Module Handbook
Information Engineering and Management (M.Sc.) ER 2006
Summer term 2009
Long version
13.03.2009
Inhaltsverzeichnis

Table of Contents

1 Structure of the Master Programme in Information Engineering and Management 7

2 Helpful information 10

3 Actual Changes 13
 3.1 Changes regarding modules ... 13
 3.2 Changes regarding courses .. 13

4 Mandatory Modules 15
 4.1 All Subjects .. 15
 IW4WWIW1- Information Engineering and Management 1 15
 IW4WWIW2- Information Engineering and Management 2 16
 IW4WWOR- Stochastic Models in Information Engineering and Management ... 17
 IW4INJURA- Contract Drafting and Internet Law 18
 IW4IWSEM- Interdisciplinary Seminar 19
 IW4IWMATHESIS- Master Thesis 20

5 Elective Modules 21
 5.1 Informatics ... 21
 IW4INAALG- Advanced Algorithms 21
 IW4INECOLL- e-Collaboration .. 22
 IW4INIAPP- Complex Internet Applications 23
 IW4NILIKM- Large-Scale Information and Knowledge Management ... 24
 IW4NILIKM1- Advanced Concepts of Information and Knowledge Management .. 26
 IW4ININET- Advanced Infrastructures 27
 IW4INOS- System Software .. 28
 IW4INSW- Software Systems ... 29
 IW4INSER- Service Technologies 30
 5.2 Economic Sciences .. 31
 IW4WWFERM- Finance, Econometrics, and Risk Management ... 31
 IW4WWIMSE- Information, Market, and Service Engineering .. 32
 IW4WWIMSE1- Information and Market Engineering 34
 IW4WWIMSE2- Service Engineering 35
 IW4WWSER1- Service Management 36
 IW4WWMAR- Marketing .. 37
 IW4WWMAR1- Marketing Research 38
 IW4WWMAR2- Quantitative Marketing and OR 39
 IW4WWMAR3- Behavioral Approaches in Marketing and Data Analysis .. 40
 IW4WWMAR4- Strategy, Innovation and Data Analysis 41
 IW4WWOQM1- Stochastic Methods in Economics and Engineering .. 42
 IW4WWORG- Business Organization: Theory and Management Perspective ... 43
 IW4WWORG1- Strategy and Organization 44
 IW4WWORM- Operational Risik Management 45
 IW4WWSSMI- Stochastic Modeling and Optimization 46
 5.3 Law ... 47
 IW4INJUINWI- Law of the Information Economy 47
 IW4INJURDIG- Law of the Information Society 48
 IW4INJURDIU- Law for Information Companies 49

6 Courses 51
 6.1 Mandatory ... 51
 26500- Business Administration in Information Engineering and Management .. 51
 26450- Principles of Information Engineering and Management .. 53
 25679- OR Methods and Models in Information Engineering and Management 54
 24501- Internet Law .. 55
6.2 Elective .. 58
24671- Law of Contracts .. 56
26530- Interdisciplinary Seminar in Information Engineering and Management .. 57
24071- System Architecture 58
24074- Telematics for Information Management and Engineering .. 59
24074p- Practical Course in Telematics .. 60
24074s- Seminar in Telematics .. 61
24075- Software Architecture .. 62
24079- Algorithm Design .. 63
24079p- Practical Course in Algorithm Design .. 64
24082- Public Media Law .. 65
24104- Wireless Sensor-Actuator-Networks .. 66
24110- High Performance Communication .. 67
24111- Workflow Management Systems .. 68
24112- Multicore Computers and Computer Clusters .. 69
24118- Data Warehousing and Mining .. 70
24121- Copyright .. 71
24124- Web Engineering .. 72
24127- Power Management .. 73
24128- Telematics .. 74
24132- Multimedia Communication .. 75
24136/24609- Trademark and Unfair Competition Law .. 76
24141- Information Integration and Web Portals .. 77
24146- Ubiquitous Computing .. 78
24149- Network and IT-Security Management .. 79
24153/24604- Advanced Web Applications .. 80
24156- Moving Objects Databases .. 81
24167- Employment Law I .. 82
24168- Tax Law I .. 83
24171- Randomized Algorithms .. 84
24181- Power Management Praktikum .. 85
24304- Practical Course: Web Technologies .. 86
24372s- Advanced Systems - Seminar .. 87
24574- Communication and Database Systems .. 88
24601- Network Security: Architectures and Protocols .. 89
24605- Datenschutz und Privatheit in vernetzten Informationssystemen .. 90
24612- Computer Contract Law .. 91
24614- Algorithms for Planar Graphs .. 92
24621- Algorithms for Visualization of Graphs .. 93
24622- Algorithms for Cellular Automata .. 94
24625- Model Driven Software Development .. 95
24626- Component Based Software Engineering .. 96
24632- Telecommunications Law .. 97
24643- Mobile Communication .. 98
24646- Tax Law II .. 99
24650- Civil Law for Advanced .. 100
24654- Algorithms for Ad-hoc and sensor networks .. 101
24660- Software Development for modern, parallel platforms .. 102
24661- Patent Law .. 103
24666- European and International Law .. 104
24668- Employment Law II .. 105
24669- Simulation of Computer Networks .. 106
24674- Next Generation Internet .. 107
24806- Aktuelle Probleme des Patentrechts .. 108
24874- Practical Course Data Warehousing and Mining .. 109
25055- Principles of Insurance Management .. 110
25070p- Advanced Lab Applied Informatics .. 111
25070s- Seminar in Applied Informatics .. 112
Module Handbook: Stand 13.03.2009 Information Engineering and Management (M.Sc.) ER 2006

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>113</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research</td>
<td>114</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
<td>115</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing</td>
<td>116</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information</td>
<td>117</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing</td>
<td>118</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation</td>
<td>119</td>
</tr>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Marketing</td>
<td>120</td>
</tr>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing</td>
<td>121</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing</td>
<td>122</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research</td>
<td>123</td>
</tr>
<tr>
<td>25192</td>
<td>Master Seminar in Marketing</td>
<td>124</td>
</tr>
<tr>
<td>25193</td>
<td>Master Seminar zu Marktforschung</td>
<td>125</td>
</tr>
<tr>
<td>25194</td>
<td>Master Seminar in Quantitative Marketing and OR</td>
<td>126</td>
</tr>
<tr>
<td>25331</td>
<td>Stochastic Calculus and Finance</td>
<td>127</td>
</tr>
<tr>
<td>25353</td>
<td>Statistical Methods in Financial Risk Management</td>
<td>128</td>
</tr>
<tr>
<td>25357</td>
<td>Portfolio and Asset Liability Management</td>
<td>129</td>
</tr>
<tr>
<td>25359</td>
<td>Financial Time Series and Econometrics</td>
<td>130</td>
</tr>
<tr>
<td>25369</td>
<td>Game Theory II</td>
<td>131</td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets</td>
<td>132</td>
</tr>
<tr>
<td>25598</td>
<td>Operations Management</td>
<td>133</td>
</tr>
<tr>
<td>25653</td>
<td>Markovian Decision Processes</td>
<td>134</td>
</tr>
<tr>
<td>25656</td>
<td>Quality Management I</td>
<td>135</td>
</tr>
<tr>
<td>25659</td>
<td>Quality Management II</td>
<td>136</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I</td>
<td>137</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II</td>
<td>138</td>
</tr>
<tr>
<td>25687</td>
<td>Optimization in a Random Environment</td>
<td>139</td>
</tr>
<tr>
<td>25690</td>
<td>Stochastic Processes</td>
<td>140</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications</td>
<td>141</td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing</td>
<td>142</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation</td>
<td>144</td>
</tr>
<tr>
<td>25708</td>
<td>Distributed Algorithms</td>
<td>145</td>
</tr>
<tr>
<td>25722</td>
<td>Distributed Database Systems: Basic Technology for e-Business</td>
<td>146</td>
</tr>
<tr>
<td>25724</td>
<td>Database Systems and XML</td>
<td>147</td>
</tr>
<tr>
<td>25735</td>
<td>Document Management and Groupware Systems</td>
<td>148</td>
</tr>
<tr>
<td>25740</td>
<td>Knowledge Management</td>
<td>149</td>
</tr>
<tr>
<td>25742</td>
<td>Knowledge Discovery</td>
<td>150</td>
</tr>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I</td>
<td>151</td>
</tr>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II</td>
<td>152</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management</td>
<td>153</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance</td>
<td>155</td>
</tr>
<tr>
<td>25764</td>
<td>IT Complexity in Practice</td>
<td>157</td>
</tr>
<tr>
<td>25770</td>
<td>Service-oriented Computing 1</td>
<td>158</td>
</tr>
<tr>
<td>25772</td>
<td>Service-oriented Computing 2</td>
<td>159</td>
</tr>
<tr>
<td>25774</td>
<td>Web Service Engineering</td>
<td>160</td>
</tr>
<tr>
<td>25784</td>
<td>Management of IT-Projects</td>
<td>161</td>
</tr>
<tr>
<td>25788</td>
<td>Strategic Management of Information Technology</td>
<td>162</td>
</tr>
<tr>
<td>25810</td>
<td>Practical Seminar Knowledge Discovery</td>
<td>163</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services</td>
<td>164</td>
</tr>
<tr>
<td>25900</td>
<td>Management and Strategy</td>
<td>165</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations</td>
<td>166</td>
</tr>
<tr>
<td>25904</td>
<td>Organization Theory</td>
<td>167</td>
</tr>
<tr>
<td>25907</td>
<td>Special Topics in Management: Management and IT</td>
<td>168</td>
</tr>
<tr>
<td>25912</td>
<td>Value-Based Instruments of Corporate Strategy</td>
<td>169</td>
</tr>
<tr>
<td>25915</td>
<td>Seminar: Management and Organization</td>
<td>170</td>
</tr>
<tr>
<td>25916</td>
<td>Seminar: Management and Organization</td>
<td>171</td>
</tr>
<tr>
<td>26291</td>
<td>Managing New Technologies</td>
<td>172</td>
</tr>
<tr>
<td>26326</td>
<td>Enterprise Risk Management</td>
<td>173</td>
</tr>
<tr>
<td>26328-</td>
<td>Multidisciplinary Risk Research ..</td>
<td>174</td>
</tr>
<tr>
<td>26335-</td>
<td>International Risk Transfer ..</td>
<td>175</td>
</tr>
<tr>
<td>26334-</td>
<td>Risk Management of Microfinance and Private Households</td>
<td>176</td>
</tr>
<tr>
<td>26335-</td>
<td>Public Sector Risk Management ...</td>
<td>177</td>
</tr>
<tr>
<td>26452-</td>
<td>Management of Business Networks ...</td>
<td>178</td>
</tr>
<tr>
<td>26454-</td>
<td>eFinance: Information Engineering and Management for Securities Trading ..</td>
<td>179</td>
</tr>
<tr>
<td>26456-</td>
<td>Business Models in the Internet: Planning and Implementation</td>
<td>180</td>
</tr>
<tr>
<td>26460-</td>
<td>Market Engineering: Information in Institutions</td>
<td>181</td>
</tr>
<tr>
<td>26466-</td>
<td>eServices ...</td>
<td>182</td>
</tr>
<tr>
<td>26468-</td>
<td>Service Innovation ...</td>
<td>183</td>
</tr>
<tr>
<td>26470-</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>184</td>
</tr>
<tr>
<td>26478-</td>
<td>Practical seminar Information Engineering and Management</td>
<td>185</td>
</tr>
<tr>
<td>26484-</td>
<td>Business and IT Service Management ..</td>
<td>186</td>
</tr>
<tr>
<td>26502-</td>
<td>Electronic Markets (Principles) ...</td>
<td>187</td>
</tr>
<tr>
<td>26504-</td>
<td>Electronic Markets: Institutions and Market Mechanisms</td>
<td>189</td>
</tr>
<tr>
<td>26506-</td>
<td>Personalization and Recommender Systems ..</td>
<td>192</td>
</tr>
<tr>
<td>26508-</td>
<td>Customer Relationship Management ...</td>
<td>194</td>
</tr>
<tr>
<td>26510-</td>
<td>Master Seminar in Information Engineering and Management</td>
<td>195</td>
</tr>
<tr>
<td>26518p-</td>
<td>Practical Course in Information Engineering and Management (Master)</td>
<td>196</td>
</tr>
<tr>
<td>26518-</td>
<td>Social Network Analysis in CRM ...</td>
<td>197</td>
</tr>
<tr>
<td>26550-</td>
<td>Derivatives ...</td>
<td>199</td>
</tr>
<tr>
<td>26560-</td>
<td>Fixed Income Securities ..</td>
<td>200</td>
</tr>
<tr>
<td>26565-</td>
<td>Credit Risk ...</td>
<td>201</td>
</tr>
<tr>
<td>26580-</td>
<td>Seminar in Financial Engineering ...</td>
<td>202</td>
</tr>
<tr>
<td>CC-</td>
<td>Cloud Computing ...</td>
<td>203</td>
</tr>
<tr>
<td>SWT2-</td>
<td>Software Engineering II ..</td>
<td>204</td>
</tr>
<tr>
<td>SemIW-</td>
<td>Seminar Information Engineering and Management</td>
<td>205</td>
</tr>
<tr>
<td>TV-</td>
<td>Transaction Management ..</td>
<td>206</td>
</tr>
<tr>
<td>db_impl-</td>
<td>Database Implementation and Tuning ...</td>
<td>207</td>
</tr>
<tr>
<td>db-</td>
<td>Deployment of Database Systems ...</td>
<td>208</td>
</tr>
<tr>
<td>dbprakt-</td>
<td>Practical Course Database Systems ...</td>
<td>209</td>
</tr>
<tr>
<td>praktvd-</td>
<td>Practical Course Distributed Data Management (former Practical Course Database Systems)</td>
<td>210</td>
</tr>
<tr>
<td>semis-</td>
<td>Seminar Information Systems ...</td>
<td>211</td>
</tr>
<tr>
<td>vert_dh-</td>
<td>Distributed Data Management ..</td>
<td>212</td>
</tr>
<tr>
<td>xAlgoEng-</td>
<td>Algorithm Engineering ..</td>
<td>213</td>
</tr>
<tr>
<td>xGraphAlgo-</td>
<td>Graph Algorithms ...</td>
<td>214</td>
</tr>
<tr>
<td>xParallAlgo-</td>
<td>Parallel Algorithms ...</td>
<td>215</td>
</tr>
</tbody>
</table>

7 Appendix: Study- and Examination Regulation (30/04/2006, in German) 217

Index 233
1 Structure of the Master Programme in Information Engineering and Management

The Master programme in *Information Engineering and Management* has 4 terms. The terms 1 to 3 (7 - 9 when counting consecutively) of the programme are method–oriented and provide the students with state-of-the-art knowledge in informatics, business administration, operations research, economics, statistics and law. The interdisciplinary approach is especially emphasized in the interdisciplinary seminar.

It is recommended to study the courses in the following sequence:

- The (mandatory) modules in business administration, operations research, and law should be studied in the first two terms of the programme.
- The interdisciplinary seminar should be taken in the third term of the programme.
- The (elective) modules from business administration, economics, operations research, and statistics, from informatics and from law should be studied in the first three terms of the programme.
- The 4-th term (the 10-th term when counted consecutively) is reserved for the Master’s thesis in which the student proves his ability for independent scientific research in informatics, the economic sciences, and law.

Figure 1 shows a summary of this recommendation with the structure of the disciplines and with credit points allocated to the modules of the programme.

![Structure of the Master Programme in Information Engineering and Management](image)

Abbildung 1: Structure of the Master Programme in Information Engineering and Management (Recommendation)
Mandatory Modules (25 CP)

The mandatory part of the programme consists of the following modules:

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Module</th>
<th>Subject</th>
<th>Coordinator</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IW4WWIWI</td>
<td>Information Engineering and Management 1</td>
<td>Business Administration</td>
<td>Weinhardt</td>
<td>4.5</td>
</tr>
<tr>
<td>IW4WWIWI2</td>
<td>Information Engineering and Management 2</td>
<td>Business Administration</td>
<td>Geyer-Schulz</td>
<td>4.5</td>
</tr>
<tr>
<td>IW4WWOR</td>
<td>Stochastic Models in Information Engineering and Management</td>
<td>Operations Research</td>
<td>Waldmann</td>
<td>4</td>
</tr>
<tr>
<td>IW4INJURA</td>
<td>Law</td>
<td>Law</td>
<td>Dreier</td>
<td>6</td>
</tr>
<tr>
<td>IW4IWSEM</td>
<td>Interdisciplinary Seminar</td>
<td></td>
<td>Dreier</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Summe 25</td>
</tr>
</tbody>
</table>

Tabelle 1: Mandatory Modules

Elective Modules: Business Administration/OR/Economics/Statistics

The elective programme in the economic sciences consists either of one module with 20 CP or 2 modules with 10 CP each, which must be selected from the following table:

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Module</th>
<th>Coordinator</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IW4WWIMSE</td>
<td>Information, Market, and Service Engineering</td>
<td>Weinhardt, Geyer-Schulz</td>
<td>20</td>
</tr>
<tr>
<td>IW4WWIMSE1</td>
<td>Information and Market Engineering</td>
<td>Weinhardt, Geyer-Schulz</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWIMSE2</td>
<td>Service Engineering</td>
<td>Weinhardt, Geyer-Schulz</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWSER1</td>
<td>Service Management</td>
<td>Weinhardt, Satzger</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWFERM</td>
<td>Finance, Econometrics and Risk Management</td>
<td>Rachev, Uhrig-Homburg</td>
<td>20</td>
</tr>
<tr>
<td>IW4WWFERM1</td>
<td>Derivatives</td>
<td>Rachev, Uhrig-Homburg</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWORM</td>
<td>Operative Risk Management</td>
<td>Werner</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWMAR</td>
<td>Marketing</td>
<td>Gaul</td>
<td>20</td>
</tr>
<tr>
<td>IW4WWMAR1</td>
<td>Marketing Research</td>
<td>Gaul</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWORG</td>
<td>Management and Organization</td>
<td>Lindstädt</td>
<td>20</td>
</tr>
<tr>
<td>IW4WWORG1</td>
<td>Management and Organization: Strategy and Leadership</td>
<td>Lindstädt</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWSSMI</td>
<td>Stochastic and Strategic Models in Information Engineering and Management</td>
<td>Berininghaus, Waldmann</td>
<td>20</td>
</tr>
<tr>
<td>IW4WWSSMI1</td>
<td>Stochastic Models in Information Engineering and Management</td>
<td>Berininghaus, Waldmann</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWSSMI2</td>
<td>Strategic Models in Information Engineering and Management</td>
<td>Berininghaus, Waldmann</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWOQM</td>
<td>Operations- and Quality Management</td>
<td>Waldmann/Neumann</td>
<td>20</td>
</tr>
<tr>
<td>IW4WWOQM1</td>
<td>Management of Operations</td>
<td>Waldmann/Neumann</td>
<td>10</td>
</tr>
<tr>
<td>IW4WWOQM2</td>
<td>Quality Management</td>
<td>Waldmann/Neumann</td>
<td>10</td>
</tr>
</tbody>
</table>

Tabelle 2: Elective Modules in the Economics Sciences

Elective Modules: Informatics

The student has to choose one module with 16 CP and one module with 17 CP from the following list of modules:
Elective Modules: Informatics

<table>
<thead>
<tr>
<th>ModuleID</th>
<th>Module</th>
<th>Coordinator</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IW4INECOLL</td>
<td>e-Collaboration</td>
<td>Oberweis</td>
<td>16</td>
</tr>
<tr>
<td>IW4INIAPP</td>
<td>Complex Internet-Applications</td>
<td>Schmeck</td>
<td>16</td>
</tr>
<tr>
<td>IW4INAAALG</td>
<td>Advanced Algorithms</td>
<td>D. Wagner</td>
<td>16</td>
</tr>
<tr>
<td>IW4INLIIKM</td>
<td>Large Scale Information and Knowledge Management</td>
<td>C. Böhm</td>
<td>17</td>
</tr>
<tr>
<td>IW4INNSW</td>
<td>Large Scale Software Systems</td>
<td>Tichy</td>
<td>17</td>
</tr>
<tr>
<td>IW4INOS</td>
<td>Operating Systems</td>
<td>Bellosa</td>
<td>16</td>
</tr>
<tr>
<td>IW4INBP</td>
<td>Flexible Business Processes and Learning Organisations</td>
<td>Oberweis, Schmeck</td>
<td>17</td>
</tr>
<tr>
<td>IW4INNET</td>
<td>Advanced Infrastructures</td>
<td>Zitterbart</td>
<td>17</td>
</tr>
<tr>
<td>IW4INROB</td>
<td>Robotic</td>
<td>Dillmann</td>
<td>16</td>
</tr>
<tr>
<td>IW4INAUT</td>
<td>Automation Technologies</td>
<td>Wörn</td>
<td>16</td>
</tr>
</tbody>
</table>

Tabelle 3: Elective Modules: Informatics

Elective Modules: Law

The student can choose law modules with at least 12 CP from the following table 4:

<table>
<thead>
<tr>
<th>ModuleID</th>
<th>Module</th>
<th>Coordinator</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IW4INJURDIU</td>
<td>Law for the Information Company</td>
<td>Sester</td>
<td>12</td>
</tr>
<tr>
<td>IW4INJURDIG</td>
<td>Law for the Information Society</td>
<td>Kühlung</td>
<td>12</td>
</tr>
<tr>
<td>IW4INJUINWI</td>
<td>Law for the Information Economy</td>
<td>Dreier</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabelle 4: Elective Modules: Law

Notice

For all modules of this degree program, the following rules apply:

- The admission to the master programme in *Information Engineering and Management* is the precondition for accessing any module of this degree programme.
- A single course can be included in only one module within the degree programme.
- A course may only be included in a module, if this course or a comparable course was not examined within a previous, completed study programme (e.g. bachelor in Information Engineering and Management).
2 Helpful information

Module Handbook

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme, their structure and extent (in CP), their dependencies, their learning outcomes, their learning control and examinations. Therefore it serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0).

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations in the bachelor programme takes place online via the self-service function for students. The following functions can be accessed on https://zvwgate.zvw.uni-karlsruhe.de/sb/ by means of the access information of the student card (FriCard):

- Sign in and sign off exams
- Retrieve examination results
- Print transcript of records

For further and more detailed information also see https://zvwgate.zvw.uni-karlsruhe.de/download/leitfaden_studierende.pdf

For students of the master programme the registration currently takes place at the advisory service of the faculty or at the respective institutes. Further information available on http://www.wiwi.uni-karlsruhe.de/studium/pruefung/anabmelden/.

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.uni-karlsruhe.de/studium/hinweise/.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student.
and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme.

Used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/CP</td>
<td>Credit Points/ECTS</td>
</tr>
<tr>
<td>LV</td>
<td>course</td>
</tr>
<tr>
<td>RÜ</td>
<td>computing lab</td>
</tr>
<tr>
<td>S</td>
<td>summer term</td>
</tr>
<tr>
<td>Sem.</td>
<td>semester/term</td>
</tr>
<tr>
<td>SPO</td>
<td>examination regulations</td>
</tr>
<tr>
<td>SQ</td>
<td>key qualifikation</td>
</tr>
<tr>
<td>SWS</td>
<td>contact hour</td>
</tr>
<tr>
<td>Ü</td>
<td>excercise course</td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>W</td>
<td>winter term</td>
</tr>
</tbody>
</table>

Leistungspunkte/ECTS, Lehrveranstaltung, Rechnerübung, Sommersemester, Semester, Studien- und Prüfungsordnung, Schlüsselqualifikationen, Semesterwochenstunde, Übung, Vorlesung, Wintersemester.
3 Actural Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist.

3.1 Changes regarding modules

e-Collaboration [IW4INECOLL] (S. 22)

<table>
<thead>
<tr>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture and Computational Economics [26458] is not offered any longer. Students, already taking part in this component examination within the module examination, are able to complete this module within this lecture.</td>
</tr>
</tbody>
</table>

System Software [IW4INOS] (S. 28)

<table>
<thead>
<tr>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The modul is offered in the winter term 2008/2009 for the last time. Students who have already started this particular modul can finish it regulary.</td>
</tr>
</tbody>
</table>

Software Systems [IW4INSW] (S. 29)

<table>
<thead>
<tr>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture Softwaretechnik will not be offered after the summer term 09. The exam of the lecture will be offered in the summer term 2010 for the last time.</td>
</tr>
</tbody>
</table>

Operational Risik Management [IW4WWORM] (S. 45)

<table>
<thead>
<tr>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture Principles of Insurance Management [25055] will be held additionally in the summer term 2009.</td>
</tr>
</tbody>
</table>

3.2 Changes regarding courses

Principles of Insurance Management [25055] (S. 110)

<table>
<thead>
<tr>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>This lecture will be held additionally in the summer term 2009.</td>
</tr>
</tbody>
</table>

Algorithm Engineering [xAlgoEng] (S. 213)

<table>
<thead>
<tr>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture will be offered again in the winter term 09/10.</td>
</tr>
</tbody>
</table>

Parallel Algorithms [xParallAlgo] (S. 215)

<table>
<thead>
<tr>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture will be offered again in the winter term 09/10.</td>
</tr>
</tbody>
</table>
3.2 Changes regarding courses
4 Mandatory Modules

4.1 All Subjects

Module: Information Engineering and Management 1
Module key: [IW4WWIW1]

Subject: Business Administration (obligatory)
Module coordination: Christof Weinhardt
Credit points (CP): 4.5

Learning Control / Examinations
The overall grade is determined by the result of the course “Principles of Information Engineering and Management”.

Prerequisites
None.

Conditions
The course “Principles of Information Engineering and Management” must be chosen.

Learning Outcomes
The compulsory module “Information Engineering and Management 1” introduces students to basic knowledge and skills in the field of Information Engineering and Management. The students should be able to understand and analyze the central role of information as an economic good, a production factor, and a competitive factor in today’s societies. Students are supposed to be able to identify, evaluate, price, and market information goods with the help of the concepts and methods taught in the lecture. Furthermore, students learn basic aspects about information systems and information flows within and between organizations, as well as their design parameters.

Content
The module “Information Engineering and Management 1” comprises the lecture “Principles of Information Engineering and Management”. There, a clear distinction of information as a production, competitive, and economic good is introduced. The central role of information is explained through the concept of the “information lifecycle”. The single phases from existence/generation through allocation and evaluation until the distribution and usage of information are analyzed from the business administration perspective and the microeconomic perspective. The state of the art of economic theory is presented throughout the different phases of the information lifecycle. The lecture is complemented by accompanying exercise courses.

Courses in module Information Engineering and Management 1 [IW4WWIW1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26450</td>
<td>Principles of Information Engineering and Mana-</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Weinhardt, Kraemer</td>
</tr>
<tr>
<td></td>
<td>gement (S. 53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks
None.
Module: Information Engineering and Management 2

Subject: Business Administration (obligatory)
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 4.5

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft and of assignments during the course as an “Erfolgskontrolle anderer Art” following §4, Abs. 2, 3 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
Basic knowledge from Operations Research (linear programming) and from decision theory are expected.

Conditions
None.

Learning Outcomes
The student is able to

- transfer models from Business Administration to situations in business whose basic conditions are changed due to the implementation of information and communication technology,
- apply methods from Business Administration (Decision theory, game theory, operations research, etc.) to questions of Information Engineering and Management,
- analyze the potential to automate the decision making process in businesses by data bases,
- describe the process to extract relevant data for decision making from operational accounting systems.

Content
In the module Information Engineering and Management 2, classical Business Administration is applied to businesses in an information- and communication-technological environment. The process to extract relevant data for decision making from operational accounting systems receives special attention. In order to do so, topics such as activity-based costing and transaction costs models are addressed. The automation of the decision making process in businesses by data bases is another focus of the module. To solve such issues within a company, relevant methods such as decision theory and game theory are lectured. Finally, complex business relevant questions in a dynamically changing environment are addressed by presenting models and methods from system dynamics.

Courses in module Information Engineering and Management 2 [IW4WIIW2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26500</td>
<td>Business Administration in Information Engineering and Management (S. 51)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>
Module: Stochastic Models in Information Engineering and Management
Module key: [IW4WWOR]

Subject: Operations Research (obligatory)
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 4

Learning Control / Examinations
The assessment of the module is in a written examination according to §4(2), 1 of the examination regulation of the Bachelor programme in Information Engineering and Management. In each term (usually in March and July), one examination is held for both courses. The grade of the module corresponds to the grade of this examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students are familiar with the modern concepts of stochastic modeling and are in a position to describe and to analyze simple systems in an adequate way.

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>OR Methods and Models in Information Engineering and Management (S. 54)</td>
<td>2/1/2 W</td>
<td>4</td>
<td>Waldmann</td>
<td></td>
</tr>
</tbody>
</table>
Module: Contract Drafting and Internet Law

Module key: [IW4INJURA]

Subject: Law (obligatory)
Module coordination: Thomas Dreier
Credit points (CP): 6

Learning Control / Examinations
The assessment of this module consists of:
1. a written examination (§ 4(2), 1 of the SPO) for the course “Law of Contracts” (see also the transition rule until the winter semester 2008/9)
2. a written examination (§ 4(2), 1 of the SPO) for the course “Internet Law” (see also the transition rule until the winter semester 2008/9)

The grade of the module is a credits weighted average of the grades.

Prerequisites
The obligatory module law builds upon the legal lectures of the bachelor study course. The courses can be followed parallel to the courses of the elective modules.

Conditions
The courses of the obligatory module law shall introduce the students to the most important areas of information law.

Learning Outcomes
The Students should be enabled to analyse and draft contracts, and to get acquainted with current legal issues that are raised by the use of the internet.

Content
The obligatory module law depends the understanding of students of the legal issues of the information society.

Courses in module Contract Drafting and Internet Law [IW4INJURA]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24671</td>
<td>Law of Contracts (S. 56)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Sester</td>
</tr>
<tr>
<td>24501</td>
<td>Internet Law (S. 55)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Remarks
Please note the following:
- During the transition period until the winter semester 2008/09 students can also replace the course “Law of Contracts” by the course “Computer contract law” (2 SWS, Semester: SS, 3 CP, lecturer Bartsch, Michael).
Module: Interdisciplinary Seminar

Module key: [IW4IWSEM]

Module coordination: Andreas Geyer-Schulz, Martina Zitterbart, Andreas Oberweis
Credit points (CP): 6

Learning Control / Examinations
The assessment in this module is regulated by § 4 (2) 3, of the examination regulation for the Master Information Engineering and Management. Further details will be defined for each interdisciplinary seminar separately.

Prerequisites
Students should have experience with literature search in informatics, economics, business administration, and law. They should know the methods of scientific work, presentation techniques for scientific presentations, as well as the form requirements of scientific publications (guide line for authors) and review processes for scientific publications. The interdisciplinary seminar should be taken as last course of the compulsory program in the 3rd term of the Master programme.

Conditions
Regulated in §14 of the examination regulation for the Master programme Information Engineering and Management.

Learning Outcomes
• In the interdisciplinary seminar Information Engineering and Management students investigate a recent topic in Information Engineering and Management with the scientific methods of the disciplines of the degree programme.
• They develop interdisciplinary solution approaches on the base of the state-of-the art in the disciplines.
• They present selected solution approaches and methods on an expert level and they defend and rationalize the selected solution approaches and methods in a discussion with scientific arguments.
• They write a seminar paper whose form is appropriate for a scientific journal.
• They revise their paper taking into account the reviews of their tutors in an appropriate manner.

Content
The Students will be coached by a group of tutors which consists in each case of an tutor of informatics, economics and law.

Courses in module Interdisciplinary Seminar [IW4IWSEM]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26530</td>
<td>Interdisciplinary Seminar in Information Engineering and Management (S. 57)</td>
<td>2</td>
<td>W/S</td>
<td>6</td>
<td>Geyer-Schulz, Dreier</td>
</tr>
</tbody>
</table>

Remarks
Regulated in §14 of the examination regulation for the Master programme Information Engineering and Management.
Module: Master Thesis

Module coordination: Andreas Oberweis, Martina Zitterbart, Der Vorsitzende des Prüfungsausschusses
Credit points (CP): 30

Learning Control / Examinations
Examination by two examiners from the two faculties. For details refer to examination regulation.

Prerequisites
None.

Conditions
Regulated in §15 of the examination regulation.
The requirements for the examiner are described in §6 (2) of the examination regulation.

Learning Outcomes
The student
- investigates a topic in Information Engineering and Management autonomously in a scientific manner at the state-of-the-art of the research in the field.
- shows a comprehensive understanding of the methods and approaches relevant for the investigation of the topic chosen.
- selects appropriate scientific methods and he uses them in a correct way. If necessary, he modifies methods in a suitable way or he develops them.
- compares his results with competing approaches critically and he evaluates his results.
- communicates his results clearly and in a scientific form in his master thesis.

Content
- The master thesis shows that the candidate can autonomously investigate a problem from his discipline with scientific methods according to the state-of-the-art of the discipline within a specified time period.
- The master thesis can be written in German or English.
- The topic of a master thesis can be accepted or chosen by each of the examiners according to examination regulation. The examiner accepting a topic for a master thesis acts as the first supervisor of this thesis.
- Writing a master thesis with a supervisor who is not a member of the two faculties participating in the degree programme (Faculty of Informatics, Faculty of Economics and Business Engineering) requires acceptance by the examination board of the degree programme. The candidate must have an opportunity to make suggestions for the topic of the master thesis.
- Candidates can write a master thesis in teams. However, this requires that the contribution and performance of each candidate to the thesis is identifiable according to objective criteria which allow a unique delineation of each candidate’s contribution. The contribution of each candidate regarded in isolation must fulfill the requirements a individual master thesis.
- In exceptional cases and upon request of the candidate, the chairman of the examination board chooses a supervisor and requests that this supervisor provides the candidate with a topic for the master thesis within 4 weeks after the request. In this case, the candidate is informed by the chairman of the examination board about the topic selected.
- Topic, specification of research tasks and the volume of the master thesis should be limited by the supervisor, so that the master thesis can be written with the assigned workload of 30 credits (750-900h).
- The master thesis must contain the following declaration of the candidate: “I truthfully assure that I have autonomously written this master thesis. I have quoted all sources used precisely and completely. I have labelled everything which has been taken from the work of others with or without change.” A master thesis without this declaration will not be accepted.
- The date of the assignment of the topic to a candidate as well as the date of delivery of the master thesis should be registered at the examination board. The candidate can return a topic for the master thesis only one time and only within a period of two month after he has received the topic. Upon a request of the candidate with reasons supporting an extension, the examination board may extend the deadline for the delivery of the master thesis by a maximum of three months. A master thesis not delivered within time is graded as “fail” except when the candidate is not responsible for this delay (e.g. protection of motherhood).
- The master thesis is reviewed and graded by the supervisor and the additional examiner. The team of supervisor and examiner must represent both faculties participating in the degree programme (Faculty of Informatics, Faculty of Economics and Business Engineering). At least one of the two must be professor or junior professor. If the grades of the supervisor and the examiner differ, the examination board sets the mark within this limit.
- Reviewing and grading should be done within 8 weeks after delivery of the master thesis.
5 ELECTIVE MODULES

5.1 Informatics

Module: Advanced Algorithms

Module key: [IW4INAALG]

Subject: Informatics
Module coordination: Dorothea Wagner
Credit points (CP): 16 oder 17

Learning Control / Examinations
The assessment is described individually for each lecture within this module. The overall grade of the module will be the rounded average of the courses selected weighted by their respective credits.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should be able to evaluate the computational complexity of problems from different fields and apply appropriate solution algorithms. Besides algorithm design and theoretical analysis of algorithms with respect to running time and space consumption also issues like parallelism, different models of computation, implementation and experimental evaluation should be taken into account.

Content
In this module, modern and efficient algorithms and their design and analysis are presented in the context of various applications such as visualization, networks, parallel algorithms, distributed algorithms, sensor- and ad-hoc networks, nature-oriented techniques, quantum computing, coding and computer algebra.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079</td>
<td>Algorithm Design (S. 63)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>Wagner, Sanders</td>
</tr>
<tr>
<td>24171</td>
<td>Randomized Algorithms (S. 84)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Worsch</td>
</tr>
<tr>
<td>xAlgoEng</td>
<td>Algorithm Engineering (S. 213)</td>
<td>2 W/S</td>
<td>4</td>
<td></td>
<td>Sanders, Wagner</td>
</tr>
<tr>
<td>24621</td>
<td>Algorithms for Visualization of Graphs (S. 93)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Wagner, Nöllenburg</td>
</tr>
<tr>
<td>GraphAlgo</td>
<td>Graph Algorithms (S. 214)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Wagner</td>
</tr>
<tr>
<td>xParallAlgo</td>
<td>Parallel Algorithms (S. 215)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Sanders</td>
</tr>
<tr>
<td>25708</td>
<td>Distributed Algorithms (S. 145)</td>
<td>3</td>
<td>W/S</td>
<td>5</td>
<td>Schmeck</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation (S. 144)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Mostaghim</td>
</tr>
<tr>
<td>24622</td>
<td>Algorithms for Cellular Automata (S. 94)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Worsch</td>
</tr>
<tr>
<td>24079p</td>
<td>Practical Course in Algorithm Design (S. 64)</td>
<td>4</td>
<td>W/S</td>
<td>5</td>
<td>Sanders, Wagner</td>
</tr>
<tr>
<td>24614</td>
<td>Algorithms for Planar Graphs (S. 92)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Wagner, Rutter</td>
</tr>
<tr>
<td>24654</td>
<td>Algorithms for Ad-hoc and sensor networks (S. 101)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Katz</td>
</tr>
</tbody>
</table>

Remarks
Currently, the course Graph Algorithms is not lectured.
Module: e-Collaboration

Subject: Informatics
Module coordination: Andreas Oberweis
Credit points (CP): 16 oder 17

Learning Control / Examinations
Students select courses with 16 or 17 ECTS credits in total. The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- A maximum of one seminar can be chosen.
- A maximum of one practical course can be chosen.

Learning Outcomes
Students can use languages and methods for planning and design of eCollaboration. They are able to evaluate, select and to use appropriate tools taking into account the current situation.

Content
e-Collaboration covers all forms of cooperation and coordination in electronic networks, and is practiced in many forms. The ubiquitous availability of new information and communication technologies in increasingly becoming smaller and more powerful devices enables new forms of eCollaboration. These will not only change the business world and public administration, but will also change fundamentally the private lives of people. This module teaches methodological foundations of applied computer science for eCollaboration applications covering languages for modelling of structured and unstructured processes of eCollaboration and methods for the design and analysis of eCollaboration scenarios. In addition, this module imparts knowledge of software systems to support eCollaboration (e.g., groupware systems, workflow management systems, document management systems).

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25724</td>
<td>Database Systems and XML (S. 147)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>25735</td>
<td>Document Management and Groupware Systems (S. 148)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Klink</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 141)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Schmeck</td>
</tr>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II (S. 152)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Hitzler, Agarwal</td>
</tr>
<tr>
<td>25722</td>
<td>Distributed Database Systems: Basic Technology for e-Business (S. 146)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>24626</td>
<td>Component Based Software Engineering (S. 96)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Reussner</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management (S. 153)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Seese</td>
</tr>
<tr>
<td>25788</td>
<td>Strategic Management of Information Technology (S. 162)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Wolf</td>
</tr>
<tr>
<td>25784</td>
<td>Management of IT-Projects (S. 161)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>Schätzle</td>
</tr>
<tr>
<td>25770</td>
<td>Service-oriented Computing 1 (S. 158)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Tai</td>
</tr>
<tr>
<td>25070s</td>
<td>Seminar in Applied Informatics (S. 112)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Oberweis, Schmeck, Seese, Stucky, Studer, Tai</td>
</tr>
<tr>
<td>25070p</td>
<td>Advanced Lab Applied Informatics (S. 111)</td>
<td>2</td>
<td>W/S</td>
<td>5</td>
<td>Oberweis, Schmeck, Seese, Stucky, Studer, Tai</td>
</tr>
<tr>
<td>25764</td>
<td>IT Complexity in Practice (S. 157)</td>
<td>1/1</td>
<td>W</td>
<td>3</td>
<td>Kreidler</td>
</tr>
</tbody>
</table>

Remarks
The lecture and Computational Economics [26458] is not offered any longer. Students, already taking part in this component examination within the module examination, are able to complete this module within this lecture.
Module: Complex Internet Applications

Module key: [IW4INIAPP]

Subject: Informatics
Module coordination: Hartmut Schmeck
Credit points (CP): 16

Learning Control / Examinations
The control of success is described in the lectures of this module.
The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
Selected courses have to add up to at least 16 or 17 credit points.
Besides the listed courses you may choose a seminar or advanced lab on the topics of this module offered by one the participating lecturers.

Learning Outcomes
The Student should become acquainted with challenging internet technology applications, and should be able to apply useful tools and techniques to design an internet application, according to the requirement of a concrete section of application.

Content
The lectures of this module, procure diverse knowledge about current techniques to configure challenging applications in the internet and world wide web.

Courses in module Complex Internet Applications [IW4INIAPP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24153/24604</td>
<td>Advanced Web Applications (S. 80)</td>
<td>2/0</td>
<td>W/S</td>
<td>4</td>
<td>Abeck</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 141)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Schmeck</td>
</tr>
<tr>
<td>24146</td>
<td>Ubiquitous Computing (S. 78)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Juling</td>
</tr>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I (S. 151)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Studer, Hitzler, Rudolph</td>
</tr>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II (S. 152)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Hitzler, Agarwal</td>
</tr>
<tr>
<td>24304</td>
<td>Practical Course: Web Technologies (S. 86)</td>
<td>2/0</td>
<td>W/S</td>
<td>4</td>
<td>Abeck</td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing (S. 142)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Schmeck, Mostaghim</td>
</tr>
<tr>
<td>24124</td>
<td>Web Engineering (S. 72)</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>Nußbaumer</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management (S. 79)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Hartenstein</td>
</tr>
</tbody>
</table>

Remarks
The list of lectures is temporarily.
Module: Large-Scale Information and Knowledge Management Module key: [IW4INLIKMA]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 16 oder 17

Learning Control / Examinations
The assessment is described individually for each lecture within this module. The overall grade of the module will be the rounded average of the courses selected weighted by their respective credits.

Prerequisites
This module presupposes knowledge on database systems and knowledge management, such as the content of lectures “Communications and Database Systems” and “Knowledge Management”. The courses in this module assume the following basic knowledge: data models, database design, relational algebra, database-application development and declarative query languages, transactions, ontology-based knowledge management, information retrieval, intelligent document management, communities of practice, skill management, personal knowledge management and case-based reasoning (CBR).
The students are strongly advised to select this module only if they are familiar with the topics mentioned. Alternatively, it is advised to select the module “Advanced Concepts of Information and Knowledge Management” which does not presuppose this knowledge.

Conditions
• This module cannot be chosen in combination with module “Advanced Concepts of Information and Knowledge Management”.
• At least one of the following lectures have to be selected: “Deployment of Database Systems”, “Data Warehousing and Mining”, “Database Implementation and Tuning”.
• No course can be chosen which has been absolved in the undergraduate studies
• Maximally one seminar can be chosen.
• Maximally one practical course can be chosen.
• You may not choose both “Data Warehousing and Mining” and “Knowledge Discovery”, only one of the two. Further, it is not possible to choose one of these lectures if you have chosen the other one within another module.

Learning Outcomes
The students should
• be able to work scientifically in the field of information and knowledge management and know the different aspects of this field,
• be able to develop complex database applications on their own,
• be able to manage and lead projects of unpredictable complexity in the field of information and knowledge management
• be able to explain and discuss non-trivial aspects of the topics covered in this module with other experts and people without a deep knowledge of information and knowledge management.

Content
This module aims at exposing students to modern information and knowledge management, both, in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims, while we achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications.
Courses in module Large-Scale Information and Knowledge Management [IW4INLIKM]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbe</td>
<td>Deployment of Database Systems (S. 208)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Böhm</td>
</tr>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining (S. 70)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Böhm</td>
</tr>
<tr>
<td>vert_dh</td>
<td>Distributed Data Management (S. 212)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Böhm</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning (S. 207)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Böhm</td>
</tr>
<tr>
<td>24111</td>
<td>Workflow Management Systems (S. 68)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Mülle</td>
</tr>
<tr>
<td>24141</td>
<td>Information Integration and Web Portals (S. 77)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Mülle</td>
</tr>
<tr>
<td>25742</td>
<td>Knowledge Discovery (S. 150)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Studer</td>
</tr>
<tr>
<td>semis</td>
<td>Seminar Information Systems (S. 211)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Böhm</td>
</tr>
<tr>
<td>25810</td>
<td>Practical Seminar Knowledge Discovery (S. 163)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Studer</td>
</tr>
<tr>
<td>dbprakt</td>
<td>Practical Course Database Systems (S. 209)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Böhm</td>
</tr>
<tr>
<td>24874</td>
<td>Practical Course Data Warehousing and Mining (S. 109)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Böhm</td>
</tr>
<tr>
<td>praktvd</td>
<td>Practical Course Distributed Data Management (former Practical Course Database Systems) (S. 210)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Böhm</td>
</tr>
<tr>
<td>TV</td>
<td>Transaction Management (S. 206)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Böhm</td>
</tr>
<tr>
<td>24605</td>
<td>Datenschutz und Privatheit in vernetzten Informationssystemen (S. 90)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Buchmann</td>
</tr>
<tr>
<td>24156</td>
<td>Moving Objects Databases (S. 81)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Böhm</td>
</tr>
</tbody>
</table>
Module: Advanced Concepts of Information and Knowledge Management
Module key: [IW4INLIKM1]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 16 oder 17

Learning Control / Examinations
The assessment is described individually for each lecture within this module. The overall grade of the module will be the rounded average of the courses selected weighted by their respective credits.

Prerequisites
None.

Conditions
- This module cannot be chosen in combination with module “Large-Scale Information and Knowledge Management”.
- The lectures “Communications and Database Systems” and “Knowledge Management” have to be selected if they have not yet been selected and assessed.
- Maximally one seminar can be chosen.
- Maximally one practical course can be chosen.
- You may not choose both “Data Warehousing and Mining” and “Knowledge Discovery”, only one of the two. Further, it is not possible to choose one of these lectures if you have chosen the other one within another module.

Learning Outcomes
The students should
- be able to work scientifically in the field of information and knowledge management and know the different aspects of this field,
- be able to develop complex database applications on their own,
- be able to manage and lead projects of unpredictable complexity in the field of information and knowledge management,
- be able to explain and discuss non-trivial aspects of the topics covered in this module with other experts and people without a deep knowledge of information and knowledge management.

Content
This module aims at exposing students to modern information and knowledge management, both in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims, while we achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications.

Courses in module Advanced Concepts of Information and Knowledge Management [IW4INLIKM1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24574</td>
<td>Communication and Database Systems (S. 88)</td>
<td>4/2 S</td>
<td></td>
<td>4/8</td>
<td>Böhm, Zitterbart</td>
</tr>
<tr>
<td>25740</td>
<td>Knowledge Management (S. 149)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Studer</td>
</tr>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining (S. 70)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>vert_dh</td>
<td>Distributed Data Management (S. 212)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning (S. 207)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>24111</td>
<td>Workflow Management Systems (S. 68)</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>Mülle</td>
</tr>
<tr>
<td>25742</td>
<td>Knowledge Discovery (S. 150)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Studer</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance (S. 155)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>Seese</td>
</tr>
<tr>
<td>semis</td>
<td>Seminar Information Systems (S. 211)</td>
<td>2 W/S</td>
<td>4</td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>25810</td>
<td>Practical Seminar Knowledge Discovery (S. 163)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>Studer</td>
</tr>
<tr>
<td>24874</td>
<td>Practical Course Data Warehousing and Mining (S. 109)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>TV</td>
<td>Transaction Management (S. 206)</td>
<td>2/1</td>
<td>5</td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>24605</td>
<td>Datenschutz und Privatheit in vernetzten Informationssystemen (S. 90)</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>Buchmann</td>
</tr>
</tbody>
</table>
Module: Advanced Infrastructures

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 16 oder 17

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
Courses for at least 16 or 17 credits have to be passed.

- One of the following lectures is mandatory if none of them has been attended for a Bachelor’s degree: the communication part (K-Teil) of the lecture Communication and Database Systems [24574] (4 CP) or the lecture Telematics for Information Management and Engineering [24074].
- The lecture Telematics [24128] is mandatory if it has not been attended for a Bachelor’s degree.
- The student can choose from the following lectures: Multimedia Communication [24132], Next Generation Internet [24674], Mobile Communication [24643], Network Security: Architectures and Protocols [24601], High Speed Communication [24110], Network and IT Security Management [24149], Simulation of Computer Networks [24669], Ubiquitous Information Technologies [24146], Wireless Sensor-Actuator-Networks [24104].
- A seminar or a practical work in the field of Telematics has to be attended (but not more than one).

Learning Outcomes
Students shall

- know design principles of communication systems and be able to apply them in a new context, but also to identify their weaknesses.
- be able to assess the performance of protocols, networks, and architectures.
- master advanced protocols, architectures, and algorithms of communication networks.

Content
This module discusses different aspects of communication networks in great detail. Besides the requirements of multimedia supporting, mobile and secure communication, this includes the controllability and practicability of large-scale communication networks and communication systems. An important focus lies in the ability to assess and handle deployed architectures, protocols, and algorithms. Current and future developments of telematics make up an important part of the courses in this module.

Courses in module Advanced Infrastructures [IW4INNET]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24574</td>
<td>Communication and Database Systems (S. 88)</td>
<td>4/2</td>
<td>S</td>
<td>4/8</td>
<td>Böhm, Zitterbart</td>
</tr>
<tr>
<td>24074</td>
<td>Telematics for Information Management and Engi-</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>Juling</td>
</tr>
<tr>
<td></td>
<td>neering (S. 59)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24128</td>
<td>Telematics (S. 74)</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>24132</td>
<td>Multimedia Communication (S. 75)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Bless</td>
</tr>
<tr>
<td>24674</td>
<td>Next Generation Internet (S. 107)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>Bless</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communication (S. 98)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>Zitterbart, Waldhorst</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>Zitterbart, Völker, Schöller</td>
</tr>
<tr>
<td></td>
<td>(S. 89)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management (S. 79)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>24110</td>
<td>High Performance Communication (S. 67)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks (S. 106)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>24146</td>
<td>Ubiquitous Computing (S. 78)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Juling</td>
</tr>
<tr>
<td>24104</td>
<td>Wireless Sensor-Actuator-Networks (S. 66)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>24074s</td>
<td>Seminar in Telematics (S. 61)</td>
<td>2/0</td>
<td>W/S</td>
<td>4</td>
<td>Zitterbart, Hartenstein</td>
</tr>
<tr>
<td>24074p</td>
<td>Practical Course in Telematics (S. 60)</td>
<td>2/0</td>
<td>W/S</td>
<td>5</td>
<td>Zitterbart, Hartenstein</td>
</tr>
</tbody>
</table>

Remarks
A course can only be taken for credit, if this course or a similar one has not already been taken for credit for a Bachelor’s degree.
Module: System Software

Subject: Informatics
Module coordination: Frank Bellosa
Credit points (CP): 16 oder 17

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The lecture Systemarchitektur [24071] has to be taken for credit if the lecture or a similar one was not taken for credit for a Bachelor’s degree.
- A seminar or a practical work of the area system architecture has to be taken for credit. (but not both).
- The practical work Powermanagement [24181] can only be visited in combination with the lecture on Power Management [24127].

Learning Outcomes
The student is familiar with
- common system architectures and components.
- basic mechanisms and policies of operating and runtime systems.
- requirements and solutions for parallel, distributed and energy critical systems.

Content
The module “System Software” presents various concepts, how to design and implement operating and runtime systems according to various objectives. The impact of design decisions on the performance will be predicted and evaluated.

The following topics will be covered: processes, address space and domains, synchronization, communication and cooperation on shared data, temporary and persistent data, methods of resource management. Non only individual system components are discussed, but also the interaction of these components and the impact of the interference of components on the behavior of the whole system.

Requirements and solutions for parallel, distributed and energy critical systems will be covered. Techniques and applications of multi-core systems and computing clusters will be discussed.

Courses in module System Software [IW4INOS]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>24071</td>
<td>System Architecture (S. 58)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
<td>Liefländer</td>
</tr>
<tr>
<td>24372s</td>
<td>Advanced Systems - Seminar (S. 87)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Bellosa</td>
</tr>
<tr>
<td>24112</td>
<td>Multicore Computers and Computer Clusters (S. 69)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Tichy</td>
</tr>
<tr>
<td>24127</td>
<td>Power Management (S. 73)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Bellosa</td>
</tr>
<tr>
<td>24181</td>
<td>Power Management Praktikum (S. 85)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Bellosa, Andreas Merkel</td>
</tr>
</tbody>
</table>

Remarks
The modul is offered in the winter term 2008/2009 for the last time. Students who have already started this particular modul can finish it regulary.
Module: Software Systems

Module key: [IW4INSW]

Subject: Informatics
Module coordination: Walter F. Tichy, Ralf Reussner
Credit points (CP): 16 oder 17

Learning Control / Examinations
See the assessment of each course of this module. The overall grade is computed by weighting the grade of each course with its credits and computing the average of the weighted grades.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student will be enabled to systematically plan, build and maintain large software systems. To this end, suitable methods and tools will be presented.

Content
Subject of the module is the planing, development, and maintenance of large software systems.

Courses in module Software Systems [IW4INSW]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>24075</td>
<td>Software Architecture (S. 62)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Reussner</td>
</tr>
<tr>
<td>24626</td>
<td>Component Based Software Engineering (S. 96)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Reussner</td>
</tr>
<tr>
<td>24112</td>
<td>Multicore Computers and Computer Clusters (S. 69)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Tichy</td>
</tr>
<tr>
<td>24660</td>
<td>Software Development for modern, parallel platforms (S. 102)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Tichy, Pankratius</td>
</tr>
<tr>
<td>24625</td>
<td>Model Driven Software Development (S. 95)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Reussner</td>
</tr>
<tr>
<td>SWT2</td>
<td>Software Engineering II (S. 204)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>Reussner, Tichy</td>
</tr>
</tbody>
</table>

Remarks
The lecture Softwaretechnik will not be offered after the summer term 09. The exam of the lecture will be offered in the summer term 2010 for the last time.
Module: Service Technologies

Subject: Informatics
Module coordination: Stefan Tai
Credit points (CP): 17

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
The course Service-oriented Computing 1 [25770] has to be attended.
It is recommended to combine the module Service Technologies with the modules Service Engineering and Service Management.

Learning Outcomes
The module introduces methods and technologies for implementing service-oriented architectures. Students will be able to structure, design, and engineer modern, Web-based service-oriented systems for enterprises and for business networks. Students will acquire knowledge about current standards and tools.

Content
The module Service Technologies covers knowledge about designing and implementing service-oriented architectures. In this context several different aspects are considered:

- The modules introduces basic concepts of a service-oriented architecture and discusses differences to traditional software development.
- The module introduces technologies for implementing service-oriented architectures, including technical standards in the area of Web Services. In addition, an overview of existing development methodologies and tools is given.
- The module introduces technologies for improving collaboration between service requesters and providers, and it gives use cases for applying these technologies.
- Concepts and technologies for the distributed realization of highly scalable Web Services are presented.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25770</td>
<td>Service-oriented Computing 1 (S. 158)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Tai</td>
</tr>
<tr>
<td>25772</td>
<td>Service-oriented Computing 2 (S. 159)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Tai, Studer</td>
</tr>
<tr>
<td>CC</td>
<td>Cloud Computing (S. 203)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Tai, Juling, Kunze</td>
</tr>
<tr>
<td>25774</td>
<td>Web Service Engineering (S. 160)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Zirpins</td>
</tr>
<tr>
<td>26470</td>
<td>Seminar Service Science, Management & En-</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Tai</td>
</tr>
<tr>
<td></td>
<td>gineering (S. 184)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services (S. 164)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Tai, Studer, Satzger, Zirpins</td>
</tr>
</tbody>
</table>

Courses in module Service Technologies [IW4INSER]
5.2 Economic Sciences

Module: Finance, Econometrics, and Risk Management

Module key: [IW4WWFERM]

Subject: Economic Sciences
Module coordination: Svetlozar Rachev, Marliese Uhrig-Homburg
Credit points (CP): 20

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
The module consists of four courses:

- The lecture Financial Time Series and Econometrics [25359] is obligatory.
- From the lectures Derivatives [26560] and Credit Risk [26565], one must be chosen.
- Two more lectures from the course list must be selected that have not been chosen yet.

Learning Outcomes
See lecture descriptions.

Content
See lecture descriptions.

Courses in module Finance, Econometrics, and Risk Management [IW4WWFERM]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25359</td>
<td>Financial Time Series and Econometrics (S. 130)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Rachev</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives (S. 199)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>26565</td>
<td>Credit Risk (S. 201)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>25331</td>
<td>Stochastic Calculus and Finance (S. 127)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Rachev</td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets (S. 132)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Rachev</td>
</tr>
<tr>
<td>26560</td>
<td>Fixed Income Securities (S. 200)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>25357</td>
<td>Portfolio and Asset Liability Management (S. 129)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Rachev</td>
</tr>
<tr>
<td>25353</td>
<td>Statistical Methods in Financial Risk Management (S. 128)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Rachev</td>
</tr>
<tr>
<td>26580</td>
<td>Seminar in Financial Engineering (S. 202)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Remarks
- From the summer term 2008 on, Derivates will be lectured during the summer term.
- From the summer term 2008 on, Fixed Income Securities will be lectured during the winter term.
- From the winter term 2008/2009 on, Credit Risk will be lectured during the winter term.

From the winter term 2008/2009 on, these lectures will be offered in a different form, thereby leading to a reduction of CP.
Module: Information, Market, and Service Engineering

Module key: [IW4WWIMSE]

Subject: Economic Sciences

Module coordination: Andreas Geyer-Schulz, Christof Weinhardt

Credit points (CP): 20

Learning Control / Examinations
The assessment is described for every course in this module. The overall score of the module is composed of the single scores of the courses weighted with their credits.

Prerequisites
None.

Conditions
- The course Market Engineering [26460] has to be attended.
- No more than two of the courses Management of Business Networks [26452], eFinance: Information Engineering and Management for Securities Trading [26454] and Customer Relationship Management [26508] can be selected.
- The course [26510p] could only be selected additionally to the course [26510].
- The practical seminar [26478] is a supplement to the course seminar Information Engineering and Management [SemIW] and it can only be chosen in conjunction with the course [26474].

Learning Outcomes
The student should learn to
- understand and analyze the role of information with its distinct facets (as digital information good, as competitive factor, ...) and their impacts on entrepreneurial behaviour and economic developments
- develop and implement new products, services and markets in consideration of the technological progresses of information and communication technology and the increasing economic networking
- restructure and develop new business processes under those conditions
- design and construct innovative business models and new forms of organisation in companies and company networks
- understand and analyze the emergence of new forms of competition

Content
The module Information, Market, and Service Engineering treats different aspects of information (digital economic good, competitive factor, ...) and puts them into a business and economic context. Furthermore, this module addresses the challenges of creating new kinds of products, services, markets, and market information services in the context of new developed information and communication technologies. These developments offer the opportunity to develop new and innovative business processes, business models, forms of organization, markets, and competition. These issues are addressed in the courses of this module.

Courses in module Information, Market, and Service Engineering [IW4WWIMSE]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions (S. 181)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>Weinhardt, Kraemer</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks (S. 178)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Weinhardt, Kraemer</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 179)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Weinhardt, Riordan</td>
</tr>
<tr>
<td>26456</td>
<td>Business Models in the Internet: Planning and Implementation (S. 180)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>Weinhardt, Holtmann</td>
</tr>
<tr>
<td>26502</td>
<td>Electronic Markets (Principles) (S. 187)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26504</td>
<td>Electronic Markets: Institutions and Market Mechanisms (S. 189)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26508</td>
<td>Customer Relationship Management (S. 194)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26506</td>
<td>Personalization and Recommender Systems (S. 192)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26518</td>
<td>Social Network Analysis in CRM (S. 197)</td>
<td>2/1 W/S</td>
<td>5</td>
<td></td>
<td>Hoser</td>
</tr>
<tr>
<td>26510</td>
<td>Master Seminar in Information Engineering and Management (S. 195)</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26510p</td>
<td>Practical Course in Information Engineering and Management (Master) (S. 196)</td>
<td>0* W</td>
<td>2</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management (S. 205)</td>
<td>2 W/S</td>
<td>4</td>
<td></td>
<td>Weinhardt</td>
</tr>
<tr>
<td>26478</td>
<td>Practical seminar Information Engineering and Management (S. 185)</td>
<td>0* W/S</td>
<td>1</td>
<td></td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>
Remarks
None.
Module: Information and Market Engineering

Module key: [IW4WWIMSE1]

Subject: Economic Sciences
Module coordination: Christof Weinhardt, Andreas Geyer-Schulz
Credit points (CP): 10

Learning Control / Examinations
The assessment is described for every course in this module. The overall score of the module is composed of the single scores of the courses weighted with their credits.

Prerequisites
None.

Conditions
- The course Market Engineering [26460] has to be attended.
- The course [26510p] could only be selected additionally to the course [26510].
- The practical seminar [26478] is a supplement to the course seminar Information Engineering and Management [26474] and it can only be chosen in conjunction with the course [26474].

Learning Outcomes
The student should learn to
- develop and implement new markets with regards to the technological progresses of information and communication technology and the increasing economic networking
- restructure and develop new business processes in markets under those conditions
- design and construct innovative business models and new forms of organisation for market provider or networks of market provider

Content
The courses of this module addresses the challenges of creating new kinds of markets and market information services in the context of new developed information and communication technologies. Innovative business processes, business models, form of organization and competition on and between market platforms are the major topics.

Courses in module Information and Market Engineering [IW4WWIMSE1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions (S. 181)</td>
<td>2/1 S 5</td>
<td>Weinhardt, Kraemer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 179)</td>
<td>2/1 W 5</td>
<td>Weinhardt, Riordan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26502</td>
<td>Electronic Markets (Principles) (S. 187)</td>
<td>2/1 W 5</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26504</td>
<td>Electronic Markets: Institutions and Market Mechanisms (S. 189)</td>
<td>2/1 S 5</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26510</td>
<td>Master Seminar in Information Engineering and Management (S. 195)</td>
<td>2 W 3</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26510p</td>
<td>Practical Course in Information Engineering and Management (Master) (S. 196)</td>
<td>0* W 2</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management (S. 205)</td>
<td>2 W/S 4</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26478</td>
<td>Practical seminar Information Engineering and Management (S. 185)</td>
<td>0* W/S 1</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks
None.
Module: Service Engineering

Subject: Economic Sciences
Module coordination: Christof Weinhardt, Andreas Geyer-Schulz
Credit points (CP): 10

Learning Control / Examinations
The assessment is described for every course in this module. The overall score of the module is composed of the single scores of the courses weighted with their credits.

Prerequisites
None.

Conditions
• It is recommended to combine the module Service Engineering with the module Service Management and the computer science module Service Technologies.
• It is recommended to attend course Customer Relationship Management [26508], if it has not already been attended during the bachelor studies.
• The course [26510p] could only be selected additionally to the course [26510].
• The practical seminar [26478] is a supplement to the course seminar Information Engineering and Management [26474] and it can only be chosen in conjunction with the course [26474].

Learning Outcomes
The student should learn to
• develop and implement new markets with regards to the technological progresses of information and communication technology and the increasing economic networking
• restructure and develop new business processes in markets under those conditions
• understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes, and services.

Content
This module addresses the challenges of creating new kinds of products, processes, services, and markets from a service perspective in the context of new developed information and communication technologies and the globalization process. The module describes service competition as a business strategy in the long term that leads to the design of business processes, business models, forms of organization, markets, and competition. Real-world examples from e-Finance, personalized services, recommender systems and social platforms are presented in the courses.

Courses in module Service Engineering [IW4WWIMSE2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26508</td>
<td>Customer Relationship Management (S. 194)</td>
<td>2/1 W 5</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26456</td>
<td>Business Models in the Internet: Planning and Implementation (S. 180)</td>
<td>2/1 S 5</td>
<td>Weinhardt, Holtmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions (S. 181)</td>
<td>2/1 S 5</td>
<td>Weinhardt, Kraemer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26506</td>
<td>Personalization and Recommender Systems (S. 192)</td>
<td>2/1 S 5</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26518</td>
<td>Social Network Analysis in CRM (S. 197)</td>
<td>2/1 W/S 5</td>
<td>Hoser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26510</td>
<td>Master Seminar in Information Engineering and Management (S. 195)</td>
<td>2 W 3</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26510p</td>
<td>Practical Course in Information Engineering and Management (Master) (S. 196)</td>
<td>0* W 2</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management (S. 205)</td>
<td>2 W/S 4</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26478</td>
<td>Practical seminar Information Engineering and Management (S. 185)</td>
<td>0* W/S 1</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26470</td>
<td>Seminar Service Science, Management & Engineering (S. 184)</td>
<td>2 W/S 4</td>
<td>Tai</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks
None.
Module: Service Management

Subject: Economic Sciences
Module coordination: Gerhard Satzger, Christof Weinhardt
Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The course Business and IT Service Management [26484] is mandatory.
- It is recommended to attend course eServices [26466], if it has not already been attended during the bachelor studies.
- The practical seminar [26478] is a supplement to the course seminar Information Engineering and Management [SemIW] and it can only be chosen in conjunction with the course.

Learning Outcomes
The student should learn to
- understand the basics of developing and managing IT-based services,
- understand and apply OR methods in service management,
- analyze and develop supply chain networks, and
- understand and analyze innovation processes in corporations.

Content
The module service management addresses the basics of developing and managing IT-based services. The lectures contained in this module teach the basics of developing and managing IT-based services and the application of OR methods in the field of service management. Moreover, students learn to analyze and develop supply chain networks as well as to understand and analyze innovation processes in corporations. Current examples from research and industry demonstrate the relevance of the topics discussed in this module.

Courses in module Service Management [IW4WWSER1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26484</td>
<td>Business and IT Service Management (S. 186)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Satzger</td>
</tr>
<tr>
<td>26466</td>
<td>eServices (S. 182)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Weinhardt, Satzger</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks (S. 178)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Weinhardt, Kraemer</td>
</tr>
<tr>
<td>25598</td>
<td>Operations Management (S. 133)</td>
<td>3</td>
<td>W</td>
<td>5</td>
<td>Schön</td>
</tr>
<tr>
<td>26468</td>
<td>Service Innovation (S. 183)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Satzger, Neus</td>
</tr>
<tr>
<td>26470</td>
<td>Seminar Service Science, Management & Engineering (S. 184)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Tai</td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management (S. 205)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>26478</td>
<td>Practical seminar Information Engineering and Management (S. 185)</td>
<td>0*</td>
<td>W/S</td>
<td>1</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>
Module: Marketing

Subject: Economic Sciences
Module coordination: Wolfgang Gaul
Credit points (CP): 20

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Marketing [IW4WWMAR]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 113)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 114)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 115)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research (S. 123)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing (S. 116)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information (S. 117)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Neibecker</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing (S. 118)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation (S. 119)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Marketing (S. 120)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Neibecker</td>
</tr>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing (S. 121)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Neibecker</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing (S. 122)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25192</td>
<td>Master Seminar in Marketing (S. 124)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Gaul</td>
</tr>
</tbody>
</table>
Module: Marketing Research

Module key: [IW4WWMAR1]

Subject: Economic Sciences
Module coordination: Wolfgang Gaul
Credit points (CP): 10

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Marketing Research [IW4WWMAR1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 113)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research (S. 123)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 114)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 115)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing (S. 116)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing (S. 118)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation (S. 119)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing (S. 122)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25193</td>
<td>Master Seminar zu Marktforschung (S. 125)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Gaul</td>
</tr>
</tbody>
</table>
Module: Quantitative Marketing and OR

Subject: Economic Sciences
Module coordination: Wolfgang Gaul
Credit points (CP): 10

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Quantitative Marketing and OR [IW4WWMAR2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 113)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 114)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research (S. 123)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25194</td>
<td>Master Seminar in Quantitative Marketing and OR</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Gaul</td>
</tr>
</tbody>
</table>
Module: Behavioral Approaches in Marketing and Data Analysis

Subject: Economic Sciences
Module coordination: Bruno Neibecker
Credit points (CP): 10

Learning Control / Examinations
Assessment consist of a written module exam according to §4 Abs. 2, Nr. 1 of the Prüfungsordnung für Informationswirtschaft. The module exam has a duration of 120 min. and contains topics from the main lecture [25167] as well as from one of the chosen lectures [25154] and [25162].

The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The lecture Behavioral Approaches in Marketing [25167] has to be attended.
- From the lectures Modern Market Research [25154] and Information Technology and Business Information [25162], one must be attended.
- At least 9 CP must be achieved.

Learning Outcomes
- To specify the key terms in marketing and communication management
- To identify and define theoretical constructs in marketing communication, based on behavioral theory
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
Consumer behavior approaches in Marketing are seen as an important research area with a consumer-based perspective including a strong interdisciplinary and empirical orientation. My goal was to create a marketing module that presents a balanced coverage of both qualitative and quantitative material. That is, a practical, managerial perspective is discussed in relation to psychological, sociological and physiological (neuromarketing) approaches. It is examined how the individual receives information from his or her environment and how this material is learned, stored in memory, and used to form attitudes and to make decisions.

A comprehensive understanding of marketing research and marketing data analysis is provided throughout the module, as for example in market segmentation or the definition of a target market a company decides to pursue.

Courses in module Behavioral Approaches in Marketing and Data Analysis [IW4WWMAR3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing (S. 121)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Neibecker</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 113)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information (S. 117)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Neibecker</td>
</tr>
</tbody>
</table>
Module: Strategy, Innovation and Data Analysis
Module key: [IW4WWMAR4]

Subject: Economic Sciences
Module coordination: Bruno Neibecker
Credit points (CP): 10

Learning Control / Examinations
Assessment consist of a written module exam according to §4 Abs. 2, Nr. 1 of the Prüfungsordnung für Informationswirtschaft. The module exam has a duration of 120 min. and contains topics from the main lecture [25166] as well as from one of the chosen lectures [25154] and [25162]. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The lecture Strategic and Innovative Decision Making in Marketing [25166] has to be attended.
- From the lectures Modern Market Research [25154] and Information Technology and Business Information [25162], one must be attended.
- At least 9 CP must be achieved.

Learning Outcomes
- To specify the key terms in strategic management and innovation research, based on methodological and behavioral approaches
- To apply statistical tools to analyze and interpret case specific problems in marketing
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
The core product is everything a customer or business consumer receives. Marketers must understand what it takes to develop a new product successfully. It is important to understand that innovations differ in their degree of newness (up to radical innovations). This helps to determine how quickly the products will be adopted by a target market. Market orientation is on the front side of the medal, the reverse side includes meeting the needs of diverse stakeholders. To find out the critical success factors a deep understanding of analytical and statistical methods is essential. As a result, the developing of an effective marketing strategy is discussed as an empirical, scientific process.

Courses in module Strategy, Innovation and Data Analysis [IW4WWMAR4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Marketing (S. 120)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Neibecker</td>
<td></td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 113)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Gaul</td>
<td></td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information (S. 117)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Neibecker</td>
<td></td>
</tr>
</tbody>
</table>
Module: Stochastic Methods in Economics and Engineering Module key: [IW4WWOQM1]

Subject: Economic Sciences
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students acquire the ability to master the modern use of statistical methods for quality control and improvement. This includes a sound understanding of the principles and the basis for applying those principles in a wide variety of both product and nonproduct situations.

Content
The courses Statistical Quality Control I and II are about the modern use of statistical methods for quality control and improvement. Main topics are statistical process control, acceptance sampling, process design and improvement with designed experiments, reliability theory. The course optimization in a random environment deals with the quantitative analysis of selected problems arising in economics, engineering, and applied sciences.

Courses in module Stochastic Methods in Economics and Engineering [IW4WWOQM1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25656</td>
<td>Quality Management I (S. 135)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>5</td>
<td>Waldmann</td>
</tr>
<tr>
<td>25659</td>
<td>Quality Management II (S. 136)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>5</td>
<td>Waldmann</td>
</tr>
<tr>
<td>25687</td>
<td>Optimization in a Random Environment (S. 139)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>5</td>
<td>Waldmann</td>
</tr>
</tbody>
</table>

Remarks
The lectures of the module are offered irregularly. The curriculum of the next two years is available online.
Credit from the voluntary computer lab in statistical quality control I and II is accounted for in the overall grade raising the exam grade by 1/3 each.
Module: Business Organization: Theory and Management Perspective

Module key: [IW4WWORG]

Subject: Economic Sciences
Module coordination: Hagen Lindstädt
Credit points (CP): 20

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
Students must attend the three courses [25902], [25904] and [25912] and the course [26291] or one seminar, [25915] or [25916] additionally.

Learning Outcomes
The module provides knowledge and skills about economic models and management frameworks in corporate organization, managing organizations, and organizational theory.
The module focuses on problem solving skills and understanding fundamental economic concepts in the area of management and organization.

Content
The module emphasises three aspects: The student will learn models and frameworks of the theory of organization. Additionally, the module deals with problems and questions concerning value based corporate management as an important part in strategic management. Finally, the module provides knowledge about concepts of organizational management and their practical application.

Courses in module Business Organization: Theory and Management Perspective [IW4WWORG]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25902</td>
<td>Managing Organizations (S. 166)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25904</td>
<td>Organization Theory (S. 167)</td>
<td>2/1</td>
<td>W</td>
<td>6</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25907</td>
<td>Special Topics in Management and IT (S. 168)</td>
<td>1/0</td>
<td>W/S</td>
<td>2</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25912</td>
<td>Value-Based Instruments of Corporate Strategy (S. 169)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Pidun, Wolff</td>
</tr>
<tr>
<td>26291</td>
<td>Managing New Technologies (S. 172)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Reiß</td>
</tr>
<tr>
<td>25915</td>
<td>Seminar: Management and Organization (S. 170)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25916</td>
<td>Seminar: Management and Organization (S. 171)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Remarks
• Die Vorlesung Organisationsmanagement [25902] findet im S 08 und dann ab W 08/09 jeweils immer im Wintersemester statt.
Module: Strategy and Organization

Module key: [IW4WWORG1]

Subject: Economic Sciences
Module coordination: Hagen Lindstädt
Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
Alle Veranstaltungen des Moduls müssen besucht werden.

Learning Outcomes
The module provides knowledge and skills about economic models and management frameworks in strategic management and managing organizations.
The module focuses on problem solving skills and understanding fundamental economic concepts in the area of strategy and organization.

Content
The module emphasises three aspects: The student will learn models and frameworks which are used in strategic management and managing organizations. In addition, the module provides knowledge about management concepts and their practical application.

Courses in module Strategy and Organization [IW4WWORG1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25900</td>
<td>Management and Strategy (S. 165)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations (S. 166)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25907</td>
<td>Special Topics in Management: Management and IT (S. 168)</td>
<td>1/0</td>
<td>W/S</td>
<td>2</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Remarks
- Die Vorlesung Organisationsmanagement [25902] findet im S 08 und dann ab W 08/09 jeweils immer im Wintersemester statt.
Module: Operational Risik Management

Subject: Economic Sciences
Module coordination: Ute Werner
Credit points (CP): 10

Learning Control / Examinations
The assessment is described for every course in this module. The overall score of the module is composed of the single scores of the courses weighted with their credits.

Prerequisites
Keine.

Conditions
One of the courses Principles of Insurance Management [25055] and Multidisciplinary Risk Research [26328] has to be chosen.

Learning Outcomes
Identifying specific risk concepts for various disciplines; comparative analysis of risks, depending on the natural, technological and social environment; examining processes of risk perception, risk assessment and risk-taking behaviour by applying quantitative and qualitative methods; gaining insight into risk management from an individual, institutional and global perspective including strategies and instruments of risk management employed; understanding the particular importance of insurance for risk management and the economic principles of insurance business.

Content
Operational risks of institutions resulting from the interaction of human, technical, and organisational factors (internal risks) as well as from external natural, technical, social or political incidents; specific requirements, legal and economic framework of various risk carriers (private and public households, small and major enterprises), design of strategies and risk management instruments for coping with risks.

Courses in module Operational Risik Management [IW4WWORM]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26328</td>
<td>Multidisciplinary Risk Research (S. 174)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>Werner</td>
</tr>
<tr>
<td>25055</td>
<td>Principles of Insurance Management (S. 110)</td>
<td>3/0</td>
<td>W</td>
<td>4</td>
<td>Werner</td>
</tr>
<tr>
<td>26326</td>
<td>Enterprise Risk Management (S. 173)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>Werner</td>
</tr>
<tr>
<td>26354</td>
<td>Risk Management of Microfinance and Private Households (S. 176)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>Werner</td>
</tr>
<tr>
<td>26355</td>
<td>Public Sector Risk Management (S. 177)</td>
<td>2/0</td>
<td>W</td>
<td>2.5</td>
<td>Mechler</td>
</tr>
<tr>
<td>26353</td>
<td>International Risk Transfer (S. 175)</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>Schwehr</td>
</tr>
</tbody>
</table>

Remarks
The courses Enterprise Risk Management [26326] and Risk Management of Microfinance and Private Households [26354] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The lecture Principles of Insurance Management [25055] will be held additionally in the summer term 2009.
Module: Stochastic Modeling and Optimization

Subject: Economic Sciences
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students acquire the ability to see and to analyse stochastic interrelations in their professional life. This includes a sound understanding of modeling, analysing and optimizing stochastic systems from an application-oriented point of view.

Content
The courses Stochastic Processes and Markov Decision Processes are build on the module Stochastic Models in Information Engineering and Management and extend the stochastic modeling and optimization to processes in continuous time. The course Game Theory II picks up the aspect of a decision under uncertainty and extends it to the situation of describing conflicts of interest between people or groups of people. The course Simulation I gives an introduction to the simulation of stochastic systems. The main topics include the generation of random numbers, discrete event simulation, and the statistical analysis of simulated data. The course Simulation II considers variance reduction techniques, the simulation of stochastic processes, and case studies.

Courses in module Stochastic Modeling and Optimization [IW4WWSSMI]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25690</td>
<td>Stochastic Processes (S. 140)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>Waldmann</td>
</tr>
<tr>
<td>25653</td>
<td>Markovian Decision Processes (S. 134)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>Waldmann</td>
</tr>
<tr>
<td>25369</td>
<td>Game Theory II (S. 131)</td>
<td>2</td>
<td>W</td>
<td>6</td>
<td>Berninghaus</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I (S. 137)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>Waldmann</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II (S. 138)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>Waldmann</td>
</tr>
</tbody>
</table>

Remarks
The lectures Stochastic Processes [25690], Markov decision processes [25653], Simulation I [25662], and Simulation II [25665] are offered irregularly. The curriculum of the next two years is available online. Credit from the voluntary computer lab in Stochastic Processes [25690], Markov decision processes [25653], Simulation I [25662], and Simulation II [25665] is accounted for in the overall grade raising the exam grade by 1/3 each.
5.3 Law
Module: Law of the Information Economy

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 12

Learning Control / Examinations
The module exam consists of 4 written exams of 45 minutes each (§ 4 (2) 1 SPO. Each of the 4 exams covers one of the four courses which the student has selected within this module.
The overall grade of the module is calculated on the basis of the 4 grades, each of them weighed according to their respective CPs.

Prerequisites
None.

Conditions
The students can freely choose four of the courses assigned to this module each comprising 3 CP.

Learning Outcomes
The student
- solves complex legal problems that appear in the information society.

Content
By choosing the module Law of the Information Economy, the student should gain a broad overview. Contrary to the other two modules Law of Information Companies and Law of the Information Society, which both aim at greater profiling and deepening of particular aspects, the module Law of the Information Economy aims at an all-inclusive overview. Students choosing this module shall be able to solve complex legal problems that appear in the information society.

Courses in module Law of the Information Economy

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24167</td>
<td>Employment Law I (S. 82)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Hoff</td>
</tr>
<tr>
<td>24668</td>
<td>Employment Law II (S. 105)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Hoff</td>
</tr>
<tr>
<td>24168</td>
<td>Tax Law I (S. 83)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Dietrich</td>
</tr>
<tr>
<td>24646</td>
<td>Tax Law II (S. 99)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Dietrich</td>
</tr>
<tr>
<td>24650</td>
<td>Civil Law for Advanced (S. 100)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Sester</td>
</tr>
<tr>
<td>24612</td>
<td>Computer Contract Law (S. 91)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Bartsch</td>
</tr>
<tr>
<td>24121</td>
<td>Copyright (S. 71)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Dreier</td>
</tr>
<tr>
<td>24661</td>
<td>Patent Law (S. 103)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Geissler</td>
</tr>
<tr>
<td>24136/24609</td>
<td>Trademark and Unfair Competition Law (S. 76)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>Matz, Sester</td>
</tr>
<tr>
<td>24082</td>
<td>Public Media Law (S. 65)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Kirchberg</td>
</tr>
<tr>
<td>24832</td>
<td>Telecommunications Law (S. 97)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Specker genannt Döhmann</td>
</tr>
<tr>
<td>24666</td>
<td>European and International Law (S. 104)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Specker genannt Döhmann</td>
</tr>
<tr>
<td>24986</td>
<td>Aktuelle Probleme des Patentrechts (S. 108)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Klaus-J. Melullis</td>
</tr>
</tbody>
</table>

Remarks
None.
Module: Law of the Information Society

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 12

Learning Control / Examinations
The module exam consists of 4 written exams of 45 minutes each (§ 4 (2) 1 of the SPO). Each of the 4 exams covers one of the four courses which the student has selected within this module. The overall grade of the module is calculated on the basis of the 4 grades, each of them weighed according to their respective CPs.

Prerequisites
None.

Conditions
The modul Law of the Information Society builds on the mandatory lectures Contracting and Internet Law. Students can choose 4 courses (3 CP) that form part of the module.

Learning Outcomes
By choosing the module Law of the Information Society, the Student should gain a broad overview of the Law of the Information Society. Contrary to the module Law of Information Economies students can gain a profile and specialization on aspects which focus on the information society as a whole rather than on individual enterprises. Rather, the focus is on general issues and trends which are raised by the development of the information society as a whole and which can be discussed even before they become of practical importance for individual market participants. Students choosing this module shall be able to recognize new trends and discuss their legal implications.

Content
The module comprises courses which which cover general legal aspects of the information economy and the information society. The focus is less on issues which affect individual businesses, but rather on general issues affecting the mechanisms and development of the information society as such. Here, the legal framework is determined by national, but also by European law. The complexity of legal questions raised in this respect therefore results less out of a close-up, detailed perspective, but rather from the broad effects which these issues and trends have with regard to the future of the information society as such.

Courses in module Law of the Information Society [IW4INJURD1G]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>24121</td>
<td>Copyright (S. 71)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Dreier</td>
</tr>
<tr>
<td>24661</td>
<td>Patent Law (S. 103)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Geisssler</td>
</tr>
<tr>
<td>24136/24609</td>
<td>Trademark and Unfair Competition Law (S. 76)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>Matz, Sester</td>
</tr>
<tr>
<td>24082</td>
<td>Public Media Law (S. 65)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Kirchberg</td>
</tr>
<tr>
<td>24832</td>
<td>Telecommunications Law (S. 97)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24866</td>
<td>European and International Law (S. 104)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24806</td>
<td>Aktuelle Probleme des Patentrechts (S. 108)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Klaus-J. Melullis</td>
</tr>
</tbody>
</table>

Remarks
None.
Module: Law for Information Companies
Module key: [IW4INJURDIU]

Subject: Law
Module coordination: Peter Sester
Credit points (CP): 12

Learning Control / Examinations
The module exam consists of 4 written exams of 45 minutes each according to § 4 (2) 1 SPO. Each of the 4 exams covers one of the four courses which the student has selected within this module.
The overall grade of the module is calculated on the basis of the 4 grades, each of them weighed according to their respective CPs.

Prerequisites
None.

Conditions
The module Law for Information Companies follows up on the compulsory courses Form of Contract and Internet Law and the courses which address the general legal basis of Corporate Law as well as the sector-specific problems of information enterprises. The students can freely choose four of the courses assigned to this module each comprising 3 CP.

Learning Outcomes
To begin with, the student should gain a general overview of the Corporate Law, as a great amount of legal problems related to the information enterprises are not sector-specific. Furthermore, the specific questions will be dealt with which follow from the character of the product information and transport as well as allocation of information. The student should be enabled to understand more complex legal and economic coherences in the area of the Law of information enterprises.

Content
The courses about the Law of information enterprises firstly cover the topic of Corporate Law in general, as a great part of the legal problems which arise in relation to information enterprises correspond with the general Corporate Law, which is mostly not sector-specific. Furthermore, the specific questions will be dealt with, which follow from the character of the product information and transport as well as allocation of information. The aim of the lectures on information enterprises is to give a basic understanding of the regulatory surrounding and the business structure within which the future alumni of the study course information enterprises will range in their everyday business life.

Courses in module Law for Information Companies [IW4INJURDIU]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>SWS</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24167</td>
<td>Employment Law I (S. 82)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Hoff</td>
</tr>
<tr>
<td>24668</td>
<td>Employment Law II (S. 105)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Hoff</td>
</tr>
<tr>
<td>24168</td>
<td>Tax Law I (S. 83)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Dietrich</td>
</tr>
<tr>
<td>24646</td>
<td>Tax Law II (S. 99)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Dietrich</td>
</tr>
<tr>
<td>24650</td>
<td>Civil Law for Advanced (S. 100)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Sester</td>
</tr>
<tr>
<td>24612</td>
<td>Computer Contract Law (S. 91)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Bartsch</td>
</tr>
</tbody>
</table>

Remarks
None.
6 Courses

6.1 Mandatory

Course: Business Administration in Information Engineering and Management
Course key: [26500]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Information Engineering and Management 2 [IW4WWIW2] (S. 16)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4, Abs. 2, 1 SPO and by submitting written papers as part of the exercise following §4, Abs. 2, 3 SPO. The total grade for this lecture will consist to about 90% of the grade achieved in the written exam (maximum 100 points) and to about 10% of the written papers for the exercise (maximum 12 points). The written exam is considered successfully taken if at least 50 points are acquired.

The grades of this lecture are assigned following the table below. At least 50 points have to be acquired to pass the written exam. All additional points from excercise work will be added to the exam points once 50 points have been achieved:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
Basic knowledge from Operations Research (linear programming) and from decision theory are expected.

Conditions
None.

Learning Outcomes
The student is able to

- transfer models from Business Administration to situations in business whose basic conditions are changed due to the implementation of information and communication technology,
- apply methods from Business Administration (Decision theory, game theory, operations research, etc.) to questions of Information Engineering and Management,
- analyze the potential to automate the decision making process in businesses by data bases,
- describe the process to extract relevant data for decision making from operational accounting systems.

Content
In this lecture, classical Business Administration is applied to businesses in an information- and communication technological environment. The process to extract relevant data for decision making from operational accounting systems receives special attention. In order to do so, topics such as activity-based costing and transaction costs models are addressed. The automatization of the decision making process in businesses by data bases is another focus of the module. To solve such issues within a company, relevant methods such as decision theory and game theory are lectured. Finally, complex business relevant questions in a dynamically changing environment are adressed by presenting models and methods from system dynamics.

Basic literature
Course: Principles of Information Engineering and Management
Course key: [26450]

Lecturers: Christof Weinhardt, Jan Kraemer
Credit points (CP): 4,5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Information Engineering and Management 1 [IW4WWIW1] (S. 15)

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO). The total grade for this lecture will consist to 70% of the grade achieved in the written examination and to 30% of the assignments during the exercises.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students should be able to understand and analyze the central role of information as an economic good, a production factor, and a competitive factor in today’s societies. Students are supposed to be able to identify, evaluate, price, and market information goods with the help of the concepts and methods taught in the lecture. Furthermore, students learn basic aspects about information systems and information flows within and between organizations, as well as their design parameters.

Content
Information plays a central role in today’s society. The resulting structures and processes cannot be explained intuitively with traditional approaches of economic theory. Formerly, information has only been implicitly treated as a production factor; its role as a competitive factor used to be neglected. In order to deal with the central role of information we developed the concept of the “information lifecycle” that systematizes all phases from information generation to information distribution. The state of the art of economic theory is presented across this information lifecycle within the lectures. The content of the lecture is deepened in accompanying lecture courses.

Media
- PowerPoint slides
- eLearning Platform Ilias

Basic literature
Course: OR Methods and Models in Information Engineering and Management

Course key: [25679]

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4 Hours per week: 2/1/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Models in Information Engineering and Management [IW4WWOR] (S. 17)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques of stochastic modelling. Students are able to properly describe and analyze basic stochastic systems.

Content
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
Lecture Notes

Complementary literature
Course: Internet Law

Lecturers: Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Contract Drafting and Internet Law [IW4INJURA] (S. 18)

Learning Control / Examinations
Written Exam 100% (§4, Abs. 2, 1 of the SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to give the students an overview of the legal rules that are touched upon when the Internet is used as a means of communications and for doing business. These legal rules range from the law governing domain names, issues concerning the electronic formation of contracts, distance and electronic commerce contracts, to the issue liability and questions of unfair competition. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Content
The course deals with the legal rules that are touched upon when the Internet is used as a means of communications and for doing business. These legal rules range from the law governing domain names, issues concerning the electronic formation of contracts, distance and electronic commerce contracts, to the issue liability and questions of unfair competition. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Media
Slides

Basic literature
Script, Internetrecht (Internet Law)

Complementary literature
Additional literature tba in class.

Remarks
It is possible that this course will be taught in the summer instead of the winter semester.
Course: Law of Contracts

Lecturers: Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Contract Drafting and Internet Law [IW4INJURA] (S. 18)

Learning Control / Examinations
Assessment will consist of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course will provide an overview of the forming of an contract. The purpose is to translate legal and economic aspects in a contract to secure the volitional position. The course will also consider international questions.

Content
The purpose of the course is to provide students with an understanding of the legal basics of forming a business contract. By means of special examples an overview of typical corporate contracts will be given. The course discusses the Limited (GmbH), ordinary partnership (OHG), limited partnership (KG), European Economic Interest Grouping (EWIV), club (Verein) and the public limited company (Aktiengesellschaft). In addition it will also focus on international relations.

Basic literature
Tba at the beginning of the course.
Course: Interdisciplinary Seminar in Information Engineering and Management

Course key: [26530]

Lecturers: Andreas Geyer-Schulz, Thomas Dreier
Credit points (CP): 6 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar [IW4IWSEM] (S. 19)

Learning Control / Examinations
The assessment for this module is conducted using a “Erfolgskontrolle anderer Art” following §4 (2), 3 of the “Prüfungsordnung des Master-Studiengangs Informationswirtschaft”. The exact form and composition of this assessment is defined for each Interdisciplinary Seminar separately.

Prerequisites
Students should participate in the Interdisciplinary Seminar as last course of the compulsory program of the “Master-Studiengang Informationswirtschaft”.

Conditions
None.

Learning Outcomes
Participants of the Interdisciplinary Seminar in Information Engineering and Management should
- analyze a current issue of information engineering and management using the scientific methods of the participating disciplines and
- derive interdisciplinary approaches based on the state of the arts of the corresponding disciplines,
- justify the chosen solutions and methods during discussions using scientific arguments,
- and write down the results in a form appropriate to be published in a scientific journal.

Content
The Interdisciplinary Seminar is regulated in §14 of the “Prüfungsordnung des Master-Studiengangs Informationswirtschaft”. During the work on the interdisciplinary topic, students are supervised by a group of tutors. This group consists of one participant from computer science, one from business economics and one from law.
6.2 Elective

Course: System Architecture

Lecturers: Gerd Liefländer
Credit points (CP): 8 Hours per week: 4/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: System Software [IW4INOS] (S. 28)

Learning Control / Examinations
written exam 100%

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is familiar with common system architectures and components. He knows basic mechanisms and policies of operating and runtime systems.

Content
The following topics will be covered: processes, address space, synchronization, communication and cooperation on shared data, temporary and persistent data, methods of resource management.

Basic literature
Course: Telematics for Information Management and Engineering

Course key: [24074]

Lecturers: Wilfried Juling
Credit points (CP): 4 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
A written exam of 60 minutes, according to §4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Conditions
Dependencies according to the module.

Learning Outcomes
Goal of this lecture is to introduce the basic descriptions and methodologies of computer networks.

Content
The lecture introduces formal methods to describe communication in general. After a brief discussion covering the basics of signal processing as well as physical constraints of telecommunication technologies, the lecture follows the architectural pattern of the OSI Reference Model to point out its given systematics. Based on elementary network technologies like Ethernet and Token Ring the lecture outlines essential problems concerned with frame alignment, shared or controlled medium access or error processing. Further topics deal with the realization of worldwide networks regarding protocols, technologies and algorithms used to construct them. Particularly, technical solutions and algorithms from the TCP/IP stack of the Internet Reference Model are discussed. Furthermore, the functionality and application scope of modern components to interconnect heterogenous networks are presented. Finally dedicated communication technologies like ISDN and higher level application protocols like HTTP or SMTP are introduced to indicate the pervasion of network communication technologies towards people.

Media
Slides

Basic literature

Complementary literature
Course: Practical Course in Telematics

Lecturers: Martina Zitterbart, Hannes Hartenstein
Credit points (CP): 5 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment of this course is according to § 4 Abs. 2 Nr. 3 SPO in form of a practical work (assignments and an implementation) and a presentation of the same. Presentations and practical work are weighted in equal shares.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students have the opportunity
• to understand and master a specific protocol or application of Telematics thoroughly.
• to implement protocols and applications of the computer network domain in a prevalent programming language.
• to work goal-oriented, independently, but also in a team, within a given topic and on a given assignment.

Content
The practical course specifies topics that were partly introduced in the respective lectures. A prior attendance of these lectures is helpful but not a prerequisite.
In the winter term, the following topic is covered:
• Mobile Communications (Presentations, configuration and programming tasks, covering the following topics: Wireless LAN, Mobile IP, Bluetooth and Mobile Ad hoc Networks)
In the summer term, following topics will be covered:
• Practical project “Wireless sensor network” (Work on a project of wireless sensor-aktor-networks)
• Practical project “Technologies of the future internet”
• Simulation of computer networks

Basic literature
Literature will be presented in each practical course.
Course: Seminar in Telematics

Lecturers: Martina Zitterbart, Hannes Hartenstein
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment of this course is according to § 4 Abs.2 Nr. 3 SPO in form of an examination of the written seminar thesis and a presentation.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students have the opportunity
• to do a literature research starting from a given subject to identify relevant literature and to review, and evaluate it.
• to identify independently issues that arise from subdomains of Telematics and to classify methods of resolution found in the literature.
• to generate scientific presentations. Techniques are introduced that help to present a subject before an audience in a proper way. Part of this is also to present the topic in a given time frame and to answer questions that may arise from the topic.
• to identify open questions of other presentations and to contribute them to a discussion that follows each presentation.
• to present the results of the literature research in a written document in a way that is common practice for scientific publications.

Content
In this seminar, the focus lies on specific subjects that were partly introduced in the respective lectures and aims to discuss them more in detail. The following subjects are addressed:
• Future Internet: The focus of the seminar is on concepts for enabling the internet to cope with current and future requirements, including, e.g., mobility support, quality of service, and security. The discussed approaches span from incremental improvements of the current internet to a clean slate approach.
• Sensor networks: The seminar covers different new research results, e.g. concerning sensor architecture, communication technologies, special routing procedures, data aggregation, safety and algorithms in in sensor networks etc.
• Design, evaluation and simulation of identity-related services in highly distributed environments. Personalized and authorized access on services in highly distributed environments demands a basic analysis and evaluation of the architectural design of the used security mechanisms. This seminar will clarify conceptual possibilities of identity and access management systems, evaluate authentication and authorization infrastructures and analyze how simulations can be used to quantify potential risks of newly developed services.

starting WS 10/11:
• Network Security and Hacking Prevention: Attacks aimed at the infrastructure and applications of the Internet are the subject of this seminar. Having a firm understanding of the weaknesses, the students will examine protocols, mechanisms, and tools which can be used to provide secure communication.
Course: Software Architecture

Lecturers: Ralf Reussner
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSW] (S. 29)

Learning Control / Examinations
The assessment consists of an oral exam following §4, Abs. 2, 2 of the SPO.

Prerequisites
Successful participation at the basic software engineering lecture series.

Conditions
can be combined with other lectures of this module

Learning Outcomes
Content
Course: Algorithm Design

Lecturers: Dorothea Wagner, Peter Sanders
Credit points (CP): 6 Hours per week: 3/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations
Assessment will consist of a written exam (1h) according to § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students
• get a deep insight into the most important subareas of algorithmics,
• get a broad algorithmic understanding,
• get the ability to understand and determine the running times of algorithms,
• get the knowledge of fundamental algorithms and data structures, as well as the ability to apply them to new problems.

Content
The Lecture “Algorithm Design” (german name is “Algorithmentechnik”) deepens the most important subareas of algorithmics. This, for example, includes graph algorithms, advanced data structures, design principles for algorithms, algorithmic geometry, and combinatorial optimization. Moreover, different methodic approaches are deepened. For example, randomized algorithms, approximation algorithms, parallel algorithms, online algorithms, and algorithm engineering.

Basic literature
None

Complementary literature
• Reinhard Diestel. Graph Theory. Springer-Verlag, 2005.
Course: Practical Course in Algorithm Design

Lecturers: Peter Sanders, Dorothea Wagner
Credit points (CP): 5 Hours per week: 4
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations

Prerequisites
Lecture Algorithmentechnik

Conditions
None.

Learning Outcomes
The purpose of the practical course in algorithm design is to make learned knowledge work. The students are given varying topics from algorithmics, which they have to implement in small working groups. Possible Topics are, for example, algorithms for flow problems, shortest path problems, or clustering techniques. In this way students learn to write efficient code.

Content
In the practical course Algorithm Engineering the students are given miscellaneous questions from algorithmics, which they have to implement independently in small working groups. The main focus lies on object oriented programming with Java or C++. Linear programming may also occur.
Course: Public Media Law

Lecturers: Christian Kirchberg
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Assessment will consist of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
As the traditional media (print, radio, TV) the “new media” (online-services and the Internet) is governed by public law, yet with a different extent of regulation and with apparent effects on private law. The main influences for the media law are constitutional law and European community law. The lectures aims at providing an overview of the common grounds and differences of the current media law regime and of the conceivable perspectives of media convergence. Current developments in politics and economics, which are relevant for public media law, will be used as examples in the lecture. Besides, it is planned to attend a court hearing of the Federal Constitutional Court (Bundesverfassungsgericht) and/or the Federal Court (Bundesgerichtshof).

Content
Initially, the lecture will deal with the constitutional basis of the media law regime, i.e. the responsibilities of the Federal and the State legislatures, freedom of speech, freedom of information, constitutional media rights (Art. 5 para. 1 Constitutional Law) and its limitations by general laws, the ban on censorship and the counterstatement law. In addition, the European community principles on broadcasting and media law will be part of the lecture. Next will be an overview of the individual media laws, namely the broadcasting law (especially Rundfunkstaatsvertrag) the press law of the States and the statute on the so-called “telemedia” services. Finally, the protection of minors in the media will be dealt with (Act on Protection of Minors and Treaty on the Protection of Minors in the Media).

Basic literature
To understand the legal framework it is necessary for the students to have the relevant statutes, for example “Telemediarecht, Telekommunikations- und Multimediarecht”, beck-Texte im dtv, 7. Auflage 2007.
As an introduction it is recommended to read: Frank Fechner, Medienrecht, Verlag Mohr Siebeck, Verlag Mohr Siebeck, 8. Auflage 2007.
Course: Wireless Sensor-Actuator-Networks

Lecturers: Martina Zitterbart
Credit points (CP): 4
Hours per week: 2/0
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) following § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this lecture is to present topics in research. As sensor networks are more and more becoming part of our daily-life, this lecture does not only focus on classical topics, such as time-synchronization and routing, but also on security and safety.

Content
Due to the emerging miniaturization of microcontrollers during the past years a new field of research established: wireless sensor networks. These are networks that consist of huge amounts of tiny, autonomous sensor nodes which are able to fulfill some assigned sensing task totally unattended and self-organizing. One important characteristic is their restricted resources wrt computational power, memory and communication capacity, which is due to the node’s scarce energy resources. Under these conditions, traditional communication architectures and protocols seem to be not well suited. The lecture will cover essential concepts, protocols and architectures which were developed with respect to the special needs of those networks. Topics of the course will be: hardware platforms for sensor networks, media access control protocols, naming and addressing, time synchronization, localization of sensor nodes, topology control, a bunch of specialized routing protocols, service- and data-centric view of communication, security, and robustness.

Media
Slides.

Basic literature
Course: High Performance Communication

Lecturers: Martina Zitterbart
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment will consist of an oral exam (20 min.) following § 4 Abs. 2 Nr. 2 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of the course is to introduce the fundamental technologies of todays and future wide area networks.

Content
The main focus of this course are current developments in the area of network technologies. Part of this is the well-established Multi-Protocol Label Switching (MPLS) and the precursor ATM (Asynchronous Transfer Mode). Additionally, methods to support Quality of Service, signalling of requirements for Quality of Service, and the establishment of network-internal switching and routing systems are discussed. The lecture also goes into current developments in the domain of optical networks (SONET: Synchronous Optical Networking, WDM: Wavelength Division Multiplexing).

Media
Slides.

Basic literature

Complementary literature
Course: Workflow Management Systems

Lecturers: Jutta Mülle
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKIM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKIM1] (S. 26)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
A goal of the course is that the participants are able to model workflows, to explain modelling aspects and their relationships, to compare modelling methods, and to evaluate the usability of these methods in different application areas. They should understand the technical construction of workflow-management systems with the most important components and different architectures and implementation alternatives. Finally, the participants should have obtained an overview on actual relevant standardization proposals and how to use these approaches, and they should be aware of actual research topics.

Content
Workflow Management Systems (WFMS) support the management of business processes according to pre-defined process descriptions. Managing processes flexibly, i.e., handle deviations, e.g., in order to catch exceptions, adapt processes to modified process environments or to support ad-hoc workflows, becomes more and more important.

The course starts with discussing WFMS in the context of business-information systems and their relationship with the more common business-process modelling. Petri nets and pi-calculus are introduced as basic formalisms. Then, methods to model workflows and the design process for workflow-management applications are presented in detail and supplemented with exercises.

An advanced aspect is new research in WFMS technology. In particular, the use of internet techniques like web services and standardization approaches for process modeling, orchestration, and choreography in service-oriented architectures will be presented.

In the realization part of the course, various implementation techniques and architectural issues to realize workflow-management systems as well as diverse system types and concrete workflow-management systems are presented.

Media
Slides.

Basic literature

Complementary literature
Course: Multicore Computers and Computer Clusters

Lecturers: Walter F. Tichy
Credit points (CP): 4
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: System Software [IW4INOS] (S. 28), Software Systems [IW4INSW] (S. 29)

Learning Control / Examinations
Assessment consists of an oral exam (20 min.) following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are able to:
- explain the fundamental concepts of parallel computing;
- describe and apply parallel programming models;
- explain the basic definitions and properties of system architectures of multicore computers and computer clusters, including networks and system software;
- describe parallel algorithms and derive their complexity.

Content
- This course conveys the theory and practical aspects of multicore computers and computer clusters.
- System architectures as well as programming concepts are covered.
- Network technology, selected high speed networks (e.g. Gigabit, Ethernet, Myrinet, Infiniband) and communication libraries are surveyed.
- Resource management, scheduling, distributed/parallel file systems, programming models (e.g. MPI, transactional memory, Javaparty), and parallel algorithms are introduced.

Media
Lecture presentations

Complementary literature
Additional literature will be announced in class.
Course: Data Warehousing and Mining

Lecturers: Klemens Böhm
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKM1] (S. 26)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g., from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
At the end of the lecture, the participants should be aware of – and able to explain – the necessity of data warehousing and of data mining concepts. They should be able to assess and compare different approaches of management and analysis of large datasets with respect to efficiency and applicability. The participants should have gained an insight into the current research issues in the area of data warehousing and data mining and should understand which problems are currently unsolved.

Content
Data warehouses and data mining raise much interest from practitioners with huge amounts of data, e.g., in retail, finance and the insurance sector. Both warehousing and mining are motivated by the desire for keeping track of large and possibly distributed datasets and for extracting interesting relations from such data, ideally with minimal effort. A data warehouse is a repository which is fed from one or more operational database systems. The data is preprocessed allowing for a fast evaluation of complex analytical queries (OLAP, Online Analytical Processing). In contrary, data mining provides techniques for discovering patterns in large datasets.

Media
Slides.

Basic literature
• Jiawei Han, Micheline Kamber: Data Mining: Concepts and Techniques. 2nd edition, Morgan Kaufmann Publishers, March 2006.

Complementary literature
Further literature will be mentioned at the end of each chapter in the lecture slides.
Course: Copyright

Lecturers: Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Written exam 100% (§4, Abs. 2, 1 of the SPO).

Prerequisites
None.

Conditions
none

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of copyright that builds upon, and goes beyond the knowledge the students have already acquired in the general lecture of “Industrial and intellectual property law”. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Content
The course deals with the subject matter of copyright, the rights of authors, licensing, limitations and exceptions to copyright, term of protection, neighbouring rights, enforcement and collective administration of rights. The course does not merely focus on German copyright law, but likewise puts European and international copyright law into perspective. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Media
transparancies

Basic literature
Schulze, Gernot Meine Rechte als Urheber Verlag C.H.Beck, current edition

Complementary literature
Additional literature tba in class.

Remarks
It is possible that this course will be taught in the summer instead of the winter semester.
Course: Web Engineering

Course key: [24124]

Lecturers: Martin Nußbaumer
Credit points (CP): 4 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Complex Internet Applications [IW4INIAPP] (S. 23)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of this course is to introduce the foundations, the methods and the techniques of web engineering. After this course, students have gained knowledge and insights of existing methods, technologies and system approaches and are enabled to design and evaluate such webbased systems.

Content
This course is designed as an introduction to the discipline of Web Engineering. This course will discuss the systematic production of Web-based applications and systems by focusing on the different phases and aspects of the Web application lifecycle. It will help you look at Web application phenomena, requirements, Web design and architecture, development and management from different perspectives - as Web designer, analyst, architect, component engineer, program manager, product manager or CIO for example. You will learn how to produce Web applications and agile systems from requirements engineering, concept, design, development, testing, deployment and up to operation, marketing, and evolution. Many examples will be shown and discussed - showing the need for expecting change and staying agile. This is not a programming course, you will only be introduced to the core technology aspects and are encouraged to consolidate the details.

Media
Slides

Basic literature
Course: Power Management

Lecturers: Frank Bellosa
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: System Software [IW4INOS] (S. 28)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Telematics

Lecturers: Martina Zitterbart
Credit points (CP): 4 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations

Prerequisites
An assessment about the communication part of the lecture Communication and Database Systems [24574] is required.

Conditions
None.

Learning Outcomes
This course details selected protocols, architectures, techniques, and algorithms, which were already presented in the communications part of the course Communication and Database Systems [24574]. Thus, overall knowledge and knowledge about problems that occur within a world-wide and dynamic network as well as solutions that are applied in order to avoid these problems is imparted in this course.

Content
This course addresses protocols, architectures, techniques, and algorithms that are used, e.g., for Internet routing and establishing of reliable end-to-end communication associations. In addition to different media access control mechanisms in local area networks further communication systems, e.g., line-switched ISDN, are detailed. It is intended that students additionally understand which possibilities for network management and administration currently exist.

Media
Slides.

Basic literature

Complementary literature
- Internet standards
- Selected journal articles
Course: Multimedia Communication

Lecturers: Roland Bless
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) following § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
The communication part of Kommunikation und Datenhaltung (recommended).

Conditions
None.

Learning Outcomes
Objective of the lecture is to present techniques, protocols, and latest developments in Internet-based multimedia communications. Especially in the context of increasing amount of voice communications over the Internet (Voice over IP), key technologies and protocols such as RTP and SIP are intensively discussed so that their function and principles are understood in detail.

Content
This lecture describes techniques and protocols to transmit audio and video data over the Internet. Topics are audio/video conferences, audio/video transport protocols, Voice over IP SIP for signaling, establishment and control of multimedia sessions, RTP for transport of multimedia data over the Internet, RTSP for control of A/V streams, ENUM, A/V Streaming, Middleboxes and Caches, DVB, and Video on Demand.

Media
Slides. Protocol traces.

Basic literature

Complementary literature
Alan B. Johnston SIP – understanding the Session Initiation Protocol 2nd ed., Artech House, 2004
Course: Trademark and Unfair Competition Law
Course key: [24136/24609]

Lecturers: Yvonne Matz, Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Assessment will consist of a 1h written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of trademark rights in the national as well as the European and International context. The course deals with the structure of trademark rights, especially with the procedures of registration and the claims, that result from the infringements of trademark rights, as well as with the right of other marks in the MarkenG.

Content
The course deals with the subject matter of trademark rights: what is a trademark, how can I get the registration of a trademark, what rights and claims do owner of trademarks have, which other marks do exist? The students shall learn about the rules of national, European an international trademark law.

Basic literature
Course: Information Integration and Web Portals

Lecturers: Jutta Mülle
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIK] (S. 24)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
The students obtain...

• Knowledge about state-of-the-art technologies (e.g., J2EE, JSF, .NET, XML) for building web applications and ability to evaluate their usage in concrete scenario.
• Proficiency in architectural approaches for building scalable web applications and integration of heterogeneous systems (e.g., multi-tier architectures, Model-View-Controller, mediator architectures, service-oriented architectures).
• Ability to analyze integration problems at different levels (presentation, services, information, technology).
• Proficiency in applying virtual and materialized integration approaches to concrete scenarios.
• Knowledge about core concepts and technologies for service-oriented architectures.
• Knowledge about potentials of ontologies for integration on service and information level.

Content
Building web portals, bundling an information offer from different information sources for a specific target group, serves as a showcase problem for the lecture. Using a fictional sample port, this problem is approached from different viewpoints within the three major parts of the lecture. The first part is dedicated to scalable and maintainable web applications. Multi-tier architectures and component frameworks (J2EE, .NET) are the main topics. In addition to that, the principle of separation of content, layout and behavior is illustrated for different web technologies (e.g., JSP, JSF, AJAX). The second part follows the theme of integration of autonomous systems, which are typically encountered in inter-organizational cooperation. Within this part, information integration approaches (virtual vs. materialized) and service-oriented integration are presented and assessed. Usage potentials of ontologies for integration scenarios complement this part. The third part is dedicated to recent developments and real-world systems and products, presented by company representatives in the areas of portal, web and integration technology.

Media
• Slides.
• Tutorial materials (Execution-Environment, Source-Code, Examples).

Basic literature
• Wassilios Kazakos, Andreas Schmidt, Peter Tomczyk: Datenbanken und XML. Konzepte, Anwendungen, Systeme, Heidelberg/Berlin: Springer, März 2002

Complementary literature
• Serge Abiteboul, Peter Buneman, Dan Suciu: Data on the Web: from Relations to Semistructured Data and XML, Morgan Kaufmann, 1999, ISBN: 155860622X
Course: Ubiquitous Computing

Course key: [24146]

Lecturers: Wilfried Juling
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Complex Internet Applications [IW4INIAPP] (S. 23), Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) following § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of this course is to introduce the foundations, the methods and the techniques of ubiquitous computing. After this course, students have gained knowledge and insights of existing ubiquitous computing systems and are enabled to design and evaluate such systems for the usage in everyday life and industrial environments.

Content
The course starts with an survey on ubiquitous computing in general and introduces a selection of representative work in this field. Basic paradigms and concepts are introduced, which provide the methodological background for the analysis and evaluation of ubiquitous computing systems. The course continues with an in-depth examination of the requirements and the device technology for embedded ubiquitous systems, communication networks and standards (e.g. Zigbee, RFID). Further, ubiquitous computing middleware is considered. A major aspect is context-aware computing. The emphasis is on the investigation of architectures and algorithms for context recognition in respect to formal and practical aspects. Finally, new human-computer interfaces and possibilities of the human-computer interaction are presented and discussed.

Media
Slides

Basic literature
Weiser and Brown The Coming Age of Calm Technology Xerox PARC, 1996
Vannevar Bush As we may think The Atlantic Monthly, July 1945
J. Raskin Computers by the Millions An Apple Document from 1979

Complementary literature
• L. Hallanäs, J. Redström Abstract Information Appliances Symposium on Designing Interactive Systems 2004
• Sinem Coleri Ergen ZigBee/IEEE 802.15.4 Summary September 10, 2004
Course: Network and IT-Security Management

Course key: [24149]

Lecturers: Hannes Hartenstein

Credit points (CP): 5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Complex Internet Applications [IW4INIAPP] (S. 23), Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations

Oral exam of 30 minutes, according to §4 Abs. 2 Nr. 2 of the SPO.

Prerequisites

Basics in computer networks, according to the lectures Kommunikation und Datenhaltung [24574] and Telematik für Informationswirte [24074] respectively are required.

Conditions

Dependencies according to the module description.

Learning Outcomes

The goal of this lecture is to introduce the basics of network and IT-security management. Technical as well as underlying management concepts should are described.

Content

The lecture covers architectures, models, protocols and tools for controlling and monitoring of heterogeneous networks. Additionally, issues related to security and reliability are also covered. The lecture presents technical solutions as well as corresponding management concepts. The first part of the lecture introduces management architecture in particular the Internet management architecture based on the SNMP protocol. Afterwards corresponding tools, platforms, and operational implementations are presented. Furthermore public IP coordination and current trends are described. In the IT-Security management part of the lecture the concept of a security process is introduced based on the BSI Grundschutz. Additional topics are access and identity management as well as firewalls, intrusion detection and prevention. Besides theoretical method and concepts, practical examples are shown.

Media

Slides

Basic literature

Complementary literature

Course: Advanced Web Applications

Course key: [24153/24604]

Lecturers: Sebastian Abeck
Credit points (CP): 4 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Complex Internet Applications [IW4INIAPP] (S. 23)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
Knowledge in the areas of communication systems (esp. Web technologies) and software engineering.

Conditions
None

Learning Outcomes
To understand the architecture of multi-layered and service-oriented applications.
To be able to model the software architecture of a Web application.
To understand the major principles of traditional application development and the corresponding software development process.
To comprehend how high-level process models are systematically refined in order to be mapped to a service-oriented architecture.
To understand what identity management comprises, especially the technologies, processes and techniques

Content
The course consists of the following course units:

- BASICS OF ADVANCED WEB APPLICATIONS: Multilayered application architectures, especially service-oriented architectures (SOA) and the development of both traditional and advanced, service-oriented Web applications based on current standards such as XML (Extensible Markup Language) and WSDL (Web Services Description Language) are described.
- HUMAN TASKS: This course unit deals with model-driven software development of advanced, human-centered Web applications based on UML (Unified Modeling Language) and MDA (Model-driven Architecture).
- PROCESS MANAGEMENT: The development process is extended by approaches for the mapping of business processes to service-oriented Web applications as well as the monitoring of these applications with respect to the achievement of business goals in terms of an integrated business process management.
- IDENTITY MANAGEMENT: The main functional components of identity management are introduced and the specific needs of a service-oriented solution are derived.

Media
(1) Learning material: Each course unit is covered by a course document (incl. short description, learning goals, index, glossary, references)
(2) Teaching material: slides (integral part of the course documents)

Basic literature

Complementary literature
Course: Moving Objects Databases

Lecturers: Klemens Böhm
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKIM] (S. 24)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Advancements in the field of information technology have made it easy to collect huge amounts of data describing the movement of objects, e.g., vehicles, air planes, robots, cell-phone users, Georgian soldiers withdrawing, natural phenomena such as cyclones or snowstorms, historic developments (e.g., exact location of the Austrian empire), or – last but not least – body movements and processes within the human body. In consequence, the problem how to organize such data and how to analyze it comes to the fore. This lecture targets at exactly this subject matter.

Key words:
• query languages for temporal data (i.e., data where data objects are furnished with temporal information such as time-stamps),
• query languages for moving objects in the past and query languages for future movements,
• constraint databases,
• spatial data structures,
• data structures for past and for future movements.

The topic is important for many areas of business/industry such as (obviously) logistics, but also vehicle manufacturing, avionics and the aerospace industry, telecommunication and – last but not least – web search and is in line with other focal points/"Vertiefungsgebieten" of the Fakultät für Informatik such as robotics, anthropomics and telematics. I.e., on the one hand, this lecture targets for students who are interested in such applications. On the other hand, another objective of this lecture is to generate a broader and deeper understanding of database technology and its mode of operation. I.e., strictly speaking, it is also of interest for students who are not particularly interested in this specific application domain from a database perspective ("moving objects"), but just want to delve more into database technology and learn more.

We are well aware of the fact that the issue of data privacy ("Datenschutz") is closely related to the content of this lecture. However, we plan to – largely – ignore this aspect in the context of this lecture. The reason is that we offer the separate lecture "Datenschutz und Privatheit in vernetzten Informationssystemen" the summer semester.
Course: Employment Law I

Lecturers: Alexander Hoff
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Law of the Information Economy [IW4INJUNIW] (S. 47), Law for Information Companies [IW4INJURDIU] (S. 49)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this lecture to provide a solid insight into individual-related labour law. The students will understand the importance of labour law as an integral part of social market economy. They will be able to review contractual provisions in employment contracts and to evaluate labour law conflicts.

Content
Students will be introduced to all labour law regulations concerning the beginning, enforcement and termination of an employment. The lecture provides an introduction into procedural matters. A labour court’s trial will be attended.

Basic literature
Tba at the beginning of the course.
Course: Tax Law I

Lecturers: Detlef Dietrich
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Law of the Information Economy [IW4INJUINWI] (S. 47), Law for Information Companies [IW4INJURDIU] (S. 49)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The target of the lecture is an introduction to national business tax law. The legal norms, spread on several individual tax laws, which are decisive for the taxation of the companies and their owners, will be treated. The focus is on basic fiscal knowledge realizable in practice as a component of modern business economics.

Content
Except for a basic knowledge of the existing German company types and the annual financial statements (balance sheet, statement of earnings), no fiscal previous knowledge is required. The lecture intends to give a current global overview about the most important elements of law. The focus is on trade or business companies in the most common forms such like sole traders, partnerships and corporations.

Media
transparancies

Basic literature
• Grashoff Steuerrecht, Verlag C. H. Beck, last edition
• Tipke/Lang Steuerrecht, Verlag C. H. Beck, last edition
Course: Randomized Algorithms

Lecturers: Thomas Worsch
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAA] (S. 21)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 2 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students become acquainted with the basic important approaches to and techniques for applying randomization in algorithms and the tools for their analysis.
Students are able to identify and assess typical weak points in deterministic algorithms and to develop randomized alternatives to eliminate them.

Content
Randomized algorithms are not deterministic. Their behavior depends on the outcome of random experiments. This idea first became generally known due to Rabin's randomized primality test. Meanwhile randomized algorithms have been developed for quite a number of problems, and often they are faster (in one sense or another). Furthermore randomized algorithms sometimes are easier to understand and to implement than deterministic algorithms.
In the course not only different types of randomized algorithms (Las Vegas, Monte Carlo, ...) are present. In addition foundations and tools from probability theory are introduced as far as they are necessary for the analysis of the algorithms, and attention is given to further important concepts like Markov chains. Since stochastic methods are of importance in more and more fields in informatics, the usefulness of the course extends beyond the scope of randomized algorithms.

Contents:
• probabilistic complexity classes
• routing in hypercubes
• game theory
• random walks
• randomized graph algorithms
• randomized hashing
• randomized online algorithms

Media
lecture notes and slides in pdf format;

Basic literature
• J. Hromkovic: Randomisierte Algorithmen, Teubner, 2004
• M. Mitzenmacher, E. Upfal: Probability and Computing, Cambridge Univ. Press, 2005
• R. Motwani, P. Raghavan: Randomized Algorithms, Cambridge Univ. Press, 1995

Complementary literature
• E. Behrends: Introduction to Markov Chains, Vieweg, 2000
• A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cambridge Univ. Press, 1998
Course: Power Management Praktikum

Lecturers: Frank Bellosa, Andreas Merkel
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: System Software [W4INOS] (S. 28)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Practical Course: Web Technologies

Course key: [24304]

Lecturers: Sebastian Abeck
Credit points (CP): 4 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Complex Internet Applications [IW4INIAPP] (S. 23)

Learning Control / Examinations
The assessment of this course consists of the documentation of the exercises and results of the practical course and various presentations as a “Erfolgskontrolle anderer Art” following §4, Abs. 2, 3 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
Participation in the lecture Advanced Web Applications [24153/24604]

Conditions
None

Learning Outcomes
To comprehend the Web technologies used in a real project environment.
To understand and to be able to formulate in one’s own words the task of the practical work.
To apply the Web technologies in order to solve the task.
The results can be documented and presented in a clear and comprehensible way.

Content
The student becomes a member of one of the project teams of the research group and receives a well-defined task, in which he/she develops a part of an advanced Web application using latest Web technologies.
Examples for such tasks are:
- Extension of a Web-based student support system using portal technologies
- Monitoring of an existing Web service implementation using the Java Framework
- Extension of an access control on a service-oriented web application using an existing identity management solution

Media
Templates to efficiently document the results of the practical work (e.g. project documents, presentation material)

Basic literature
- Team guidelines of the research group
- Lecture notes “Advanced Web Applications”

Complementary literature
Literature basis of the respective project team
Course: Advanced Systems - Seminar

Lecturers: Frank Bellosa
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: System Software [IW4INOS] (S. 28)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Communication and Database Systems

Lecturers: Klemens Böhm, Martina Zitterbart
Credit points (CP): 4/8 Hours per week: 4/2
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
Lectures about system architecture and software engineering are recommended but not mandatory.

Learning Outcomes
The student
• should have learned fundamentals of data communication as well as the design of communication systems,
• should be familiar with the composition of the different protocols and their mechanisms and be able to design simple protocols on their own,
• should also have understood the relationships between the different communication layers,
• should be able to explain the benefits of database technology at the end of the course,
• should have understood the development of database applications and be able to set up and access simple databases,
• should be familiar with the terminology and the underlying database theory.

Content
Distributed information systems are worldwide information repositories which are accessible by everybody at any place of the world at any time. The physical distance is bridged by telecommunication systems, while database management technology manages and coordinates data for arbitrary periods of time. In order to understand globally running processes, one has to understand both data transmission techniques and database technology. Besides the telecommunication and database technologies on their own, an understanding of their cooperation is required, too.

Media
Slides.

Basic literature
• Andreas Heuer, Kai-Uwe Sattler, Gunther Saake: Datenbanken — Konzepte und Sprachen, 3. Aufl., mtip-Verlag, Bonn, 2007
• Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung, 6. Aufl., Oldenbourg Verlag, 2006

Complementary literature
Course: Network Security: Architectures and Protocols

Lecturers: Martina Zitterbart, Lars Völker, Marcus Schöller
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) following § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course aims at teaching fundamental concepts of the design of secure communication protocols. More advanced topics include existing security protocols of the internet and local networks.

Content
The lecture “Network safety: Architectures and Protocols” considers challenges and technologies in the design of secure communication protocols, as well as topics of data security and privacy. Complex systems like Kerberos will be discussed explicitly and their design decision considering safety aspects will be outlined.
A special focus is set on PKI-basics, -infrastructures, as well as on specific PKI-formats. Furthermore, an emphasis is set on the commonly used safety protocols IPSec, TLS/SSL, and protocols of infrastructure security.

Media
Slides.

Basic literature

Complementary literature
• Carlisle Adams and Steve Lloyd. Understanding PKI. Addison Wesley, 2003
Course: Datenschutz und Privatheit in vernetzten Informationssystemen

Course key: [24605]

Lecturers: Buchmann
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKIM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKIM1] (S. 26)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Computer Contract Law

Lecturers: Michael Bartsch
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Written exam (§ 4 (2) 2 of the SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of contract formation and formulation in practice that builds upon the knowledge the students have already acquired concerning the legal protection of computer programs. Students shall understand how the legal rules depend upon, and interact with, the economic background and the technical features of the subject. The contract drafts shall be prepared by the students and will be corporately completed during the lecture. It is the aim of the course that students will be able to formulate contracts by themselves.

Content
The course deals with contracts from the following areas:
• Contracts of programming, licencing and maintaining software
• Contracts in the field of IT employment law
• IT projects and IT Outsourcing
• Internet Contracts

From these areas single contracts will be chosen and discussed (e.g. software maintenance, employment contract with a software engineer). Concerning the respective contract the technical features, the economic background and the subsumption in the national law of obligation (BGB-Schuldrecht) will be discussed. As a result different contractual clauses will be developed by the students. Afterwards typical contracts and conditions will be analysed with regard to their legitimacy as standard business terms (AGB). It is the aim to show the effects of the german law of standard business terms (AGB-Recht) and to point out that contracts are a means of drafting business concepts and market appearance.

Media
transparencies

Basic literature
• Langenfeld, Gerrit Vertragsgestaltung Verlag C.H. Beck, III. Aufl. 2004
• Heussen, Benno Handbuch Vertragsverhandlung und Vertragsmanagement Verlag C.H. Beck, II. Aufl. 2002
• Schneider, Jochen Handbuch des EDV-Rechts Verlag Dr. Otto Schmidt KG, III. Aufl. 2002

Complementary literature
tba in the transparencies
Course: Algorithms for Planar Graphs

Lecturers: Dorothea Wagner, Ignaz Rutter
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 2 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
A planar graph is defined as a graph that can be drawn in the plane such that no edges intersect. Planar graphs have many interesting properties that can be used to solve several problems in a particularly simple, fast and elegant way. In addition, some problems that are (NP-)hard in general graphs can be efficiently solved in planar graphs. The lecture presents a selection of these problems and corresponding algorithmic approaches.
Course: Algorithms for Visualization of Graphs

Lecturers: Dorothea Wagner, Martin Nöllenburg
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 1 of the SPO.

Prerequisites
Lecture Algorithmentechnik [24079] is recommended.

Conditions
None.

Learning Outcomes
The students acquire a systematic understanding of algorithmic problems and solutions in the area of graph visualization, which builds upon existing knowledge in graph theory and algorithmics. The problems at hand are reduced to their algorithmic core and are subsequently solved efficiently – if possible from the complexity point-of-view. The students learn to apply the presented methods and techniques autonomously to related questions. They are enabled to work on current research questions in graph drawing.

Content
Networks are relational data that increasingly occur in various applications. Examples range from physical networks, for example, transport or supply networks, to abstract networks, for example, social networks. Network visualization is a basic tool to explore and understand such networks.

Mathematically, networks are modeled as graphs and the visualization problem reduces to the algorithmic core problem of finding a suitable graph layout, that is, determining the positions of vertices and edges in the plane. Depending on the application and the properties of the graph at hand different constraints and optimization criteria apply. The corresponding research area of graph drawing uses approaches from algorithmics, graph theory, and computational geometry.

In the course of the lecture, a representative selection of visualization algorithms is presented.

Media
Slides.
Course: Algorithms for Cellular Automata

Lecturers: Thomas Worsch
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students get acquainted with the basic and important approaches to and techniques for fine-grained parallel algorithms. They are able to develop simple CA algorithms themselves which use these techniques and to assess the quality.

Content
Cellular automata are an important model for fine-grained parallelism, which was developed by John von Neumann using a suggestion by S. Ulam.

In the course important basic algorithms (e.g. for synchronization) and techniques for the design of efficient fine-grained algorithms are introduced. The application of these algorithms in different problem areas shown. Besides self-replication, which was von Neumann's motivation, pattern transformations and problem known from sequential algorithms like sorting, this also includes typical parallel problems like leader election and the modelling of real phenomena.

Contents:
- computational complexity
- pattern recognition
- self-reproduction
- sorting
- synchronization
- leader election
- discretization of continuous systems
- sandpile model

Media
lecture notes and slides in pdf format; computer demonstrations

Complementary literature
Course: Model Driven Software Development

Lecturers: Ralf Reussner
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSW] (S. 29)

Learning Control / Examinations
The assessment consists of an oral exam (20 min) following §4, Abs. 2, 2 SPO.

Prerequisites
Software Engineering

Conditions
Software Engineering

Learning Outcomes

Content
Course: Component Based Software Engineering

Lecturers: Ralf Reussner
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22), Software Systems [IW4INSW] (S. 29)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
 • F. Griffel, Componentware, dPunkt Verlag, 1998
Course: Telecommunications Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3
Term: Sommersemester
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an written exam (following §4(2), 1 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Telecommunications is the technical basis of the Information Engineering and Management. In which way for example UMTS is regulated, is of relevant importance for the supply of services in the world of the mobile contents services. The central defaults of the telecommunications regulation are in the telecommunications law (TKG). This was completely amended due to community-legal defaults 2004. The lecture procures for apprehending the basics of legal framework of the information society the essential knowledge in telecommunication law.

Content
The lecture offers an overview of the new TKG. The whole range of the regulation is treated: Of the material-legal instruments of the competition-creative economic regulation (market -, entrance -, payment regulation as well as special supervision of abuse) and the non-economic regulation (customer protection; Broadcasting; Assignment of frequencies, numbers and rights of way; secrecy of telecommunications; Data security and public security) up to the institutional arrangement of the regulation. To assist in the understanding the technical and economic bases are clarified as well as community and constitutional default sat at the beginning of the lecture.

Media
Content structure

Basic literature
Since the law material is to be partly compiled in the discourse with the studying, a current version of the TKG is to be bring along to the lecture.

Further literature will be announced in the lecture.

Complementary literature
tba
Course: Mobile Communication

Lecturers: Martina Zitterbart, Oliver Waldhorst
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of the course is to introduce the technical foundations of mobile communication systems (signal propagation, medium access, etc.). An additional focus is on topics of current research (Mobile IP, Ad hoc Networks, Mobile TCP, etc.).

Content
The course “Mobile Communication” uses prominent examples for systems of currently deployed mobile communication systems, to explain typical architectures of such systems, e.g. mobile telecommunication systems, wireless personal, local, and metropolitan area networks. Additional topics related to current research efforts include TCP/IP-based communication over mobile networks and positioning systems. The goal of the course is not to teach facts on particular architectures and standards, but to show typical problems in mobile communications and present typical solutions. The fundamental principles of digital wireless transmissions including the frequency bands, signal dispersion, modulation, and multiplexing are explained by application examples.

Media
Slides.

Basic literature
J. Schiller; Mobilkommunikation; Addison-Wesley, 2003.

Complementary literature
H. Kaaranen, A. Ahtiainen, et. al., UMTS Networks – Architecture, Mobility and Services, Wiley Verlag, 2001.
What You Should Know About the ZigBee Alliance http://www.zigbee.org.
Course: Tax Law II

Course key: [24646]

Lecturers: Detlef Dietrich
Credit points (CP): 3
Hours per week: 2/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Law of the Information Economy [IW4INJUINWI] (S. 47), Law for Information Companies [IW4INJURDIU] (S. 49)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the target of the lecture to provide extended knowledge in business administration related theory of taxation in the field of economics and law, based on the general lecture “introduction to corporate tax law”. The students obtain the basis for an economic examination of the fiscal prescriptions and are able to assess the impact on business decisions. The emphasis is on such tax law regulations which allow possibilities for action and decision to the taxpayer.

Content
The lecture requires basic knowledge of commercial law and company law as well as of earnings tax law. Basic and current questions of German corporate taxation are systematically prepared in topic blocs; foils, leaflets and supplementary references are distributed in the individual sessions. There is room for discussion. A recent text collection of the tax laws will be necessary.

Media
transparancies

Basic literature
- Spangemacher, Gewerbesteuer, Band 5, Grüne Reihe, Erich Fleischer Verlag
- Falterbaum/Bolk/Reiß/Eberhart, Buchführung und Bilanz, Band 10, Grüne Reihe, Erich Fleischer Verlag
- Tipse, K./Lang, J., Steuerrecht, Köln, in der neuesten Auflage.
- Jäger/Lang Körperschaftsteuer, Band 6, Grüne Reihe, Erich Fleischer Verlag
- Lippross Umsatzsteuer, Band 11, Grüne Reihe, Erich Fleischer Verlag
- Plückebaum/Wendt/ Niemeier/Schierenkämpfer Einkommensteuer, Band 3, Grüne Reihe, Erich Fleischer Verlag
Course: Civil Law for Advanced
Course key: [24650]

Lecturers: Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4

Teaching language: Deutsch
Part of the modules: Law of the Information Economy [IW4INJUINWI] (S. 47), Law for Information Companies [IW4INJURDIU] (S. 49)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course intends to build up extensive knowledge in German corporate law, trade law and civil law especially in contract law. It is designed for students who have already passed the courses Civil Law for Beginners [24012], Advanced Civil Law [24504], and Commercial and Corporate Law [24011/24509]. At the end students should be able to think through complex legal and economic questions.

Content
The course will focus on corporate law, trade law and civil law, especially contract law. We will discuss legal problems on the basis of selected examples in an application-oriented way.

Basic literature
Course: Algorithms for Ad-hoc and sensor networks

Lecturers: Bastian Katz
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Software Development for modern, parallel platforms

Course key: [24660]

Lecturers: Walter F. Tichy, Pankratius
Credit points (CP): 3
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSW] (S. 29)

Learning Control / Examinations
The assessment consists of an oral exam (20 min) following §4, Abs. 2, 2 of the SPO.

Prerequisites
Basic knowledge in the fields of software engineering and programming languages as for example taught in the lecture *Multikern-Rechner und Rechnerbündel* [24112] in the winter term is necessary.

Conditions
None.

Learning Outcomes
Content
Course: Patent Law

Lecturers: Bernhard Geissler
Credit points (CP): 3
Hours per week: 2/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Assessment will consist of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of patent law and the business of technical intellectual property that builds upon, and goes beyond the knowledge the students have already acquired in the general lecture of Industrial and intellectual property law. Students shall understand how the legal rules depend upon, and interact with, the economic background and the legislative policy in the field of technical intellectual property, particularly in the field of information and communication technologies. Students shall learn about the rules of national, European and international patent law as well as know-how protection law and to apply these legal rules in practical cases, in particular in the area of utilizing technical intellectual property through agreements and lawsuits. The conflict between the monopoly of a patent and the antitrust law policies in Europe will be reviewed with the students.

Content
The course deals with the subject matter of the law of technical intellectual property, in particular inventions, patents, utility models, design patents, know-how, the rights and obligations of employees as creators of technical IP, licensing, limitations and exceptions to patenting, term of protection, enforcement of the rights and defence against these in invalidation and revocation actions. The course does not merely focus on German patent law, but likewise puts European, US and international patent law into perspective. Students shall understand how the legal rules depend upon, and interact with, the economic background and the legislative policy in the field of technical intellectual property, particularly in the field of information and communication technologies. Students shall learn about the rules of national, European and international patent law as well as know-how protection law and to apply these legal rules in practical cases, in particular in the area of utilizing technical intellectual property through agreements and lawsuits. The conflict between the monopoly of a patent and the antitrust law policies in Europe will be reviewed with the students.

Media
transparencies

Basic literature

Complementary literature
tba in the transparencies
Course: European and International Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Content structure

Basic literature
Further details will be announced in the lecture.

Complementary literature
Further details will be announced in the lecture.
Course: Employment Law II

Lecturers: Alexander Hoff
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Students will gain insight into the statutory rights of employees and tariff law. They learn about the importance of employers associations and unions for the economy and gain adequate knowledge of laws concerning industrial action, supply of temporary workers and social security law.

Basic literature
Tba at the beginning of the course.
Course: Simulation of Computer Networks

Lecturers: Hannes Hartenstein
Credit points (CP): 4
Hours per week: 2/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
The assessment will consist of a 30 minute written exam according to § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
Basics in computer networks, according to the lectures Kommunikation und Datenhaltung are required. Additionally the lecture Wahrscheinlichkeitstheorie und Statistik is required.

Conditions
Dependencies according to the module description.

Learning Outcomes
Goal of this lecture is to introduce on the one hand the theoretical basics of simulation of computer networks, and on the other hand practical insights into running simulation studies. An important issue is the modeling of the different building blocks used in simulations.

Content
The simulation of computer networks is a method to quickly and cost-efficiently study and evaluate protocols and therefore is an important tool for network research. While analytical approaches often have to fight against the complexity of the scenarios and field studies cause high costs concerning hardware, simulations allow to efficiently investigate on the parameter space with respect to network topologies, communication patterns and dependencies among protocols. However, simulations results are only of relevance if a precise modeling, simulation run and evaluation has been done. The lecture impart knowledge on the necessary basics with respect to mathematics and algorithms as well as practical experiences in the usage of simulators and simulation tools.

Media
Slides

Basic literature
Course: Next Generation Internet

Lecturers: Roland Bless
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Infrastructures [IW4INNET] (S. 27)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following § 4 Abs. 2 Nr. 1 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Objective of the lecture is to present latest developments in Internet-based networks and to explain the related advanced methods and techniques that are used. Furthermore, architectural principles of the current Internet are discussed and it is described which new challenges threaten the Internet architecture.

Content
In the main focus of the lecture are latest developments in the area of Internet-based network technologies. At first architectural principles of the current Internet are described and discussed. Next, nowadays and future challenges are presented. Methods to support quality of service (QoS), signaling of QoS requirements as well as IPv6 and multicast support for group communications are described. Application of the presented technologies in IP-based networks are discussed. Advanced approaches like active and programmable networks are presented in this lecture and recent developments in peer-to-peer networks.

Media
Slides

Basic literature

Complementary literature
Ralf Steinmetz, Klaus Wehrle (Eds) Peer-to-Peer Systems and Applications LNCS 3854, Springer 2005
Course: Aktuelle Probleme des Patentrechts

Lecturers: Klaus-J. Melullis
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Practical Course Data Warehousing and Mining

Lecturers: Klemens Böhm
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKIM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKIM1] (S. 26)

Learning Control / Examinations
The assessment will be an “Erfolgskontrolle anderer Art” and consists of several parts (projects, experiments, presentations and reports, according to §4, Abs 2 of the Prüfungsordnung). The course will be assessed with “passed” or “failed” (according to §9, Abs. 3 of the Prüfungsordnung Informationswirtschaft / §7, Abs. 3 of the Prüfungsordnung Informatik). In order to get the passed assessment for the practical course, every part of the assessment must be passed successfully.

Prerequisites
Lecture “Data Warehousing and Mining”.

Conditions
None.

Learning Outcomes
In this practical course, the students should transfer the theoretical knowledge from the lecture “Data Warehousing and Mining” into practice. In this process, the students will also learn how to work with common tools and how to deploy them. In the data warehousing block, the students should learn how to set up data warehouses and should become familiar with the data-cube model. In the data mining block, the students should become familiar with the common data-mining techniques. They will be confronted with the typical problems in data mining and will learn how to develop solutions. Furthermore, the students should learn to work in teams in order to work on various projects successfully.

Content
The practical course data warehousing and mining will deepen the theoretical knowledge from the lecture “Data Warehousing and Mining”, with a focus on practical aspects and common tools. The course is divided into two blocks, data warehousing and data mining. The data warehousing block focuses on data preprocessing and building data warehouses. The data-mining block roughly follows the KDD process with practical knowledge-discovery examples in businesses. With such examples, the different data-mining concepts are investigated. The focus is on techniques for clustering, classification and discovering frequent itemsets and association rules. Working in teams is another important aspect in the whole course.

Media
- Slides.
- Practical course notes.

Complementary literature
Course: Principles of Insurance Management

Lecturers: Ute Werner
Credit points (CP): 4
Hours per week: 3/0
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Operational Risik Management [IW4WWORM] (S. 45)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
This lecture will be held additionally in the summer term 2009.
Course: Advanced Lab Applied Informatics

Lecturers: Andreas Oberweis, Hartmut Schmeck, Detlef Seese, Wolffried Stucky, Rudi Studer, Stefan Tai

Credit points (CP): 5
Hours per week: 2

Term: Winter-/Sommersemester
Level: 4

Teaching language: Deutsch

Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations

The assessment of this course are practical work, presentations and a written seminar thesis according to §4(2), 3 of the examination regulation of the Bachelor of Science programme in Information Engineering and Management. Practical work, presentations and a written thesis are weighted according to the course.

Prerequisites

None.

Conditions

None.

Learning Outcomes

Students are able to

- implement a prototype at the computer based on the given topic.
- write the thesis with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learn during the course.
- present results of the research in written form generally found in scientific publications.

Content

The lab intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.

Media

Slides, access to internet resources

Basic literature

Literature will be given individually.

Remarks

The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni- Karlsruhe.de/Lehre
Course: Seminar in Applied Informatics

Lecturers: Andreas Oberweis, Hartmut Schmeck, Detlef Seese, Wolffried Stucky, Rudi Studer, Stefan Tai
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
The assessment is done according to §4(2), 3 of the examination regulation of the Master of Science programme in Information Engineering and Management in form of an evaluation of the seminar presentation and a written seminar report. The weighting of the individual marks (presentation and report) is announced at the beginning of the seminar.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are able to
- do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
- write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learn during the seminar.
- present results of the research in written form generally found in scientific publications.

Content
The seminar intensifies and extends specific topics which are discussed within corresponding lectures. The actual topics are changing each semester. Knowledge of these lecture topics is an advantage but not a precondition.

Media
Slides, Access to internet resources

Basic literature
Literature will be given individually.

Remarks
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre
Course: Modern Market Research

Lecturers: Wolfgang Gaul
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38), Quantitative Marketing and OR [IW4WWMAR2] (S. 39), Behavioral Approaches in Marketing and Data Analysis [IW4WWMAR3] (S. 40), Strategy, Innovation and Data Analysis [IW4WWMAR4] (S. 41)

Learning Control / Examinations

Prerequisites
Basic knowledge of statistics.

Conditions
None.

Learning Outcomes

Content
Course: Marketing and Operations Research

Level: 4
Teaching language: Deutsch
Credits: 5
Hours per week: 2/1

Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38), Quantitative Marketing and OR [IW4WWMAR2] (S. 39)

Learning Control / Examinations

Prerequisites
Basics of Operations Research are required.

Conditions
None.

Learning Outcomes
Content
Course: Corporate Planning and Operations Research

Lecturers: Wolfgang Gaul
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38), Quantitative Marketing and OR [IW4WWMAR2] (S. 39)

Learning Control / Examinations

Prerequisites
Basics of operations research are assumed.

Conditions
None.

Learning Outcomes

Content
Course: e-Business & electronic Marketing
Course key: [25160]

Lecturers: Wolfgang Gaul
Credit points (CP): 2,5
Hours per week: 1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Information Technology and Business Information

Lecturers: Bruno Neibecker
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Behavioral Approaches in Marketing and Data Analysis [IW4WWMAR3] (S. 40), Strategy, Innovation and Data Analysis [IW4WWMAR4] (S. 41)

Learning Control / Examinations
Examination performance will consist of a written exam according to the description of the module (written exam following §4(2), 1 of the Prüfungsordnung Informationswirtschaft).

Prerequisites
None.

Conditions
None.

Learning Outcomes
(see description of the course)

Content
The goal of the course is to create a text that is comprehensive, practical, applied, and managerial and that presents a balanced coverage of both, quantitative and qualitative approaches. It takes the perspective of users of marketing research and set out to reflect the current trends in the use of computers (e.g. statistical packages and online research). The course covers as main topics an introduction to interactive multimedia systems, techniques of internet marketing research, methods of primary data collection including questionnaires and scaling of psychological attributes, methods of observation, program analyzer, psychobiological methods, content analysis and cognitive response approach, experimental designs and panels, secondary data collection, management support systems, a case study in marketing decision support and an overview of philosophy of science.

Basic literature
(Literature is in English and German, see German description)
Course: International Marketing

Lecturers: Wolfgang Gaul
Credit points (CP): 2.5 Hours per week: 1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38)

Learning Control / Examinations
Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Marketing and Innovation

Lecturers: Wolfgang Gaul
Credit points (CP): 2.5 Hours per week: 1/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes

Content
Course: Strategic and Innovative Decision Making in Marketing

Lecturers: Bruno Neibecker
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Strategy, Innovation and Data Analysis [IW4WWMAR4] (S. 41)

Learning Control / Examinations
Examination performance will consist of a written exam according to the description of the module (written exam following §4(2), 1 of the Prüfungsordnung Informationswirtschaft).

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
(see description of the course)

Content
The course places emphasis on the role of marketing in strategic planning. The planning and implementation stages are discussed using a case study in business portfolio analysis, talking about experience effects, approaches in defining strategic business units. A critical view on established paradigms versus weak signals from management practice is given. Further topics are innovation and diffusion models, behavioral approaches to innovative decision processes and a discussion on Porter’s single diamond theory and globalization.

Basic literature
(Literature is in English and German, see German description)
Course: Behavioral Approaches in Marketing

Lecturers: Bruno Neibecker
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Behavioral Approaches in Marketing and Data Analysis [IW4WWMAR3] (S. 40)

Learning Control / Examinations
Examination performance will consist of a written exam according to the description of the module (written exam following §4(2), 1 of the Prüfungsordnung Informationswirtschaft).

Prerequisites
None.

Conditions
(see description of the module)

Learning Outcomes

Content
This course gives an introduction to consumer behavior and the influence of cognitive and emotional information processing on consumer decision making. The contribution of advertising response models is considered and faced with social and environmental aspects (e.g. cross-cultural influences) on consumer behavior, mass communication and internet advertising. In addition, a scientific case study on the effectiveness of TV-commercials is discussed. Central issues of the course:
Case Studies in brand management and advertising response.
Psychological factors (research design and test marketing / arousal / effectiveness of TV-commercials as case studies).
Emotions in marketing.
Information processing and retention in memory (schema theory / visual information processing).
Complex advertising response models (attitude towards the ad / attitude towards the brand / persuasion / context effects in learning / decision making / Means-end-theory and strategic advertising).
Social processes (culture / subculture / cross cultural influence / product design).

Basic literature
(Literature is in English and German, see German description)
Course: Entrepreneurship and Marketing

Lecturers: Wolfgang Gaul
Credit points (CP): 2.5 Hours per week: 1/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should ...

Content
Course: Data Analysis and Operations Research

Lecturers: Wolfgang Gaul
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37), Marketing Research [IW4WWMAR1] (S. 38), Quantitative Marketing and OR [IW4WWMAR2] (S. 39)

Learning Control / Examinations

Prerequisites
Basics of data analysis and operations research are assumed.

Conditions
None.

Learning Outcomes

Content
Course: Master Seminar in Marketing

Lecturers: Wolfgang Gaul
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing [IW4WWMAR] (S. 37)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
Course: Master Seminar zu Marktforschung

Lecturers: Wolfgang Gaul
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Marketing Research [IW4WWMAR1] (S. 38)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Master Seminar in Quantitative Marketing and OR

Lecturers: Wolfgang Gaul
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Quantitative Marketing and OR [IW4WWMAR2] (S. 39)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
Course: Stochastic Calculus and Finance
Course key: [25331]

Lecturers: Svetlozar Rachev
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Englisch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None

Learning Outcomes
After successful completion of the course students will be familiar with many common methods of pricing and portfolio models in finance. Emphasis we be put on both finance and the theory behind it.

Content
Stochastic processes (Poisson-process, Brownian motion, martingales), stochastic Integral (Integral, quadratic und co-variation, Ito-formula), stochastic differential equation for price-processes, trading strategies, option pricing(Feynman-Kac), neutral risk rating(equivalent martingale measure, Girsanov theorem), term structure models

Media
transparencies, exercises.

Basic literature
To be announced in lecture.

Complementary literature
Course: Statistical Methods in Financial Risk Management

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Introduction of statistical methods, topics commonly covered by courses on advanced statistics and econometrics supplemented by the latest scientific results in this area

Content
Financial risk management in financial instruments (risk indicators: Single Fixed Flow, Fixed Rate Bond, FRA, Interest Rate Futures, Interest Rate Swaps, FX Spot, FX Forward, “Plain Vanilla” Optionen) and portfolios (risk indicators: Pricing Environment, Interest Rate Factors, FX factors), credit risk, value-at-risk (VAR) and asset liability management, evaluation of calibration models and measures of success in risk models, determination of operational risk in the financial industry.

Media
transparencies, exercises.

Basic literature
To be announced in lecture.
Course: Portfolio and Asset Liability Management

Lecturers: Svetlozar Rachev

Credit points (CP): 5 Hours per week: 2/1

Term: Sommersemester Level: 4

Teaching language: Englisch

Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations

The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites

None.

Conditions

None.

Learning Outcomes

Introduction and deepening of various portfolio management techniques in the financial industry.

Content

Portfolio theory: principles of investment, Markowitz-portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitrage pricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment

Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

Media

transparencies, exercises.

Basic literature

To be announced in lecture.

Complementary literature

To be announced in lecture.
Course: Financial Time Series and Econometrics

Course key: [25359]

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
After successful completion of the course students will have the knowledge and qualification to comprehend the essential models -incl. state of the arts science- in financial econometrics, as well as risk measurement and management.

Content
Linear financial time series models: ARMA, ARIMA and forecasting, integrated time series models and so called long memory processes.
Non linear financial time series models: test for odyssey properties, stochastic variance and ARCH-process, regime switching models, test for non linearity, root of unit test and cointegration

Media
transparencies lecture, exercises

Basic literature
Course: Game Theory II

Lecturers: Siegfried Berninghaus
Credit points (CP): 6 Hours per week: 2/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modeling and Optimization [IW4WWSSMI] (S. 46)

Learning Control / Examinations
Written exam (80 minutes).

Prerequisites
Basic knowledge of mathematics and statistics is assumed.

Conditions
None.

Learning Outcomes
This course teaches advanced knowledge in strategic decision theory. Latest developments in game theory are discussed. The student learns to judge complex strategic problems and to offer adequate solutions.

Content
This lecture aims at amplyflying the students' knowledge in game theory. Main topics are further concepts of non-cooperative game theory, cooperative game theory, evolutionary game theory and bargaining theory.

Media
Folien, Übungsblätter.

Basic literature

Complementary literature
Course: Advanced Econometrics of Financial Markets

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
After successful completion of the course students will have attained both knowledge and competency to comprehend the theories behind portfolio management of major financial institutions. Hence students can adapt this understanding to the more specialised needs of the intermediary.

Content

Media
transparencies, exercises.

Basic literature
Course: Operations Management

Lecturers: Cornelia Schön

Credit points (CP): 5 Hours per week: 3

Term: Wintersemester Level: 3

Teaching language: Englisch

Part of the modules: Service Management [IW4WWSER1] (S. 36)

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO).

Prerequisites
Successful completion of the module Introduction to Operations Research [IW1WWOR].

Conditions
None.

Learning Outcomes
Provide a general introduction to the language, concepts, techniques, tools, and actual developments of operations management.

Content
This course will provide a general introduction to the concepts and techniques of operations management, i.e. the design, planning, control, and improvement of manufacturing and service operations. The course begins with a strategic view of the operations function within a firm at the interface to other business functions such as finance, marketing, and human resources. We stress the role of operations for gaining competitive advantage, and discuss how to coordinate three tiers of operations, namely product development, process management, and supply chain management. As we proceed, we will investigate various problems of operations management at the tactical level in detail.

Particular attention is paid to services which are the largest and fastest growing segment of our economy and which play also an increasing role for manufacturing firms to remain competitive. Services pose particular challenges to managers due to their intangible and experiential nature, perishability and high levels of customer involvement. For services, “process is the product” and the customer often participates in the service delivery process as an external input factor. Accordingly, managing services requires tight integration between operations, strategy, marketing, technology, and organizational issues from an integrated viewpoint with a focus on the customer. Therefore, approaches from manufacturing operations management may not be applied directly to the service context without modifications.

We will cover selected topics in the areas of
- The Process View of the Organization
- Operations Strategy and Management
- Forecasting and Modelling Demand
- Process Analysis and Design
- Product and Service Design
- Logistics and Supply Chain Management
- Inventory Management and Replenishment (EOQ, Newsvendor, Order-up-to Inventory Model, Lot Sizing)
- Capacity Management, Queueing Analysis
- Revenue Management with Capacity Controls
- Project Management and Operations Scheduling
- Layout and Flows
- Push and Pull Production: MRP and JIT
- APS and ERP Systems
- Process Improvement and Quality

The course strives to provide a balance between qualitative (more strategic) concepts and a more quantitative approach at the tactical level drawing on models and methods from Operations Research. In addition to the fundamentals of operations management, we will discuss recent research results from scientific publications and actual case study applications.

Media
Lecture slides.
Course: Markovian Decision Processes

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5
Hours per week: 2/1/2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modeling and Optimization [IW4WWSSMI] (S. 46)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge on Markov decision processes for analysis to control and optimize stochastic dynamic systems. They are able to apply the theory acquired and to adjust the models to actual problems. They develop the optimality criterion and can solve the resulting optimal value function efficiently to gain optimal policies and the optimal value.

Content
See module.

Media
Blackboard, Slides, Flash Animations.

Basic literature
Lecture Notes.

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Quality Management I

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5 Hours per week: 2/1/2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Methods in Economics and Engineering [IW4WWOQM1] (S. 42)

Learning Control / Examinations
The assessment consists of a 2h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft combined with quality management II. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques in quality management. Students learn to use the techniques, such as control charts, experimental design, efficiently and targeted.

Content
See module.

Media
Blackboard, Slides, Flash Animations.

Basic literature
Lecture Notes

Complementary literature
• Montgomery, D.C. (2005): Introduction to Statistical Quality Control (5e); Wiley.

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Quality Management II

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5 Hours per week: 2/1/2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Methods in Economics and Engineering [IW4WWOQM1] (S. 42)

Learning Control / Examinations
The assessment consists of an 2h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft combined with quality management I. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques in reliability engineering.

Content
See module.

Media
Blackboard, Slides, Flash Animations.

Basic literature
Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation I
Course key: [25662]

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5
Hours per week: 2/1/2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modeling and Optimization [IW4WWSSMI] (S. 46)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
Foundations in the following fields are required:
- Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
- Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].

Conditions
None.

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is oftern not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.
Topics overview: Discrete event simulation, generation of random numbers, generating discrete and continous random variables, statistical analysis of simulated data, variance reduction techniques, case studies.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
- Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation II

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5 Hours per week: 2/1/2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modeling and Optimization [IW4WWSSMI] (S. 46)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4(2), 1 SPO. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (§4(2), 3 SPO).

Prerequisites
Foundations in the following fields are required:
• Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
• Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].
• Simulation I[25662]

Conditions
not any

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is oftern not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.
Topics overview: Variance reduction techniques, simulation of stochastic processes, case studies.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
• Skript

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Optimization in a Random Environment

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5 Hours per week: 2/1/2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Methods in Economics and Engineering [IW4WVOQM1] (S. 42)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are enabled to apply their knowledge about techniques and methodology on current problems such as the measurement and evaluation of operational risk as required by the Basel II accord.

Content
See module.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
Lecture Notes.

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Stochastic Processes

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5 Hours per week: 2/1/2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modeling and Optimization [IW4WWSSMI] (S. 46)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students learn modern techniques to model and analyze discrete and continuous time random dynamic systems. They are enabled to use this powerful analysis instrument, e.g. to develop key figures in queueing systems or stochastic networks.

Content
See module.

Media
Blackboard, Slides, Flash Animations.

Basic literature
Lecture Notes.

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Algorithms for Internet Applications
Course key: [25702]

Lecturers: Hartmut Schmeck
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Englisch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22), Complex Internet Applications [IW4INIAPP] (S. 23)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation of the Bachelor of Science programme in Information Engineering and Management and an additional written examination (called “bonus exam”, 60 min) according to §4(2), 3 of the examination regulation (the bonus exam may be split into several shorter written tests). The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
credits for all the Informatics modules of years 1 and 2 (except for at most one module)

Conditions
None.

Learning Outcomes
The students will learn to master methods and concepts of essential algorithms within Internet applications and to develop capabilities for innovative improvements. The course aims at teaching advanced concepts for the design and application of algorithms with respect to the requirements in networked systems. Based on a fundamental understanding of taught concepts and methods the students should be able to select appropriate concepts and methods for problem settings in their future professional life, and - if necessary - customize and apply them in an adequate way. The students will be capable to find appropriate arguments for their chosen approach to a problem setting.

In particular, the student will - know the structure and elementary protocols of the Internet (TCP/IP) and standard routing algorithms (distance vector and link state routing), - know methods of information retrieval in the WWW, algorithms for searching information and be able to assess the performance of search engines, - know how to design and use cryptographic methods and protocols to guarantee and check confidentiality, data integrity and authenticity, - know algorithmic basics of electronic payment systems and of electronic money, - the architectures and methodologies of firewalls.

Content
Internet and World Wide Web are changing our world, this core course provides the necessary background and methods for the design of central applications of the Internet. After an introduction into Internet technology the following topics are addressed: information retrieval in the www, structure and functioning of search engines, foundations of secure communication, electronic payment systems and digital money, and - if time permits - security architectures (firewalls), data compression, distributed computing on the Internet.

Media
Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Basic literature

Complementary literature
- Further references will be given in the course.
Course: Organic Computing

Lecturers: Hartmut Schmeck, Sanaz Mostaghim
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Complex Internet Applications [W4INIAPP] (S. 23)

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO) and of submitting written papers or of writing an additional examination (called “bonus exam”, 60 min) (following §4(2), 3 SPO). The exam will be offered every second semester (summer term) and may be repeated at every ordinary exam date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student acquires the ability to master methods and concepts of Organic Computing and to demonstrate innovation skills regarding the used methods.
Therefore the course aims at the teaching of fundamentals and methods of Organic Computing within the context of its applicability in practice. On the basis of a fundamental understanding of the taught concepts and methods the students should be able to choose the adequate methods and concepts, if necessary further develop them according to the situation and use them properly when facing related problems in their later job. The students should be capable of finding arguments for the chosen solutions and express them to others.

Content
The mission of Organic Computing is to tame complexity in technical systems by providing appropriate degrees of freedom for self-organized behaviour adapting to changing requirements of the execution environment, in particular with respect to human needs. According to this vision an organic computer system should be aware of its own capabilities, the requirements of the environment, and it should be equipped with a number of “self-x” properties allowing for the anticipated adaptiveness and for a reduction in the complexity of system management. These self-x properties are self-organisation, self-configuration, self-optimisation, self-healing, self-protection and self-explanation. In spite of these self-x properties, an organic system should be open to external control actions which might be necessary to prevent undesired behaviour.

Media
powerpoint slides with annotations using a tablet pc access to applets and Internet ressources lecture recording (camtasia).

Basic literature

Complementary literature
further references will be announced in class
Course: Nature-inspired Optimisation

Lecturers: Sanaz Mostaghim
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Distributed Algorithms

Lecturers: Hartmut Schmeck
Credit points (CP): 5 Hours per week: 3
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
Currently, this course will not be presented
Course: Distributed Database Systems: Basic Technology for e-Business

[25722]

Lecturers: Andreas Oberweis
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation of the Master of Science programme in Information Engineering and Management in the first week after lecture period.

Prerequisites
Knowledge of course Database Systems and XML [25724] is expected.

Conditions
None.

Learning Outcomes
Students are familiar with the requirements and limitations of distributed database systems. Based on sound theoretical basis and practical exercises, they are able to design and build a distributed database system. They know methods to ensure error-free operation and the consistency of distributed databases and they are able to identify and to assess current and future application areas of distributed database systems. Furthermore, they know how to use them taking into account aspects of economy.

Content
This lecture deals with tasks in spatially distributed data management under special consideration of aspects of economy. Based on existing general knowledge in the field of database systems, the following topics will be addressed among other things: networked systems, design of distributed databases, distributed transaction concepts, request handling in distributed databases, distributed multi-user control, distributed error handling, and distributed data management on the internet.

Media
Slides, access to internet resources.

Basic literature

Complementary literature
Further literature is given in each lecture.
Course: Database Systems and XML

Lecturers: Andreas Oberweis
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation of the Master of Science programme in Information Engineering and Management in the first week after lecture period.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the basics of XML, as well as appropriate data models and are capable of generating XML documents. They are able to use XML database systems and to formulate queries to XML documents. Furthermore, they know to assess the use of XML in operational practice in different application contexts.

Content
Databases are a proven technology for managing large amounts of data. The oldest database model, the hierarchical model, was replaced by different models such as the relational or the object-oriented data model. The hierarchical model became particularly important with the emergence of the Extensible Markup Language XML. XML is a data format for structured, semi-structured, and unstructured data. In order to store XML documents consistently and reliably, databases or extensions of existing data base systems are required. Among other things, this lecture covers the data model of XML, concepts of XML query languages, aspects of storage of XML documents, and XML-oriented database systems.

Media
Slides, access to internet resources.

Basic literature

- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- R. Elmasri, S. B. Navathe: Grundlagen der Datenbanksysteme. 2002
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2000
Course: Document Management and Groupware Systems

Lecturers: Stefan Klink
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation of the Master of Science programme in Information Engineering and Management in the first week after lecture period.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students master the basics of integration and structure of document management systems (DMS) and know the complete DMS process - from document capture of the archiving until retrieval. Students know how to realize operative workflows. They know which activities are needed to carry out the conceptual design and installation of DMS and they are able to apply a DMS as an archive system, workflow system and retrieval system. Furthermore, they know groupware systems exemplarily and can use them for collaborative tasks.

Content
The lecture gives basics of document management and groupware systems. It covers different system categories, their interaction and their use areas and illustrates this with concrete examples. These include document management in the strict sense, scanning, Document Imaging (acquisition and visualization of scanned documents), indexing, electronic archiving, retrieval of relevant documents, workflow, groupware, and office communications.

Media
Slides, access to internet resources.

Basic literature

Complementary literature
Further literature is given in each lecture individually.
Course: Knowledge Management

Lecturers: Rudi Studer

Credit points (CP): 5
Hours per week: 2/1

Term: Wintersemester
Level: 4

Teaching language: Deutsch

Part of the modules: Advanced Concepts of Information and Knowledge Management [IW4INLIKM1] (S. 26)

Learning Control / Examinations
The assessment is a written examination of 1 hour according to §4, Abs. 2, 1 of the examination regulations.

Prerequisites
Basics in logic, e.g. from lecture Foundations of Informatics 1.

Conditions
None.

Learning Outcomes
Making students sensitive to the problems of corporate knowledge management, knowledge about the central dimensions of influence as well as of relevant technologies for supporting knowledge management.

Content
In modern corporations, knowledge is an increasingly important aspect for fulfilling central tasks (amelioration of business processes, increasing innovation, increasing customer satisfaction, strategic planning and the like). Therefore, knowledge management has become a determining factor of success.

The lecture covers the different types of knowledge that play a role in knowledge management, the corresponding knowledge processes (generation, capture, access and usage of knowledge) as well as methodologies for the introduction of knowledge management solutions.

The lecture will further emphasize the following computer science techniques for knowledge management:

- Communities of Practice, Collaboration Tools, Skill Management
- ontology-based knowledge management
- Business Process oriented Knowledge Management
- Personal Knowledge Management
- Case Based Reasoning (CBR)

Media
Slides.

Basic literature
- C. Beierle, G. Kern-Isberner: Methoden wissensbasierter Systeme, Vieweg, Braunschweig/Wiesbaden, 2. überarb. Auflage, 2005

Complementary literature
Course: Knowledge Discovery

Lecturers: Rudi Studer
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKIM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKIM1] (S. 26)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Familiarity with fundamental knowledge discovery techniques, especially with standard supervised and unsupervised machine learning algorithms.

Content
The lecture gives an overview about techniques for knowledge discovery from structured and unstructured datasets and texts. The lecture will probably cover: CRISP process model and data warehouses, OLAP-techniques and visualization of large amounts of data, supervised learning techniques (in particular decision trees, neural networks, support vector machines and instance based learning), unsupervised learning techniques (in particular association rules and clustering) as well as text mining.

Media
Slides.

Basic literature

Complementary literature
None.
Course: Semantic Web Technologies I

Lecturers: Rudi Studer, Pascal Hitzler, Sebastian Rudolph, Rudolph

Credit points (CP): 5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Complex Internet Applications [IW4INIAPP] (S. 23)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft or of an oral exam (20 min) following §4, Abs. 2, 2 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent.

Conditions
None.

Learning Outcomes
- Basic knowledge about the main ideas and the realisation of Semantic Web Technologies

Content
"Semantic Web" denotes an extension of the World Wide Web by meta data and applications in order to make the meaning (semantics) of data on the web usable by intelligent systems, e.g. in e-commerce and internet portals. Central to this is the representation and processing of knowledge in form of ontologies. This lecture provides the foundations for knowledge representation and processing for the corresponding technologies and presents example applications. It covers the following topics:
 - Extensible Markup Language (XML)
 - Resource Description Framework (RDF) and RDF Schema
 - Web Ontology Language (OWL)
 - Rule Languages
 - Applications

Media
Slides.

Basic literature

Complementary literature
Course: Semantic Web Technologies II

Lecturers: Pascal Hitzler, Sudhir Agarwal
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22), Complex Internet Applications [IW4INIAPP] (S. 23)

Learning Control / Examinations
Written Examination (60 min) according to §4, Abs. 2, 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, 2 of the examination regulations.

Prerequisites
Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent. Semantic Web Technologies [25748] is recommended.

Conditions
none.

Learning Outcomes
• Detailed knowledge about the management and the usage of ontologies for Semantic Web Technologies
• Advanced skills in modelling knowledge for Semantic Web Technologies

Content
Building upon the content of the lecture “Semantic Web Technologies I”, the lecture covers methods for the realisation of intelligent systems on the world wide web and in other application domains. The lecture covers central aspects in the life cycle of ontologies and meta data, and in particular the following topics:
 • Tools for managing metadaten and ontologies
 • Knowledge representation using ontologies
 • Semantic wikis
 • Semantic Web Services
 • Information integration
 • Semantic Search
 • Applications

Media
Slides.

Basic literature

Complementary literature
Course: Complexity Management

Lecturers: Detlef Seese
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO). The exam will be offered every semester and may be repeated at every ordinary exam date.
Questions are in English, answers are possible in German or in English.
In case that only a small number of candidates apply for the examination there will be offered an oral examination.

Prerequisites
A basic knowledge in informatics is suitable.

Conditions
None.

Learning Outcomes
Students will be enabled to acquire abilities, methods and instruments in the area of complexity management and learn to use them in an innovative way. The students should be enabled to find arguments for the solution of problems in this area. The basic goal of the lecture is to enable to understand the difficulties to manage complex systems and processes.

Content
Complexity is one of the biggest challenges of our time. Central questions are: - Why humans often fail in complex situations? - What is complexity? -What are reasons for complexity? - Which parameters are essential to control complexity? - How systems have to be designed to reduce their complexity and to enable management of complexity?
The lecture gives a survey on fundamental results and handles the following topics: - Understanding of the difficulties produced by complex systems and complex processes - Foundations: modelling complex systems, complexity theory, descriptive, structural and parametric complexity, dynamic systems, topology, dimension, non-linearity, chaos, randomness and emerging structures, human shortcomings, simulation - Complexity of products and production - Complexity of markets - How to improve complexity management? - Decision support by intelligent use of IT

Media
The slides of the lectures will be provided on the website of the lecture.

Basic literature
- Franz Reither: Komplexitätsmanagement. Gerling Akademie Verlag, München 1997
- S. Wolfram: A new kind of Science. Wolfram Media Inc. 2002

Complementary literature
- N. Immerman: Descriptive Complexity; Springer-Verlag, New York 1999
- J. A. Bondy, U.S.R. Murty: Graph Theory, Springer 2008
- Christos H. Papadimitriou: Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994
- G. Frizelle, H. Richards (eds.): Tackling industrial complexity: the ideas that make a difference. University of Cambridge, Institute of Manufacturing 2002
• M. J. North, Ch. M. Macal: Managing Business Complexity, Discovering Strategic Solutions with Agent-Based Modeling and Simulation, Oxford University Press 2006
• S. Bornholdt, H. G. Schuster (Eds.): Handbook of Graphs and Networks, From the Genome to the Internet, Wiley-VCH, 2003
• Further references will be given in each lecture.

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described content and schedule.
Course: Intelligent Systems in Finance

Lecturers: Detlef Seese
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Concepts of Information and Knowledge Management [IW4INLIK1] (S. 26)

Learning Control / Examinations
The assessment is a written examination.
See the German part for special requirements to be admitted for the examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
• The students acquire abilities and knowledge of methods and systems from the area of machine learning and learn how to use them in the area of finance, which is the core area of application of this lecture.
• It is taught the ability to choose and change these methods and systems adequate to the situation and to use them for problem solving in the area of finance.
• The students get the ability to find strategic and creative answers in their search for solutions for precisely defined, concrete and abstract problems.
• At the same time the lecture aims to give foundational knowledge and methods in the context of their application in practise. On the basis of the basic understanding of concepts and methods of informatics the students should be able to comprehend quickly the new developments in the area and to use them correctly.

Content
A new generation of computing methods, commonly known as “intelligent systems”, has recently been successfully applied to a variety of business and financial modelling tasks. In many application fields these novel methods outperform traditional statistical techniques. The lecture provides a comprehensive coverage of the area, including foundations and applications. In particular it deals with intelligent software agents, genetic algorithms, neural networks, support vector machines, fuzzy-logic, expert systems and intelligent hybrid systems. The presented applications focus on the finance area and are related to risk management (credit risk, operational risk), financial trading, portfolio management and economic modelling. The lecture is given in cooperation with the company msgGILLARDON. The lecture starts with an introduction of the central problems of application in this area, e.g. decision support for investors, Portfolio selection under constraints, information retrieval from business reports, automatic development of trading rules for the capital market, modelling of time series at the capital market, explanation of phenomena at capital markets by simulation, decision support in risk management (credit risk, operational risk). After this the basics of intelligent systems are discussed. Basic ideas and essential results for different stochastic heuristics for local search are discussed next, especially Hill Climbing, Simulated Annealing, Threshold Accepting and Tabu Search. After this different population-based approaches of evolutionary methods are presented, e.g. Genetic Algorithms, Evolutionary Strategies and Programming, Genetic Programming, Memetic Algorithms and Ant-Algorithms. It follows an introduction into Neural Networks, Support Vector Machines and Fuzzylogic. Software agents and agent based stock market models are the next topic. The lecture ends with an overview on the complexity of algorithmic problems in the area of finance, giving in this way one of the key reasons for the necessity to use heuristics and intelligent systems. Essential examples and basic applications are chosen from the area of finance.

Media
Slides.

Basic literature
There is no text book covering completely the content of the lecture.

Further references will be given in each lecture.
Complementary literature

- Further references will be given in the lecture.

Remarks

The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described contend and schedule.
Course: IT Complexity in Practice

Lecturers: Kreidler
Credit points (CP): 3 Hours per week: 1/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
Course: Service-oriented Computing 1

Course key: [25770]

Lecturers: Stefan Tai
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22), Service Technologies [IW4INSER] (S. 30)

Learning Control / Examinations
The assessment of this course is a written examination (60min.) in the first week after lecture period (nach §4(2), 1 SPO).

Prerequisites
Lecture AI2 [25033] is recommended.

Conditions
None.

Learning Outcomes
The course introduces concepts, methods, and techniques of "service-oriented computing", including languages for (Web) service description, methods and tools for the development of services, and platforms (middleware, runtimes) for the Web-based deployment, delivery, and execution of services. In addition, software-as-a-service models and emerging trends (incl. Cloud Computing) will be presented and discussed. The course provides a solid technical foundation that enables the student to address the increasingly relevant challenges of developing "service-oriented architectures (SOA)" in the industry.

Content
Web services represent the next-generation of Web technology, and are an evolution of conventional distributed middleware. They enable new and improved ways for enterprise computing, including application interoperability and integration, and business process management. Modern software systems are being designed as service-oriented architectures (SOA), introducing increased agility and flexibility at both the software systems and the business level. Web services and SOA thus have a profound impact on software development and the businesses that they support. The course "Service-oriented Computing" introduces the concepts, methods and technology that provide a solid foundation in this area. Topics include:

- Service description
- Service engineering, including development and implementation
- Service composition (aggregation), including process-based service orchestration
- Interoperability formats and protocols
- Service platforms and runtimes (middleware)
- Software-as-a-Service models
- Service intermediaries (markets)
- Mashups and situational applications
- Cloud computing

Media
Slides, access to internet resources.

Basic literature
Will be given in the course.
Course: Service-oriented Computing 2

Lecturers: Stefan Tai, Rudi Studer
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Service Technologies [IW4INSE] (S. 30)

Learning Control / Examinations
The assessment of this course is a written examination (60min.) in the first week after lecture period (nach §4(2), 1 SPO).

Prerequisites
It is recommended to attend the course Service-oriented Computing [25770] beforehand.

Conditions
None.

Learning Outcomes
Students will extend their knowledge and proficiency in the area of modern service-oriented technologies. Thereby, they acquire the capability to understand, apply and assess concepts and methods that are of innovative and scientific nature.

Content
Building upon basic Web service technologies the lecture introduces select topics of advanced service computing and service engineering. In particular, focus will be placed on new Web-based architectures and applications leveraging Web 2.0, Cloud Computing, Semantic Web and other emerging technologies.

Basic literature
Literature will be announced in the lecture.
Course: Web Service Engineering

Lecturers: Christian Zirpins
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Service Technologies [IW4INSER] (S. 30)

Learning Control / Examinations
The assessment consists of an oral exam (20 min) (following §4(2), 2 SPO).

Prerequisites
None.

Conditions
The course might be combined with the lectures “Applied Informatics II - IT Systems for e-Commerce” and “Service-Oriented Computing 1”.

Learning Outcomes
Students will acquire a deep and systematic understanding of service-oriented software systems and their embedding in organizations. Equipped with practical and research-based knowledge, they will be enabled to engineer state-of-art service-oriented applications with Web technologies and gain a broad understanding of tools and methodologies for their own work.

Content
The lecture “Web Service Engineering” covers technical and organizational aspects with respect to the development of modern service-oriented software as socio-technical systems in enterprises and Web environments. It introduces background, state-of-technology and emerging trends of methods, tools and processes for application development with Web services. The topics of the lecture include e.g.:
- Web service foundations and base technologies
- Service-oriented software and enterprise architectures (SOA)
- SOA life cycle and development processes
- Analysis and requirements engineering for SOA
- Service-oriented design and modeling
- Construction and testing of Web service applications
- Web service development tools
- Trends: e.g. development with service mashups / cloud services

Media
Slides in PDF-format will be provided via the course webpages.

Basic literature
Compulsory literature will be announced in the course.

Remarks
This course will be offered from summer term 2009 on.
Course: Management of IT-Projects

Lecturers: Roland Schätzle
Credit points (CP): 4 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation of the Master of Science programme in Information Engineering and Management in the first week after lecture period.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the terminology of IT project management and typical used methods for planning, handling and controlling. They are able to use methods appropiate to current project phases and project contexts and they know how to consider organisational and social impact factors.

Content
The lecture deals with the general framework, impact factors and methods for planning, handling, and controlling of IT projects. Especially following topics are addressed:

- project environment
- project organisation
- project planning including the following items:
 - plan of the project structure
 - flow chart
 - project schedule
 - plan of resources
- effort estimation
- project infrastructur
- project controlling
- risk management
- feasibility studies
- decision processes, conduct of negotiations, time management.

Media
Slides, access to internet resources.

Basic literature
- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004

Further literature is given in each lecture individually.
Course: Strategic Management of Information Technology
Course key: [25788]

Lecturers: Thomas Wolf
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: e-Collaboration [IW4INECOLL] (S. 22)

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the outer frame of IT in an enterprise and know which functions IT has within an enterprise. They understand the organization and the content of these functions.

Content
The following topics will be covered: strategic planning of ICT, architecture of ICT, overall planning of ICT, outsourcing, operation and controlling of ICT.

Media
Slides, internet resources

Basic literature
Course: Practical Seminar Knowledge Discovery

Lecturers: Rudi Studer
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKM1] (S. 26)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the Prüfungsordnung für Informationswirtschaft in form of an examination of the written seminar thesis, a presentation and a project. The final mark is based on the examination of the written seminar thesis and the project but can be upgraded or downgraded according to the quality of the presentation.

Prerequisites
None.

Conditions
Lecture “Knowledge Discovery” recommended.

Learning Outcomes
Independent preparation and presentation of a seminar topic from the fields of knowledge discovery or text mining adhering to scientific standards. In case of a practical course, additionally, example implementation and/or experiments.

Content
The seminar/practical course will cover topics in the field of Knowledge Discovery. Each term, the seminar will cover a different specialization field, e.g.:

• Text Mining,
• Ontology Learning and Information Extraction,
• Inductive Logic Programming,
• Learning with Background Knowledge.

The topics are usually arranged as a seminar talk + practical work to be acknowledged as seminar/practical course. In individual cases, this course can also be acknowledged just as seminar (without practical work). Details will be announced every semester.

Media
Slides.

Basic literature

Complementary literature
None.
Course: Lab Class Web Services

Lecturers: Stefan Tai, Rudi Studer, Gerhard Satzger, Christian Zirpins
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Service Technologies [IW4INSER] (S. 30)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the Prüfungsordnung für Informationswirtschaft in form of an examination of the written seminar thesis, a presentation and a project. The final mark is based on the examination of the written seminar thesis and the project but can be upgraded or downgraded according to the quality of the presentation.

Prerequisites
The lecture “Service-oriented Computing 1” is recommended.

Conditions
None.

Learning Outcomes
Students will acquire the technical expertise to apply service-oriented platforms and tools. Thereby, they will be enabled to develop practical solutions for concrete problems of constructing service-oriented IT infrastructure for provision of electronic services over the Internet.

Content
The “Praktikum (lab class) Web Services” provides a practical introduction to fundamental Web service technologies and their application to support service value networks on the Internet. Based on concrete application scenarios for Web-based business service networks, the class focuses on the development of software solutions for specific aspects of service-oriented IT-infrastructure. This includes the complete development lifecycle of a large-scale software project and its implementation in small project teams.

Basic literature
For introduction, the following books are recommended:
Course: Management and Strategy

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategy and Organization [IW4WWORG1] (S. 44)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration.

Content
- Corporate management principles
- Strategic management principles
- Strategic analysis
- Competitive strategy: modelling and selection on a divisional level
- Strategies for oligopolies and networks: anticipation of dependencies
- Corporate strategy: modelling and evaluation on a corporate level
- Strategy implementation

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Managing Organizations

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organisational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Content
- Principles of organisational management
- Managing organisational structures and processes: the selection of design parameters
- Ideal-typical organisational structures: choice and effect of parameter combinations
- Managing organisational changes

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Organization Theory

Lecturers: Hagen Lindstädt
Credit points (CP): 6 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The participants are made familiar with mostly classical principles of economic organisational theory and institutional economics. This includes transaction cost theory and agency-theory approaches, models for the function and design of organisational information and decision-making systems, transfer price models to coordinate the exchange of goals and services within companies, models on incentive systems and relative performance tournaments as well as selected OR optimisation approaches to designing organisational structures. The course therefore lays the basis for a deeper understanding of the advanced literature on this key economic area.

Content
• Basic considerations and institution-economic principles of organisational theory
• Transfer prices and internal market-price relationships
• Design and coordination without conflicting objectives
• Organisation under asymmetric information and conflicting objectives: agency theory principles

Media
Folien.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Special Topics in Management: Management and IT

Lecturers: Hagen Lindstädt
Credit points (CP): 2 Hours per week: 1/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Written exam 100%.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course discusses management questions and concepts that are clearly motivating from a current and practical perspective. Here the integration of IT and process issues into corporate management from the management's perspective is one of the subjects of particular interest. The event takes place in close cooperation with leading, practical managers.

Content
(Excerpt):
- A summary of current management concepts and questions.

Media
Slides.

Basic literature
The relevant excerpts and additional sources are made known during the course.
Course: Value-Based Instruments of Corporate Strategy

Lecturers: Ulrich Pidun, Michael Wolff
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
none.

Learning Outcomes
The course follows two learning objectives. Firstly, the course participants are presented with the key concepts and models on which the current approaches of value-based management are based in theory and practice. Secondly the course participants should be enabled to transfer the concepts presented to real situations. In order to achieve these learning objectives the connection to classical strategy development instruments is discussed first. Then the various value levers and the concepts of value-based corporate management are presented. This includes both external aspects (such as valuing acquisitions) as well as internal ones ("integrated value management") by value-based corporate management.

Content
- Strategy development in corporate groups
- Growth as a strategic value lever
- Strategic valuation of acquisitions
- Introduction to value management
- Integrated value-based corporate management
- Downsides of multi-business corporations

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Seminar: Management and Organization
Course key: [25915]

Lecturers: Hagen Lindstädt
Credit points (CP): 4
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Term paper (50%) and presentation (50%).
Completion of all 1st an 2nd year modules of the Bachelor Program or Admission to the Master Program.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The aim of the seminar is to describe corporate and organisational management approaches, to assess them critically and clarify them using practical examples. The focus is on assessing the models with a view to their applicability and theoretical limits.

Content
The subjects are redefined each semester on the basis of current issues.

Media
Slides.

Basic literature
The relevant sources are made known during the course.
Course: Seminar: Management and Organization
Course key: [25916]

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Term paper (50%) and presentation (50%).

Prerequisites
Completion of all 1st an 2nd year modules of the Bachelor Program or Admission to the Master Program.

Conditions
None.

Learning Outcomes
The aim of the seminar is to describe corporate and organisational management approaches, to assess them critically and clarify them using practical examples. The focus is on assessing the models with a view to their applicability and theoretical limits.

Content
The subjects are redefined each semester on the basis of current issues.

Media
Slides.

Basic literature
The relevant sources are made known during the course.
Course: Managing New Technologies

Lecturers: Thomas Reiß
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Written exam 100% following §4, Abs. 2.

Prerequisites
None.

Conditions
None.

Learning Outcomes
New technologies can contribute substantially to the international competitiveness of different industrial sectors. This course provides the necessary knowledge for understanding how industrial enterprises and policy-makers are dealing with the challenge to realise in time the potentials of new technologies and to use them most efficiently. Key tasks of the management of new technologies will be practised.

Content
The course provides an overview of the international development of a selected number of key technologies such as biotechnology, nanotechnology, neurotechnologies, converging technologies. Methods for monitoring new technologies including foresight approaches will be presented and the economic and social impacts of new technologies will be discussed.

Media
Slides.

Basic literature
- Hausschildt/Salomo: Innovationsmanagement; Borchert et al.: Innovations- und Technologiemanagement;
- Specht/Möhrle; Gabler Lexikon Technologiemanagement
Course: Enterprise Risk Management

Lecturers: Ute Werner

Credit points (CP): 4,5 **Hours per week:** 3/0

Term: Winter-/Sommersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Operational Risik Management \([IW4WWORM]\) (S. 45)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Learning to identify, to analyse and to assess business risks; this serves as a basis for strategy and policy design regarding risks and opportunities of an enterprise. Introduction to optimization approaches that allow to consider area-specific objectives, risk-bearing capacity and risk acceptance.

Content
1. Concepts and practice of risk management, based on decision theory
2. Goals, strategies and measures for the identification, analysis, assessment and management of risks
3. Insurance as an instrument for loss-financing
4. Selected aspects of risk management: e.g. environmental protection, organizational failure and D&O-coverage, development of a risk management culture
5. Organisation of risk management
6. Approaches for determining optimal combinations of risk management measures considering their investment costs and outcomes.

Basic literature

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
Course: Multidisciplinary Risk Research

Lecturers: Ute Werner
Credit points (CP): 4,5 Hours per week: 3/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Operational Risik Management [IW4WWORM] (S. 45)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Getting an overview of the various theoretical, empirical and methodological approaches used in risk research. Learning to assess disciplinary perspectives and approaches. Detailed examination of at least one theoretical and one methodological approach by the analysis of case studies.

Content
The course consists of two chapters:
In the theoretical part risk concepts of various disciplines will be discussed as well as categorisations of risk (e.g. technical or natural origin) and of risk carriers. Based on empirical research, processes of risk perception, risk assessment, and risk taking – at the individual, institutional, and global level - are described and explained.
The methodological part of the course deals with the hazard research, approaches for identification and mapping of risks and their accumulations, as well as with safety culture research. Using empirical studies, survey methods regarding risk perception and risk assessment will be discussed. Specific problems in the context of intercultural research will be considered too.

Basic literature
• http://www.bevoelkerungsschutz.ch
Course: International Risk Transfer

Lecturers: Wolfgang Schwehr
Credit points (CP): 2.5 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Operational Risik Management [IW4WWORM] (S. 45)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Becoming acquainted with the various possibilities of international risk transfer.

Content
How are the costs of potential major damages financed and covered on a global scale? Traditionally, direct insurers and, especially, reinsurers are conducting a global business, Lloyd’s of London is a turntable for international risks, and global industrial enterprises are establishing captives for self insurance. In addition to this, capital markets and insurance markets are developing innovative approaches to cover risks, which were hard to insure in the past (e.g. weather risk). The lecture will elucidate the functioning and the background of these different possibilities of international risk transfer.

Basic literature
Course: Risk Management of Microfinance and Private Households

Course key: [26354]

Lecturers: Ute Werner
Credit points (CP): 4.5
Hours per week: 3/0
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Operational Risik Management [IW4WWORM] (S. 45)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Becoming acquainted with starting points for analysing the special risk situation of private households and micro enterprises; learning to synchonize various risk coping instruments, identifying risks of microfinance products and learning to design innovative microfinance products.

Content
The course consists of two interlocking parts:
In the first part the socio-economic framework as well as the goals and strategies of private-sector risk management are discussed, with an emphasis on insurance decisions. In the second part the issue of small entrepreneur entities and their specific risk related problems in covering their financial requirements is addressed. Typically their size and other specific characteristics lead to high risks for financial services institutions. After an introduction to the economic principles of microfinance, the institutions working in this sector are presented as well as innovative credit-, savings-, and insurance products (which are often combined), and we’ll discuss approaches for performance measurement from the perspectives of customers, suppliers, and investors.

Basic literature

Complementary literature
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
Course: Public Sector Risk Management

Lecturers: Reinhard Mechler
Credit points (CP): 2.5 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Operational Risik Management [IW4WWORM] (S. 45)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
In addition to theoretical and methodological principles of risk research, operative risk management by various institutions and the corresponding characteristics of risk transfer are discussed in this course. As public households often act as "risk carriers of last resort", i.e. carry risks that other institutions don’t prepare for, their risk management becomes increasingly important on an economic, social und political level.

Content
1. Risk concepts, risk management and the role of the public sector
2. Quantitative and qualitative methods of risk management
 - Natural catastrophes
 - Climate change
 - Aging and social insurance
 - Large-scale projects
 - Terrorism

Basic literature
M. Fone / P. Young. Public Sector Risk Management, Butterworth Heinemann, Oxford
Course: Management of Business Networks

Lecturers: Christof Weinhardt, Jan Kraemer
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Service Management [IW4WWSER1] (S. 36)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4, Abs. 2, 3 SPO). The total grade for this lecture will consist to 50% of the grade achieved in the written mid term examination, to 10% of the assignments during the exercises, and to 40% of a project work, which includes a term paper and a presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student will become acquainted with the theoretical fundamentals of economic networks and how to manage them. Support of economic networks by information systems will be accomplished by several case studies, which will be worked on by groups autonomously. Basic knowledge of organisation theory, network analysis, strategic & operative management and logic systems will be communicated to the student. Furthermore, he will have a focused view on the mechanisms and supporting tools for interaction between companies, especially in negotiations and negotiation-supporting systems. In small groups, the student is trained in team-oriented and autonomous working techniques. Within this domain, the student will be trained to seek and read relevant technical literature in English, the language of science, and to adopt it to a specific problem.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Media
Powerpoint presentations, recorded lecture available on the internet, (if circumstances allow videoconferencing).

Basic literature

Course: eFinance: Information Engineering and Management for Securities Trading

Course key: [26454]

Lecturers: Christof Weinhardt, Ryan Riordan
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Information and Market Engineering [IW4WWIMSE1] (S. 34)

Learning Control / Examinations
70% of the mark is based on the written examination and 30% is based on assignments during the exercises.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of the lecture is to make the students familiar with the theoretical as well as the practical aspects of electronic trading and exchanges and the IT systems used in the financial industry. While markets for products and services are discussed, the focus is on the trading of financial securities. Existing centralized equity exchanges face competition from new alternative trading systems make possible by today’s information technology. This course will also examine the impact and implications of this dynamic. The focus is on the economic and technical design of markets as information processing systems.

Content
The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Media
Powerpoint presentations, recorded lecture available on the internet

Basic literature

Complementary literature
Course: Business Models in the Internet: Planning and Implementation [26456]

Lecturers: Christof Weinhardt, Carsten Holtmann
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Service Engineering [IW4WWIMSE2] (S. 35)

Learning Control / Examinations
50% of the mark is based on the written mid term examination, 10% is based on assignments during the exercises, and 40% of the mark is based on a project work, which includes a term paper and a presentation.

Prerequisites
None.

Conditions
None

Learning Outcomes
This lecture aims at providing the students with knowledge about the lifecycles of web applications starting from economic concepts to the commercialization within the WWW. Students will learn, on the one hand, to analyze, design and to implement web applications and, on the other hand, to develop sustaining business models. This involves the analysis of the online users’ requirements and expectations, the assessment of the potential innovative web applications have, the study of web technologies allowing students to gauge their applicability.

Content
The emergence of internet economy has resulted in an accelerated evolution of commerce models in eBusiness. Early adopters have experimented with a variety of new business models, technologies and application designs. At the same time, there has been a growing demand for new standards to facilitate the exchange of information, catalogue content and transactions between buyers and sellers. But the true understanding of how to bring buyers and sellers together is still widely missing, leading to multiple cases of costly missed investments. This course focuses on the design and implementation of successful business models for eBusiness applications for the World Wide Web (WWW), imparting the basic knowledge for building successful eBusiness applications. We consider not only technical foundations of eBusiness applications but also economical aspects. In small groups, students develop and implement an eBusiness model that is eventually discussed with a representative from the venture capitalist industry.

Media
Powerpoint presentations, recorded lecture available on the internet, (if circumstances allow videoconferencing)

Basic literature
Will be announced within the course.
Course: Market Engineering: Information in Institutions

Lecturers: Christof Weinhardt, Jan Kraemer
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO). The total grade for this lecture will consist of 70% of the grade achieved in the written examination and to 30% of the assignments during the exercises.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students
• understand the role of an economist as an engineer to design markets
• compare different markets and market mechanisms to evaluate their efficiency
• apply game theoretic modelling and mechanism design as well as auction theory for interdisciplinary evaluation.

Content
The ongoing advancements in information technology have revolutionized traditional business processes and given rise to electronic marketplaces. In contrast to physical marketplaces, electronic markets do not just evolve, but must be carefully designed, implemented and monitored and evaluated. Moreover electronic markets demand open and flexible platforms as well as adequate standards and information services. Future Market Engineers must therefore be able to consider the economic, legal and technological dimension of markets simultaneously. The lecture focuses on the discussion of (1) Microstructure, (2) IT infrastructure, and (3) Business Structure of electronic markets. Hence, students will be taught the economic incentives that a market can impose on market participants, development models for implementing markets, and business models for the application of markets.

Media
• Powerpoint,
• eLearning Platform Ilias

Basic literature
Course: eServices

Lecturers: Christof Weinhardt, Gerhard Satzger
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Englisch
Part of the modules: Service Management [IW4WWSER1] (S. 36)

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO). The total grade for this lecture will consist to 70% of the grade achieved in the written examination and to 30% of the assignments during the exercises.

Prerequisites
None.

Conditions
None.

Learning Outcomes
This lecture presents concepts, methods and application examples for the engineering and management of eServices. The students will get to know the basic principles and elements of eServices and their specific properties compared to physical goods. Creating eServices needs an overall view of information technology with regards to flexibility, safety, data security, measurability and cost allocation.

In addition, problems and solutions in designing and providing eServices are discussed; the elementary relationship to information management will also be treated. Application examples from industry stress the concepts’ application in the economy.

Content
So far, management studies usually focused on physical goods. However, due to the increasing development of information and communication technology, distribution of electronic services is becoming more important. Electronic services are characterized by an increasing degree of intangibility, interactivity and individuality. Traditional, goods-oriented models, methods and tools for are often found to be inadequate for service engineering and management.

Building on a systematic categorization of (e)Services, we cover concepts and foundations for engineering and managing IT-based services, allowing further specialization in subsequent courses. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.

In addition, application examples, guest lectures (e.g. business model changes driven by the advent of eServices) and a number of hands-on exercises will illustrate the applicability of the concepts.

Media
PowerPoint slides;
Course: Service Innovation

Lecturers: Gerhard Satzger, Andreas Neus
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Service Management [IW4WWSER1] (S. 36)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4(2), 3 SPO and of assignments during the course as an “Erfolgskon- trolle anderer Art” following §4(2), 3 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Understand the difference between innovation and invention, and that disruptive effects can be fast and wide-reaching.
Know examples for innovation via processes, organization, business models; see how service and product innovation differ
Understand the link between risk and innovation; be aware of obstacles to innovation and know how to address them

Content
While innovation in manufacturing or agriculture can leverage a considerable body of research, experience and best practice, innovation in services has not reached the same level of maturity. In practice, while many organizations have a well-understood process for innovating in the product business, innovating in services is often still a fuzzy and complex undertaking. In this lecture we will discuss the state of research, compare product and service innovation, understand how innovation diffusion works, examine case studies of service innovation, open vs. closed innovation, how to leverage user communities to drive innovation and understand obstacles, and enables and how to manage, incentivize and foster service innovation.

Basic literature
• von Hippel, Erich (2007) Horizontal innovation networks - by and for users. Industrial and Corporate Change, 16:2

Complementary literature
Course: Seminar Service Science, Management & Engineering

Lecturers: Stefan Tai
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Service Technologies [IW4INSER] (S. 30), Service Engineering [IW4WWIMSE2] (S. 35), Service Management [IW4WWSER1] (S. 36)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis (15-20 pages), a presentation and active participation in class.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Prerequisites
See corresponding module information.

Conditions
Lecture eServices [26462] is recommended.

Learning Outcomes
Autonomously deal with a special topic in the Service Science, Management and Engineering field adhering to scientific standards.

Content
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.
Course: Practical seminar Information Engineering and Management Course key: [26478]

Lecturers: Christof Weinhardt

Credit points (CP): 1 **Hours per week:** 0*

Term: Winter-/Sommersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Information and Market Engineering [IW4WWIMSE1] (S. 34), Service Engineering [IW4WWIMSE2] (S. 35), Service Management [IW4WWSER1] (S. 36)

Learning Control / Examinations
The student is evaluated based on the written work, a presentation of the results in front of an audience and his contribution to the discussion.

Prerequisites
None.

Conditions
The practical seminar is a supplement to the course seminar Information Engineering and Management [26474] and it can only be chosen in conjunction with the course [26474].

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on an academic level. This process gives him the knowledge and practice for further research work like a master thesis or a doctoral thesis.

Content
As a supplement to the seminar Information Management and Engineering [26474] the student has to analyse the selected topic from course [26474] by applying practical methods, e.g. implementation of algorithms or creating a market survey.

Media
- PowerPoint slides
- eLearning Platform Ilias
- Software Development Tools

Basic literature
The student will receive the necessary literature for his research topic.

Remarks
- Students from Bachelor and Master Course can visit the practical seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
- All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen. The current topics of the practical seminars are available at the following homepage: http://www.im.uni-karlsruhe.de/lehre.
- *) The practical seminar is a supplement to the seminar Seminar Information Engineering and Management [26474] and does not require additional semester periods per week.
Course: Business and IT Service Management

Lecturers: Gerhard Satzger
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Service Management [IW4WWSER1] (S. 36)

Learning Control / Examinations
The assessment of this course is a written examination (60 min.) (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students understand the importance of “servitization” for organizations, the challenges for the management of service-oriented enterprises and the interdependence of business and IT services.
Students learn standard concepts and methods of service-oriented management and are able to apply them in practical case studies.
Student get familiar with current research and tools and are able to critically evaluate them.
Students practice to communicate in English and to work on solutions in teams.

Content
The rapid development of information and communication technology transforms many enterprises towards service-oriented structures: with new digital services, new business models and SOA-based process structures within larger service networks. Thus, strategic and operative management of service-oriented enterprises increasingly gains importance. In this course, we want to systematically acquire relevant know-how and apply this to real world examples. Particular focus will be on the interdependence of business, IT and legal aspects.
The course will be taught in English. It should provide ample opportunity for active participation of students. The course will integrate presentations of experts from business practice as well as a comprehensive case study (“en bloc” for 1.5 days) in which students will actively work on the strategic service-oriented shift of an enterprise.

Basic literature
Maister, David H., Managing The Professional Service Firm, 1997
Teboul, J., Service is Front Stage: Positioning services for value advantage, 2006
Course: Electronic Markets (Principles)
Course key: [26502]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Information and Market Engineering [IW4WWIMSE1] (S. 34)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4, Abs. 1 of the Prüfungsordnungen für Informationswirtschaft and by submitting written papers as part of the exercise following §4, Abs. 2, 3 Prüfungsordnungen für Informationswirtschaft. The total grade for this lecture will consist to about 90% of the grade achieved in the written exam (maximum 100 points) and to about 10% of the written papers for the exercise (maximum 12 points). The written exam is considered successfully taken if at least 50 points are acquired.

The grades of this lecture are assigned following the table below. At least 50 points have to be acquired to pass the written exam. All additional points from excersise work will be added to the exam points once 50 points have been achieved:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- has an overview about the different organizational form and their efficiency,
- names coordination methods and motivation methods and evaluates them regarding their efficiency,
- knows, in the context of markets as a coordination form, the conditions under which markets are not efficient (market failure),
- knows phenomena like adverse selections and moral hazard,
- names reasons for these phenomena and develops methods to encounter them.

Content
What are the conditions that make electronic markets develop? The first part of the lecture treats the selection of the type of organization as an optimization of transaction costs. The second part includes the efficiency of electronic markets (price, information and allocation efficiency) as well as reasons for market failure.

Besides a centralistic approach, markets can be used for decentral coordination of plans and activities. Hereby, optimality can be guaranteed, if the coordination problem has no design or innovation characteristics. Viewed from a bottom-up perspective, given the coordination problem, it is possible to answer questions regarding the centralization or decentralization, the design of coordination mechanisms, and the coherence of business strategies. The last part of the lecture consists of motivation problems, like bounded rationality and information asymmetries (private information and moral hazard) and the development of incentive systems.

Basic literature
Complementary literature
Course: Electronic Markets: Institutions and Market Mechanisms

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Information and Market Engineering [IW4WWIMSE1] (S. 34)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4, Abs. 1 of the Prüfungsordnungen für Informationswirtschaft and by submitting written papers as part of the exercise following §4, Abs. 2, 3 Prüfungsordnungen für Informationswirtschaft. The total grade for this lecture will consist to about 90% of the grade achieved in the written exam (maximum 100 points) and to about 10% of the written papers for the exercise (maximum 12 points). The written exam is considered successfully taken if at least 50 points are acquired.

The grades of this lecture are assigned following the table below. At least 50 points have to be acquired to pass the written exam. All additional points from excersise work will be added to the exam points once 50 points have been achieved:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes
See german version.

Content
The lecture treats the design of electronic markets. Therefore, interdependencies of market organization, market mechanisms, institutions and products are described and theoretical foundations are lectured.

The topics include:
- classification of markets
- auction methods and auction theory
- automated negotiations
- nonlinear pricing
- continuous double auctions
- market-maker, regulation, control
- ...

Basic literature

Complementary literature

Axel Ockenfels and Alvin E. Roth. Late and Multiple Bidding in Second Price Internet Auctions: Theory and Evidence Concerning Different Rules for Ending an Auction. Technical report, Faculty of Economics and Management, University of Magdeburg, P.O. Box 4120, D-39016 Magdeburg and Harvard University, Department of Economics and Graduate School of Business Administration, Soldiers Field Road, Baker Library 183, Boston, MA 02163, USA, 2001.

Kaufmann Publishers Inc.

Axel Ockenfels and Alvin E. Roth. Late and Multiple Bidding in Second Price Internet Auctions: Theory and Evidence Concerning Different Rules for Ending an Auction. Technical report, Faculty of Economics and Management, University of Magdeburg, P.O. Box 4120, D-39016 Magdeburg and Harvard University, Department of Economics and Graduate School of Business Administration, Soldiers Field Road, Baker Library 183, Boston, MA 02163, USA, 2001.

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Service Engineering [IW4WWIMSE2] (S. 35)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4, Abs. 2, 1 of the Prüfungsordnungen für Informationswirtschaft and by submitting written papers as part of the exercise following §4, Abs. 2, 3 Prüfungsordnungen für Informationswirtschaft. The total grade for this lecture will consist to about 90% of the grade achieved in the written exam (maximum 100 points) and to about 10% of the written papers for the exercise (maximum 12 points). The written exam is considered successfully taken if at least 50 points are acquired.
The grades of this lecture are assigned following the table below. At least 50 points have to be acquired to pass the written exam. All additional points from excersise work will be added to the exam points once 50 points have been achieved:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
Keine

Learning Outcomes

Content

Media
Folien, Aufzeichnung der Vorlesung im Internet.

Basic literature

Complementary literature

Course: Customer Relationship Management

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Service Engineering [IW4WWIMSE2] (S. 35)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO). The total grade for this lecture will consist to about 90% of the grade achieved in the written exam (maximum 100 points) and to about 10% of the written papers for the exercise (maximum 12 points). The written exam is considered successfully taken if at least 50 points are acquired.

The grades of this lecture are assigned following the table below. At least 50 points have to be acquired to pass the written exam. All additional points from excersise work will be added to the exam points once 50 points have been achieved:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this course is to make students aware of the goals and different aspects of Service Management. Furthermore it is intended to embed Service Management and its different aspects in the concepts of business administration. The students should acquire the theoretical and practical knowledge as well as tools to implement projects in this area successfully. The link between Service Management and CRM is also to be taught within this course.

Content
Course: The course begins with an introduction into Service Management as the strategic concepts which also covers all CRM applications. The course is divided in the basics of Service Management as well as different topics within this concept like external and internal marketing, quality management and organizational requirements.

Media
Slides

Basic literature

Complementary literature
Course: Master Seminar in Information Engineering and Management Course key: [26510]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Information and Market Engineering [IW4WWIMSE1] (S. 34), Service Engineering [IW4WWIMSE2] (S. 35)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the Prüfungsordnung für Informationswirtschaft in form of an examination of the written seminar thesis and a presentation. The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is able to:

- to perform a literature search for a given topic, to identify, find, value and evaluate the relevant literature.
- to write his seminar thesis of 15-20 pages in a structured scientific manner.
- to communicate his results in a presentation with discussion afterwards.

Content
The seminar servers on one hand to improve the scientific working skills. On the other hand, the student should work intensively on a given topic and develop a scientific work, that is based on a profound literature research.
Course: Practical Course in Information Engineering and Management (Master)

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 2 Hours per week: 0*
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the Prüfungsordnung für Informationswirtschaft in form of an examination of a course work and its presentation.

Prerequisites
None.

Conditions
The Practical Course is an extension to the lecture Master Seminar in Information Engineering and Management. The dates of these lectures coincide.

Learning Outcomes
The student is able

- to work on a given question in a practical manner, e.g. conduct a market study, implement an algorithm.
- to communicate the work written as well as verbally in a scientific adequate manner.
- to identify problems that occur during the work, to discuss them and to develop solution approaches for them.

Content
The Practical Course is an extension of the Master Seminar in Information Engineering and Management. The topic treated in the seminar is extended by a practical work. The practical work may be the conduction of a small market study of the implementation of an algorithm.
A report has to be written apart and has to be presented in the seminar.

Remarks
The Practical Course is an extension of the Master-Seminar and does not require extra lecture lessons.
Course: Social Network Analysis in CRM

Lecturers: Bettina Hoser
Credit points (CP): 5
Hours per week: 2/1
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Information, Market, and Service Engineering [IW4WWIMSE] (S. 32), Service Engineering [IW4WWIMSE2] (S. 35)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft and of assignments during the course as an "Erfolgskontrolle anderer Art" following § 4, Abs. 2, 3 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None

Conditions
keine

Learning Outcomes
The objectives of this course are to give students an introduction to and overview of social network analysis as a methodological approach for analysis in different areas of business administration, especially customer relationship management. Theory as well as application of social network analysis will be discussed. Students will learn how to perform and interpret analysis results.

Content
The trend to view economic and social structures as networks allows to analyze these networks by well established and new methods from mathematics, business administration, sociology and physics. The goal of these analyses are to understand different aspects of these networks: In organizations (internal Marketing): Here networks analysis can help to detect whether hierarchies and official structures are 'alive' or if so called 'hidden organizations' have evolved. In addition such results can reveal inefficient procedures or structures within an organization. In CRM: Within analytical CRM the concept of customer value can be enriched by enclosing the network value that customer offers to the company (Customer Network Value). In Marketing: To successfully implement a viral marketing strategy the knowledge of the structure of customer networks is essential. The dynamics on these networks are relevant if one wants to use these networks for marketing purposes. Internetstructure: For information services, such as e.g. search engines, the identification of relevant nodes and clusters is a major service profided and thus relevant for business success.

The analysis should identify the relevant (central) nodes in a network, find cliques, describe their connections and, if relevant, describe also the direction of information flow within the network. To achieve this different methods will be discussed during the course.

Media
Folien

Basic literature

Complementary literature
Robert A. Hanneman. Free introductory textbook on social network analysis. online.
Course: Derivatives

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft and of possible assignments during the course as an "Erfolgskontrolle anderer Art" following § 4, Abs. 2, 3 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Media
Slides, Exercises/Exercise sheets

Basic literature

Complementary literature
Course: Fixed Income Securities

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment consists of a written exam following § 4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft and of possible assignments during the course as an "Erfolgskontrolle anderer Art" following § 4, Abs. 2, 3 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should ...

Content

Basic literature

Complementary literature
Course: Credit Risk

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the Prüfungsordnung für Informationswirtschaft and of possible assignments during the course as an "Erfolgskontrolle anderer Art" following § 4, Abs. 2, 3 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should ...

Content

Basic literature

Complementary literature
Course: Seminar in Financial Engineering

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Finance, Econometrics, and Risk Management [IW4WWFERM] (S. 31)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the Prüfungsordnung für Informationswirtschaft in form of an examination of the written seminar thesis, its presentation, class participation, and possible further tasks.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Learn to work independently with scientific articles and to become familiar with scientific writing. Furthermore, presentation and discussion skills are developed during the seminar class sessions.

Content
Changing current topics complementing the lectures’ contents.

Media
Aktuelle wissenschaftliche Artikel.

Basic literature
wird jeweils zu den einzelnen Seminarthemen angegeben

Complementary literature
Über die beim Seminar angegebene Einstiegsliteratur hinaus ist eigenständige Literaturrecherche erforderlich.
Course: Cloud Computing

Lecturers: Stefan Tai, Wilfried Juling, Kunze
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Service Technologies [IW4INSER] (S. 30)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes

Content

Remarks
This course will be offered from winter term 2009/2010 on.
Course: Software Engineering II

Lecturers: Ralf Reussner, Walter F. Tichy
Credit points (CP): 6 Hours per week: 3/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSW] (S. 29)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Seminar Information Engineering and Management

Lecturers: Christof Weinhardt
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The student is evaluated based on the written work, a presentation of the results in front of an audience and his contribution to the discussion.

Prerequisites
See corresponding module information.

Conditions
Business Engineering/Economics Engineering: Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on a academic level. This process gives him the knowledge and practice for further research work like a master thesis or a doctoral thesis.

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination.

Media
- Powerpoint,
- eLearning Platform Ilias
- Software Tools, if necessary

Basic literature
The student will receive the necessary literature for his research topic.

Remarks
- Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
- All the seminars offered at the chair of Prof. Dr. Weinhardt can be chosen. The current topics of the seminars are available at the following homepage: http://www.im.uni-karlsruhe.de/lehre.
Course: Transaction Management

Lecturers: Klemens Böhm
Credit points (CP): 5 Hours per week: 2/1
Term: ??? Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKM1] (S. 26)

Learning Control / Examinations
Prerequisites
None.

Conditions
None.

Learning Outcomes
Content
Course: Database Implementation and Tuning

Course key: [db_impl]

Lecturers: Klemens Böhm
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKIM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKIM1] (S. 26)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
The lecture follows several goals. From the point of view of methodical engineering of large scale systems, the role of architecture and non functional properties should be understood. From the algorithmically point of view, it should be comprehensible at which point in the architecture which functional and non functional properties define the building blocks of the implementation. Furthermore, it will be important to understand how the architectural properties influence the algorithms and which range of possibilities is feasible. As well, the participants of the lecture should become familiar with the classical algorithms of database technology and get a feeling for its fields of application. From the point of view of a database administrator, the participants should understand which performance related parameters are vital if a certain query profile is given and how such parameters are connected with the underlying algorithms.

Content
Database systems form the backbone of all kinds of information processing. Without such systems, business management, commerce, research and development – as well as everything in the areas of mobile communication, genetics and the web – is not possible. Therefore, nowadays it belongs to the general knowledge of computer science, to understand how such systems are composed. In addition to that, many techniques which are today common sense in in computer science, have there roots in database technology. Finally, many specialists are needed, so called database administrators, who are able to configure the functionality and performance of database systems. Without the knowledge of what happens inside such systems, it is hardly possible to configure and tune them. Such knowledge will be thought in this lecture. As an orientation framework serves a reference architecture which primarily comes from performance optimisation. Its essential components are the memory and query engine as well as transaction management. These components are discussed following a layered architecture from file management at the bottom to the user interface at the top level. This layered architecture allows for determining methodically the necessary and possible means of performance improvement as well as identifying their place within the architecture. Therefore, the lecture also contributes in the area of software engineering of large scale systems.

Media
Slides.

Complementary literature
Course: Deployment of Database Systems
Course key: [dbe]

Lecturers: Klemens Böhm
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch

Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKM] (S. 24)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g., from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
At the end of the course, the participants should be able to explain and compare database concepts (especially data models and query languages) – in more breadth, compared to database courses at the undergraduate level. They should know and be able to assess the different possibilities to store complex user data using database technology.

Content
This course introduces students to the deployment of modern database technology, in both breadth and depth. ‘Breadth’ is reached by the detailed study and comparison of different data models (especially the relational and the semi-structured/XML data models) and appropriate query languages (SQL, XQuery). ‘Depth’ is reached by the study of several non-trivial applications, such as management of XML or e-commerce data, implementation of retrieval-models using relational database technology, or the usage of SQL for accessing sensor networks. Since all these applications are generic problems themselves, the study of such applications is interesting in itself already.

Media
Slides.

Basic literature

Complementary literature

Remarks
This lecture is not offered in the winter term 2008/2009.
Course: Practical Course Database Systems

Lecturers: Klemens Böhm
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIK] (S. 24)

Learning Control / Examinations
The assessment will be an “Erfolgskontrolle anderer Art” and consists of several parts (projects, experiments, presentations and reports, according to §4, Abs 2 of the Prüfungsordnung). The course will be assessed with “passed” or “failed” (according to §9, Abs. 3 of the Prüfungsordnung Informationswirtschaft / §7, Abs. 3 of the Prüfungsordnung Informatik). In order to get the passed assessment for the practical course, every part of the assessment must be passed successfully.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
The lecture “Deployment of Database Systems” must have been passed or must be followed at the same time.

Learning Outcomes
In the practical course, the knowledge from the lecture “Deployment of Database Systems” is reinforced on a practical level. The focus is on database-application programming, the usage of interactive query languages and database design. Furthermore, the students should learn to work in teams in order to work on various projects successfully.

Content
The practical course database systems lets students learn how to deploy database systems in practice, as a supplement to the different lectures on database technology. The participants will work in selected projects with commercial (object-)relational and XML database technology. Furthermore, database design will be practised with real-world examples. The following projects are planned for the course:

- Accessing databases, in particular from user programs,
- data management with non-conventional database technology,
- database design.

Working in teams is another important aspect of all projects.

Media
- Slides.
- Practical course notes.

Basic literature
Please refer to the literature from the lecture “Deployment of Database Systems”.

Complementary literature
Please refer to the literature from the lecture “Deployment of Database Systems”.

Remarks
This practical course is not offered in the winter term 2008/2009.
Course: Practical Course Distributed Data Management (former Practical Course Database Systems)

Lecturers: Klemens Böhm
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKMM] (S. 24)

Learning Control / Examinations
The assessment will be an “Erfolgskontrolle anderer Art” and consists of several parts (projects, experiments, presentations and reports, according to §4, Abs 2 of the Prüfungsordnung). The course will be assessed with “passed” or “failed” (according to §9, Abs. 3 of the Prüfungsordnung Informationswirtschaft / §7, Abs. 3 of the Prüfungsordnung Informatik). In order to get the passed assessment for the practical course, every part of the assessment must be passed successfully.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”, as well as basic knowledge of JAVA programming.

Conditions
The lecture “Distributed Data Management” must have been passed or must be followed at the same time.

Learning Outcomes
During this practical course, the students should
1. deepen selected topics from the lecture “Distributed Data Management” in the context of sensor networks,
2. gain experiences in programming sensor nodes,
3. develop self-containedly a solution for a given problem from the research-area of query processing in sensor networks and
4. get experience in developing and programming in teams as well as getting familiar with the according tools.

Content
Characteristics of modern information systems like massively distributed data creation, query processing over the internet and an increased demand regarding the robustness of such systems require distributed storage and query processing. Traditional database systems initially did not meet these new requirements, but met them by offering additional software extensions. These extensions suffer from the fact that the original system was not designed with a distributed system in mind and therefore the extension either only offer limited functionality or their applicability is tailored to a specific scenario. This course offers a broad introduction into distributed database technology, that does not have the drawbacks of afore mentioned extensions. Furthermore the participants get an in-depth look on selected research topics through theoretical course work and hands-on experience with different distributed database systems: The first block of the course will introduce database schemas for distributed storage and based on this, the participants will use SQL to execute queries over distributively stored data. The second block of the course will focus on query processing in sensor networks, which is an application of distributed databases, where extensions of standard database technology are not sufficient for several reasons. After an introdutional phase into sensor databases, the students will develop a solution to a complex research problem over several weeks. For the development and testing of this solution, we will provide Sun SPOT sensor nodes (www.sunspotworld.com).

Media
- Slides.
- Practical course notes.

Basic literature
Please refer to the literature from the lecture “Distributed Data Management”.

Complementary literature
Please refer to the literature from the lecture “Distributed Data Management”.

Modulhandbuch: Stand 13.03.2009 Information Engineering and Management (M.Sc.) ER 2006
Course: Seminar Information Systems

Lecturers: Klemens Böhm
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4INLIKIM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4INLIKIM1] (S. 26)

Learning Control / Examinations
The assessment involves writing a seminar paper and an oral presentation as a graded “Erfolgskontrolle anderer Art” according to §4, Abs. 2 of the Prüfungsordnung. The final grade for the seminar will be the grade for the written paper which can be increased or decreased by up to two grade points (“Notenstufen”) according to the performance of the oral presentation.

Prerequisites
Lectures held at the Information Systems Group related to the current topic of the seminar are strongly recommended.

Conditions
None.

Learning Outcomes
Independent preparation and presentation of a seminar topic from the field of information systems adhering to scientific standards.

Content
The Information Systems Group offers at least one seminar covering selected topics from the wide area of information systems every semester (every seminar at the "Lehrstuhl für Systeme der Informationsverwaltung", which is not an undergraduate seminar, counts as “Seminar Information Systems”). Usually, the topics will be close to current research of the group, e.g., peer-to-peer networks, database systems, data mining, sensor networks and workflow-management systems. Details will be announced each semester (announcements at the notice boards of the institute and at the homepage of the Information Systems Group).

Media
Slides.

Basic literature
Will be announced for every seminar.

Complementary literature
Literature from lectures concerning the seminar topic.
Course: Distributed Data Management

Lecturers: Klemens Böhm
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Large-Scale Information and Knowledge Management [IW4NILIKM] (S. 24), Advanced Concepts of Information and Knowledge Management [IW4NILIKM1] (S. 26)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
At the end of the course, the participants should be able to explain the pros and cons of distributed data management. They should have understood that subtle differences in the problem formulation can lead to very different solutions. In particular, the participants should be able to explain and differentiate the fundamental approaches to guarantee consistency in a distributed environment and to explain and classify approaches for data management in highly distributed environments (e.g., Peer-to-Peer systems or sensor networks) and for query processing.

Content
In modern information systems, distribution is a fundamental issue. Centralised, monolithic database architectures will probably not play an important role any more in many scenarios. However, there are various unsolved principal problems in the field of distributed data management, or issues where existing solutions are not satisfactory. Truly, there are many products available, promising to facilitate distributed data management. However, these solutions are not always appropriate, application programmers has to develop large parts of the functionality on their own, or elegant, theoretically solid solutions lead to unsatisfactory runtime behaviour. (Therefore, you should not just choose this course if you are interested in the fundamental problems of distributed data management. If you have a special interest in practical aspects and applications, these topics are important as well.) The course introduces you to the theory of distributed data management and makes you familiar with the corresponding algorithms and methods. Topics of this course include correct and fault-tolerant concurrent executions of transactions in distributed environments (classical solutions as well as very recent developments) and data management in highly distributed environments.

Media
Slides.

Basic literature
Course: Algorithm Engineering
Course key: [xAlgoEng]

Lecturers: Peter Sanders, Dorothea Wagner
Credit points (CP): 4
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch

Part of the modules: Advanced Algorithms [IW4IANTAALG] (S. 21)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 2 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
Lecture "Algorithmentechnik"

Conditions
None.

Learning Outcomes
The students come to know the methodology of algorithm engineering. Moreover, examples of well done algorithm engineering are presented.

Content
- What is algorithm engineering, why is it interesting, ...?
- Realistic models of machines and applications
- Practice-oriented design of algorithms
- Implementation techniques
- Experimental methods
- Analysis of measured data

The above skills are taught using concrete examples. In the past the following topics from the area of fundamental algorithms and data structures have been used for example:
- linked lists without special cases
- Sorting: parallel, external, superscalar,...
- Priority queues (cache efficiency,...)
- Search trees for integer keys
- Full-text indexing
- Graph algorithms: minimum spanning trees (external,...), route planning

The best practical and theoretical techniques known are considered. In most cases, these techniques are very different from the methods taught in a beginner’s course.

Media
Slides, Scriptum, papers, source codes

Complementary literature
- K. Mehlhorn, P. Sanders, Algorithms and Data Structures - The Basic Toolbox, Springer 2008

Remarks
The lecture will be offered again in the winter term 09/10.
Course: Graph Algorithms

Lecturers: Dorothea Wagner
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min) following §4, Abs. 2, 2 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
Lecture Algorithmentechnik [24079] is recommended.

Conditions
None.

Learning Outcomes
Students will acquire basic knowledge about fundamental methods and techniques in the field of network analysis.

Content
Networks are ubiquitous in our modern world. Beside physically present networks used for example in electrotechnology or for transportation, the number and the relevance of abstract or virtual networks drastically increases. Examples are the connectivity structure of the WWW or the analysis of political relations. Due to the large number of applications and their inherent problem settings, a variety of methods and approaches have emerged mixing techniques from graph theory, linear algebra and probabilistic methods.

The course systematically deals with fundamental techniques. Most of the objectives are motivated by applications, yet the focus is put on algorithmic aspects.

Modulhandbuch: Stand 13.03.2009 Information Engineering and Management (M.Sc.) ER 2006
Course: Parallel Algorithms

Lecturers: Peter Sanders
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms [IW4INAALG] (S. 21)

Learning Control / Examinations
Assessment will consist of an oral exam (20 min.) following §4, Abs. 2, 2 of the Prüfungsordnung für Informationswirtschaft.

Prerequisites
Knowledge from lecture Algorithmentechnik is required.

Conditions
None.

Learning Outcomes
The Students are to learn basic techniques for the design of parallel algorithms as well as a selection of important parallel algorithms.

Content
Models and their relationship to real machines:
- Shared memory - PRAM
- Message passing, BSP
- Circuits
Analysis: speedup, efficiency, scalability
Basic techniques:
- SPMD
- Parallel divide and conquer
- Collective communication
- Load balancing
Examples of real algorithms:
- Collective Communication (also for large data sets): broadcast, reduce, prefix sums, all-to-all exchange
- Matrix arithmetic
- Sorting
- List ranking
- Minimum spanning trees
- Load balancing: master worker with adaptive problem size, random polling, random distribution

Media
Slides (pdf), scientific articles

Complementary literature
- Sanders, Worsch. Parallele Programmierung mit MPI – ein Praktikum
- Kumar, Grama, Gupta und Karypis. Introduction to Parallel Computing.
- JáJá. An Introduction to Parallel Algorithms

Remarks
The lecture will be offered again in the winter term 09/10.
Prüfungs- und Studienordnung der Universität Karlsruhe (TH) für den Master-Studiengang Informationswirtschaft

vom 30. April 2006

Aus Gründen der Lesbarkeit ist in dieser Satzung nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

Der Rektor hat seine Zustimmung am 30. April 2006 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich; Zweck der Prüfung 77
 § 2 Akademischer Grad 77
 § 3 Regelstudienzeit, Studienaufbau, Umfang des Lehrangebots 77
 § 4 Aufbau der Prüfungen 77
 § 5 Prüfungsausschuss 78
 § 6 Prüfer und Beisitzer 79
 § 7 Anmeldung und Zulassung zu den Prüfungen 79
 § 8 Durchführung von Prüfungen und Erfolgskontrollen 79
 § 9 Bewertung von Prüfungen und Erfolgskontrollen 80
 § 10 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen 83
 § 11 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß 84
 § 12 Mutterschutz 84
 § 13 Anerkennung von Studienzeiten, Studienleistungen und Prüfungsleistungen 85
 § 14 Interdisziplinäres Seminar 86
 § 15 Master-Arbeit 86
 § 16 Zusatzmodule und Zusatzleistungen 87

II. Master-Prüfung
 § 17 Umfang und Art der Master-Prüfung 87
 § 18 Bestehen der Master-Prüfung, Bildung der Gesamtnote 88
 § 19 Master-Zeugnis und Urkunde 88

III. Schlussbestimmungen
 § 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen 89
 § 21 Ungültigkeit der Master-Prüfung, Entziehung des Master-Grades 89
 § 22 Einsicht in die Prüfungsakten 89
 § 23 In-Kraft-Treten 90
I. Allgemeine Bestimmungen

§ 1 Geltungsbereich; Zweck der Prüfung
(1) Diese Master-Prüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Master-Studiengang Informationswirtschaft an der Universität Karlsruhe (TH).
(2) Die Master-Prüfung (§17 – 19) bildet den Abschluss dieses Studiengangs, der gemeinsam von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften an der Universität Karlsruhe (TH) angeboten wird. Durch die Master-Prüfung soll festgestellt werden, ob der Kandidat die für den Übergang in die Berufspraxis grundlegenden wissenschaftlichen Fachkenntnisse besitzt, die Zusammenhänge des Faches Informationswirtschaft überblickt und die Fähigkeit besitzt, nach wissenschaftlichen Methoden und Grundsätzen selbstständig zu arbeiten.

§ 2 Akademischer Grad

§ 3 Regelstudienzeit, Studienaufbau, Umfang des Lehrangebots
(1) Die Regelstudienzeit beträgt vier Semester. Sie umfasst Prüfungen und die Master-Arbeit.
(2) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Art, Umfang und Zuordnung der Module zu einem Fach, sowie die Möglichkeiten, Module untereinander zu kombinieren, beschreibt der Studienplan. Die Fächer und ihr Umfang werden in §17 definiert.
(3) Der für das Absolvieren von Lehrveranstaltungen und Modulen vorgesehene Arbeitsaufwand wird in Leistungspunkten (Credits) ausgewiesen. Die Maßstäbe für die Zuordnung von Leistungspunkten entsprechen dem ECTS (European Credit Transfer System). Ein Leistungspunkt entspricht einem Arbeitsaufwand von etwa 30h.
(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.
(5) Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.
(6) Lehrveranstaltungen können auch in englischer Sprache angeboten werden.

§ 4 Aufbau der Prüfungen
(2) Erfolgskontrollen sind:
 1. schriftliche Prüfungen,
2. mündliche Prüfungen oder
3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Marktstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) Mindestens 50% einer Modulprüfung sind in Form von schriftlichen oder mündlichen Prüfungen (§4 Abs. 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (§4 Abs. 2, Nr. 3).

§ 5 Prüfungsausschuss
(1) Für den Master-Studiengang Informationswirtschaft wird ein Prüfungsausschuss gebildet. Er besteht aus sechs stimmberechtigten Mitgliedern, die jeweils zur Hälfte von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften bestellt werden: vier Professoren, Juniorprofessoren, Hochschul- oder Privatdozenten, zwei Vertretern der Gruppe der wissenschaftlichen Mitarbeiter nach §10 Abs. 1, Satz 2, Nr. 2 LHG und einem Vertreter der Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Master-Studiengang Informationswirtschaft erhöht sich die Anzahl der Vertreter der Studierenden auf zwei Mitglieder mit beratender Stimme, wobei je ein Vertreter aus dem Bachelor- und aus dem Master-Studiengang stammt. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.

(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden von den jeweiligen Fakultätsräten bestellt, die Mitglieder der Gruppe der wissenschaftlichen Mitarbeiter nach §10 Abs. 1, Satz 2, Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor aus einer der beteiligten Fakultäten sein. Der Vorsitz wechselt zwischen den Fakultäten alle zwei Jahre. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch die Prüfungssekreterariate unterstützt.

(3) Der Prüfungsausschuss regelt die Auslegung und die Umsetzung der Prüfungsordnung in die Prüfungspraxis der Fakultäten. Er achtet darauf, dass die Bestimmungen der Prüfungsordnung eingehalten werden. Er berichtet regelmäßig den Fakultätsräten über die Entwicklung der Prüfungen und Studienzeiten sowie über die Verteilung der Fach- und Gesamtnoten und gibt Anregungen zur Reform des Studienplans und der Prüfungsordnung.

(5) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolzierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennender Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuziehen. Er hat in diesem Punkt Stimmrecht.
§ 6 Prüfer und Beisitzer
(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.
(2) Zur Abnahme von Erfolgskontrollen (§ 4 Abs. 2) sind vorrangig Professoren, Juniorprofessoren, Hochschul- und Privatdozenten zu bestellen.
(3) Soweit Lehrveranstaltungen von anderen als den unter § 6 Abs. 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die jeweilige Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.
(4) Zum Beisitzenden darf nur bestellt werden, der einen akademischen Abschluss in einem Studiengang der Informationswirtschaft, Informatik, Rechtswissenschaften, Wirtschaftswissenschaften oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 7 Anmeldung und Zulassung zu den Prüfungen
(1) Um zu schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss der Student vor der ersten schriftlichen oder mündlichen Prüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgeben. Darüber hinaus muss sich der Student für jede einzelne Lehrveranstaltungsprüfung, die in Form einer schriftlichen oder mündlichen Prüfung (§ 4 Abs. 2, Nr. 1 und 2) durchgeführt wird, beim Studienbüro anmelden. Dies gilt auch für die Zulassung zur Master-Arbeit.
(2) Die Zulassung darf nur abgelehnt werden, wenn der Kandidat in einem mit der Informationswirtschaft vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat. In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 8 Durchführung von Prüfungen und Erfolgskontrollen
(1) Erfolgskontrollen werden in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach durchgeführt.
(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2, Nr. 1–3) der einzelnen Lehrveranstaltungen wird von dem Prüfer der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Bildung der Lehrveranstaltungsnote und der Modulnote, sowie der Prüfer müssen mindestens 6 Wochen vor Semesterbeginn bekanntgegeben werden.
Im Einvernehmen zwischen Prüfer und Kandidat kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichtigen.
(3) Eine schriftlich durchzuführende Prüfung kann auch mündlich, eine mündlich durchzuführende Prüfung kann auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.
(4) Weist ein Kandidat nach, dass er wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, kann der zuständige Prüfungsausschuss – in dringenden Angelegenheiten, deren Erledigung nicht bis zu einer Sitzung des Ausschusses aufgeschoben werden kann, dessen Vorsitzender – gestatten, Erfolgskontrol-
len in einer anderen Form zu erbringen.

(5) Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung des Kandidaten die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.

(7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kollegialprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Kandidat.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles keimlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Beisitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.

§ 9 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note festgesetzt.

(2) Im Master-Zeugnis dürfen nur folgende Noten verwendet werden:
1 = „sehr gut“ (very good) für eine hervorragende Leistung;
2 = „gut“ (good) für eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt;
3 = „befriedigend“ (satisfactory) für eine Leistung, die durchschnittlichen Anforderungen entspricht;
4 = „ausreichend“ (sufficient) für eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt;
5 = „nicht ausreichend“ (failed) für eine Leistung, die wegen erheblicher Mängel den Anforderungen nicht mehr genügt.

Für die Master-Arbeit und die Lehrveranstaltungsprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

- 1.0, 1.3 (sehr gut)
- 1.7, 2.0, 2.3 (gut)
- 2.7, 3.0, 3.3 (befriedigend)
- 3.7, 4.0 (ausreichend) und
- 4.7, 5.0 (nicht ausreichend).

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Leistungsnachweise kann im Studienplan die Benotung mit „bestanden“ (passed) oder „nicht bestanden“ (failed) vorgesehen werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung, und jede Erfolgskontrolle darf jeweils nur einmal angerechnet werden. Module, Lehrveranstaltungen oder Erfolgskontrollen, die bereits in einem Bachelor-Studiengang angerechnet wurden, dürfen in diesem Studiengang nicht noch einmal geprüft und angerechnet werden.

(6) Erfolgskontrollen können in Form von Leistungsnachweisen dokumentiert werden. Leistungsnachweise dürfen in Lehrveranstaltungsprüfungen oder Modulprüfungen nur eingerechnet werden, wenn die Benotung nicht nach §9 Abs. 3 erfolgt ist. Die durch Leistungsnachweise zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan festgelegt.

(7) Eine Lehrveranstaltungsprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

Die Ergebnisse der Modulprüfungen und der Lehrveranstaltungsprüfungen, der Leistungsnachweise und der Master-Arbeit sowie die erworbenen Leistungspunkte werden beim Studienbüro der Universität erfasst.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten nachgewiesen wird.

Innerhalb der Regelstudienzeit, einschließlich derUrlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Fach auch mehr Leistungspunkte erworben werden, als für das Bestehen der Fachprüfung erforderlich sind. In diesem Fall werden bei der Festlegung der Fachnote nur die Modulnoten berücksichtigt, die unter Abdeckung der erforderlichen Leistungspunkte die beste Fachnote ergeben.

Die Gesamtnote der Master-Prüfung, die Fachnoten und die Modulnoten lauten: bei einem Durchschnitt bis 1.5 „sehr gut“ (very good) bei einem Durchschnitt über 1.5 bis 2.5 „gut“ (good) bei einem Durchschnitt über 2.5 bis 3.5 „befriedigend“ (satisfactory) bei einem Durchschnitt über 3.5 bis 4.0 „ausreichend“ (sufficient).

Zusätzlich zu den Noten nach §9 Abs. 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Master-Prüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10% der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30% der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10% der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (Fail) - es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (FAIL) - es sind erhebliche Verbesserungen erforderlich</td>
<td></td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studenten definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studenten auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

Bis zum Aufbau einer entsprechenden Datenbasis wird als Übergangsregel folgende Abbildung von Noten auf ECTS-Noten zur Bildung dieser Skala für alle Module des Masterstudiengangs herangezogen:
Diese Verteilung wird jährlich gleitend über mindestens fünf Jahre mit mindestens 30 Studenten jeweils zu Beginn des Studienjahres für jedes Modul, die Fachnoten und die Gesamtnote angepasst und in diesem Studienjahr für die Festsetzung der ECTS-Note verwendet.

§ 10 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen
(1) Kandidaten können eine nicht bestandene schriftliche Prüfung (§4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ sein.
(2) Kandidaten können eine nicht bestandene mündliche Prüfung (§4 Abs. 2, Nr. 2) einmal wiederholen.
(3) Wiederholungsprüfungen nach §10 Abs. 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen. Fehlversuche an anderen Hochschulen sind anzurechnen.
(4) Die Wiederholung einer Erfolgskontrolle anderer Art (§4 Abs. 2, Nr. 3) wird im Studienplan geregelt.
(5) Eine zweite Wiederholung derselben schriftlichen oder mündlichen Prüfung ist nur in Ausnahmefällen zulässig. Ist auch die Wiederholung einer schriftlichen oder mündlichen Prüfung mit nicht ausreichend bewertet worden, so kann der Kandidat einen Antrag an den Rektor auf eine letzte mündliche Prüfung stellen, darüber entscheidet der Rektor. §8 Abs. 3 findet keine Anwendung auf die letzte mündliche Prüfung.
(6) Hat ein Kandidat eine Erfolgskontrolle nicht bestanden, so sind ihm Umfang und Fristen der Wiederholung der Erfolgskontrolle in geeigneter Weise bekannt zu machen.
(7) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.
(8) Eine Fachprüfung ist endgültig nicht bestanden, wenn mindestens ein Modul des Faches endgültig nicht bestanden ist.

Ist gemäß §34 Abs. 2, Satz 3 LHG die Master-Prüfung bis zum Beginn der Vorlesungszeit des achten Fachsemesters dieses Studiengangs einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass der Student die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss.

§ 11 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

(3) Versucht der Kandidat, das Ergebnis einer mündlichen oder schriftliche Prüfung (§4 Abs. 2, Nr. 1 und 2) durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Prüfung als mit „nicht ausreichend" (5.0) bewertet. Ein Kandidat, der den ordnungsgemäßen Ablauf der Prüfung stört, kann von dem jeweiligen Prüfer oder Aufsichtsführenden von der Fortsetzung der Prüfung ausgeschlossen werden; in diesem Fall gilt die betreffende Prüfung als mit „nicht ausreichend“ (5.0) bewertet. In schwerwiegenden Fällen kann der Prüfungsausschuss den Kandidaten von der Erbringung weiterer Prüfungen ausschließen. Die Sätze 1–3 gelten für Erfolgskontrollen anderer Art (§4 Abs. 2, Nr. 3) entsprechend.

(4) Der Kandidat kann innerhalb von 14 Tagen verlangen, dass die Entscheidung nach §11 Abs. 3, Satz 1 und 2 vom Prüfungsausschuss überprüft wird. Belastende Entscheidungen des Prüfungsausschusses sind den Kandidaten unverzüglich schriftlich mitzuteilen, zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen.

§ 12 Mutterschutz
§ 13 Anerkennung von Studienzeiten, Studienleistungen und Prüfungsleistungen

(1) Studienzeiten, Studienleistungen und Prüfungsleistungen im Master-Studiengang Informationswirtschaft an einer Universität oder einer gleichgestellten Hochschule in Deutschland werden angerechnet, sofern Gleichwertigkeit nachgewiesen wird. Studienzeiten, Studienleistungen und Prüfungsleistungen in anderen Studiengängen werden anerkannt, soweit die Gleichwertigkeit festgestellt ist. Die Anerkennung von Teilen der Master-Prüfung wird in der Regel versagt, wenn die Anerkennung von mehr als der Hälfte der Leistungspunkte oder mehr als der Hälfte der Modulprüfungen oder die Anerkennung der Master-Arbeit beantragt worden ist.

(2) Für Studienzeiten, Studienleistungen und Prüfungsleistungen in staatlich anerkannten Fernstudien gilt §13 Abs. 1 entsprechend. Das gleiche gilt außerdem auch für Studienzeiten, Studienleistungen und Prüfungsleistungen an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien sowie an Fach- und Ingenieurschulen.

(4) Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

(6) Bei Vorliegen der Voraussetzungen nach §13 Abs. 1–4 besteht ein Rechtsanspruch auf Anrechnung. Die Anrechnung von Studienzeiten, Studienleistungen und Prüfungsleistungen, die in Deutschland erbracht wurden, erfolgt von Amts wegen. Die Studierenden haben die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(7) Erbringt ein Student Studienleistungen an einer ausländischen Universität, soll die Gleichwertigkeit vorab durch einen Studienvertrag nach den ECTS-Richtlinien festgestellt und nach diesem verfahren werden.

(8) Zusatzleistungen, die ein Student nach §16 der Prüfungs- und Studienordnung der Universität Karlsruhe (TH) vom 12.8.2005 für den Bachelor-Studiengang Informationswirtschaft erbracht hat und die im Studienplan dieses Studiengangs vorgesehen sind, werden auf Antrag des Studierenden an den Prüfungsausschuss anerkannt.
§ 14 Interdisziplinäres Seminar
(1) Im Master-Studiengang Informationswirtschaft müssen Studierende ein interdisziplinäres Modul, das in Form eines Seminars organisiert ist, im Umfang von 6 Leistungspunkten absolvieren, das von je einem Prüfer nach §6 Abs. 2 aus der Informatik, dem Recht und den Wirtschaftswissenschaften betreut wird.

§ 15 Master-Arbeit
(2) Die Master-Arbeit kann von jedem Prüfer nach §6 Abs. 2 vergeben werden. Soll die Master-Arbeit außerhalb der beiden nach §1 Abs. 2, Satz 1 beteiligten Fakultäten angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses. Dem Kandidaten ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Master-Arbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Kandidaten aufgrund objekttiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach §15 Abs. 1 erfüllt.
(4) Thema, Aufgabenstellung und Umfang der Master-Arbeit sind vom Betreuer so zu begrenzen, dass die Master-Arbeit mit dem in §15 Abs. 1 festgelegten Arbeitsaufwand bearbeitet werden kann.
(5) Die Master-Arbeit hat die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen.
(7) Die Master-Arbeit wird von einem Betreuer sowie in der Regel von einem weiteren Prüfer aus der jeweils anderen Fakultät der beiden nach §1 Abs. 2, Satz 1 beteiligten Fakultäten begutachtet und bewertet. Einer der beiden muss Juniorprofessor oder Professor sein. Bei nicht übereinstimmender Beurteilung der beiden Prüfer setzt der Prüfungsausschuss im Rahmen der Bewertung der beiden Prüfer die Note der Master-Arbeit fest. Der Bewertungszeitraum soll 8 Wochen nicht überschreiten.
§ 16 Zusatzmodule und Zusatzleistungen
(1) Der Kandidat kann sich weiteren Prüfungen in Modulen unterziehen. §3 und §4 der Prüfungsordnung bleiben davon unberührt.
(3) Der Kandidat hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

II. Master-Prüfung

§ 17 Umfang und Art der Master-Prüfung
(1) Die Master-Prüfung besteht aus den Fachprüfungen nach §17 Abs. 2, dem interdisziplinären Seminarmodul nach §14 sowie der Master-Arbeit nach §15.
(2) In den ersten beiden Studienjahren sind Fachprüfungen aus folgenden Fächern durch den Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:
- aus dem Fach Betriebswirtschaftslehre: im Umfang von 9 Leistungspunkten,
- aus dem Fach Operations Research: im Umfang von 4 Leistungspunkten,
- aus dem Fach Recht: im Umfang von 6 Leistungspunkten.

Des weiteren sind Fachprüfungen
- aus einem wirtschaftswissenschaftlichen Fach durch 1 Modul im Umfang von 20 Leistungspunkten oder durch 2 Module im Umfang von je 10 Leistungspunkten,
- aus dem Fach Informatik durch ein Modul im Umfang von 16 Leistungspunkten und ein Modul im Umfang von 17 Leistungspunkten,
- aus dem Fach Recht im Umfang von 12 Leistungspunkten

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Fächern sind im Studienplan festgelegt.
Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach §7 erfüllt.

(3) Als eine weitere Prüfsungsleistung ist eine Master-Arbeit gemäß §15 anzufertigen.

§ 18 Bestehen der Master-Prüfung, Bildung der Gesamtnote
(1) Die Master-Prüfung ist bestanden, wenn alle in §17 genannten Prüfsungsleistungen mindestens mit „ausreichend“ bewertet wurden.
(2) Die Gesamtnote der Master-Prüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden alle Prüfsungsleistungen nach §17 mit ihren Leistungspunkten gewichtet.
(3) Hat der Kandidat die Master-Arbeit mit der Note 1.0 und die Master-Prüfung mit einem Durchschnitt von 1.0 abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen. Mit einer Masterarbeit mit der Note 1.0 und bis zu einem Durchschnitt von 1.3 kann auf Antrag an den Prüfungsausschuß das Prädikat „mit Auszeichnung“ (with distinction) verliehen werden.

§ 19 Master-Zeugnis und Urkunde
(5) Die Master-Urkunde, das Master-Zeugnis und das Diploma-Supplement ein-
III. Schlussbestimmungen

§ 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
(1) Der Bescheid über die endgültig nicht bestandene Master-Prüfung wird dem Kandidaten durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

(2) Hat der Kandidat die Master-Prüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 21 Ungültigkeit der Master-Prüfung, Entziehung des Master-Grades
(1) Hat der Kandidat bei einer Prüfung getäuscht und wird diese Tatsache erst nach der Aushändigung des Zeugnisses bekannt, so kann der Prüfungsausschuss nachträglich die Noten für diejenigen Prüfungsleistungen, bei deren Erbringung der Kandidat getäuscht hat, entsprechend berichtigen und die Prüfung ganz oder teilweise für nicht bestanden erklären.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Kandidat hierüber täuschen wollte, so wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Kandidat die Zulassung vorsätzlich zu Unrecht erwartet, so entscheidet der Prüfungsausschuss nach Maßgabe des Landesverwaltungsverfahrensgesetzes in der jeweils gültigen Fassung.

(3) Dem Kandidaten ist vor einer Entscheidung nach §21 Abs. 1 und §21 Abs. 2, Satz 2 Gelegenheit zur Äußerung zu geben.

(5) Die Entziehung des akademischen Master-Grades richtet sich nach den gesetzlichen Bestimmungen.

(6) Eine Entscheidung nach §21 Abs. 1 oder §21 Abs. 2, Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Prüfungszeugnisses ausgeschlossen.

§ 22 Einsicht in die Prüfungsakten
(1) Innerhalb eines Jahres nach dem Ablegen einer Erfolgskontrolle §4 Abs. 2 ist einem Kandidaten auf Antrag in angemessener Frist Einsicht in die ihn betreffenden Unterlagen dieser Erfolgskontrolle zu gewähren. Der Vorsitzende des Prüfungsausschusses bestimmt Ort und Zeit der Einsichtnahme. Kann der Kandidat einen festgesetzten Termin zur Einsichtnahme nicht wahrnehmen, muss er dies gegenüber dem Prüfungsausschuss anzeigen und begründen. Der Prüfungsausschuss entscheidet über
§ 22 Abs. 1 gilt entsprechend für die Einsicht in die Prüfungsakte.

§ 23 In-Kraft-Treten

Karlsruhe, den 30. April 2006

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Index

A

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Algorithms (Modul)</td>
<td>21</td>
</tr>
<tr>
<td>Advanced Concepts of Information and Knowledge Management (Modul)</td>
<td>26</td>
</tr>
<tr>
<td>Advanced Econometrics of Financial Markets</td>
<td>32</td>
</tr>
<tr>
<td>Advanced Infrastructures (Modul)</td>
<td>77</td>
</tr>
<tr>
<td>Advanced Lab Applied Informatics</td>
<td>111</td>
</tr>
<tr>
<td>Advanced Systems - Seminar</td>
<td>87</td>
</tr>
<tr>
<td>Advanced Web Applications</td>
<td>80</td>
</tr>
<tr>
<td>Aktuelle Probleme des Patentrechts</td>
<td>108</td>
</tr>
<tr>
<td>Algorithm Design</td>
<td>63</td>
</tr>
<tr>
<td>Algorithm Engineering</td>
<td>213</td>
</tr>
<tr>
<td>Algorithms for Ad-hoc and sensor networks</td>
<td>101</td>
</tr>
<tr>
<td>Algorithms for Cellular Automata</td>
<td>94</td>
</tr>
<tr>
<td>Algorithms for Internet Applications</td>
<td>141</td>
</tr>
<tr>
<td>Algorithms for Planar Graphs</td>
<td>92</td>
</tr>
<tr>
<td>Algorithms for Visualization of Graphs</td>
<td>93</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Approaches in Marketing</td>
<td>121</td>
</tr>
<tr>
<td>Behavioral Approaches in Marketing and Data Analysis (Modul)</td>
<td>40</td>
</tr>
<tr>
<td>Business Administration in Information Engineering and Management</td>
<td>51</td>
</tr>
<tr>
<td>Business and IT Service Management</td>
<td>186</td>
</tr>
<tr>
<td>Business Models in the Internet: Planning and Implementation</td>
<td>180</td>
</tr>
<tr>
<td>Business Organization: Theory and Management Perspective (Modul)</td>
<td>43</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Law for Advanced</td>
<td>100</td>
</tr>
<tr>
<td>Cloud Computing</td>
<td>203</td>
</tr>
<tr>
<td>Communication and Database Systems</td>
<td>88</td>
</tr>
<tr>
<td>Complex Internet Applications (Modul)</td>
<td>23</td>
</tr>
<tr>
<td>Complexity Management</td>
<td>153</td>
</tr>
<tr>
<td>Component Based Software Engineering</td>
<td>96</td>
</tr>
<tr>
<td>Computer Contract Law</td>
<td>91</td>
</tr>
<tr>
<td>Contract Drafting and Internet Law (Modul)</td>
<td>18</td>
</tr>
<tr>
<td>Copyright</td>
<td>71</td>
</tr>
<tr>
<td>Corporate Planning and Operations Research</td>
<td>115</td>
</tr>
<tr>
<td>Credit Risk</td>
<td>201</td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>194</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Analysis and Operations Research</td>
<td>123</td>
</tr>
<tr>
<td>Data Warehousing and Mining</td>
<td>70</td>
</tr>
<tr>
<td>Database Implementation and Tuning</td>
<td>207</td>
</tr>
<tr>
<td>Database Systems and XML</td>
<td>147</td>
</tr>
<tr>
<td>Datenschutz und Privatheit in vernetzten Informationssystemen</td>
<td>90</td>
</tr>
<tr>
<td>Deployment of Database Systems</td>
<td>208</td>
</tr>
<tr>
<td>Derivatives</td>
<td>199</td>
</tr>
<tr>
<td>Distributed Algorithms</td>
<td>145</td>
</tr>
<tr>
<td>Distributed Data Management</td>
<td>212</td>
</tr>
<tr>
<td>Distributed Database Systems: Basic Technology for e-Business</td>
<td>146</td>
</tr>
<tr>
<td>Document Management and Groupware Systems</td>
<td>148</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-Business & electronic Marketing</td>
<td>116</td>
</tr>
<tr>
<td>e-Collaboration (Modul)</td>
<td>22</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>179</td>
</tr>
<tr>
<td>Electronic Markets (Principles)</td>
<td>187</td>
</tr>
<tr>
<td>Electronic Markets: Institutions and Market Mechanisms</td>
<td>189</td>
</tr>
<tr>
<td>Employment Law I</td>
<td>82</td>
</tr>
<tr>
<td>Employment Law II</td>
<td>105</td>
</tr>
<tr>
<td>Enterprise Risk Management</td>
<td>173</td>
</tr>
<tr>
<td>Entrepreneurship and Marketing</td>
<td>122</td>
</tr>
<tr>
<td>eServices</td>
<td>182</td>
</tr>
<tr>
<td>European and International Law</td>
<td>104</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance, Econometrics, and Risk Management (Modul)</td>
<td>31</td>
</tr>
<tr>
<td>Financial Time Series and Econometrics</td>
<td>130</td>
</tr>
<tr>
<td>Fixed Income Securities</td>
<td>200</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game Theory II</td>
<td>131</td>
</tr>
<tr>
<td>Graph Algorithms</td>
<td>214</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Performance Communication</td>
<td>67</td>
</tr>
</tbody>
</table>

I

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information and Market Engineering (Modul)</td>
<td>34</td>
</tr>
<tr>
<td>Information Engineering and Management 1 (Modul)</td>
<td>15</td>
</tr>
<tr>
<td>Information Engineering and Management 2 (Modul)</td>
<td>16</td>
</tr>
<tr>
<td>Information Integration and Web Portals</td>
<td>77</td>
</tr>
<tr>
<td>Information Technology and Business Information</td>
<td>117</td>
</tr>
<tr>
<td>Information, Market, and Service Engineering (Modul)</td>
<td>32</td>
</tr>
<tr>
<td>Intelligent Systems in Finance</td>
<td>155</td>
</tr>
<tr>
<td>Interdisciplinary Seminar (Modul)</td>
<td>19</td>
</tr>
<tr>
<td>Interdisciplinary Seminar in Information Engineering and Management</td>
<td>57</td>
</tr>
<tr>
<td>International Marketing</td>
<td>118</td>
</tr>
<tr>
<td>International Risk Transfer</td>
<td>175</td>
</tr>
<tr>
<td>Internet Law</td>
<td>55</td>
</tr>
<tr>
<td>IT Complexity in Practice</td>
<td>157</td>
</tr>
</tbody>
</table>

K

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Discovery</td>
<td>150</td>
</tr>
<tr>
<td>Knowledge Management</td>
<td>149</td>
</tr>
</tbody>
</table>

L

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Class Web Services</td>
<td>164</td>
</tr>
<tr>
<td>Large-Scale Information and Knowledge Management (Modul)</td>
<td>24</td>
</tr>
<tr>
<td>Law for Information Companies (Modul)</td>
<td>49</td>
</tr>
<tr>
<td>Law of Contracts</td>
<td>56</td>
</tr>
<tr>
<td>Law of the Information Economy (Modul)</td>
<td>47</td>
</tr>
<tr>
<td>Course Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Law of the Information Society (Modul)</td>
<td>48</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>165</td>
</tr>
<tr>
<td>Management of Business Networks</td>
<td>178</td>
</tr>
<tr>
<td>Management of IT-Projects</td>
<td>161</td>
</tr>
<tr>
<td>Managing New Technologies</td>
<td>172</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>166</td>
</tr>
<tr>
<td>Market Engineering: Information in Institutions</td>
<td>181</td>
</tr>
<tr>
<td>Marketing (Modul)</td>
<td>37</td>
</tr>
<tr>
<td>Marketing and Innovation</td>
<td>119</td>
</tr>
<tr>
<td>Marketing and Operations Research</td>
<td>114</td>
</tr>
<tr>
<td>Marketing Research (Modul)</td>
<td>38</td>
</tr>
<tr>
<td>Markovian Decision Processes</td>
<td>134</td>
</tr>
<tr>
<td>Master Seminar in Information Engineering and Management 195</td>
<td></td>
</tr>
<tr>
<td>Master Seminar in Marketing</td>
<td>124</td>
</tr>
<tr>
<td>Master Seminar in Quantitative Marketing and OR</td>
<td>126</td>
</tr>
<tr>
<td>Master Seminar zu Marktforshung</td>
<td>85</td>
</tr>
<tr>
<td>Mobile Communication</td>
<td>20</td>
</tr>
<tr>
<td>Model Driven Software Development</td>
<td>98</td>
</tr>
<tr>
<td>Modern Market Research</td>
<td>113</td>
</tr>
<tr>
<td>Moving Objects Databases</td>
<td>81</td>
</tr>
<tr>
<td>Multicore Computers and Computer Clusters</td>
<td>69</td>
</tr>
<tr>
<td>Multidisciplinary Risk Research</td>
<td>174</td>
</tr>
<tr>
<td>Multimedia Communication</td>
<td>75</td>
</tr>
<tr>
<td>Nature-inspired Optimisation</td>
<td>144</td>
</tr>
<tr>
<td>Network and IT-Security Management</td>
<td>79</td>
</tr>
<tr>
<td>Network Security: Architectures and Protocols</td>
<td>89</td>
</tr>
<tr>
<td>Next Generation Internet</td>
<td>107</td>
</tr>
<tr>
<td>Operational Risk Management (Modul)</td>
<td>45</td>
</tr>
<tr>
<td>Operations Management</td>
<td>133</td>
</tr>
<tr>
<td>Optimization in a Random Environment</td>
<td>139</td>
</tr>
<tr>
<td>OR Methods and Models in Information Engineering and Management</td>
<td>54</td>
</tr>
<tr>
<td>Organic Computing</td>
<td>142</td>
</tr>
<tr>
<td>Organization Theory</td>
<td>167</td>
</tr>
<tr>
<td>Parallel Algorithms</td>
<td>215</td>
</tr>
<tr>
<td>Patent Law</td>
<td>103</td>
</tr>
<tr>
<td>Personalization and Recommender Systems</td>
<td>192</td>
</tr>
<tr>
<td>Portfolio and Asset Liability Management</td>
<td>129</td>
</tr>
<tr>
<td>Power Management</td>
<td>73</td>
</tr>
<tr>
<td>Power Management Praktikum</td>
<td>85</td>
</tr>
<tr>
<td>Practical Course Data Warehousing and Mining</td>
<td>109</td>
</tr>
<tr>
<td>Practical Course Database Systems</td>
<td>209</td>
</tr>
<tr>
<td>Practical Course Distributed Database Systems (former Practical Course Database Systems)</td>
<td>210</td>
</tr>
<tr>
<td>Practical Course in Algorithm Design</td>
<td>64</td>
</tr>
<tr>
<td>Practical Course in Information Engineering and Management (Master)</td>
<td>196</td>
</tr>
<tr>
<td>Practical Course in Telematics</td>
<td>60</td>
</tr>
<tr>
<td>Practical Course: Web Technologies</td>
<td>86</td>
</tr>
<tr>
<td>Practical Seminar Information Engineering and Management 185</td>
<td></td>
</tr>
<tr>
<td>Practical Seminar Knowledge Discovery</td>
<td>163</td>
</tr>
<tr>
<td>Principles of Information Engineering and Management</td>
<td>163</td>
</tr>
<tr>
<td>Principles of Insurance Management</td>
<td>110</td>
</tr>
<tr>
<td>Public Media Law</td>
<td>65</td>
</tr>
<tr>
<td>Public Sector Risk Management</td>
<td>177</td>
</tr>
<tr>
<td>Quality Management I</td>
<td>135</td>
</tr>
<tr>
<td>Quality Management II</td>
<td>136</td>
</tr>
<tr>
<td>Quantitative Marketing and OR (Modul)</td>
<td>39</td>
</tr>
<tr>
<td>Randomized Algorithms</td>
<td>84</td>
</tr>
<tr>
<td>Risk Management of Microfinance and Private Households</td>
<td>176</td>
</tr>
<tr>
<td>Semantic Web Technologies I</td>
<td>151</td>
</tr>
<tr>
<td>Semantic Web Technologies II</td>
<td>152</td>
</tr>
<tr>
<td>Seminar in Applied Informatics</td>
<td>112</td>
</tr>
<tr>
<td>Seminar in Financial Engineering</td>
<td>202</td>
</tr>
<tr>
<td>Seminar in Telematics</td>
<td>61</td>
</tr>
<tr>
<td>Seminar Information Engineering and Management</td>
<td>205</td>
</tr>
<tr>
<td>Seminar Information Systems</td>
<td>211</td>
</tr>
<tr>
<td>Seminar Service Science, Management & Engineering</td>
<td>184</td>
</tr>
<tr>
<td>Seminar: Management and Organization 170f</td>
<td></td>
</tr>
<tr>
<td>Service Engineering (Modul)</td>
<td>35</td>
</tr>
<tr>
<td>Service Innovation</td>
<td>183</td>
</tr>
<tr>
<td>Service Management (Modul)</td>
<td>36</td>
</tr>
<tr>
<td>Service Technologies (Modul)</td>
<td>30</td>
</tr>
<tr>
<td>Service-oriented Computing 1</td>
<td>158</td>
</tr>
<tr>
<td>Service-oriented Computing 2</td>
<td>159</td>
</tr>
<tr>
<td>Simulation I</td>
<td>137</td>
</tr>
<tr>
<td>Simulation II</td>
<td>138</td>
</tr>
<tr>
<td>Simulation of Computer Networks</td>
<td>138</td>
</tr>
<tr>
<td>Social Network Analysis in CRM</td>
<td>197</td>
</tr>
<tr>
<td>Software Architecture</td>
<td>62</td>
</tr>
<tr>
<td>Software Development for modern, parallel platforms</td>
<td>102</td>
</tr>
<tr>
<td>Software Engineering II</td>
<td>204</td>
</tr>
<tr>
<td>Special Topics in Management: Management and IT</td>
<td>168</td>
</tr>
<tr>
<td>Statistical Methods in Financial Risk Management</td>
<td>128</td>
</tr>
<tr>
<td>Stochastic Calculus and Finance</td>
<td>127</td>
</tr>
<tr>
<td>Stochastic Methods in Economics and Engineering (Modul)</td>
<td>42</td>
</tr>
<tr>
<td>Stochastic Modeling and Optimization (Modul)</td>
<td>46</td>
</tr>
<tr>
<td>Stochastic Models in Information Engineering and Management (Modul)</td>
<td>47</td>
</tr>
<tr>
<td>Stochastic Processes</td>
<td>140</td>
</tr>
<tr>
<td>Strategic and Innovative Decision Making in Marketing</td>
<td>120</td>
</tr>
<tr>
<td>Strategic Management of Information Technology</td>
<td>112</td>
</tr>
<tr>
<td>Strategy and Organization (Modul)</td>
<td>44</td>
</tr>
<tr>
<td>Strategy, Innovation and Data Analysis (Modul)</td>
<td>41</td>
</tr>
<tr>
<td>System Architecture</td>
<td>58</td>
</tr>
<tr>
<td>System Software (Modul)</td>
<td>28</td>
</tr>
<tr>
<td>Tax Law I</td>
<td>83</td>
</tr>
<tr>
<td>Tax Law II</td>
<td>99</td>
</tr>
<tr>
<td>Telecommunications Law</td>
<td>97</td>
</tr>
<tr>
<td>Telematics</td>
<td>74</td>
</tr>
<tr>
<td>Telematics for Information Management and Engineering</td>
<td>59</td>
</tr>
<tr>
<td>Trademark and Unfair Competition Law</td>
<td>76</td>
</tr>
</tbody>
</table>
Index

Transaction Management .. 206

U
Ubiquitous Computing ... 78

V
Value-Based Instruments of Corporate Strategy 169

W
Web Engineering ... 72
Web Service Engineering .. 160
Wireless Sensor-Actuator-Networks 66
Workflow Management Systems 68