kit.edu. Bitte geben Sie der Anmeldung drei Wunschthemen an. Die Plätze werden in der Reihenfolge der Anmeldungen verteilt.

Die Verteilung der Themen erfolgt rechtzeitig vor Semesterbeginn. Die Teilnahme an der Vorbesprechung ist verpflichtend.

Workload
ca. 100 - 120 h (2 - 4 Credits)

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Service Oriented Computing [T-WIWI-105801]

Responsibility: York Sure-Vetter

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Please note that the exam will be offered to first-time applicants in the winter semester 2018/2019. A last examination possibility exists in the summer semester 2019 (only for repeaters).

The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

Conditions
None

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 09/18/2018
Course: Services Marketing and B2B Marketing [T-WIWI-102806]

Responsibility: Martin Klarmann

Contained in: [M-WIWI-101424] Foundations of Marketing

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2572158</td>
<td>Services Marketing and B2B Marketing</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Martin Klarmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions

None

Remarks

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Event excerpt: Services Marketing and B2B Marketing (WS 18/19)

Aim

Students

- know about the characteristics of service- and B2B environments
- are able to apply different methods (SERVQUAL, Gap-model, Mystery Shopping) to measure the quality of services
- are able to design pricing systems for services
- know about queuing management
- are able to plan capacities in service environments
- are able to identify different types of B2B businesses and know about their characteristics
- know about the specifics and challenges of B2B branding
- know central theories about organizational buying
- are able to apply the concept of competitive bidding for tenders
- are able to prepare, conduct, and review price negotiations

Content

The aim of this course is to prepare students for two certain marketing perspectives. The service marketing is concentrated on the particularities coming up when a company sells services instead of products. Subjects in this section are for example:

- Measuring service quality
- Pricing services
- Management of service staff

The second part of the course contains a business-to-business marketing perspective. Topics are below others:

- Management of buying centers
- Competitive Bidding
- B2B-Branding

Workload

The total workload for this course is approximately 90 hours.

Literature

Course: Simulation of Coupled Systems [T-MACH-105172]

Responsibility: Marcus Geimer, Yusheng Xiang

Contained in: [M-MACH-101265] Vehicle Development
[M-MACH-101267] Mobile Machines

ECTS 4
Language deutsch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung mündlich
Version 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114095</td>
<td>Simulation of Coupled Systems</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Simon Becker, Kevin Daiß, Marcus Geimer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place in the recess period. The exam takes place in every semester. Re-examinations are offered at very ordinary examination date. A registration is mandatory, the details will be announced on the webpages of the Institute of Vehicle System Technology / Institute of Mobile Machines. In case of too many applications, attendance will be granted based on pre-qualification.

Conditions
Required for the participation in the examination is the preparation of a report during the semester. The partial service with the code T-MACH-108888 must have been passed.

Modeled Conditions
The following conditions must be met:
- The course [T-MACH-108888] Simulation of Coupled Systems - Advance must have been passed.

Recommendations
- Knowledge of ProE (ideally in actual version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

Remarks
After completion of course, students are able to:
- build a coupled simulation
- parametrize models
- perform simulations
- conduct troubleshooting
- check results for plausibility

The number of participants is limited.

Content:
- Basics of multi-body and hydraulics simulation programs
- Possibilities of coupled simulations
- Modelling and Simulation of Mobile Machines using a wheel loader
- Documentation of the result in a short report

Literature:
Software guide books (PDFs)
Event excerpt: Simulation of Coupled Systems (SS 2018)

Aim
After completion of the course, students are able to:

- building a coupled simulation
- parameterize models
- Perform simulations
- do Troubleshooting
- check results for plausibility

Content

- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the result in a short report

Workload

- regular attendance: 21 hours
- total self-study: 92 hours

Literature

Elective literature:

- miscellaneous guides according the software-tools pdf-shaped
- information to the wheel-type loader
Course: Simulation of Coupled Systems - Advance [T-MACH-108888]

Responsibility: Marcus Geimer, Yusheng Xiang

Contained in: [M-MACH-101265] Vehicle Development

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Preparation of semester report

Conditions
none
Course: Social Science A (WiWi) [T-GEISTSOZ-109048]

Responsibility: Gerd Nollmann
Contained in: [M-GEISTSOZ-101167] Sociology/Empirical Social Research

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>5011011</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Barbara Binder</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>5011014</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Christian Ebner</td>
<td></td>
</tr>
</tbody>
</table>
Course: Social Science B (WiWi) [T-GEISTSOZ-109049]

Responsibility: Gerd Nollmann
Contained in: [M-GEISTSOZ-101167] Sociology/Empirical Social Research

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>5011011</td>
<td>5011011</td>
<td>Seminar (S)</td>
<td>2</td>
<td>Barbara Binder</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>5011014</td>
<td></td>
<td>Seminar (S)</td>
<td>2</td>
<td>Christian Ebner</td>
</tr>
</tbody>
</table>
Course: Sociotechnical Information Systems Development [T-WIWI-109249]

Responsibility: Ali Sunyaev

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch/englisch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2512400</td>
<td></td>
<td>Praktikum (P)</td>
<td></td>
<td>Theresa Kromat, Ali Sunyaev</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The non exam assessment (§4(2), 3 SPO 2007) or alternative exam assessment (§ 4(2), 3 SPO 2015) consists of an implementation and a final thesis documenting the development and use of the application.

Conditions

None.

Event excerpt: (WS 18/19)

Aim

- Independent and self-organized realization of a software development project
- Evaluation and selection of suitable development tools and methods
- Application of modern software development methods
- Planning and execution of different development tasks: requirements assessment, system design, implementation, and quality assurance
- Project documentation
- Presentation of project results in a comprehensible and structured form

Workload

4 ECTS = approx. 120 h
Course: Software Engineering [T-WIWI-100809]

Responsibility: Andreas Oberweis
Contained in:
[M-WIWI-101399] Emphasis Informatics
[M-WIWI-101426] Electives in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511206</td>
<td>Software Engineering</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511207</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Andreas Fritsch,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Andreas Oberweis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Conditions
None

Modeled Conditions
1 of 2 conditions must be met:

1. The module [M-WIWI-101581] *Introduction to Programming* must have been passed.
2. The module [M-WIWI-101417] *Foundations of Informatics* must have been passed.

Event excerpt: Software Engineering (SS 2018)

Aim
Students

- are familiar with the concepts and principles of software engineering and can discuss it,
- know common software development process models and their strengths and weaknesses and can discuss it,
- know methods for requirements analysis and can use it and can model and evaluate use case models,
- know models for systems structuring and controlling as well as architecture principles of software systems and can discuss it,
- can model and evaluate component diagrams
- are familiar with basic concepts of software quality management and are able to apply software test and evaluation methods in concrete situations.

Content
The course deals with fundamental aspects of the systematically development of huge software systems. The course covers topics such as:

- software developing process models
- methods and tools for the development phases: requirements analysis, system specification, system design, programming and testing.

Workload
Lecture 30h
Exercise 15h

Review und Preparation of lectures 30h
Review and Preparation of exercises 15h
Exam preparation 29h
Exam 1h

Total: 120h

Literature

Further literature is given in the course.
Course: Software Quality Management [T-WIWI-102895]

Responsibility: Andreas Oberweis

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511208</td>
<td>Software Quality Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Andreas Oberweis</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511209</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Susan Hickl, And</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions
None

Remarks
This course was formerly named “Software Technology: Quality Management”.

V Event excerpt: Software Quality Management (SS 2018)

Aim
Students

- explain the relevant quality models,
- apply methods to evaluate the software quality and evaluate the results,
- know the mail models of software certification, compare and evaluate these models,
- write scientific theses in the area of software quality management and find own solutions for given problems.

Content
This lecture imparts fundamentals of active software quality management (quality planning, quality testing, quality control, quality assurance) and illustrates them with concrete examples, as currently applied in industrial software development. Keywords of the lecture content are: software and software quality, process models, software process quality, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, software tests.

Workload
Lecture 30h
Exercise 15h

Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam 1h

Total: 150h

Literature

Industrial Engineering and Management (B.Sc.)
Module Handbook. Date: 09/18/2018
Further literature is given in lectures.
Course: Special Topics in Information Engineering & Management
[T-WIWI-102706]

Responsibility: Christof Weinhardt
Contained in: [M-WIWI-101434] eBusiness and Service Management

ECTS: 4.5
Recurrence: Jedes Semester
Exam type: Prüfungsleistung anderer Art
Version: 1

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Conditions
None

Recommendations
None

Remarks
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Engineering & Management course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre

The Special Topics Information Engineering and Management is equivalent to the practical seminar, as it was only offered for the major in “Information Management and Engineering” so far. With this course students majoring in “Industrial Engineering and Management” and “Economics Engineering” also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Engineering and Management can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.
Course: Special Topics of Applied Informatics [T-WIWI-102910]

Contained in: [M-WIWI-101399] Emphasis Informatics
[M-WIWI-101426] Electives in Informatics

ECTS: 5
Recurrence: Jedes Semester
Exam type: Prüfungsleistung schriftlich
Version: 4

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation. Depending on the particular course associated with this placeholder a bonus on the examination grade is possible.

Conditions
None

Modeled Conditions
1 of 2 conditions must be met:

1. The module [M-WIWI-101417] Foundations of Informatics must have been passed.
2. The module [M-WIWI-101581] Introduction to Programming must have been passed.

Remarks
This course can be used in particular for the acceptance of external courses whose content is in the broader area of applied informatics, but is not equivalent to another course of this topic.
Course: Special Topics of Efficient Algorithms [T-WIWI-102657]

Responsibility: Hartmut Schmeck

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the week after the end of the lecturing period (§4 (2), 1 SPO). The exam will be offered in every semester and can be repeated on regular examination dates.
If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the bonus exam will improve the mark by one level (i.e. by 0.3 or 0.4).

Conditions
None

Remarks
This course can be particularly used for recognising the external courses with the topics in the area of algorithms, data-structures and computer infrastructures but are not associated in other courses in this subject area.
Course: Special Topics of Enterprise Information Systems [T-WIWI-102676]

Responsibility: Andreas Oberweis

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511228</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Agnes Koschmider</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written examination (60 min.) or (if necessary) oral examination (30 min.) according to §4(2) of the examination regulation.

Conditions

None
Course: Special Topics of Software- and Systemsengineering [T-WIWI-102678]

Responsibility: Andreas Oberweis

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Conditions
None

Remarks
This course can be used in particular for the acceptance of external courses whose content is in the broader area of software and systems engineering, but cannot assigned to another course of this topic.
Course: Special Topics of Web Science [T-WIWI-108751]

Responsibility: York Sure-Vetter

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment is provided by a written exam of 60 minutes or an oral exam during the first few weeks after the lecturing period (acc. to §4(2), 1 or 2 SPO). The exam is offered each semester and may be repeated at the regular examination day.

Conditions
None

Remarks
see german version
Course: Statistical Modeling of generalized regression models [T-WIWI-103065]

Responsibility: Wolf-Dieter Heller

Contained in: [M-WIWI-101599] Statistics and Econometrics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2521350</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Wolf-Dieter Heller</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Conditions

None

Recommendations

Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Event excerpt: (WS 18/19)

Aim

The student

- shows comprehensive knowledge of regression techniques

Workload

The total workload for this course is approximately 135 hours (4.5 credits).

- regular attendance: 30 hours
- self-study: 65 hours
- exam preparation: 40 hours
Course: Statistics I [T-WIWI-102737]

Responsibility: Oliver Grothe, Melanie Schienle

Contained in: [M-WIWI-101432] Introduction to Statistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2600008</td>
<td>Statistics I</td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Oliver Grothe</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2600009</td>
<td></td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Oliver Grothe</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Conditions

None

Event excerpt: Statistics I (SS 2018)

Aim

The Student understands and applies

- the basic concepts of statistical data exploration,
- the basic definitions and theorems of probability theory.

Content

A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities
C. Random variables: location and shape parameters, dependency measures, concrete distribution models

Workload

150 hours (5.0 Credits).

Literature

Skriptum: Kurzfassung Statistik I

Elective literature:

Course: Statistics II [T-WIWI-102738]

Responsibility: Oliver Grothe, Melanie Schienle

Contained in: [M-WIWI-101432] Introduction to Statistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2610020</td>
<td>Statistics II</td>
<td>Vorlesung (V)</td>
<td>4</td>
<td>Oliver Grothe</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2610021</td>
<td></td>
<td>Tutorium (Tu)</td>
<td>2</td>
<td>Matthias Bitzer, Oliver Grothe, Lotta Rüter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam according to Section 4.2 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Conditions

None

Recommendations

It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2610020].

Event excerpt: Statistics II (WS 18/19)

Aim

The student

- understands and applies the basic definitions and theorems of probability theory,
- transfers these theoretical foundations to problems in parametrical mathematical statistics.

Content

D. Sampling and Estimation Theory: Sampling distributions, estimators, point and interval estimation
E. Test Theory: General Principles of Hypothesis Testing, Concrete 1- and 2-Sampling Tests
F. Regression analysis: Simple and multiple linear regression, statistical inference

Workload

150 hours (5.0 Credits).

Literature

Script: Kurzfassung Statistik II

Elective literature:

Course: Strategic Management of Information Technology [T-WIWI-102669]

Responsibility: Thomas Wolf

Contained in: [M-WIWI-101630] Electives in Informatics
[M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511602</td>
<td>Strategic Management of Information Technology</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Thomas Wolf</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511603</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Thomas Wolf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written (60 min.) or (if necessary) oral examination according (30 min.) to §4(2) of the examination regulation.

Conditions

None

Event excerpt: Strategic Management of Information Technology (SS 2018)

Aim
Students know the outer frame of IT in an enterprise and know which functions IT has within an enterprise. They understand the organization and the content of these functions.

Content
The following topics will be covered: strategic planning of ICT, architecture of ICT, overall planning of ICT, outsourcing, operation and controlling of ICT.

Literature
Course: Structural and Phase Analysis [T-MACH-102170]

Responsibility: Susanne Wagner

Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2125763</td>
<td>Structural and phase analysis</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Manuel Hinterstein, Susanne Wagner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Conditions

none

Event excerpt: Structural and phase analysis (WS 18/19)

Aim

The students know the fundamentals of crystallography, the generation and detection of x-rays as well as their interaction with the microstructure of crystalline materials. They have detailed knowledge about the different methods of x-ray diffraction measurements and are able to analyse x-ray spectra using modern methods of x-ray analysis both qualitatively and quantitatively.

Content

The course gives an overview to generation and detection of x-rays as well as their interaction with matter. It provides an introduction to crystallography and describes modern measurement and analysis methods of x-ray diffraction. It is arranged in the following units:

- Generation and properties of X-Ray’s
- Crystallography
- Fundamentals and application of different measuring methods
- Qualitative and quantitative phase analysis
- Texture analysis (pole figures)
- Residual stress measurements

Workload

regular attendance: 30 hours
self-study: 90 hours

Literature

1. Moderne Röntgenbeugung - Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, Spieß, Lothar / Schwarzer, Robert / Behnk, Herfried / Teichert, Gerd B.G. Teubner Verlag 2005
Course: Structural Ceramics [T-MACH-102179]

Responsibility: Michael Hoffmann

Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2126775</td>
<td>Structural Ceramics</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Michael Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral examination

Conditions

none

Event excerpt: Structural Ceramics (SS 2018)

Aim

The students know the most relevant structural ceramics (silicon carbide, silicon nitride, alumina, boron nitride, zirconia, fibre-reinforced ceramics) and their applications. They are familiar with the microstructural features, fabrication methods, and mechanical properties.

Content

The lecture gives an overview on structure and properties of the technical relevant structural ceramics silicon nitride, silicon carbide, alumina, zirconia, boron nitride and fibre-reinforced ceramics. All types of structural ceramics will be discussed in detail in terms of preparation methods of the raw materials, shaping techniques, densification, microstructural development, mechanical properties and application fields.

Workload

regular attendance: 21 hours
self-study: 99 hours

Literature

Course: System Dynamics and Control Engineering [T-ETIT-101921]

Responsibility: Sören Hohmann

Contained in: [M-ETIT-101156] Control Engineering

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2303155</td>
<td></td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Sören Hohmann</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2303157</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Lukas Kölsch</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2303701</td>
<td></td>
<td>Tutorium (Tu)</td>
<td></td>
<td>Lukas Kölsch</td>
</tr>
</tbody>
</table>

Conditions
none
Course: Systematic Materials Selection [T-MACH-100531]

Responsibility: Stefan Dietrich

Contained in: [M-MACH-101262] Emphasis Materials Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2174576</td>
<td>Systematic Materials Selection</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Stefan Dietrich</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2174577</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Stefan Dietrich, Mitarbeiter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as a written exam of 2 h.

Conditions

The two courses “Materials Science I” (T-MACH-102078) and “Materials Science II” (T-MACH-102079) must be passed.

Modeled Conditions

The following conditions must be met:

1. The course [T-MACH-102078] Materials Science I must have been passed.
2. The course [T-MACH-102079] Material Science II for Business Engineers must have been passed.

Recommendations

Basic knowledge in materials science, mechanics and mechanical design due to the lecture Materials Science I/II.

Event excerpt: Systematic Materials Selection (SS 2018)

Aim

The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

Content

Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered:

- Information and introduction
- Necessary basics of materials
- Selected methods/approaches of the material selection
- Examples for material indices and materials property charts
- Trade-off and shape factors
- Sandwich materials and composite materials
- High temperature alloys
- Regard of process influences
- Material selection for production lines
- Incorrect material selection and the resulting consequences
- Abstract and possibility to ask questions

Workload

The workload for the lecture is 150 h per semester and consists of the presence during the lecture (30 h) as well as preparation and rework time at home (120 h).
Literature
Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
Course: Systems of Remote Sensing, Prerequisite [T-BGU-101637]

Responsibility: Stefan Hinz

Contained in:
- [M-WIWI-101646] Introduction to Natural Hazards and Risk Analysis 1
- [M-WIWI-101648] Introduction to Natural Hazards and Risk Analysis 2

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>6020242</td>
<td></td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Uwe Weidner</td>
</tr>
</tbody>
</table>

Conditions
None

Recommendations
None

Remarks
None
Course: Tactical and Operational Supply Chain Management [T-WIWI-102714]

Responsibility: Stefan Nickel

Contained in:
- [M-WIWI-101421] Supply Chain Management
- [M-WIWI-103278] Optimization under Uncertainty

ECTS 4.5
Language deutsch
Recurrence Jedes Sommersemester
Exam type Prüfungsleistung schriftlich
Version 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2550486</td>
<td></td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Stefan Nickel</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2550487</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td>Mitarbeiter, Stefan Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester.

Prerequisite for admission to examination is the successful completion of the online assessments.

Conditions
Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendations
None

Remarks
The lecture is held in every summer term. The planned lectures and courses for the next three years are announced online.

Event excerpt: (SS 2018)

Aim
The student
- gathers expertise in fundamental techniques from procurement and distribution logistics, methods from inventory management and lot sizing,
- acquires the ability to efficiently utilize quantitative models from transportation planning (long-distance and distribution planning), inventory management and lot sizing in production,
- applies the introduced methods in more detail and in industry-relevant case-studies.

Content
The lecture covers basic quantitative methods in location planning in the context of strategic Supply Chain Planning. Besides the discussion of several criteria for the evaluation of the locations of facilities, the students are acquainted with classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models). The exercises accompanying the lecture offer the possibility to apply the considered models to practical problems.

Literature

Elective Literature
- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
Course: Technical conditions met [T-WIWI-106623]

Responsibility:

Contained in: [M-WIWI-101599] Statistics and Econometrics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Jedes Semester</td>
<td>Studienleistung</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

This module element is intended to record the Bachelor-examination “Introduction to Game Theory”. In the master module M-WIWI-101453 “Applied Strategic Decisions”, this means that the obligatory course “Advanced Game Theory” is not required.

Conditions

None
Course: Tires and Wheel Development for Passenger Cars [T-MACH-102207]

Responsibility: Günter Leister

Contained in: [M-MACH-101265] Vehicle Development

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114845</td>
<td>Tires and Wheel Development for Passenger Cars</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Günter Leister</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

none

Event excerpt: Tires and Wheel Development for Passenger Cars (SS 2018)

Aim

The students are informed about the interactions of tires, wheels and chassis. They have an overview of the processes regarding the tire and wheel development. They have knowledge of the physical relationships.

Content

1. The role of the tires and wheels in a vehicle
2. Geometrie of Wheel and tire, Package, load capacity and endurance, Book of requirement
3. Mobility strategy, Minispare, runflat systems and repair kit.
4. Project management: Costs, weight, planning, documentation
5. Tire testing and tire properties
6. Wheel technology incuding Design and manufacturing methods, Wheeltesting
7. Tire pressure: Indirect and direct measuring systems
8. Tire testing subjective and objective

Workload

regular attendance: 22,5 hours
self-study: 97,5 hours

Literature

Manuscript to the lecture
Course: Vehicle Comfort and Acoustics I [T-MACH-105154]

Responsibility: Frank Gauterin

Contained in: [M-MACH-101264] Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch/englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114856</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2113806</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Frank Gauterin</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

Can not be combined with lecture T-MACH-102206

Event excerpt: Vehicle Comfort and Acoustics I (WS 18/19)

Aim

The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chasis regarding driving comfort and acoustic under consideration of goal conflicts.

Content

1. Perception of noise and vibrations

3. Fundamentals of acoustics and vibrations

3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations

4. The relevance of tire and chasis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Workload

regular attendance: 22,5 hours
self-study: 97,5 hours
Event excerpt: Vehicle Ride Comfort & Acoustics I (SS 2018)

Aim
The students know what noises and vibrations mean, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved. They are ready to apply different tools and methods to analyze relations and to judge them. They are able to develop the chassis regarding driving comfort and acoustic under consideration of goal conflicts.

Content
1. Perception of noise and vibrations

3. Fundamentals of acoustics and vibrations

3. Tools and methods for measurement, computing, simulation and analysis of noise and vibrations

4. The relevance of tire and chassis for the acoustic and mechanical driving comfort: phenomena, influencing parameters, types of construction, optimization of components and systems, conflict of goals, methods of development

An excursion will give insights in the development practice of a car manufacturer or a system supplier.

Workload
regular attendance: 22,5 hours
self-study: 97,5 hours

Literature

2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

The script will be supplied in the lectures
T **Course: Vehicle Comfort and Acoustics II [T-MACH-105155]**

Responsibility: Frank Gauterin
Contained in: [M-MACH-101264] Handling Characteristics of Motor Vehicles

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>deutsch/englisch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung mündlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2114825</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Frank Gauterin</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Frank Gauterin</td>
</tr>
</tbody>
</table>

Learning Control /Examinations

Oral Examination

Duration: 30 up to 40 minutes

Auxiliary means: none

Conditions

Can not be combined with lecture T-MACH-102205

V Event excerpt: Vehicle Ride Comfort & Acoustics II (SS 2018)

Aim

The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Content

1. Summary of the fundamentals of acoustics and vibrations

2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development

3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
Aim
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved. They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods. They are ready to analyze, to judge and to optimize the vehicle with its single components regarding acoustic and vibration phenomena. They are also able to contribute competently to the development of a vehicle regarding the noise emission.

Content
1. Summary of the fundamentals of acoustics and vibrations
2. The relevance of road surface, wheel imperfections, springs, dampers, brakes, bearings and bushings, suspensions, engines and drive train for the acoustic and mechanical driving comfort:
 - phenomena
 - influencing parameters
 - types of construction
 - optimization of components and systems
 - conflicts of goals
 - methods of development
3. Noise emission of motor vehicles
 - noise stress
 - sound sources and influencing parameters
 - legal restraints
 - optimization of components and systems
 - conflict of goals
 - methods of development

Workload
regular attendance: 22.5 hours
self-study: 97.5 hours

Literature
The script will be supplied in the lectures.
Course: Vehicle Mechatronics I [T-MACH-105156]

Responsibility: Dieter Ammon

Contained in: [M-MACH-101265] Vehicle Development
[M-MACH-101264] Handling Characteristics of Motor Vehicles

ECTS: 3
Language: deutsch
Recurrence: Jedes Wintersemester
Exam type: Prüfungsleistung schriftlich
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113816</td>
<td>Vehicle Mechatronics I</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Dieter Ammon</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Written examination

Duration: 90 minutes

Auxiliary means: none

Conditions
none

Event excerpt: Vehicle Mechatronics I (WS 18/19)

Aim
The students have an overview of the system science field of mechatronics and its application in the area of vehicle conception, especially in the context of vehicle system dynamics. They know the tools and methods for a systematical analysis, conception, and design of mechatronic systems, focussing on mechatronically extended suspension systems. They are ready to analyze, to judge and to optimize mechatronic systems.

Content
1. Introduction: Mechatronics in vehicle technology
2. Vehicle Control systems
 Brake- and traction controls (ABS, ASR, automated power train controls)
 Active and semiactive suspension systems, active stabilizor bars
 Vehicle dynamics controls, driver assistance systems
3. Modelling technology
 Mechanics - multi body dynamics
 Electrical and electronical systems, control systems
 Hydraulics
 Interdisciplinary coupled systems
4. Computer simulation technology
 Numerical integration methods
 Quality (validation, operating areas, accuracy, performance)
 Simulator-coupling (hardware-in-the-loop, software-in-the-loop)
5. Systemdesign (example: brake control)
 Demands, requirements (funktion, safety, robustness)
 Problem setup (analysis - modelling - model reduction)
 Solution approaches
 Evaluation (quality, efficiency, validation area, concept ripeness)

Workload
regular attendance: 22,5 hours
self-study: 97.5 hours

Literature
1. Ammon, D., Modellbildung und Systementwicklung in der Fahrzeugdynamik, Teubner, Stuttgart, 1997
5. Roddeck, W., Einführung in die Mechatronik, Teubner, Stuttgart, 1997
Course: Virtual Reality Practical Course [T-MACH-102149]

Responsibility: Jivka Ovtcharova

Contained in: [M-MACH-101270] Product Lifecycle Management

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Semester</td>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2123375</td>
<td>Virtual Reality Practical Course</td>
<td>Projekt (PRO)</td>
<td>3</td>
<td>Mitarbeiter, Jivka Ovtcharova</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment of another type (graded)

Conditions
None

Remarks
Number of participants is limited
Course: Warehousing and Distribution Systems [T-MACH-105174]

Responsibility: Kai Furmans
Contained in: [M-MACH-101269] Introduction to Technical Logistics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2118097</td>
<td>Warehousing and distribution systems</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Kai Furmans</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

Conditions
none

Event excerpt: Warehousing and distribution systems (SS 2018)

Aim
Students are able to:

- Describe the areas of typical warehouse and distribution systems with the respective processes and can illustrate it with sketches,
- Use and choose strategies of warehouse and distribution systems according to requirements,
- Classify typical systems using criteria discussed in the lecture, and
- Reason about the choice of appropriate technical solutions.

Content

- Introduction
- Yard management
- Receiving
- Storage and picking
- Workshop on cycle times
- Consolidation and packing
- Shipping
- Added Value
- Overhead
- Case Study: DCRM
- Planning of warehouses
- Case study: Planning of warehouses
- Distribution networks
- Lean Warehousing

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag
ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag
Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISER, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

A comprehensive overview of scientific papers can be found at:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
Course: Web Science [T-WIWI-103112]

Responsibility: York Sure-Vetter

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>englisch</td>
<td>Jedes Wintersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511312</td>
<td>Web Science</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>York Sure-Vetter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511313</td>
<td>Exercises to Web Science</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Lars Heling, York Sure-Vetter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation. The exam takes place every semester and can be repeated at every regular examination date.

Conditions

None

Remarks

Event excerpt: Web Science (WS 18/19)

Aim

The students

- look critically into current research topics in the field of Web Science and learns in particular about the topics small-world-problem, network theory, social network analysis, bibliometrics, as well as link analysis and search.
- apply interdisciplinary thinking.
- train the application of technological approaches to social science problems.

Content

This course aims to provide students with a basic knowledge and understanding about the structure and analysis of selected web phenomena and technologies. Topics include the small world problem, network theory, social network analysis, graph search and technologies/standards/architectures.

Workload

- The total workload for this course is approximately 150 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 67.5 hours
- Exam and exam preparation: 37.5 hours

Literature

Course: Welfare Economics [T-WIWI-102610]

Responsibility: Clemens Puppe
Contained in: [M-WIWI-101501] Economic Theory

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam at the end of the semester (according to Section 4 (2), 1 or 2 of the examination regulation).

Conditions
The courses Economics I: Microeconomics [2610012] and Economics II: Macroeconomics [2600014] have to be completed beforehand.

Modeled Conditions
The following conditions must be met:

1. The course [T-WIWI-102708] Economics I: Microeconomics must have been passed.
2. The course [T-WIWI-102709] Economics II: Macroeconomics must have been passed.

Recommendations
None
Course: Workflow-Management [T-WIWI-102662]

Responsibility: Andreas Oberweis

Contained in:
- [M-WIWI-101630] Electives in Informatics
- [M-WIWI-101628] Emphasis in Informatics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Language</th>
<th>Recurrence</th>
<th>Exam type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>deutsch</td>
<td>Jedes Sommersemester</td>
<td>Prüfungsleistung schriftlich</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event-No.</th>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2018</td>
<td>2511204</td>
<td>Workflow-Management</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Agnes Koschmider, Andreas Oberweis, Andreas Drescher, Tobias Heuser, Agnes Koschmider, Andreas Oberweis</td>
</tr>
<tr>
<td>SS 2018</td>
<td>2511205</td>
<td></td>
<td>Übung (U)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions

None

Event excerpt: Workflow-Management (SS 2018)

Aim

Students

- explain the concepts and principles of workflow management concepts and systems and their applications,
- create and evaluate business process models,
- analyze static and dynamic properties of workflows.

Content

A workflow is that part of a business process which is automatically executed by a computerized system. Workflow management includes the design, modelling, analysis, execution and management of workflows. Workflow management systems are standard software systems for the efficient control of processes in enterprises and organizations. Knowledge in the field of workflow management systems is especially important during the design of systems for process support. The course covers the most important concepts of workflow management. Modelling and design techniques are presented and an overview about current workflow management systems is given. Standards, which have been proposed by the workflow management coalition (WFMC), are discussed. Petri nets are proposed as a formal modelling and analysis tool for business processes. Architecture and functionality of workflow management systems are discussed. The course is a combination of theoretical foundations of workflow management concepts and of practical application knowledge.

Workload

Lecture 30h
Exercise 15h
Preparation of lecture 30h
Preparation of exercises 30h
Exam preparation 44h
Exam 1h
Total: 150h

Literature

Further literature is given in the lecture.
Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Bachelorstudiengang Wirtschaftsingenieurwesen vom 24. September 2015

Der Präsident hat seine Zustimmung gemäß § 20 Absatz 2 KITG iVm. § 32 Absatz 3 Satz 1 LHG am 24. September 2015 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich
§ 2 Ziele des Studiums, akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Modulprüfungen, Studien- und Prüfungsleistungen
§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen
§ 6 Durchführung von Erfolgskontrollen
§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
§ 6 b Computergestützte Erfolgskontrollen
§ 7 Bewertung von Studien- und Prüfungsleistungen
§ 8 Orientierungsprüfungen, Verlust des Prüfungsnachwuchses
§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen
§ 10 Abmeldung; Versäumnis, Rücktritt
§ 11 Täuschung, Ordnungsverstoß
§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 13 Studierende mit Behinderungen oder chronischer Erkrankung
§ 14 Modul Bachelorarbeit
§ 14 a Berufspraktikum
§ 15 Zusatzleistungen
§ 15 a Mastervorzug
§ 16 Überfachliche Qualifikationen
§ 17 Prüfungsausschuss
§ 18 Prüfende und Beisitzende
§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

II. Bachelorprüfung
§ 20 Umfang und Art der Bachelorprüfung
§ 20 a Leistungsnachweise für die Bachelorprüfung
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

III. Schlussbestimmungen
§ 23 Bescheinigung von Prüfungsleistungen
§ 24 Aberkennung des Bachelorgrades
§ 25 Einsicht in die Prüfungsakten
Präambel

Das KIT hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss des Studiums am KIT der Mastergrad stehen soll. Das KIT sieht daher die am KIT angebotenen konsekutiven Bachelor- und Masterstudien-gänge als Gesamtkonzept mit konsekutivem Curriculum.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich

Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Wirtschaftsingenieurwesen am KIT.

§ 2 Ziel des Studiums, akademischer Grad

(1) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können sowie das erworbenen Wissen berufsfeldbezogen anwenden zu können.

(2) Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science (B.Sc.)“ für den Bachelorstudiengang Wirtschaftsingenieurwesen verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt sechs Semester.

Der Studiengang nimmt teil am Programm „Studienmodelle individueller Geschwindigkeit“. Die Studierenden haben im Rahmen der dortigen Kapazitäten und Regelungen bis einschließlich drittem Fachsemester Zugang zu den Veranstaltungen des MINT-Kollegs Baden-Württemberg (im folgenden MINT-Kolleg).

(2) Bei einer qualifizierten Teilnahme am MINT-Kolleg bleiben bei der Anrechnung auf die Regelstudienzeit bis zu zwei Semester unberücksichtigt. Die konkrete Anzahl der Semester richtet sich nach § 8 Absatz 1 Satz 5 bis 7.

Eine qualifizierte Teilnahme liegt vor, wenn die Studierende Veranstaltungen des MINT-Kollegs für die Dauer von mindestens einem Semester im Umfang von mindestens zwei Fachkursen (Gesamtworkload 10 Semesterwochenstunden) belegt hat. Das MINT-Kolleg stellt hierüber eine Bescheinigung aus.

(6) Lehrveranstaltungen können nach vorheriger Ankündigung auch in englischer Sprache angeboten werden, sofern es deutschsprachige Wahlmöglichkeiten gibt.

§ 4 Modulprüfungen, Studien- und Prüfungsleistungen

Erfolgskontrollen gliedern sich in Studien- oder Prüfungsleistungen.

(2) Prüfungsleistungen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Prüfungsleistungen anderer Art.

(3) Studienleistungen sind schriftliche, mündliche oder praktische Leistungen, die von den Studierenden in der Regel lehrveranstaltungsbegleitend erbracht werden. Die Bachelorprüfung darf nicht mit einer Studienleistung abgeschlossen werden.

(4) Von den Modulprüfungen sollen mindestens 70 % benotet sein.

(5) Bei sich ergänzenden Inhalten können die Modulprüfungen mehrerer Module durch eine auch modulübergreifende Prüfungsleistung (Absatz 2 Nr.1 bis 3) ersetzt werden.

§ 5 Anmeldung und Zulassung zu den Modulprüfungen und Lehrveranstaltungen

(1) Um an den Modulprüfungen teilnehmen zu können, müssen sich die Studierenden online im Studierendenportal zu den jeweiligen Erfolgskontrollen anmelden. In Ausnahmefällen kann eine Anmeldung schriftlich im Studierendendienst oder in einer anderen, vom Studierendendienst autorisierten Einrichtung erfolgen. Für die Erfolgskontrollen können durch die Prüfenden Anmeldefristen festgelegt werden. Die Anmeldung der Bachelorarbeit ist im Modulhandbuch geregelt.

(3) Zu einer Erfolgskontrolle ist zuzulassen, wer
 1. in den Bachelorstudiengang Wirtschaftsingenieurwesen am KIT eingeschrieben ist; die Zulassung beurlaubter Studierender ist auf Prüfungsleistungen beschränkt; und
 2. nachweist, dass er die im Modulhandbuch für die Zulassung zu einer Erfolgskontrolle festgelegten Voraussetzungen erfüllt und
 3. nachweist, dass er in dem Bachelorstudiengang Wirtschaftsingenieurwesen den Prüfungsanspruch nicht verloren hat und
 4. die in § 20 a genannte Voraussetzung erfüllt.

(4) Nach Maßgabe von § 30 Abs. 5 LHG kann die Zulassung zu einzelnen Pflichtveranstaltungen beschränkt werden. Der/die Prüfende entscheidet über die Auswahl unter den Studierenden, die sich rechtzeitig bis zu dem von dem/der Prüfenden festgesetzten Termin angemeldet haben unter Berücksichtigung des Studienfortschritts dieser Studierenden und unter Beachtung von § 13 Abs. 1 Satz 1 und 2, sofern ein Abbau des Überhangs durch andere oder zusätzliche Veranstal-
tungen nicht möglich ist. Für den Fall gleichen Studienfortschritts sind durch die KIT-Fakultäten weitere Kriterien festzulegen. Das Ergebnis wird den Studierenden rechtzeitig bekannt gegeben.

(5) Die Zulassung ist abzulehnen, wenn die in Absatz 3 und 4 genannten Voraussetzungen nicht erfüllt sind.

§ 6 Durchführung von Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2 Nr. 1 bis 3, Abs. 3) wird von der/dem Prüfenden der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lernziele des Moduls festgelegt. Die Art der Erfolgskontrolle, ihre Häufigkeit, Reihenfolge und Gewichtung sowie gegebenenfalls die Bildung der Modulnote müssen mindestens sechs Wochen vor Vorlesungsbeginn im Modulhandbuch bekannt gemacht werden. Im Einvernehmen von Prüfendem und Studierendem bzw. Studierendem können die Art der Prüfungsleistung sowie die Prüfungssprache auch nachträglich geändert werden; im ersten Fall ist jedoch § 4 Abs. 5 zu berücksichtigen. Bei der Prüfungsorganisation sind die Belange Studierender mit Behinderung oder chronischer Erkrankung gemäß § 13 Abs. 1 zu berücksichtigen. § 13 Abs. 1 Satz 3 und 4 gelten entsprechend.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfungsleistung auch mündlich oder eine mündlich durchzuführende Prüfungsleistung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfungsleistung bekannt gegeben werden.

(4) Bei Lehrveranstaltungen in englischer Sprache (§ 3 Abs. 6) können die entsprechenden Erfolgskontrollen in dieser Sprache abgenommen werden. § 6 Abs. 2 gilt entsprechend.

(5) Schriftliche Prüfungen (§ 4 Abs. 2 Nr. 1) sind in der Regel von einer/einem Prüfenden nach § 18 Abs. 2 oder 3 zu bewerten. Sofern eine Bewertung durch mehrere Prüfende erfolgt, ergibt sich die Note aus dem arithmetischen Mittel der Einzelbewertungen. Entspricht das arithmetische Mittel keiner der in § 7 Abs. 2 definierten Notenstufen, so ist auf die nächstliegende Notenstufe auf- oder abzurunden. Bei gleichem Abstand ist auf die nächstbessere Notenstufe zu runden. Das Bewertungsverfahren soll sechs Wochen nicht überschreiten. Schriftliche Prüfungen dauern mindestens 60 und höchstens 300 Minuten.

(6) Mündliche Prüfungen (§ 4 Abs. 2 Nr. 2) sind von mehreren Prüfenden (Kollegialprüfung) oder von einer/einem Prüfenden in Gegenwart einer oder eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die/der Prüfende die anderen an der Kollegialprüfung mitwirkenden Prüfenden an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 60 Minuten pro Studierenden.

Die wesentlichen Gegenstände und Ergebnisse der mündlichen Prüfung sind in einem Protokoll festzuhalten. Das Ergebnis der Prüfung ist den Studierenden im Anschluss an die mündliche Prüfung bekannt zu geben.

Studierende, die sich in einem späteren Semester der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen und nach Zustimmung des Prüfings als Zuhörerinnen und Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse.

(7) Für Prüfungsleistungen anderer Art (§ 4 Abs. 2 Nr. 3) sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Prüfungsleistung dem/der Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

Bei mündlich durchgeführten Prüfungsleistungen anderer Art muss neben der/dem Prüfenden ein/e Beisitzende/r anwesend sein, die/der zusätzlich zum/zur Prüfenden das Protokoll zeichnet.
Schriftliche Arbeiten im Rahmen einer Prüfungsleistung anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird sie nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

§ 6 a Erfolgskontrollen im Antwort-Wahl-Verfahren
Das Modulhandbuch regelt, ob und in welchem Umfang Erfolgskontrollen im Wege des Antwort-Wahl-Verfahrens abgelegt werden können.

§ 6 b Computergestützte Erfolgskontrollen

(2) Vor der computergestützten Erfolgskontrolle hat die/der Prüfende sicherzustellen, dass die elektronischen Daten eindeutig identifiziert und unverwechselbar und dauerhaft den Studierenden zugeordnet werden können. Der störungsfreie Verlauf einer computergestützten Erfolgskontrolle ist durch entsprechende technische und fachliche Betreuung zu gewährleisten. Alle Prüfungsaufgaben müssen während der gesamten Bearbeitungszeit zur Verfügung stehen.

(3) Im Übrigen gelten für die Durchführung von computergestützten Erfolgskontrollen die §§ 6 bzw. 6 a.

§ 7 Bewertung von Studien- und Prüfungsleistungen
(1) Das Ergebnis einer Prüfungsleistung wird von den jeweiligen Prüfenden in Form einer Note festgesetzt.

(2) Folgende Noten sollen verwendet werden:

<table>
<thead>
<tr>
<th>Note: sehr gut (very good)</th>
<th>Gut (good)</th>
<th>befriedigend (satisfactory)</th>
<th>ausreichend (sufficient)</th>
<th>nicht ausreichend (failed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0</td>
<td>4,0</td>
<td>3,3</td>
<td>3,0; 3,3</td>
<td>2,7; 3,0; 3,3</td>
</tr>
<tr>
<td>1,7; 2,0; 2,3</td>
<td>2,7; 3,0; 3,3</td>
<td>2,7; 3,0; 3,3</td>
<td>2,7; 3,0; 3,3</td>
<td>2,7; 3,0; 3,3</td>
</tr>
<tr>
<td>1,0; 1,3</td>
<td>1,0; 1,3</td>
<td>1,0; 1,3</td>
<td>1,0; 1,3</td>
<td>1,0; 1,3</td>
</tr>
</tbody>
</table>

Zur differenzierten Bewertung einzelner Prüfungsleistungen sind nur folgende Noten zugelassen:
Diese Noten müssen in den Protokollen, im Zeugnis, im Transcript of Records sowie im Diploma Supplement verwendet werden.

(3) Studienleistungen werden mit „bestanden“ oder mit „nicht bestanden“ gewertet.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten, der Fachnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul und jede Erfolgskontrolle darf in demselben Studiengang nur einmal gewertet werden.

(6) Eine Prüfungsleistung ist bestanden, wenn die Note mindestens „ausreichend“ (4,0) ist.

(8) Die Ergebnisse der Erfolgskontrollen sowie die erworbenen Leistungspunkte werden durch den Studierendenservice des KIT verwaltet.

(9) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Dabei werden die Noten der Module, die nicht zum Grundlagenstudium gemäß dem Studienplan für den Bachelorstudiengang Wirtschaftsingenieurwesen zählen, mit dem doppelten Gewicht der ausgewiesenen Leistungspunkte der Module berücksichtigt.

(10) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bis</td>
<td>1,5</td>
<td>sehr gut</td>
</tr>
<tr>
<td>von</td>
<td>1,6</td>
<td>bis</td>
</tr>
<tr>
<td>von</td>
<td>2,6</td>
<td>bis</td>
</tr>
<tr>
<td>von</td>
<td>3,6</td>
<td>bis</td>
</tr>
</tbody>
</table>

§ 8 Orientierungsprüfungen, Verlust des Prüfungsanspruchs

(1) Die Modulprüfung Mikroökonomie (VWL I) im Modul „Einführung in die Volkswirtschaftslehre“ und die Modulprüfung Statistik I im Modul „Einführung in die Statistik“ sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

(2) Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist; hierüber entscheidet der Prüfungsausschuss auf Antrag der oder des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

Die Fristüberschreitung hat die/der Studierende insbesondere dann nicht zu vertreten, wenn eine qualifizierte Teilnahme am MINT-Kolleg im Sinne von § 3 Abs. 2 vorliegt. Ohne ausdrückliche Genehmigung des Vorsitzenden des Prüfungsausschusses gilt eine Fristüberschreitung von

1. einem Semester als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von einem Semester nachweist oder

2. zwei Semestern als genehmigt, wenn die/der Studierende eine qualifizierte Teilnahme am MINT-Kolleg gemäß § 3 Abs. 2 im Umfang von zwei Semestern nachweist.

Als Nachweis gilt die vom MINT-Kolleg gemäß § 3 Abs. 2 auszustellende Bescheinigung, die beim Studierendenservice des KIT einzureichen ist. Im Falle von Nr. 1 kann der Vorsitzende des
Prüfungsausschusses auf Antrag der Studierenden die Frist um ein weiteres Semester verlängern, wenn dies aus studienorganisatorischen Gründen für das fristgerechte Ablegen der Orientierungsprüfung erforderlich ist, insbesondere weil die Module, die Bestandteil der Orientierungsprüfung sind, nur einmal jährlich angeboten werden.

(3) Ist die Bachelorprüfung bis zum Ende des Prüfungszeitraums des neunten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass die Fristüberschreitung nicht selbst zu vertreten ist. Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss unter Beachtung der in § 32 Abs. 6 LHG genannten Tätigkeiten auf Antrag des/der Studierenden. Der Antrag ist schriftlich in der Regel bis sechs Wochen vor Ablauf der in Satz 1 genannten Studienhöchstdauer zu stellen.

(4) Der Prüfungsanspruch geht auch verloren, wenn eine nach dieser Studien- und Prüfungsordnung erforderliche Studien- oder Prüfungsleistung endgültig nicht bestanden ist.

§ 9 Wiederholung von Erfolgskontrollen, endgültiges Nichtbestehen

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ (5,0) bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4,0) sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen.

(4) Prüfungsleistungen anderer Art (§ 4 Absatz 2 Nr. 3) können einmal wiederholt werden.

(5) Studienleistungen können mehrfach wiederholt werden.

(6) Die Prüfungsleistung ist endgültig nicht bestanden, wenn die mündliche Nachprüfung im Sinne des Absatzes 1 mit „nicht ausreichend“ (5,0) bewertet wurde. Die Prüfungsleistung ist ferner endgültig nicht bestanden, wenn die mündliche Prüfung im Sinne des Absatzes 2 oder die Prüfungsleistung anderer Art gemäß Absatz 4 mit „nicht bestanden“ bewertet wurde.

(7) Das Modul ist endgültig nicht bestanden, wenn eine für sein Bestehen erforderliche Prüfungsleistung endgültig nicht bestanden ist.

(9) Die Wiederholung einer bestandenen Prüfungsleistung ist nicht zulässig.

(10) Die Bachelorarbeit kann bei einer Bewertung mit „nicht ausreichend“ (5,0) einmal wiederholt werden. Eine zweite Wiederholung der Bachelorarbeit ist ausgeschlossen.

§ 10 Abmeldung; Versäumnis, Rücktritt

(3) Die Abmeldung von Prüfungsleistungen anderer Art sowie von Studienleistungen ist im Modulhandbuch geregelt.

(4) Eine Erfolgskontrolle gilt als mit „nicht ausreichend“ (5,0) bewertet, wenn die Studierenden einen Prüfungstermin ohne triftigen Grund versäumen oder wenn sie nach Beginn der Erfolgskontrolle ohne triftigen Grund von dieser zurücktreten. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der/die Studierende hat die Fristüberschreitung nicht zu vertreten.

§ 11 Täuschung, Ordnungsverstoß

(1) Versuchen Studierende das Ergebnis ihrer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet.

(2) Studierende, die den ordnungsgemäßen Ablauf einer Erfolgskontrolle stören, können von der/dem Prüfenden oder der Aufsicht führenden Person von der Fortsetzung der Erfolgskontrolle ausgeschlossen werden. In diesem Fall gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5,0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss diese Studierenden von der Fortsetzung der Erfolgskontrolle ausschließen.

(3) Studierende können innerhalb einer Frist von einem Monat verlangen, dass Entscheidungen gemäß Absatz 1 und 2 vom Prüfungsausschuss überprüft werden.

(4) Näheres regelt die Allgemeine Satzung des KIT zur Redlichkeit bei Prüfungen und Praktika in der jeweils gültigen Fassung.

§ 12 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweils gültigen Gesetzes (Bundeselterngeld- und Elternzeitgesetz - BEEG) auf Antrag zu berücksichtigen. Der/die Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an die Elternzeit angetreten werden soll, dem Prüfungsausschuss, unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, in welchem Zeitraum die Elternzeit in Anspruch genommen werden soll. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die bei einer Arbeit-

(3) Der Prüfungsausschuss entscheidet auf Antrag über die flexible Handhabung von Prüfungsfristen entsprechend den Bestimmungen des Landeshochschulgesetzes, wenn Studierende Familienpflichten wahrzunehmen haben. Absatz 2 Satz 4 bis 6 gelten entsprechend.

§ 13 Studierende mit Behinderung oder chronischer Erkrankung

(2) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Zeit oder Form abzulegen, kann der Prüfungsausschuss gestatten, die Erfolgskontrollen in einem anderen Zeitraum oder einer anderen Form zu erbringen. Insbesondere ist behinderten Studierenden zu gestatten, notwendige Hilfsmittel zu benutzen.

(3) Weisen Studierende eine Behinderung oder chronische Erkrankung nach und folgt daraus, dass sie nicht in der Lage sind, die Lehrveranstaltungen regelmäßig zu besuchen oder die gemäß § 20 erforderlichen Studien- und Prüfungsleistungen zu erbringen, kann der Prüfungsausschuss auf Antrag gestatten, dass einzelne Studien- und Prüfungsleistungen nach Ablauf der in dieser Studien- und Prüfungsordnung vorgesehenen Fristen absolviert werden können.

§ 14 Modul Bachelorarbeit

(1) Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende

1. Modulprüfungsleistungen im Umfang von mindestens 120 LP erfolgreich abgelegt und
2. alle Modulprüfungen des Grundlagenprogramms abgeschlossen hat,

Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind von dem Betreuer bzw. der Betreuerin so zu begrenzen, dass sie mit dem in Absatz 4 festgelegten Arbeitsaufwand bearbeitet werden kann.

Bei der Abgabe der Bachelorarbeit haben die Studierenden schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht ange nommen. Die Erklärung kann wie folgt lauten: Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5,0) bewertet.

§ 14 a Berufspraktikum

Die Studierenden setzen sich in eigener Verantwortung mit geeigneten privaten oder öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Das Nähere regelt das Modulhandbuch.

§ 15 Zusatzleistungen

Es können auch weitere Leistungspunkte (Zusatzleistungen) im Umfang von höchstens 30 LP aus dem Gesamtangebot des KIT erworben werden. § 3 und § 4 der Prüfungsordnung bleiben davon unberührt. Diese Zusatzleistungen gehen nicht in die Festsetzung der Gesamt- und Modulnoten ein. Die bei der Festlegung der Modulnote nicht berücksichtigten LP werden als Zu-

(2) Die Studierenden haben bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren. Auf Antrag der Studierenden kann die Zuordnung des Moduls später geändert werden.

§ 15 a Mastervorzug

§ 16 Überfachliche Qualifikationen

Neben der Vermittlung von fachlichen Qualifikationen ist der Auf- und Ausbau überfachlicher Qualifikationen im Umfang von mindestens 6 LP Bestandteil eines Bachelorstudiums. Überfachliche Qualifikationen können additiv oder integrativ vermittelt werden.

§ 17 Prüfungsausschuss

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die/den Vorsitzende/n des Prüfungsausschusses übertragen. In dringenden Angelegenheiten, deren Erledigung nicht bis zu der nächsten Sitzung des Prüfungsausschusses warten kann, entscheidet die/den Vorsitzende/n des Prüfungsausschusses.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen KIT-Fakultät zu absolvierende Prüfungslehre betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen KIT-Fakultät zu nennende prüfungsberichtigte Person hinzuzuziehen.

§ 18 Prüfende und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfenden. Er kann die Bestellung der/dem Vorsitzenden übertragen.

(2) Prüfende sind Hochschullehr/innen sowie leitende Wissenschaftler/innen gemäß § 14 Abs. 3 Ziff. 1 KITG, habilitierte Mitglieder und akademische Mitarbeiter/innen gemäß § 52 LHG, welche einer KIT-Fakultät angehören und denen die Prüfungsbefugnis übertragen wurde; desgleichen kann wissenschaftlichen Mitarbeitern gemäß § 14 Abs. 3 Ziff. 2 KITG die Prüfungsbefugnis übertragen werden. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüfenden bestellt werden, sofern eine KIT-Fakultät eine Prüfungsbefugnis erteilt hat und sie die gemäß Absatz 2 Satz 2 vorausgesetzte Qualifikation nachweisen können.

(4) Die Beisitzenden werden durch die Prüfenden benannt. Zu Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Studiengang der Bereiche Wirtschafts- oder Ingenieurwissenschaften oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 19 Anerkennung von Studien- und Prüfungsleistungen, Studienzeiten

(1) Studien- und Prüfungsleistungen sowie Studienzeiten, die in Studiengängen an staatlichen oder staatlich anerkannten Hochschulen und Berufsakademien der Bundesrepublik Deutschland oder an ausländischen staatlichen oder staatlich anerkannten Hochschulen erbracht wurden, werden auf Antrag der Studierenden anerkannt, sofern hinsichtlich der erworbenen Kompetenzen kein wesentlicher Unterschied zu den Leistungen oder Abschlüssen besteht, die ersetzt werden sollen. Dabei ist kein schematischer Vergleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Anerkennung vorgelegten Studienleistung (Anrechnung) werden die Grundsätze des ECTS herangezogen.

(2) Die Studierenden haben die für die Anerkennung erforderlichen Unterlagen vorzulegen. Studierende, die neu in den Bachelorstudiengang Wirtschaftsingenieurwesen immatrikuliert wurden, haben den Antrag mit den für die Anerkennung erforderlichen Unterlagen innerhalb eines Semesters nach Immatrikulation zu stellen. Bei Unterlagen, die nicht in deutscher oder englischer Sprache vorliegen, kann eine amtlich beglaubigte Übersetzung verlangt werden. Die Beweislast
dafür, dass der Antrag die Voraussetzungen für die Anerkennung nicht erfüllt, liegt beim Prüfungsausschuss.

(3) Werden Leistungen angerechnet, die nicht am KIT erbracht wurden, werden sie im Zeugnis als „anerkannt“ ausgewiesen.

Liegten Noten vor, werden die Noten, soweit die Notensysteme vergleichbar sind, übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Sind die Notensysteme nicht vergleichbar, können die Noten umgerechnet werden. Liegen keine Noten vor, wird der Vermerk „bestanden“ aufgenommen.

(4) Bei der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik Deutschland erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartenchaften zu beachten.

(5) Außerhalb des Hochschulsystems erworbene Kenntnisse und Fähigkeiten werden angerechnet, wenn sie nach Inhalt und Niveau den Studien- und Prüfungsleistungen gleichwertig sind, die ersetzt werden sollen und die Institution, in der die Kenntnisse und Fähigkeiten erworben wurden, ein genormtes Qualitätssicherungssystem hat. Die Anrechnung kann in Teilen versagt werden, wenn mehr als 50 Prozent des Hochschulstudiums ersetzt werden soll.

II. Bachelorprüfung

§ 20 Umfang und Art der Bachelorprüfung

(1) Die Bachelorprüfung besteht aus den Modulprüfungen nach Absatz 2 sowie dem Modul Bachelorarbeit (§ 14) und dem Berufspraktikum (§ 14 a).

(2) Es sind Modulprüfungen in folgenden Pflichtfächern abzulegen:

1. Betriebswirtschaftslehre: Modul(e) im Umfang von 24 LP,
2. Volkswirtschaftslehre: Modul(e) im Umfang von 19 LP,
3. Informatik: Modul(e) im Umfang von 24 LP,
4. Operations Research: Modul(e) im Umfang von 18 LP,
5. Ingenieurwissenschaften: Modul(e) im Umfang von 21 LP,
6. Mathematik: Modul(e) im Umfang von 21 LP,
7. Statistik: Modul(e) im Umfang von 10 LP,
8. Wahlpflichtbereich: Modul(e) im Umfang von 21 LP.

Die Festlegung der zur Auswahl stehenden Module und deren Fachzuordnung wird im Modulhandbuch getroffen.

Die Vermittlung überfachlicher Qualifikationen im Umfang von 6 LP findet im Rahmen der fachwissenschaftlichen Module und dem Berufspraktikum statt.

§ 20 a Leistungsnachweise für die Bachelorprüfung

Voraussetzung für die Anmeldung zur letzten Modulprüfung der Bachelorprüfung ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 14 a. In Ausnahmefällen, die die Studierenden nicht zu vertreten haben, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.
§ 21 Bestehen der Bachelorprüfung, Bildung der Gesamtnote

(1) Die Bachelorprüfung ist bestanden, wenn alle in § 20 genannten Modulprüfungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt der Fachnoten sowie des Moduls Bachelorarbeit.

Dabei werden die Noten der Fächer gemäß § 20 Abs. 2 Ziffer 1 - 7 mit dem Gewicht der einzelnen Module berücksichtigt, das der jeweiligen Fachnotenberechnung gemäß § 7 Abs. 9 zugrunde liegt. Die Note des Profilfachs gemäß § 20 Abs. 2 Nr. 8 sowie die Note des Moduls Bachelorarbeit werden mit dem doppelten Gewicht ihrer Leistungspunkte berücksichtigt.

(3) Haben Studierende die Bachelorarbeit mit der Note 1,0 und die Bachelorprüfung mit einem Durchschnitt von 1,1 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 22 Bachelorzeugnis, Bachelorurkunde, Diploma Supplement und Transcript of Records

(3) Mit dem Zeugnis erhalten die Studierenden ein Diploma Supplement in deutscher und englischer Sprache, das den Vorgaben des jeweils gültigen ECTS Users’ Guide entspricht sowie ein Transcript of Records in deutscher und englischer Sprache.

III. Schlussbestimmungen

§ 23 Bescheinigung von Prüfungsleistungen

Haben Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihnen auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Studien- und Prüfungsleistungen und deren Noten sowie die zur Prüfung noch
fehlenden Studien- und Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 24 Aberkennung des Bachelorgrades
(1) Haben Studierende bei einer Prüfung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die/des Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5,0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach § 35 Abs. 7 LHG.

§ 25 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Bachelorprüfung werden den Studierenden auf Antrag innerhalb eines Jahres Einsicht in das Prüfungsexemplar ihrer Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der/die Prüfende bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 26 Inkrafttreten, Übergangsvorschriften
(1) Diese Studien- und Prüfungsordnung tritt am 01. Oktober 2015 in Kraft und gilt für

1. Studierende, die ihr Studium im Bachelorstudiengang Wirtschaftsingenieurwesen am KIT im ersten Fachsemester aufnehmen, sowie

2. für Studierende, die ihr Studium im Bachelorstudiengang Wirtschaftsingenieurwesen am KIT in einem höheren Fachsemester aufnehmen, sofern dieses Fachsemester nicht über dem Fachsemester liegt, das der erste Jahrgang nach Ziff. 1 erreicht.

1. Studierende, die ihr Studium im Bachelorstudiengang Wirtschaftsingenieurwesen am KIT letztm in Sommersemester 2015 aufgenommen haben, sowie

2. für Studierende, die ihr Studium im Bachelorstudiengang Wirtschaftsingenieurwesen am KIT ab dem Wintersemester 2015/16 in einem höheren Fachsemester aufnehmen, sofern das Fach-
semester über dem liegt, das der erste Jahrgang nach Absatz 1 Ziff. 1 erreicht hat. Im Übrigen tritt sie außer Kraft.

(3) Studierende, die auf Grundlage der Studien- und Prüfungsordnung für den Bachelorstudien-
chung des KIT Nr. 19 vom 28. März 2014), ihr Studium am KIT aufgenommen haben, können Prüfungen auf Grundlage dieser Studien-
und Prüfungsordnung letztmalig bis zum Ende des Prüfungszeitraums des Sommersemesters 2020 ablegen.

Karlsruhe, den 24. September 2015

Professor Dr.-Ing. Holger Hanselka
(Präsident)
Neubekanntmachung der Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Bachelorstudiengang Wirtschaftsingenieurwesen

in der Fassung vom 15. August 2008

Der Rektor hat seine Zustimmung am 06. März 2007 erteilt.

Aus Gründen der Lesbarkeit ist in dieser Satzung nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich, Ziele
 § 2 Akademischer Grad
 § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
 § 4 Aufbau der Prüfungen
 § 5 Anmeldung und Zulassung zu den Prüfungen
 § 6 Durchführung von Prüfungen und Erfolgskontrollen
 § 7 Bewertung von Prüfungen und Erfolgskontrollen
 § 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfungen, Wiederholung von Prüfungen und Erfolgskontrollen
 § 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
 § 10 Mutterschutz, Elternzeit
 § 11 Bachelorarbeit
 § 12 Berufspraktikum
 § 13 Zusatzmodule, Zusatzleistungen
 § 14 Prüfungsausschuss
 § 15 Prüfer und Beisitzende
 § 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Bachelorprüfung
 § 17 Umfang und Art der Bachelorprüfung
 § 18 Leistungsnachweise für die Bachelorprüfung
 § 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
 § 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
 § 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
 § 22 Aberkennung des Bachelorgrades
 § 23 Einsicht in die Prüfungsakten
 § 24 In-Kraft-Treten
I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Ziele

(1) Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Wirtschaftsingenieurwesen an der Universität Karlsruhe (TH).

(2) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, das erworbene Wissen berufsfeldbezogen anzuwenden sowie einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können.

§ 2 Akademischer Grad

Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science“ (abgekürzt: „B.Sc.”) für den Bachelorstudiengang Wirtschaftsingenieurwesen verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt sechs Semester. Sie umfasst ein Betriebspraktikum, Prüfungen und die Bachelorarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind auf Fächer verteilt. Die Fächer sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Studienplan oder Modulhandbuch beschreiben Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren. Die Fächer und ihr Umfang werden in § 17 definiert.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 180 Leistungspunkte.

(5) Die Leistungspunkte sind in der Regel gleichmäßig auf die Semester zu verteilen.

(6) Lehrveranstaltungen/Prüfungen können auch in englischer Sprache angeboten/abgenommen werden.

§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:

 1. schriftliche Prüfungen,
 2. mündliche Prüfungen,
 3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z. B. Vorträge, Marktstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Modulhandbuch ausgewiesen sind.
(3) In den Fachprüfungen (nach § 17 Absatz 2 und Absatz 3 Nr. 1 bis 7) sind mindestens 50 vom Hundert einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Absatz 2 Nr. 1 und 2) abzulegen, die restliche Prüfung erfolgt durch Erfolgskontrollen anderer Art (Absatz 2 Nr. 3).

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Die Zulassung zu den Prüfungen nach § 4 Absatz 2 Nr. 1 und 2 sowie zur Bachelorarbeit erfolgt im Studienbüro.

Um zu Prüfungen in einem Modul zugelassen zu werden, muss beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgegeben werden.

(2) Die Zulassung darf nur abgelehnt werden, wenn

1. der Studierende in einem mit Wirtschaftsingenieurwesen vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat oder

2. die in § 18 genannte Voraussetzung nicht erfüllt ist.

In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrollen (§ 4 Absatz 2 Nr. 1 bis 3) eines Moduls wird im Studienplan oder Modulhandbuch in Bezug auf die Lehrinhalte der betreffenden Lehrveranstaltungen und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Grundsätze zur Bildung der Modulteilprüfungsnoten und der Modulnote sowie Prüfer müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen von Prüfer und Studierendem kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Absatz 3 zu berücksichtigen.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

Bei Einvernehmen zwischen Prüfer und Kandidat kann der Prüfungsausschuss in begründeten Ausnahmefällen auch kurzfristig die Änderung der Prüfungsform genehmigen.

Wird die Wiederholungsprüfung einer schriftlichen Prüfung in mündlicher Form abgelegt, entfällt die mündliche Nachprüfung nach § 8 Absatz 2.

(4) Macht ein Studierender glaubhaft, dass er wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, entscheidet der Prüfungsausschuss über eine alternative Form der Erfolgskontrollen.

(5) Bei Lehrveranstaltungen in englischer Sprache werden die entsprechenden Erfolgskontrollen in der Regel in englischer Sprache abgenommen.

(7) Mündliche Prüfungen (§ 4 Absatz 2 Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelprüfungen abzu-nehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kollegialprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studierendem.

(10) Für Erfolgskontrollen anderer Art sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Studienleistung dem Studierenden zurechenbar ist.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Bei-sitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note festgesetzt.

(2) Im Bachelorzeugnis dürfen nur folgende Noten verwendet werden:

<table>
<thead>
<tr>
<th>Note</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sehr gut (very good) = hervorragende Leistung</td>
</tr>
<tr>
<td>2</td>
<td>gut (good) = eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt</td>
</tr>
<tr>
<td>3</td>
<td>befriedigend (satisfactory) = eine Leistung, die durchschnittlichen Anforderungen entspricht</td>
</tr>
<tr>
<td>4</td>
<td>ausreichend (sufficient) = eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt</td>
</tr>
<tr>
<td>5</td>
<td>nicht ausreichend (failed) = eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt</td>
</tr>
</tbody>
</table>

Für die Bachelorarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

<table>
<thead>
<tr>
<th>Note</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0, 1.3 = sehr gut</td>
</tr>
<tr>
<td>2</td>
<td>1.7, 2.0, 2.3 = gut</td>
</tr>
<tr>
<td>3</td>
<td>2.7, 3.0, 3.3 = befriedigend</td>
</tr>
<tr>
<td>4</td>
<td>3.7, 4.0 = ausreichend</td>
</tr>
<tr>
<td>5</td>
<td>4.7, 5.0 = nicht ausreichend</td>
</tr>
</tbody>
</table>
Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann die Benotung „bestanden“ (passed) oder „nicht bestanden“ (failed) vergeben werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf jeweils nur einmal ange rechnet werden.

(6) Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur einge rechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan oder Modulhandbuch festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

(9) Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten über die im Studienplan oder Modulhandbuch definierten Modulprüfungen nachgewiesen wird.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Ergebnisse der Bachelorarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

(11) Innerhalb der Regelstudienzeit, einschließlich der Urlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Fach auch mehr Leistungspunkte erworben werden als für das Bestehen der Fachprüfung erforderlich sind. In diesem Fall werden bei der Festlegung der Fachnote nur die Modulnoten berücksichtigt, die unter Abdeckung der erforderlichen Leistungspunkte die beste Fachnote ergeben.

Die in diesem Sinne für eine Fachprüfung nicht gewerteten Erfolgskontrollen und Leistungspunkte können im Rahmen der Zusatzfachprüfung nach § 13 nachträglich geltend gemacht werden.

(12) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Grenzen</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>sehr gut</td>
</tr>
<tr>
<td>1,6 bis 2,5</td>
<td>gut</td>
</tr>
<tr>
<td>2,6 bis 3,5</td>
<td>befriedigend</td>
</tr>
<tr>
<td>3,6 bis 4,0</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>
Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Bachelorprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (failed) – es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (failed) – es sind erhebliche Verbesserungen erforderlich</td>
<td></td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

§ 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfung, Wiederholung von Prüfungen und Erfolgskontrollen

(1) Die Modulteilprüfung Mikroökonomie (VWL I) im Fach Volkswirtschaftslehre (gemäß § 17 Absatz 2 Nr. 2) und die Modulteilprüfung Statistik I im Fach Statistik (gemäß § 17 Absatz 2 Nr. 7) sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass er die Fristüberschreitung nicht zu vertreten hat, hierüber entscheidet der Prüfungsausschuss auf Antrag des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

(2) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als 4.0 (ausreichend) sein.

(3) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(5) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Absatz 2 Nr. 3) wird im Modulhandbuch geregelt.

Bei nicht bestandener Erfolgskontrolle sind dem Kandidaten Umfang und Frist der Wiederholung in geeigneter Weise bekannt zu machen.

(7) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.

(8) Eine Fachprüfung ist nicht bestanden, wenn mindestens ein Modul des Faches nicht bestanden ist.

(10) Ist gemäß § 34 Absatz 2 Satz 3 LHG die Bachelorprüfung bis zum Beginn der Vorlesungszeit des zehnten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass der Studierende die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss.

(11) Der Prüfungsanspruch erlischt endgültig, wenn mindestens einer der folgenden Gründe vorliegt:
1. Der Prüfungsausschuss lehnt einen Antrag auf Fristverlängerung nach Absatz 1 oder Absatz 10 ab.
2. Die Bachelorarbeit ist endgültig nicht bestanden.
3. Eine Erfolgskontrolle nach § 4 Absatz 2 Nr. 1 und 2 ist in einem Fach endgültig nicht bestanden.

Eine Erfolgskontrolle ist dann endgültig nicht bestanden, wenn keine Wiederholungsmöglichkeit im Sinne von Absatz 2 mehr besteht oder gemäß Absatz 6 genehmigt wird. Dies gilt auch sinngemäß für die Bachelorarbeit.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

(2) Eine Modulprüfung wird mit „nicht ausreichend“ bewertet, wenn der Studierende einen Prüfungstermin ohne triftigen Grund versäumt oder wenn er nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der Studierende hat die Fristüberschreitung nicht zu vertreten.

Die Anerkennung des Rücktritts ist ausgeschlossen, wenn bis zum Eintritt des Hinderungsgrundes bereits Prüfungsleistungen erbracht worden sind und nach deren Ergebnis die Prüfung nicht bestanden werden kann.

Wird der Grund anerkannt, wird ein neuer Termin anberaumt. Die bereits vorliegenden Prüfungsergebnisse sind in diesem Fall anzurechnen.

Bei Modulprüfungen, die aus mehreren Prüfungen bestehen, werden die Prüfungsleistungen dieses Moduls, die bis zu einem anerkannten Rücktritt bzw. einem anerkannten Versäumnis einer Prüfungsleistung dieses Moduls erbracht worden sind, angerechnet.

(4) Versucht der Studierende das Ergebnis einer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5.0) bewertet.

(7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit

§ 11 Bachelorarbeit

(1) Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass der Studierende sich in der Regel im 3. Studienjahr befindet und nicht mehr als eine der Fachprüfungen der ersten drei Fachsemester laut § 17 Absatz 2 noch nachzuweisen ist.

Vor Zulassung sind Betreuer, Thema und Anmeldedatum dem Prüfungsausschuss dem Prüfungsausschuss bekannt zu geben und im Falle einer Betreuung außerhalb der Fakultät für Wirtschaftswissenschaften durch den Prüfungsausschuss zu genehmigen.

(2) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind vom Betreuer so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

(4) Die Bachelorarbeit kann von jedem Prüfer nach § 15 Absatz 2 vergeben und betreut werden. Soll die Bachelorarbeit außerhalb der Fakultät angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses gemäß Absatz 1. Dem Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Studierenden aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz 3 erfüllt.

(5) Bei der Abgabe der Bachelorarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5.0) bewertet.

§ 12 Berufspraktikum

(1) Während des Bachelorstudiums ist ein mindestens achtwöchiges Berufspraktikum, welches mit acht Leistungspunkten bewertet wird, abzuleisten.

(2) Der Studierende setzt sich dazu in eigener Verantwortung mit geeigneten Unternehmen in Verbindung. Der Praktikant wird von einem Prüfer nach § 15 Absatz 2 und einem Mitarbeiter des Unternehmens betreut.

(3) Am Ende des Berufspraktikums ist dem Prüfer ein kurzer Bericht abzugeben und eine Kurzpräsentation über die Erfahrungen im Berufspraktikum zu halten.

(4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens achtwöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Die Durchführung des Berufspraktikums ist im Studienplan oder Modulhandbuch zu regeln. Das Berufspraktikum geht nicht in die Gesamtnote ein.
§ 13 Zusatzmodule, Zusatzleistungen

(1) Der Studierende kann sich weiteren Prüfungen in Modulen unterziehen. § 3, § 4 und § 8 Absatz 10 der Prüfungsordnung bleiben davon unberührt.

(2) Maximal zwei Zusatzmodule mit jeweils mindestens neun Leistungspunkten werden auf Antrag des Studierenden in das Bachelorzeugnis aufgenommen und entsprechend gekennzeichnet.

Zusatzmodule müssen nicht im Studienplan oder Modulhandbuch definiert sein. Im Zweifelsfall entscheidet der Prüfungsausschuss.

(3) Der Studierende hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 14 Prüfungsausschuss

(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden vom Fakultätsrat bestellt, die Mitglieder der Gruppe der wissenschaftlichen Mitarbeiter nach § 10 Absatz 1 Satz 2 Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor sein. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch ein Prüfungssekretariat unterstützt.

(3) Der Prüfungsausschuss regelt die Auslegung und die Umsetzung der Prüfungsordnung in die Prüfungspraxis der Fakultät. Er achtet darauf, dass die Bestimmungen der Prüfungsordnung eingehalten werden. Er berichtet regelmäßiger dem Fakultätsrat über die Entwicklung der Prüfungen und Studienzeiten sowie über die Verteilung der Fach- und Gesamtnoten und gibt Anregungen zur Reform des Studienplans und der Prüfungsordnung.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben in dringenden Angelegenheiten übertragen.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennender Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuzuziehen. Er hat in diesem Punkt Stimmrecht.

§ 15 Prüfer und Beisitzende
(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.

(2) Prüfer sind Hochschullehrer und habilitierte Mitglieder sowie wissenschaftliche Mitarbeiter der jeweiligen Fakultät, denen die Prüfungsbefugnis übertragen wurde. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Bachelorarbeit muss ein Prüfer Hochschullehrer sein.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.

(4) Zum Beisitzenden darf nur bestellt werden, wer einen dem jeweiligen Prüfungsgegenstand entsprechenden akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

(2) Werden Leistungen angerechnet, so werden die Noten – soweit die Notensysteme vergleichbar sind – übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Falls es sich dabei um Leistungen handelt, die im Rahmen eines Auslandsstudiums erbracht werden, während der Studierende an der Universität Karlsruhe (TH) für Wirtschaftsingenieurwesen immatrikuliert ist, kann der Prüfungsausschuss für ausgewählte Sprachen die Dokumentation anerkannter Studienleistungen im Transcript of Records mit ihrer fremdsprachlichen Originalbezeichnung festlegen. Liegen keine Noten vor, wird die Leistung nicht anerkannt. Der Studierende hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen und Modulprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen und Modulprüfungen, die in staatlich anerkannten Fernstudien und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien erworben wurden.

(5) Die Anerkennung von Teilen der Bachelorprüfung kann versagt werden, wenn in einem Studiengang mehr als die Hälfte aller Erfolgskontrollen und/oder mehr als die Hälfte der erforderlichen Leistungspunkte und/oder die Bachelorarbeit anerkannt werden sollen.

(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreter zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.
II. Bachelorprüfung

§ 17 Umfang und Art der Bachelorprüfung

(2) In den ersten drei Semestern sind Fachprüfungen aus folgenden Fächern durch den Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:

1. Betriebswirtschaftslehre im Umfang von 15 Leistungspunkten,
2. Volkswirtschaftslehre im Umfang von 10 Leistungspunkten,
3. Informatik im Umfang von 15 Leistungspunkten,
4. Operations Research im Umfang von 9 Leistungspunkten,
5. Ingenieurwissenschaften im Umfang von 10 Leistungspunkten,
6. Mathematik im Umfang von 21 Leistungspunkten,
7. Statistik im Umfang von 10 Leistungspunkten.

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Fächern sind im Studienplan oder Modulhandbuch festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(3) Im vierten bis sechsten Semester sind Fachprüfungen im Umfang von sieben Modulen mit je neun Leistungspunkten abzulegen. Die Module verteilen sich folgendermaßen auf die Fächer:

1. Betriebswirtschaftslehre,
2. Volkswirtschaftslehre,
3. Informatik,
4. Operations Research,
5. Ingenieurwissenschaften,
6. Betriebswirtschaftslehre oder Ingenieurwissenschaften,

Die in den Fächern zur Auswahl stehenden Module sowie die diesen zugeordneten Lehrveranstaltungen werden im Studienplan oder Modulhandbuch bekannt gegeben. Der Studienplan oder das Modulhandbuch kann auch Mehrfachmodule definieren, die aus 18 Leistungspunkten (Doppelmódul) bzw. 27 Leistungspunkten (Dreifachmodul) bestehen und für Fachprüfungen nach 1. bis 7. bei in Summe mindestens gleicher Leistungspunktezahl entsprechend anrechenbar sind. Auch die Mehrfachmodule mit ihren zugeordneten Lehrveranstaltungen, Leistungspunkten und Fächern bzw. Fächerkombinationen sind im Studienplan oder Modulhandbuch geregelt.

(6) Prüfungen nach § 17 Absatz 3 können in einem Fach nur absolviert werden, wenn eine eventuelle Prüfung dieses Fachs nach § 17 Absatz 2 erfolgreich absolviert wurde. Auf Antrag eines Studierenden kann der Prüfungsausschuss hierzu Ausnahmen genehmigen.
§ 18 Leistungsnachweise für die Bachelorprüfung

Voraussetzung für die Anmeldung zur letzten Prüfung der Bachelorprüfung nach § 17 Absatz 1 ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 12. In Ausnahmefällen, die der Studierende nicht zu vertreten hat, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote

(1) Die Bachelorprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden die Noten gemäß § 17 Absatz 3 und 4 sowie der Bachelorarbeit jeweils mit dem doppelten Gewicht der Noten gemäß § 17 Absatz 2 berücksichtigt.

(3) Hat der Studierende die Bachelorarbeit mit der Note 1.0 und die Bachelorprüfung mit einem Durchschnitt von 1.1 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

(2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen sowie dem Seminarmodul und der Bachelorarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist vom Dekan der Fakultät und vom Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(5) Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.
III. Schlussbestimmungen

§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

(1) Der Bescheid über die endgültig nicht bestandene Bachelorprüfung wird dem Studierenden durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbe-
helfsbelehrung zu versehen.

(2) Hat der Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 22 Aberkennung des Bachelorgrades

(1) Hat der Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung auf Grund einer Täuschung für nicht bestanden erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach den gesetzlichen Vorschriften.

§ 23 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Bachelorprüfung wird dem Studierenden auf Antrag innerhalb eines Jahres Einsicht in seine Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungs-protokolle gewährt.

(3) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 24 In-Kraft-Treten

(2) Gleichzeitig tritt die Prüfungsordnung der Universität Karlsruhe (TH) für den Diplomstudien-
gang Wirtschaftsingenieurwesen vom 15. November 2001 (Amtliche Bekanntmachung der Uni-

Karlsruhe, den 06. März 2007

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Index

A

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Fundamentals of Engineering (M)</td>
<td>68</td>
</tr>
<tr>
<td>Advanced Lab Informatics (T)</td>
<td>160</td>
</tr>
<tr>
<td>Advanced Lab Security, Usability and Society (T)</td>
<td>164</td>
</tr>
<tr>
<td>Advanced Lab User Studies in Security (T)</td>
<td>165</td>
</tr>
<tr>
<td>Advanced Programming - Application of Business Software (T)</td>
<td>166</td>
</tr>
<tr>
<td>Advanced Programming - Java Network Programming (T)</td>
<td>168</td>
</tr>
<tr>
<td>Advanced Topics in Economic Theory (T)</td>
<td>170</td>
</tr>
<tr>
<td>Agile product innovation management - value-driven planning of new products (T)</td>
<td>171</td>
</tr>
<tr>
<td>Airport Logistics (T)</td>
<td>172</td>
</tr>
<tr>
<td>Analyses of Social Structures (WiWi) (T)</td>
<td>173</td>
</tr>
<tr>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines (T)</td>
<td>174</td>
</tr>
<tr>
<td>Analysis of multivariate Data (T)</td>
<td>175</td>
</tr>
<tr>
<td>Analysis Tools for Combustion Diagnostics (T)</td>
<td>176</td>
</tr>
<tr>
<td>Analytical CRM (T)</td>
<td>177</td>
</tr>
<tr>
<td>Applications of Artificial Intelligence (T)</td>
<td>179</td>
</tr>
<tr>
<td>Applications of Operations Research (M)</td>
<td>180</td>
</tr>
<tr>
<td>Applied Asset Management (T)</td>
<td>181</td>
</tr>
<tr>
<td>Applied Informatics I - Modelling (T)</td>
<td>182</td>
</tr>
<tr>
<td>Applied Informatics II - IT Systems for eCommerce (T)</td>
<td>183</td>
</tr>
<tr>
<td>Applied Microeconomics (M)</td>
<td>184</td>
</tr>
<tr>
<td>Auction & Mechanism Design (T)</td>
<td>185</td>
</tr>
<tr>
<td>Automotive Engineering (M)</td>
<td>186</td>
</tr>
<tr>
<td>Automotive Engineering I (T)</td>
<td>187</td>
</tr>
<tr>
<td>Automotive Engineering II (T)</td>
<td>188</td>
</tr>
<tr>
<td>Automotive Logistics (T)</td>
<td>189</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Thesis (T)</td>
<td>190</td>
</tr>
<tr>
<td>Basic Principles of Economic Policy (T)</td>
<td>191</td>
</tr>
<tr>
<td>Basics of German Company Tax Law and Tax Planning (T)</td>
<td>192</td>
</tr>
<tr>
<td>Basics of Technical Logistics (T)</td>
<td>193</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II (T)</td>
<td>194</td>
</tr>
<tr>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III (T)</td>
<td>196</td>
</tr>
<tr>
<td>Bionics for Engineers and Natural Scientists (T)</td>
<td>197</td>
</tr>
<tr>
<td>BUS-Controls (T)</td>
<td>198</td>
</tr>
<tr>
<td>BUS-Controls - Advanced (T)</td>
<td>199</td>
</tr>
<tr>
<td>Business Administration: Finance and Accounting (T)</td>
<td>200</td>
</tr>
<tr>
<td>Business Administration: Production Economics and Marketing (T)</td>
<td>201</td>
</tr>
<tr>
<td>Business Administration: Strategic Management and Information Engineering and Management (T)</td>
<td>202</td>
</tr>
<tr>
<td>Business Process Modelling (T)</td>
<td>203</td>
</tr>
<tr>
<td>Business Strategies of Banks (T)</td>
<td>204</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD-NX Training Course (T)</td>
<td>208</td>
</tr>
<tr>
<td>Civil Law for Beginners (T)</td>
<td>209</td>
</tr>
<tr>
<td>Climatology (T)</td>
<td>211</td>
</tr>
<tr>
<td>Combustion Engines I (M)</td>
<td>212</td>
</tr>
<tr>
<td>Combustion Engines I (T)</td>
<td>213</td>
</tr>
<tr>
<td>Combustion Engines II (M)</td>
<td>214</td>
</tr>
<tr>
<td>Combustion Engines II (T)</td>
<td>215</td>
</tr>
<tr>
<td>Competition in Networks (T)</td>
<td>216</td>
</tr>
<tr>
<td>Computational Economics (T)</td>
<td>217</td>
</tr>
<tr>
<td>Constitution and Properties of Wearable Materials (T)</td>
<td>218</td>
</tr>
<tr>
<td>eBusiness and Service Management (M)</td>
<td>219</td>
</tr>
<tr>
<td>Control Engineering (M)</td>
<td>220</td>
</tr>
<tr>
<td>Control Technology (T)</td>
<td>221</td>
</tr>
<tr>
<td>Critical Information Infrastructures (T)</td>
<td>222</td>
</tr>
<tr>
<td>CRM and Service Management (M)</td>
<td>223</td>
</tr>
<tr>
<td>Customer Relationship Management (T)</td>
<td>224</td>
</tr>
<tr>
<td>Digital Health (T)</td>
<td>225</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Mining and Applications (T)</td>
<td>226</td>
</tr>
<tr>
<td>Database Systems (T)</td>
<td>227</td>
</tr>
<tr>
<td>Database Systems and XML (T)</td>
<td>228</td>
</tr>
<tr>
<td>Decision Theory (T)</td>
<td>229</td>
</tr>
<tr>
<td>Derivatives (T)</td>
<td>230</td>
</tr>
<tr>
<td>Design and Operation of Power Transformers (T)</td>
<td>231</td>
</tr>
<tr>
<td>Design, Construction and Sustainability Assessment of Buildings (M)</td>
<td>232</td>
</tr>
<tr>
<td>Design, Construction and Sustainability Assessment of Buildings I (T)</td>
<td>233</td>
</tr>
<tr>
<td>Design, Construction and Sustainability Assessment of Buildings II (T)</td>
<td>234</td>
</tr>
<tr>
<td>Digital Health (T)</td>
<td>235</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBusiness and Service Management (M)</td>
<td>236</td>
</tr>
<tr>
<td>eFinance (M)</td>
<td>237</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading (T)</td>
<td>238</td>
</tr>
<tr>
<td>Elective Module Law (M)</td>
<td>239</td>
</tr>
<tr>
<td>Electives in Informatics (M)</td>
<td>240</td>
</tr>
<tr>
<td>Electric Energy Systems (T)</td>
<td>241</td>
</tr>
<tr>
<td>Electrical Engineering (M)</td>
<td>242</td>
</tr>
<tr>
<td>Electrical Engineering for Business Engineers, Part I (T)</td>
<td>243</td>
</tr>
<tr>
<td>Electrical Engineering for Business Engineers, Part II (T)</td>
<td>244</td>
</tr>
<tr>
<td>Course</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Elements and Systems of Technical Logistics (T)</td>
<td>249</td>
</tr>
<tr>
<td>Elements and Systems of Technical Logistics - Project (T)</td>
<td>250</td>
</tr>
<tr>
<td>Emerging Trends in Critical Information Infrastructures (T)</td>
<td>251</td>
</tr>
<tr>
<td>Emphasis in Fundamentals of Engineering (M)</td>
<td>41</td>
</tr>
<tr>
<td>Emphasis in Fundamentals of Informatics (M)</td>
<td>88</td>
</tr>
<tr>
<td>Emphasis in Informatics (M)</td>
<td>90</td>
</tr>
<tr>
<td>Emphasis Materials Science (M)</td>
<td>42</td>
</tr>
<tr>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines (T)</td>
<td>252</td>
</tr>
<tr>
<td>Energy Economics (M)</td>
<td>92</td>
</tr>
<tr>
<td>Energy Efficient Intralogistic Systems (T)</td>
<td>253</td>
</tr>
<tr>
<td>Energy Generation and Network Components (M)</td>
<td>32</td>
</tr>
<tr>
<td>Energy Policy (T)</td>
<td>254</td>
</tr>
<tr>
<td>Engine Measurement Techniques (T)</td>
<td>255</td>
</tr>
<tr>
<td>Engineering Mechanics (M)</td>
<td>43, 152</td>
</tr>
<tr>
<td>Enterprise Architecture Management (T)</td>
<td>256</td>
</tr>
<tr>
<td>Enterprise Risk Management (T)</td>
<td>257</td>
</tr>
<tr>
<td>Essentials of Finance (M)</td>
<td>94</td>
</tr>
<tr>
<td>Exam on Climatology (T)</td>
<td>258</td>
</tr>
<tr>
<td>Exam on Meteorological Hazards (T)</td>
<td>259</td>
</tr>
<tr>
<td>Exchanges (T)</td>
<td>260</td>
</tr>
<tr>
<td>Extracurricular Module in Engineering (M)</td>
<td>95</td>
</tr>
<tr>
<td>Facility Location and Strategic Supply Chain Management (T)</td>
<td>261</td>
</tr>
<tr>
<td>Failure of Structural Materials: Deformation and Fracture (T)</td>
<td>263</td>
</tr>
<tr>
<td>Failure of Structural Materials: Fatigue and Creep (T)</td>
<td>265</td>
</tr>
<tr>
<td>Financial Accounting and Cost Accounting (T)</td>
<td>267</td>
</tr>
<tr>
<td>Financial Accounting for Global Firms (T)</td>
<td>268</td>
</tr>
<tr>
<td>Financial Econometrics (T)</td>
<td>270</td>
</tr>
<tr>
<td>Financial Intermediation (T)</td>
<td>271</td>
</tr>
<tr>
<td>Financial Management (T)</td>
<td>272</td>
</tr>
<tr>
<td>Fluid Power Systems (T)</td>
<td>273</td>
</tr>
<tr>
<td>Foundations of Digital Services A (T)</td>
<td>274</td>
</tr>
<tr>
<td>Foundations of Digital Services B (T)</td>
<td>276</td>
</tr>
<tr>
<td>Foundations of Informatics (M)</td>
<td>96</td>
</tr>
<tr>
<td>Foundations of Informatics I (T)</td>
<td>277</td>
</tr>
<tr>
<td>Foundations of Informatics II (T)</td>
<td>278</td>
</tr>
<tr>
<td>Foundations of Marketing (M)</td>
<td>97</td>
</tr>
<tr>
<td>Foundations of mobile Business (T)</td>
<td>279</td>
</tr>
<tr>
<td>Fuels and Lubricants for Combustion Engines (T)</td>
<td>281</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicle Bodies I (T)</td>
<td>282</td>
</tr>
<tr>
<td>Fundamentals for Design of Motor-Vehicle Bodies II (T)</td>
<td>284</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles I (T)</td>
<td>286</td>
</tr>
<tr>
<td>Fundamentals in the Development of Commercial Vehicles II (T)</td>
<td>288</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development I (T)</td>
<td>290</td>
</tr>
<tr>
<td>Fundamentals of Automobile Development II (T)</td>
<td>292</td>
</tr>
<tr>
<td>Fundamentals of Business Administration 1 (M)</td>
<td>99</td>
</tr>
<tr>
<td>Fundamentals of Business Administration 2 (M)</td>
<td>100</td>
</tr>
<tr>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment (T)</td>
<td>294</td>
</tr>
<tr>
<td>Fundamentals of construction (M)</td>
<td>28</td>
</tr>
<tr>
<td>Fundamentals of Digital Service Systems (M)</td>
<td>101</td>
</tr>
<tr>
<td>Fundamentals of Production Management (T)</td>
<td>296</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Gas Engines (T)</td>
<td>297</td>
</tr>
<tr>
<td>Gear Cutting Technology (T)</td>
<td>298</td>
</tr>
<tr>
<td>Geological Hazards and Risks for external students (T)</td>
<td>299</td>
</tr>
<tr>
<td>Global Optimization I (T)</td>
<td>300</td>
</tr>
<tr>
<td>Global optimization I and II (T)</td>
<td>302</td>
</tr>
<tr>
<td>Global Optimization II (T)</td>
<td>304</td>
</tr>
<tr>
<td>Global Vehicle Evaluation within Virtual Road Test (T)</td>
<td>306</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles (M)</td>
<td>44</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles I (T)</td>
<td>307</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles II (T)</td>
<td>309</td>
</tr>
<tr>
<td>High Performance Powder Metallurgy Materials (T)</td>
<td>310</td>
</tr>
<tr>
<td>Human Factors in Security and Privacy (T)</td>
<td>311</td>
</tr>
<tr>
<td>Human Resource Management (T)</td>
<td>313</td>
</tr>
<tr>
<td>Human Resources and Organizations (M)</td>
<td>103</td>
</tr>
<tr>
<td>Hydraulic Engineering and Water Management (T)</td>
<td>314</td>
</tr>
<tr>
<td>Hydrology (T)</td>
<td>315</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>I4.0 Systems platform (T)</td>
<td>316</td>
</tr>
<tr>
<td>Industrial Organization (T)</td>
<td>317</td>
</tr>
<tr>
<td>Industrial Production I (M)</td>
<td>105</td>
</tr>
<tr>
<td>Information Engineering (T)</td>
<td>318</td>
</tr>
<tr>
<td>Information Security (T)</td>
<td>319</td>
</tr>
<tr>
<td>Information Service Engineering (T)</td>
<td>320</td>
</tr>
<tr>
<td>Information Systems and Supply Chain Management (T)</td>
<td>322</td>
</tr>
<tr>
<td>Integrated Information Systems for Engineers (T)</td>
<td>323</td>
</tr>
<tr>
<td>Integrated Production Planning (M)</td>
<td>46</td>
</tr>
<tr>
<td>Integrated Production Planning in the Age of Industry 4.0 (T)</td>
<td>324</td>
</tr>
<tr>
<td>Integrative Strategies in Production and Development of High Performance Cars (T)</td>
<td>326</td>
</tr>
<tr>
<td>Interdisciplinary approach to verifiable e-voting (T)</td>
<td>327</td>
</tr>
<tr>
<td>International Finance (T)</td>
<td>329</td>
</tr>
<tr>
<td>International Marketing (T)</td>
<td>330</td>
</tr>
<tr>
<td>Internship (M)</td>
<td>107, 158</td>
</tr>
<tr>
<td>Internship (T)</td>
<td>332</td>
</tr>
<tr>
<td>Introduction to Ceramics (T)</td>
<td>333</td>
</tr>
<tr>
<td>Introduction to Economics (M)</td>
<td>109</td>
</tr>
<tr>
<td>Introduction to Energy Economics (T)</td>
<td>334</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics I: Statics and Strength of Materials (T)</td>
<td>335</td>
</tr>
<tr>
<td>Introduction to Engineering Mechanics II : Dynamics (T)</td>
<td>336</td>
</tr>
<tr>
<td>Introduction to Game Theory (T)</td>
<td>337</td>
</tr>
<tr>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences (T)</td>
<td>338f.</td>
</tr>
<tr>
<td>Introduction to Informatics (M)</td>
<td>148</td>
</tr>
<tr>
<td>Introduction to Microsystem Technology II (T)</td>
<td>340</td>
</tr>
<tr>
<td>Introduction to Natural Hazards and Risk Analysis 1 (M)</td>
<td>110</td>
</tr>
</tbody>
</table>
Product Lifecycle Management (M) 59
Product Lifecycle Management (T) 435
Product, Process and Resource Integration in the Automotive Industry (T) 437
Production and Logistics Controlling (T) 439
Production Economics and Sustainability (T) 440
Project in Applied Remote Sensing (T) 441
Project Management (T) 442
Project Workshop: Automotive Engineering (T) 443
Public Finance (M) 125
Public Law I - Basic Principles (T) 445
Public Law II (T) 446
Public Revenues (T) 447
Quality Management (T) 448
Rail System Technology (M) 61
Real Estate Management (M) 127
Real Estate Management I (T) 452
Real Estate Management II (T) 453
Remote Sensing, exam (T) 454
Renewable Energy-Resources, Technologies and Economics (T) .. 455
Risk and Insurance Management (M) 129
Selected Applications of Technical Logistics (T) 458
Selected Applications of Technical Logistics - Project (T) .. 459
Selected Issues in Critical Information Infrastructures (T) .. 459
Selected Topics on Optics and Microoptics for Mechanical Engineers (T) 460
Semantic Web Technologies (T) 461
Seminar Creating a Patent Specification (T) 463
Seminar Data-Mining in Production (T) 464
Seminar in Business Administration (Bachelor) (T) 465
Seminar in Economics (Bachelor) (T) 471
Seminar in Engineering Science Master (approval) (T) 473
Seminar in Informatics (Bachelor) (T) 474
Seminar in Mathematics (Bachelor) (T) 478
Seminar in Operations Research (Bachelor) (T) 479
Seminar in Statistics (Bachelor) (T) 481
Seminar Module (M) 131, 156
Seminar Production Technology (T) 482
Seminar: Legal Studies I (T) 483
Service Oriented Computing (T) 485
Services Marketing and B2B Marketing (T) 486
Simulation of Coupled Systems (T) 487
Simulation of Coupled Systems - Advance (T) 489
Social Science A (WiWi) (T) 490
Social Science B (WiWi) (T) 491
Sociology/Empirical Social Research (M) 34
Sociotechnical Information Systems Development (T) 492
Software Engineering (T) 493
Software Quality Management (T) 495
Special Topics in Information Engineering & Management (T) .. 497
Special Topics of Applied Informatics (T) 498
Special Topics of Efficient Algorithms (T) 499
Special Topics of Enterprise Information Systems (T) 500
Special Topics of Software- and Systemsengineering (T) 501
Special Topics of Web Science (T) 502
Specialization in Customer Relationship Management (M) .. 133
Specialization in Production Engineering (M) 503
Statistics (M) ... 135
Statistics and Econometrics (M) 135
Statistics I (T) ... 504
Statistics II (T) ... 505
Strategic Management of Information Technology (T) 506
Strategy and Organization (M) 137
Structural and Phase Analysis (T) 507
Structural Ceramics (T) 508
Supply Chain Management (M) 139
System Dynamics and Control Engineering (T) 509
Systematic Materials Selection (T) 510
Systems of Remote Sensing, Prerequisite (T) 512
Tactical and Operational Supply Chain Management (T) 513
Technical conditions met (T) 514
Tires and Wheel Development for Passenger Cars (T) 515
Topics in Finance I (M) 141
Topics in Finance II (M) 143
Vehicle Comfort and Acoustics I (T) 516
Vehicle Comfort and Acoustics II (T) 518
Vehicle Development (M) 63
Vehicle Mechatronics I (T) 520
Virtual Reality Practical Course (T) 522
Warehousing and Distribution Systems (T) 523
Web Science (T) 525
Welfare Economics (T) 526
Workflow-Management (T) 527