Module Handbook
Economics Engineering (B.Sc.)
Winter term 2009/2010
Long version
24.08.2009

Faculty of Economics and Business Engineering
Inhaltsverzeichnis

Table of Contents

1. **Structure of the Bachelor Programme in Economics Engineering (B.Sc.)**
2. **Key Skills**
3. **Module Handbook - a helpful guide throughout the studies**
4. **Actual Changes**
5. **Modules (Foundation)**
 5.1 All Subjects
 - TVWL1VWL- Economics
 - TVWL1BWL- Business Administration
 - TVWL1INFO- Introduction to Informatics
 - TVWL1OR- Introduction to Operations Research
 - TVWL1JURA1- Introduction to Civil Law
 - TVWL1JURA3- Constitutional and Administrative Law
 - TVWL1MATH- Mathematics
 - TVWL1STAT- Statistics
 - TVWL1NW1- Physics
 - TVWL1NW2- Chemistry
6. **Modules (Specialization)**
 6.1 Economics
 - TVWL3VWL1- Applied Game Theory
 - TVWL3VWL4- Strategic Games
 - TVWL3VWL2- Industrial Organization
 - TVWL3VWL3- International Economics
 - TVWL3VWL5- Economic Policy
 - TVWL3VWL6- Microeconomic Theory
 - TVWL3VWL8- Macroeconomic Theory
 - TVWL3VWL9- Public Finance
 - TVWL3VWL7- Econometrics and Economics
6.2 Business Administration
 - TVWL3BWLOOW1- Sustainable Construction
 - TVWL3BWLOOW2- Real Estate Management
 - TVWL3BWLSM1- eBusiness and Servicemanagement
 - TVWL3BWLSM2- Supply Chain Management
 - TVWL3BWLSM3- eFinance
 - TVWL3BWLSM4- CRM and Service Management
 - TVWL3BWLSM5- Specialization in Customer Relationship Management
 - TVWL3BWLFBV1- Essentials of Finance
 - TVWL3BWLFBV2- Insurance: Calculation and Control
 - TVWL3BWLFBV3- Risk and Insurance Management
 - TVWL3BWLFBV4- Insurance Management
 - TVWL3BWLFBV5- Topics in Finance I
 - TVWL3BWLFBV6- Topics in Finance II
 - TVWL3BWLMAR- Foundations of Marketing
 - TVWL3BWLUO1- Strategy and Organization
 - TVWL3BWLIIP- Industrial Production I
 - TVWLIIIP2- Energy Economics
6.3 Informatics
 - TVWL3INFO1- Emphasis Informatics
 - TVWL3INFO2- Electives in Informatic
6.4 Operations Research
 - TVWL3OR5- Applications of Operations Research
6.5 Statistics .. 58
TVWL3STAT- Statistical Applications of Financial Risk Management ... 58

6.6 Natural and Engineering Sciences ... 59
TVWL3INGMB13- Introduction to Technical Logistics .. 59
TVWL3INGMB10- Production Technology I .. 60
TVWL3INGMB4- Production Technology II ... 61
TVWL3INGMB16- Combustion Engines ... 62
TVWL3INGMB17- Engine Development .. 63
TVWL3INGMB21- Product Lifecycle Management ... 64
TVWL3INGETIT1- Electrical Power Engineering ... 65
TVWL3INGBGU1- Fundamentals of Spatial and Infrastructural Development ... 66
TVWL3INGBGU2- Foundations of Guided Systems ... 67
TVWL3INGCV1- Principles of Life Science Engineering ... 68
TVWL3INGINTER1- Understanding and Prediction of Disasters I ... 69
TVWL3INGINTER4- Understanding and Prediction of Disasters II ... 70
TVWL3INGINTER3- Safety Science I .. 71
TVWL3INGINTER2- Safety Science II ... 72

6.7 Law .. 73
TVWL3JURA1- Labor and Tax Law .. 73
TVWL3JURA2_08- IT-Law ... 74
TVWL3JURA3- Civil Law ... 75
TVWL3JURA2- Commercial Law .. 76
TVWL3JURA4- Intellectual Property Law .. 77
TVWL3JURA5- Private Business Law ... 78
TVWL3JURA6- Public Business Law .. 79

6.8 Sociology .. 80
TVWL3SOZ- Sociology/Empirical Social Research .. 80
TVWL3SOZ2- Qualitative Social Research .. 81

6.9 General Modules ... 82
TVWL3SEM- Seminar Module ... 82
TVWL3EXPRAK- Internship .. 84
TVWL3THESIS- Bachelor Thesis .. 86

7 Courses .. 87
7.1 Foundation .. 87
25512- Economics I: Microeconomics ... 87
25014- Economics II: Macroeconomics .. 88
25016- Economics III: Introduction in Econometrics .. 89
25002/25003- Financial Accounting and Cost Accounting .. 90
25023- Business Administration and Management Science A ... 91
25024/25025- Business Administration and Management Science B .. 92
25026/25027- Business Administration and Management Science C .. 93
25030- Introduction to Programming with Java .. 94
25074- Foundations of Informatics I .. 95
25076- Foundations of Informatics II .. 96
25040- Introduction to Operations Research I .. 97
25043- Introduction to Operations Research II ... 98
24012- Civil Law for Beginners .. 99
24016- Public Law I - Basic Principles ... 100
24520- Public Law II - Public Economic Law .. 101
01350- Mathematics I .. 102
01830- Mathematics II ... 103
01352- Mathematics III .. 104
25008/25009- Statistics I .. 105
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25020/25021</td>
<td>Statistics II</td>
<td>106</td>
</tr>
<tr>
<td>02307</td>
<td>Experimental Physics A</td>
<td>107</td>
</tr>
<tr>
<td>02350</td>
<td>Experimental Physics B</td>
<td>108</td>
</tr>
<tr>
<td>05023</td>
<td>Inorganic Chemistry Practical</td>
<td>109</td>
</tr>
<tr>
<td>7.2</td>
<td>Specialization</td>
<td>110</td>
</tr>
<tr>
<td>03013</td>
<td>Meteorological Natural Hazards</td>
<td>110</td>
</tr>
<tr>
<td>3201-</td>
<td>Generically Meteorology /Climatology II</td>
<td>111</td>
</tr>
<tr>
<td>03203</td>
<td>Meteorological Measurements</td>
<td>112</td>
</tr>
<tr>
<td>04013</td>
<td>Tectonic Stress in Petroleum Rock Mechanics</td>
<td>113</td>
</tr>
<tr>
<td>10557</td>
<td>Introduction to engineering and hydrological geology</td>
<td>114</td>
</tr>
<tr>
<td>11005</td>
<td>Social structures of modern societies</td>
<td>115</td>
</tr>
<tr>
<td>19026</td>
<td>Design Basics in Highway Engineering</td>
<td>116</td>
</tr>
<tr>
<td>19027</td>
<td>Basics in Transport Planning and Traffic Engineering</td>
<td>117</td>
</tr>
<tr>
<td>19028</td>
<td>Spatial Planning and Planning Law</td>
<td>118</td>
</tr>
<tr>
<td>19055</td>
<td>Hydraulic Engineering and Water Resource Management I</td>
<td>119</td>
</tr>
<tr>
<td>19066</td>
<td>Basics of Ground Born Guided Systems</td>
<td>120</td>
</tr>
<tr>
<td>19306</td>
<td>Railway Logistics, Management and Operating - Part I</td>
<td>121</td>
</tr>
<tr>
<td>19315</td>
<td>Safety Management in Highway Engineering</td>
<td>122</td>
</tr>
<tr>
<td>19632</td>
<td>Natural Disaster Management</td>
<td>123</td>
</tr>
<tr>
<td>20150</td>
<td>Geoinformatics I</td>
<td>124</td>
</tr>
<tr>
<td>20241/42</td>
<td>Remote Sensing Systems</td>
<td>125</td>
</tr>
<tr>
<td>20243/44</td>
<td>Remote Sensing Methods</td>
<td>126</td>
</tr>
<tr>
<td>20245</td>
<td>n.n.</td>
<td>127</td>
</tr>
<tr>
<td>20712/13</td>
<td>Introduction to GIS for students of natural, engineering and geo sciences</td>
<td>128</td>
</tr>
<tr>
<td>21030</td>
<td>Occupational Health and Safety Management and Systems</td>
<td>129</td>
</tr>
<tr>
<td>21037</td>
<td>Industrial Safety and Environmental Management</td>
<td>130</td>
</tr>
<tr>
<td>21051</td>
<td>Materialflow</td>
<td>131</td>
</tr>
<tr>
<td>21056</td>
<td>Airport Logistics</td>
<td>132</td>
</tr>
<tr>
<td>21061</td>
<td>Safety Engineering</td>
<td>133</td>
</tr>
<tr>
<td>21074</td>
<td>Informationsysteme in Logistik und Supply Chain Management</td>
<td>134</td>
</tr>
<tr>
<td>21078</td>
<td>Logistics</td>
<td>135</td>
</tr>
<tr>
<td>21081</td>
<td>Fundamentals of Technical Logistics</td>
<td>136</td>
</tr>
<tr>
<td>21085</td>
<td>Automotive Logistics</td>
<td>137</td>
</tr>
<tr>
<td>21086</td>
<td>Warehouse and Distribution Systems</td>
<td>138</td>
</tr>
<tr>
<td>21089</td>
<td>Industrial Application of Material Handling Systems in Sorting and Distribution Systems</td>
<td>139</td>
</tr>
<tr>
<td>21101</td>
<td>Combustion Engines A</td>
<td>140</td>
</tr>
<tr>
<td>21109</td>
<td>Motor Fuels for Combustion Engines and their Verifications</td>
<td>141</td>
</tr>
<tr>
<td>21112</td>
<td>Supercharging of Internal Combustion Engines</td>
<td>142</td>
</tr>
<tr>
<td>21114</td>
<td>Simulation of Spray and Mixture Formation in Internal Combustion Engines</td>
<td>143</td>
</tr>
<tr>
<td>21134</td>
<td>Methods in Analyzing Internal Combustion</td>
<td>144</td>
</tr>
<tr>
<td>21135</td>
<td>Combustion Engines B</td>
<td>145</td>
</tr>
<tr>
<td>21137</td>
<td>Engine Measurement Technologies</td>
<td>146</td>
</tr>
<tr>
<td>21138</td>
<td>Internal Combustion Engines and Exhaust Gas Aftertreatment Technology</td>
<td>147</td>
</tr>
<tr>
<td>21350</td>
<td>Product Lifecycle Management</td>
<td>148</td>
</tr>
<tr>
<td>21366</td>
<td>Product Lifecycle Management in the Manufacturing Industry</td>
<td>149</td>
</tr>
<tr>
<td>21387</td>
<td>Computer Integrated Planning of New Products</td>
<td>150</td>
</tr>
<tr>
<td>21652</td>
<td>Machine Tools</td>
<td>151</td>
</tr>
<tr>
<td>21657</td>
<td>Manufacturing Technology</td>
<td>152</td>
</tr>
<tr>
<td>21660</td>
<td>Integrated Production Planning</td>
<td>153</td>
</tr>
<tr>
<td>21692</td>
<td>International Production and Logistics</td>
<td>154</td>
</tr>
<tr>
<td>21930</td>
<td>Radiation Protection and Nuclear Emergency Protection</td>
<td>155</td>
</tr>
<tr>
<td>22213</td>
<td>Principles of Process Engineering referring to Food I</td>
<td>156</td>
</tr>
<tr>
<td>22220</td>
<td>Life Science Engineering II</td>
<td>157</td>
</tr>
<tr>
<td>22319</td>
<td>Cycles and Global Development</td>
<td>158</td>
</tr>
<tr>
<td>22601</td>
<td>Chemical Technology of Water</td>
<td>159</td>
</tr>
<tr>
<td>23356</td>
<td>Energy Generation</td>
<td>160</td>
</tr>
<tr>
<td>23365</td>
<td>Diagnostics on Power Network Equipment</td>
<td>161</td>
</tr>
<tr>
<td>23371/23373</td>
<td>Electric Power System Engineering I: Power Network Analysis</td>
<td>162</td>
</tr>
</tbody>
</table>
23382- Technique of Electrical Installation .. 163
23390- Power Transformations .. 164
23391/23393- Systems for Electrical Energy .. 165
23396- Automation of Power Grids .. 166
24011- Commercial and Corporate Law ... 168
24018- Data Protection Law .. 169
24070- Industrial Property and Copyright Law 170
24082- Public Media Law .. 171
24121- Copyright ... 172
24136/24609- Trademark and Unfair Competition Law 173
24140- Environmental Law .. 174
24167- Employment Law I ... 175
24168- Tax Law I ... 176
24501- Internet Law .. 177
24504- Advanced Civil Law ... 178
24506/24017- Exercises in Civil Law .. 179
24612- Computer Contract Law .. 180
24632- Telecommunications Law .. 181
24646- Tax Law II ... 182
24650- Civil Law for Advanced .. 183
24661- Patent Law ... 184
24666- European and International Law ... 185
24669- Employment Law II .. 186
24671- Law of Contracts ... 187
25033- Applied Informatics II - IT Systems for e-Commerce 188
25050- Private and Social Insurance ... 189
25055- Principles of Insurance Management 190
25070- Applied Informatics I - Modelling 191
25111- Nonlinear Optimization I ... 192
25113- Nonlinear Optimization II ... 193
25131- Seminar in Continuous Optimization 194
25134- Global Optimization I .. 195
25136- Global Optimization II .. 196
25138- Mixed-integer Optimization ... 197
25150- Marketing and Consumer Behavior 198
25154- Modern Market Research .. 199
25156- Marketing and Operations Research 200
25158- Corporate Planning and Operations Research 201
25177- Brand Management .. 202
25191- Bachelor Seminar in Foundations of Marketing 203
25210- Management Accounting .. 204
25216- Financial Management .. 205
25232- Financial Intermediation ... 206
25293- Seminar in Finance .. 207
25296- Exchanges ... 208
25299- Business Strategies of Banks .. 209
25325- Statistics and Econometrics in Business and Economics 210
25365- Economics of Uncertainty ... 212
25369- Game Theory II .. 213
25371- Industrial Organization .. 214
25373- Experimental Economics .. 215
25375- Data Mining .. 216
25381- Advanced Econometrics of Financial Markets 217
25432- Optimization on Graphs and Networks 218
25486- Facility Location and Strategic Supply Chain Management 219
25488- Tactical and Operational Supply Chain Management 220
25490- Software Laboratory: OR Models I 221
<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25491</td>
<td>Seminar in Discrete Optimization</td>
<td>222</td>
</tr>
<tr>
<td>25517</td>
<td>Welfare Economics</td>
<td>223</td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I</td>
<td>224</td>
</tr>
<tr>
<td>25527</td>
<td>Advanced Microeconomic Theory</td>
<td>225</td>
</tr>
<tr>
<td>25543</td>
<td>Theory of Economic Growth</td>
<td>226</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles</td>
<td>227</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I</td>
<td>228</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II</td>
<td>229</td>
</tr>
<tr>
<td>25679</td>
<td>Markov Decision Models I</td>
<td>230</td>
</tr>
<tr>
<td>25700</td>
<td>Efficient Algorithms</td>
<td>231</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications</td>
<td>232</td>
</tr>
<tr>
<td>25720</td>
<td>Database Systems</td>
<td>233</td>
</tr>
<tr>
<td>25728</td>
<td>Software Engineering</td>
<td>234</td>
</tr>
<tr>
<td>25740</td>
<td>Knowledge Management</td>
<td>235</td>
</tr>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I</td>
<td>236</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management</td>
<td>237</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance</td>
<td>238</td>
</tr>
<tr>
<td>25770</td>
<td>Service Oriented Computing I</td>
<td>241</td>
</tr>
<tr>
<td>25780</td>
<td>Advanced Programming - Java Network Programming</td>
<td>242</td>
</tr>
<tr>
<td>25886</td>
<td>Advanced Programming - Application of Business Software</td>
<td>243</td>
</tr>
<tr>
<td>25900</td>
<td>Management and Strategy</td>
<td>244</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations</td>
<td>245</td>
</tr>
<tr>
<td>25907</td>
<td>Special Topics in Management: Management and IT</td>
<td>246</td>
</tr>
<tr>
<td>25915</td>
<td>Seminar: Management and Organization</td>
<td>247</td>
</tr>
<tr>
<td>25916</td>
<td>Seminar: Management and Organization</td>
<td>248</td>
</tr>
<tr>
<td>25950</td>
<td>Fundamentals of Production Management</td>
<td>249</td>
</tr>
<tr>
<td>25959</td>
<td>Energy Policy</td>
<td>250</td>
</tr>
<tr>
<td>25960</td>
<td>Material and Energy Flows in the Economy</td>
<td>251</td>
</tr>
<tr>
<td>25996</td>
<td>Logistics and Supply Chain Management</td>
<td>252</td>
</tr>
<tr>
<td>26010</td>
<td>Introduction in to Energy Economics</td>
<td>253</td>
</tr>
<tr>
<td>26012</td>
<td>Renewable Energy Sources - Technologies and Potentials</td>
<td>254</td>
</tr>
<tr>
<td>26120</td>
<td>Public Revenues</td>
<td>255</td>
</tr>
<tr>
<td>26121</td>
<td>Fiscal Policy</td>
<td>256</td>
</tr>
<tr>
<td>26130</td>
<td>Seminar Public Finance</td>
<td>257</td>
</tr>
<tr>
<td>26240</td>
<td>Competition in Networks</td>
<td>258</td>
</tr>
<tr>
<td>26252</td>
<td>International Economics</td>
<td>259</td>
</tr>
<tr>
<td>26254</td>
<td>International Economic Policy</td>
<td>260</td>
</tr>
<tr>
<td>26259</td>
<td>Management and Organisation of Projects in Developing Countries</td>
<td>261</td>
</tr>
<tr>
<td>26263</td>
<td>Seminar on Network Economics</td>
<td>262</td>
</tr>
<tr>
<td>26287</td>
<td>Applying Industrial Organization</td>
<td>263</td>
</tr>
<tr>
<td>26300</td>
<td>Insurance Models</td>
<td>264</td>
</tr>
<tr>
<td>26323</td>
<td>Insurance Marketing</td>
<td>265</td>
</tr>
<tr>
<td>26326</td>
<td>Enterprise Risk Management</td>
<td>266</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law</td>
<td>267</td>
</tr>
<tr>
<td>26372</td>
<td>Insurance Game</td>
<td>268</td>
</tr>
<tr>
<td>26400</td>
<td>Real Estate Management II</td>
<td>269</td>
</tr>
<tr>
<td>26400w</td>
<td>Real Estate Management I</td>
<td>270</td>
</tr>
<tr>
<td>26404</td>
<td>Sustainability Assessment of Construction Works</td>
<td>271</td>
</tr>
<tr>
<td>26404w</td>
<td>Design, Construction and Assessment of Green Buildings I</td>
<td>272</td>
</tr>
<tr>
<td>26420</td>
<td>Topics of Sustainable Management of Housing and Real Estate</td>
<td>273</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks</td>
<td>274</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>275</td>
</tr>
<tr>
<td>26466</td>
<td>eServices</td>
<td>276</td>
</tr>
<tr>
<td>26470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>277</td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering & Management</td>
<td>278</td>
</tr>
<tr>
<td>26508</td>
<td>Customer Relationship Management</td>
<td>279</td>
</tr>
<tr>
<td>26520</td>
<td>Operative CRM</td>
<td>280</td>
</tr>
<tr>
<td>26522</td>
<td>Analytical CRM</td>
<td>282</td>
</tr>
</tbody>
</table>
8 Appendix: Study- and Examination Regulation (06/03/2007, in German) 317

Index 333
1 Structure of the Bachelor Programme in Economics Engineering (B.Sc.)

The bachelor programme in Economics Engineering (B.Sc.) has 6 terms and consists of 180 credits (CP) including internship and bachelor thesis. Terms 1 to 3 (and parts of term 4) of the programme are methodologically oriented and provide the student with the foundations of economic, business and natural science. Terms 4 to 6 aim at the specialization and application of this knowledge.

Figure 1 shows the structure of the subjects and CPs allocated to the subjects. According to the European Credit Transfer System, one credit corresponds to a workload of 30 hours.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Core Programme</th>
<th>Compulsory</th>
<th>Elective</th>
<th>Semester</th>
<th>Specialization Programme</th>
<th>Compulsory</th>
<th>Elective (2 out of 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acc 4 CP</td>
<td>EC 1 5 CP</td>
<td>Progr 5 CP</td>
<td>Civil Law 4 CP</td>
<td>Math 1 7 CP</td>
<td>4</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>BA A 3 CP</td>
<td></td>
<td></td>
<td>Public L.1 3 CP</td>
<td></td>
<td>5</td>
<td>BA</td>
</tr>
<tr>
<td>2</td>
<td>BA B 4 CP</td>
<td>EC 2 5 CP</td>
<td>Info 1 5 CP</td>
<td>Public L. 2 3 CP</td>
<td>Math 2 7 CP</td>
<td>6</td>
<td>9 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR 1 4.5 CP</td>
<td></td>
<td></td>
<td>Stat 1 5 CP</td>
<td>7</td>
<td>BA</td>
</tr>
<tr>
<td>3</td>
<td>BA C 4 CP</td>
<td>Info 2 5 CP</td>
<td>OR 2 4.5 CP</td>
<td>Math 3 7 CP</td>
<td>Stat 2 5 CP</td>
<td>8</td>
<td>INFO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physics 1 8 CP</td>
<td>9</td>
<td>BA</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physics 2 8 CP</td>
<td>10</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chem 16 CP</td>
<td>11</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internship 8 CP</td>
<td></td>
<td>12</td>
<td>BA</td>
</tr>
</tbody>
</table>

Abbildung 1: Structure of the Bachelor Programme (Recommendation)

In the specialization studies of the bachelor programme the student has to choose two elective modules of the following disciplines: Informatics, operations research, business science, economics, engineering/natural science, law or sociology. In principle, both elective modules are also available in one discipline. Thereby it is only allowed to choose either one module in law or in sociology. Furthermore, the student has to attend two seminars with a minimum of six CP within the seminar module. In addition to the key skills gained in the seminars (3 CP), the student has to acquire additional key skills totalling at least 3 credits.

It is left to the student’s individual curriculum (taking into account the examination and module regulations), in which terms the chosen modules will be started and completed. However, it is highly recommended to follow the proposed structure and schedule of the first 4 terms and to complete all courses and seminars before beginning the bachelor thesis.
2 Key Skills

The bachelor programme *Economics Engineering (B.Sc.*) at the Faculty of Economics and Business Engineering distinguishes itself by an exceptionally high level of interdisciplinarity. With the combination of business science, economics, informatics, operations research, mathematics as well as engineering and natural science, the integration of knowledge of different disciplines is an inherent element of the programme. As a result, interdisciplinary and connected thinking is encouraged in a natural way. Furthermore, tutor programs with more than 20 semester periods per week contribute significantly to the development of key skills in the bachelor programme. The integrative taught key skills, which are acquired throughout the entire programme, can be classified into the following fields:

Soft skills
1. Team work, social communication and creativity techniques
2. Presentations and presentation techniques
3. Logical and systematical arguing and writing

Enabling skills
1. Decision making in business context
2. Project management competences
3. Fundamentals of business science
4. English as a foreign language

Orientational knowledge
1. Acquisition of interdisciplinary knowledge
2. Institutional knowledge about economic and legal systems
3. Knowledge about international organisations
4. Media, technology and innovation

The integrative acquisition of key skills especially takes place in several compulsory courses during the bachelor programme, namely
1. Basic program in economics and business science
2. Seminar module
3. Mentoring of the bachelor thesis
4. Internship
5. Business science, economics and informatics modules

Figure 2 shows the classification of key skills within the bachelor programme at a glance. Besides the integrated key skills, the additive acquisition of key skills, which are totalling at least three credits within the seminar module, is scheduled. A list of recommended courses and seminars will be published online for the additive acquisition. This list is coordinated with the House of Competence.
Art der Schlüsselqualifikation

<table>
<thead>
<tr>
<th>Bachelorstudium</th>
<th>Grundprogramm</th>
<th>Vertiefungsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REWE BWL A</td>
<td>BWLB,C VWL I,II</td>
</tr>
</tbody>
</table>

Basiskompetenzen (soft skills)

<table>
<thead>
<tr>
<th>Kompetenz</th>
<th>Grundprogramm</th>
<th>Vertiefungsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teamarbeit, soziale Kommunikation und Kreativitätstechniken</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Präsentationserstellung und -techniken</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Logisches und systematisches Argumentieren und Schreiben</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Strukturierte Problemlösung und Kommunikation</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Praxisorientierung (enabling skills)

<table>
<thead>
<tr>
<th>Kompetenz</th>
<th>Grundprogramm</th>
<th>Vertiefungsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handlungskompetenz im beruflichen Kontext</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Kompetenzen im Projektmanagement</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Betriebswirtschaftliche Grundkenntnisse</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Englisch als Fachsprache</td>
<td>x</td>
<td>(x)*</td>
</tr>
</tbody>
</table>

Orientierungswissen

<table>
<thead>
<tr>
<th>Kompetenz</th>
<th>Grundprogramm</th>
<th>Vertiefungsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutionelles Wissen über Wirtschafts- und Rechtssysteme</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wissen über internationale Organisationen</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Medien, Technik und Innovation</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

(x)* ist nicht zwingend SQ-vermittelnd; hängt von der Art der Aktivität ab (z.B. Auslandspraktikum, thematische Ausrichtung der Bachelorarbeit)

Abbildung 2: Key Skills
3 Module Handbook - a helpful guide throughout the studies

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme. It describes:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other (e.g. if a course is selectable in two or more modules) is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0). In order to that the minimum requirement of credits of this module have been met.

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations takes place online via the self-service function for students. The following functions can be accessed on https://studium.kit.edu/meinsemester/Seiten/pruefungsanmeldung.aspx:

- Sign in and sign off exams
- Retrieve examination results
- Print transcript of records

For further and more detailed information also see https://zvwgate.zvw.uni-karlsruhe.de/download/leitfaden_studierende.pdf

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.uni-karlsruhe.de/studium/hinweise/.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student.
and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme (in the appendix).

Used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/CP</td>
<td>Credit Points/ECTS</td>
<td>Leistungspunkte/ECTS</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>course</td>
<td>Lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>RÜ</td>
<td>computing lab</td>
<td>Rechnerübung</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>summer term</td>
<td>Sommersemester</td>
<td></td>
</tr>
<tr>
<td>Sem.</td>
<td>semester/term</td>
<td>Semester</td>
<td></td>
</tr>
<tr>
<td>ER/SPO</td>
<td>examination regulations</td>
<td>Studien- und Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>KS/SQ</td>
<td>key skills</td>
<td>Schlüsselqualifikationen</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>contact hour</td>
<td>Semesterwochenstunde</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>excercise course</td>
<td>Übung</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>winter term</td>
<td>Wintersemester</td>
<td></td>
</tr>
</tbody>
</table>
4 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist.

eFinance [TVWL3BWLISM3] (S. 38)

Anmerkungen
The lectures Derivatives, Exchanges and International Finance will first be offered in this module in the winter term 2009.

Methodical Foundations of OR [TVWL3OR6] (S. 54)

Anmerkungen
This module is offered for the first time in winter 2009/10.

Stochastic Methods and Simulation [TVWLOR7] (S. 55)

Anmerkungen
This module is offered for the first time in winter 2009/10.

Methods for Discrete Optimization [TVWL3OR1] (S. 56)

Anmerkungen
The module was offered in summer term 2009 for the last time.

Seminar Module [TVWL3SEM] (S. 82)

Bedingungen
The seminars must be offered by a representative of the School of Economics and Business Engineering. Alternatively one of the two compulsory seminars can be absolved at a engineering department or at the Department of Mathematics. The seminar has to be offered by a representative of the respective departments as well. The assessment has to meet the demands of the School of Economics and Business Engineering (active participation, term paper with a workload of at least 80 h, presentation).

A seminar at another Departments then the School of Economics and Business Engineering requires an official approval at all and can be applied at the examination office of the School of Economics and Business Engineering. Seminars at the wbk and the IFL will not requiring these official approval.

Anmerkungen
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the Universität Karlsruhe (TH). In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

GeoInformatics I [20150] (S. 124)

Anmerkungen
This course is offered in the winter term 2009/10 for the last time.

Principles of Insurance Management [25055] (S. 190)

Anmerkungen
This lecture will extraordinarily not be held in the winter term 2009/10.

Insurance Contract Law [26360] (S. 267)

Anmerkungen
The course is offered extraordinarily in winter term 2009/10.

Special Topics in Information Engineering & Management [26478] (S. 278)

Anmerkungen
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Engineering & Management course. The current topics of the practical seminars are available at the following homepage: http://www.im.uni-karlsruhe.de/lehre.

This lecture is first offered in the winter term 2009/10.
5 Modules (Foundation)

5.1 All Subjects

Module: Economics Module key: [TVWL1VWL]

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 15

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Notice: The lecture Economics I: Microeconomics [25012] is part of the preliminary examination concerning § 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25512</td>
<td>Economics I: Microeconomics (S. 87)</td>
<td>3/0/2</td>
<td>W</td>
<td>5</td>
</tr>
<tr>
<td>25014</td>
<td>Economics II: Macroeconomics (S. 88)</td>
<td>3/0/2</td>
<td>S</td>
<td>5</td>
</tr>
<tr>
<td>25016</td>
<td>Economics III: Introduction in Econometrics (S. 89)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s):
Berninghaus
Wigger, Schaffer
Höchstötter
Module: Business Administration

Subject: Business Administration
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes, Thomas Burdelski
Credit points (CP): 15

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures of each course of this module is defined for each course separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
It is strongly recommended to attend the courses in the following sequence:
2nd term: Business Administration and Management Science B [25024/25025]
3rd term: Business Administration and Management Science C [25026/25027]

Learning Outcomes
The student
• has core skills in business administration in particular with respect to decision making and model based view of corporations
• masters the fundamentals of managerial and financial accounting as well as business administration
• is able to analyse and assess the central tasks, functions and decisions in modern corporations

This module sets the base for advanced courses in the field of business administration and management science.

Content
This module provides the fundamentals of managerial and financial accounting as well as business administration and management science. Then, the module focuses on the fields of marketing, production economics, information engineering and management, management and organization, investment and finance and the german specific term controlling.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25002/25003 25023</td>
<td>Financial Accounting and Cost Accounting (S. 90) Business Administration and Management Science A (S. 91)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>Burdelski Burdelski</td>
</tr>
<tr>
<td>25024/25025</td>
<td>Business Administration and Management Science B (S. 92)</td>
<td>2/0/2</td>
<td>S</td>
<td>4</td>
<td>Gaul, Lützkendorf, Geyer-Schulz, Weinhardt, Burdelski</td>
</tr>
<tr>
<td>25026/25027</td>
<td>Business Administration and Management Science C (S. 93)</td>
<td>2/0/2</td>
<td>W</td>
<td>4</td>
<td>Lindstädt, Ruckes, Uhrig-Homburg, Burdelski</td>
</tr>
</tbody>
</table>
Module: Introduction to Informatics

Subject: Informatics
Module coordination: Hartmut Schmeck, Rudi Studer, Detlef Seese
Credit points (CP): 15

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module.
The examinations are offered every semester. Re-examinations are offered at every ordinary examination date.

- Introduction to Programming with Java
 Compulsory tests in the computer lab
 Written exam resp. computer-based exam (120 min)
The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam.
Those admission to the exam is only valid for the current main exam (in winter term) and the following exam (in summer term)
- Foundations of Informatics I
 Written exam in the first week of the recess period (60 min)
- Foundations of Informatics II
 Written exam in the first week of the recess period (90 min)
It is possible to gain 0.3-0.4 grading points to the written exam by successful participation in the exercises (achieving a minimum number of points received for solutions to the exercises), or by successful completion of a bonus exam (both according to Section 4 (2), 3 of the examination regulation).

When every single examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
It is strongly recommended to attend the courses in the following sequence: Introduction to Programming with Java [25030], Foundations of Informatics I [25074] Foundations of Informatics II [25076]

Learning Outcomes
The student
- knows the main principles, methods and systems of computer science,
- can use this knowledge for applications in advanced computer science courses and other areas for situation-adequate problem solving,
- is capable of finding strategic and creative responses in the search for solutions to well defined, concrete, and abstract problems.
The student can deepen the learned concepts, methods, and systems of computer science in advanced computer science lectures.

Content

Courses in module Introduction to Informatics [TVWL1INFO]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25030</td>
<td>Introduction to Programming with Java (S. 94)</td>
<td>3/1/2</td>
<td>W</td>
<td>5</td>
<td>Seese</td>
</tr>
<tr>
<td>25074</td>
<td>Foundations of Informatics I (S. 95)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>Studer, Agarwal</td>
</tr>
<tr>
<td>25076</td>
<td>Foundations of Informatics II (S. 96)</td>
<td>3/1</td>
<td>W</td>
<td>5</td>
<td>Schmeck</td>
</tr>
</tbody>
</table>
Module: Introduction to Operations Research

Subject: Operations Research
Module coordination: Stefan Nickel, Oliver Stein, Karl-Heinz Waldmann
Credit points (CP): 9

Learning Control / Examinations
The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.
In each term (usually in March and July), one examination is held for both courses.
The overall grade of the module is the grade of the written examination.

Prerequisites
Mathematics I und II. Programming knowledge for computing exercises.

Conditions
It is strongly recommended to attend the course Introduction to Operations Research I [25040] before attending the course Introduction to Operations Research II [25043].

Learning Outcomes
The student
• names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
• knows the indispensable methods and models for quantitative analysis,
• models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
• validates, illustrates and interprets the obtained solutions.

Content
This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.
This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Courses in module Introduction to Operations Research [TVWL1OR]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25040</td>
<td>Introduction to Operations Research I (S. 97)</td>
<td>2/2/2</td>
<td>S</td>
<td>4.5</td>
<td>Nickel, Stein, Waldmann</td>
</tr>
<tr>
<td>25043</td>
<td>Introduction to Operations Research II (S. 98)</td>
<td>2/2/2</td>
<td>W</td>
<td>4.5</td>
<td>Nickel, Stein, Waldmann</td>
</tr>
</tbody>
</table>
Module: Introduction to Civil Law

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 4

Learning Control / Examinations
The assessment of this module consists of a written examination (90 min) according to § 4(2), 1 of the examination regulation. The grade of the module is the grade of the written examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

Content
The module generally introduces into law. What is law, why are legal rules valid, and what is the role of law in conjunction with social behaviour, technological and market developments? What is the relationship between law and justice? Moreover, the distinction between civil law, public law and criminal law will be highlighted. The basics of jurisdiction, international conflicts and alternative dispute settlement will be discussed. The main focus of the course is on the fundamental notions of civil law as defined and regulated in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, agency, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises. The course ends with an outlook to the law of contracts and property law.

Courses in module Introduction to Civil Law [TVWL1JURA1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24012</td>
<td>Civil Law for Beginners (S. 99)</td>
<td>4/0</td>
<td>W</td>
<td>4</td>
<td>Dreier, Sester</td>
</tr>
</tbody>
</table>
Module: Constitutional and Administrative Law

Subject: Law
Module coordination: Indra Spieker genannt Döhmann
Credit points (CP): 6

Learning Control / Examinations
The assessment of this module consists of a written examination (90 min) according to § 4(2), 1 of the examination regulation for the courses Public Law I and II.
The grade of the module is the grade for the written examination.

Prerequisites
None.

Conditions
The course Public Law I [24016] has to be attend before the course Public Law II [24520].

Learning Outcomes
Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24016</td>
<td>Public Law I - Basic Principles (S. 100)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Spieker genannt Döhmann</td>
</tr>
<tr>
<td>24520</td>
<td>Public Law II - Public Economic Law (S. 101)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Spieker genannt Döhmann</td>
</tr>
</tbody>
</table>
Module: Mathematics

Module key: [TVWL1MATH]

Subject: Mathematics
Module coordination: Günter Last
Credit points (CP): 21

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module.
The overall grade of the module is the average of the grades for each course truncated after the first decimal.
The assessment procedures of each course of this module is defined for each course separately.

Prerequisites
The admission to the examinations carried out regardless of the evidence of the other examinations in the module.

Conditions
It is strongly recommended to attend the courses in the following sequence: Mathematics I [01350], Mathematics II [01830] Mathematics III [01352]

Learning Outcomes

Content

Courses in module Mathematics [TVWL1MATH]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01350</td>
<td>Mathematics I (S. 102)</td>
<td>4/2/2</td>
<td>W</td>
<td>7</td>
<td>Last, Folkers, Klar</td>
</tr>
<tr>
<td>01830</td>
<td>Mathematics II (S. 103)</td>
<td>4/2/2</td>
<td>S</td>
<td>7</td>
<td>Last, Folkers, Klar</td>
</tr>
<tr>
<td>01352</td>
<td>Mathematics III (S. 104)</td>
<td>4/2/2</td>
<td>W</td>
<td>7</td>
<td>Last, Folkers, Klar</td>
</tr>
</tbody>
</table>
Module: Statistics

Subject: Statistics
Module coordination: Svetlozar Rachev, Markus Höchstötter
Credit points (CP): 10

Learning Control / Examinations
The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II). The overall grade of the module is the average of the grades of these two written examinations.

Prerequisites
To some extend knowledge of the content of the module Mathematics [WW1MATH/WI1MATH] is assumed. Therefore it is recommended to attend the course Mathematics I [01350] before attending the module Statistics [TVWL1STAT].

Conditions
It ist recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021].
Each course is complemented by an exercise, a tutorium and a computing laboratory. It highly recommended to attend these too.
Notice: The lecture Statistics I [25008/25009] is part of the preliminary examination concerning Section 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Learning Outcomes
Content
The module contains the fundamental methods and scopes of Statistics.
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, convolution and limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, theory of tests (optimality, most important examples of tests)

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25008/25009</td>
<td>Statistics I (S. 105)</td>
<td>4/0/2</td>
<td>S</td>
<td>5</td>
<td>Höchstötter</td>
</tr>
<tr>
<td>25020/25021</td>
<td>Statistics II (S. 106)</td>
<td>4/0/2</td>
<td>W</td>
<td>5</td>
<td>Höchstötter</td>
</tr>
</tbody>
</table>
Module: Physics

Subject: Natural Science/ Engineering Science
Module coordination:
Credit points (CP): 16

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Physics [TVWL1NW1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>02307</td>
<td>Experimental Physics A (S. 107)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
</tr>
<tr>
<td>02350</td>
<td>Experimental Physics B (S. 108)</td>
<td>4/2</td>
<td>S</td>
<td>8</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s):

- Schimmel
Module: Chemistry

Module key: [TVWL1NW2]

Subject: Natural Science/Engineering Science

Module coordination:
Credit points (CP): 16

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Chemistry [TVWL1NW2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05023</td>
<td>Inorganic Chemistry Practical (S. 109)</td>
<td>6</td>
<td>W</td>
<td>16</td>
<td>Von Hänisch</td>
</tr>
</tbody>
</table>
6 Modules (Specialization)

6.1 Economics

Module: Applied Game Theory

Module key: [TVWL3VWL1]

Subject: Economics
Module coordination: Siegfried Berninghaus
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Every singled lecture is examined within a 80 min. written exam at the end of the of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

In the lecture Experimental Economics [25373] there may be the possibility - depending on the lecturer - to improve the final mark of the passed exam by writing a term paper and presenting it in class.

Prerequisites
None.

Conditions
Good knowledge of mathematics and statistics is recommended.
One of the lectures Game Theory I [25525] or Game Theory II [25369] has to be completed. Overall there has to be absolved examinations at at least 9 Credits.

Learning Outcomes
The student
- analyzes economic interdependencies under use of experimental methods and evaluates theoretical concepts,
- applies theoretical algorithms to economic and managerial problems,
- is able to analyze complex strategic decision problems by means of game theoretical concepts,
- knows basic solutions concepts of simple strategic decisions and is able to apply them to concrete economic problems,
- understands economic and managerial decision problems and is able to solve them by applying suitable solution concepts,
- knows experimental methods in economics from experiment design to evaluation of data.

Content
Lectures discuss individual as well as group decisions under (un-)certainty. Tutorials apply theoretical concepts to case studies. Theoretical models are compared to empirical findings.

Courses in module Applied Game Theory [TVWL3VWL1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25525</td>
<td>Game Theory I (S. 224)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>Berninghaus</td>
</tr>
<tr>
<td>25369</td>
<td>Game Theory II (S. 213)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>Berninghaus</td>
</tr>
<tr>
<td>25371</td>
<td>Industrial Organization (S. 214)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Berninghaus</td>
</tr>
<tr>
<td>25373</td>
<td>Experimental Economics (S. 215)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Berninghaus, Bleich</td>
</tr>
</tbody>
</table>
Module: Strategic Games

Subject: Economics
Module coordination: Siegfried Berninghaus
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Every singled lecture is examined within a 80 min. written exam at the end of the of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
It is recommended to attend the courses in the following sequence:
1. Game Theory I [25525]
2. Game Theory II [25369]

Learning Outcomes
The student
- structurizes complex strategic decision problems and applies efficient solution algorithms,
- has a broad overview over game and decision theory,
- applies taught methods to problems of political and managerial consulting,
- knows basic solution concepts of simple strategic decision situations and is able to apply them to concrete economic problems,
- knows and analyzes strategic decisions, knows advanced solution concepts and applies them,
- knows basic elements of decision theory under (un-)certainty as well as more advanced models and is able to analyze and solve these problems, understands decision behavior by confronting it with experimental economics.

Content
The module consists of lectures in strategic decision making against other players or “nature”. Building on normal and extensive form games different strategic and non-strategic decision situations are laid out. Then more complex situations (e.g., repeated bargaining, reputation building) are discussed.

Courses in module Strategic Games [TVWL3VWL4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25525</td>
<td>Game Theory I (S. 224)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>Berninghaus</td>
</tr>
<tr>
<td>25369</td>
<td>Game Theory II (S. 213)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>Berninghaus</td>
</tr>
<tr>
<td>25365</td>
<td>Economics of Uncertainty (S. 212)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>
Module: Industrial Organization

Subject: Economics
Module coordination: Hariolf Grupp, N.N.
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Economics [WW1VWL].

Conditions
It is possible to attend the course Applying Industrial Organization [26287] before the course Industrial Organization [25371].

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25371</td>
<td>Industrial Organization (S. 214)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Berninghaus</td>
</tr>
<tr>
<td>26287</td>
<td>Applying Industrial Organization (S. 263)</td>
<td>2/2</td>
<td>W</td>
<td>6</td>
<td>Grupp, Fornahl</td>
</tr>
</tbody>
</table>
Module: International Economics

Module key: [TVWL3VWL3]

Subject: Economics
Module coordination: Jan Kowalski
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Note the changes in course offering under “remarks”.

Prerequisites
Successful completion of the module Economics [WW1VWL].

Conditions
None.

Learning Outcomes
The students
- obtain comprehensive knowledge on open global economy
- become experts in dealing with the complex world-wide markest, and are able to react to the challenges of the global economy

Content
Problems of the internationalisation of economic activities, European institutions and programs, as well as questions of the less developed contries and development policy.

Courses in module International Economics [TVWL3VWL3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lector(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26254</td>
<td>International Economic Policy (S. 260)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>Kowalski</td>
</tr>
<tr>
<td>26259</td>
<td>Management and Organisation of Projects in Develop-</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Sieber</td>
</tr>
<tr>
<td>26252</td>
<td>International Economics (S. 259)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Kowalski</td>
</tr>
</tbody>
</table>

Economics Engineering (B.Sc.)
Module: Economic Policy

Subject: Economics
Module coordination: Jan Kowalski
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Note the changes in course offering under “remarks”.

Prerequisites
Successful completion of the module Economics [WW1VWL].

Conditions
Knowledge in the area of macroeconomics is recommended.

Learning Outcomes

Content

Courses in module Economic Policy [TVWL3VWL5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26252</td>
<td>International Economics (S. 259)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Kowalski</td>
</tr>
</tbody>
</table>
Module: Microeconomic Theory

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module there might be taken optional term paper in the field of economics (ie, on the chairs Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The grade of the term paper can improve the overall grade of the module up to third but at least up to an improvement of one grading scale. The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Successful completion of the module Economics [WW1VWL].

Conditions
None.

Learning Outcomes

Content

Courses in module Microeconomic Theory [TVWL3VWL6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25527</td>
<td>Advanced Microeconomic Theory (S. 225)</td>
<td>2/T</td>
<td>S</td>
<td>4.5</td>
<td>Puppe</td>
</tr>
<tr>
<td>25517</td>
<td>Welfare Economics (S. 223)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Puppe</td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I (S. 224)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>Berninghaus</td>
</tr>
</tbody>
</table>
Module: Macroeconomic Theory

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module there might be taken optional term paper in the field of economics (i.e., on the chairs Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The grade of the term paper can improve the overall grade of the module up to third but at least up to an improvement of one grading scale. The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Successful completion of the module Economics [WW1VWL].

Conditions
None.

Learning Outcomes

Content

Courses in module Macroeconomic Theory [TVWL3VWL8]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25543</td>
<td>Theory of Economic Growth (S. 226)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles (S. 227)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Module: Public Finance

Subject: Economics
Module coordination: Berthold Wigger
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Economics [WW1VWL].

Conditions
None.

Learning Outcomes

Content
As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs. Special fields of Public Finance are public revenues, i.e. taxes and public debt, public expenditures for publicly provided goods, and welfare programs.

Courses in module Public Finance [TVWL3VWL9]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26120</td>
<td>Public Revenues (S. 255)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Wigger</td>
</tr>
<tr>
<td>26121</td>
<td>Fiscal Policy (S. 256)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Wigger</td>
</tr>
<tr>
<td>n.n.</td>
<td>Public Management (S. 312)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Wigger</td>
</tr>
</tbody>
</table>
Module: Econometrics and Economics

Subject: Economics
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content

Courses in module Econometrics and Economics [TVWL3VWL7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25325</td>
<td>Statistics and Econometrics in Business and Economics (S. 210)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>Heller</td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets (S. 217)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Rachev</td>
</tr>
<tr>
<td>25365</td>
<td>Economics of Uncertainty (S. 212)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles (S. 227)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Hillebrand</td>
</tr>
</tbody>
</table>
6.2 Business Administration

Module: Sustainable Construction

Module key: [TVWL3BWLOOW1]

Subject: Business Administration
Module coordination: Thomas Lützkendorf
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 o. 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The final grade of the module is the average of the grades of each course weighted by the credits and truncated after the first decimal.
It is possible to include the grade of a seminar paper, dealing with a topic from the area of sustainable construction, into the final grade of the module (according to Section 4(2), 3 of the examination regulation). The seminar has a weight of 20 percent.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
The combination with the module Real Estate Management [TVWL3BWLOOW2] is recommended.
Furthermore a combination with courses in the area of
• Industrial production (energy flow in the economy, energy politics, emissions)
• Civil engineering and architecture (building physics, building construction)

is recommended.

Learning Outcomes
The student
• knows the basics of sustainable design, construction and operation of buildings with an emphasis on building ecology
• has knowledge of building ecology assessment procedures and tools for design and assessment
• is capable of applying this knowledge to assessing the ecological advantageousness of buildings as well as their contribution to a sustainable development.

Content
Sustainable design, construction and operation of buildings currently are predominant topics of the real estate sector, as well as “green buildings”. Not only designers and civil engineers, but also other actors who are concerned with project development, financing and insurance of buildings or portfolio management are interested in these topics.
On the one hand the courses included in this module cover the basics of energy-efficient, resource-saving and health-supporting design and construction of buildings. On the other hand fundamental assessment procedures for analysing and communicating the ecological advantageousness of technical solutions are discussed. With the basics of green building certification systems the lectures provide presently strongly demanded knowledge.
Additionally, videos and simulation tools are used for providing a better understanding of the content of teaching.

Courses in module Sustainable Construction [TVWL3BWLOOW1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26404w</td>
<td>Design, Construction and Assessment of Green Buildings I (S. 272)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>26404</td>
<td>Sustainability Assessment of Construction Works (S. 271)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>
Module: Real Estate Management

Subject: Business Administration
Module coordination: Thomas Lützkendorf
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 o. 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades of each course weighted by the credits and truncated after the first decimal.

It is possible to include the grade of a seminar paper, dealing with a topic from the area of sustainable construction, into the final grade of the module (according to Section 4(2), 3 of the examination regulation). The seminar has a weight of 20 percent.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
The combination with the module Design Constructions and Assessment of Green Buildings [TVWL3BWLOOW1] is recommended.
Furthermore a combination with courses in the area of
- Finance
- Insurance
- Civil engineering and architecture (building physics, building construction, facility management)

is recommended.

Learning Outcomes
The student
- possesses an overview concerning the different facets and interrelationships within the real estate business, the important decision points in real estate lifecycle and the different views and interests of the actors concerned, and
- is capable of applying basic economic methods an procedures to problems within the real estate area.

Content
The real estate business offers graduates very interesting jobs and excellent work- and advancement possibilities. This module provides an insight into the macroeconomic importance of this industry, discusses problems concerned to the administration of real estate and housing companies and provides basic knowledge for making decisions both along the lifecycle of a single building and the management of real estate portfolios. Innovative operating and financing models are illustrated, as well as the current development when looking at real estate as an asset-class.
This module is also suitable for students who want to discuss macroeconomic, business-management or financial problems in a real estate context.

Courses in module Real Estate Management [TVWL3BWLOOW2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>26400w</td>
<td>Real Estate Management I (S. 270)</td>
<td>2/2 W</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>26400</td>
<td>Real Estate Management II (S. 269)</td>
<td>2/2 S</td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s)
Lützkendorf
Module: eBusiness and Servicemanagement

Subject: Business Administration
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
Keine.

Learning Outcomes
The students
- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Content
This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle. The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented.
The lecture is complemented by exercise courses.
The courses “Management of Business Networks”, “eFinance: Information engineering and management in finance” and “eServices” constitute three different application domains in which the basic principles of the Internet Economy are deepened. In the course “Management of Business Networks” the focus is set on the strategic aspects of management and information systems. It is held in English and teaches parts of the syllabus with the support of a case study elaborated with Prof Kersten from Concordia University, Montreal, Canada. If it is possible to organize, depending on the start of term in Canada, the case study will be worked on by the students via internet in collaboration with Canadian students. The results will jointly be presented in a telephone conference.
The course “eFinance: information engineering and management for securities trading” provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.
In “eServices” the increasing impact of electronic services compared to the traditional services is outlined. The Information- und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality.
This course provides basic knowledge about the development and management of ICT-based services.
The theoretic fundamentals of Information Engineering and Management can be enriched by a practical experience in Special Topics on Information Engineering and Management.

Courses in module eBusiness and Servicemanagement [TVWL3BWLISM1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26466</td>
<td>eServices (S. 276)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Weinhardt, Satzger</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks (S. 274)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Weinhardt, Kraemer</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 275)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Weinhardt, Riordan</td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering & Management (S. 278)</td>
<td>3</td>
<td>W/S</td>
<td>4.5</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>
Module: Supply Chain Management

Module key: [TVWL3BWLISM2]

Subject: Business Administration
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
The lecture Management of Business Networks has to be attended.

Learning Outcomes
The module “Supply Chain Management” imparts knowledge for strategic and operative designing and control of supply chains spanning several enterprises. The students shall be able to analyze the coordination problems within supply chains, to judge them and to support them providing appropriate information systems. In order to be able to do this it is necessary to understand the coordination and planning mechanisms from the field of Operations Research and, on the other hand, to be familiar with methods from information management. Thus, the module gives an overview of methods and instruments of Supply Chain Management for the strategical, organizational and technical design of integrated supply chains.

Content
The module “Supply Chain Management” gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture “Management of Business Networks” the focus is set on the strategic aspects of management and information systems. The course is held in English and teaches parts of the syllabus with the support of a case study elaborated with Prof Kersten from Concordia University, Montreal, Canada. If it is possible to organize, depending on the start of term in Canada, the case study will be worked on by the students via internet in collaboration with Canadian students. The results will jointly be presented in a telephone conference. The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Courses in module Supply Chain Management [TVWL3BWLISM2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26452</td>
<td>Management of Business Networks (S. 274)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Weinhardt, Kraemer</td>
</tr>
<tr>
<td>21078</td>
<td>Logistics (S. 135)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
<td>Furmans</td>
</tr>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Management (S. 219)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Remarks
Beginning from the winter term 2009/10 the lecture Facility Location and Strategic Supply Chain Management [25486] is first offered within the module.

The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.im.uni-karlsruhe.de/lehre
Module: eFinance

Subject: Business Administration
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
The course eFinance: Information Engineering and Management for Securities Trading [26454] has to be attended.

Learning Outcomes
In the module “eFinance: Information engineering and management in finance” the students get an overview of modern approaches of information management in the finance sector. They learn to analyze specific financial problems from the point of view of information management and also to solve these problems by using the tools provided by information management. By doing so, they get to know finance products as information products and learn the state of the art of modern information processing in the finance sector.

Content
The module “eFinance: Information engineering and management in finance” addresses current problems in the finance sector. It is investigated the role of information and knowledge in the finance sector and how information systems can solve or extenuate them. Speakers from practice will contribute to lectures with their broad knowledge. Core courses of the module deal with the background of banks and insurance companies and the electronic commerce of stocks in global finance markets. In addition the course Derivatives offers an insight into future and forward contracts as well as the assessment of options. Exchanges and International Finance are also alternatives which provide a supplementary understanding for capital markets.

Information management topics are in the focus of the lecture “eFinance: information engineering and management for securities trading”. For the functioning of the international finance markets, it is necessary that there is an efficient information flow. Also, the regulatory frameworks play an important role. In this context, the role and the functioning of (electronic) stock markets, online brokers and other finance intermediaries and their platforms are presented. Not only IT concepts of German finance intermediaries are presented, but also international system approaches will be compared. The lecture is supplemented by speakers from the practice (and excursions, if possible) coming from the Deutsche Börse and the Stuttgart Stock Exchange.

Courses in module eFinance [TVWL3BWLISM3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>Weinhardt, Riordan</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance (S. 239)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>Seese</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives (S. 284)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges (S. 208)</td>
<td>1 S</td>
<td>1.5</td>
<td></td>
<td>Franke</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance (S. 285)</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>Uhrig-Homburg, Walter</td>
</tr>
</tbody>
</table>

Remarks
The lectures Derivatives, Exchanges and International Finance will first be offered in this module in the winter term 2009.
The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.im.uni-karlsruhe.de/lehre
Module: CRM and Service Management

Module key: [TVWL3BWLISM4]

Subject: Business Administration
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Therby every lecture is examined by a written exam (according to Section 4(2), 1 of the examination regulation) and by successful completion of exercises (according to Section 4 (2), 3 of the examination regulation).

The grades of the individual lectures consists of the grade of the written exam (approximately 90 percent resp. 100 of 112 points) and of the exercise performance (approximately 10 percent resp. 12 of 112 points). In the case of passing the written exam (50 points) the points of the exercise performance will be added to the points of the written exam. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
None.

Learning Outcomes
The student
• understands service management as the managerial foundation of customer relationship management and the resulting implications for strategic management, the organisational structure, and the functional areas of the company,
• develops and designs service concepts and service systems on a conceptual level,
• works in teams on case studies and respects project dates, integrates international literature of the discipline,
• knows the current developments in CRM in science as well as in industry,
• knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
• designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, ...).

Content
In the module CRM and Service Management [TVWL3BWLISM4] we teach the principles of modern customer-oriented management and its support by system architectures and CRM software packages. Choosing customer relationship management as a company’s strategy requires service management and a strict implementation of service management in all parts of the company.

For operative CRM we present the design of customer-oriented, IT-supported business processes based on business process modelling and we explain these processes in concrete application scenarios (e.g. marketing campaign management, call center management, sales force management, field services, ...).

Analytic CRM is dedicated to improve the use of knowledge about customers in the broadest sense for decision-making (e.g. product-mix decisions, bonus programs based on customer loyalty, ...) and for the improvement of services. A requirement for this is the tight integration of operative systems with a data warehouse, the development of customer-oriented and flexible reporting systems, and – last but not least – the application of statistical methods (clustering, regression, stochastic models, ...).

Courses in module CRM and Service Management [TVWL3BWLISM4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26508</td>
<td>Customer Relationship Management (S. 279)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26522</td>
<td>Analytical CRM (S. 282)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26520</td>
<td>Operative CRM (S. 280)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Remarks
The lecture Customer Relationship Management [26508] is given in English.
Module: Specialization in Customer Relationship Management

Subject: Business Administration
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
This module has to be taken together with the module Customer Relationship Management and Servicemanagement [WW3BWLCRM1].
Or the course Analytic CRM [26522] or the course Operative CRM [26520] has to be taken.

Learning Outcomes
The student
- knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
- gains an overview of the market for CRM software,
- designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, ...),
- is aware of the problems of protecting the privacy of customers and the implications of privacy law.

Content
In this module, analysis methods and techniques for the management and improvement of customer relations are presented. Furthermore, modelling, implementation, introduction, change, analysis and valuation of operative CRM processes are treated. Regarding the first part, we teach analysis methods and techniques suitable for the management and improvement of customer relations. For this goal we treat the principles of customer- and service-oriented management as the foundation of successful customer relationship management. In addition, we show how knowledge of the customer can be used for decision-making at an aggregate level (e.g. planning of sortiments, analysis of customer loyalty, ...). A basic requirement for this is the integration and collection of data from operative processes in a suitably defined data-warehouse in which all relevant data is kept for future analysis. The process of transferring data from the operative systems into the data warehouse is known as the ETL process (Extraction / Translation / Loading). The process of modelling a data-warehouse as well as the so-called extraction, translation, and loading process for building and maintaining a data-warehouse are discussed in-depth. The data-warehouse serves as a base for flexible management reporting. In addition, various statistic methods (e.g. cluster analysis, regression analysis, stochastic models, ...) are presented which help in computing suitable key performance indicators or which support decision-making.

Regarding the operative part, we emphasize the design of operative CRM processes. This includes the modelling, implementation, introduction and change, as well as the analysis and evaluation of operative CRM processes. Petri nets and their extensions are the scientific foundation of process modelling. The link of Petri nets to process models used in industry as e.g. UML activity diagrams is presented. In addition, a framework for process innovation which aims at a radical improvement of key business processes is introduced. The following application areas of operative CRM processes are presented and discussed:
- Strategic marketing processes
- Operative marketing processes (campaign management, permission marketing, ...)
- Customer service processes (sales force management, field services, call center management, ...)

Courses in module Specialization in Customer Relationship Management [TVWL3BWLISM5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26522</td>
<td>Analytical CRM (S. 282)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>26520</td>
<td>Operative CRM (S. 280)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 201)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>26240</td>
<td>Competition in Networks (S. 258)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Mitusch</td>
</tr>
<tr>
<td>26466</td>
<td>eServices (S. 276)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Weinhardt, Satzger</td>
</tr>
</tbody>
</table>
Module: Essentials of Finance

Subject: Business Administration
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
None.

Learning Outcomes
The student
- has fundamental skills in modern finance
- has fundamental skills to support investment decisions on stock, bond and derivative markets
- applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Content
The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.

Courses in module Essentials of Finance [TVWL3BWLFBV1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26575</td>
<td>Investments (S. 286)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>25216</td>
<td>Financial Management (S. 205)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>
Module: Insurance: Calculation and Control

Subject: Business Administration
Module coordination: Christian Hipp
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as a general written exam (according to Section 4(2), 1 of the examination regulation). In the lecture Insurance Game [26372] there has to be hold an oral presentation by each student as well (according to Section 4(2), 3 of the examination regulation). The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module consists of the grade of the written exam (80 percent) and the grade of the oral presentation (20 percent).

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
None.

Learning Outcomes

Content

Courses in module Insurance: Calculation and Control [TVWL3BWLFBV2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26300</td>
<td>Insurance Models (S. 264)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>Hipp</td>
</tr>
<tr>
<td>26372</td>
<td>Insurance Game (S. 268)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Hipp</td>
</tr>
</tbody>
</table>
Module: Risk and Insurance Management

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 2, 3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The lectures are examined by oral presentations and related term papers in the context of the lectures. An oral examination takes place at the end of semester.

The grade of each examination consists of the oral presentation and the term paper (50 percent) and the oral examination (50 percent). The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
It is only possible to choose this module in combination with the module Insurance Management [TVWL3BWLFBV4].

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25055</td>
<td>Principles of Insurance Management (S. 190)</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>Werner</td>
</tr>
<tr>
<td>26326</td>
<td>Enterprise Risk Management (S. 266)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>Werner</td>
</tr>
</tbody>
</table>

Remarks
The course Enterprise Risk Management [26326] is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
Module: Insurance Management

Module key: [TVWL3BWLFBV4]

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 2, 3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The lectures are examined by oral presentations and related term papers in the context of the lectures. An oral examination takes place at the end of semester.

The grade of each examination consists of the oral presentation and the term paper (50 percent) and the oral examination (50 percent). The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
The course Principles of Insurance Management [25055] has to be attended.
It is only possible to choose this module in combination with the module Risk and Insurance Management [TVWL3BWLFBV3].

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>26323</td>
<td>Insurance Marketing (S. 265)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>Werner</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance (S. 189)</td>
<td>2/0</td>
<td>W</td>
<td>2.5</td>
<td>Werner, Heilmann, Besserer</td>
</tr>
<tr>
<td>25055</td>
<td>Principles of Insurance Management (S. 190)</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>Werner</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law (S. 267)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>Werner, Schwebler</td>
</tr>
</tbody>
</table>

Remarks

The course Insurance Marketing [26323] is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
Module: Topics in Finance I

Module key: [TVWL3BWLFBV5]

Subject: Business Administration
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
It is only possible to choose this module in combination with the module Essentials in Finance [TVWL3BWLFBV1].
In addition to that it is possible to choose the module Topics in Finance II [TVWL3BWLFBV6]

Learning Outcomes
The student
• has advanced skills in modern finance
• is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content
The module Topics in Finance I is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Courses in module Topics in Finance I [TVWL3BWLFBV5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25210</td>
<td>Management Accounting (S. 204)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Lüdecke</td>
</tr>
<tr>
<td>25232</td>
<td>Financial Intermediation (S. 206)</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives (S. 284)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges (S. 208)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>Franke</td>
</tr>
<tr>
<td>25299</td>
<td>Business Strategies of Banks (S. 209)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Müller</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance (S. 285)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Uhrig-Homburg, Walter</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Manage-</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Weinhardt, Riordan</td>
</tr>
<tr>
<td></td>
<td>ment for Securities Trading (S. 275)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Topics in Finance II

Module key: [TVWL3BWLFBV6]

Subject: Business Administration
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
It is only possible to choose this module in combination with the module Essentials in Finance [TVWL3BWLFBV1]. In addition to that it is possible to choose the module Topics in Finance I [TVWL3BWLFBV5]. In this case only those lectures are electable, that are not already completed in the module Topic in Finance I [W13BWLFBV5].

Learning Outcomes
The student
- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content

Courses in module Topics in Finance II [TVWL3BWLFBV6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25210</td>
<td>Management Accounting (S. 204)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>Lüdecke</td>
</tr>
<tr>
<td>25232</td>
<td>Financial Intermediation (S. 206)</td>
<td>3 W</td>
<td>4.5</td>
<td></td>
<td>Ruckes</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives (S. 284)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges (S. 208)</td>
<td>1 S</td>
<td>1.5</td>
<td></td>
<td>Franke</td>
</tr>
<tr>
<td>25299</td>
<td>Business Strategies of Banks (S. 209)</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>Müller</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance (S. 285)</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>Uhrig-Homburg, Walter</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Manage-</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>Weinhardt, Riordan</td>
</tr>
</tbody>
</table>

Remarks
Module: Foundations of Marketing

Subject: Business Administration
Module coordination: Wolfgang Gaul, Bruno Neibecker
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from the main lecture [25150] as well as from the chosen lectures [25154], [25156], [25177]. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.
The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 CP as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
The course Marketing and Consumer Behavior [25150] has to be attended.

Learning Outcomes

Content

Courses in module Foundations of Marketing [TVWL3BWLMAR]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25150</td>
<td>Marketing and Consumer Behavior (S. 198)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 199)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 200)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Gaul</td>
</tr>
<tr>
<td>25177</td>
<td>Brand Management (S. 202)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Neibecker</td>
</tr>
</tbody>
</table>
Module: Strategy and Organization

Module key: [TVWL3BWLUO1]

Subject: Business Administration
Module coordination: Hagen Lindstädt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWL].

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25900</td>
<td>Management and Strategy (S. 244)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations (S. 245)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25907</td>
<td>Special Topics in Management: Management and IT (S. 246)</td>
<td>1/0</td>
<td>W/S</td>
<td>2</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Remarks
Module: Industrial Production I

Subject: Business Administration
Module coordination: Frank Schultmann
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) about Fundamentals of Production Management [25950] and one optional course of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. The assessment procedures are described for each course of the module separately.

Prerequisites
Successful completion of the module Business Administration [TVWL1BWLI].

Conditions
The course Fundamentals of Production Management [25950] is obligatory. In addition to that one more course has to be chosen. Each course can be chosen independently. With consecutive master programme in mind, it is recommended to enroll on the module Industrial Production II [WW4BWLIIP2] and / or Industrial Production III [WW4BWLIIP6] as well.

Learning Outcomes
see German version

Content
see German version

Courses in module Industrial Production I [TVWL3BWLIIP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25950</td>
<td>Fundamentals of Production Management (S. 249)</td>
<td>2/2</td>
<td>S</td>
<td>5.5</td>
<td>Schultmann</td>
</tr>
<tr>
<td>25960</td>
<td>Material and Energy Flows in the Economy (S. 251)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>Hiete</td>
</tr>
<tr>
<td>25996</td>
<td>Logistics and Supply Chain Management (S. 252)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>
Module: Energy Economics

Subject: Business Administration
Module coordination: Wolf Fichtner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture *Introduction in to Energy Economics* [26010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module *Business Administration* [TVWL1BWL].

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26010</td>
<td>Introduction in to Energy Economics (S. 253)</td>
<td>2/2</td>
<td>S</td>
<td>5.5</td>
<td>Fichtner</td>
</tr>
<tr>
<td>26012</td>
<td>Renewable Energy Sources - Technologies and Potentials (S. 254)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>Fichtner</td>
</tr>
<tr>
<td>25959</td>
<td>Energy Policy (S. 250)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>Wietschel</td>
</tr>
</tbody>
</table>
6.3 Informatics

Module: Emphasis Informatics

Module Handbook: Version 24.08.2009 Economics Engineering (B.Sc.)

Subject: Informatics

Module coordination: Hartmut Schmeck, Andreas Oberweis, Detlef Seese, Wolffried Stucky, Rudi Studer, Stefan Tai

Credit points (CP): 9

Learning Control / Examinations

The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

- Partial exam II: all the rest

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None.

Conditions

Either the course Advanced Programming - Java Network Programming [25889] or the course Advanced Programming - Application of Business Software [25886] has to be attended.

Learning Outcomes

The student

- has the capability of dealing with the practical application of the Java programming language (which is the dominating programming language in many application areas) or alternatively the ability to configure, parametrize and deploy enterprise software to enable, support and automate business processes,
- is familiar with methods and systems of a core topic or core application area of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content

Courses in module Emphasis Informatics [TVWL3INFO1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25780</td>
<td>Advanced Programming - Java Network Programming (S. 242)</td>
<td>2/1/2</td>
<td>S</td>
<td>5</td>
<td>Seese, Ratz</td>
</tr>
<tr>
<td>25886</td>
<td>Advanced Programming - Application of Business Software (S. 243)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>Oberweis, Klink</td>
</tr>
<tr>
<td>25070</td>
<td>Applied Informatics I - Modelling (S. 191)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Oberweis, Studer, Agarwal</td>
</tr>
<tr>
<td>25033</td>
<td>Applied Informatics II - IT Systems for e-Commerce (S. 188)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Tai</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 232)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Schmeck</td>
</tr>
<tr>
<td>25740</td>
<td>Knowledge Management (S. 235)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Studer</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management (S. 237)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Seese</td>
</tr>
<tr>
<td>25728</td>
<td>Software Engineering (S. 234)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Oberweis, Seese</td>
</tr>
<tr>
<td>25700</td>
<td>Efficient Algorithms (S. 231)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Schmeck</td>
</tr>
<tr>
<td>25770</td>
<td>Service Oriented Computing 1 (S. 241)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Tai</td>
</tr>
</tbody>
</table>
Module: Electives in Informatic

Subject: Informatics

Module coordination: Hartmut Schmeck, Andreas Oberweis, Detlef Seese, Wolffried Stucky, Stefan Tai, Rudi Studer

Credit points (CP): 9

Learning Control / Examinations

The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every single partial exam the respective minimum requirements has to be achieved.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The student

- knows and has mastered methods and systems for core topics and core application areas of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25070</td>
<td>Applied Informatics I - Modelling (S. 191)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Oberweis, Studer, Agarwal</td>
</tr>
<tr>
<td>25033</td>
<td>Applied Informatics II - IT Systems for e-Commerce (S. 188)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Tai</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 232)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Schmeck</td>
</tr>
<tr>
<td>25700</td>
<td>Efficient Algorithms (S. 231)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Schmeck</td>
</tr>
<tr>
<td>25720</td>
<td>Database Systems (S. 233)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Oberweis, Dr. D. Sommer</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management (S. 237)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Seese</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance (S. 239)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>Seese</td>
</tr>
<tr>
<td>25728</td>
<td>Software Engineering (S. 234)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Oberweis, Seese</td>
</tr>
<tr>
<td>25740</td>
<td>Knowledge Management (S. 235)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Studer</td>
</tr>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I (S. 236)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Studer, Rudolph</td>
</tr>
<tr>
<td>25770</td>
<td>Service Oriented Computing 1 (S. 241)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Tai</td>
</tr>
</tbody>
</table>
6.4 Operations Research

Module: Applications of Operations Research

Module key: [TVWL3OR5]

Subject: Operations Research
Module coordination: Stefan Nickel
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
At least one of the courses Facility Location and strategic Supply Chain Management [25486] and Tactical and operational Supply Chain Management [25488] has to be taken.

Learning Outcomes
The student
- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of Supply Chain Management and their respective optimization problems,
- is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.

Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Man-</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
<tr>
<td></td>
<td>agement (S. 219)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management (S. 220)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
<tr>
<td>25490</td>
<td>Software Laboratory: OR Models I (S. 221)</td>
<td>1/2</td>
<td>W</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I (S. 195)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Stein</td>
</tr>
<tr>
<td>25136</td>
<td>Global Optimization II (S. 196)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Stein</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I (S. 228)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>Waldmann</td>
</tr>
</tbody>
</table>

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu/).
Module: Methodical Foundations of OR

Subject: Operations Research
Module coordination: Oliver Stein
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
At least one of the lectures Nonlinear Optimization I [25111] and Global Optimization I [25134] has to be examined.

Learning Outcomes
The student
- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.

Content
The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat possibilities for global solutions.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I (S. 192)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Stein</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I (S. 195)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Stein</td>
</tr>
<tr>
<td>25136</td>
<td>Global Optimization II (S. 196)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Stein</td>
</tr>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Management (S. 219)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
<tr>
<td>25679</td>
<td>Markov Decision Models I (S. 230)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>Waldmann</td>
</tr>
</tbody>
</table>

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu/)
This module is offered for the first time in winter 2009/10.
Module: Stochastic Methods and Simulation

Subject: Operations Research
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student knows and understands stochastic relationships and has a competent knowledge in modelling, analyzing and optimizing stochastic systems in economics and engineering.

Content
Topics overview:
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems.
Discrete event simulation, generation of random numbers, generating discrete and continuous random variables, statistical analysis of simulated data
Variance reduction techniques, simulation of stochastic processes, case studies.

Courses in module Stochastic Methods and Simulation [TVWLOR7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>Markov Decision Models I (S. 230)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I (S. 228)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II (S. 229)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I (S. 192)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management (S. 220)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu/)
This module is offered for the first time in sinter 2009/10.
Module: Methods for Discrete Optimization

Subject: Operations Research
Module coordination: Oliver Stein
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Methods for Discrete Optimization [TVWL3OR1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25432</td>
<td>Optimization on Graphs and Networks (S. 218)</td>
<td>4/2/2</td>
<td>S</td>
<td>9</td>
<td>N.N.</td>
</tr>
<tr>
<td>25138</td>
<td>Mixed-integer Optimization (S. 197)</td>
<td>4/2</td>
<td>S</td>
<td>9</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Remarks
The module was offered in summer term 2009 for the last time.
Module: Stochastic Methods and Simulation

Subject: Operations Research
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student knows and understands stochastic relationships and has a competent knowledge in modelling, analyzing and optimizing stochastic systems in economics and engineering.

Content
Topics overview:
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems.
Discrete event simulation, generation of random numbers, generating discrete and continuous random variables, statistical analysis of simulated data.
Variance reduction techniques, simulation of stochastic processes, case studies.

Courses in module Stochastic Methods and Simulation [TVWL3OR4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>Markov Decision Models I (S. 230)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>Waldmann</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I (S. 228)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>Waldmann</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II (S. 229)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>Waldmann</td>
</tr>
</tbody>
</table>

Remarks
The lectures of the module are offered irregularly. The curriculum of the next two years is available online.
6.5 Statistics

Module: Statistical Applications of Financial Risk Management Module key: [TVWL3STAT]

Subject: Statistics
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the module Statistics [TVWL1STAT].

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25325</td>
<td>Statistics and Econometrics in Business and Economics (S. 210)</td>
<td>2/2 W</td>
<td>4.5</td>
<td></td>
<td>Heller</td>
</tr>
<tr>
<td>25016</td>
<td>Economics III: Introduction in Econometrics (S. 89)</td>
<td>2/2 S</td>
<td>5</td>
<td></td>
<td>Höchstötter</td>
</tr>
<tr>
<td>25355</td>
<td>Bank Management and Financial Markets, Applied Econometrics (S. 211)</td>
<td>2/2 S</td>
<td>5</td>
<td></td>
<td>Vollmer</td>
</tr>
<tr>
<td>25375</td>
<td>Data Mining (S. 216)</td>
<td>2 W</td>
<td>5</td>
<td></td>
<td>Nakhaeizadeh</td>
</tr>
</tbody>
</table>
6.6 Natural and Engineering Sciences

Module: Introduction to Technical Logistics

Module key: [TVWL3INGMB13]

Subject: Natural Science/Engineering Science
Module coordination: Kai Furmans
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module up to one grade scale (0.3) there might be taken an optional term paper in the field of the IFL.

Prerequisites
None.

Conditions
The courses Materialflow [21051] and Fundamentals of Technical Logistics [21081] are obligatory.

Learning Outcomes

Content

Courses in module Introduction to Technical Logistics [TVWL3INGMB13]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21051</td>
<td>Materialflow (S. 131)</td>
<td>3/1 W 6</td>
<td></td>
<td></td>
<td>Furmans</td>
</tr>
<tr>
<td>21081</td>
<td>Fundamentals of Technical Logistics (S. 136)</td>
<td>3/1 S 6</td>
<td></td>
<td></td>
<td>Mittwollen</td>
</tr>
<tr>
<td>21086</td>
<td>Warehouse and Distribution Systems (S. 138)</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>Wisser</td>
</tr>
<tr>
<td>21056</td>
<td>Airport Logistics (S. 132)</td>
<td>2 W 3</td>
<td></td>
<td></td>
<td>Brendlin</td>
</tr>
<tr>
<td>21085</td>
<td>Automotive Logistics (S. 137)</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>Furmans</td>
</tr>
<tr>
<td>21089</td>
<td>Industrial Application of Material Handling Systems in Sorting and Distribution Systems (S. 139)</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>Föllér</td>
</tr>
<tr>
<td>21692</td>
<td>International Production and Logistics (S. 154)</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>Lanza</td>
</tr>
<tr>
<td>21074</td>
<td>Informationssysteme in Logistik und Supply Chain Management (S. 134)</td>
<td>2/0 S 3</td>
<td></td>
<td></td>
<td>Kilger</td>
</tr>
</tbody>
</table>
Module: Production Technology I
Module key: [TVWL3INGMB10]

Subject: Natural Science/Engineering Science
Module coordination: Volker Schulze
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as a written exam (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the grade of the written exam.
To improve the overall grade of the module there might be taken an optional term paper (according to Section 4(2), 3 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21657</td>
<td>Manufacturing Technology (S. 152)</td>
<td>4/2 W</td>
<td>9</td>
<td></td>
<td>Schulze</td>
</tr>
<tr>
<td>21660</td>
<td>Integrated Production Planning (S. 153)</td>
<td>4/2 S</td>
<td>9</td>
<td></td>
<td>Lanza</td>
</tr>
<tr>
<td>21652</td>
<td>Machine Tools (S. 151)</td>
<td>4/2 W</td>
<td>9</td>
<td></td>
<td>Munzinger</td>
</tr>
</tbody>
</table>
Module: Production Technology II

Module key: [TVWL3INGMB4]

Subject: Natural Science/ Engineering Science
Module coordination: Volker Schulze
Credit points (CP): 18

Learning Control / Examinations
The assessment is carried out as a general written exam (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the grade of the written exam.
To improve the overall grade of the module there might be taken an optional term paper (according to Section 4(2), 3 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21657</td>
<td>Manufacturing Technology (S. 152)</td>
<td>4/2</td>
<td>W</td>
<td>9</td>
<td>Schulze</td>
</tr>
<tr>
<td>21660</td>
<td>Integrated Production Planning (S. 153)</td>
<td>4/2</td>
<td>S</td>
<td>9</td>
<td>Lanza</td>
</tr>
<tr>
<td>21652</td>
<td>Machine Tools (S. 151)</td>
<td>4/2</td>
<td>W</td>
<td>9</td>
<td>Munzinger</td>
</tr>
</tbody>
</table>
Module: Combustion Engines

Subject: Natural Science/Engineering Science
Module coordination: Heiko Kubach
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.
The weighting factors are:
- Combustion Engines A [21101]: 6
- Combustion Engines B [21135]: 4
- all the rest: 3

Prerequisites
Knowledge in the area of thermodynamics is helpful.

Conditions
The course Combustion Engines A [21101] is obligatory.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21101</td>
<td>Combustion Engines A (S. 140)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
<td>Spicher</td>
</tr>
<tr>
<td>21135</td>
<td>Combustion Engines B (S. 145)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>Spicher</td>
</tr>
<tr>
<td>21137</td>
<td>Engine Measurement Technologies (S. 146)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>21112</td>
<td>Supercharging of Internal Combustion Engines (S. 142)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Golloch</td>
</tr>
<tr>
<td>21114</td>
<td>Simulation of Spray and Mixture Formation in Internal Combustion Engines (S. 143)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Baumgarten</td>
</tr>
<tr>
<td>21134</td>
<td>Methods in Analyzing Internal Combustion (S. 144)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Wagner</td>
</tr>
<tr>
<td>21109</td>
<td>Motor Fuels for Combustion Engines and their Verifications (S. 141)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Volz</td>
</tr>
</tbody>
</table>
Module: Engine Development

Subject: Natural Science/Engineering Science
Module coordination: Heiko Kubach
Credit points (CP): 18

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

The weighting factors are:
- Combustion Engines A [21101]: 6
- Combustion Engines B [21135]: 4
- all the rest: 3

Prerequisites
Knowledge in the area of thermodynamics is helpful.

Conditions
The courses Combustion Engines A [21101] and Combustion Engines B [21135] are obligatory and have to be attended.

Learning Outcomes

Courses in module Engine Development [TVWL3INGMB17]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21101</td>
<td>Combustion Engines A (S. 140)</td>
<td>4/2 W</td>
<td>8</td>
<td>Spicher</td>
<td></td>
</tr>
<tr>
<td>21135</td>
<td>Combustion Engines B (S. 145)</td>
<td>2/1 S</td>
<td>4</td>
<td>Spicher</td>
<td></td>
</tr>
<tr>
<td>21112</td>
<td>Supercharging of Internal Combustion Engines (S. 142)</td>
<td>2 S</td>
<td>4</td>
<td>Golloch</td>
<td></td>
</tr>
<tr>
<td>21114</td>
<td>Simulation of Spray and Mixture Formation in Internal Combustion Engines (S. 143)</td>
<td>2 W</td>
<td>4</td>
<td>Baumgarten</td>
<td></td>
</tr>
<tr>
<td>21134</td>
<td>Methods in Analyzing Internal Combustion (S. 144)</td>
<td>2 S</td>
<td>4</td>
<td>Wagner</td>
<td></td>
</tr>
<tr>
<td>21109</td>
<td>Motor Fuels for Combustion Engines and their Verifications (S. 141)</td>
<td>2 W</td>
<td>4</td>
<td>Volz</td>
<td></td>
</tr>
<tr>
<td>21138</td>
<td>Internal Combustion Engines and Exhaust Gas Aftertreatment Technology (S. 147)</td>
<td>2 S</td>
<td>4</td>
<td>Lox</td>
<td></td>
</tr>
<tr>
<td>21137</td>
<td>Engine Measurement Technologies (S. 146)</td>
<td>2 S</td>
<td>4</td>
<td>Bernhardt</td>
<td></td>
</tr>
</tbody>
</table>
Module: Product Lifecycle Management

Module key: [TVWL3INGMB21]

Subject: Natural Science/ Engineering Science
Module coordination: Jivka Ovtcharova
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as a written exam about *Product Lifecycle Management* (90 min) (according to Section 4(2), 1 of the examination regulation) and a oral exam (ca. 30 min.) about another lecture (according to Section 4(2), 2 of the examination regulation), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is made up of the grade for the written examination [67%] and the grade for the oral examination [33%].

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module *Product Lifecycle Management* [TVWL3INGMB21]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21350</td>
<td>Product Lifecycle Management (S. 148)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>21366</td>
<td>Product Lifecycle Management in the Manufacturing Industry (S. 149)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Meier</td>
</tr>
<tr>
<td>21387</td>
<td>Computer Integrated Planning of New Products (S. 150)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Kläger</td>
</tr>
</tbody>
</table>
Module: Electrical Power Engineering

Subject: Natural Science/Engineering Science
Module coordination: Bernd Hoferer, Thomas Leibfried
Credit points (CP): 18

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Prerequisites
None.

Conditions
The courses Energy Generation [909081] and Electric Power System Engineering I [23371] are obligatory. In addition to that more courses totalling 9 credit points have to be attended.

Learning Outcomes
The student
- has basic and some advanced knowledge of electrical power engineering,
- is capable to analyse and develop electrical power engineering systems.

Content
The module deals with basic knowledge about the structure and operation of electrical power networks and their needed facilities. Further lectures give an insight into specific topics, such as Automation in electric power engineering or the procedures for generating electrical energy.

Courses in module Electrical Power Engineering [TVWL3INGETIT1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>23391/23393</td>
<td>Systems for Electrical Energy (S. 165)</td>
<td>2/2</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>23371/23373</td>
<td>Electric Power System Engineering I: Power Network Analysis (S. 162)</td>
<td>2/2</td>
<td>W</td>
<td>6</td>
</tr>
<tr>
<td>23356</td>
<td>Energy Generation (S. 160)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>23385</td>
<td>Diagnostics on Power Network Equipment (S. 161)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>23390</td>
<td>Power Transformations (S. 164)</td>
<td>2</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>23382</td>
<td>Technique of Electrical Installation (S. 163)</td>
<td>2</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>23396</td>
<td>Automation of Power Grids (S. 166)</td>
<td>2</td>
<td>S</td>
<td>3</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s):
- Leibfried
- Hoferer
- Leibfried
- Schäfer
- Kühner
- Eichler
Module: Fundamentals of Spatial and Infrastructural Development

Module key: [TVWL3INGBGU1]

Subject: Natural Science/Engineering Science
Module coordination: Ralf Roos
Credit points (CP): 9

Learning Control / Examinations
The assessment of the module is carried out as a general written examination (120 minutes) according to §4(2), 1 of the examination regulation. The exam is offered in each semester as well as the re-examination. In case of failing or to improve the examination grade an additional oral examination (according to §4(2), 2 of the examination regulation) is offered in the same examination period. The overall grade of the module corresponds to the grade of the written examination or the average of the marks for the written and the oral assessment.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Fundamentals of Spatial and Infrastructural Development [TVWL3INGBGU1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19027</td>
<td>Basics in Transport Planning and Traffic Engineering (S. 117)</td>
<td>1/1</td>
<td>S</td>
<td>3</td>
<td>Zumkeller, Chlond</td>
</tr>
<tr>
<td>19026</td>
<td>Design Basics in Highway Engineering (S. 116)</td>
<td>1/1</td>
<td>S</td>
<td>3</td>
<td>Roos</td>
</tr>
<tr>
<td>19028</td>
<td>Spatial Planning and Planning Law (S. 118)</td>
<td>1/1</td>
<td>S</td>
<td>3</td>
<td>Engelke, Heberling</td>
</tr>
</tbody>
</table>
Module: Foundations of Guided Systems

Module key: [TVWL3INGBGU2]

Subject: Natural Science/ Engineering Science
Module coordination: Friedrich Schedel
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as a general written module exam according to Section 4 Abs. 2, Nr. 1 of the examination regulation. The module exam has a duration of 90 min. The exam is offered each semester. The re-examination is offered upon prior agreement with the interested participants and not later than the next regular examination date. The overall grade of the module is the grade for the exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19066</td>
<td>Basics of Ground Born Guided Systems (S. 120)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
<td>Schedel, Hohnecker</td>
</tr>
<tr>
<td>19306</td>
<td>Railway Logistics, Management and Operating - Part I (S. 121)</td>
<td>1</td>
<td>W</td>
<td>3</td>
<td>Hohnecker</td>
</tr>
</tbody>
</table>
Module: Principles of Life Science Engineering
Module key: [TVWL3INGCV1]

Subject: Natural Science/Engineering Science
Module coordination: Volker Gaukel
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out by partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module (according to Section 4(2), 1 o. 2 of the examination regulation).

- Principles of Life Science Engineering [22221]: written exam (45 min)
 Date: pursuant to notification, once per semester
 Re-examination: following ordinary examination date
- all the rest: general oral exam about the chosen courses
 Each respective course takes 15 minutes (4 LP) in the exam
 Date: upon agreement with the office of the section Food Process Engineering
 Re-examination: at least 4 weeks after the last examination date

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Principles of Process Engineering referring to Food I [22213] is obligatory.

Learning Outcomes

Courses in module Principles of Life Science Engineering [TVWL3INGCV1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22213</td>
<td>Principles of Process Engineering referring to Food I (S. 156)</td>
<td>2/0 W 4</td>
<td></td>
<td></td>
<td>Gaukel</td>
</tr>
<tr>
<td>22601</td>
<td>Chemical Technology of Water (S. 159)</td>
<td>2/0 W 4</td>
<td></td>
<td></td>
<td>Frimmel</td>
</tr>
<tr>
<td>22319</td>
<td>Cycles and Global Development (S. 158)</td>
<td>2/0 W 4</td>
<td></td>
<td></td>
<td>Schaub</td>
</tr>
<tr>
<td>22220</td>
<td>Life Science Engineering II (S. 157)</td>
<td>2/0 W 2</td>
<td></td>
<td></td>
<td>Schuchmann, et. al.</td>
</tr>
</tbody>
</table>
Module: Understanding and Prediction of Disasters I

Module key: [TVWL3INGINTER1]

Subject: Natural Science/Engineering Science
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 2 resp. 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Understanding and Prediction of Disasters I [TVWL3INGINTER1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3201</td>
<td>Generically Meteorology /Climatology II (S. 111)</td>
<td>3/1 S 5</td>
<td></td>
<td></td>
<td>Jones</td>
</tr>
<tr>
<td>03203</td>
<td>Meteorological Measurements (S. 112)</td>
<td>2 W 3.5</td>
<td></td>
<td></td>
<td>Kottmeier</td>
</tr>
<tr>
<td>03013</td>
<td>Meteorological Natural Hazards (S. 110)</td>
<td>2 W 3.5</td>
<td></td>
<td></td>
<td>Kottmeier, Kunz</td>
</tr>
<tr>
<td>04013</td>
<td>Tectonic Stress in Petroleum Rock Mechanics (S. 113)</td>
<td>1/1 W 3</td>
<td></td>
<td></td>
<td>Müller</td>
</tr>
<tr>
<td>GEOD-BFB-1</td>
<td>Remote Sensing (S. 287)</td>
<td>3/2/1 S 7</td>
<td></td>
<td></td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20241/42</td>
<td>Remote Sensing Systems (S. 125)</td>
<td>1/1 S 2</td>
<td></td>
<td></td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20243/44</td>
<td>Remote Sensing Methods (S. 126)</td>
<td>2/1 S 2</td>
<td></td>
<td></td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20245</td>
<td>n.n. (S. 127)</td>
<td>5 S 1</td>
<td></td>
<td></td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20150</td>
<td>GeoInformatics I (S. 124)</td>
<td>2/1 W 4</td>
<td></td>
<td></td>
<td>Zippelt</td>
</tr>
<tr>
<td>20712/13</td>
<td>Introduction to GIS for students of natural, engineering and geo sciences (S. 128)</td>
<td>2/2 W 4</td>
<td></td>
<td></td>
<td>Rösch</td>
</tr>
<tr>
<td>19055</td>
<td>Hydraulic Engineering and Water Resource Management I (S. 119)</td>
<td>2/2 W 6</td>
<td></td>
<td></td>
<td>Nestmann et al.</td>
</tr>
<tr>
<td>10557</td>
<td>Introduction to engineering and hydrological geology (S. 114)</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>Fecker, Wolf</td>
</tr>
<tr>
<td>19632</td>
<td>Natural Disaster Management (S. 123)</td>
<td>1 S 1.5</td>
<td></td>
<td></td>
<td>Wenzel</td>
</tr>
</tbody>
</table>

Remarks
In agreement with the coordinator of the module other suitable courses than the ones displayed can be taken.
Module: Understanding and Prediction of Disasters II

Module key: [TVWL3INGINTER4]

Subject: Natural Science/Engineering Science
Module coordination: Ute Werner
Credit points (CP): 18

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 2 resp. 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Understanding and Prediction of Disasters II [TVWL3INGINTER4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3201</td>
<td>Generically Meteorology/Climatology II (S. 111)</td>
<td>3/1</td>
<td>S</td>
<td>5</td>
<td>Jones</td>
</tr>
<tr>
<td>03203</td>
<td>Meteorological Measurements (S. 112)</td>
<td>2</td>
<td>W</td>
<td>3.5</td>
<td>Kottmeier</td>
</tr>
<tr>
<td>03013</td>
<td>Meteorological Natural Hazards (S. 110)</td>
<td>2</td>
<td>W</td>
<td>3.5</td>
<td>Kottmeier, Kunz</td>
</tr>
<tr>
<td>04013</td>
<td>Tectonic Stress in Petroleum Rock Mechanics (S. 113)</td>
<td>1/1</td>
<td>W</td>
<td>3</td>
<td>Müller</td>
</tr>
<tr>
<td>GEO-BFB-1</td>
<td>Remote Sensing (S. 287)</td>
<td>3/2/1</td>
<td>S</td>
<td>7</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20241/42</td>
<td>Remote Sensing Systems (S. 125)</td>
<td>1/1</td>
<td>S</td>
<td>2</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20243/44</td>
<td>Remote Sensing Methods (S. 126)</td>
<td>2/1</td>
<td>S</td>
<td>2</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20245</td>
<td>n.n. (S. 127)</td>
<td>5</td>
<td>S</td>
<td>1</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20150</td>
<td>Geoinformatics I (S. 124)</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>Zippelt</td>
</tr>
<tr>
<td>20712/13</td>
<td>Introduction to GIS for students of natural, engineering and geosciences (S. 128)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>Rösch</td>
</tr>
<tr>
<td>19055</td>
<td>Hydraulic Engineering and Water Ressource Management I (S. 119)</td>
<td>2/2</td>
<td>W</td>
<td>6</td>
<td>Nestmann et al.</td>
</tr>
<tr>
<td>10557</td>
<td>Introduction to engineering and hydrological geology (S. 114)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Fecker, Wolf</td>
</tr>
<tr>
<td>19632</td>
<td>Natural Disaster Management (S. 123)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>Wenzel</td>
</tr>
</tbody>
</table>

Remarks

In agreement with the coordinator of the module other suitable courses than the ones displayed can be taken.
Module: Safety Science I
Module key: [TVWLINGINTER3]
Subject: Natural Science/ Engineering Science
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 2 resp. 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Safety Science I [TVWLINGINTER3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19315</td>
<td>Safety Management in Highway Engineering (S. 122)</td>
<td>1</td>
<td>W</td>
<td>2</td>
<td>Zimmermann</td>
</tr>
<tr>
<td>21061</td>
<td>Safety Engineering (S. 133)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Kany</td>
</tr>
<tr>
<td>21930</td>
<td>Radiation Protection and Nuclear Emergency Protection (S. 155)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Bayer</td>
</tr>
<tr>
<td>21037</td>
<td>Industrial Safety and Environmental Management (S. 130)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>Zülch, Kiparski</td>
</tr>
<tr>
<td>21030</td>
<td>Occupational Health and Safety Management and Systems (S. 129)</td>
<td>1</td>
<td>W</td>
<td>2</td>
<td>Zülch</td>
</tr>
</tbody>
</table>

Remarks
In agreement with the coordinator of the module other suitable courses than the ones displayed can be taken.
Module: Safety Science II

Module key: [TVWLINGINTER2]

Subject: Natural Science/ Engineering Science
Module coordination: Ute Werner
Credit points (CP): 18

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 2 resp. 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19315</td>
<td>Safety Management in Highway Engineering (S. 122)</td>
<td>1 W 2</td>
<td></td>
<td></td>
<td>Zimmermann</td>
</tr>
<tr>
<td>21061</td>
<td>Safety Engineering (S. 133)</td>
<td>2 W 4</td>
<td></td>
<td></td>
<td>Kany</td>
</tr>
<tr>
<td>21930</td>
<td>Radiation Protection and Nuclear Emergency Protection (S. 155)</td>
<td>2 S 4</td>
<td></td>
<td></td>
<td>Bayer</td>
</tr>
<tr>
<td>21037</td>
<td>Industrial Safety and Environmental Management (S. 130)</td>
<td>2 S 4</td>
<td></td>
<td></td>
<td>Zülp, Kiparski</td>
</tr>
<tr>
<td>21030</td>
<td>Occupational Health and Safety Management and Systems (S. 129)</td>
<td>1 W 2</td>
<td></td>
<td></td>
<td>Zülp</td>
</tr>
</tbody>
</table>

Remarks
In addition to the displayed courses a further suitable course must be taken in agreement with the coordinator of the module to complete the module of 18 ECTS credits. Other courses can be chosen accordingly.
6.7 Law

Module: Labor and Tax Law

Module key: [TVWL3JURA1]

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
Prior knowledge in the area of law totalling at least 9 credit points.

Conditions
Keine.

Learning Outcomes

Content

Courses in module Labor and Tax Law [TVWL3JURA1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24167</td>
<td>Employment Law I (S. 175)</td>
<td>2</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>24668</td>
<td>Employment Law II (S. 186)</td>
<td>2</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>24168</td>
<td>Tax Law I (S. 176)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>24646</td>
<td>Tax Law II (S. 182)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
</tbody>
</table>
Module: IT-Law

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
The module Law [TVWL1JURA] has to be completed successfully.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24070</td>
<td>Industrial Property and Copyright Law (S. 170)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>24018</td>
<td>Data Protection Law (S. 169)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>24612</td>
<td>Computer Contract Law (S. 180)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>24501</td>
<td>Internet Law (S. 177)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
</tbody>
</table>

Responsibility:
- Industrial Property and Copyright Law: Dreier
- Data Protection Law: Spiecker genannt Döhmann
- Computer Contract Law: Bartsch
- Internet Law: Dreier
Module: Civil Law

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
Successful completion module Law [TVWL1JURA].

Conditions
None.

Learning Outcomes

Content

Courses in module Civil Law [TVWL3JURA3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24504</td>
<td>Advanced Civil Law (S. 178)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Dreier, Sester</td>
</tr>
<tr>
<td>24011</td>
<td>Commercial and Corporate Law (S. 168)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Sester</td>
</tr>
<tr>
<td>24506/24017</td>
<td>Exercises in Civil Law (S. 179)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>Sester, Dreier</td>
</tr>
</tbody>
</table>
Module: Commercial Law

Module key: [TVWL3JURA2]

Subject: Law
Module coordination: Peter Sester
Credit points (CP): 9

Learning Control / Examinations
The assessment of this module consists of a written examination according to § 4(2), 1 of the examination regulation for the courses Civil Law for Beginners, Advanced Civil Law, and Commercial and Corporation Law. The grade of the module is the grade for the written examination.

Prerequisites
Successful completion of the modules Introduction to Civil Law [TVWL1JURA1] and Constitutional and Administrative Law [TVWL1JURA2]

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24504</td>
<td>Advanced Civil Law (S. 178)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Dreier, Sester</td>
</tr>
<tr>
<td>24011</td>
<td>Commercial and Corporate Law (S. 168)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Sester</td>
</tr>
<tr>
<td>24506/24017</td>
<td>Exercises in Civil Law (S. 179)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>Sester, Dreier</td>
</tr>
</tbody>
</table>
Module: Intellectual Property Law

Module key: [TVWL3JURA4]

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules Introduction to Civil Law [TVWL1JURA1] and Constitutional and Administrative Law [TVWL1JURA2]

Conditions
None.

Learning Outcomes

Content

Courses in module Intellectual Property Law [TVWL3JURA4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24501</td>
<td>Internet Law (S. 177)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Dreier</td>
</tr>
<tr>
<td>24121</td>
<td>Copyright (S. 172)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Dreier</td>
</tr>
<tr>
<td>24661</td>
<td>Patent Law (S. 184)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Geissler</td>
</tr>
<tr>
<td>24136/24609</td>
<td>Trademark and Unfair Competition Law (S. 173)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>Matz, Sester</td>
</tr>
<tr>
<td>24612</td>
<td>Computer Contract Law (S. 180)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Bartsch</td>
</tr>
</tbody>
</table>
Module: Private Business Law

Module key: [TVWL3JURA5]

Subject: Law
Module coordination: Peter Sester
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
For the courses
- Civil Law for Advanced [24650]
- Law of Contracts [24671],

basic knowledge in civil law as taught in the courses Civil Law for Beginners [24012], Advanced Civil Law [24504], and Commercial and Corporate Law [24011] is required.

Conditions
Successful completion of the modules Introduction to Civil Law [TVWL1JURA1] and Constitutional and Administrative Law [TVWL1JURA2]

Learning Outcomes

Content

Courses in module Private Business Law [TVWL3JURA5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24650</td>
<td>Civil Law for Advanced (S. 183)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Sester</td>
</tr>
<tr>
<td>24671</td>
<td>Law of Contracts (S. 187)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Sester</td>
</tr>
<tr>
<td>24167</td>
<td>Employment Law I (S. 175)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Hoff</td>
</tr>
<tr>
<td>24668</td>
<td>Employment Law II (S. 186)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Hoff</td>
</tr>
<tr>
<td>24168</td>
<td>Tax Law I (S. 176)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Dietrich</td>
</tr>
<tr>
<td>24646</td>
<td>Tax Law II (S. 182)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>
Module: Public Business Law

Subject: Law
Module coordination: Indra Spiecker genannt Döhmann
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
Successful completion of the modules Introduction to Civil Law [TVWL1JURA1] and Constitutional and Administrative Law [TVWL1JURA2]

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24632</td>
<td>Telecommunications Law (S. 181)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24082</td>
<td>Public Media Law (S. 171)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>Kirchberg</td>
</tr>
<tr>
<td>24666</td>
<td>European and International Law (S. 185)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24140</td>
<td>Environmental Law (S. 174)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24018</td>
<td>Data Protection Law (S. 169)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>Spiecker genannt Döhmann</td>
</tr>
</tbody>
</table>
6.8 Sociology

Module: Sociology/Empirical Social Research
Module key: [TVWL3SOZ]

Subject: Sociology
Module coordination: Gerd Nollmann
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as a general written exam (according to Section 4(2), 1 of the examination regulation). The specific theme of the written exam is arranged with the module coordinator personally. The single courses of the module are completed with an assessment as well. The assessment procedures are described for each course of the module separately. The overall grade of the module corresponds to the grade of the written exam.

Prerequisites
Knowledge of Statistics 1 and Statistics 2 is required.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11005</td>
<td>Social structures of modern societies (S. 115)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>Nollmann</td>
</tr>
<tr>
<td></td>
<td>Special Sociology (S. 315)</td>
<td>2/0</td>
<td>W/S</td>
<td>2/4</td>
<td>Nollmann, Pfadenhauer, Pfaff, Haupt, Grenz, Eisewicht, Kunz Bernart, Kunz, Pfaff, Haupt, Grenz, Eisewicht</td>
</tr>
<tr>
<td>SozSem</td>
<td>Projectseminar (S. 311)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>Nollmann</td>
</tr>
</tbody>
</table>
Module: Qualitative Social Research

Subject: Sociology

Module coordination: Pfadenhauer

Credit points (CP): 9

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None.

Conditions

The lecture Interpreative Social Research Methods [n.n.] has to be completed successfully.

Learning Outcomes

Content

Courses in module Qualitative Social Research [TVWL3SOZ2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.n. spezSoz</td>
<td>Interpretative Social Research Methods (S. 313) Special Sociology (S. 315)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>Pfadenhauer, Nollmann, Pfadenhauer, Pfaff, Haupt, Grenz, Eisewicht, Kunz</td>
</tr>
<tr>
<td>n.n.</td>
<td>Explorative-interpretative Project Seminar (S. 314)</td>
<td>2/0</td>
<td>W/S</td>
<td>2/4</td>
<td>Pfadenhauer, Kunz, Grenz, Eisewicht</td>
</tr>
</tbody>
</table>
6.9 General Modules

Module: Seminar Module

Module key: [TVWL3SEM]

Subject: nicht kategorisiert

Module coordination: Marliese Uhrig-Homburg, Studiendekan (Fak. f. Wirtschaftswissenschaften)

Credit points (CP): 9

Learning Control / Examinations
The modul examination consists of two seminars with at least 3 credit points each (according to §4 (3), 3 of the examination regulation).

Usualy a seminar is completed with the following assessments:
 • active participation,
 • term paper (workload of at least 80 hrs.) and
 • presentation.

Furthermore there has to be completed “key qualification” of at least 3 credit points by one or more course units. These courses can be selected from the course catalogue of the House of Competence (HoC). The examination performance has to be documented with a grade or at least "with success".

A detailed description of every single assessment is given in the specific course characterisation.

The final mark for the module is the average of the marks for each of the two seminars weighted by the credits and truncated after the first decimal. Grades of the “key qualifications” are not included to the final mark.

Prerequisites
All modules of the core programme should have been absolved.
Furthermore the coursespecific preconditions must be observed.

Conditions
The seminars must be offered by a representative of the School of Economics and Business Engineering.
Alternatively one of the two compulsory seminars can be absolved at a engineering department or at the Department of Mathematics.
The seminar has to be offered by a representative of the respective departments as well. The assessment has to meet the demands of the School of Economics and Business Engineering (active participation, term paper with a workload of at least 80 h, presentation).

A seminar at another Departments then the School of Economics and Business Engineering requires an official approval at all and can be applied at the examination office of the School of Economics and Business Engineering. Seminars at the wbk and the IFL will not requiring these official approval.

Learning Outcomes
The student
 • investigates with a selected topic in a special subject,
 • analyses and discusses topical issues in the course and within the final term paper,
 • discusses, presents and defends subject-specific arguments within the given topic,
 • plans and realizes the final term paper mostly autonomous.

Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor.
Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section „Key Qualifications” of the module handbook.

Content
The module consists of two seminar courses and courses with additional key qualifications.
A detailed list of admitted courses is given in the college catalogue of the Universität Karlsruhe (TH) (https://zgwgate.zw.uni-karlsruhe.de/lsf/). More detailed information about the programme of additional key qualifications can be found on http://www.hoc.kit.edu/sq-wahlbereiche.
Courses in module Seminar Module [TVWL3SEM]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemAIFB1</td>
<td>Seminar in Enterprise Information Systems (S. 293)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Studer, Oberweis, Stucky, Wolf, Kneuper</td>
</tr>
<tr>
<td>SemAIFB2</td>
<td>Seminar Efficient Algorithms (S. 294)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Schmeck</td>
</tr>
<tr>
<td>SemAIFB3</td>
<td>Seminar Complexity Management (S. 295)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Seese</td>
</tr>
<tr>
<td>SemAIFB4</td>
<td>Seminar Knowledge Management (S. 296)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Studer</td>
</tr>
<tr>
<td>25293</td>
<td>Seminar in Finance (S. 207)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Uhrig-Homburg, Ruckes</td>
</tr>
<tr>
<td>SemFBV1</td>
<td>Seminar in Insurance Management (S. 297)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Werner</td>
</tr>
<tr>
<td>SemFBV2</td>
<td>Seminar in Operational Risk Management (S. 298)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Werner</td>
</tr>
<tr>
<td>SemFBV3</td>
<td>Seminar in Risk Theory and Actuarial Science (S. 299)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Hipp</td>
</tr>
<tr>
<td>25915</td>
<td>Seminar: Management and Organization (S. 247)</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>Lindstädt</td>
</tr>
<tr>
<td>25916</td>
<td>Seminar: Management and Organization (S. 248)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Lindstädt</td>
</tr>
<tr>
<td>SemIIP</td>
<td>Seminar in Ergonomics (S. 300)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Knauth, Karl</td>
</tr>
<tr>
<td>SemIIP2</td>
<td>Seminar in Industrial Production (S. 301)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Schultmann, Fröhling, Hiete</td>
</tr>
<tr>
<td>25191</td>
<td>Bachelor Seminar in Foundations of Marketing (S. 203)</td>
<td>2/0 W/S</td>
<td>3</td>
<td></td>
<td>Gaul</td>
</tr>
<tr>
<td>25624</td>
<td>Bachelor Seminar in Information Engineering and Management (S. 283)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management (S. 303)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Weinhardt</td>
</tr>
<tr>
<td>26420</td>
<td>Topics of Sustainable Management of Housing and Real Estate (S. 273)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>SemWIOR4</td>
<td>Seminar in Game and Decision Theory (S. 310)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Berninghaus</td>
</tr>
<tr>
<td>SemWIOR3</td>
<td>Seminar in Experimental Economics (S. 309)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Berninghaus</td>
</tr>
<tr>
<td>SemWIOR2</td>
<td>Seminar Economic Theory (S. 308)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Puppe</td>
</tr>
<tr>
<td>SemIWW</td>
<td>Seminar in System Dynamics and Innovation (S. 304)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Grupp, N.N.</td>
</tr>
<tr>
<td>SemIWW2</td>
<td>Seminar in International Economy (S. 305)</td>
<td>2/0 W/S</td>
<td>3</td>
<td></td>
<td>Kowalski</td>
</tr>
<tr>
<td>26130</td>
<td>Seminar Public Finance (S. 257)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Wigger</td>
</tr>
<tr>
<td>26263</td>
<td>Seminar on Network Economics (S. 262)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Mitsusch</td>
</tr>
<tr>
<td>25131</td>
<td>Seminar in Continuous Optimization (S. 194)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td>SemWIOR1</td>
<td>Seminar Stochastic Models (S. 307)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Waldmann</td>
</tr>
<tr>
<td>25491</td>
<td>Seminar in Discrete Optimization (S. 222)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Nickell</td>
</tr>
<tr>
<td>26470</td>
<td>Seminar Service Science, Management & Engineering (S. 277)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Tai, Weinhardt, Satzger, Studer</td>
</tr>
<tr>
<td>SemING</td>
<td>Seminar in Engineering Science (S. 302)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Fachvertreter ingenieurwissen-schaftlicher Fakultäten</td>
</tr>
<tr>
<td>SemMath</td>
<td>Seminar in Mathematics (S. 306)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Fachvertreter der Fakultät für Mathematik</td>
</tr>
<tr>
<td>HoC1</td>
<td>Elective „Culture - Policy - Science - Technology“ (S. 288)</td>
<td>meist 2</td>
<td>W/S</td>
<td>3</td>
<td>House of Competence</td>
</tr>
<tr>
<td>HoC3</td>
<td>Elective Foreign Languages (S. 290)</td>
<td>2-4 W/S</td>
<td>2-4</td>
<td></td>
<td>House of Competence</td>
</tr>
<tr>
<td>HoC4</td>
<td>Elective „Tutor Programmes“ (S. 291)</td>
<td>k.A. W/S</td>
<td>3</td>
<td></td>
<td>House of Competence</td>
</tr>
<tr>
<td>HoC2</td>
<td>Elective „Workshops for Competence and Creativity“ (S. 289)</td>
<td>meist 2</td>
<td>W/S</td>
<td>3</td>
<td>House of Competence</td>
</tr>
<tr>
<td>HoC5</td>
<td>Elective „Personal Fitness & Emotional Competence“ (S. 292)</td>
<td>k.A. W/S</td>
<td>2-3</td>
<td></td>
<td>House of Competence</td>
</tr>
</tbody>
</table>

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the Universität Karlsruhe (TH). In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.
Module: Internship

Subject: nicht kategorisiert
Module coordination: Der Vorsitzende des Prüfungsausschusses
Credit points (CP): 8

Learning Control / Examinations
The assessment is carried out by the evidence of completed full-time internships of at least eight weeks a and a presentation of the internship in the form of a written report on the activities.

1. Information on evidence of completed full-time internships:

The internship is proofed by the certificate of the intern’s office. The certificate has to be formally correct with official corporate letterhead and handwritten countersigned by a responsible employee of the company.

The certificate must at least contain the following information:

- Company / Location
- Duration: from ... to ...
- Hours of work (weekly)
- Working interruption, indicating the vacation and sick days
- Department
- Headwords to the activities

2. Information on to the presentation:

The internship report should be at least one page for each Location. It must be countersigned by a representative of the intern’s office.

Prerequisites
Internships, that were completed even before studying may be recognized, if the criteria for recognition are met. After recognition of the compulsory internship, there can be taken a semester off for a voluntary, student-related internship. The possibility is particularly interesting in view of the master programme, which requires internships of at least 20 weeks. If the compulsory internship is absolved within the Bachelor Programme and if it takes at least 14 weeks, students may request tuition exemption, when at least 8 weeks of the internship takes place in the lecture time.

Conditions
Regarding to the election of the company, in which the internship is absolved, there are no specific rules. Beside of banks, public administration or international organizations even large industrial companies be considered, because of the technical profile of the Bachelor Programme.

With a view to the future professional career, it is recommended to absolve the internship in a larger, possibly international company.

Learning Outcomes
Students
- engage in practical aspects of Economics Engineering and get to know the professional requirements,
- gain a general insight into the operations of a company,
- identify companies complexity and developing knowledge and skills, which facilitate the understanding of operational sequences,
- train key qualifications such as personal initiative (already in the application), team skills and the ability to integrate into occupational hierarchie.

Content
Primarily the internship should be done to gain economic and business work experiences. Certainly, the interns are free to integrate technical activities as well. A commercial internship provides an insight into business or administrative processes of business transactions. Therefor departments such as controlling, organizing, marketing and planning appear particularly suitable. It remains the companies and interns left, which stations and areas the intern will eventually go through. But the focus should always be in accordance with operational realities of the company.

Regarding the election of the company, in which the internship is absolved, there are no specific rules. Beside of banks, public administration or international organizations even large industrial companies be considered, because of the technical profile of the Bachelor Programme.
Remarks
Vacation days are not figured into the internship. Only three sick leave days may incurred at all. Any additional sick days are not figured into the internship. A relevant vocational education of at least two years is accepted as a performance equivalent to the internship.

It is recommended to do the internship before start of study.
Module: Bachelor Thesis

Subject: nicht kategorisiert
Module coordination: Der Vorsitzende des Prüfungsausschusses
Credit points (CP): 12

Learning Control / Examinations
The Bachelor Thesis is a written exam which shows that the student can autonomously investigate a scientific problem in Economics Engineering. The Bachelor Thesis is described in detail in § 11 of the examination regulation.
The review is carried out by at least one examiner of the School of Economics and Business Engineering, or, after approval by at least one examiner of another faculty.
The regular processing time takes three months. On a reasoned request of the student, the examination board can extend the processing time of a maximum of one month. If the Bachelor Thesis is not completed in time, this exam is “failed”, unless the student is not being responsible (e.g., maternity leave).
With consent of the examiner the thesis can be written in English as well. Other languages require besides the consent of the examiner the approval of the examination board. The issue of the Bachelor Thesis may only returned once and only within the first month of processing time. A new topic has to be released within four weeks.

The overall grade of the module is the grade of the Bachelor Thesis.

Prerequisites
Prerequisite for admission to the Bachelor thesis is that the student is usually in the 3rd Academic year (5th and 6th semester) and has at most one of the exams of the core program (according to § 17 paragraph 2 examination regulation) not been completed.

It is recommended to begin the Bachelor Thesis in the 5th or 6th Semester.
A written confirmation of the examiner about supervising the Bachelor’s Thesis is required.

Conditions
Please pay regard to the institute specific rules for supervising a Bachelor Thesis.

The Bachelor Thesis has to contain the following declaration: “I hereby declare that I produced this thesis without external assistance, and that no other than the listed references have been used as sources of information. Passages taken literally or analogously from published or non published sources is marked as this.” If this declaration is not given, the Bachelor Thesis will not be accepted.

Learning Outcomes
Content
The Bachelor Thesis is the first major scientific work. The topic of the Bachelor Thesis will be chosen by the student themselves and adjusted with the examiner. The topic has to be related to Economics Engineering and has to refer to subject-specific or interdisciplinary problems.
7 Courses

7.1 Foundation

Course: Economics I: Microeconomics

Lecturers: Siegfried Berninghaus
Credit points (CP): 5 Hours per week: 3/0/2
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Economics [TVWL1VWL] (S. 15)

Learning Control / Examinations
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. There may be offered a practice exam in the middle of the semester. The results of this exam may be used to improve the grade of the main exam. A detailed description of the examination modalities will be given by the respective lecturer. The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. Only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the main aim of this course to provide basic knowledge in economic modelling. Particularly, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative but more effective policy measures.

In particular, the student should learn
- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to possibly suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- practicing to solve the home work in due time,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems
- to analyze the structure of microeconomic relationships and possibly to present own problem solutions,

Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics.

In the two main parts of the course problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) as well are discussed. In the final part of the course basics of imperfect competition (oligopolistic markets) and of game theory are presented.

Media
downloadable from IT server

Basic literature
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. Münchsen, 2005

Complementary literature
- Offer for interested and top students: detailed top articles with proofs, algorithms, … state-of-the-art surveys, industrial magazines and scientific journals, pointers to recent developments related to the course.
- Tutorials and perhaps simpler literature alternatives for students to fill in gaps in prerequisites (or to fresh up their memory). Alternatives with a different mode of explanation to help students understand ...
Course: Economics II: Macroeconomics

Lecturers: Berthold Wigger, Schaffer
Credit points (CP): 5 Hours per week: 3/0/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Economics [TVWL1VWL] (S. 15)

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation.
A computer lab concerning system dynamics is taking place in the midterm. To improve the grade of the written exam, the results of this computer lab may be use. In maximum there can be gained 6 points (max. points: 120; min. points for passing: 60)
The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Economics III: Introduction in Econometrics
Course key: [25016]

Lecturers: Markus Höchstötter
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
Statistics I + II

Conditions
None.

Learning Outcomes
Familiarity with the basic concepts and methods of econometrics
Preparation of simple econometric surveys

Content
Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)
Multi equation models
Dynamic models

Basic literature
- Schneeweiß: Ökonometrie ISBN 3-7908-0008-2

Complementary literature
Additional literature will be suggested in course
Course: Financial Accounting and Cost Accounting

Course key: [25002/25003]

Lecturers: Thomas Burdelski
Credit points (CP): 4
Hours per week: 2/2
Term: Wintersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Business Administration [TVWL1BWL] (S. 16)

Learning Control / Examinations
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation.
The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Business transactions are economic events that affect the financial position of a business entity. After this basic course students have to be familiar with the principles of Financial and Management Accounting especially with the four financial statements and the instruments of a cost accounting system.

Content
After an introduction to the objectives of accounting the student will learn the double-Entry-System, the basic method of accounting, and the difference between accounting and bookkeeping. We examine the typical business transactions for Trading Companies and Industrial Enterprises. Financial statements are the primary means of communicating important accounting information about a business to those who have an interest in the business. Four major financial statements are used to communicate accounting information: the income statement, the statement of retained earnings, the balance sheet and the statement of cash flows, here in the context with german laws (HGB). In the second part of the course the cost accounting instruments will be analyzed: cost type accounting, cost center accounting, and unit of output costing. Aspects of modern systems in Management Accounting conclude this basic course.

Media
slides

Basic literature
- R. Buchner, Buchführung und Jahresabschluss, Vahlen Verlag
- A. Coenenberg, Jahresabschluss und Jahresabschlussanalyse, Verlag Moderne Industrie
- A. Coenenberg, Kostenrechnung und Kostenanalyse, Verlag Moderne Industrie
- R. Ewert, A. Wagenhofer, Interne Unternehmensrechnung, Springer Verlag
- J. Schöttler, R. Spulak, Technik des betrieblichen Rechnungswesen, Oldenbourg Verlag
Course: Business Administration and Management Science A
Course key: [25023]

Lecturers: Thomas Burdelski
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Business Administration [TVWL1BWL] (S. 16)

Learning Control / Examinations
The assessment consists of a written exam (75 min) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
After this basic course students have to be familiar with the fundamentals of General Business Administration and the principles of Management Sciences. This is necessary to understand the following courses Business Administration and Management Science B und C.

Content
The agenda and the following topics are treated:

- Fundamentals of Business Administration and Management Science
- Legal forms of business organisations
- Targets of corporations and corporate policy
- Analytical and planning instruments
- Decision analysis and decision making in a corporation
- The income statement as a business card of business activities
- Tax payments for a company

Complementary literature

- Albach: Allgemeine Betriebswirtschaftslehre, Gabler-Verlag
- Neus: Einführung in die Betriebswirtschaftslehre, Mohr-Siebeck Verlag
- Schierenbeck: Einführung in die Betriebswirtschaftslehre, Oldenbourg Verlag
- Steven, Kistner: Betriebswirtschaftslehre im Grundstudium 1+2, Physica-Verlag
- Wöhre: Einführung in die Allgemeine Betriebswirtschaftslehre, Vahlen-Verlag

Remarks
The course Rechnungswesen which is held concurrently is taken into account concerning specific problems.
Course: Business Administration and Management Science B
Course key: [25024/25025]

Lecturers: Wolfgang Gaul, Thomas Lützkendorf, Andreas Geyer-Schulz, Christof Weinhardt, Thomas Burdelski

Credit points (CP): 4
Hours per week: 2/0/2
Term: Sommersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Business Administration [TVWL1BWL] (S. 16)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The target of this course and the tutorials of this course are the basic points of marketing, production economics and information engineering and management.

After this basic course students have to be familiar with these three topics in Business Administration and Management Science.

Content

1. Marketing:
Marketing is an organizational function to handle situations, activities, and processes for creating, communicating, and delivering value to customers in a best way. (Customer) relationship management comprises collecting, aggregating, and analyzing information (e.g., developments in the society, changing conditions of markets, alterations w.r.t. buying behavior) to benefit different target groups.

Main topics will deal with market research and optimized application of marketing mix instruments with emphasis on “marketing and the web”, “innovation management”, and “international marketing”.

2. Production economics
In the part of production economics the student will learn basics in the field of production theory, procurement and resource acquisitions, production and operations management and industrial engineering.

Aspects of electrical engineering industry, technological foresights, construction industry and real estate markets will be treated.

3. Information engineering and management
In today’s economy, information is a competitive factor that calls for an interdisciplinary investigation from economics and business administration, informatics and law. In this part of the lecture, selected topics from information engineering and management and their impact in market competition are presented.

Topics include: Information in a company, Information processing: From an agent to business networks, social networks, service value networks, complex service auction, market engineering, physioeconomics, grid and cloud computing, dynamic pricing.

Basic literature
Further literature references are announced in the materials to the lecture.
Course: Business Administration and Management Science C
Course key: [25026/25027]

Lecturers: Hagen Lindstädt, Martin E. Ruckes, Marliese Uhrig-Homburg, Thomas Burdelski

Credit points (CP): 4 Hours per week: 2/0/2

Term: Wintersemester Level: 1

Teaching language: Deutsch

Part of the modules: Business Administration [TVWL1BWL] (S. 16)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of this course and the tutorials of this course is to equip students with the fundamentals and basics in the fields of management and organization, investment and finance and the German specific term controlling. After this course students have to be familiar with these three topics in business administration and management science.

Content

1. Management and Organization
 A) Foundations of Management
 B) Foundations of Strategic Management
 • Process of Strategic Management
 • Strategic Analysis using the SWOT Framework
 • Formulating Strategic Options
 • Evaluation and Choice
 C) Foundations of Organization
 • Why do Organizations exist?
 • Objectives, Measures and Conditions of Managing Organizations
 • Level 1: Division of Labour and Design of Departments
 • Level 2: Choosing the Hierarchical Structure
 • Level 3: Coordination and Formalization
 D) Agency-theoretic Foundations:
 • Organization under Asymmetric Organization
 • Three Types of Informational Asymmetries
 • Type 1: Hidden Intention and Holdup
 • Type 2: Hidden Characteristics and Adverse Selection
 • Type 3: Hidden Action and Moral Hazard

2. Investment and Finance
 This part of the course deals with the fundamentals of capital market theory and provides a modern introduction to the theory and practice of capital raising and capital budgeting. These topics are covered:
 • Valuation of financial and real investments
 • Portfolio theory
 • Pricing in financial markets
 • Theory and practice of corporate finance
 • Arbitrage

3. Controlling
 Planning, control (e.g. monitoring), organization, leadership and information systems are the core elements of a business management system. These fields have to be coordinated with one another to achieve the corporate goals in an optimal way. This coordinating function is the main task of the German specific term controlling. Thus, controlling fulfills the coordinating task within the management system in an essential way. These topics are covered:
 • Fundamentals of controlling and its context
 • Instruments of controlling for business planning and control/monitoring (selected operational instruments, benchmarking as a tactical instrument and portfolio analysis as a strategic instrument)
 • Instruments of controlling for information systems (performance indicators and reporting)

Basic literature
Extensive bibliographic information will be given in the materials to the lecture.
Learning Control / Examinations
The assessment consists of a written resp. computer-based exam (120 min) according to Section 4 (2),1 of the examination regulation.
The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam. Those admission to the exam is only valid for the current main exam (in winter term) and the following exam (in summer term).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
see German part

Content
see German part

Basic literature

Complementary literature

Remarks
see German part
Course: Foundations of Informatics I

Lecturers: Rudi Studer, Sudhir Agarwal
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Introduction to Informatics [TVWL1INFO] (S. 17)

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4 (2), 1 of the examination regulation.
The exam takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Central theoretic basics and solution approaches coming from all areas of computer science are presented and illustrated and exercised using examples.

The following topics are covered:
- Object oriented modeling
- Logic (Propositional calculus, Predicate logic, boolean algebra)
- Algorithms and their properties
- Sort-and Search-Algorithms
- Complexity Theory
- Problem Specification
- Dynamic Data Structures

Content

Media
Lecture slides

Complementary literature

Additional literature will be announced in the lecture.
Course: Foundations of Informatics II

Lecturers: Hartmut Schmeck
Credit points (CP): 5 Hours per week: 3/1
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Introduction to Informatics [TVWL1INFO] (S. 17)

Learning Control / Examinations
The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. If the grade obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or of a bonus exam will improve the grade by one level. The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
It is recommended to attend the course Foundations of Informatics I [25074] beforehand. Active participation in the practical lessons is strongly recommended.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Will be announced in the lecture.
Course: Introduction to Operations Research I

Lecturers: Stefan Nickel, Oliver Stein, Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/2/2
Term: Sommersemester Level: 2
Teaching language: Deutsch
Part of the modules: Introduction to Operations Research [TVWL1OR] (S. 18)

Learning Control / Examinations
See module description.

Prerequisites
See module information.

Conditions
None.

Learning Outcomes
See module information.

Content
Examples for typical OR problems.
Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.
Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software.

Basic literature
Lecture notes

Complementary literature
• Murty: Operations Research. Prentice-Hall, 1995
• Büning, Naeve, Trenkler, Waldmann: Mathematik für Ökonomen im Hauptstudium. Oldenbourg, 2000
Course: Introduction to Operations Research II

Lecturers: Stefan Nickel, Oliver Stein, Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/2/2
Term: Wintersemester Level: 2
Teaching language: Deutsch
Part of the modules: Introduction to Operations Research [TVWL1OR] (S. 18)

Learning Control / Examinations
See module description.

Prerequisites
See corresponding module information. Especially the course Introduction to Operations Research I [25040] is assumed.

Conditions
None.

Learning Outcomes
See module information.

Content
Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.
Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.
Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynaical and stochastic inventory models, queuing theory.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software

Basic literature
Lecture notes

Complementary literature
• Murty: Operations Research. Prentice-Hall, 1995
• Büning, Naeve, Trenkler, Waldmann: Mathematik für Ökonomen im Hauptstudium. Oldenbourg, 2000
Course: Civil Law for Beginners

Lecturers: Thomas Dreier, Peter Sester
Credit points (CP): 4 Hours per week: 4/0
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Introduction to Civil Law [TVWL1JURA1] (S. 19)

Learning Control / Examinations
The assessment consists of a written exam (90 min) according to Section 4, (2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
To begin with, the course provides students with a general introduction into law. It shall enable them to understand legal problems and solutions both with regard to lawmaking and to individual cases. Students shall grasp the differences between civil law, public law and criminal law. In particular, students shall learn the fundamental notions and constructions of Civil law as laid down in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises etc. Students shall be trained to understand legal problems and legal solutions. They shall be able to recognise the legal problems of a given factual situation and develop solutions to simple legal problems.

Content
The course starts with a general introduction into law. What is law, why are legal rules valid, and what is the role of law in conjunction with social behaviour, technological and market developments? What is the relationship between law and justice? Moreover, the distinction between civil law, public law and criminal law will be highlighted. The basics of jurisdiction, international conflicts and alternative dispute settlement will be discussed. The main focus of the course is on the fundamental notions of civil law as defined and regulated in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, agency, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises. The course ends with an outlook to the law of contracts and property law.

Media
Transparencies/Slides

Basic literature
Tba at the beginning of the course,

Complementary literature
Tba at the beginning of the course,
Course: Public Law I - Basic Principles

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 2
Teaching language: Deutsch
Part of the modules: Constitutional and Administrative Law [TVWL1JURA3] (S. 20)

Learning Control / Examinations
The assessment consists of a written exam concerning the courses Public Law I [24016] and Public Law II [24520] (according to Section 4(2), 1 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
[Jonas wiederherstellen]

Content
The course covers core material of constitutional and administrative law. It begins with the differentiation between public and private law. In the constitutional law part, the course will concentrate on the rule of law and individual rights, especially those protecting communication and entrepreneurship. The administrative law part will explain the different legal instruments of the administration how to act (rule, order, contract, etc.) and their propositions. Also, court proceedings to sue the administrative will be discussed. Students will learn the technique how to solve (easy) administrative and constitutional cases.

Media
abstracts, sketches on blackboard, slides

Basic literature
tba in scriptum

Complementary literature
tba in scriptum

Remarks
From the winter term 2008 on, the Public Law I will be lectured during the winter term and Public Law II will be lectured during the summer term. This means:

1. In the winter term 2008/2009, Public Law I was being lectured.
2. In the summer term 2009, Public Law II will be lectured.
Course: Public Law II - Public Economic Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3
Hours per week: 2/0
Term: Sommersemester
Level: 2
Teaching language: Deutsch
Part of the modules: Constitutional and Administrative Law [TVWL1JURA3] (S. 20)

Learning Control / Examinations
The assessment consists of a written exam concerning the courses Public Law I [24016] and Public Law II [24520] according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Public economiclaw is of significant importance to supervise the German economy. In order to understand the functionality of mandatory interventions into market mechanisms in a thoroughly normed legal system, appropriate legal knowledge is required. This knowledge is to be provided in the lecture. In doing so, substantive law ought to be dealt with in a deepened way, while responsible authorities and institutions as well as possibilities of legal protection in the area of public commercial law will be taught at a glance. The lecture’s primary aim is to exercise handling the corresponding legal norms. It proceeds the lecture public law I.

Content
In a first step legal basics of the economic system (such as financial system and freedom of property and profession) will be presented. In this context, interaction between the Basic Constitutional Law and presetstings of European Community law will be elaborated on as well. Thereafter, regulatory instruments of the administrative law will be analysed extensively. As particular matters, we will deal with industrial code, further trade law (handicrafts code; law of gastronomy), basic principles of telecommunication law, state aid law and public procurement law. A last part is devoted to the institutional design of the economy’s regulation.

Media
content structure; documents

Basic literature
Will be announced in the lecture.

Complementary literature
tba in lecture slides

Remarks
In winter term 2008 on, the Public Law I will be lectured during the winter term and Public Law II will be lectured during the summer term. This means:

1. In the winter term 2008/2009, Public Law I will be lectured.
2. In the summer term 2009, Public Law II will be lectured.
Course: Mathematics I

Lecturers: Günter Last, Folkers, Klar
Credit points (CP): 7 Hours per week: 4/2/2
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Mathematics [TVWL1MATH] (S. 21)

Learning Control / Examinations
The assessment of Mathematics I consists of two written partial exams (both according to Section 4 (2), 1 of the examination regulation):

1. Midterm exam after half of the lecture time (60 min) without utilities
2. Final exam at the beginning of the following recess period (60 min) without utilities

A re-examination is offered at the beginning of the lecture period of the following summer term. Both re-examinations taking place at the same day.
For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.
Oral re-examinations (according to Section 8 (2) of the examination regulation) take place as individual examinations (ca. 20 min).
Mid-term exam as well as final exam has to be passed separately. The overall grade of Mathematics 1 consists of the grade of the midterm exam (50 percent) and the final exam (50 percent).

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Mathematics II
Course key: [01830]

Lecturers: Günter Last, Folkers, Klar
Credit points (CP): 7
Term: Sommersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Mathematics [TVWL1MATH] (S. 21)

Learning Control / Examinations
The assessment of Mathematics 2 consists of two written partial exams (both according to Section 4 (2), 1 of the examination regulation):
1. Midterm exam after half of the lecture time (60 min) without utilities
2. Final exam at the beginning of the following recess period (60 min) without utilities
A re-examination is offered at the beginning of the lecture period of the following summer term. Both re-examinations taking place at the same day.
For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.
Oral re-examinations (according to Section 8 (2) of the examination regulation) take place as individual examinations (ca. 20 min).
Midterm exam as well as final exam has to be passed separately. The overall grade of Mathematics 2 consists of the grade of the mid-term exam (50 percent) and the final exam (50 percent).

Prerequisites
Good knowledge of the content of the course Mathematics I [01350].

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Mathematics III

Lecturers: Günter Last, Folkers, Klar
Credit points (CP): 7 Hours per week: 4/2/2
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Mathematics [TVWL1MATH] (S. 21)

Learning Control / Examinations
The assessment consists of a written exam (75 min) at the beginning of the recess period (according to Section 4(2), 1 of the examination regulation.
A re-examination is offered at the beginning of the lecture period of the following summer term. For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.

Prerequisites
Good knowledge of the content of the courses Mathematics I [01350] and Mathematics II [01830].

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Statistics I

Lecturers: Markus Höchstötter

Credit points (CP): 5 Hours per week: 4/0/2

Term: Sommersemester Level: 1

Teaching language: Deutsch

Part of the modules: Statistics [TVWL1STAT] (S. 22)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation.
The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should understand and apply

• the basic concepts of statistical data exploration
• the basic definitions and theorems of probability theory

Content
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities

Media
lecture notes

Basic literature
Skriptum: Kurzfassung Statistik I

Complementary literature
• Bol, G.: Deskriptive Statistik, 5. Aufl., Oldenbourg, München etc., 2001
• Bosch, K.: Statistik-Taschenbuch, Oldenbourg, München etc., 1992
Course: Statistics II

Lecturers: Markus Höchstötter
Credit points (CP): 5 Hours per week: 4/0/2
Term: Wintersemester Level: 2
Teaching language: Deutsch
Part of the modules: Statistics [TVWL1STAT] (S. 22)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Prerequisites
It ist recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021].

Conditions
None.

Learning Outcomes
probability theory (continued), Introduction to estimation and testing theory

Content
B. Probability Theory: transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, convolution and limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, theory of tests (optimality, most important examples of tests)

Media
lecture notes

Basic literature
Script: Kurzfassung Statistik II

Complementary literature
- Bosch, K.: Statistik-Taschenbuch, Oldenbourg, München etc., 1992
Course: Experimental Physics A

Lecturers: Schimmel

Credit points (CP): 8
Hours per week: 4/2

Term: Wintersemester
Level: 1

Teaching language: Deutsch

Part of the modules: Physics [TVWL1NW1] (S. 23)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Experimental Physics B
Course key: [02350]

Lecturers: Schimmel
Credit points (CP): 8
Hours per week: 4/2
Term: Sommersemester
Level: ???
Teaching language: Deutsch
Part of the modules: Physics [TVWL1NW1] (S. 23)

Learning Control / Examinations

Prerequisites
The course Experimental Physics A [02350] has to be completed successfully beforehand.

Conditions
None.

Learning Outcomes

Content
Course: Inorganic Chemistry Practical

Lecturers: Von Hänisch
Credit points (CP): 16 Hours per week: 6
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Chemistry [TVWL1NW2] (S. 24)

Learning Control / Examinations

Prerequisites
It is strongly recommended to attend the course Inorganic Chemistry beforehand.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Jander, G.; Blasius, E.; Strähle, J.; Schweda, E.: Lehrbuch der analytischen und präparativen anorganischen Chemie, Hirzel
Gerdes, E.: Qualitative Anorganische Analyse, Vieweg 1995
Mortimer, C.E.; Müller, U.: Das Basiswissen der Chemie. Thieme
7.2 Specialization

Course: Meteorological Natural Hazards

Course key: [03013]

Lecturers: Kottmeier, Kunz
Credit points (CP): 3.5 Hours per week: 2
Term: Wintersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.imk.uni-karlsruhe.de/english/17.php
Course: Generically Meteorology / Climatology II

Course key: [3201]

Lecturers: Jones

Credit points (CP): 5
Hours per week: 3/1

Term: Sommersemester
Level: 3

Teaching language: Deutsch

Learning Control / Examinations

The assessment consists of a written test according to Section 4(2), 3 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.imk.uni-karlsruhe.de/english/17.php.
Course: Meteorological Measurements

Lecturers: Kottmeier
Credit points (CP): 3.5 Hours per week: 2
Term: Wintersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Tectonic Stress in Petroleum Rock Mechanics

Lecturers: Müller
Credit points (CP): 3 Hours per week: 1/1
Term: Wintersemester Level: ???
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
Block course.
For further information see http://www-gpi.physik.uni-karlsruhe.de/
Course: Introduction to engineering and hydrological geology

Lecturers: Fecker, Wolf
Credit points (CP): 3
Hours per week: 2
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Understanding and Prediction of Disasters I [TVWL3INGINTER1] (S. 69), Understanding and Prediction of Disasters II [TVWL3INGINTER4] (S. 70)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
For further information see http://www.agk.uni-karlsruhe.de/
Course: Social structures of modern societies

Lecturers: Gerd Nollmann
Credit points (CP): 4
Hours per week: 2
Term: Wintersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Sociology/Empirical Social Research [TVWL3SOZ] (S. 80)

Learning Control / Examinations
The assessment consists of a written test according to Section 4 (2), 3 of the examination regulation. The test will be graded. The test takes place in the last lecture. Generally re-examinations are offered six weeks later.

Prerequisites
None.

Conditions
The lecture is obligatorily in the module and has to be completed.

Learning Outcomes

Content
Course: Design Basics in Highway Engineering
Course key: [19026]

Lecturers: Ralf Roos
Credit points (CP): 3 Hours per week: 1/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Fundamentals of Spatial and Infrastructural Development [TVWL3INGBGU1] (S. 66)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
See corresponding module information.

Learning Outcomes

Content
Course: Basics in Transport Planning and Traffic Engineering

Lecturers: Dirk Zumkeller, Chlond
Credit points (CP): 3 Hours per week: 1/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Fundamentals of Spatial and Infrastructural Development [TVWL3INGBGU1] (S. 66)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Spatial Planning and Planning Law

Lecturers: Engelke, Heberling
Credit points (CP): 3 Hours per week: 1/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Fundamentals of Spatial and Infrastructural Development [TVWL3INGBGU1] (S. 66)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
• W. Müller: Städtebau
• W. Braam: Stadtplanung
• D. Bökemann (1982): Theorie der Raumplanung
• Hotzan, Jürgen (1994): dtv-Atlas zur Stadt
Course: Hydraulic Engineering and Water Resource Management I Course key: [19055]

Lecturers: Nestmann et al.
Credit points (CP): 6 Hours per week: 2/2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.iwk.uni-karlsruhe.de/kurse_grundfachstudium.php
Course: Basics of Ground Born Guided Systems

Course key: [19066]

Lecturers: Friedrich Schedel, Hohnecker
Credit points (CP): 6 Hours per week: 3/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Guided Systems [TVWL3INGBGU2] (S. 67)

Learning Control / Examinations
See module description.

Prerequisites
See module description.

Conditions
Siehe Modulbeschreibung.

Learning Outcomes

Content
definitions; basics in operation; track; layout of lines; dynamics; vehicles

Complementary literature
Zilch, Diederichs, Katzenbach (Hrsg): Handbuch für Bauingenieure, Springer-Verlag 2001
Course: Railway Logistics, Management and Operating - Part I

Lecturers: Hohnecker
Credit points (CP): 3 Hours per week: 1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Foundations of Guided Systems [TVWL3INGBGU2] (S. 67)

Learning Control / Examinations
See module description.

Prerequisites
See module description.

Conditions
None.

Learning Outcomes

Content
capcities of lines and stations; singalling; safety operation

Complementary literature
Fiedler: Grundlagen der Bahntechnik, Werner Verlag Düsseldorf
Pachl: Systemtechnik des Schienenverkehrs, Teubner-Verlag, Stuttgart
Course: Safety Management in Highway Engineering
Course key: [19315]

Lecturers: Zimmermann
Credit points (CP): 2
Hours per week: 1
Term: Wintersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Safety Science I [TVWLINGINTER3] (S. 71), Safety Science II [TVWLINGINTER2] (S. 72)

Learning Control / Examinations
See module description.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.ise.uni-karlsruhe.de/16.php
Course: Natural Disaster Management

Lecturers: Wenzel
Credit points (CP): 1.5 Hours per week: 1
Term: Sommersemester Level: 4
Teaching language: Englisch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Geoinformatics I

Lecturers: Zippelt
Credit points (CP): 4 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
This course is offered in the winter term 2009/10 for the last time.
For further information, see http://www.gik.uni-karlsruhe.de/print/index.html?&no_cache=1&P=1
Course: Remote Sensing Systems

Lecturers: Hinz, Weidner
Credit points (CP): 2 Hours per week: 1/1
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Keine.

Conditions
None.

Learning Outcomes

Content

Media
e-Learning-Modul “Fernerkundung” (geoinformation.net)
Skript

Complementary literature
Albertz: Fernerkundung

Remarks
For further information, see http://www.ipf.uni-karlsruhe.de/
Course: Remote Sensing Methods

Lecturers: Hinz, Weidner
Credit points (CP): 2 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
It is recommended to attend the course Thermodynamics beforehand.

Conditions
None.

Learning Outcomes

Content

Media
e-Learning-Modul ”Fernerkundung” (geoinformation.net)
lecture notes
Course: n.n.

Lecturers: Hinz, Weidner
Credit points (CP): 1 Hours per week: 5
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
e-Learning-Modul “Fernerkundung” (geoinformation.net)
lecture notes

Complementary literature
Albertz: Fernerkundung
Course: Introduction to GIS for students of natural, engineering and geo sciences
Course key: [20712/13]

Lecturers: Rösch
Credit points (CP): 4 Hours per week: 2/2
Term: Wintersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.gik.uni-karlsruhe.de/print/index.html?&no_cache=1&P=1
Course: Occupational Health and Safety Management and Systems
Course key: [21030]

Lecturers: Zülch
Credit points (CP): 2
Term: Wintersemester
Teaching language: Deutsch
Part of the modules: Safety Science I [TVWLINGINTER3] (S. 71), Safety Science II [TVWLINGINTER2] (S. 72)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.ifab.uni-karlsruhe.de/747.php
Course: Industrial Safety and Environmental Management
Course key: [21037]

Lecturers: Zülch, Kiparski
Credit points (CP): 4
Hours per week: 2

Term: Sommersemester
Level: 3
Teaching language: Deutsch

Part of the modules: Safety Science I [TVWLINGINTER3] (S. 71), Safety Science II [TVWLINGINTER2] (S. 72)

Learning Control / Examinations

Prerequisites

None.

Conditions

None.

Learning Outcomes

Content

Remarks

Please register in the previous winter term.
Block course.

For further information, see http://www.ifab.uni-karlsruhe.de/797.php
Course: Materialflow

Lecturers: Kai Furmans

Credit points (CP): 6 Hours per week: 3/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The grade of the exam may be improved by passing exercises.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen, Springer, 2005 (VDI)
Course: Airport Logistics

Lecturers: Brendlin
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Content
Course: Safety Engineering

Lecturers: Kany

Credit points (CP): 4 **Hours per week:** 2

Term: Wintersemester **Level:** 3

Teaching language: Deutsch

Part of the modules: Safety Science I [TVWLINGINTER3] (S. 71), Safety Science II [TVWLINGINTER2] (S. 72)

Learning Control / Examinations

The assessment will consist of a written exam (120 min) taking place in the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None.

Conditions

None.

Learning Outcomes

Content

Remarks

For further information, see http://www.ise.uni-karlsruhe.de/16.php
Course: Informationssysteme in Logistik und Supply Chain Management [21074]

Lecturers: Kilger
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Logistics

Lecturers: Kai Furmans
Credit points (CP): 6 Hours per week: 3/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Supply Chain Management [TVWL3BWLISM2] (S. 37)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The grade of the exam may be improved by passing exercises.

Prerequisites
Required are lectures on “Linear Algebra” and “Stochastic”.

Conditions
None.

Learning Outcomes
After successfully finishing this course, the student is able to plan simple material handling and logistic systems and is able to assign the right models to a certain task. He is able to evaluate the performance of the most important elements of material handling and logistic systems.

Content
Introduction
- historical overview
- lines of development
Structure of logistics systems
Distribution logistics
- location planning
- Vehicle Routing Planning
- distribution centers
Inventory management
- demand forecasting
- Inventory management policies
- Bullwhip effect
Production logistics
- layout planning
- material handling
- flow control
Supply Management
- information flow
- transportation organization
- controlling and development of a logistics system
- co-operation mechanisms
- Lean SCM
- SCOR model
Identification Technologies

Media
Blackboard, Beramer, In Exercises also PCs

Complementary literature
- Arnold/Isermann/Kuhn/Tempelmeier. Handbuch Logistik, Springer Verlag, 2002 (Neuausgabe in Arbeit)
- Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
- Domschke/Drexl. Logistik, Standorte, Oldenbourg Verlag, 1996
- Gudehus. Logistik, Springer Verlag, 2007
- Tempelmeier. Bestandsmanagement in Supply Chains, Books on Demand 2006
Course: Fundamentals of Technical Logistics

Lecturers: Mittwollen
Credit points (CP): 6 Hours per week: 3/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation.

Prerequisites
Technical understanding is recommended.

Conditions
None.

Learning Outcomes

Content
Course: Autotmative Logistics
Course key: [21085]

Lecturers: Kai Furmans
Credit points (CP): 3
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Warehouse and Distribution Systems
Course key: [21086]

Lecturers: Wisser
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Content
Course: Industrial Application of Material Handling Systems in Sorting and Distribution Systems

Course key: [21089]

Lecturers: Föller
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations
The assessment will consist of an oral exam according to §4 (2), 2 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Combustion Engines A

Course key: [21101]

Lecturers: Spicher
Credit points (CP): 8
Hours per week: 4/2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Combustion Engines [TVWL3INGMB16] (S. 62), Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to §4 (2), 1 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 6.

Prerequisites
It is recommended to have basic knowledge of thermodynamics.

Conditions
None.

Learning Outcomes
Content
Course: Motor Fuels for Combustion Engines and their Verifications Course key: [21109]

Lecturers: Volz
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Combustion Engines [TVWL3INGMB16] (S. 62), Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Prerequisites
Successful completion of the course Combustion Engines A [21101].
Basic knowledge of chemistry is recommended.

Conditions
None.

Learning Outcomes

Content
Course: Supercharging of Internal Combustion Engines
Course key: [21112]

Lecturers: Golloch
Credit points (CP): 4
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Combustion Engines [TVWL3INGMB16] (S. 62), Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to Section 4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Prerequisites
The course Combustion Engines A [21101] has to be completed beforehand.

Conditions
None.

Learning Outcomes
Content
Course: Simulation of Spray and Mixture Formation in Internal Combustion Engines

Course key: [21114]

Lecturers: Baumgarten
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Combustion Engines [TVWL3INGMB16] (S. 62), Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Prerequisites
The course Combustion Engines A [21101] has to be completed beforehand.

Conditions
None.

Learning Outcomes

Content
Course: Methods in Analyzing Internal Combustion

Course key: [21134]

Lecturers: Wagner

Credit points (CP): 4 Hours per week: 2

Term: Sommersemester Level: 4

Teaching language: Deutsch

Part of the modules: Combustion Engines [TVWL3INGMB16] (S. 62), Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Prerequisites
The course Combustion Engines A [21101] has to be completed beforehand.

Conditions
None.

Learning Outcomes

Content
Course: Combustion Engines B

Course key: [21135]

Lecturers: Spicher
Credit points (CP): 4 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Combustion Engines [TVWL3INGMB16] (S. 62), Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 4.

Prerequisites
The course Combustion Engines A [21101] has to be completed beforehand.
Knowledge of thermodynamics is recommended.

Conditions
None.

Learning Outcomes

Content

Module Handbook: Version 24.08.2009 Economics Engineering (B.Sc.)
Course: Engine Measurement Technologies

Lecturers: Bernhardt
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Combustion Engines [TVWL3INGMB16] (S. 62), Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to Section 4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Prerequisites
The course Combustion Engines A [21101] has to be completed beforehand.

Conditions
None.

Learning Outcomes
Content
Course: Internal Combustion Engines and Exhaust Gas Aftertreatment TechnologyCourse key: [21138]

Lecturers: Lox
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Engine Development [TVWL3INGMB17] (S. 63)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Prerequisites
The course Combustion Engines A [21101] has to be completed beforehand.

Conditions
None.

Learning Outcomes
Content
Basic literature
Will be announced in the lecture.
Course: Product Lifecycle Management

Lecturers: Jivka Ovtcharova
Credit points (CP): 6 Hours per week: 3/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Product Lifecycle Management [TVWL3INGMB21] (S. 64)

Learning Control / Examinations
The assessment consists of a written exam (90 min) according to Section 4 (2), 1 of the examination regulation. The grade corresponds to the grade of the written exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Product Lifecycle Management in the Manufacturing Industry Course key: [21366]

Lecturers: Gunter Meier
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Product Lifecycle Management [TVWL3INGMB21] (S. 64)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade corresponds to the grade of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Content
Course: Computer Integrated Planning of New Products

Lecturers: Roland Kläger
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Product Lifecycle Management [TVWL3INGMB21] (S. 64)

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation.
The grade corresponds to the grade of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Machine Tools

Lecturers: Munzinger
Credit points (CP): 9 Hours per week: 4/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Production Technology I [TVWL3INGMB10] (S. 60), Production Technology II [TVWL3INGMB4] (S. 61)

Learning Control / Examinations
The assessment consists of a written exam (180 min) taking place at the beginning of the recess period (according to Section 4(2), 1) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Manufacturing Technology

Lecturers: Volker Schulze
Credit points (CP): 9 Hours per week: 4/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Production Technology I [TVWL3INGMB10] (S. 60), Production Technology II [TVWL3INGMB4] (S. 61)

Learning Control / Examinations
The assessment consists of a written exam (180 min) taking place at the beginning of the recess period (according to Section 4(2), 1) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Integrated Production Planning

Lecturers: Lanza
Credit points (CP): 9 Hours per week: 4/2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Production Technology I [TVWL3INGMB10] (S. 60), Production Technology II [TVWL3INGMB4] (S. 61)

Learning Control / Examinations
The assessment consists of a written exam (240 min) taking place at the beginning of the recess period (according to Section 4(2), 1) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
It is recommended to attend the course Manufacturing Technology [21657] beforehand.

Conditions
None.

Learning Outcomes

Content
Course: International Production and Logistics

Lecturers: Lanza
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Introduction to Technical Logistics [TVWL3INGMB13] (S. 59)

Learning Control / Examinations
The assessment will consist of a written exam (120 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Radiation Protection and Nuclear Emergency Protection

Lecturers: Bayer
Credit points (CP): 4
Hours per week: 2
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Safety Science I [TVWLINGINTER3] (S. 71), Safety Science II [TVWLINGINTER2] (S. 72)

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place in the recess period (according to Section 4(2), 2 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Basic knowledge of physics/nuclear physics of the secondary school is assumed (atomic structure, electrons, etc.)

Conditions
None.

Learning Outcomes

Content

Remarks
Block course.
For further information, see http://www.ikr.uni-karlsruhe.de/377.php
Course: Principles of Process Engineering referring to Food I

Course key: [22213]

Lecturers: Volker Gaukel
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Principles of Life Science Engineering [TVWL3INGCV1] (S. 68)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
The course is an obligatory course within the module and has to be attended.

Learning Outcomes
Content
Course: Life Science Engineering II

Lecturers: Schuchmann, et. al.
Credit points (CP): 2 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Principles of Life Science Engineering [TVWL3INGCV1] (S. 68)

Learning Control / Examinations
See module description.

Prerequisites
The engineering science modules of the first three semesters have to be completed successfully.

Conditions
None.

Learning Outcomes

Content
Course: Cycles and Global Development

Lecturers: Georg Schaub
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Principles of Life Science Engineering [TVWL3INGCV1] (S. 68)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Chemical Technology of Water

Lecturers: F.H. Frimmel
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Principles of Life Science Engineering [TVWL3INGCV1] (S. 68)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
See corresponding module information.

Learning Outcomes

Content

Complementary literature
Course: Energy Generation

Lecturers: Bernd Hoferer

Credit points (CP): 3 Hours per week: 2/0

Term: Wintersemester Level: 3

Teaching language: Deutsch

Part of the modules: Electrical Power Engineering [TVWL3INGETIT1] (S. 65)

Learning Control / Examinations

The assessment consists of an oral exam (20 min) taking place at the beginn of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every winter semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The goal is to relay theoretical fundamentals. The lecture covers the entire topic of power generation from conversion of primary energy resources in coal fired power plants and nuclear power plants to utilisation of renewable energy. The lecture gives a review of the physical fundamentals, technicaleconomical aspects and potential for development of power generation both conventional generation and renewable generation.

Content

- Energy resources
- Energy consumption
- Types and use of power plants
- Conversion of primary energy in power plants
- Thermodynamical fundamental terms
- Process in steam power plants
- Steam power plants components
- Flue gas cleaning
- Thermal power plants
- Nuclear power plants
- Hydroelectric power plants
- Wind energy converters
- Solar energy plants

Media

Material is available at the beginning of the lecture.

Complementary literature

Schwab; Elektroenergiesysteme; 1. Auflage 2006.
Course: Diagnostics on Power Network Equipment

Lecturers: Thomas Leibfried
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Electrical Power Engineering [TVWL31INGETIT1] (S. 65)

Learning Control / Examinations
The assessment consists of a written exam taking place at the beginn of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal is to relay further and deeper theoretical fundamentals in the field of electric power technology and power transmission. In the first part the lecture deals with the terms monitoring and diagnostics. Subsequently, the three diagnosis techniques dielectric analysis, partial discharge measurement and frequency response analysis are presented and mathematically discussed. Finally, the diagnostic methods of power transformers and generators are described.

Content
In its first part, this lecture introduces the terms monitoring and diagnostics. Doing this, the age distribution of the power network equipment in the German power grid is analyzed and the required investment within the next 10 years is estimated. Using this estimation, the necessity of condition monitoring of electric power system equipment is derived. The second chapter deals with the dielectric analysis. First of all, the characteristics of insulations materials are discussed and a model for the description of polarisation mechanisms in the frequency domain and the time domain is derived. This enables the condition monitoring of insulation systems by three methods: the relaxation current analysis, the dissipation factor measurement over a wide frequency range and the recovery voltage measurement. The third chapter deals with the partial discharge measurement. At first, the phenomenon of partial discharges will be discussed. Then, techniques for the measurement of partial discharges are presented. Finally, systems and their functionality for the measurement of the apparent charge, which occurs in an insulation system is described. The fourth chapter deals with the frequency response analysis. In the first step the theoretical basics of the frequency response analysis are described. Subsequently, the different methods of the frequency response measurement are discussed. The fifth chapter deals with power transformer diagnostics. Steps by step the standard and the more advanced diagnostic methods are described. In the sixth and last chapter the methods for diagnostics on generators (rotating machinery) are described.

Media
Online material is available on: www.ieh.uni-karlsruhe.de and can be downloaded using a password.
Course: Electric Power System Engineering I: Power Network Analysis
[23371/23373]

Lecturers: Thomas Leibfried
Credit points (CP): 6 Hours per week: 2/2
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Electrical Power Engineering [TVWL3INGETIT1] (S. 65)

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place at the beginn of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every winter semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
This course is obligatory within the module and has to be attended.

Learning Outcomes
The goal is to relay theoretical fundamentals in the field of electric power technology and power transmission.
In the first part the lecture deals with the basics of High-Voltage technology. Then the basics of transmission and distribution of electric energy is presented as well as the load flow calculation and the short-circuit calculation methods.
Supporting the lecture, assignments to the curriculum are distributed. Their solution is presented and discussed during lecture hall exercises.

Content
In its first part, this lecture introduces the High-Voltage technology and its basics. Especially, the reasons for the necessity for the power transmission with high voltages are given. Basic electrical configurations and stresses occurring at multi dielectric systems are presented. Finally the first chapter deals with discharge phenomena.
The second chapter deals with the three phase system. Especially, the mathematical treatment of three phase systems and the introduction of component systems are contained in this chapter.
The third and very comprehensive chapter deals with the transmission and distribution of electric energy. Firstly, the laws of power transmission via transmission lines are presented. Then, the stability of electric power systems and possibilities to increase the power transmission capacity are discussed. Finally, the physics of energy distribution in the medium and low voltage grid is shown.
The fourth chapter deals with the Calculation of electric power networks and systems. Firstly, the preparatory steps for the calculation of the power network are shown. After discussing the basic network analysis methods, the load flow calculation are shown. Especially, the method of current iteration and the Newton Raphson method are presented and the algorithms of the individual methods are shown using an example.
The fifth chapter deals with methods for the calculation of the 3 phase short circuit. Thereby, it is distinguished between the short circuit nearby the generator and far from the generator.
In the sixth chapter the unsymmetrical faults in power networks and their calculation are discussed. Therefore, the symmetrical components are introduced as a first step. Then, the circuits in symmetrical components of all important power network equipment are presented. The chapter closes with the mathematical treatment of unsymmetrical short circuits using the symmetrical component method.
To accompany the lecture, a collection of problems can be downloaded. During lecture hall exercises their solutions will be discussed.

Media
Online material is available on: www.ieh.uni-karlsruhe.de and can be downloaded using a password.

Complementary literature
Will be announced in the lecture notes.
Course: Technique of Electrical Installation

Lecturers: Kühner
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Electrical Power Engineering [TVWL3INGETIT1] (S. 65)

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginn of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal is to relay practical fundamentals.
The lecture gives an overview about the classical and modern methods of electrical installations of and in buildings. Furthermore the students get an insight to regulations and engineer standards.

Content
• Capture 1: Electrical Power Distribution and Networking
• Capture 2: Electrical Power Supply of Buildings
• Capture 3: Electrical Power Supply in Buildings
• Capture 4: Protective Equipments
• Capture 5: Electrical Energy Applications
• Capture 6: Electrical Automation and System Engineering of Buildings
• Capture 7: Power management of Buildings

Media
Online material is available on: http://www.ieh.unikarlsruhe.de/elektrische_installationstechnik.php
Course: Power Transformations

Lecturers: Schäfer
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Electrical Power Engineering [TVWL3INGETIT1] (S. 65)

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginn of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal is to relay theoretical fundamentals about Power Transformers and its applications. Main topics are the physical fundamentals and their application in transformer precalculation and design. Based on that the different variations in design and the various applications are discussed. Finally future trends and research and development activities in the field of power transformers are presented.

Content
The lecture is divided into the following clauses
• Applications and design variations of power transformers
• Components and design of power transformers
• Working principle of power transformers and shunt reactors. Induction law and its application for the precalculation of transformers. The magnetic field in iron cores, core designs, variations and air gaps in magnetic circuits. Magnetic materials and their properties, application in transformers and shunt reactors. Main and stray flux in transformers and calculation of the equivalent circuit. Stresses inside transformers during inrush and short circuits.
• Winding connections and vector groups of transformers, three phase power system, connected voltages and line to earth voltage, description of three phase systems, parallel connection of transformers.
• PreCalculation of transformers.
• Losses in transformers and its origins in core and in the windings. Possible measures to influence loss generation. Cooling systems and its applications.
• High voltage DC transformers
• Factory testing of transformers. Performance of type tests, standard test and special tests.
• Overload capability of transformers. Controlled overloading and emergency overload.
• Cervice and monitoring.
• Future trends and research and development activities.

Media
The material is distributed during any lecture

Remarks
The course consists of seven lecture blocks and one factory visit. Date and time is announced on the blackboards.
Course: Systems for Electrical Energy

Lecturers: Thomas Leibfried
Credit points (CP): 6 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Electrical Power Engineering [TVWL3INGETIT1] (S. 65)

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place at the beginn of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
For a successful participation knowledge of the content of the course Higher mathematics and especially of complex computation is assumed.

Conditions
The course is an obligatory course within the module and has to be attended.

Learning Outcomes
The goal is to relay theoretical fundamentals in the field of electrical network analysis and in the field of electrical power networks.
In the first part the lecture deals with the calculation of transients in linear electrical networks using differential equations and the Laplace transform. In the second part of the lecture the electrical power network equipment is described. Supporting the lecture, assignments to the curriculum are distributed. Their solution is presented and discussed during lecture hall exercises.

Content
In its first part, this lecture is a consequent continuation of the calculation of electrical networks as it is presented in the lecture “Linear electrical networks”. In the second part of this lecture, the basics of electric power network equipment are presented. This is the basis for all further lectures of power system technology.
The first chapter gives an introduction in the single phase and three phase AC system.
The second chapter deals with or is a repetition of electromagnetic basics. In a first step magnetic circuits and their calculation is treated. Then are subjects like main flux and stray flux are introduced, as well as self induction main inductance and stray inductance. The induction law leads directly to the transformer and the calculation of inductances and finally to the calculation of forces caused by a current flowing in a conduction which is located within a magnetic field.
The third and very comprehensive chapter deals with the mathematical description of electrical networks. Hereby, it is distinguished between networks with concentrated elements and networks with distributed elements. The calculation of networks with concentrated elements leads to differential equations with constant coefficients. Their solution as well as a special case, the sinusoidal excitation of such networks, is comprehensively demonstrated using examples. Finally, the description of electrical networks by a system of first order differential equations is shown and their solution is presented. Circuits with distributed elements are transmission lines. The transmission line theory for sinusoidal voltages and currents as well as for impulse voltages and currents is shown.
The fourth chapter deals with the Laplace Transform as a tool for electrical network analysis. First, the Duhamel integral (convolution integral) is presented. Then the Laplace Transform is derived out of the convolution integral and in a further sub-chapter the solution of differential equations using the Laplace Transform is demonstrated.
The fifth chapter deals with methods for network analysis. It demonstrates the mesh analysis, the nodal analysis, the superposition theorem, Norton’s theorem, Thevenin’s theorem and the Tellegen-Theorem. These formal methods are demonstrated using two examples circuits. These circuits are transistor amplifier with and without a transformer. This allows the calculation of networks with voltage or current dependent sources.
In the sixth chapter the structure of the electric power network is shown and explained.
The seventh chapter deals with power network equipment. Thereby, their steady state behaviour in the power network as well as their electrical and mechanical basic design is presented. The chapter contains synchronous generators, power transformers, reactors, capacitors, transmission lines and switch gear. For all of this power network equipment its steady state electrical circuit is derived. This gives the basis for all further lectures in the field of power network engineering.
To accompany the lecture, a collection of problems can be downloaded. During lecture hall exercises their solutions will be discussed.
The course comprises of the interleaved lecture blocks and exercises. Current information can be found on the IEH webpage (www.ieh.uni-karlsruhe.de).

Media
Online material is available on: www.ieh.uni-kerlsruhe.de and can be downloaded using a password.

Complementary literature
Will be announced in the lecture notes.
Course: Automation of Power Grids

Lecturers: Eichler
Credit points (CP): 3
Hours per week: 2
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Electrical Power Engineering [TVWL3INGETIT1] (S. 65)

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginn of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Basic knowledge of power transmission and distribution; basic knowledge of IT

Conditions
None.

Learning Outcomes
Understand methods, equipment, standards, current and future technology, state-of-the-art and trends of power systems control from a global (i.e. worldwide) perspective
Digital design fundamental lecture. Focus of the lecture are formal, methodical and mathematic fundamentals for the design of digital systems. Based on these, technical implementation of digital systems is elaborated, especially the design of standard digital building blocks and more complex systems based on these.

Content
This lecture presents an introduction to the important theoretical fundamentals of digital system design, which is scheduled for the students in the first semester of Electrical Engineering. Since the lecture can not be based on student’s knowledge of circuit technology, it focuses on abstract models for behaviours and structures. In addition the lecture will also relay the fundamentals, which are needed in other lectures.

At first the lecture delves into important conceptual information and shows that digital system design represents a special technical solution for the treatment of information. After this the concept of a system will be introduced and illustrated that complex systems require a hierarchical partitioning in order to be able to understand and design them. Based on this it can be concluded then that system design can be understood as a repeated transformation from descriptions of behaviour to descriptions of structure.

The terms message and signal are subject matter of a further chapter. Starting from time and amplitude continuous signals, simple time and value discrete binary signal representations will be introduced, as well as more complex signal forms derived from binary signals.

The representation of information by signals presupposes or implies an “agreement of allocation” between distinguishable elements of information representation and signal representation, the so-called codes. Therefore the lecture delivers the fundamental concepts of codes & coding and describes a few important classes & types of codes, which serve some of the following uses: analog/digital conversion for interfaces, error detection & error correction for numerical purposes, and optimal representation of information and/or signals. Code conversion and related topics finalize the consideration of this topic.

Formal and mathematical fundamentals will be treated in an extensive chapter. To begin the subject matter of the lecture is comprised of sets and quantities, the operations on these quantities, as well as the relations between set elements. Afterwards several fundamentals of graph theory are introduced. It will be shown that logic algebra can serve as a basis for special Boolean algebra. Building upon the associated rules the concept of switching functions, their graphical representation and classification, the standard theories, and important basis systems for the representation of Boolean expressions will be derived and considered. Expansion theory, the computation with allocation blocks and terms, as well as measures for minimization are further topics of this chapter.

Having the formal basics available, applicable technical components and structures will be developed on the basis of binary switches, which allow for a direct conversion of formal relationships into solutions. Gates, circuit networks, synchronized sequential circuits, as well as specially derived functional units such as counters, registers, and digital memories lead to complex structures. The “All-purpose Computer” from J. von Neumann will be particularly dealt with.

To accompany the lecture material, assignments and the corresponding solutions will be given out and discussed during lecture hall exercises. Furthermore tutorials in small study groups will be held to deepen the understanding of the curriculum and methods taught. Furthermore computer exercises are offered in which digital circuits and their pattern of behaviour will be modelled and simulated with the help of the program LogicWorks.

Media
Slides of the lecture presentation.

Complementary literature
- Ernst-Günther Tietze: Netzleittechnik 1. Grundlagen; VWEW Energieverlag GmbH
• Ernst-Günther Tietze: Netzleittechnik Teil 2: Systemtechnik; VDE-Verlag
• Stuart A. Boyer: SCADA: Supervisory Control and Data Acquisition; ISA 3rd edition (June 2004)
Course: Commercial and Corporate Law

Lecturers: Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Civil Law [TVWL3JURA3] (S. 75), Commercial Law [TVWL3JURA2] (S. 76)

Learning Control / Examinations
Assessment will consist of written exams following §4, Abs. 2, 3 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Folien

Basic literature
Klunzinger, Eugen

Complementary literature
tba in Vorlesungsfolien
Course: Data Protection Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: IT-Law [TVWL3JURA2_08] (S. 74), Public Business Law [TVWL3JURA6] (S. 79)

Learning Control / Examinations
Assessment will consist of a written exam (following §4(2), 1 SPO).

Prerequisites
Keine.

Conditions
None.

Learning Outcomes
Increasing significance of information technology for data processing and interconnectedness of the society by means of telecommunication does not only enhance the social and economical relevance of data in general, it raises the question about legal rules for the protection of personalised data as well. The problem for those who are responsible for the application of law is that national rules in this area are in constant flux due to technological progress and Europeanisation of law. Additionally there is a vast number of sector-specific regulation (such as labour law). Bearing all this in mind, the lecture’s main focus is the presentation of the basic principles of the German Federal Act on Data Protection (Bundesdatenschutzgesetz). In doing so, new concepts of data protection like self-data protection or system data protection will be analysed. A further focal point is the examination of evolution of sector-specific data protection law, considering as example regulation of data protection in connection with teleservice or mediaservice. Students should learn how to negotiate their ways in the interaction of different levels of legal norms and solve simple problems of data protection law.

Content
After illustrating contents and history of data protection law there will be presented backgrounds with respect to Community law and under constitutional law. Further on, the German Federal Act on Data Protection will be focussed. At this will be set forth basic principles of regulation (such as necessity), personalised data as an object of regulation, rights of those who are affected as well as the legitimacy of different procedures of data processing. Oranisational regulations, particularly data security official will be approached as well. Further on, in a case study current concepts of data protection and the problem of video surveillance will be discussed. Finally, there are three units on sector-specific regulation of telecommunication and teleservice / mediaservice.

Media
abstracts, sketches on blackboard, slides

Basic literature
Will be announced in the course.

Complementary literature
Will be announced in the course.

Remarks
In cooperation with the House of Competence, Students should be rhetorical trained asking and answering questions (short-answer-and-question-technique). Therefor most likely a coach will attend several lessons.
Course: Industrial Property and Copyright Law

Lecturers: Thomas Dreier

Credit points (CP): 3 Hours per week: 2/0

Term: Wintersemester Level: 3

Teaching language: Deutsch

Part of the modules: IT-Law [TVWL3JURA2_08] (S. 74)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to give students an overview of the law of intellectual property. The course focuses on patent law, trademark law, copyright law and also presents other laws of industrial property, including the additional legal protection by unfair competition law. Students shall understand the differences between registration and non-registration rights. Key concepts such as territoriality, conditions for protection, exclusive rights, limitations and exceptions, infringement and sanctions will be discussed. In addition, the focus will be on licensing of IP rights. The course covers national, european and international IP law.

Content
The course gives an introduction in to the legal protection of intellectual property. The different rationals for granting legal protection to immaterial goods will be explained, as well as the difference between registration and non-registration rights, and the system of international IP protection on the basis of the principle of territoriality will be explained. Following, the different IP rights will be discussed with regard to their respective conditions and scope of protection. An overview of licensing and of the sanctions in case of infringement of IP rights will be given.

Media
Slides.

Basic literature
Ilzhöfer, Volker Patent-, Marken- und Urheberrecht Verlag Vahlen, 7current edition

Complementary literature
Additional literature tba
Course: Public Media Law

Lecturers: Christian Kirchberg
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [TVWL3JURA6] (S. 79)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
As the traditional media (print, radio, TV) the “new media” (online-services and the Internet) is governed by public law, yet with a different extent of regulation and with apparent effects on private law. The main influences for the media law are constitutional law and European community law. The lectures aims at providing an overview of the common grounds and differences of the current media law regime and of the conceivable perspectives of media convergence. Current developments in politics and economics, which are relevant for public media law, will be used as examples in the lecture. Besides, it is planned to attend a court hearing of the Federal Constitutional Court (Bundesverfassungsgericht) and/or the Federal Court (Bundesgerichtshof).

Content
Initially, the lecture will deal with the constitutional basis of the media law regime, i.e. the responsibilities of the Federal and the State legislatures, freedom of speech, freedom of information, constitutional media rights (Art. 5 para. 1 Constitutional Law) and its limitations by general laws, the ban on censorship and the counterstatement law. In addition, the European community principles on broadcasting and media law will be part of the lecture. Next will be an overview of the individual media laws, namely the broadcasting law (especially Rundfunkstaatsvertrag) the press law of the States and the statute on the so-called “telemedia” services. Finally, the protection of minors in the media will be dealt with (Act on Protection of Minors and Treaty on the Protection of Minors in the Media).

Basic literature
To understand the legal framework it is necessary for the students to have the relevant statutes, for example “Telemediarecht, Telekommunikations- und Multimediarecht”, beck-Texte im dtv, 7. Auflage 2007. As an introduction it is recommended to read: Frank Fechner, Medienrecht, Verlag Mohr Siebeck, Verlag Mohr Siebeck, 8. Auflage 2007.
Course: Copyright

Lecturers: Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Written exam 100% (§4, Abs. 2, 1 of the SPO).

Prerequisites
None.

Conditions
none

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of copyright that builds upon, and goes beyond the knowledge the students have already acquired in the general lecture of “Industrial and intellectual property law”. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Content
The course deals with the subject matter of copyright, the rights of authors, licensing, limitations and exceptions to copyright, term of protection, neighbouring rights, enforcement and collective administration of rights. The course does not merely focus on German copyright law, but likewise puts European and international copyright law into perspective. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Media
transparancies

Basic literature
Schulze, Gernot Meine Rechte als Urheber Verlag C.H.Beck, current edition

Complementary literature
Additional literature tba in class.

Remarks
It is possible that this course will be taught in the summer instead of the winter semester.
Course: Trademark and Unfair Competition Law

Lecturers: Yvonne Matz, Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of trademark rights in the national as well as the European and International context. The course deals with the structure of trademark rights, especially with the procedures of registration and the claims, that result from the infringements of trademark rights, as well as with the right of other marks in the MarkenG.

Content
The course deals with the subject matter of trademark rights: what is a trademark, how can I get the registration of a trademark, what rights and claims do owner of trademarks have, which other marks do exist? The students shall learn about the rules of national, European an international trademark law.

Basic literature
Course: Environmental Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [TVWL3JURA6] (S. 79)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the SPO.
The assessment will be offered in every winter term and can be repeated at every regular examination date.

Prerequisites
None.
Knowledge of Law, esp. Public Law I or II are recommended.

Conditions
None.

Learning Outcomes
Environmental law is a field of law that influences management in many regards. Students shall develop a feeling for the many different aspects of environmental law and its instruments. Aside from so-called “classical” approaches such as law-and-order students will learn about other, economic influenced, instruments such as the gathering and the transfer of information or the market for certificates. On this basis, the course will center around immissions and waste management law. Additionally, water law, protection of soil law and nature protection law will be covered. Students shall be enabled to deal with easy cases in regard to environmental law.

Content
The lecture begins with an introduction into the special problems faced by environmental law. Different instruments, according to common goods theory, will be presented. In the main part of the lecture, immissions law, waste management law, water law, protection of soil law and nature protection law will be analyzed.

Media
abstracts, sketches on blackboard, slides

Basic literature
Will be announced in the course.

Complementary literature
Will be announced in the course.
Course: Employment Law I

Lecturers: Alexander Hoff
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Labor and Tax Law [TVWL3JURA1] (S. 73), Private Business Law [TVWL3JURA5] (S. 78)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this lecture to provide a solid insight into individual-related labour law. The students will understand the importance of labour law as an integral part of social market economy. They will be able to review contractual provisions in employment contracts and to evaluate labour law conflicts.

Content
Students will be introduced to all labour law regulations concerning the beginning, enforcement and termination of an employment. The lecture provides an introduction into procedural matters. A labour court’s trial will be attended.

Basic literature
Tba at the beginning of the course.
Course: Tax Law I

Lecturers: Detlef Dietrich
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Labor and Tax Law [TVWL3JURA1] (S. 73), Private Business Law [TVWL3JURA5] (S. 78)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The target of the lecture is an introduction to national business tax law. The legal norms, spread on several individual tax laws, which are decisive for the taxation of the companies and their owners, will be treated. The focus is on basic fiscal knowledge realizable in practice as a component of modern business economics.

Content
Except for a basic knowledge of the existing German company types and the annual financial statements (balance sheet, statement of earnings), no fiscal previous knowledge is required. The lecture intends to give a current global overview about the most important elements of law. The focus is on trade or business companies in the most common forms such like sole traders, partnerships and corporations.

Media
transparancies

Basic literature
• Grashoff Steuerrecht, Verlag C. H. Beck, last edition
• Töpke/Lang Steuerrecht, Verlag C. H. Beck, last edition
Course: Internet Law

Lecturers: Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to give the students an overview of the legal rules that are touched upon when the Internet is used as a means of communications and for doing business. These legal rules range from the law governing domain names, issues concerning the electronic formation of contracts, distance and electronic commerce contracts, to the issue liability and questions of unfair competition. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Content
The course deals with the legal rules that are touched upon when the Internet is used as a means of communications and for doing business. These legal rules range from the law governing domain names, issues concerning the electronic formation of contracts, distance and electronic commerce contracts, to the issue liability and questions of unfair competition. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Media
Slides

Basic literature
Script, Internetrecht (Internet Law)

Complementary literature
Additional literature tba in class.

Remarks
It is possible that this course will be taught in the summer instead of the winter semester.
Course: Advanced Civil Law

Course key: [24504]

Lecturers: Thomas Dreier, Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Civil Law [TVWL3JURA3] (S. 75), Commercial Law [TVWL3JURA2] (S. 76)

Learning Control / Examinations
Assessment will consist of written exams within Privatrechtliche Übung following §4, Abs. 2, 3 of the examination regulation.

Prerequisites
The course Civil law for beginners [24012] is required.

Conditions
None.

Learning Outcomes
Following what the students have learned in the course Civil law for beginners about the basic notions of law and, in particular, the general part of the German Civil Code (Bürgerliches Gesetzbuch, BGB), in this course the students shall acquire knowledge of contract and of property law. They will learn about the statutory regulation of place, time and modalities of the performance of contractual duties, as well as the statutory rules governing defaults of performing contractual promises (impossibility of performance; non-performance; delayed performance, defective performance). In addition the students will be presented with the different types of contracts and with both liability for fault and strict liability. As far as property law is concerned, the students shall understand the different types of transfer of ownership and of securities the German Civil Code provides for.

Content
Following what the students have learned in the course Civil law for beginners about the basic notions of law and, in particular, the general part of the German Civil Code (Bürgerliches Gesetzbuch, BGB), in this course the students shall acquire knowledge of contract and of property law. On the one hand, this includes the statutory rules on place, time and modalities of performance, and the statutory rules governing defaults of performing contractual promises (impossibility of performance; non-performance; delayed performance, defective performance). On the other hand, the statutory types of contracts will be discussed (in particular, sale, lease, contract for work and contract for services, lending and borrowing) as well as new types of combined contracts (e.g., leasing, factoring, computer contracts). Moreover, legal liability will be discussed both with regard to liability for fault and with regard to strict liability. As regards property law, possession and ownership will be discussed as well as the different forms of transfer of ownership and the most important of the security rights.

Media
Transparencies/Slides

Basic literature
Tba at the beginning of the course.

Complementary literature
tba at the beginning of the course.
Course: Exercises in Civil Law

Lecturers: Peter Sester, Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Civil Law [TVWL3JURA3] (S. 75), Commercial Law [TVWL3JURA2] (S. 76)

Learning Control / Examinations
Assessment will consist of five written exams following §4, Abs. 2, 3 of the SPO. At least two exams have to be passed, to pass the course. The final grade is calculated as the median of the two exams that have been passed with the best grades.

Prerequisites
Students must have attended the course Civil Law for Beginners [24012] or a comparable introduction into (German) civil law. It is highly recomended that students have likewise attended the courses Advanced Civil Law [24504] and Commercial and Corporation Law [24011].

Conditions
None.

Learning Outcomes
It is the aim of this course to enable students to solve legal cases by way of the appropriate legal technique (so-called Subsumtion). At the same time, the legal knowledge which students have acquired in the courses “Civil Law for Beginners”, “Advanced Civil Law” and “Commercial and Corporation Law” will be repeated and deepened. This shall enable students to solve practical legal problems in a methodologically correct way.

Content
In 5 sessions the substantive law which students have been taught in the courses “Civil Law for Beginners”, “Advanced Civil Law” and “Commercial and Corporation Law” will be repeated and the method for solving legal cases deepened. Moreover, 5 sessions are reserved to written exam problems which cover the totality of what students have learned so far. Additional sessions are reserved for the subsequent in-class discussion of the exam problems.

Media
Slides

Basic literature
Tba in the course.
Course: Computer Contract Law

Lecturers: Michael Bartsch
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of contract formation and formulation in practice that builds upon the knowledge the students have already acquired concerning the legal protection of computer programs. Students shall understand how the legal rules depend upon, and interact with, the economic background and the technical features of the subject. The contract drafts shall be prepared by the students and will be corporately completed during the lecture. It is the aim of the course that students will be able to formulate contracts by themselves.

Content
The course deals with contracts from the following areas:

• Contracts of programming, licencing and maintaining software
• Contracts in the field of IT employment law
• IT projects and IT Outsourcing
• Internet Contracts

From these areas single contracts will be chosen and discussed (e.g. software maintenance, employment contract with a software engineer). Concerning the respective contract the technical features, the economic background and the subsumption in the national law of obligation (BGB-Schuldrecht) will be discussed. As a result different contractual clauses will be developed by the students. Afterwards typical contracts and conditions will be analysed with regard to their legitimacy as standard business terms (AGB). It is the aim to show the effects of the german law of standard business terms (AGB-Recht) and to point out that contracts are a means of drafting business concepts and market appearance.

Media
transparencies

Basic literature
• Langenfeld, Gerrit Vertragsgestaltung Verlag C.H.Beck, III. Aufl. 2004
• Heussen, Benno Handbuch Vertragsverhandlung und Vertragsmanagement Verlag C.H.Beck, II. Aufl. 2002
• Schneider, Jochen Handbuch des EDV-Rechts Verlag Dr. Otto Schmidt KG, III. Aufl. 2002

Complementary literature
tba in the transparencies
Course: Telecommunications Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3
Hours per week: 2/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [TVWL3JURA6] (S. 79)

Learning Control / Examinations
The assessment consists of an written exam (following §4(2), 1 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Telecommunications is the technical basis of the Information Engineering and Management. In which way for example UMTS is regulated, is of relevant importance for the supply of services in the world of the mobile contents services. The central defaults of the telecommunications regulation are in the telecommunications law (TKG). This was completely amended due to community-legal defaults 2004. The lecture procures for apprehending the basics of legal framework of the information society the essential knowledge in telecommunication law.

Content
The lecture offers an overview of the new TKG. The whole range of the regulation is treated: Of the material-legal instruments of the competition-creative economic regulation (market -, entrance -, payment regulation as well as special supervision of abuse) and the non-economic regulation (customer protection; Broadcasting; Assignment of frequencies, numbers and rights of way; secrecy of telecommunications; Data security and public security) up to the institutional arrangement of the regulation. To assist in the understanding the technical and economic bases are clarified as well as community and constitutional default sat at the beginning of the lecture.

Media
Content structure

Basic literature
Since the law material is to be partly compiled in the discourse with the studying, a current version of the TKG is to be bring along to the lecture.
Further literature will be announced in the lecture.

Complementary literature
tba
Course: Tax Law II

Lecturers: Detlef Dietrich
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Labor and Tax Law [TVWL3JURA1] (S. 73), Private Business Law [TVWL3JURA5] (S. 78)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the target of the lecture to provide extended knowledge in business administration related theory of taxation in the field of economics and law, based on the general lecture “introduction to corporate tax law”. The students obtain the basis for an economic examination of the fiscal prescriptions and are able to assess the impact on business decisions. The emphasis is on such tax law regulations which allow possibilities for action and decision to the taxpayer.

Content
The lecture requires basic knowledge of commercial law and company law as well as of earnings tax law. Basic and current questions of German corporate taxation are systematically prepared in topic blocs; foils, leaflets and supplementary references are distributed in the individual sessions. There is room for discussion. A recent text collection of the tax laws will be necessary.

Media
transparencies

Basic literature
• Spangemacher, Gewerbesteuer, Band 5, Grüne Reihe, Erich Fleischer Verlag
• Falterbaum/Bolk/Reiß/Eberhart, Buchführung und Bilanz, Band 10, Grüne Reihe, Erich Fleischer Verlag
• Töpke, K./Lang, J., Steuerrecht, Köln, in der neuesten Auflage.
• Jäger/Lang Körperschaftsteuer, Band 6, Grüne Reihe, Erich Fleischer Verlag
• Lippross Umsatzsteuer, Band 11, Grüne Reihe, Erich Fleischer Verlag
• Plückebaum/Wendt/ Niemeier/Schlierenkämper Einkommensteuer, Band 3, Grüne Reihe, Erich Fleischer Verlag
Course: Civil Law for Advanced

Lecturers: Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Private Business Law [TVWL3JURA5] (S. 78)

Learning Control / Examinations
Prerequisites
None.

Conditions
None.

Learning Outcomes
The course intents to build up extensive knowledge in german corporate law, trade law and civil law especially in contract law. It is designed for students who have already passed the courses Civil Law for Beginners [24012], Advanced Civil Law [24504], and Commercial and Corporate Law [24011/24509]. At the end students should be able to think through complex legal and economic questions.

Content
The course will focus on corporate law, trade law and civil law, especially contract law. We will discuss legal problems on the basis of selected examples in a application orientated way.

Basic literature
Course: Patent Law

Lecturers: Bernhard Geissler

Credit points (CP): 3 Hours per week: 2/0

Term: Sommersemester Level: 4

Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of patent law and the business of technical intellectual property that builds upon, and goes beyond the knowledge the students have already acquired in the general lecture of Industrial and intellectual property law. Students shall understand how the legal rules depend upon, and interact with, the economic background and the legislative policy in the field of technical intellectual property, particularly in the field of information and communication technologies. Students shall learn about the rules of national, European and international patent law as well as know-how protection law and to apply these legal rules in practical cases, in particular in the area of utilizing technical intellectual property through agreements and lawsuits. The conflict between the monopoly of a patent and the antitrust law policies in Europe will be reviewed with the students.

Content
The course deals with the subject matter of the law of technical intellectual property, in particular inventions, patents, utility models, design patents, know-how, the rights and obligations of employees as creators of technical IP, licensing, limitations and exceptions to patenting, term of protection, enforcement of the rights and defence against these in invalidation and revocation actions. The course does not merely focus on German patent law, but likewise puts European, US and international patent law into perspective. Students shall understand how the legal rules depend upon, and interact with, the economic background and the legislative policy in the field of technical intellectual property, particularly in the field of information and communication technologies. Students shall learn about the rules of national, European and international patent law as well as know-how protection law and to apply these legal rules in practical cases, in particular in the area of utilizing technical intellectual property through agreements and lawsuits. The conflict between the monopoly of a patent and the antitrust law policies in Europe will be reviewed with the students.

Media
transparencies

Basic literature

Complementary literature
Tba in the transparencies
Course: European and International Law
Course key: [24666]

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [TVWL3JURA6] (S. 79)

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Media
Content structure

Basic literature
Further details will be announced in the lecture.

Complementary literature
Further details will be announced in the lecture.
Course: Employment Law II

Lecturers: Alexander Hoff
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Labor and Tax Law [TVWL3JURA1] (S. 73), Private Business Law [TVWL3JURA5] (S. 78)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Students will gain insight into the statutory rights of employees and tariff law. They learn about the importance of employers associations and unions for the economy and gain adequate knowledge of laws concerning industrial action, supply of temporary workers and social security law.

Basic literature
Tba at the beginning of the course.
Course: Law of Contracts

Lecturers: Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Private Business Law [TVWL3JURA5] (S. 78)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course will provide an overview of the forming of an contract. The purpose is to translate legal and economic aspects in a contract to secure the volitional position. The course will also consider international questions.

Content
The purpose of the course is to provide students with an understanding of the legal basics of forming a business contract. By means of special examples an overview of typical corporate contracts will be given. The course discusses the Limited (GmbH), ordinary partnership (OHG), limited partnership (KG), European Economic Interest Grouping (EWIV), club (Verein) and the public limited company (Aktiengesellschaft). In addition it will also focus on international relations.

Basic literature
Tba at the beginning of the course.
Course: Applied Informatics II - IT Systems for e-Commerce
Course key: [25033]

Lecturers: Stefan Tai
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 2
Teaching language: Deutsch

Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatics [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment consists of a written examination (60 min) according to Section 4 (2),1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Knowledge of content of the courses Foundations of Informatics I [25074] and Foundations of Informatics II [25076] is expected.

Conditions
None.

Learning Outcomes
The student learns about IT methods and systems in support of modern electronic commerce. The student should be able to select, assess, design, and apply these methods and systems in a context-sensitive manner.

Content
The course introduces methods and systems in support of electronic commerce, including the topics:
- application architectures (incl. client server architectures)
- document description and exchange (incl. XML)
- enterprise middleware (incl. CORBA, Messaging Middleware, Java Enterprise Edition)
- Web services and SOA

Media
Slides, internet resources.

Basic literature
Tba in the lecture.
Course: Private and Social Insurance

Lecturers: Ute Werner, Heilmann, Besserer
Credit points (CP): 2.5 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Management [TVWL3BWLFBV4] (S. 44)

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation). The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
• Jahrbücher des GDV. Die deutsche Versicherungswirtschaft.

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: Principles of Insurance Management

Course key: [25055]

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral presentation (incl. elaboration) within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam at the end of the semester (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation incl. elaboration (50 percent) and the valuation of the oral exam (50 percent).

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
- U. Werner. Einführung in die Versicherungsbetriebslehre. Skript zur Vorlesung.

Complementary literature
Will be announced in the lecture.

Remarks
To attend the course please register at the secretariat of the chair of insurance science.

This lecture will extraordinarily not be held in the winter term 2009/10.
Course: Applied Informatics I - Modelling

Lecturers: Andreas Oberweis, Rudi Studer, Sudhir Agarwal
Credit points (CP): 5
Term: Wintersemester
Level: 2
Teaching language: Deutsch

Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatics [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment consists of a written examination (60 min) in the first week after lecture period (according to Section 4 (2),1 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Basic knowledge about the strengths and weaknesses of various modeling approaches including their application areas.

Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspects, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets as well as event driven process chains together with their respective analysis techniques will be introduced.

Media
Slides.

Basic literature

Complementary literature
Course: Nonlinear Optimization I

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Methodical Foundations of OR [TVWL3OR6] (S. 54), Stochastic Methods and Simulation [TVWLOR7] (S. 55)

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in the semester of the lecture and in the following semester. The examination can also be combined with the examination of Nonlinear Optimization II [25113]. In this case, the duration of the written examination takes 120 minutes.
In a combined examination of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.
In a combined examination of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows and understands fundamentals of nonlinear optimization,
- is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:
- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions for unconstrained problems
- Optimality conditions for unconstrained convex problems
- Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

Constrained problems are the contents of part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Nonlinear Optimization II

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Methodical Foundations of OR [TVWL3OR6] (S. 54)

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to §4(2), 1 of the examination regulation.
The exam takes place in the semester of the lecture and in the following semester.
The exam can also be combined with the examination of Nonlinear Optimization I [25111]. In this case, the duration of the written exam takes 120 minutes.
In a combined exam of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more then 50% of the exercise points, the grade of the passed exam is improved by a third of a grading step.
In a combined exam of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more then 50% of the computer exercise points, the grade of the passed exam is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows and understands fundamentals of nonlinear optimization,
• is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:
• Topology and first order approximations of the feasible set
• Theorems of the alternative, first and second order optimality conditions for constrained problems
• Optimality conditions for constrained convex problems
• Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
• W. Alt, Nichtlineare Optimierung, Vieweg, 2002
• M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
• H.Th. Jongen, K. Meer, E. Triesch, Optimization Theory, Kluer, 2004

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Seminar in Continuous Optimization

Lecturers: Oliver Stein
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation.
The total grade is composed of the equally weighted grades of the written and oral assessments.
The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the seminar presentation.

Prerequisites
See corresponding module information.

Conditions
Attendance is compulsory.
Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.
The student is introduced to the style of scientific work. By focused treatment of a scientific topic the student learns the basics of scientific investigation and reasoning.
For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.
With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also, rhetoric abilities may be improved.

Content
The current seminar topics are announced under http://kop.ior.kit.edu at the end of the preceding semester.

Basic literature
References and relevant sources are announced at the beginning of the seminar.
Course: Global Optimization I

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester.
In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.
In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows and understands the fundamentals of deterministic global optimization,
- is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.
Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:
- Introduction, examples, and terminology
- Existence results
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Numerical methods

Nonconvex optimization problems are treated in part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Global Optimization II

Lecturers: Oliver Stein

Credit points (CP): 4.5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of Global Optimization I [25134]. In this case, the duration of the written examination takes 120 minutes.

In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.

In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows and understands the fundamentals of deterministic global optimization,
- is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate. The global solution of convex optimization problems is subject of part I of the lecture. Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via αBB method
- Branch and bound methods
- Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Mixed-integer Optimization

Lecturers: Oliver Stein
Credit points (CP): 9 Hours per week: 4/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Methods for Discrete Optimization [TVWL3OR1] (S. 56)

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in the semester of the lecture and in the following semester.
Upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.
Upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows and understands the fundamentals of linear and nonlinear mixed integer programming,
• is able to choose, design and apply modern techniques of mixed integer programming in practice.

Content
Many optimization problems from economics, engineering and natural sciences are modeled with continuous as well as discrete variables. Examples are the energy minimal design of a chemical process in which several reactors may be switched on or off, or the time minimal covering of a distance with a vehicle equipped with a gear shift. While locally and globally optimal points can be defined straightforwardly, for their numerical identification an interplay of ideas from discrete and continuous optimization is necessary.
The lecture treats methods for the numerical solution of optimization problems which depend on continuous as well as discrete variables. It is structured as follows:
• Existence results
• Concepts of linear and convex optimization
• Mixed-integer linear programming (Gomory cuts, branch and cut methods, lift and project cuts)
• Mixed-integer convex programming (branch and bound methods)
• Generalized Benders decomposition
• Nonconvex mixed-integer optimization
• Heuristics

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
Course: Marketing and Consumer Behavior

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [TVWL3BWLMAR] (S. 47)

Learning Control / Examinations
See module description.

Prerequisites
See corresponding module description.

Conditions
See corresponding module description.

Learning Outcomes

Content
Starting from the S-O-R paradigm where S stands for “stimuli”, O for “organism”, and R for “reactions”, aspects of consumer behavior are explained and possibilities are provided how marketing activities can be used to create desired influences. S-R models describe how consumer reactions depend on stimuli. Cognitive processes and psychical states help to explain how the (unobservable) interior of the organism contributes to the interpretation of reactions. In this context the adequate combination of available marketing instruments (price, product, promotion, place) will be discussed.

Basic literature
Further literature references are announced in the script.
Course: Modern Market Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [TVWL3BWLMAR] (S. 47)

Learning Control / Examinations
See module description.

Prerequisites
Basic knowledge of statistics.

Conditions
None.

Learning Outcomes

Content

Basic literature
Further literature references are announced in the script.
Course: Marketing and Operations Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [TVWL3BWLMAR] (S. 47)

Learning Control / Examinations
See module description.

Prerequisites
Basics of Operations Research are required.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced in the lecture. Further literature references are announced in the script.
Course: Corporate Planning and Operations Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Specialization in Customer Relationship Management [TVWL3BWLISM5] (S. 40)

Learning Control / Examinations
See module description.

Prerequisites
Basics of operations research are assumed.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced in the lecture. Further literature references are announced in the script.
Course: Brand Management

Lecturers: Bruno Neibecker
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [TVWL3BWL0MAR] (S. 47)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
(See description of the module)

Content
The students should learn the essential scientific and practical principles of Marketing, especially branding. Branding consists of any name, design, style, words or symbols, singly or in any combination that distinguish one product from another in the eyes of the consumer. Brand positioning, brand loyalty and brand equity are discussed as important elements of a management concept. The focus of the course is not limited to short-term ROI, but also long-term benefits of communication strategies facing company's responsibilities to all of its stakeholders, e.g. consumers, investors and public. The strategies and techniques in branding are broaden by several case studies. English as an international technical language in marketing is practiced with course readings and scientific papers. Content:
The course brand management starts with the development of the corporate objectives as the heart of the brand planning process followed by definitions of brand. Setting up on the psychological and social bases of consumer behavior, aspects of an integrated marketing communication are discussed. The students should acquire the particular value of branding strategies. The concept of brand personality is considered in two perspectives, from a practical point of view and the challenging position of the theoretical construct. Methods for the measurement of a consumer-based brand equity are compared with the financial valuation of the brand. The information provided by this equity measurements are related to the equity drivers in brand management. The marketers perspective will be accomplish with the analysis of several case studies. Within the limits of a knowledge based system for advertising evaluation many of the issues accomplished in the course are summarized. At the same time it is discussed as a tool to use marketing knowledge systematically.

Media
Slides, Powerpoint presentations, Website with Online Course Readings

Basic literature

Course: Bachelor Seminar in Foundations of Marketing

Lecturers: Wolfgang Gaul

Credit points (CP): 3 Hours per week: 2/0

Term: Winter-/Sommersemester Level: 3

Teaching language: Deutsch

Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
Knowledge like it is provided in the course Foundations of Marketing [WI3BWLMAR] is assumed.

Conditions
None.

Learning Outcomes

Content
Course: Management Accounting

Lecturers: Torsten Lüdecke
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Topics in Finance I [TVWL3BWLFBV5] (S. 45), Topics in Finance II [TVWL3BWLFBV6] (S. 46)

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
This course aims at providing students with the understanding of the purposes of alternative costing systems as well as the use of relevant information for decision making. The course will also examine techniques for the purpose of cost management and accounting for control.

Content
- Design of Cost Systems
- Cost Classifications, Cost Behavior, and Principles of Cost Allocation
- Activity-based Costing
- Product Costing
- Production Decisions
- Cost-based Pricing
- Cost Management
- Decisions under Risk
- Cost Accounting for Control

Complementary literature
Course: Financial Management

Course key: [25216]

Lecturers: Martin E. Ruckes
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Essentials of Finance [TVWL3BWLFBV1] (S. 41)

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students get an comprehensive insight into financing, capital investments of firms and the essentials of valuation.

Content
Analytical methods and theories in the field “Capital investments and financing” with the main focus on:

- Capital Structure
- Dividend policy
- Essentials of valuation
- Investment decisions
- Short term/long term finance
- Working Capital Management

Complementary literature
- Berk, De Marzo (2007): Corporate Finance, Pearson Addison Wesley
Course: Financial Intermediation

Lecturers: Martin E. Ruckes
Credit points (CP): 4.5 Hours per week: 3
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Topics in Finance I [TVWL3BWLFBV5] (S. 45), Topics in Finance II [TVWL3BWLFBV6] (S. 46)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are introduced to the theoretical fundamentals of financial intermediation.

Content
- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Competition in the banking sector
- Stability of the financial system
- The macroeconomic role of financial intermediation

Complementary literature
Course: Seminar in Finance

Lecturers: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student gets in touch with scientific work. Through profound working on a specific scientific topic the student is meant to learn the foundations of scientific research and reasoning in particular in finance. Through the presentations in this seminar the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures. The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Basic literature
Will be announced at the end of the foregoing semester.
Course: Exchanges

Lecturers: Jörg Franke
Credit points (CP): 1.5 Hours per week: 1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: eFinance [TVWL3BWLISM3] (S. 38), Topics in Finance I [TVWL3BWLFBV5] (S. 45), Topics in Finance II [TVWL3BWLFBV6] (S. 46)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students learn about current developments regarding organisation of exchanges and securities trading.

Content

- Organisation of exchanges: Changing Zeitgeist - Corporates instead of cooparative structures
- Market models: order driven vs. market maker - Liquidity provision for less frequently traded securities
- Trading systems: The end of an era? - No more need for running traders?
- Clearing: Diversity instead of uniformity - Safety for all?
- Settlement: Increasing importance - Does efficient settlement assure the “value added” of exchanges in the long run?

Complementary literature
Educational material will be offered within the lecture.
Course: Business Strategies of Banks

Lecturers: Wolfgang Müller
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Topics in Finance I [TVWL3BWLFBV5] (S. 45), Topics in Finance II [TVWL3BWLFBV6] (S. 46)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Students are told the basics of commercial banking.

Content
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank’s success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Complementary literature
- A script is disseminated chapterwise within the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 2. Auflage, Springer

Module Handbook: Version 24.08.2009 Economics Engineering (B.Sc.)
Course: Statistics and Econometrics in Business and Economics

Course key: [25325]

Lecturers: Wolf-Dieter Heller
Credit points (CP): 4.5 Hours per week: 2/2
Term: Wintersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Basic knowledge in statistics is required.

Conditions
None

Learning Outcomes
statistically accurate use of financial market data, particularly time series analysis
Evaluation of various time series models and their applicability

Content
In Part 1 we will provide a thorough description of the quantitative part of investment theory paying attention to the mathematical, probabilistic and statistical methods now widely used in financial practice.
In Part 2 we shall study the methods of construction, identification and verification of time-series models, which are among most powerful instruments of the financial econometrics. The emphasis will be on the financial and economic indicators forecasting the financial time-series.

Media
transparencies lecture

Basic literature
e.g.

- Franke/Härdle/Hafner : Einführung in die Statistik der Finanzmärkte.
- Ruppert: Statistics and Finance

Complementary literature
See reading list

Lecturers: Karl-Heinz Vollmer
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
- Bierwag: Duration-Analysis; Managing Interest Rate Risk, 1987
- Andrew Harvey: The Econometric Analysis of Time Series, 2nd. Ed. 1993
- Andrew Harvey: Time Series Models, 2nd. Ed. 1994
- Pindyck, Rubinfeld: Econometric Models and Economic Forecasts, 1998
- B. Rolfes: Gesamtblaustralsteuerung, 1999
Course: Economics of Uncertainty

Lecturers: Karl-Martin Ehrhart
Credit points (CP): 4.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Strategic Games [TVWL3VWL4] (S. 26), Econometrics and Economics [TVWL3VWL7] (S. 33)

Learning Control / Examinations
Written exam, possible further requirements.

Prerequisites
See corresponding module information.

Conditions
Knowledge in mathematics and statistics is required.

Learning Outcomes
The student will be made familiar with the basics in modern decision making under uncertainty so that she will be able to analyze concrete decision problems and to develop simple solution procedures. By being confronted with experimental results in decision making the student should also be able to evaluate the behavioral part of decision making.

Content
In the first part of the course we deal with problems of decision making under uncertainty and introduce models like expected utility theory, stochastic dominance, risk aversion, and prospect theory. We also consider the empirical validity of the different approaches.
In the second part the concepts learned in the first part are applied for example to search models and Bayesian games.

Media
overhead slides, possibly additional printed material.

Basic literature

Complementary literature
• Lippman/McCall, Economics of Uncertainty, in: Handbook of Mathematical Economics I, 1986
• DeGroot, Optimal Statistical Decisions, Kap. 1 und 2, 1970
Course: Game Theory II
Course key: [25369]

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5
Hours per week: 2/2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Applied Game Theory [TVWL3VWL1] (S. 25), Strategic Games [TVWL3VWL4] (S. 26)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
See corresponding module information.
Basic knowledge of mathematics and statistics is assumed.

Conditions
None.

Learning Outcomes
This course teaches advanced knowledge in strategic decision theory. Latest developments in game theory are discussed. The student learns to judge complex strategic problems and to offer adequate solutions.

Content
This lecture aims at amplifying the students’ knowledge in game theory. Main topics are further concepts of non-cooperative game theory, cooperative game theory, evolutionary game theory and bargaining theory.

Media
Folien, Übungsblätter.

Basic literature

Complementary literature
Course: Industrial Organization

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (80 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The students will learn to understand the negative effects of imperfect competition and possible political implications thereof. In every chapter of the course game theoretic models will be introduced with the objective to reveal how the theory of industrial organization can explain real world economic phenomena. The theoretical analysis of economic interrelations will be supplemented by class room experiments and if possible by presentations from business experts.

Content
In the first part of the course different market structures like monopoly, oligopoly and perfect competition will be introduced and compared with each other. In the main part advanced concepts on topics like price discrimination, product differentiation, collusive behavior, as well as different theoretical models on market entry and R&D will be presented.

Media
Slides.

Basic Literature
- H. Bester (2007), Theorie der Industrieökonomik. Berlin: Springer-Verlag

Complementary Literature
- D. Carlton, J. Perloff (2005), Modern Industrial Organization. Reading, Mass.: Addison-Wesley
- N. Schulz (2003), Wettbewerbspolitik: eine Einführung aus industrieökonomischer Perspektive, Tübingen: Mohr Siebeck
Course: Experimental Economics

Lecturers: Siegfried Berninghaus, Bleich
Credit points (CP): 4,5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Applied Game Theory [TVWL3VWL1] (S. 25)

Learning Control / Examinations
The assessment consists of an 80 min written exam. The lecturer may offer the opportunity to reach up to 10 points by writing a seminar thesis and a presentation to an individually announced topic.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The students should learn
- how to gain scientific experience and knowledge (philosophy of science),
- how Game Theory and Experimental Economics influenced each other in scientific research,
- about the methods as well as the strengths and weaknesses of Experimental Economics,
- some examples of experimental research, such as markets and market equilibria, coordination games, bargaining, decision making under risk,
- how to evaluate data.

Content
Experimental Economics have become a separate field in Economics. Nearly all fields of the economic discipline use economic experiments to verify theoretical results. Besides being used for empirical validation, this method is applied in political and strategic consulting. The lecture gives an introduction to experimental methods in economics and shows differences to experiments in natural sciences. Scientific studies are used to show exemplary applications.

Media
Classroom experiments or experiments in the computer laboratory will be conducted. To some extent, slides are made available online.

Complementary literature
- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2nd ed., 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.
Course: Data Mining

Lecturers: Gholamreza Nakhaeizadeh
Credit points (CP): 5 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Part one: Data Mining
Why Data Mining?
 • What is Data Mining?
 • History of Data Mining
 • Conferences and Journals on Data Mining
 • Potential Applications
 • Data Mining Process:
 • Business Understanding
 • Data Understanding
 • Data Preparation
 • Modeling
 • Evaluation
 • Deployment
 • Interdisciplinary aspects of Data Mining
 • Data Mining tasks
 • Data Mining Algorithms (Decision Trees, Association Rules,
 • Regression, Clustering, Neural Networks)
 • Fuzzy Mining
 • OLAP and Data Warehouse
 • Data Mining Tools
 • Trends in Data Mining
Part two: Examples of application of Data Mining
 • Success parameters of Data Mining Projects
 • Application in industry
 • Application in Commerce

Basic literature
 • Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.
 • David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining , MIT Press, Fall 2000
Course: Advanced Econometrics of Financial Markets

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Econometrics and Economics [TVWL3VWL7] (S. 33)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
After successful completion of the course students will have attained both knowledge and competency to comprehend the theories behind portfolio management of major financial institutions. Hence students can adapt this understanding to the more specialised needs of the intermediary.

Content

Media
transparencies, exercises.

Basic literature
Course: Optimization on Graphs and Networks

Course key: [25432]

Lecturers: N.N.
Credit points (CP): 9 Hours per week: 4/2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Methods for Discrete Optimization [TVWL3OR1] (S. 56)

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2),1 of the examination regulation.
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
- Ahuja, Magnanti, Orlin: Network Flows.
- Prentice Hall Cook, Cunningham, Pulleyblank, Schrijver: Combinatorial Optimization.
- Carl Hanser Ball, Magnanti, Monma, Nemhauser: Network Models bzw Network Routing.
Course: Facility Location and Strategic Supply Chain Management

Course key: [25486]

Lecturers: Stefan Nickel
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consist of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture covers basic quantitative methods in location planning in the context of strategic Supply Chain Planning. Besides the discussion of several criteria for the evaluation of the locations of facilities, the students are acquainted with classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models). The exercises accompanying the lecture offer the possibility to apply the considered models to practical problems.

Content
Since the classical work “Theory of the Location of Industries” of Weber from 1909, the determination of an optimal location of a new facility with respect to existing customers is strongly connected to strategical logistics planning. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning allows an efficient flow of materials and leads to lower costs and increased customer service.

Subject of the course is an introduction to the most important terms and definitions in location planning as well as the presentation of basic quantitative location planning models. Furthermore, specialized location planning models for Supply Chain Management will be addressed as they are part in many commercial SCM tools for strategic planning tasks.

Complementary literature
- Domschke, DrexI: Logistik: Standorte, 4. Auflage, Oldenbourg, 1996
- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988

Remarks
The lecture is offered in every summer term. The planned lectures and courses for the next three years are announced online.
Course: Tactical and Operational Supply Chain Management

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation.
The exam takes place in every the semester.

Prerequisites
Successful completion of the module Introduction to Operations Research [TVWL1OR].

Conditions
None.

Learning Outcomes
The main goal of the lecture is the presentation of fundamental techniques from procurement and distribution logistics. A further aspect is set on methods from inventory management and lot sizing. Students acquire the ability to efficiently utilize quantitative models from transportation planning (long-distance and distribution planning), inventory management and lot sizing in production. The introduced methods will be discussed in more detail and illustrated with case-studies in the accompanying exercises.

Content
The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot.
The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.

Complementary literature
- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005

Remarks
The lecture is offered in every winter term.
The planned lectures and courses for the next three years are announced online.
Course: Software Laboratory: OR Models I

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 1/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applications of Operations Research [TVWL3OR5] (S. 53)

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the software laboratory and the following term.

Prerequisites
Successful completion of the module Operations Research [WI1OR].

Conditions
None.

Learning Outcomes
The software laboratory has the goal to make the students familiar with the usage of computers in practical applications of Operations Research. An important benefit lies in the ability to assess and estimate general possibilities and fields of usage of modeling and implementation software for solving OR models in practice. As software-based planning modules are used in many companies, this course provides a reasonable preparation for students for practical planning activities.

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, ...), the program XPress-MP IVE with its modelling language Mosel will be presented in detail. Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Remarks
The course is offered in every winter term.
The planned lectures and courses for the next three years are announced online.
Course: Seminar in Discrete Optimization

Lecturers: Stefan Nickel
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 40-60 minutes (according to §4(2), 3 of the examination regulation).
The final mark for the seminar is the weighted average of the marks for the assessed assignments (seminar thesis 50 %, presentation 50%).
The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Prerequisites
Successful completion of the module Introduction to Operations Research [TVWL1OR].

Conditions
Attendance is compulsory.
If possible, at least one module of the institute should be taken before attending the seminar.

Learning Outcomes
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management).
The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.
Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Content
The current topic of the seminar will be announced at the end of the preceding term on the internet.

Basic literature
Literature and relevant sources will be announced at the beginning of the seminar.

Remarks
The seminar is offered in each term.
Course: Welfare Economics

Lecturers: Clemens Puppe

Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Microeconomic Theory [TVWL3VWL6] (S. 30)

Learning Control / Examinations

The assessment consists of a written exam at the end of the semester (according to Section 4 (2), 1 or 2 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

The courses *Economics I: Microeconomics* [25012] and *Economics II: Macroeconomics* [25014] have to be completed beforehand.

Conditions

None.

Learning Outcomes

Content

Complementary literature

Course: Game Theory I

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (80 minutes) according to Section 4(2).1 of the examination regulation.
The exam takes place in the recess period and can be resited at every ordinary examination date.

Prerequisites
Basic knowledge of mathematics and statistics is assumed.
See corresponding module information.

Conditions
None.

Learning Outcomes
This course conveys established knowledge in theory of strategic decision making. The students shall be able to analyze strategic problems systematically and to give advice for behavior in concrete economic situations.

Content
Main topic is non-cooperative game theory. Models, solution concepts and applications are discussed for simultaneous as well as sequential games. Different equilibrium concepts are introduced and a short introduction to cooperative game theory is given.

Media
Folien, Übungsblätter.

Basic literature
Gibbons, A primer in Game Theory, Harvester-Wheatsheaf, 1992

Complementary literature
• Binmore, Fun and Games, DC Heath, Lexington, MA, 1991
Course: Advanced Microeconomic Theory

Lecturers: Clemens Puppe
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Microeconomic Theory [TVWL3VWL6] (S. 30)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Theory of Economic Growth

Lecturers: Marten Hillebrand
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Macroeconomic Theory [TVWL3VWL8] (S. 31)

Learning Control / Examinations
According to the attendance the assessment consists of a written or an oral exam at the beginning of the recess period (according to Section 4 (2), 1 or 2 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
The courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014] have to be completed beforehand. According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Conditions
None.

Learning Outcomes

Content
Course: Theory of Business Cycles

Lecturers: Marten Hillebrand
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Englisch
Part of the modules: Macroeconomic Theory [TVWL3VWL8] (S. 31), Econometrics and Economics [TVWL3VWL7] (S. 33)

Learning Control / Examinations
According to the attendance the assessment consists of a written or an oral exam at the beginning of the recess period (according to Section 4 (2), 1 or 2 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
The courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014] have to be completed beforehand.
According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Simulation I

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/1/2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (according to Section 4(2), 3 of the examination regulation).

Prerequisites
Foundations in the following fields are required:
 • Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
 • Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].

Conditions
None.

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is oftern not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.
Topics overview: Discrete event simulation, generation of random numbers, generating discrete and continous random variables, statistical analysis of simulated data, variance reduction techniques, case studies.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
 • Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation II

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5
Hours per week: 2/1/2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Methods and Simulation [TVWLOR7] (S. 55), Stochastic Methods and Simulation [TVWL3OR4] (S. 57)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4(2), 1 SPO. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (§4(2), 3 SPO).

Prerequisites
Foundations in the following fields are required:
• Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
• Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].
• Simulation I [25662]

Conditions
not any

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is often not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.
Topics overview: Variance reduction techniques, simulation of stochastic processes, case studies.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
• Skript

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Markov Decision Models I

Lecturers: Karl-Heinz Waldmann

Credit points (CP): 4.5 Hours per week: 2/1/2

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Methodical Foundations of OR [TVWL3OR6] (S. 54), Stochastic Methods and Simulation [TVWLO7] (S. 55), Stochastic Methods and Simulation [TVWL3OR4] (S. 57)

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (according to Section 4(2), 3 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques of stochastic modelling. Students are able to properly describe and analyze basic stochastic systems.

Content
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
Lecture Notes

Complementary literature
Course: Efficient Algorithms

Lecturers: Hartmut Schmeck
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatic [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the week after
the end of the lecturing periodwrt (§4 (2), 1 SPO).
If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the bonus exam
will improve the mark by one level (i.e. by 0.3 or 0.4).
Deviations from this type of assessment are announced at the beginning of this course.

Prerequisites
credits for the Informatics modules of years 1 and 2.

Conditions
None.

Learning Outcomes
The student will learn how to use methods and concepts of efficient algorithms and how to demonstrate adequate innovative
capabilities with respect to the used methods.
This course emphasizes the teaching of advanced concepts for the design and application of algorithms, data structures, and
computer infrastructures in relation to their applicability in the real world. Based on a fundamental understanding of the covered
concepts and methods, students should know how to select appropriate concepts and methods for problem settings in their
professional life, and, if necessary, to extend and apply them in an adequate form. The students should be enabled to find
adequate arguments for justifying their chosen problem solutions.

Content
In a problem oriented way the course presents systematic approaches to the design and analysis of efficient algorithms using
standard tasks of information processing as generic examples. Special emphasis is put on the influence of data structures and
computer architectures on the performance and cost of algorithms. In particular, the course emphasizes the design and analysis of
algorithms on parallel computers and in hardware, which is increasingly important considering the growing presence of multicore
architectures.

Media
• powerpoint slides with annotations using a tablet pc
• access to applets and Internet resources
• lecture recording (camtasia)

Basic literature
Borodin, Munro: The Computational Complexity of Algebraic and Numeric Problems (Elsevier 1975)
Cormen, Leiserson, Rivest: Introduction to Algorithms (MIT Press)
Sedgewick: Algorithms (Addison-Wesley) (many different versions available)

Complementary literature
will be announced in class
Course: Algorithms for Internet Applications

Lecturers: Hartmut Schmeck
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatics [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination (called “bonus exam”, 60 min) (according Section 4(2), 3 of the examination regulation) (the bonus exam may be split into several shorter written tests).

The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students will learn to master methods and concepts of essential algorithms within Internet applications and to develop capabilities for innovative improvements. The course aims at teaching advanced concepts for the design and application of algorithms with respect to the requirements in networked systems. Based on a fundamental understanding of taught concepts and methods the students should be able to select appropriate concepts and methods for problem settings in their future professional life, and if necessary - customize and apply them in an adequate way. The students will be capable to find appropriate arguments for their chosen approach to a problem setting.

In particular, the student will - know the structure and elementary protocols of the Internet (TCP/IP) and standard routing algorithms (distance vector and link state routing), - know methods of information retrieval in the WWW, algorithms for searching information and be able to assess the performance of search engines, - know how to design and use cryptographic methods and protocols to guarantee and check confidentiality, data integrity and authenticity, - know algorithmic basics of electronic payment systems and of electronic money, - the architectures and methodologies of firewalls.

Content
Internet and World Wide Web are changing our world, this core course provides the necessary background and methods for the design of central applications of the Internet. After an introduction into Internet technology the following topics are addressed: information retrieval in the www, structure and functioning of search engines, foundations of secure communication, electronic payment systems and digital money, and if time permits - security architectures (firewalls), data compression, distributed computing on the Internet.

Media
Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Basic literature

Complementary literature
- Further references will be given in the course.
Course: Database Systems

Lecturers: Andreas Oberweis, Dr. D. Sommer
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Electives in Informatic [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Prerequisites
Knowledge of course Applied Informatics I - Modelling [25070] is expected.

Conditions
None.

Learning Outcomes
Students
• are familiar with the concepts and principles of data base models, languages and systems and their applications,
• can design and model relational data bases on the basis of theoretical foundations,
• are able to ensure an error-free operation and the integrity of the data base and
• know how to handle enhanced data base problems occurring in the enterprises.

Content
Database systems (DBS) play an important role in today's companies. Internal and external data is stored and processed in databases in every company. The proper management and organization of data helps to solve many problems, enables simultaneous queries from multiple users and is the organizational and operational base for the entire working procedures and processes of the company. The lecture leads in the area of the database theory, covers the basics of database languages and database systems, considers basic concepts of object-oriented and XML databases, conveys the principles of multi-user control of databases and physical data organization. In addition, it gives an overview of business problems often encountered in practice such as:
• Correctness of data (operational, semantic integrity)
• Restore of a consistent database state
• Synchronization of parallel transactions (phantom problem).

Media
Slides, Access to internet resources

Complementary literature
Further literature will be given individually.
Course: Software Engineering
Course key: [25728]

Lecturers: Andreas Oberweis, Detlef Seese
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatics [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Prerequisites
Modul “Introduction to Informatics” [TVWL1INFO] is precondition

Conditions
None.

Learning Outcomes
Students
- are familiar with the concepts and principles of software engineering
- know important and common software development process models
- know methods for requirements analysis and know how to model and evaluate use case models
- know models for systems structuring and controlling as well as architecture principles of software systems.
- can model and evaluate component diagrams
- are familiar with basic concepts of software quality management and are able to apply software test and evaluation methods.

Content
The course deals with fundamental aspects of the systematically development of huge software systems. The course covers topics such as:
- software developing process models
- methods and tools for the development phases: requirements analysis, system specification, system design, programming and testing.

Media
Slides, access to internet resources.

Complementary literature
- E. Gamma et al.. Design Patterns. Addison Wesley 1995.

Further literature is given in the course.
Course: Knowledge Management

Lecturers: Rudi Studer
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatic [TVWL3INFO2] (S. 52)

Learning Control / Examinations
Written Examination (60 min) according to §4, Abs. 2, 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, 2 of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
Basics in logic, e.g. from lecture Foundations of Informatics 1.

Conditions
None.

Learning Outcomes
Making students sensitive to the problems of corporate knowledge management, knowledge about the central dimensions of influence as well as of relevant technologies for supporting knowledge management.

Content
In modern corporations, knowledge is an increasingly important aspect for fulfilling central tasks (amelioration of business processes, increasing innovation, increasing customer satisfaction, strategic planning and the like). Therefore, knowledge management has become a determining factor of success.

The lecture covers the different types of knowledge that play a role in knowledge management, the corresponding knowledge processes (generation, capture, access and usage of knowledge) as well as methodologies for the introduction of knowledge management solutions.

The lecture will further emphasize the following computer science techniques for knowledge management:
- Communities of Practice, Collaboration Tools, Skill Management
- ontology-based knowledge management
- Business Process oriented Knowledge Management
- Personal Knowledge Management
- Case Based Reasoning (CBR)

Media
Slides and scientific publications as reading material.

Basic literature

Complementary literature
Course: Semantic Web Technologies I
Course key: [25748]

Lecturers: Rudi Studer, Sebastian Rudolph
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Electives in Informatic [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.
The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent.

Conditions
None.

Learning Outcomes
• Basic knowledge about the main ideas and the realisation of Semantic Web Technologies

Content
"Semantic Web" denotes an extension of the World Wide Web by meta data and applications in order to make the meaning (semantics) of data on the web usable by intelligent systems, e.g. in e-commerce and internet portals. Central to this is the representation and processing of knowledge in form of ontologies. This lecture provides the foundations for knowledge representation and processing for the corresponding technologies and presents example applications. It covers the following topics:
 • Extensible Markup Language (XML)
 • Resource Description Framework (RDF) and RDF Schema
 • Web Ontology Language (OWL)
 • Rule Languages
 • Applications

Media
Slides.

Basic literature

Complementary literature
Course: Complexity Management

Lecturers: Detlef Seese
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Englisch
Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatic [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO). The exam will be offered every semester and may be repeated at every ordinary exam date. Questions are in English, answers are possible in German or in English. In case that only a small number of candidates apply for the examination there will be offered an oral examination according to Section 4(2),1 of the examination regulation.

Prerequisites
A basic knowledge in informatics is suitable.

Conditions
None.

Learning Outcomes
Students will be enabled to acquire abilities, methods and instruments in the area of complexity management and learn to use them in an innovative way. The students should be enabled to find arguments for the solution of problems in this area. The basic goal of the lecture is to enable to understand the difficulties to manage complex systems and processes.

Content
Complexity is one of the biggest challenges of our time. Central questions are: - Why humans often fail in complex situations? - What is complexity? - What are reasons for complexity? - Which parameters are essential to control complexity? - How systems have to be designed to reduce their complexity and to enable management of complexity?

The lecture gives a survey on fundamental results and handles the following topics: - Understanding of the difficulties produced by complex systems and complex processes - Foundations: modelling complex systems, complexity theory, descriptive, structural and parametric complexity, dynamic systems, topology, dimension, non-linearity, chaos, randomness and emerging structures, human shortcomings, simulation - Complexity of products and production - Complexity of markets - How to improve complexity management? - Decision support by intelligent use of IT

Media
The slides of the lectures will be provided on the website of the lecture.

Basic literature
- Franz Reither: Komplexitätsmanagement. Gerling Akademie Verlag, München 1997
- S. Wolfram: A new kind of Science. Wolfram Media Inc. 2002

Complementary literature
- N. Immerman: Descriptive Complexity; Springer-Verlag, New York 1999
- J. A. Bondy, U.S.R. Murty: Graph Theory, Springer 2008
- Christos H. Papadimitriou: Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994
• M. J. North, Ch. M. Macal: Managing Business Complexity, Discovering Strategic Solutions with Agent-Based Modeling and Simulation, Oxford University Press 2006
• S. Bornholdt, H. G. Schuster (Eds.): Handbook of Graphs and Networks, From the Genome to the Internet, Wiley-VCH, 2003
• Further references will be given in each lecture.

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described content and schedule.
Course: Intelligent Systems in Finance
Course key: [25762]

Lecturers: Detlef Seese
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: eFinance [TVWL3BWLIISM3] (S. 38), Electives in Informatic [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment is a written examination. See the German part for special requirements to be admitted for the examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- The students acquire abilities and knowledge of methods and systems from the area of machine learning and learn how to use them in the area of finance, which is the core area of application of this lecture.
- It is taught the ability to choose and change these methods and systems adequate to the situation and to use them for problem solving in the area of finance.
- The students get the ability to find strategic and creative answers in their search for solutions for precisely defined, concrete and abstract problems.
- At the same time the lecture aims to give foundational knowledge and methods in the context of their application in practise. On the basis of the basic understanding of concepts and methods of informatics the students should be able to comprehend quickly the new developments in the area and to use them correctly.

Content
A new generation of computing methods, commonly known as “intelligent systems”, has recently been successfully applied to a variety of business and financial modelling tasks. In many application fields these novel methods outperform traditional statistical techniques. The lecture provides a comprehensive coverage of the area, including foundations and applications. In particular it deals with intelligent software agents, genetic algorithms, neural networks, support vector machines, fuzzy-logic, expert systems and intelligent hybrid systems. The presented applications focus on the finance area and are related to risk management (credit risk, operational risk), financial trading, portfolio management and economic modelling. The lecture is given in cooperation with the company msgGILLARDON. The lecture starts with an introduction of the central problems of application in this area, e.g. decision support for investors, Portfolio selection under constraints, information retrieval from business reports, automatic development of trading rules for the capital market, modelling of time series at the capital market, explanation of phenomena at capital markets by simulation, decision support in risk management (credit risk, operational risk). After this the basics of intelligent systems are discussed. Basic ideas and essential results for different stochastic heuristics for local search are discussed next, especially Hill Climbing, Simulated Annealing, Threshold Accepting and Tabu Search. After this different population-based approaches of evolutionary methods are presented, e.g. Genetic Algorithms, Evolutionary Strategies and Programming, Genetic Programming, Memetic Algorithms and Ant-Algorithms. It follows an introduction into Neural Networks, Support Vector Machines and Fuzzy logic. Software agents and agent-based stock market models are the next topic. The lecture ends with an overview on the complexity of algorithmic problems in the area of finance, giving in this way one of the key reasons for the necessity to use heuristics and intelligent systems. Essential examples and basic applications are chosen from the area of finance.

Media
Slides.

Basic literature
There is no text book covering completely the content of the lecture.

Further references will be given in each lecture.
Complementary literature

- Further references will be given in the lecture.

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described contend and schedule.
Course: Service Oriented Computing 1

Lecturers: Stefan Tai
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51), Electives in Informatic [TVWL3INFO2] (S. 52)

Learning Control / Examinations
The assessment of this course is a written examination (60min.) in the first week after lecture period (nach §4(2), 1 SPO).

Prerequisites
Lecture AI2 [25033] is recommended.

Conditions
None.

Learning Outcomes
The course introduces concepts, methods, and techniques of “service-oriented computing”, including languages for (Web) service description, methods and tools for the development of services, and platforms (middleware, runtimes) for the Web-based deployment, delivery, and execution of services. In addition, software-as-a-service models and emerging trends (incl. Cloud Computing) will be presented and discussed. The course provides a solid technical foundation that enables the student to address the increasingly relevant challenges of developing “service-oriented architectures (SOA)” in the industry.

Content
Web services represent the next-generation of Web technology, and are an evolution of conventional distributed middleware. They enable new and improved ways for enterprise computing, including application interoperability and integration, and business process management. Modern software systems are being designed as service-oriented architectures (SOA), introducing increased agility and flexibility at both the software systems and the business level. Web services and SOA thus have a profound impact on software development and the businesses that they support. The course “Service-oriented Computing” introduces the concepts, methods and technology that provide a solid foundation in this area. Topics include:

- Service description
- Service engineering, including development and implementation
- Service composition (aggregation), including process-based service orchestration
- Interoperability formats and protocols
- Service platforms and runtimes (middleware)
- Software-as-a-Service models
- Service intermediaries (markets)
- Mashups and situational applications
- Cloud computing

Media
Slides, access to internet resources.

Basic literature
Will be announced in the lecture.
Course: Advanced Programming - Java Network Programming

Course key: [25780]

Lecturers: Detlef Seese, Ratz

Credit points (CP): 5
Hours per week: 2/1/2

Term: Sommersemester
Level: 3

Teaching language: Deutsch

Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51)

Learning Control / Examinations

The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written exam. Those admission to the exam is only valid for the current main exam (in winter term) and the following exam (in summer term). Further information about attendance to the exercises and practical terms will be announced in the first lecture and at the lecture homepage.

Prerequisites

Successful completion of the course *Introduction to Programming with Java* [25030].

Conditions

None.

Learning Outcomes

see German version

Content

see German version

Basic literature

Complementary literature

- Further references will be given in the lecture.
Course: Advanced Programming - Application of Business Software
Course key: [25886]

Lecturers: Andreas Oberweis, Stefan Klink

Credit points (CP): 5
Hours per week: 2/1/2

Term: Wintersemester
Level: 3

Teaching language: Deutsch

Part of the modules: Emphasis Informatics [TVWL3INFO1] (S. 51)

Learning Control / Examinations
The assessment consists of a written examination of 2 hours (according to Section 4 (2), 1 of the examination regulation) and of assignments during the course (according to Section 4 (2), 3 of the examination regulation).
Successful participation to the computer lab is precondition for permission to the assessment. Those admission to the exam is only valid for the current main exam (in winter term) and the following exam (in summer term). Further information will be given at the first lesson and via the homepage of the course.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Knowledge of the course “Grundlagen der Informatik I und II” are helpful.

Conditions
None.

Learning Outcomes
Students

- master basic concepts and principles of enterprise information systems,
- can model and implement operative workflows
- apply standard software for modelling business processes and for analysing them to given criteria
- master the installation, configuration, and parameterisation of enterprise information systems in business and
- assess economical aspects of such systems.

Content
Business information systems enable, support, and accelerate new forms of business processes and forms of organisation. They are the central infrastructure of the economy in the age of eBusiness. Thus, basic knowledge is given in lectures, in exercises and in the computer lab which deals with installation, configuration and parameterization of business information systems. The course communicates profound knowledge in following topics:

- Analysis of cooperation scenarios and business process scenarios
- Selection of modelling methods according to defined criteria
- Implementation of business process models and cooperation models with the help of standard software
- Identification and assessment of challenges during the installation of information systems
- Economical evaluation of business information systems.

Media
Slides, access to internet resources.

Complementary literature

- Schwabe, Streitz, Unland. CSCW-Kompendium. Lehr- und Handbuch zum computerunterstüzteten kooperativen Arbeiten.
- Krcmar, Schwarzer. Wirtschaftsinformatik.

Further literature will be given during the course.
Course: Management and Strategy

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategy and Organization [TVWL3BWLUO1] (S. 48)

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration.

Content
- Corporate management principles
- Strategic management principles
- Strategic analysis
- Competitive strategy: modelling and selection on a divisional level
- Strategies for oligopolies and networks: anticipation of dependencies
- Corporate strategy: modelling and evaluation on a corporate level
- Strategy implementation

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Managing Organizations

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategy and Organization [TVWL3BWLNO1] (S. 48)

Learning Control / Examinations
The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organisational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Content
• Principles of organisational management
• Managing organisational structures and processes: the selection of design parameters
• Ideal-typical organisational structures: choice and effect of parameter combinations
• Managing organisational changes

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Special Topics in Management: Management and IT

Lecturers: Hagen Lindstädt
Credit points (CP): 2 Hours per week: 1/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategy and Organization [TVWL3BWL0U1] (S. 48)

Learning Control / Examinations
The assessment consists of a written exam (30 min) at the beginning of the recess period (according to Section 4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course discusses management questions and concepts that are clearly motivating from a current and practical perspective. Here the integration of IT and process issues into corporate management from the management's perspective is one of the subjects of particular interest. The event takes place in close cooperation with leading, practical managers.

Content
(Excerpt):
• A summary of current management concepts and questions.

Media
Slides.

Basic literature
The relevant excerpts and additional sources are made known during the course.
Course: Seminar: Management and Organization

Lecturers: Hagen Lindstädt
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The aim of the seminar is to describe corporate and organisational management approaches, to assess them critically and clarify them using practical examples. The focus is on assessing the models with a view to their applicability and theoretical limits.

Content
The subjects are redefined each semester on the basis of current issues.

Media
Slides.

Basic literature
The relevant sources are made known during the course.
Course: Seminar: Management and Organization

Lecturers: Hagen Lindstädt
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
Completion of all 1st an 2nd year modules of the Bachelor Program or Admission to the Master Program.

Conditions
None.

Learning Outcomes
The aim of the seminar is to describe corporate and organisational management approaches, to assess them critically and clarify them using practical examples. The focus is on assessing the models with a view to their applicability and theoretical limits.

Content
The subjects are redefined each semester on the basis of current issues.

Media
Slides.

Basic literature
The relevant sources are made known during the course.
Course: Fundamentals of Production Management

Lecturers: Frank Schultmann

Credit points (CP): 5.5 Hours per week: 2/2

Term: Sommersemester Level: 3

Teaching language: Deutsch

Part of the modules: Industrial Production I [TVWL3BWLIIPI] (S. 49)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Formulation of basic problems and development of solutions in the framework of production management.

Content
This lecture is designed as an introduction to Industrial Production. It focusses on among others on strategic production management and ecological aspects. After an introduction in production management and system theory, topics treated cover industrial R&D, siting, industrial logistics as well as reverse logistics and finally transport and stockkeeping. The topics presented are additionally illustrated by several case studies from industry.

Media
Media will be provided on learning platform.

Basic literature
will be announced in the course
Course: Energy Policy

Lecturers: Martin Wietschel
Credit points (CP): 3.5 Hours per week: 2/0
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Energy Economics [TVWLIP2] (S. 50)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Keine.

Conditions
Keine.

Learning Outcomes

Content
The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Basic literature
Will be announced in the lecture.
Course: Material and Energy Flows in the Economy
Course key: [25960]

Lecturers: Michael Hiete
Credit points (CP): 3.5
Hours per week: 2/0
Term: Wintersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production I [TVWL3BWL1P] (S. 49)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
The successful completion of the course Betriebswirtschaftslehre [TVWL1BWL].

Conditions
None.

Learning Outcomes

Content

Basic literature
will be announced in the course
Course: Logistics and Supply Chain Management

Lecturers: Frank Schultmann
Credit points (CP): 3.5 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production I [TVWL3BWLIP] (S. 49)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Introduction in to Energy Economics

Lecturers: Wolf Fichtner
Credit points (CP): 5.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Energy Economics [TVWLIIIP2] (S. 50)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
See module description.

Conditions
None.

Learning Outcomes
See module description.

Content

Media
Media will be provided on the e-learning platform ILIAS.
Course: Renewable Energy Sources - Technologies and Potentials

Lecturers: Wolf Fichtner
Credit points (CP): 3.5
Hours per week: 2/0
Term: Wintersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Energy Economics [TVWLII02P] (S. 50)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
See module description.

Content

Media
Media will likely be provided on the e-learning platform ILIAS.
Course: Public Revenues

Lecturers: Berthold Wigger
Credit points (CP): 4,5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Public Finance [TVWL3VWL9] (S. 32)

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Prerequisites
Basic knowledge of Public Finance is required.

Conditions
None.

Learning Outcomes

Content
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Complementary literature
Course: Fiscal Policy

Lecturers: Berthold Wigger
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Public Finance [TVWL3VWL9] (S. 32)

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Prerequisites
Basic knowledge of Public Finance is required.

Conditions
None.

Learning Outcomes

Content
The lecture is concerned with the incentive structures for public agents. An overview of the subject is given in chapter one. The second chapter introduces basic concepts of public choice, while emphasizing the consistency characteristics of collective decision-making. Moreover, it analyzes which circumstances lead to so-called government failure. Chapter three examines selected public activities from a political economy perspective. Taxes and public debt as well as public pension schemes are scrutinized. The fourth chapter deals with decentralization of fiscal policy in federalized states. In this context, the fiscal constitutions of the Federal Republic of Germany and the European Union as applied forms of fiscal federalism are introduced.

Complementary literature
Course: Seminar Public Finance

Lecturers: Berthold Wigger
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See module description.

Conditions
None.

Learning Outcomes

Content
Preparation, presentation, and discussion of recent research papers on varying Public Finance issues. The current seminar subject, including the exact topics to work on, will be announced under http://www.iww.uni-karlsruhe.de/reddot/1563.php and on the notice board prior to the start of semester.

Basic literature
Will be announced at the beginning of the seminar.
Course: Competition in Networks

Lecturers: Kay Mitusch
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Specialization in Customer Relationship Management [TVWL3BWLISM5] (S. 40)

Learning Control / Examinations

Prerequisites
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required. Useful, but not necessary, are basic knowledge of industrial economics, principal agent theory, and contract theory.

Conditions
None.

Learning Outcomes
The lecture provides the students with the basic economic understanding of network industries like telecom, utilities, IT and transport sectors.

Students are prepared for a possible job in the network industries. The student should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion and state intervention. He should be able to apply abstract concepts and formal methods to use in these fields.

Content
Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies – competition or cooperation or both – are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Basic literature
Will be announced in the lecture.

Remarks
Beginning in WT 2009/2010, the lecture Competition in Networks [26240] will always be held during the winter term.
Course: International Economics

Lecturers: Jan Kowalski
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
- Siebert H., Außenwirtschaft. Fischer-Verlag 1994
Course: International Economic Policy

Lecturers: Jan Kowalski
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: International Economics [TVWL3VWL3] (S. 28)

Learning Control / Examinations
The assessment consists of a written exam (60min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Previous visit to the lectures Economics II: Macroeconomics [25014] and International Economics [26252] is recommended.

Conditions
None.

Learning Outcomes

Content

Complementary literature
 • Wagner, M.: „Einführung in die Weltwirtschaftspolitik“. Oldenbourg 1995
Course: Management and Organisation of Projects in Developing Countries Course key: [26259]

Lecturers: Niklas Sieber
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: International Economics [TVWL3VWL3] (S. 28)

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Seminar on Network Economics

Lecturers: Kay Mitusch

Credit points (CP): 3 Hours per week: 2

Term: Winter-/Sommersemester Level: 4

Teaching language: Deutsch

Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites

See module description.

Conditions

None.

Learning Outcomes

Content
Course: Applying Industrial Organization

Lecturers: Hariolf Grupp, Dirk Fornahl
Credit points (CP): 6 Hours per week: 2/2
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Organization [TVWL3/VWL2] (S. 27)

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
- Blum/Müller/Weiske: Angewandte Industrieökonomik.
- Cabral: Introduction to Industrial Organization.
Course: Insurance Models

Lecturers: Christian Hipp
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Insurance: Calculation and Control [TVWL3BWLFBV2] (S. 42)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
 • Versicherungsbetriebslehre: Das Risiko und seine Kalkulation. Studienhefte 21, 22, 23. gabler Studientexte
Course: Insurance Marketing

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Management [TVWL3BWLFBV4] (S. 44)

Learning Control / Examinations
The assessment consists of an oral exam (according to Section 4 (2), 2 of the examination regulation) and oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation).
The overall grade consists of the valuation of the oral presentations (incl. elaboration) and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
- Farny, D.. Versicherungsbetriebslehre (Kapitel III.3 sowie V.4). Karlsruhe 2006
- Wiedemann, K.-P./Klee, A. Ertragsorientiertes Zielkundenmanagement für Finanzdienstleister, Wiesbaden 2003

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Enterprise Risk Management

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Risk and Insurance Management [TVWL3BWLFBV3] (S. 43)

Learning Control / Examinations
The assessment consists of an oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Learning to identify, to analyse and to assess business risks; this serves as a basis for strategy and policy design regarding risks and opportunities of an enterprise. Introduction to optimization approaches that allow to consider area-specific objectives, risk-bearing capacity and risk acceptance.

Content
1. Concepts and practice of risk management, based on decision theory
2. Goals, strategies and measures for the identification, analysis, assessment and management of risks
3. Insurance as an instrument for loss-financing
4. Selected aspects of risk management: e.g. environmental protection, organizational failure and D&O-coverage, development of a risk management culture
5. Organisation of risk management
6. Approaches for determining optimal combinations of risk management measures considering their investment costs and outcomes.

Basic literature

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Insurance Contract Law
Course key: [26360]

Lecturers: Ute Werner, Schwebler
Credit points (CP): 4.5
Hours per week: 3/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Management [TVWL3BWFBV4] (S. 44)

Learning Control / Examinations
The assessment consists of an oral or a written exam (according to Section 4 (2), 1 of the examination regulation). The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science. The course is offered extraordinarily in winter term 2009/10.
Course: Insurance Game

Lecturers: Christian Hipp
Credit points (CP): 4
Hours per week: 2
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Insurance: Calculation and Control [TVWL3BWLFBV2] (S. 42)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
- Insgame: Das Unternehmensplanspiel Versicherungen, Lehrstuhl für Versicherungswirtschaft, FBV, Uni Karlsruhe
- Zweifel, Eisen: Versicherungskonomie, 2000, Kapitel 1, 2 und 5
- Aktuelle Ausgaben der Zeitschrift „Versicherungswirtschaft“
Course: Real Estate Management II

Lecturers: Thomas Lützkendorf
Credit points (CP): 4,5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Real Estate Management [TVWL3BWLOOW2] (S. 35)

Learning Control / Examinations
The assessment consists of a written exam (60 min) or an oral exam (20 min.) according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place twice at every summer-semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
A combination with the module Design Construction and Assessment of Green Buildings I [TVWL3BWLOOW1] is recommended.
Furthermore it is recommended to choose courses of the following fields
- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Conditions
None.

Learning Outcomes
Application of economic methods to the fields of real estate economics and sustainable construction.

Content
The course Real Estate Management II gives special attention to topics in connection to the management of large real estate portfolios. This especially includes property valuation, market and object rating, maintenance and modernization, as well as real estate portfolio and risk management. The tutorial provides examples in order to practice the application of theoretical knowledge to practical problems.

Media
Presentation slides and supplementary material is provided partly as printout, partly online for download.

Complementary literature
See german version.

Remarks
The course is replenished by excursions and guest lectures by practicioners out of the real estate business.
Course: Real Estate Management I

Lecturers: Thomas Lützkendorf

Credit points (CP): 4.5 **Hours per week:** 2/2

Term: Wintersemester **Level:** 3

Teaching language: Deutsch

Part of the modules: Real Estate Management [TVWL3BWLOOW2] (S. 35)

Learning Control / Examinations
The assessment consists of a written exam (60 min) or an oral exam (20 min.) according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place twice at every winter-semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
A combination with the module *Design Construction and Assessment of Green Buildings I* [TVWL3BWLOOW1] is recommended.
Furthermore it is recommended to choose courses of the following fields
- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Conditions
None.

Learning Outcomes
Application of economic methods to the fields of real estate economics and sustainable construction.

Content
The course Real Estate Management I deals with questions concerning the economy of a single building throughout its lifecycle. Among other topics this includes project development, location and market studies, german federal building codes as well as finance and assessment of economic efficiency.
The tutorial recesses the contents of the course by means of practical examples and, in addition to that, goes into the possible use of software tools.

Media
Presentation slides and supplementary material is provided partly as printout, partly online for download.

Complementary literature

Remarks
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
Course: Sustainability Assessment of Construction Works

Lecturers: Thomas Lützkendorf
Credit points (CP): 4,5
Hours per week: 2/1
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Sustainable Construction [TVWL3BWLOOW1] (S. 34)

Learning Control / Examinations
The assessment consists of a written or an oral exam (20 min.) according to Section 4 (2), 1 or 2 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
A combination with the module Real Estate Management [TVWL3BWLOOW2] and with engineering science modules from the areas building physics and structural design is recommended.

Conditions
None.

Learning Outcomes
Knowledge in the area of economic and environmental assessment of construction works.

Content
The course identifies problems concerning the economical and environmental assessment of buildings along their lifecycle and discusses suitable procedures and tools supporting the decision making process. For example, the course addresses topics like operating costs, heat cost allocation, comparisons of heating costs, applied economical assessment methods, life cycle assessment as well as related design and assessment tools (e.g. element catalogues, databases, emblems, tools) and assessment procedures (e.g. carbon footprint, MIPS, KEA), which are currently available.

Complementary literature
See german version.
Course: Design, Construction and Assessment of Green Buildings I Course key: [26404w]

Lecturers: Thomas Lützkendorf
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Sustainable Construction [TVWL3BWLOOW1] (S. 34)

Learning Control / Examinations
The assessment consists of an oral exam (20 min.) according to Section 4 (2), 2 of the examination regulation. The oral exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
A combination with the module Real Estate Management [TVWL3BWLUO1] and with engineering science modules in the area of building physics and structural design is recommended.

Learning Outcomes
Knowledge in the area of sustainable construction concerning whole buildings, building components, equipment and appliances as well as building material.

Content
Taking low-energy buildings as an example the course is an introduction to cheap, energy-efficient, resource-saving and health-supporting design, construction and operation of buildings. Questions of the implementation of the principles of a sustainable development within the building sector are discussed on the levels of the whole building, its components, building equipment as well as the materials. Besides technical interrelationships basics dimensioning and various approaches to ecological and economical assessment play a role during the lectures, as well as the different roles of people involved into the building process. Topics are the integration of economical and ecological aspects into the design process, strategies of energy supply, low-energy and passive buildings, active and passive use of solar energy, selection and assessment of construction details, selection and assessment of insulation materials, greened roofs plus health and comfort.

Media
For a better clearness videos and simulation tools will be presented during the lectures.

Complementary literature
See german version.
Course: Topics of Sustainable Management of Housing and Real Estate [26420]

Lecturers: Thomas Lützkendorf
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
The assessment of this course is (according to §4(2), 3 SPO) in form of an examination of the written seminar thesis and a presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- Students autonomously compile a paper treating of a marked-off subject within the area of real estate economics respectively sustainable construction, and present their results within the seminar.
- Therefore they master the principles of scientific writing, especially research, reasoning and citation, as well as handling information suspiciously.
- Through own and observed experiences they develop the ability to hold scientific presentations, including technical, formal, rhetorical and didactical aspects.

Content
The seminar deals with changing up-to-date topics concerning Real Estate Economics or Sustainable Construction. Current topics and schedules are announced at the beginning of term.

Media
A reader dealing with the basics of scientific writing is provided (in german language).
Course: Management of Business Networks

Lecturers: Christof Weinhardt, Jan Kraemer
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: eBusiness and Servicemanagement [TVWL3BWLISM1] (S. 36), Supply Chain Management [TVWL3BWLISM2] (S. 37)

Learning Control / Examinations
The total grade for this lecture will consist to 50% of the grade achieved in the written mid term examination, to 10% of the assignments during the exercises, and to 40% of a project work, which includes a term paper and a presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student will become acquainted with the theoretical fundamentals of economic networks and how to manage them. Support of economic networks by information systems will be accomplished by several case studies, which will be worked on by groups autonomously. Basic knowledge of organisation theory, network analysis, strategic & operative management and logic systems will be communicated to the student. Furthermore, he will have a focused view on the mechanisms and supporting tools for interaction between companies, especially in negotiations and negotiation-supporting systems. In small groups, the student is trained in team-oriented and autonomous working techniques. Within this domain, the student will be trained to seek and read relevant technical literature in English, the language of science, and to adopt it to a specific problem.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Basic literature
Course: eFinance: Information Engineering and Management for Securities Trading

Course key: [26454]

Lecturers: Christof Weinhardt, Ryan Riordan

Credit points (CP): 4.5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Learning Control / Examinations

70% of the mark is based on the written examination and 30% is based on assignments during the exercises.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The goal of the lecture is to make the students familiar with the theoretical as well as the practical aspects of electronic trading and exchanges and the IT systems used in the financial industry. While markets for products and services are discussed, the focus is on the trading of financial securities. Existing centralized equity exchanges face competition from new alternative trading systems made possible by today’s information technology. This course will also examine the impact and implications of this dynamic. The focus is on the economic and technical design of markets as information processing systems.

Content

The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Media

Powerpoint presentations, recorded lecture available on the internet

Basic literature

Complementary literature

Course: eServices

Lecturers: Christof Weinhardt, Gerhard Satzger
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 3
Teaching language: Englisch
Part of the modules: eBusiness and Servicemanagement [TVWL3BWLISM1] (S. 36), Specialization in Customer Relationship Management [TVWL3BWLISM5] (S. 40)

Learning Control / Examinations
The assessment consists of a written examination (60 min.) according to Section 4(2), 1 of the examination regulation and by submitting written papers as part of the exercise (accoring to Section 4(2), 3 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
This lecture presents concepts, methods and application examples for the engineering and management of eServices. The students will get to know the basic principles and elements of eServices and their specific properties compared to physical goods. Creating eServices needs an overall view of information technology with regards to flexibility, safety, data security, measurability and cost allocation. In addition, problems and solutions in designing and providing eServices are discussed; the elementary relationship to information management will also be treated. Application examples from industry stress the concepts’ application in the economy.

Content
So far, management studies usually focused on physical goods. However, due to the increasing development of information and communication technology, distribution of electronic services is becoming more important. Electronic services are characterized by an increasing degree of intangibility, interactivity and individuality. Traditional, goods-oriented models, methods and tools for are often found to be inadequate for service engineering and management. Building on a systematic categorization of (e)Services, we cover concepts and foundations for engineering and managing IT-based services, allowing further specialization in subsequent courses. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services. In addition, application examples, guest lectures (e.g. business model changes driven by the advent of eServices) and a number of hands-on exercises will illustrate the applicability of the concepts.

Media
PowerPoint slides;
Course: Seminar Service Science, Management & Engineering
Course key: [26470]

Lecturers: Stefan Tai, Christof Weinhardt, Gerhard Satzger, Rudi Studer
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
Lecture eServices [26462] is recommended.

Learning Outcomes
Autonomously deal with a special topic in the Service Science, Management and Engineering field adhering to scientific standards.

Content
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.
Course: Special Topics in Information Engineering & Management
Course key: [26478]

Lecturers: Christof Weinhardt
Credit points (CP): 4.5
Hours per week: 3
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: eBusiness and Servicemanagement [TVWL3BWLISM1] (S. 36)

Learning Control / Examinations
The student is evaluated based on the written and practical work, a presentation of the results in front of an audience and his contribution to the discussion.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The practical work components should enable the student to learn and independently use scientific methods employed e.g. in case studies or experiments. The student learns to present his results in a paper and in front of an audience on an academic level. This process is helpful for further scientific work like the master or doctoral thesis.

Content
In this course the student should learn to apply the search methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination. Experiments, case studies or software development can be part of the practical work that offers the students an opportunity to get a deeper insight into the field of Information Engineering and Management. The course also encompasses a documentation of the implemented work.

Media
- Power Point
- eLearning Plattform Ilias
- Software tools for development, if needed

Basic literature
The basic literature will be made available to the student according to the respective topic.

Remarks
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Engineering & Management course. The current topics of the practical seminars are available at the following homepage: http://www.im.uni-karlsruhe.de/lehre.

This lecture is first offered in the winter term 2009/10.
Course: Customer Relationship Management
Course key: [26508]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: CRM and Service Management [TVWL3BWLISM4] (S. 39)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from excursion work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students
- understand service management as an economic basis for Customer Relationship Management and learn the resulting consequences for the management, the organisation itself and their departments,
- design and develop service concepts and service systems at a conceptual level,
- work on case studies in the CRM-area in small groups with limit time,
- learn English as the technical language in the area of CRM and consult internationale literature from this field for the case studies.

Content
The course begins with an introduction into Service Management as the strategic concepts which also covers all CRM applications. The course is divided in the basics of Service Management as well as different topics within this concept like external and internal marketing, quality management and organizational requirements.

Media
Slides

Basic literature

Complementary literature
Course: Operative CRM

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: CRM and Service Management [TVWL3BWLISM4] (S. 39), Specialization in Customer Relationship Management [TVWL3BWLISM5] (S. 40)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from excersise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
The attendance of courses Customer Relationship Management [26508] and Analytical CRM [26522] is advised.

Learning Outcomes
The Student

- understands the theory of methods for process and data analyses and applies them for the design and implementation of operative CRM-processes in the complex context of companies,
- takes privacy problems into account,
- evaluates existing operative CRM-processes in companies and gives recommendation for their improvement. This requires the knowledge of example processes and the ability to transform them according to the given setting.
- uses literature for the solution of case studies, communicates with professionals and summarizes his recommendations and drafts in precise and coherent texts.

Content
The Student should be able to understand and implement methods and applications within the operative CRM. This includes, but is not limited to the analysis of business processes, as a basis for improvements in CRM, and applications like call centers.

Basic literature

Complementary literature
Chris Todman. Designing a Data Warehouse: Supporting Customer Relationship Management.
Course: Analytical CRM

Course key: [26522]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch

Part of the modules: CRM and Service Management [TVWL3BWLISM4] (S. 39), Specialization in Customer Relationship Management [TVWL3BWLISM5] (S. 40)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from excursion work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
We expect knowledge about data models and the UML modelling language concerning information systems.

Learning Outcomes
The Student should
- understand the principal scientific methods from statistics and informatics used in analytical CRM and their application to enterprise decision problems and be able to independently apply these methods to standard cases,
- understand the components for creating and managing a data warehouse from operative system sources including the processes and steps involved and should be able to apply these methods to a simple example, and
- use his knowledge to conduct a standard CRM analysis on enterprise data for a business decision problem and deduce and justify a recommendation for appropriate action.

Content
The course Analytical CRM deals with methods and techniques for analysis concerning the management and improvement of customer relationships. Knowledge about customers is aggregated and used for enterprise decision problems like product line planning, customer loyalty, etc. A necessary precondition for these analyses is the transformation of data stemming from operative systems into a common data warehouse that assembles all necessary information. This requires transformation of data models and processes for creating and managing a data warehouse, like ETL processes, data quality and monitoring. The generation of customer-oriented and flexible reports for different business purposes is covered. The course finally treats several different statistical analysis methods like clustering, regression etc. that are necessary for generating important indicators (like customer lifetime value, customer segmentation).

Media
slides

Basic literature
Course: Bachelor Seminar in Information Engineering and Management
[26524]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module description. Furthermore, knowledge from CRM is required. Therefore, the lecture Customer Relationship Management [26508] (or a similar one) has to be attended parallel or before the seminar.

Conditions
None.

Learning Outcomes
The student is able to

• to perform a literature search for a given topic, to identify, find, value and evaluate the relevant literature.
• to write his seminar thesis (and later on, the bachelors/masters thesis) with the text setting system LaTeX and include format requirements as used by scientific publishers.
• to do a presentation in an adequate scientific manner.
• to write down the results of his investigations in the form of scientific publications.

Content
This seminar serves as an introduction into the process of scientific work. Students write a review for a selected scientific article. A profound literature search is required to judge the article. The review is written with LaTeX by using formatting styles similar to those of scientific publishers.

The seminar treats questions of Customer Relationship Management.

Basic literature
A CRM-specific article is assigned to every student participating in this seminar. The chosen articles are published in the beginning of every term.

Complementary literature

Course: Derivatives

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: eFinance [TVWL3BWLISM3] (S. 38), Topics in Finance I [TVWL3BWLFBV5] (S. 45), Topics in Finance II [TVWL3BWLFBV6] (S. 46)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore, the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Media
Slides, Exercises/Exercise sheets

Basic literature

Complementary literature
Course: International Finance

Lecturers: Marliese Uhrig-Homburg, Walter
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: eFinance [TVWL3BWLISM3] (S. 38), Topics in Finance I [TVWL3BWLFBV5] (S. 45), Topics in Finance II [TVWL3BWLFBV6] (S. 46)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on international markets and to manage foreign exchange risks.

Content
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First, the point of view of an international investor and second that of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore, current exchange rate theories are discussed.

Complementary literature
- D. Eiteman et al. (2004): Multinational Business Finance, 10. Auflage
Course: Investments

Course key: [26575]

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Essentials of Finance [TVWL3BWLFBV1] (S. 41)

Learning Control / Examinations
The assessment consists of a written exam (75 min) according to Section 4(2), 1 of the examination regulation.
The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.
By submitting the exercises (according to Section 4(2), 3 of the examination regulation) up to 4 bonus points can be acquired.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on stock, bond, and derivatives markets. For that basic economic concepts and models are discussed and applied on introductionary level. Interlinkages between markets, different decision making concepts and models are demonstrated.

Content
The lecture deals with investment decisions under uncertainty, where the main emphasis is on investment decisions on stock markets. After a discussion of the basic questions of corporate valuation, the lecture focuses on portfolio theory. After that, risk and return in equilibrium are derived using the Capital Asset Pricing Model and the Arbitrage Pricing Theory, followed by an introduction into derivatives markets, especially forwards and futures. The lecture concludes with investments on bond markets.

Complementary literature
Course: Remote Sensing

Lecturers: Hinz, Weidner
Credit points (CP): 7 Hours per week: 3/2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
e-Learning-Modul “Fernerkundung” (geoinformation.net)
lecture notes

Complementary literature
Albertz: Fernerkundung

Remarks
For further information, see http://www.ipf.uni-karlsruhe.de/
Course: Elective “Culture - Policy - Science - Technology”
Course key: [HoC1]

Lecturers: House of Competence
Credit points (CP): 3 Hours per week: meist 2
Term: Winter-/Sommersemester Level: ???
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced in the respective course.
Course: Elective “Workshops for Competence and Creativity”

Course key: [HoC2]

Lecturers: House of Competence
Credit points (CP): 3
Hours per week: meist 2
Term: Winter-/Sommersemester
Level: ???
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Elective Foreign Languages
Course key: [HoC3]

Lecturers: House of Competence
Credit points (CP): 2-4
Hours per week: 2-4
Term: Winter-/Sommersemester
Level: ???
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
Depending on the choice of the language and the level prior knowledge is assumed.

Conditions
Basic level English language courses can only be attended if English language skills were not acquired in school before.

Learning Outcomes

Content
Course: Elective “Tutor Programmes”

Lecturers: House of Competence
Credit points (CP): 3
Hours per week: k.A.
Term: Winter-/Sommersemester
Level: ???
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
The participation in this program requires that the student has been or will be a tutor for at least two semesters.
The application for this program takes place via the dean’s office and in consultation with the corresponding chair.

Conditions
None.

Learning Outcomes

Content
Course: Elective “Personal Fitness & Emotional Competence” Course key: [HoC5]

Lecturers: House of Competence
Credit points (CP): 2-3 Hours per week: k.A.
Term: Winter-/Sommersemester Level: ???
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
None.

Conditions
Keine.

Learning Outcomes

Content

Basic literature
Will be announced in the respective course.
Course: Seminar in Enterprise Information Systems

Course key: [SemAIFB1]

Lecturers: Rudi Studer, Andreas Oberweis, Wofffried Stucky, Thomas Wolf, Ralf Kneuper
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis and a presentation.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

The seminar is for bachelor as well as master students. The differentiation will be made by selection of different topics and different standards of evaluation.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
Students are able to
- do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
- write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the seminar.
- present results of the research in written form generally found in scientific publications.

Content
The seminar intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.
Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre

Basic literature
Literature will be given individually in the specific seminar.
Course: Seminar Efficient Algorithms

Lecturers: Hartmut Schmeck
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the beginning of the semester.
Course: Seminar Complexity Management

Lecturers: Detlef Seese
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
see German part

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
see German part

Content
see German part

Basic literature
Will be announced in the lecture.

Remarks
The number of participants is limited. Please take notice about the inscription procedure at the institutes website. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre.
Course: Seminar Knowledge Management

Course key: [SemAIFB4]

Lecturers: Rudi Studer
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
The success monitoring is done through a presentation about a research topic from the current topic of the seminar (45-60 minutes) followed by a discussion, a written summary of the main points (approx. 15 pages) and of active participation in discussions (in accordance with §4(2),3 SPO).
The total mark is composed of the graded and weighted success controls (50% lecture, 30% written paper, and 20% participation and discussion).

The seminar can be attended by both bachelor and master students. A differentiation is made by different topic assignment and evaluation standards for seminar paper and presentation.

Prerequisites
See module description.

Conditions
None.

Learning Outcomes
The students will learn to perform literature searches on current topics in computer science as well as preparing and presenting the contents of scientific publications.

During the work on the seminar topics the master students will deepen their skills to autonomously comprehend current scientific knowledge and to convey it to others through oral presentations and written summaries.

Through active participation in the seminar, students acquire skills in critical appraisal of research topics and in oral and written presentation of independently developed research content.

Content
Each year, the seminar will cover topics from a different selected subfield of knowledge management, e.g.:

- Ontology-based knowledge management,
- Information Retrieval and Text Mining,
- Data Mining,
- Personal Knowledge Management,
- Case Based Reasoning (CBR),
- Collaboration and Social Computing.

Media
Slides.

Basic literature

Complementary literature

None.

Remarks
The number of students is limited. Students have to observe the designated registration process.

Economics Engineering (B.Sc.)
Course: Seminar in Insurance Management
Course key: [SemFBV1]

Lecturers: Ute Werner
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the beginning of the lecture period.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Seminar in Operational Risk Management

Course key: [SemFBV2]

Lecturers: Ute Werner
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Seminar in Risk Theory and Actuarial Science

Course key: [SemFBV3]

Lecturers: Christian Hipp
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
Knowledge of statistics and actuary science is an advantage.
The seminar is a good addition to the Bachelor module Calculation and Control [TVWL3BWLFBV2] and to the Master modules Applications of Actuarial Sciences I/II [WW4BWLFBV4/5] and Insurance Statistics [WW4BWLFBV8]. However these modules are not a prerequisite for the participation in the seminar.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Ergonomics

Lecturers: Peter Knauth, Dorothee Karl
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Industrial Production

Lecturers: Frank Schultmann, Magnus Fröhling, Michael Hiete
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Seminar in Engineering Science

Lecturers: Fachvertreter ingenieurwissenschaftlicher Fakultäten
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content
Basic literature
Will be announced in the respective seminar.
Complementary literature
Will be announced in the seminar.
Course: Seminar Information Engineering and Management
Course key: [SemIW]

Lecturers: Christof Weinhardt
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
The student is evaluated based on the written work, a presentation of the results in front of an audience and his contribution to the discussion.

Prerequisites
See corresponding module information.

Conditions
Business Engineering/Economics Engineering: Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on a academic level. This process gives him the knowledge and practice for further research work like a master thesis or a doctoral thesis.

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires a interdisciplinary examination.

Media
- Powerpoint,
- eLearning Platform Ilias
- Software Tools, if necessary

Basic literature
The student will receive the necessary literature for his research topic.

Remarks
- Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
- All the seminars offered at the chair of Prof. Dr. Weinhardt can be chosen. The current topics of the seminars are available at the following homepage: http://www.im.uni-karlsruhe.de/lehre.
Course: Seminar in System Dynamics and Innovation

Lecturers: Hariolf Grupp, N.N.
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
The courses Innovation [26274] and Applying Industrial Organization [26287] should preferably be attended beforehand.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in International Economy

Lecturers: Jan Kowalski
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Seminar in Mathematics

Lecturers: Fachvertreter der Fakultät für Mathematik
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content
Basic literature
Will be announced in the respective seminar.

Complementary literature
Will be announced in the seminar.
Course: Seminar Stochastic Models

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
The assessment of this course is in form of an examination of the written seminar thesis and a presentation. The final mark is the result of both the paper and its presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
In case studies students comprehend stochastic relationships and gain deep knowledge of modelling, evaluation, and optimization of stochastic systems. In group presentations, students learn basic academic presentation and argument skills.

Content
The actual topic as well as the contemporary issues are available online; cf. http://www4.wiwi.uni-karlsruhe.de/LEHRE/SEMINARE/

Media
Power Point and related presentation techniques.

Basic literature
Will be presented with the actual topic.
Course: Seminar Economic Theory

Course key: [SemWIOR2]

Lecturers: Clemens Puppe
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations

Prerequisites
See corresponding module information.
At least one of the courses Game Theory I [25525] and Welfare Economics [25517] should have been attended beforehand.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Experimental Economics
Course key: [SemWIOR3]

Lecturers: Siegfried Berninghaus
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
Term paper and presentation

Prerequisites
See corresponding module information.
A course in the field of Game Theory should be attended beforehand.

Conditions
None.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in Experimental Economics.
Students learn the technical basics of presentation and to argument scientifically. Also rethoric skills shall be amplified.

Content
The seminar’s topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Media
Slides.

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Game and Decision Theory

Lecturers: Siegfried Berninghaus
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module [TVWL3SEM] (S. 82)

Learning Control / Examinations
Term paper and presentation

Prerequisites
Completion of all 1st an 2nd year modules of the Bachelor Program.
See corresponding module information.

Conditions
None.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in game theory.
Procurement of SQs: Students learn the technical basics of presentation and to argument scientifically. Also rethic skills shall be amplified.

Content
The seminar’s topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Media
Slides.

Basic literature
Will be announced at the end of the recess period.
Course: Projectseminar

Lecturers: Bernart, Kunz, Pfaff, Haupt, Grenz, Eisewicht
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Sociology/Empirical Social Research [TVWL3SOZ] (S. 80)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Public Management

Course key: [n.n.]

Lecturers: Berthold Wigger
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Public Finance [TVWL3VWL9] (S. 32)

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Prerequisites
Basic knowledge of Public Finance is required.

Conditions
None.

Learning Outcomes

Content
The lecture deals with the economic theory of public sector administration. In the first part, legal issues of public administration in the FRG as well as Weber's classical administration model are presented. Moreover, important elements of and actors in the public administration are characterized. The second part treats basic efficiency-related problems that typically emerge in bureaucracies and public enterprises. Examples are Niskanen's model of monopoly bureaucracy, so-called X-Inefficiency and natural monopolies. The last part introduces major issues of New Public Management (NPM), with a special focus on contract theory. The basic implications of institutional economics are followed by an outline of current reform attempts and their success in Germany.

Complementary literature
Course: Interpretative Social Research Methods

Lecturers: Pfadenhauer
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Qualitative Social Research [TVWL3SOZ2] (S. 81)

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation).

Prerequisites
None.

Conditions
The lecture is obligatory and has to be attended.

Learning Outcomes

Content
See lecture announcement.

Media
Will be announced in the lecture.

Basic literature
Will be announced in the lecture.

Complementary literature
Will be announced in the lecture.
Course: Explorative-interpretative Project Seminar

Lecturers: Pfadenhauer, Kunz, Grenz, Eisewicht
Credit points (CP): 2/4 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Qualitative Social Research [TVWL3SOZ2] (S. 81)

Learning Control / Examinations
The form of the assessment will be announced at the beginning of the course by the resp. lecturer. Usually at 2 Credit Points it will be an oral presentation, at 4 LP there has to be passed a term paper as well. The modality of grading will be announced at the beginning of the course by the lecturer. Usually at 2 Credit Points the overall grade consists of the oral presentation and the active participation in the project - at 4 Credit Points it consists of the active participation and the term paper.

Prerequisites
Successful completion of the lecture Interpretative Social Research Methods [n.n.]. Knowledge of this lecture is required.

Conditions
The lecture is compulsory in the module and has to be attended.

Learning Outcomes

Content
See seminar announcement.

Media
Will be announced in the lecture.

Basic literature
Will be announced in the lecture.

Complementary literature
Will be announced in the lecture.
Course: Special Sociology
Course key: [spezSoz]

Lecturers: Gerd Nollmann, Pfadenhauer, Pfaff, Haupt, Grenz, Eisewicht, Kunz
Credit points (CP): 2/4 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Sociology/Empirical Social Research [TVWL3SOZ] (S. 80), Qualitative Social Research [TVWL3SOZ2] (S. 81)

Learning Control / Examinations
Module Sociology/Empirical Social Research [TVWL3SOZ]: The assessment consists of lecture minutes (graded) and an oral presentation (according to Section 4 (2), 3 of the examination regulation.
Modul Qualitative Social Research [TVWL3SOZ2]: The assessment consists of an oral exam according to Section 4(2), 2 of the examination regulation.

Prerequisites
None.

Conditions
The form of the lecture has to be attended and must be completed with 2 Credit Points. The form of the lecture must not be swapped by a seminar according sociological theory, according techniques of social research or any other lecture.

Learning Outcomes

Content

Media
Will be announced in the lecture.

Basic literature
Will be announced in the lecture.

Complementary literature
Will be announced in the lecture.
Neubekanntmachung der Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Bachelorstudiengang Technische Volkswirtschaftslehre

in der Fassung vom 15. August 2008

Der Rektor hat seine Zustimmung am 06. März 2007 erteilt.

In dieser Satzung ist nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich, Ziele
 § 2 Akademischer Grad
 § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
 § 4 Aufbau der Prüfungen
 § 5 Anmeldung und Zulassung zu den Prüfungen
 § 6 Durchführung von Prüfungen und Erfolgskontrollen
 § 7 Bewertung von Prüfungen und Erfolgskontrollen
 § 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfungen, Wiederholung von Prüfungen und Erfolgskontrollen
 § 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
 § 10 Mutterschutz, Elternzeit
 § 11 Bachelorarbeit
 § 12 Berufspraktikum
 § 13 Zusatzmodule, Zusatzleistungen
 § 14 Prüfungsausschuss
 § 15 Prüfer und Beisitzende
 § 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Bachelorprüfung
 § 17 Umfang und Art der Bachelorprüfung
 § 18 Leistungsnachweise für die Bachelorprüfung
 § 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
 § 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
 § 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
 § 22 Aberkennung des Bachelorgrades
 § 23 Einsicht in die Prüfungsakten
 § 24 In-Kraft-Treten
I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Ziele
(1) Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Technische Volkswirtschaftslehre an der Universität Karlsruhe (TH).

(2) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, das erworbene Wissen berufsfeldbezogen anzuwenden sowie einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können.

§ 2 Akademischer Grad
Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science“ (abgekürzt: „B.Sc.“) für den Bachelorstudiengang Technische Volkswirtschaftslehre verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Die Regelstudienzeit beträgt sechs Semester. Sie umfasst ein Betriebspraktikum, Prüfungen und die Bachelorarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind auf Fächer verteilt. Die Fächer sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Studienplan oder Modulhandbuch beschreiben Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren. Die Fächer und ihr Umfang werden in § 17 definiert.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 180 Leistungspunkte.

(5) Die Leistungspunkte sind in der Regel gleichmäßig auf die Semester zu verteilen.

(6) Lehrveranstaltungen/Prüfungen können auch in englischer Sprache angeboten/abgenommen werden.

§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen,
 3. Erfolgskontrollen anderer Art.
Erfolgskontrollen anderer Art sind z. B. Vorträge, Marktstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Modulhandbuch ausgewiesen sind.

(3) In den Fachprüfungen (nach § 17 Absatz 2 und Absatz 3 Nr. 1 bis 7) sind mindestens 50 vom Hundert einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Absatz 2 Nr. 1 und 2) abzulegen, die restliche Prüfung erfolgt durch Erfolgskontrollen anderer Art (Absatz 2 Nr. 3).

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Die Zulassung zu den Prüfungen nach § 4 Absatz 2 Nr. 1 und 2 sowie zur Bachelorarbeit erfolgt im Studienbüro.

Um zu Prüfungen in einem Modul zugelassen zu werden, muss beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgegeben werden.

(2) Die Zulassung darf nur abgelehnt werden, wenn

1. der Studierende in einem mit Technischer Volkswirtschaftslehre vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat oder

2. die in § 18 genannte Voraussetzung nicht erfüllt ist.

In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrollen (§ 4 Absatz 2 Nr. 1 bis 3) eines Moduls wird im Studienplan oder Modulhandbuch in Bezug auf die Lehrinhalte der betreffenden Lehrveranstaltungen und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Grundsätze zur Bildung der Modulteilprüfungsnoten und der Modulnote sowie Prüfer müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen von Prüfer und Studierendem kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Absatz 3 zu berücksichtigen.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

Bei Einvernehmen zwischen Prüfer und Kandidat kann der Prüfungsausschuss in begründeten Ausnahmefällen auch kurzfristig die Änderung der Prüfungsform genehmigen.

Wird die Wiederholungsprüfung einer schriftlichen Prüfung in mündlicher Form abgelegt, entfällt die mündliche Nachprüfung nach § 8 Absatz 2.

(4) Macht ein Studierender glaubhaft, dass er wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, entscheidet der Prüfungsausschuss über eine alternative Form der Erfolgskontrollen.

(5) Bei Lehrveranstaltungen in englischer Sprache werden die entsprechenden Erfolgskontrollen in der Regel in englischer Sprache abgenommen.

Mündliche Prüfungen (§ 4 Absatz 2 Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kollegialprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studierendem.

Für Erfolgskontrollen anderer Art sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Studienleistung dem Studierenden zurechenbar ist.

Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen.

Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Beisitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note festgesetzt.

Im Bachelorzeugnis dürfen nur folgende Noten verwendet werden:

1	sehr gut (very good)	= hervorragende Leistung
2	gut (good)	= eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt
3	befriedigend (satisfactory)	= eine Leistung, die durchschnittlichen Anforderungen entspricht
4	ausreichend (sufficient)	= eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt
5	nicht ausreichend (failed)	= eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt
Für die Bachelorarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1	1.0, 1.3	sehr gut
2	1.7, 2.0, 2.3	gut
3	2.7, 3.0, 3.3	befriedigend
4	3.7, 4.0	ausreichend
5	4.7, 5.0	nicht ausreichend

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann die Benotung „bestanden“ (passed) oder „nicht bestanden“ (failed) vergeben werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf jeweils nur einmal angerechnet werden.

(6) Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur angerechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan oder Modulhandbuch festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

(9) Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten über die im Studienplan oder Modulhandbuch definierten Modulprüfungen nachgewiesen wird.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Ergebnisse der Bachelorarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

(11) Innerhalb der Regelstudienzeit, einschließlich der Urlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Fach auch mehr Leistungspunkte erworben werden als für das Bestehen der Fachprüfung erforderlich sind. In diesem Fall werden bei der Festlegung der Fachnote nur die Modulnoten berücksichtigt, die unter Abdeckung der erforderlichen Leistungspunkte die beste Fachnote ergeben.

Die in diesem Sinne für eine Fachprüfung nicht gewerteten Erfolgskontrollen und Leistungspunkte können im Rahmen der Zusatzfachprüfung nach § 13 nachträglich geltend gemacht werden.
(12) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Note</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5 = sehr gut</td>
<td></td>
</tr>
<tr>
<td>1.6 bis 2.5 = gut</td>
<td></td>
</tr>
<tr>
<td>2.6 bis 3.5 = befriedigend</td>
<td></td>
</tr>
<tr>
<td>3.6 bis 4.0 = ausreichend</td>
<td></td>
</tr>
</tbody>
</table>

(13) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Bachelorprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (failed) – es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (failed) – es sind erhebliche Verbesserungen erforderlich</td>
<td></td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

§ 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfung, Wiederholung von Prüfungen und Erfolgskontrollen

(1) Die Modulteilprüfung Mikroökonomie (VWL I) im Fach Volkswirtschaftslehre (gemäß § 17 Absatz 2 Nr. 2) und die Modulteilprüfung Statistik I im Fach Statistik (gemäß § 17 Absatz 2 Nr. 7 sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass er die Fristüberschreitung nicht zu vertreten hat; hierüber entscheidet der Prüfungsausschuss auf Antrag des Studierenden. Eine zweite Wiederholung von Prüfungen der Orientierungsprüfungen ist ausgeschlossen.

(2) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als 4.0 (ausreichend) sein.
Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Absatz 2 Nr. 3) wird im Modulhandbuch geregelt.

Fehlversuche an anderen Hochschulen sind anzurechnen.

Die Wiederholung einer Erfolgskontrolle anderer Art ist nur zulässig, wenn mindestens ein Modul des Faches nicht bestanden ist.

Eine Fachprüfung ist nicht bestanden, wenn mindestens ein Modul des Faches nicht bestanden ist.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

1. Der Prüfungsausschuss lehnt einen Antrag auf Fristverlängerung nach Absatz 1 oder Absatz 10 ab.
2. Die Bachelorarbeit ist endgültig nicht bestanden.
3. Eine Erfolgskontrolle nach § 4 Absatz 2 Nr. 1 und 2 ist in einem Fach endgültig nicht bestanden.

Eine Erfolgskontrolle ist dann endgültig nicht bestanden, wenn keine Wiederholungsmöglichkeit im Sinne von Absatz 2 mehr besteht oder gemäß Absatz 6 genehmigt wird. Dies gilt auch sinngemäß für die Bachelorarbeit.
Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der Studierende hat die Fristüberschreitung nicht zu vertreten.

Die Anerkennung des Rücktritts ist ausgeschlossen, wenn bis zum Eintritt des Hinderungsgrunds bereits Prüfungsleistungen erbracht worden sind und nach deren Ergebnis die Prüfung nicht bestanden werden kann.

Wird der Grund anerkannt, wird ein neuer Termin anberaumt. Die bereits vorliegenden Prüfungsergebnisse sind in diesem Fall anzurechnen.

Bei Modulprüfungen, die aus mehreren Prüfungen bestehen, werden die Prüfungsleistungen dieses Moduls, die bis zu einem anerkannten Rücktritt bzw. einem anerkannten Versäumnis einer Prüfungsleistung dieses Moduls erbracht worden sind, angerechnet.

(4) Versucht der Studierende das Ergebnis einer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5.0) bewertet.

(7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit

§ 11 Bachelorarbeit

(1) Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass der Studierende sich in der Regel im 3. Studienjahr befindet und nicht mehr als eine der Fachprüfungen der ersten drei Fachsemester laut § 17 Absatz 2 noch nachzuweisen ist.

Vor Zulassung sind Betreuer, Thema und Anmeldedatum dem Prüfungsausschuss bekannt zu geben und im Falle einer Betreuung außerhalb der Fakultät für Wirtschaftswissenschaften durch den Prüfungsausschuss zu genehmigen.

(2) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind vom Betreuer so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

(4) Die Bachelorarbeit kann von jedem Prüfer nach § 15 Absatz 2 vergeben und betreut werden. Soll die Bachelorarbeit außerhalb der Fakultät angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses gemäß Absatz 1. Dem Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Studierenden aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz 3 erfüllt.

(5) Bei der Abgabe der Bachelorarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5.0) bewertet.

§ 12 Berufspraktikum

(1) Während des Bachelorstudiums ist ein mindestens achtwöchiges Berufspraktikum, welches mit acht Leistungspunkten bewertet wird, abzuleisten.
(2) Der Studierende setzt sich dazu in eigener Verantwortung mit geeigneten Unternehmen in Verbindung. Der Praktikant wird von einem Prüfer nach § 15 Absatz 2 und einem Mitarbeiter des Unternehmens betreut.

(3) Am Ende des Berufspraktikums ist dem Prüfer ein kurzer Bericht abzugeben und eine Kurzpräsentation über die Erfahrungen im Berufspraktikum zu halten.

(4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens achtwöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Die Durchführung des Berufspraktikums ist im Studienplan oder Modulhandbuch zu regeln. Das Berufspraktikum geht nicht in die Gesamtnote ein.

§ 13 Zusatzmodule, Zusatzleistungen

(1) Der Studierende kann sich weiteren Prüfungen in Modulen unterziehen. § 3, § 4 und § 8 Absatz 10 der Prüfungsordnung bleiben davon unberührt.

(2) Maximal zwei Zusatzmodule mit jeweils mindestens neun Leistungspunkten werden auf Antrag des Studierenden in das Bachelorzeugnis aufgenommen und entsprechend gekennzeichnet.

Zusatzmodule müssen nicht im Studienplan oder Modulhandbuch definiert sein. Im Zweifelsfall entscheidet der Prüfungsausschuss.

(3) Der Studierende hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 14 Prüfungsausschuss

(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden vom Fakultätsrat bestellt, die Mitglieder der Gruppe der wissenschaftlichen Mitarbeiter nach § 10 Absatz 1 Satz 2 Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor sein. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch ein Prüfungssekretariat unterstützt.

(3) Der Prüfungsausschuss regelt die Auslegung und die Umsetzung der Prüfungsordnung in die Prüfungspraxis der Fakultät. Er achtet darauf, dass die Bestimmungen der Prüfungsordnung eingehalten werden. Er berichtet regelmäßig dem Fakultätsrat über die Entwicklung der Prüfungen und Studienzeiten sowie über die Verteilung der Fach- und Gesamtnoten und gibt Anregungen zur Reform des Studienplans und der Prüfungsordnung.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben in dringenden Angelegenheiten und für alle Regelfälle auf den Vorsitzenden des Prüfungsausschusses übertragen.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennender Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuzuziehen. Er hat in diesem Punkt Stimmrecht.

§ 15 Prüfer und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.

(2) Prüfer sind Hochschullehrer und habilitierte Mitglieder sowie wissenschaftliche Mitarbeiter der jeweiligen Fakultät, denen die Prüfungsbefugnis übertragen wurde. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Bachelorarbeit muss ein Prüfer Hochschullehrer sein.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.

(4) Zum Beisitzenden darf nur bestellt werden, wer einen dem jeweiligen Prüfungsgegenstand entsprechenden akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

(2) Werden Leistungen angerechnet, so werden die Noten – soweit die Notensysteme vergleichbar sind – übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Falls es sich dabei um Leistungen handelt, die im Rahmen eines Auslandsstudiums erbracht werden, während der Studierende an der Universität Karlsruhe (TH) für Wirtschaftsingenieurwesen immatrikuliert ist, kann der Prüfungsausschuss für ausgewählte Sprachen die Dokumentation anerkannter Studienleistungen im Transcript of Records mit ihrer fremdsprachlichen Originalbezeichnung festlegen. Liegen keine Noten vor, wird die Leistung nicht anerkannt. Der Studierende hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen und Modulprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.
II. Bachelorprüfung

§ 17 Umfang und Art der Bachelorprüfung

(2) In den ersten drei Semestern sind Fachprüfungen aus folgenden Fächern durch den Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:

1. Volkswirtschaftslehre im Umfang von 15 Leistungspunkten,
2. Betriebswirtschaftslehre im Umfang von 15 Leistungspunkten,
3. Informatik im Umfang von 15 Leistungspunkten,
4. Operations Research im Umfang von 9 Leistungspunkten,
5. Recht im Umfang von 10 Leistungspunkten,
6. Mathematik im Umfang von 21 Leistungspunkten,
7. Statistik im Umfang von 10 Leistungspunkten,
8. wahlweise Physik oder Chemie im Umfang von je 16 Leistungspunkten.

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Fächern sind im Studienplan oder Modulhandbuch festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(3) Im vierten bis sechsten Semester sind Fachprüfungen im Umfang von fünf Modulen mit je neun Leistungspunkten abzulegen. Die Module verteilen sich folgendermaßen auf die Fächer:

1. Volkswirtschaftslehre: zwei Module,
2. Betriebswirtschaftslehre: ein Modul,

Die Module können auch aus mehreren Fächern bestehen, die jeweils aus einem Modul oder zwei Module bestehen. Die Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen und Modulprüfungen, die in staatlich anerkannten Fernstudien und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufskadernien erworben wurden.

(5) Die Anerkennung von Teilen der Bachelorprüfung kann versagt werden, wenn in einem Studiengang mehr als die Hälfte aller Erfolgskontrollen und/oder mehr als die Hälfte der erforderlichen Leistungspunkte und/oder die Bachelorarbeit anerkannt werden sollen.

(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachverträge zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

(6) Prüfungen nach § 17 Absatz 3 können in einem Fach nur absolviert werden, wenn eine eventuelle Prüfung dieses Fachs nach § 17 Absatz 2 erfolgreich absolviert wurde. Auf Antrag eines Studierenden kann der Prüfungsausschuss hierzu Ausnahmen genehmigen.

§ 18 Leistungsnachweise für die Bachelorprüfung
Voraussetzung für die Anmeldung zur letzten Prüfung der Bachelorprüfung nach § 17 Absatz 1 ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 12. In Ausnahmefällen, die der Studierende nicht zu vertreten hat, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden die Noten gemäß § 17 Absatz 3 und 4 sowie der Bachelorarbeit jeweils mit dem doppelten Gewicht der Noten gemäß § 17 Absatz 2 berücksichtigt.

(3) Hat der Studierende die Bachelorarbeit mit der Note 1.0 und die Bachelorprüfung mit einem Durchschnitt von 1.1 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

(2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen sowie dem Seminarmodul und der Bachelorarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist vom Dekan der Fakultät und vom Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(4) Die Abschrift der Studiendaten (Transcript of Records) enthält in strukturierter Form alle erbrachten Prüfungsleistungen. Dies beinhaltet alle Fächer, Fachnoten und ihre entsprechende ECTS-Note samt den zugeordneten Leistungspunkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten, entsprechender ECTS-Note und zugeordneten Leistungspunkten.

(5) Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

(1) Der Bescheid über die endgültig nicht bestandene Bachelorprüfung wird dem Studierenden durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

(2) Hat der Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 22 Aberkennung des Bachelorgrades

(1) Hat der Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung auf Grund einer Täuschung für nicht bestanden erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach den gesetzlichen Vorschriften.

§ 23 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Bachelorprüfung wird dem Studierenden auf Antrag innerhalb eines Jahres Einsicht in seine Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(3) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 24 In-Kraft-Treten

Karlsruhe, den 06. März 2007

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Index

A

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Civil Law</td>
<td>178</td>
</tr>
<tr>
<td>Advanced Econometrics of Financial Markets</td>
<td>217</td>
</tr>
<tr>
<td>Advanced Microeconomic Theory</td>
<td>225</td>
</tr>
<tr>
<td>Advanced Programming - Application of Business Software</td>
<td>243</td>
</tr>
<tr>
<td>Advanced Programming - Java Network Programming</td>
<td>242</td>
</tr>
<tr>
<td>Airport Logistics</td>
<td>132</td>
</tr>
<tr>
<td>Algorithms for Internet Applications</td>
<td>232</td>
</tr>
<tr>
<td>Analytical CRM</td>
<td>282</td>
</tr>
<tr>
<td>Applications of Operations Research (Modul)</td>
<td>53</td>
</tr>
<tr>
<td>Applied Game Theory (Modul)</td>
<td>25</td>
</tr>
<tr>
<td>Applied Informatics I - Modelling</td>
<td>191</td>
</tr>
<tr>
<td>Applied Informatics II - IT Systems for e-Commerce</td>
<td>188</td>
</tr>
<tr>
<td>Applying Industrial Organization</td>
<td>263</td>
</tr>
<tr>
<td>Automation of Power Grids</td>
<td>166</td>
</tr>
<tr>
<td>Automatic Logistics</td>
<td>137</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Seminar in Foundations of Marketing</td>
<td>203</td>
</tr>
<tr>
<td>Bachelor Seminar in Information Engineering and Management</td>
<td>283</td>
</tr>
<tr>
<td>Bachelor Thesis (Modul)</td>
<td>86</td>
</tr>
<tr>
<td>Basics in Transport Planning and Traffic Engineering</td>
<td>117</td>
</tr>
<tr>
<td>Basics of Ground-Born Guided Systems</td>
<td>120</td>
</tr>
<tr>
<td>Brand Management</td>
<td>202</td>
</tr>
<tr>
<td>Business Administration (Modul)</td>
<td>16</td>
</tr>
<tr>
<td>Business Administration and Management Science A</td>
<td>91</td>
</tr>
<tr>
<td>Business Administration and Management Science B</td>
<td>92</td>
</tr>
<tr>
<td>Business Administration and Management Science C</td>
<td>93</td>
</tr>
<tr>
<td>Business Strategies of Banks</td>
<td>209</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Technology of Water</td>
<td>159</td>
</tr>
<tr>
<td>Chemistry (Modul)</td>
<td>24</td>
</tr>
<tr>
<td>Civil Law (Modul)</td>
<td>75</td>
</tr>
<tr>
<td>Civil Law for Advanced</td>
<td>183</td>
</tr>
<tr>
<td>Civil Law for Beginners</td>
<td>99</td>
</tr>
<tr>
<td>Combustion Engines (Modul)</td>
<td>62</td>
</tr>
<tr>
<td>Combustion Engines A</td>
<td>140</td>
</tr>
<tr>
<td>Combustion Engines B</td>
<td>145</td>
</tr>
<tr>
<td>Commercial and Corporate Law</td>
<td>168</td>
</tr>
<tr>
<td>Commercial Law (Modul)</td>
<td>76</td>
</tr>
<tr>
<td>Competition in Networks</td>
<td>258</td>
</tr>
<tr>
<td>Complexity Management</td>
<td>237</td>
</tr>
<tr>
<td>Computer Contract Law</td>
<td>180</td>
</tr>
<tr>
<td>Computer Integrated Planning of New Products</td>
<td>150</td>
</tr>
<tr>
<td>Constitutional and Administrative Law (Modul)</td>
<td>20</td>
</tr>
<tr>
<td>Copyright</td>
<td>172</td>
</tr>
<tr>
<td>Corporate Planning and Operations Research</td>
<td>201</td>
</tr>
<tr>
<td>CRM and Service Management (Modul)</td>
<td>39</td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>279</td>
</tr>
<tr>
<td>Cycles and Global Development</td>
<td>158</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Mining</td>
<td>216</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Protection Law</td>
<td>169</td>
</tr>
<tr>
<td>Database Systems</td>
<td>233</td>
</tr>
<tr>
<td>Derivatives</td>
<td>284</td>
</tr>
<tr>
<td>Design Basics in Highway Engineering</td>
<td>116</td>
</tr>
<tr>
<td>Design, Construction and Assessment of Green Buildings I</td>
<td>272</td>
</tr>
<tr>
<td>Diagnostics on Power Network Equipment</td>
<td>161</td>
</tr>
<tr>
<td>eBusiness and Servicemanagement (Modul)</td>
<td>36</td>
</tr>
<tr>
<td>Econometrics and Economics (Modul)</td>
<td>33</td>
</tr>
<tr>
<td>Economic Policy (Modul)</td>
<td>29</td>
</tr>
<tr>
<td>Economics (Modul)</td>
<td>15</td>
</tr>
<tr>
<td>Economics I: Microeconomics</td>
<td>87</td>
</tr>
<tr>
<td>Economics II: Macroeconomics</td>
<td>88</td>
</tr>
<tr>
<td>Economics III: Introduction in Econometrics</td>
<td>89</td>
</tr>
<tr>
<td>Economics of Uncertainty</td>
<td>212</td>
</tr>
<tr>
<td>Efficient Algorithms</td>
<td>231</td>
</tr>
<tr>
<td>eFinance (Modul)</td>
<td>38</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>275</td>
</tr>
<tr>
<td>Elective “Culture - Policy - Science - Technology”</td>
<td>268</td>
</tr>
<tr>
<td>Elective “Personal Fitness & Emotional Competence”</td>
<td>292</td>
</tr>
<tr>
<td>Elective “Tutor Programmes”</td>
<td>291</td>
</tr>
<tr>
<td>Elective “Workshops for Competence and Creativity”</td>
<td>289</td>
</tr>
<tr>
<td>Elective Foreign Languages</td>
<td>280</td>
</tr>
<tr>
<td>Electives in Informatic (Modul)</td>
<td>52</td>
</tr>
<tr>
<td>Electric Power System Engineering I: Power Network Analysis</td>
<td>162</td>
</tr>
<tr>
<td>Electrical Power Engineering (Modul)</td>
<td>65</td>
</tr>
<tr>
<td>Emphasis Informatics (Modul)</td>
<td>51</td>
</tr>
<tr>
<td>Employment Law I</td>
<td>175</td>
</tr>
<tr>
<td>Employment Law II</td>
<td>186</td>
</tr>
<tr>
<td>Energy Economics (Modul)</td>
<td>50</td>
</tr>
<tr>
<td>Energy Generation</td>
<td>160</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>250</td>
</tr>
<tr>
<td>Engine Development (Modul)</td>
<td>63</td>
</tr>
<tr>
<td>Engine Measurement Technologies</td>
<td>146</td>
</tr>
<tr>
<td>Enterprise Risk Management</td>
<td>266</td>
</tr>
<tr>
<td>Environmental Law</td>
<td>174</td>
</tr>
<tr>
<td>eServices</td>
<td>276</td>
</tr>
<tr>
<td>Essentials of Finance (Modul)</td>
<td>41</td>
</tr>
<tr>
<td>European and International Law</td>
<td>185</td>
</tr>
<tr>
<td>Exchanges</td>
<td>208</td>
</tr>
<tr>
<td>Exercises in Civil Law</td>
<td>179</td>
</tr>
<tr>
<td>Experimental Economics</td>
<td>215</td>
</tr>
<tr>
<td>Experimental Physics A</td>
<td>107</td>
</tr>
<tr>
<td>Experimental Physics B</td>
<td>108</td>
</tr>
<tr>
<td>Explorative-interpretative Project Seminar</td>
<td>314</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>219</td>
</tr>
<tr>
<td>Financial Accounting and Cost Accounting</td>
<td>90</td>
</tr>
<tr>
<td>Financial Intermediation</td>
<td>206</td>
</tr>
<tr>
<td>Financial Management</td>
<td>205</td>
</tr>
<tr>
<td>Fiscal Policy</td>
<td>256</td>
</tr>
<tr>
<td>Foundations of Guided Systems (Modul)</td>
<td>67</td>
</tr>
<tr>
<td>Foundations of Informatics I</td>
<td>95</td>
</tr>
<tr>
<td>Foundations of Informatics II</td>
<td>96</td>
</tr>
<tr>
<td>Foundations of Marketing (Modul)</td>
<td>47</td>
</tr>
<tr>
<td>Course Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Fundamentals of Production Management</td>
<td>249</td>
</tr>
<tr>
<td>Fundamentals of Spatial and Infrastructural Development (Modul)</td>
<td>66</td>
</tr>
<tr>
<td>Fundamentals of Technical Logistics</td>
<td>136</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>Game Theory I</td>
<td>224</td>
</tr>
<tr>
<td>Game Theory II</td>
<td>213</td>
</tr>
<tr>
<td>Generically Meteorology /Climatology II</td>
<td>111</td>
</tr>
<tr>
<td>Geoinformatics I</td>
<td>124</td>
</tr>
<tr>
<td>Global Optimization I</td>
<td>195</td>
</tr>
<tr>
<td>Global Optimization II</td>
<td>196</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Engineering and Water Resource Management I</td>
<td>119</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Industrial Application of Material Handling Systems in Sorting and Systems</td>
<td>139</td>
</tr>
<tr>
<td>Industrial Organization</td>
<td>214</td>
</tr>
<tr>
<td>Industrial Organization (Modul)</td>
<td>27</td>
</tr>
<tr>
<td>Industrial Production I (Modul)</td>
<td>49</td>
</tr>
<tr>
<td>Industrial Property and Copyright Law</td>
<td>170</td>
</tr>
<tr>
<td>Industrial Safety and Environmental Management</td>
<td>130</td>
</tr>
<tr>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>134</td>
</tr>
<tr>
<td>Inorganic Chemistry Practical</td>
<td>109</td>
</tr>
<tr>
<td>Insurance Contract Law</td>
<td>267</td>
</tr>
<tr>
<td>Insurance Game</td>
<td>268</td>
</tr>
<tr>
<td>Insurance Management (Modul)</td>
<td>44</td>
</tr>
<tr>
<td>Insurance Marketing</td>
<td>265</td>
</tr>
<tr>
<td>Insurance Models</td>
<td>264</td>
</tr>
<tr>
<td>Insurance: Calculation and Control (Modul)</td>
<td>42</td>
</tr>
<tr>
<td>Integrated Production Planning</td>
<td>153</td>
</tr>
<tr>
<td>Intellectual Property Law (Modul)</td>
<td>77</td>
</tr>
<tr>
<td>Intelligent Systems in Finance</td>
<td>239</td>
</tr>
<tr>
<td>Internal Combustion Engines and Exhaust Gas Aftertreatment Technology</td>
<td>147</td>
</tr>
<tr>
<td>International Economic Policy</td>
<td>260</td>
</tr>
<tr>
<td>International Economics</td>
<td>259</td>
</tr>
<tr>
<td>International Economics (Modul)</td>
<td>28</td>
</tr>
<tr>
<td>International Finance</td>
<td>285</td>
</tr>
<tr>
<td>International Production and Logistics</td>
<td>154</td>
</tr>
<tr>
<td>Internet Law</td>
<td>177</td>
</tr>
<tr>
<td>Internship (Modul)</td>
<td>84</td>
</tr>
<tr>
<td>Interpretative Social Research Methods</td>
<td>313</td>
</tr>
<tr>
<td>Introduction to Energy Economics</td>
<td>253</td>
</tr>
<tr>
<td>Introduction to Civil Law (Modul)</td>
<td>19</td>
</tr>
<tr>
<td>Introduction to engineering and hydrological geology</td>
<td>114</td>
</tr>
<tr>
<td>Introduction to GIS for students of natural, engineering and sciences</td>
<td>128</td>
</tr>
<tr>
<td>Introduction to Informatics (Modul)</td>
<td>17</td>
</tr>
<tr>
<td>Introduction to Operations Research (Modul)</td>
<td>18</td>
</tr>
<tr>
<td>Introduction to Operations Research I</td>
<td>97</td>
</tr>
<tr>
<td>Introduction to Operations Research II</td>
<td>98</td>
</tr>
<tr>
<td>Introduction to Programming with Java</td>
<td>94</td>
</tr>
<tr>
<td>Introduction to Technical Logistics (Modul)</td>
<td>59</td>
</tr>
<tr>
<td>Investments</td>
<td>286</td>
</tr>
<tr>
<td>IT-Law (Modul)</td>
<td>74</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Knowledge Management</td>
<td>235</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Labor and Tax Law (Modul)</td>
<td>73</td>
</tr>
<tr>
<td>Law of Contracts</td>
<td>187</td>
</tr>
<tr>
<td>Life Science Engineering II</td>
<td>157</td>
</tr>
<tr>
<td>Logistics</td>
<td>135</td>
</tr>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>252</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Machine Tools</td>
<td>151</td>
</tr>
<tr>
<td>Macroeconomic Theory (Modul)</td>
<td>31</td>
</tr>
<tr>
<td>Management Accounting</td>
<td>204</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>244</td>
</tr>
<tr>
<td>Management of Business Networks</td>
<td>274</td>
</tr>
<tr>
<td>Management and Organisation of Projects in Developing Countries</td>
<td>261</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>245</td>
</tr>
<tr>
<td>Manufacturing Technology</td>
<td>152</td>
</tr>
<tr>
<td>Medical and Consumer Behavior</td>
<td>198</td>
</tr>
<tr>
<td>Marketing and Operations Research</td>
<td>200</td>
</tr>
<tr>
<td>Materials and Energy Flows in the Economy</td>
<td>251</td>
</tr>
<tr>
<td>Materialflow</td>
<td>131</td>
</tr>
<tr>
<td>Mathematics (Modul)</td>
<td>21</td>
</tr>
<tr>
<td>Mathematics I</td>
<td>102</td>
</tr>
<tr>
<td>Mathematics II</td>
<td>103</td>
</tr>
<tr>
<td>Mathematics III</td>
<td>104</td>
</tr>
<tr>
<td>Meteorological Measurements</td>
<td>112</td>
</tr>
<tr>
<td>Meteorological Natural Hazards</td>
<td>110</td>
</tr>
<tr>
<td>Methodical Foundations of OR (Modul)</td>
<td>54</td>
</tr>
<tr>
<td>Methods for Discrete Optimization (Modul)</td>
<td>56</td>
</tr>
<tr>
<td>Methods in Analyzing Internal Combustion</td>
<td>144</td>
</tr>
<tr>
<td>Microeconomic Theory (Modul)</td>
<td>30</td>
</tr>
<tr>
<td>Mixed-integer Optimization</td>
<td>197</td>
</tr>
<tr>
<td>Modern Market Research</td>
<td>199</td>
</tr>
<tr>
<td>Motor Fuels for Combustion Engines and their Verifications</td>
<td>141</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>n.n.</td>
<td>127</td>
</tr>
<tr>
<td>Natural Disaster Management</td>
<td>123</td>
</tr>
<tr>
<td>Nonlinear Optimization I</td>
<td>192</td>
</tr>
<tr>
<td>Nonlinear Optimization II</td>
<td>193</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Occupational Health and Safety Management and Systems</td>
<td>129</td>
</tr>
<tr>
<td>Operative CRM</td>
<td>280</td>
</tr>
<tr>
<td>Optimization on Graphs and Networks</td>
<td>218</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Patent Law</td>
<td>184</td>
</tr>
<tr>
<td>Physics (Modul)</td>
<td>23</td>
</tr>
<tr>
<td>Power Transformations</td>
<td>164</td>
</tr>
<tr>
<td>Principles of Insurance Management</td>
<td>190</td>
</tr>
<tr>
<td>Principles of Life Science Engineering (Modul)</td>
<td>68</td>
</tr>
<tr>
<td>Principles of Process Engineering referring to Food I</td>
<td>156</td>
</tr>
<tr>
<td>Private and Social Insurance</td>
<td>189</td>
</tr>
<tr>
<td>Private Business Law (Modul)</td>
<td>78</td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>148</td>
</tr>
<tr>
<td>Product Lifecycle Management (Modul)</td>
<td>64</td>
</tr>
<tr>
<td>Product Lifecycle Management in the Manufacturing Industry</td>
<td>149</td>
</tr>
</tbody>
</table>