Industrial Engineering and Management (B.Sc.)
Winter Term 2013/2014
Long version
Date: 23.08.2013
Contents

1. Structure of the Bachelor Programme in Industrial Engineering and Management (B.Sc.) ... 10
2. Key Skills .. 11
3. Module Handbook - a helpful guide throughout the studies ... 14
4. Actual Changes .. 16

5. Modules (Foundation) ... 20
 5.1 All Subjects .. 20
 Business Administration- WI1BWL1 ... 20
 Business Administration- WI1BWL ... 21
 Economics- WI1VWL ... 22
 Introduction to Informatics- WI1INFO ... 23
 Introduction to Operations Research- WI1OR ... 24
 Mass and Energy Balances for Reacting Systems- WI1ING1 .. 25
 Materials Science- WI1ING2 .. 26
 Engineering Mechanics- WI1ING3 .. 27
 Electrical Engineering- WI1ING4 .. 28
 Mathematics- WI1MATH ... 29
 Statistics- WI1STAT ... 30

6. Modules (Specialization) ... 31
 6.1 Business Administration .. 31
 Strategy and Organization- WI3BWLUO1 .. 31
 Management Accounting- WI3BWLIBU1 .. 32
 Industrial Production I- WI3BWLIIP ... 33
 Energy Economics- WI3BWLIIP2 .. 34
 Essentials of Finance- WI3BWLFBV1 .. 35
 Risk and Insurance Management- WI3BWLFBV3 .. 36
 Topics in Finance I- WI3BWLFBV5 .. 37
 Topics in Finance II- WI3BWLFBV6 ... 38
 eBusiness and Service Management- WI3BWLIISM1 ... 39
 Supply Chain Management- WI3BWLIISM2 ... 41
 eFinance- WI3BWLIISM3 ... 43
 CRM and Service Management- WI3BWLIISM4 ... 44
 Specialization in Customer Relationship Management- WI3BWLIISM5 ... 45
 Design, Construction and Sustainability Assessment of Buildings- WI3BWLOOW1 .. 47
 Real Estate Management- WI3BWLOOW2 .. 48
 Foundations of Marketing- WI3BWLMAR .. 49
 Management of public- and private-sector organizations- WI3BWLIWW1 .. 50

 6.2 Economics .. 51
 Microeconomic Theory- WI3VWL6 ... 51
 Macroeconomic Theory- WI3VWL8 ... 52
 Public Finance- WI3VWL9 .. 53
 Economic Policy I- WI3VWL10 .. 54
 Introduction to Public Finance and Public Management- WI3VWL11 .. 55
 Economic Theory- WI3VWL12 .. 56
 Applied Microeconomics- WI3VWL13 ... 57

 6.3 Informatics ... 58
 Emphasis Informatics- WI3INFO1 ... 58
 Electives in Informatic- WI3INFO2 .. 60

 6.4 Operations Research .. 61
 Applications of Operations Research- WI3ORS5 ... 61
CONTENTS

7 Courses

7.1 All Courses

- Advanced Topics in Economic Theory- 2520527 99
- Algorithms for Internet Applications- 2511102 100
- Analytical CRM- 2540522 ... 101
- Applied Informatics I - Modelling- 2511030 102
- Applied Informatics II - IT Systems for e-Commerce- 2511032 103
- Facilities and Rolling Stock- 6234802 / 6234803 104
- Industrial Application of Material Handling Systems in Sorting and Distribution Systems- 2118089 105
- Topics of Sustainable Management of Housing and Real Estate- 2585420/2586420 .. 106
- Engineering, Design and Operation of Power Transformers- 23390 107
- Constitution and Properties of Wear Resistant Materials- 2178643 108
- Supercharging of Internal Combustion Engines- 21112 109

- Methodical Foundations of OR- WI3OR6 63
- Stochastic Methods and Simulation- WI3OR7 64
- **6.5 Engineering Sciences** .. 65
 - **Mechanical Engineering** ... 65
 - Automotive Engineering- WI3INGMB5 65
 - Handling Characteristics of Motor Vehicles- WI3INGMB6 66
 - Emphasis in Fundamentals of Engineering - WI3INGMB8 67
 - Emphasis Materials Science- WI3INGMB9 68
 - Introduction to Technical Logistics- WI3INGMB13 69
 - Vehicle Development- WI3INGMB14 70
 - Mobile Machines- WI3INGMB15 ... 71
 - Combustion Engines I- WI3INGMB18 72
 - Combustion Engines II- WI3INGMB19 73
 - Product Lifecycle Management- WI3INGMB21 74
 - Specialization in Production Engineering- WI3INGMB22 75
 - Manufacturing Technology- WI3INGMB23 76
 - Integrated Production Planning- WI3INGMB24 77
 - Rail System Technology- WI3INGMB25 78
 - Machine Tools and Industrial Handling- WI3INGMB32 79
 - Microsystem Technology- WI3INGMB1MT1 80
 - **Electrical Engineering and Information Technology** 81
 - Control Engineering- WI3INGETIT2 81
 - Power Networks- WI3INGETIT3 ... 82
 - Energy Generation and Network Components- WI3INGETIT4 83
 - **Civil Engineering, Geo- and Environmental Sciences** 84
 - Mobility and Infrastructure- WI3INGBGU1 84
 - Fundamentals of construction- WI3INGBGU3 85
 - Basics of Guided Transport Systems- WI3INGBGU4 86
 - **Interdisciplinary Modules in Engineering** 87
 - Understanding and Prediction of Disasters 1- WI3INGINTER6 87
 - Understanding and Prediction of Disasters 2- WI3INGINTER7 88
 - **Extracurricular Module in Engineering** 89
 - Extracurricular Module in Engineering- WI3INGAPL 89
 - **Statistics** ... 90
 - Statistical Applications of Financial Risk Management- WI3STAT 90
 - **Law** ... 91
 - Elective Module Law- WI3JURA ... 91
 - **Sociology** ... 92
 - Sociology/Empirical Social Research- WI3SOZ 92
 - Qualitative Social Research- WI3SOZ2 93
 - **General Modules** .. 94
 - Seminar Module- WI3SEM .. 94
 - Internship- W1SEXPRAK .. 97
 - Bachelor Thesis- WI3THESIS .. 98

7 Courses

- "Module Handbook, Date: 23.08.2013"

- "Industrial Engineering and Management (B.Sc.)"
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Topics of Optics and Microoptics for mechanical engineers</td>
<td>2143892</td>
</tr>
<tr>
<td>Selected Topics in Public Management and Governance</td>
<td>n.n.</td>
</tr>
<tr>
<td>International Economics</td>
<td>2561252</td>
</tr>
<tr>
<td>Automation of Power Grids</td>
<td>23396</td>
</tr>
<tr>
<td>Bachelor Seminar in Information Engineering and Management</td>
<td>2540524</td>
</tr>
<tr>
<td>Rail System Technology</td>
<td>2115919</td>
</tr>
<tr>
<td>Construction Technology</td>
<td>0170409</td>
</tr>
<tr>
<td>Design and Construction of Buildings</td>
<td>26404w</td>
</tr>
<tr>
<td>Sustainability Assessment of Buildings</td>
<td>2585404/2586404</td>
</tr>
<tr>
<td>Design Basics in Highway Engineering</td>
<td>19026</td>
</tr>
<tr>
<td>Power Network Analysis</td>
<td>23371/23373</td>
</tr>
<tr>
<td>Operation</td>
<td>6234801</td>
</tr>
<tr>
<td>Motor Fuels for Combustion Engines and their Verifications</td>
<td>2133109</td>
</tr>
<tr>
<td>Business Administration: Finance and Accounting</td>
<td>2600026</td>
</tr>
<tr>
<td>Business Administration: Production Economics and Marketing</td>
<td>2600024</td>
</tr>
<tr>
<td>Business Administration: Strategic Management and Information Engineering and Management</td>
<td>2600023</td>
</tr>
<tr>
<td>Civil Law for Beginners</td>
<td>24012</td>
</tr>
<tr>
<td>BioMEMS II (Microsystem Technology for Life-Sciences and Medicine; part II)</td>
<td>2142883</td>
</tr>
<tr>
<td>BioMEMS III (Microsystem Technology for Life-Sciences and Medicine; part III)</td>
<td>2142879</td>
</tr>
<tr>
<td>Bionics for Engineers and Natural Scientists</td>
<td>2142140</td>
</tr>
<tr>
<td>Exchanges</td>
<td>2530296</td>
</tr>
<tr>
<td>CAN-Bus Release Control</td>
<td>2114092</td>
</tr>
<tr>
<td>Chemical, physical and material science aspects of plastics in the micro technology</td>
<td>2143500</td>
</tr>
<tr>
<td>Complexity Management</td>
<td>2511400</td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>2540508</td>
</tr>
<tr>
<td>Data Mining</td>
<td>2520375</td>
</tr>
<tr>
<td>Database Systems</td>
<td>2511200</td>
</tr>
<tr>
<td>Derivatives</td>
<td>2530550</td>
</tr>
<tr>
<td>Services Marketing and B2B Marketing</td>
<td>2572158</td>
</tr>
<tr>
<td>Efficient Algorithms</td>
<td>2511100</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>2540454</td>
</tr>
<tr>
<td>Introduction to Operations Research I</td>
<td>2550040</td>
</tr>
<tr>
<td>Introduction to Operations Research II</td>
<td>2530043</td>
</tr>
<tr>
<td>Introduction to Energy Economics</td>
<td>2581010</td>
</tr>
<tr>
<td>Introduction to Public Finance</td>
<td>2560131</td>
</tr>
<tr>
<td>Introduction to Game Theory</td>
<td>2520525</td>
</tr>
<tr>
<td>Basic Principles of Economic Policy</td>
<td>2560280</td>
</tr>
<tr>
<td>Introduction to GIS for students of natural, engineering and geo sciences</td>
<td>20712/13</td>
</tr>
<tr>
<td>Introduction to Public Management</td>
<td>2560132</td>
</tr>
<tr>
<td>Technique of Electrical Installation</td>
<td>23382</td>
</tr>
<tr>
<td>Systems for Electrical Energy</td>
<td>23391/23393</td>
</tr>
<tr>
<td>Electrical Engineering I</td>
<td>23223</td>
</tr>
<tr>
<td>Electrical Engineering II</td>
<td>23224</td>
</tr>
<tr>
<td>Elements and Systems of Technical Logistics</td>
<td>2117096</td>
</tr>
<tr>
<td>Theory of endogenous growth</td>
<td>2561503</td>
</tr>
<tr>
<td>Energy efficient intralogistic systems</td>
<td>2117500</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>2581959</td>
</tr>
<tr>
<td>Enterprise Risk Management</td>
<td>2530326</td>
</tr>
<tr>
<td>Electric Power Generation & Power Grid</td>
<td>23356</td>
</tr>
<tr>
<td>eServices</td>
<td>2595466</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles I</td>
<td>2113807</td>
</tr>
<tr>
<td>Handling Characteristics of Motor Vehicles II</td>
<td>2114838</td>
</tr>
<tr>
<td>Vehicle Mechatronics I</td>
<td>2113816</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics I</td>
<td>2113806</td>
</tr>
<tr>
<td>Vehicle Comfort and Acoustics II</td>
<td>2114825</td>
</tr>
<tr>
<td>Case Studies in Public Management</td>
<td>2560133</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>GEOD-BFB-1</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 23.08.2013
Remote Sensing Systems- 20241/42 ... 168
Remote Sensing Methods- 20265/66 .. 169
Manufacturing Engineering- 2149657 ... 170
Financial Management- 2530216 ... 171
Financial Intermediation- 2530232 ... 172
Fluid Power Systems- 2114093 .. 173
Functional Ceramics- 2126784 ... 174
Monetary and Financial Policy- 2561126 .. 175
Geological Hazards and Risks- 2600101 .. 176
Global vehicle evaluation within virtual road test- 2114850 177
Business Strategies of Banks- 2530299 ... 178
Global Optimization I- 2550134 ... 179
Global Optimization II- 2550136 ... 180
Automotive Engineering I- 2113805 .. 181
Automotive Engineering II- 2114835 .. 182
Foundations of Informatics I- 2511010 ... 183
Foundations of Informatics II- 2511012 ... 184
Internal Combustion Engines and Exhaust Gas Aftertreatment Technology- 2134138 ... 185
Basics of microsystem technology I- 2141861 ... 186
Basics of microsystem technology II- 2142874 ... 187
Fundamentals of Production Management- 2581950 188
Basics of Technical Logistics- 2117095 .. 189
Basics of Track Guided Transport Systems- 19066 190
Fundamentals for Design of Motor-Vehicle Bodies I- 2113814 191
Fundamentals for Design of Motor-Vehicle Bodies II- 2114840 192
Fundamentals in the Development of Commercial Vehicles I- 2113812 193
Fundamentals in the Development of Commercial Vehicles II- 2114844 194
Fundamentals in the Development of Passenger Vehicles I- 2113810 195
Fundamentals in the Development of Passenger Vehicles II- 2114842 196
Hauptvermessungsübungen III- 20267 ... 197
Hydrology- 19061 .. 198
Industrial Organization- 2560238 ... 199
Information Systems and Supply Chain Management- 2118094 200
Seminar in Engineering Science- SemiNG ... 201
Integrated Production Planning- 2150660 .. 202
Intelligent Systems in Finance- 2511402 .. 203
International Marketing- 2572155 ... 204
International Finance- 2530570 ... 205
Cost and Management Accounting- 2530210 .. 206
Investments- 2530575 ... 207
Introduction to Ceramics- 2125757 .. 208
Climatology- 2501111 ... 209
Warehouse and Distribution Systems- 2118097 210
Logistics - Organisation, Design, and Control of Logistic Systems- 2118078 211
Automotive Logistics- 2118085 ... 212
Logistics and Supply Chain Management- 2581996 213
Airport Logistics- 2117056 ... 214
Management Accounting 1- 2579900 ... 215
Management Accounting 2- 2579902 ... 216
Management of Business Networks- 2590452 .. 217
Management of Business Networks (Introduction)- 2540496 218
Brand Management- 2572177 .. 219
Managing the Marketing Mix- 2571152 ... 220
Material Flow in Logistic Systems- 2117051 .. 221
Mathematics I- 01350 .. 222
Mathematics II- 01830 ... 223
<table>
<thead>
<tr>
<th>Module</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics III- 01352</td>
<td></td>
<td>228</td>
</tr>
<tr>
<td>Seminar in Mathematics- SemMath</td>
<td></td>
<td>229</td>
</tr>
<tr>
<td>Meteorological Natural Hazards- 57535</td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>Methods in Analyzing Internal Combustion- 21134</td>
<td></td>
<td>231</td>
</tr>
<tr>
<td>Interpretative Social Research Methods- n.n.</td>
<td></td>
<td>232</td>
</tr>
<tr>
<td>Microactuators- 2142881</td>
<td></td>
<td>233</td>
</tr>
<tr>
<td>Mobile Machines- 2113073</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Modelling and Identification- 23168</td>
<td></td>
<td>235</td>
</tr>
<tr>
<td>Engine Measurement Technologies- 2134137</td>
<td></td>
<td>236</td>
</tr>
<tr>
<td>Nanotechnology with clusters- 2143876</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>Novel Actuators and Sensors- 2141865</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>Nonlinear Optimization I- 2550111</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>Nonlinear Optimization II- 2550113</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Public Revenues- 2560120</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>Public Law I - Basic Principles- 24016</td>
<td></td>
<td>242</td>
</tr>
<tr>
<td>Public Law II - Public Economic Law- 24520</td>
<td></td>
<td>243</td>
</tr>
<tr>
<td>Operative CRM- 2540520</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>Optoelectronic Components- 23486 / 23487</td>
<td></td>
<td>246</td>
</tr>
<tr>
<td>Managing Organizations- 2577902</td>
<td></td>
<td>247</td>
</tr>
<tr>
<td>Physics for Engineers- 2142890 / 2142891</td>
<td></td>
<td>248</td>
</tr>
<tr>
<td>Physical Basics of Laser Technology- 2181612</td>
<td></td>
<td>249</td>
</tr>
<tr>
<td>PLM for product development in mechatronics- 2122376</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Polymerengineering I- 2173590</td>
<td></td>
<td>251</td>
</tr>
<tr>
<td>Polymerengineering II- 2174596</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>Practical training in basics of microsystem technology- 2143875</td>
<td></td>
<td>253</td>
</tr>
<tr>
<td>Principles of Insurance Management- 2550055</td>
<td></td>
<td>254</td>
</tr>
<tr>
<td>Product Lifecycle Management- 2121350</td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>Production Economics and Sustainability- 2581960</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>Introduction to Programming with Java- 2511000</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>Advanced Programming - Java Network Programming- 2511020</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>Advanced Programming - Application of Business Software- 2540886/2590886</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>Project Workshop-Automotive Engineering- 2115817</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>Project Management - 0170106</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>Project Management in Rail Industry- 2115995</td>
<td></td>
<td>262</td>
</tr>
<tr>
<td>Projectseminar- SozSem</td>
<td></td>
<td>263</td>
</tr>
<tr>
<td>Explorative-interpretative Project Seminar- n.n.</td>
<td></td>
<td>264</td>
</tr>
<tr>
<td>High Performance Powder Metallurgy Materials- 2126749</td>
<td></td>
<td>265</td>
</tr>
<tr>
<td>Quality Management- 2149667</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>Quantitative Methods for Supply Chain Risk Management- 2118090</td>
<td></td>
<td>267</td>
</tr>
<tr>
<td>Spatial Planning and Planning Law- 19028</td>
<td></td>
<td>268</td>
</tr>
<tr>
<td>Real Estate Management I- 26400w</td>
<td></td>
<td>269</td>
</tr>
<tr>
<td>Real Estate Management II- 2585400/2586400</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>Computer Integrated Planning of New Products - 2122387</td>
<td></td>
<td>271</td>
</tr>
<tr>
<td>Financial Accounting and Cost Accounting- 2600002</td>
<td></td>
<td>272</td>
</tr>
<tr>
<td>Risk Management in Industrial Planning and Decision-Making- 2581993</td>
<td></td>
<td>274</td>
</tr>
<tr>
<td>Rail Vehicle Technology- 2115996</td>
<td></td>
<td>275</td>
</tr>
<tr>
<td>Key qualifications ZAK- SQ ZAK1</td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>Working and Studying Effectively- SQ HoC1</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>Oral Presentation and Communication Skills- SQ HoC2</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>Scientific Writing- SQ HoC3</td>
<td></td>
<td>279</td>
</tr>
<tr>
<td>Teaching and Learning Foreign Languages- SQ HoC4</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>Qualitative Methods- SQ HoC5</td>
<td></td>
<td>281</td>
</tr>
<tr>
<td>Law and Economics- SQ HoC6</td>
<td></td>
<td>282</td>
</tr>
<tr>
<td>Competencies as a Research Topic- SQ HoC7</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>Transferring Knowledge in School, University and at the Workplace- SQ HoC 8</td>
<td></td>
<td>284</td>
</tr>
<tr>
<td>Professional Orientation and Job Specific Competencies- SQ HoC8</td>
<td></td>
<td>285</td>
</tr>
<tr>
<td>Semantic Web Technologies I- 2511304</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>Seminar in Enterprise Information Systems- SemAIFB1</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>Seminar Efficient Algorithms- SemAIFB2</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Seminar Energy Economics- SemEW</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Seminar eOrganization- SemAIFB5</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Seminar Public Finance- 2560130</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>Seminar Conveying Technology and Logistics- SemiFL</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Seminar in Behavioral and Experimental Economics- n.n.</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Seminar in Finance- 2530280</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>Seminar in International Economy- SemIWW2</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>Seminar in Marketing and Sales (Bachelor)- SemETU1</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>- SemIWW3</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>Seminar in Industrial Production- SemIIP2</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>Seminar Information Engineering and Management - SemIW</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>Seminar Complexity Management- SemAIFB3</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Seminar Management Accounting- 2579904</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>Seminar Mobility Services- 2595475</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>Seminar Service Science, Management & Engineering- 2595470</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>Seminar Stochastic Models- SemWIOR1</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>Seminar Knowledge Management- SemAIFB4</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Seminar in Insurance Management- SemFBV1</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Seminar in strategic and behavioral marketing- 2572197</td>
<td>307</td>
<td></td>
</tr>
<tr>
<td>Seminar in Discrete Optimization- 2550491</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>Seminar in Experimental Economics- SemWIOR3</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>Seminar in Continuous Optimization- 2550131</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Seminar on Macroeconomic Theory - SemETS3</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Seminar on Network Economics- 2560263</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>Seminar Transport Economics- 2561209</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>Seminar: Legal Studies- RECHT</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>Seminar: Management and Organization- 2577915</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Seminar paper "Production Engineering" - 21690sem</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Service Oriented Computing 1- 2511500</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>Simulation of coupled systems- 2114095</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>Simulation I- 2550662</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>Simulation II - 2550665</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Simulation of Spray and Mixture Formation in Internal Combustion Engines- 211114</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>Software Engineering- 2511206</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>Software Laboratory: OR Models I- 2550490</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>Social structures of modern societies- 11005</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Special Topics in Management Accounting- 2570005</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Special Topics in Information Engineering & Management - 2540498</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>Special Topics of Applied Informatics- Platzhalter</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>Special Topics in Management: Management and IT- 2577907</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Special Sociology- spezSoz</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>Specific Aspects in Taxation- 2561129</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Facility Location and Strategic Supply Chain Management- 2550486</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>Statistics and Econometrics in Business and Economics- 2521325/2521326</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>Statistics I- 2600008</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>Statistics II- 2600020</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td>Instrumentation and Control Technologies for Production Systems- 2150683</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>Markov Decision Models I- 2550679</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>Markov Decision Models II- 2550682</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>Mass and Energy Balances for Reacting Systems- 22130</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>Structural Ceramics - 2126775</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>System Dynamics and Control Engineering- 23155</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Tactical and Operational Supply Chain Management- 2550488</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics I- 2161208</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics II- 2162226</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>Course details</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Theory of Business Cycles</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td>Theory of Economic Growth</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td>Metal Forming</td>
<td>348</td>
<td></td>
</tr>
<tr>
<td>Corporate Governance in Energy Economics</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Combustion Engines A</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>Combustion Engines B</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Transportation Planning</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>Failure of Structural Materials: Fatigue</td>
<td>354</td>
<td></td>
</tr>
<tr>
<td>Failure of Structural Materials: Deformation</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>Gear Cutting Technology</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>Economics I: Microeconomics</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>Economics II: Macroeconomics</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>Economics III: Introduction in Econometrics</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>Elective „Educational development for student teachers“</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Engineering and Water Resource Management</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>Materials of Lightweight Construction</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>Materials Science I</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>Materials Science II for Business Engineers</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>Materials Science and Engineering III</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>Machine Tools and Industrial Handling</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>Competition in Networks</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>Seminar Economic Theory</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>Knowledge Management</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>Welfare Economics</td>
<td>370</td>
<td></td>
</tr>
</tbody>
</table>

8 Anhang: Qualifikationsziele Wirtschaftsingenieurwesen (B.Sc.) 371

9 Appendix: Study- and Examination Regulation (06/03/2007, in German) 372

Index 387
1 Structure of the Bachelor Programme in Industrial Engineering and Management (B.Sc.)

The bachelor programme in Industrial Engineering and Management (B.Sc.) has 6 terms and consists of 180 credits (CP) including internship and bachelor thesis. The terms 1 to 3 of the programme are methodologically oriented and provide the student with the foundations of business, economic and engineering science. Terms 4 to 6 aim at the specialization and application of this knowledge.

Figure 1 shows the structure of the subjects and the credits (CP) allocated to the subjects. According to the European Credit Transfer System, one credit corresponds to a workload of 30 hours.

Figure 1: Structure of the Bachelor Programme(Recommendation)

In the specialization studies of the third year of the bachelor programme the student has to choose one elective module of the following disciplines: Informatics, operations research, business science, economics, engineering science, statistics, law and sociology. Furthermore, the student has to attend two seminars with a minimum of six CP within the seminar module. In addition to the key skills gained in the seminars (3 CP), the student has to acquire additional key skills totalling at least 3 credits.

It is left to the student’s individual curriculum (taking into account the examination and module regulations), in which terms the chosen modules will be started and completed. However, it is highly recommended to follow the proposed structure and schedule of the first 3 terms and to complete all courses and seminars before beginning the bachelor thesis.
2 Key Skills

The bachelor programme Industrial Engineering and Management (B.Sc.) at the Department of Economics and Management distinguishes itself by an exceptionally high level of interdisciplinarity. With the combination of business science, economics, informatics, operations research, mathematics as well as engineering and natural science, the integration of knowledge of different disciplines is an inherent element of the programme. As a result, interdisciplinary and connected thinking is encouraged in a natural way. Furthermore, tutor programs with more than 20 semester periods per week contribute significantly to the development of key skills in the bachelor programme. The integrative taught key skills, which are acquired throughout the entire programme, can be classified into the following fields:

Soft skills
1. Team work, social communication and creativity techniques
2. Presentations and presentation techniques
3. Logical and systematical arguing and writing
4. Structured problem solving and communication

Enabling skills
1. Decision making in business context
2. Project management competences
3. Fundamentals of business science
4. English as a foreign language

Orientalal knowledge
1. Acquisition of interdisciplinary knowledge
2. Institutional knowledge about economic and legal systems
3. Knowledge about international organisations
4. Media, technology and innovation

The integrative acquisition of key skills especially takes place in several compulsory courses during the bachelor programme, namely
1. Basic programme in economics and business science
2. Seminar module
3. Mentoring of the bachelor thesis
4. Internship
5. Business science, economics and informatics modules

Figure 2 shows the classification of key skills within the bachelor programme at a glance. Besides the integrated key skills, the additive acquisition of key skills, which are totalling at least three credits within the seminar module, is scheduled. Students may choose freely among the offered courses of HoC, ZAK and Sprachenzentrum.
Art der Schlüsselqualifikation

<table>
<thead>
<tr>
<th>Bachelorstudium</th>
<th>Grundprogramm</th>
<th>Vertiefungsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td>REWE, BWL UI</td>
<td>BWL PM, BWL FR, VWL I,II</td>
<td>Tutorenprogramm BWL, VWL, INFO, Seminar, Bachelorarbeit, Betriebspraktikum</td>
</tr>
</tbody>
</table>

Basiskompetenzen (soft skills)

- Teamarbeit, soziale Kommunikation und Kreativitätstechniken: x, x
- Präsentationserstellung und -techniken: x, x
- Logisches und systematisches Argumentieren und Schreiben: x, x
- Strukturierte Problemlösung und Kommunikation: x, x

Praxisorientierung (enabling skills)

- Handlungskompetenz im beruflichen Kontext: x
- Kompetenzen im Projektmanagement: x
- Betriebswirtschaftliche Grundkenntnisse: x
- Englisch als Fachsprache: x, (x)*

Orientierungswissen

- Interdisziplinäres Wissen: x, x, x, x, (x)*, (x)*
- Institutionelles Wissen über Wirtschafts- und Rechtssysteme: x, x
- Wissen über internationale Organisationen: x, x
- Medien, Technik und Innovation: x, x

(x)*-------ist nicht zwingend SQ-vermittelnd; hängt von der Art der Aktivität ab (z.B. Auslandspraktikum, thematische Ausrichtung der Bachelorarbeit)

Figure 2: Key Skills
Figure 3: Process of gaining additive key skills

<table>
<thead>
<tr>
<th>Was</th>
<th>Wann</th>
<th>Hilfsmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auswahl eines Kurses aus dem HoC-Angebot (Wahlbereich 1 – 5)</td>
<td>Ab September (WS) bzw. März (SS)</td>
<td>www.hoc.kit.edu oder StudiPortal</td>
</tr>
<tr>
<td>Online-Anmeldung zum Kurs direkt beim HoC (bzw. ZAK, SPZ, ...)</td>
<td>Mittwoch vor Vorlesungsbeginn („first come, first served“!)</td>
<td>www.hoc.kit.edu (und dann je nach Kursart)</td>
</tr>
<tr>
<td>Mitteilung an Kursleiter über Kursziel von 3 ECTS</td>
<td>Zum Kursbeginn</td>
<td>Prüfungsordnung (bei WiIng, TVWL werden max. 3 ECTS anerkannt)</td>
</tr>
<tr>
<td>Ablegen und Bestehen der Erfolgskontrolle (im Umfang von 3 ECTS)</td>
<td>Am Kursende</td>
<td></td>
</tr>
<tr>
<td>HoC stellt „Schein“ aus, der vom Studierenden am HoC abgeholt wird</td>
<td>Nach Bestehen der Erfolgskontrolle</td>
<td></td>
</tr>
<tr>
<td>Einreichung des „Scheins“ beim Studienbüro</td>
<td>Nach Abholung des Scheins beim HoC</td>
<td></td>
</tr>
<tr>
<td>Prüfung und ggf. Rückfragen an Prüfungsamt WiWi (Herr Hilser)</td>
<td>So schnell wie möglich</td>
<td>Zentrales Prüfungssystem (anschl. Anzeige im StudiPortal)</td>
</tr>
<tr>
<td>Verbuchung der SQ im Seminarmodul durch Studienbüro</td>
<td>So schnell wie möglich</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 25.02.2011
3 Module Handbook - a helpful guide throughout the studies

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme. It describes:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other (e.g. if a course is selectable in two or more modules) is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0). In order to that the minimum requirement of credits of this module have been met.

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations takes place online via the self-service function for students. The following functions can be accessed on https://studium.kit.edu/meinsemester/Seiten/pruefungsanmeldung.aspx:

- Sign in and sign off exams
- Retrieve examination results
- Print transcript of records

For further and more detailed information also see https://studium.kit.edu/Seiten/FAQ.aspx.

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.kit.edu/serviceHinweise.php.
Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme (in the appendix).

Used abbreviations

- **LP/CP**: Credit Points/ECTS
- **LV**: course
- **RÜ**: computing lab
- **S**: summer term
- **Sem.**: semester/term
- **ER/SPO**: examination regulations
- **KS/SQ**: key skills
- **SWS**: contact hour
- **Ü**: exercise course
- **V**: lecture
- **W**: winter term

Leistungspunkte/ECTS
Lehrveranstaltung
Rechnerübung
SommersessterSemester
Studien- und Prüfungsordnung
Schlüsselqualifikationen
Semesterwochenstunde
Übung
Vorlesung
Wintersemester
4 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist. Please also check our updates on http://www.wiwi.kit.edu/lehreMHB.php#mhb_aktuell.

WI3BWLOOW1 - Design, Construction and Sustainability Assessment of Buildings (S. 47)

Erfolgskontrolle

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

WI3BWLOOW2 - Real Estate Management (S. 48)

Erfolgskontrolle

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

WI3OR7 - Stochastic Methods and Simulation (S. 64)

Bedingungen

At least one of the courses Markov Decision Models [2550679] or Simulation I [2550662] has to be attended.

WI3INGMB32 - Machine Tools and Industrial Handling (S. 79)

Erfolgskontrolle

The assessment is carried out as partial exams (according to Section 4(2), 1-3 SPO of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

WI3INGBGU1 - Mobility and Infrastructure (S. 84)

Erfolgskontrolle

The assessment of the module is carried out as a general written examination (150 minutes) according to §4(2), 1 of the examination regulation. The exam is offered in each semester as well as the re-examination. In case of failing or to improve the examination grade an additional oral examination (according to §4(2), 2 of the examination regulation) is offered in the same examination period. The overall grade of the module corresponds to the grade of the written examination or the average of the marks for the written and the oral assessment.

2511402 - Intelligent Systems in Finance (S. 204)

Erfolgskontrolle

The assessment is a written examination. See the German part for special requirements to be admitted for the examination.

Anmerkungen

The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described contend and schedule. The course “Intelligent Systems in Finance” will not be offered any more from summer term 2016 on. The examination will be offered latest until summer term 2015 (repeaters only).

2550662 - Simulation I (S. 319)

Erfolgskontrolle

The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).
2520525 - Introduction to Game Theory (S. 146)
Erfolgskontrolle
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in the recess period and can be resited at every ordinary examination date.

Anmerkungen
This course was formerly named “Game Theory I”.

2511400 - Complexity Management (S. 134)
Anmerkungen
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described contend and schedule.
The course “Complexity Management” will not be offered any more from summer term 2016 on. The examination will be offered latest until summer term 2015 (repeaters only).

2550679 - Markov Decision Models I (S. 336)
Erfolgskontrolle
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).

2125757 - Introduction to Ceramics (S. 209)
Erfolgskontrolle
The assessment consists of an oral exam (30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

19027 - Fundamentals of Transportation Planning and Traffic Engineering (S. 353)
Erfolgskontrolle
In the module Fundamentals of Transportation [WI4INGBGU15] the assessment consists of an oral exam (15 minutes) according to §4(2), 2 of the examination regulation. For other modules and more information, see the corresponding module description.

2174576 - Systematic Selection of Materials (S. 340)
Erfolgskontrolle
The assessment consists of a written exam (3h) (following §4(2), 1 of the examination regulation).

19028 - Spatial Planning and Planning Law (S. 268)
Erfolgskontrolle
See module description.

26400w - Real Estate Management I (S. 269)
Erfolgskontrolle
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

26404w - Design and Construction of Buildings (S. 118)
Erfolgskontrolle
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

2585400/2586400 - Real Estate Management II (S. 270)
Erfolgskontrolle
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Reexaminations are offered at every ordinary examination date.
2585404/2586404 - Sustainability Assessment of Buildings (S. 119)

Erfolgskontrolle

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place twice only in the semester in which the lecture is takes place (summer semester). Re-examinations are offered at every ordinary examination date.

2520517 - Welfare Economics (S. 370)

Anmerkungen

For details see German version.

2550665 - Simulation II (S. 320)

Erfolgskontrolle

The assessment consists of a 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).

2174596 - Polymerengineering II (S. 252)

Bedingungen

Polymerengineering I [21590].

2149902 - Machine Tools and Industrial Handling (S. 366)

Erfolgskontrolle

The assessment consists of a written exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

SQ PEW1 - Elective „Educational development for student teachers“ (S. 360)

Erfolgskontrolle

Success is controlled according to §4(2), 3 SPO in the course of completion of different units of the tutorial program. These units consist of successful processing of online-units on Ilias platform, participating on the tutoring workshop and in at least one practice consulting, authoring a concluding work of reflection about own work of tutoring as well as writing a feedback on the work of reflection of another tutor. Participants will receive guidelines prior to writing the work of reflection and the feedback. If the participant works for two semesters as a tutor, 3 ECTS-points are credited. If the participant works for one semester as a tutor, only 2 ECTS-points are credited.

Bedingungen

Activity as tutor during the semester participating in the tutorial program is obligatory.

Anmerkungen

Please note that a maximum of 3 ECTS- points in the seminar module is distributed over Bachelor and Master. The language of all events of the tutoring program is German. Further information on the tutoring program is found on the homepage of Personnel Development service unit www.pew.kit.edu/387.php.

SemIWW3 - (S. 297)

Anmerkungen

Please note that this course is probably not available in winter term 2013/14. For further information please visit http://wipo.econ.kit.edu/.

2149657 - Manufacturing Engineering (S. 170)

Erfolgskontrolle

The assessment consists of a written exam taking place during the recess period (according to Section 4(2), 1) of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

2150660 - Integrated Production Planning (S. 203)

Erfolgskontrolle

The assessment is carried out as an written exam according §4(2), 1 SPO. The examination is offered every semester. Reexaminations are offered at every ordinary examination date.
2149667 - Quality Management (S. 266)

Erfolgskontrolle

The assessment consists of an oral exam taking place during the lecture-free period (according to §4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every official examination date.

2149669 - Materials and Processes in Automotive Lightweight Construction (S. 225)

Erfolgskontrolle

The assessment consists of an oral exam taking place during the lecture-free period (according to §4(2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every official examination date.

2150681 - Metal Forming (S. 348)

Erfolgskontrolle

The assessment consists of an oral exam taking place during the lecture-free period (according to Section 4(2), 2 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every official examination date.

2150683 - Instrumentation and Control Technologies for Production Systems (S. 335)

Erfolgskontrolle

The assessment consists of an oral exam taking place during the lecture-free period (according to Section 4(2), 2 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every official examination date.

2149655 - Gear Cutting Technology (S. 356)

Erfolgskontrolle

The assessment consists of an oral exam taking place during the lecture-free period (according to Section 4(2), 2 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every official examination date.

2550682 - Markov Decision Models II (S. 337)

Erfolgskontrolle

The assessment consists of a 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).

2581993 - Risk Management in Industrial Planning and Decision-Making (S. 274)

Anmerkungen

This lecture will not be held in winter term any more but in Summer term.

19066 - Basics of Track Guided Transport Systems (S. 190)

Erfolgskontrolle

See German version.

6234801 - Operation (S. 122)

Erfolgskontrolle

See German version.

6234802 / 6234803 - Facilities and Rolling Stock (S. 104)

Erfolgskontrolle

See German version.

2561503 - Theory of endogenous growth (S. 155)

Anmerkungen

Please note that this course is probably not available in winter term 2013/14. For further information please visit http://wipo.econ.kit.edu/.
5 Modules (Foundation)

5.1 All Subjects

Module: Business Administration [WI1BWL1]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600026</td>
<td>Business Administration: Finance and Accounting (p. 124)</td>
<td>2/0/2</td>
<td>W</td>
<td>4</td>
<td>M. Ruckes, M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2600023</td>
<td>Business Administration: Strategic Management and Information Engineering and Management (p. 126)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Ruckes, H. Lindstädt, Ch. Weinhardt</td>
</tr>
<tr>
<td>2600024</td>
<td>Business Administration: Production Economics and Marketing (p. 125)</td>
<td>2/0/2</td>
<td>S</td>
<td>4</td>
<td>M. Ruckes, W. Fichtner, M. Klarmann, Th. Lützkendorf, F. Schultmann</td>
</tr>
<tr>
<td>2600002</td>
<td>Financial Accounting and Cost Accounting (p. 272)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>T. Lüdecke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures of each course of this module is defined for each course separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
It is strongly recommended to attend the courses in the following sequence:
1st term: Business Administration: Strategic Management and Information Engineering and Management [2600023] and Business Administration: Finance and Accounting [25026/25027]
2nd term: Business Administration: Production Economics and Marketing [25024/25025]

Learning Outcomes
The student
• has core skills in business administration in particular with respect to decision making and model based view of corporations
• masters the fundamentals of managerial and financial accounting as well as business administration
• is able to analyse and assess the central tasks, functions and decisions in modern corporations

This module sets the base for advanced courses in the field of business administration and management science.

Content
This module provides the fundamentals of managerial and financial accounting as well as business administration and management science. Then, the module focuses on the fields of marketing, production economics, information engineering and management, management and organization, investment and finance and the german specific term controlling.

Remarks
The title and partly the content of each lecture within this module has changed in the winter semester 2012/13.
Module: Business Administration [WI1BWL]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600002</td>
<td>Financial Accounting and Cost Accounting (p. 272)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>2600023</td>
<td>Business Administration: Strategic Management and Information Engineering and Management (p. 126)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Ruckes, H. Lindstädt, Ch. Weinhardt</td>
</tr>
<tr>
<td>2600024</td>
<td>Business Administration: Production Economics and Marketing (p. 125)</td>
<td>2/0/2</td>
<td>S</td>
<td>4</td>
<td>M. Ruckes, W. Fichtner, M. Klarmann, Th. Lützkendorf, F. Schultzmann</td>
</tr>
<tr>
<td>2600026</td>
<td>Business Administration: Finance and Accounting (p. 124)</td>
<td>2/0/2</td>
<td>W</td>
<td>4</td>
<td>M. Ruckes, M. Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures of each course of this module is defined for each course separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
It is strongly recommended to attend the courses in the following sequence:
2nd term: Business Administration: Production Economics and Marketing [25024/25025]
3rd term: Business Administration: Finance and Accounting [25026/25027]

Learning Outcomes
The student
- has core skills in business administration in particular with respect to decision making and model based view of corporations
- masters the fundamentals of managerial and financial accounting as well as business administration
- is able to analyse and assess the central tasks, functions and decisions in modern corporations

This module sets the base for advanced courses in the field of business administration and management science.

Content
This module provides the fundamentals of managerial and financial accounting as well as business administration and management science. Then, the module focuses on the fields of marketing, production economics, information engineering and management, management and organization, investment and finance and the german specific term controlling.

Remarks
The title and partly the content of each lecture within this module has changed in the winter semester 2012/13. The module Business Administration [WI1BWL] will not be offered from the winter semester 2012/13. It will be replaced by module Business Administration [WI1BWL1]. Students who have already been enrolled in the summer semester 2012 can complete the module.
Module: Economics [WI1VWL]

Coordination: C. Puppe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600012</td>
<td>Economics I: Microeconomics (p. 357)</td>
<td>3/0/2</td>
<td>W</td>
<td>5</td>
<td>C. Puppe, P. Reiss</td>
</tr>
<tr>
<td>2600014</td>
<td>Economics II: Macroeconomics (p. 358)</td>
<td>3/0/2</td>
<td>S</td>
<td>5</td>
<td>B. Wigger</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The assessment procedures of each course of this module is defined for each course separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Notice: The lecture Economics I: Microeconomics [2600012] is part of the preliminary examination concerning § 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Conditions
None.

Learning Outcomes
The student
- knows and understands economic problems,
- understands economic policy in globalized markets,
- is able to develop elementary solution concepts.

The lectures of this module have different focuses: In Economics I economic problems are seen as decision problems, Economics II looks at the dynamics of economic processes.

Content
Module: Introduction to Informatics [WI1INFO]

Cooperation: H. Schmeck, R. Studer, D. Seese
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511000</td>
<td>Introduction to Programming with Java (p. 257)</td>
<td>3/1/2</td>
<td>W</td>
<td>5</td>
<td>D. Seese</td>
</tr>
<tr>
<td>2511010</td>
<td>Foundations of Informatics I (p. 183)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>R. Studer, E. Simperl</td>
</tr>
<tr>
<td>2511012</td>
<td>Foundations of Informatics II (p. 184)</td>
<td>3/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
</tbody>
</table>

Learning control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date.

- Introduction to Programming with Java
 Compulsory tests in the computer lab
 Written exam resp. computer-based exam (60 min)
 The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam.

- Foundations of Informatics I
 Written exam in the first week of the recess period (60 min)

- Foundations of Informatics II
 Written exam in the first week of the recess period (90 min)
 It is possible to gain 0.3-0.4 grading points to the written exam by successful participation in the exercises (achieving a minimum number of points received for solutions to the exercises), or by successful completion of a bonus exam (both according to Section 4 (2), 3 of the examination regulation).

When every single examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
It is strongly recommended to attend the courses in the following sequence: Introduction to Programming with Java [2511000], Foundations of Informatics I [2511010] Foundations of Informatics II [2511012]

Learning Outcomes

The student
- knows the main principles, methods and systems of computer science,
- can use this knowledge for applications in advanced computer science courses and other areas for situation-adequate problem solving,
- is capable of finding strategic and creative responses in the search for solutions to well defined, concrete, and abstract problems.

The student can deepen the learned concepts, methods, and systems of computer science in advanced computer science lectures.

Content
Module: Introduction to Operations Research [WI1OR]

Coordination: S. Nickel, O. Stein, K. Waldmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Operations Research

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550040</td>
<td>Introduction to Operations Research I (p. 142)</td>
<td>2/2/2</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel, O. Stein, K. Waldmann</td>
</tr>
<tr>
<td>2530043</td>
<td>Introduction to Operations Research II (p. 143)</td>
<td>2/2/2</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel, O. Stein, K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.
In each term (usually in March and July), one examination is held for both courses.
The overall grade of the module is the grade of the written examination.

Conditions
None.

Recommendations
Mathematics I und II. Programming knowledge for computing exercises.
It is strongly recommended to attend the course Introduction to Operations Research I [2550040] before attending the course Introduction to Operations Research II [2530043].

Learning Outcomes
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content
This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.
This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.
Module: Mass and Energy Balances for Reacting Systems [WI1ING1]

Coordination: P. Pfeifer, B. Kraushaar-Czarnetzki
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22130</td>
<td>Mass and Energy Balances for Reacting Systems (p. 338)</td>
<td>2/0</td>
<td>W</td>
<td>2.5</td>
<td>P. Pfeifer, B. Kraushaar-Czarnetzki</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out by a written exam about the lecture Mass and Energy Balances for Reacting Systems [22130] (according §4(2), 1 of the examination regulation). The overall grade of this module is the grade of the written exam.

Conditions
None.

Learning Outcomes
The student

- knows and understands integral mass and energy balances of simple systems in process engineering,
- can apply integral mass and balances on selected systems and processes.

Content
- Aim and approach
- Mass balance
- Water
- Nitrogen and ammonia
- Energy balance
- Natural gas
- Carbon dioxide
Module: Materials Science [WI1ING2]

Coordination: M. Hoffmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125760</td>
<td>Materials Science I (p. 363)</td>
<td>2/1</td>
<td>W</td>
<td>2,5</td>
<td>M. Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination (150 min) about the lecture *Material Science I* [2125760] (according to Section 4(2), 1 of the examination regulation). The assessment procedures of each course of this module is defined for each course separately.

The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.

The grade of the module corresponds to the grade of this examination.

Conditions
None.

Learning Outcomes
Students are able to specify the basics of materials science and engineering and can apply it to simple problems in various technical areas.

As major part of the module, the students know the correlation between atomic structure and bonding of solids and the macroscopic properties such as mechanical behavior or electrical conductivity. They have basic knowledge with respect to materials characterization. The students are able to analyze phase diagrams with up to two components and can derive simple correlations among composition, processing, microstructure evolution and materials properties.

Content
After an introduction to the atomic structure and interatomic bonding, elementary concepts of crystallography are given. Different types of crystal structures are explained and various types of imperfections in solids. Then, the mechanical behaviour and the physical properties of various types of materials (metals, polymers, ceramics) are discussed. The thermodynamic principles of solidification and the basic types of phase diagrams are given to understand to iron-carbon phase diagram and the manifold microstructures of steel and cast iron.
Module: Engineering Mechanics [WI1ING3]

Coordination: C. Proppe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161208</td>
<td>Engineering Mechanics I (p. 344)</td>
<td>1/0.5</td>
<td>W</td>
<td>2.5</td>
<td>C. Proppe</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the module is carried out by a written examination about the lecture Engineering Mechanics [2161208] (according to Section 4(2), 1 of the examination regulation). The assessment procedures of each course of this module is defined for each course separately.

The overall grade of the module is the grade of the written examination.

Conditions
None.

Learning Outcomes

The student

- knows and understands the basic elements of statics,
- is able to solve basic problems in statics independently.

Content

Statics: force • moment • general equilibrium conditions • center of gravity • inner forces in structure • plane frameworks • adhesion
Module: Electrical Engineering [WI1NG4]

Coordination: W. Menesklou
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23223</td>
<td>Electrical Engineering I (p. 152)</td>
<td>2/2</td>
<td>W</td>
<td>2.5</td>
<td>W. Menesklou</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is carried out by a written examination about the lecture Electrical Engineering I [23223] (according to Section 4(2), 1 of the examination regulation). The assessment procedures of each course of this module is defined for each course separately. The grade of the module corresponds to the grade of this examination.

Conditions
None.

Learning Outcomes
The student knows and understands basic terms of electrical engineering and should be able to carry out simple calculations of DC and AC circuits.

Content
Supporting the lecture, assignments to the curriculum are distributed. These are solved into additional (voluntary) tutorials.
Module: Mathematics [WI1MATH]

Coordination: G. Last
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Every 2nd term, Winter Term</td>
<td>3</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01350</td>
<td>Mathematics I (p. 226)</td>
<td>4/2/2</td>
<td>W</td>
<td>7</td>
<td>G. Last, M. Folkers, D. Hug, S. Winter</td>
</tr>
<tr>
<td>01830</td>
<td>Mathematics II (p. 227)</td>
<td>4/2/2</td>
<td>S</td>
<td>7</td>
<td>G. Last, M. Folkers, D. Hug, S. Winter</td>
</tr>
<tr>
<td>01352</td>
<td>Mathematics III (p. 228)</td>
<td>4/2/2</td>
<td>W</td>
<td>7</td>
<td>G. Last, M. Folkers, D. Hug, S. Winter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module.
The overall grade of the module is the average of the grades for each course truncated after the first decimal.
The assessment procedures of each course of this module is defined for each course separately.

Conditions
The admission to the examinations carried out regardless of the evidence of the other examinations in the module.

Recommendations
It is strongly recommended to attend the courses in the following sequence: Mathematics I [01350], Mathematics II [01830] Mathematics III [01352]

Learning Outcomes

Content
Module: Statistics [WI1STAT]

Cooperation: W. Heller

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Statistics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600008</td>
<td>Statistics I (p. 333)</td>
<td>4/0/2</td>
<td>S</td>
<td>5</td>
<td>W. Heller</td>
</tr>
<tr>
<td>2600020</td>
<td>Statistics II (p. 334)</td>
<td>4/0/2</td>
<td>W</td>
<td>5</td>
<td>W. Heller</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II).

The overall grade of the module is the average of the grades of these two written examinations.

Conditions

Notice: The lecture Statistics I [25008/25009] is part of the preliminary examination concerning Section 8(1) of the examination regulation. This examination must be passed until the end of the examination period of the second semester. Any Re-examinations has to be passed until the end of the examination period of the third semester. Otherwise the examination claim will be lost.

Recommendations

To some extend knowledge of the content of the module Mathematics [WW1MATH/WI1MATH] is assumed. Therefore it is recommended to attend the course Mathematics I [01350] before attending the module Statistics [WI1STAT].

It ist recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021].

Each course is complemented by an exercise, a tutorium and a computing laboratory. It highly recommended to attend these too.

Learning Outcomes

See German version.

Content

The module contains the fundamental methods and scopes of Statistics.

A. Descriptive Statistics: univariate und bivariate analysis

B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, convolution and limit distributions

C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, theory of tests (optimality, most important examples of tests)
6 Modules (Specialization)

6.1 Business Administration

Module: Strategy and Organization [WI3BWLUO1]

Coordination: H. Lindstädt
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2577900</td>
<td>Management and Strategy (p. 350)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577902</td>
<td>Managing Organizations (p. 247)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577907</td>
<td>Special Topics in Management: Management and IT (p. 328)</td>
<td>1/0</td>
<td>W/S</td>
<td>2</td>
<td>H. Lindstädt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Business Administration [WI1BWL1]. For exceptions see remarks below.

Learning Outcomes
Content
Remarks
See German version.
Module: Management Accounting [WI3BWLIBU1]

Coordination: M. Wouters
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2579900</td>
<td>Management Accounting 1</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>M. Wouters</td>
</tr>
<tr>
<td>2579902</td>
<td>Management Accounting 2</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>M. Wouters</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

The examination “Business Administration: Finance and Accounting” must have been completed before starting this course.

Learning Outcomes

Students have knowledge about various management accounting techniques through study of literature and practice.

Content

The module consists of two courses “Management Accounting 1” and “Management Accounting 2”. The emphasis is on structured learning of management accounting techniques.

Remarks

Students who like this module are probably also interested in the courses

- 2530216 Financial Management
- 2530210 Management Accounting
Module: Industrial Production I [WI3BWL1IP]

Coordination: F. Schultmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581950</td>
<td>Fundamentals of Production Management (p. 188)</td>
<td>2/2</td>
<td>S</td>
<td>5,5</td>
<td>F. Schultmann</td>
</tr>
<tr>
<td>2581960</td>
<td>Production Economics and Sustainability (p. 256)</td>
<td>2/0</td>
<td>W</td>
<td>3,5</td>
<td>M. Fröhling</td>
</tr>
<tr>
<td>2581996</td>
<td>Logistics and Supply Chain Management (p. 215)</td>
<td>2/0</td>
<td>W</td>
<td>3,5</td>
<td>F. Schultmann</td>
</tr>
<tr>
<td>2581993</td>
<td>Risk Management in Industrial Planning and Decision-Making (p. 274)</td>
<td>2/0</td>
<td>S</td>
<td>3,5</td>
<td>F. Schultmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course “Fundamentals of Production Management” [2581950] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Specific precondition for “Industrial Engineering and Management” (B.Sc.) and “Economics Engineering” (B.Sc.): Successful passing of the module “Business Administration” [WI1BWL1]. For exceptions see remarks below. The course “Fundamentals of Production Management” [2581950] and one additional activity have to be chosen.

Recommendations
All courses are specifically designed to be taken independently. Bearing in mind the master programme, we recommend combining this module with “Industrial Production II” [WW4BWL1IP2] and/or “Industrial Production III” [WW4BWL1IP6].

Learning Outcomes
• Students shall be aware of the important role of industrial production and logistics for production management.
• Students shall use relevant concepts of production management and logistics in an adequate manner.
• Students shall be able to reflect on decision principles in firms and their circumstances in the light of the production management aspects studied.
• Students shall be proficient in describing essential tasks, difficulties and solutions to problems in production management and logistics.
• Students shall be able to describe relevant approaches of modeling production and logistic systems.
• Students shall be aware of the important role of material and energy-flows in production systems.
• Students shall be proficient in using exemplary methods for solving selected problems.

Content
This module is designed to introduce students into the wide area of industrial production and logistics management. It focuses on strategic production management under the aspect of sustainability. The courses use interdisciplinary approaches of systems, also theory to describe the central tasks of industrial production management and logistics. Herein, attention is drawn upon strategic corporate planning, research and development as well as site selection. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Remarks
See German version.
Module: Energy Economics [WI3BWL1IP2]

Coordination: W. Fichtner

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Business Administration

<table>
<thead>
<tr>
<th>Courses in module</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581010 Introduction to Energy Economics (p. 144)</td>
<td>2/2</td>
<td>S</td>
<td>5.5</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>2581012 Renewable Energy – Resources, Technology and Economics (p. 273)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>R. McKenna</td>
</tr>
<tr>
<td>2581005 Corporate Governance in Energy Economics (p. 349)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>H. Villis</td>
</tr>
<tr>
<td>2581959 Energy Policy (p. 157)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>M. Wietschel</td>
</tr>
</tbody>
</table>

ECTS Credits: 9

Cycle: Every term

Duration: 1

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture *Introduction into Energy Economics* [2581010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful completion of the module *Business Administration* [WI1BWL1].

For exceptions see remarks below.

The lecture *Introduction into Energy Economics* [2581010] has to be examined.

Recommendations

The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Learning Outcomes

The student

- is able to understand interdependencies in energy economics and to evaluate ecological impacts in energy supply,
- is able to assess the different energy carriers and their characteristics,
- knows the energy political framework conditions,
- gains knowledge about new market-based conditions and the cost and potentials of renewable energies in particular.

Content

Introduction to Energy Economics: Characterisation (reserves, suppliers, cost, technologies) of different energy carriers (coal, gas, oil, electricity, heat etc.)

Renewable Energy - Resources, Technology and Economics: Characterisation of different renewable energy carriers (wind, solar, hydro, geothermal etc.)

Corporate Governance in Energy Economics: Challenges of the management of a large company in energy economics (superior leadership role, structures, processes and projects from a leadership perspective etc.)

Energy Policy: Management of energy flows, energy-political targets and instruments (emission trading etc.)

Remarks

See German version.
Module: Essentials of Finance [WI3BWLFBV1]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530575</td>
<td>Investments (p. 208)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530216</td>
<td>Financial Management (p. 171)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful completion of the module Business Administration [WI1BWL1].

Learning Outcomes

The student

- has fundamental skills in modern finance
- has fundamental skills to support investment decisions on stock, bond and derivative markets
- applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Content

The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.
Module: Risk and Insurance Management [WI3BWLFBV3]

Coordination: U. Werner
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550055</td>
<td>Principles of Insurance Management (p. 254)</td>
<td>3/0</td>
<td>S</td>
<td>4,5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>2530326</td>
<td>Enterprise Risk Management (p. 158)</td>
<td>3/0</td>
<td>W</td>
<td>4,5</td>
<td>U. Werner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The lectures are examined by oral presentations and related term papers in the context of the lectures. Furthermore, there is a final oral examination.

The grade of each examination consists of the oral presentation and the term paper (50 percent) and the oral examination (50 percent). The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Business Administration [WI1BW1].

Learning Outcomes
See German version.

Content
See German version.
Module: Topics in Finance I [WI3BWLFBV5]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530210</td>
<td>Cost and Management Accounting (p. 207)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>2530232</td>
<td>Financial Intermediation (p. 172)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 138)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 131)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530299</td>
<td>Business Strategies of Banks (p. 178)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 206)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 141)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2561129</td>
<td>Specific Aspects in Taxation (p. 330)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, Armin Bader</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful completion of the module *Business Administration* [WI1BWL1].

It is only possible to choose this module in combination with the module *Essentials in Finance* [WI3BWLFBV1]. The module is passed only after the final partial exam of *Essentials in Finance* is additionally passed.

In addition to that it is possible to choose the module *Topics in Finance II* [WI3BWLFBV6].

Learning Outcomes

The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content

The module *Topics in Finance I* is based on the module *Essentials of Finance*. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.
Module: Topics in Finance II [WI3BWLFBV6]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

ECTS Credits
Every term
Duration

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530210</td>
<td>Cost and Management Accounting (p. 207)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>2530232</td>
<td>Financial Intermediation (p. 172)</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 138)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 131)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530299</td>
<td>Business Strategies of Banks (p. 178)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 206)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 141)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2561129</td>
<td>Specific Aspects in Taxation (p. 330)</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>B. Wigger, Armin Bader</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful completion of the module **Business Administration [WI1BWL1]**.

It is only possible to choose this module in combination with the module **Essentials in Finance [WI3BWLFBV1]**. The module is passed only after the final partial exam of **Essentials in Finance** is additionally passed.

In addition to that it is possible to choose the module **Topics in Finance I [WI3BWLFBV5]**.

Learning Outcomes

The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content

Remarks

The module **Topics in Finance II** is based on the module **Essentials of Finance**. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.
Module: eBusiness and Service Management [WI3BWLISM1]

Coordination: C. Weinhardt
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

ECTS Credits 9
Cycle Every term
Duration 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2595466</td>
<td>eServices (p. 160)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Weinhardt, H. Fromm, J. Kunze von Bischhoffshausen</td>
</tr>
<tr>
<td>2590452</td>
<td>Management of Business Networks (p. 219)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 141)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2540498</td>
<td>Special Topics in Information Engineering & Management (p. 326)</td>
<td>3</td>
<td>W/S</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Business Administration [WI1BWL1].

Learning Outcomes
The students
- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Content
This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle. The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented. The lecture is complemented by exercise courses.

The courses “Management of Business Networks”, “eFinance: Information engineering and management in finance” and “eServices” constitute three different application domains in which the basic principles of the Internet Economy are deepened.

The course “Management of Business Networks” the focus is set on the strategic aspects of management and information systems. It is held in English and teaches parts of the syllabus with the support of a case study elaborated with Lecturers from Concordia University, Montreal, or if applicable, Rotterdam School of Management. Thus the matter of strategic enterprise networks, a.k.a. smart business networks is also analysed by employing an international perspective.

The course “eFinance: information engineering and management for securities trading” provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.

In “eServices” the increasing impact of electronic services compared to the traditional services is outlined. The Information- und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality.

This course provides basic knowledge about the development and management of ICT-based services.

The theoretic fundamentals of Information Engineering and Management can be enriched by a practical experience in Special Topics in Information Engineering and Management. Any practical Seminar at the IM can be chosen for the course Special Topics in Information Engineering and Management.
Remarks
All practical Seminars offered at the IM can be chosen for *Special Topics in Information Engineering & Management*. Please update yourself on www.iism.kit.edu/im/lehre
Module: Supply Chain Management [WI3BWLISM2]

Coordination: S. Nickel
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Courses in module</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2590452</td>
<td>Management of Business Networks (p. 219)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2540496</td>
<td>Management of Business Networks (Introduction) (p. 220)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 331)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2118078</td>
<td>Logistics - Organisation, Design, and Control of Logistic Systems (p. 212)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
<td>K. Furmans</td>
</tr>
<tr>
<td>2118090</td>
<td>Quantitative Methods for Supply Chain Risk Management (p. 267)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>A. Cardeneo</td>
</tr>
<tr>
<td>2550488</td>
<td>Tactical and Operational Supply Chain Management (p. 343)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
At least one of the courses Management of Business Networks [2590452] and Management of Business Networks (Introduction) [2540496] has to be taken.
This module can only be taken as elective subject according to §17, Abs. 3.7 SPO.

Recommendations
It is recommended that exactly one out of the lectures
- Management of Business Networks
- Management of Business Networks (Introduction)
is taken.

Learning Outcomes
The students
- are able to understand and evaluate the control of cross-company supply chains based on a strategic and operative view,
- are able to analyse the coordination problems within the supply chains,
- are able to identify and integrate adequate information system infrastructures to support the supply chains,
- are able to apply theoretical methods from the operations research and the information management,
- learn to elaborate solutions in a team

Content
The module “Supply Chain Management” gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture “Management of Business Networks” the focus is set on the strategic aspects of management and information systems. The course is held in English and teaches parts of the syllabus with the support of a case study elaborated with Prof Kersten from Concordia University, Montreal, Canada. The course MBN
introduction is consisting out of the first part of the regular MBN lecture, but as it has less credits will not include the analysis of the case study.
The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Remarks
The planned lectures in the next terms can be found on the websites of the respective institutes IISM, IFL and IOR.
Module: eFinance [WI3BWLISM3]

Coordination: C. Weinhardt
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 141)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2511402</td>
<td>Intelligent Systems in Finance (p. 204)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>D. Seese</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 138)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 131)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 206)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful completion of the module Business Administration [WI1BWL1].
The course eFinance: Information Engineering and Management for Securities Trading [2540454] is compulsory and must be examined.

Learning Outcomes

The students

- are able to understand and analyse the value creation chain in stock broking,
- are able to adequately identify, design and use methods and systems to solve problems in finance,
- are able to evaluate and criticize investment decisions by traders,
- are able to apply theoretical methods of econometrics,
- learn to elaborate solutions in a team.

Content

The module “eFinance: Information engineering and management in finance” addresses current problems in the finance sector. It is investigated the role of information and knowledge in the finance sector and how information systems can solve or extenuate them. Speakers from practice will contribute to lectures with their broad knowledge. Core courses of the module deal with the background of banks and insurance companies and the electronic commerce of stocks in global finance markets. In addition the course Derivatives offers an insight into future and forward contracts as well as the assessment of options. Exchanges and International Finance are also alternatives which provide a supplementary understanding for capital markets.

Information management topics are in the focus of the lecture “eFinance: information engineering and management for securities trading”. For the functioning of the international finance markets, it is necessary that there is an efficient information flow. Also, the regulatory frameworks play an important role. In this context, the role and the functioning of (electronic) stock markets, online brokers and other finance intermediaries and their platforms are presented. Not only IT concepts of German finance intermediaries are presented, but also international system approaches will be compared. The lecture is supplemented by speakers from the practice (and excursions, if possible) coming from the Deutsche Börse and the Stuttgart Stock Exchange.

Remarks

The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.iism.kit.edu/im/lehre
Module: CRM and Service Management [WI3BWLISM4]

Coordination: A. Geyer-Schulz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540508</td>
<td>Customer Relationship Management (p. 135)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>2540522</td>
<td>Analytical CRM (p. 101)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>2540520</td>
<td>Operative CRM (p. 244)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Thereby every lecture is examined by a written exam (according to Section 4(2), 1 of the examination regulation) and by successful completion of exercises (according to Section 4 (2), 3 of the examination regulation). The grades of the individual lectures consists of the grade of the written exam (approximately 90 percent resp. 100 of 112 points) and of the exercise performance (approximately 10 percent resp. 12 of 112 points). In the case of passing the written exam (50 points) the points of the exercise performance will be added to the points of the written exam. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Business Administration [WI1BWL1].

Learning Outcomes
The student

• understands service management as the managerial foundation of customer relationship management and the resulting implications for strategic management, the organisational structure, and the functional areas of the company,
• develops and designs service concepts and service systems on a conceptual level,
• works in teams on case studies and respects project dates, integrates international literature of the discipline,
• knows the current developments in CRM in science as well as in industry,
• knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
• designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, ...).

Content
In the module CRM and Service Management [WI3BWLISM4] we teach the principles of modern customer-oriented management and its support by system architectures and CRM software packages. Choosing customer relationship management as a company’s strategy requires service management and a strict implementation of service management in all parts of the company. For operative CRM we present the design of customer-oriented, IT-supported business processes based on business process modelling and we explain these processes in concrete application scenarios (e.g. marketing campaign management, call center management, sales force management, field services, ...). Analytic CRM is dedicated to improve the use of knowledge about customers in the broadest sense for decision-making (e.g. product-mix decisions, bonus programs based on customer loyalty, ...) and for the improvement of services. A requirement for this is the tight integration of operative systems with a data warehouse, the development of customer-oriented and flexible reporting systems, and – last but not least – the application of statistical methods (clustering, regression, stochastic models, ...).

Remarks
The lecture Customer Relationship Management [2540508] is given in English.
Module: Specialization in Customer Relationship Management [WI3BWLISM5]

Coordination: A. Geyer-Schulz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

ECTS Credits: 9 Cycle: Every term Duration: 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540522</td>
<td>Analytical CRM (p. 101)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>2540520</td>
<td>Operative CRM (p. 244)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26240</td>
<td>Competition in Networks (p. 367)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>K. Mitusch</td>
</tr>
<tr>
<td>2595466</td>
<td>eServices (p. 160)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Weinhardt, H. Fromm, J. Kunze von Bischoffshausen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

- Successful completion of the module Business Administration [WI1BWL1] is required.
- It is only possible to choose this module in combination with the module CRM and Servicemanagement [WI3BWLISM4]. The module is passed only after the final partial exam of CRM and Servicemanagement is additionally passed.
- At least, one of the courses Analytic CRM [2540522] and Operative CRM [2540520] has to be taken.

Learning Outcomes

The student

- knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
- gains an overview of the market for CRM software,
- designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, . . .),
- is aware of the problems of protecting the privacy of customers and the implications of privacy law.

Content

In this module, analysis methods and techniques for the management and improvement of customer relations are presented. Furthermore, modelling, implementation, introduction, change, analysis and valuation of operative CRM processes are treated. Regarding the first part, we teach analysis methods and techniques suitable for the management and improvement of customer relations. For this goal we treat the principles of customer- and service-oriented management as the foundation of successful customer relationship management. In addition, we show how knowledge of the customer can be used for decision-making at an aggregate level (e.g. planning of sortiments, analysis of customer loyalty, . . .). A basic requirement for this is the integration and collection of data from operative processes in a suitably defined data-warehouse in which all relevant data is kept for future analysis. The process of transferring data from the operative systems into the data warehouse is known as the ETL process (Extraction / Translation / Loading). The process of modelling a data-warehouse as well as the so-called extraction, translation, and loading process for building and maintaining a data-warehouse are discussed in-depth. The data-warehouse serves as a base for flexible management reporting. In addition, various statistic methods (e.g. cluster analysis, regression analysis, stochastic models, . . .) are presented which help in computing suitable key performance indicators or which support decision-making.

Regarding the operative part, we emphasize the design of operative CRM processes. This includes the modelling, implementation, introduction and change, as well as the analysis and evaluation of operative CRM processes. Petri nets and their extensions are the scientific foundation of process modelling. The link of Petri nets to process models used in industry as e.g. UML activity
diagrams is presented. In addition, a framework for process innovation which aims at a radical improvement of key business processes is introduced. The following application areas of operative CRM processes are presented and discussed:

- Strategic marketing processes
- Operative marketing processes (campaign management, permission marketing, . . .)
- Customer service processes (sales force management, field services, call center management, . . .)
Module: Design, Construction and Sustainability Assessment of Buildings [WI3BWLOOW1]

Coordination: T. Lützkendorf
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26404w</td>
<td>Design and Construction of Buildings (p. 118)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
<tr>
<td>2585404/2586404</td>
<td>Sustainability Assessment of Buildings (p. 119)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Business Administration [WI1BW1].

Recommendations
The combination with the module Real Estate Management [WI3BWLOOW2] is recommended. Furthermore a combination with courses in the area of
- Industrial production (energy flow in the economy, energy politics, emissions)
- Civil engineering and architecture (building physics, building construction)
is recommended.

Learning Outcomes
The student
- knows the basics of sustainable design, construction and operation of buildings with an emphasis on building ecology
- has knowledge of building ecology assessment procedures and tools for design and assessment
- is capable of applying this knowledge to assessing the ecological advantageousness of buildings as well as their contribution to a sustainable development.

Content
Sustainable design, construction and operation of buildings currently are predominant topics of the real estate sector, as well as “green buildings”. Not only designers and civil engineers, but also other actors who are concerned with project development, financing and insurance of buildings or portfolio management are interested in these topics. On the one hand the courses included in this module cover the basics of energy-efficient, resource-saving and health-supporting design and construction of buildings. On the other hand fundamental assessment procedures for analysing and communicating the ecological advantageousness of technical solutions are discussed. With the basics of green building certification systems the lectures provide presently strongly demanded knowledge. Additionally, videos and simulation tools are used for providing a better understanding of the content of teaching.
Module: Real Estate Management [WI3BWLOOW2]

Coordination: T. Lützkendorf
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26400w</td>
<td>Real Estate Management I (p. 269)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
<tr>
<td>2585400/2586400</td>
<td>Real Estate Management II (p. 270)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Business Administration [WI1BWL1].

Recommendations
The combination with the module Design Constructions and Assessment of Green Buildings [WI3BWLOOW1] is recommended. Furthermore a combination with courses in the area of
- Finance
- Insurance
- Civil engineering and architecture (building physics, building construction, facility management)
is recommended.

Learning Outcomes
The student
- possesses an overview concerning the different facets and interrelationships within the real estate business, the important decision points in real estate lifecycle and the different views and interests of the actors concerned, and
- is capable of applying basic economic methods and procedures to problems within the real estate area.

Content
The real estate business offers graduates very interesting jobs and excellent work- and advancement possibilities. This module provides an insight into the macroeconomic importance of this industry, discusses problems concerned to the administration of real estate and housing companies and provides basic knowledge for making decisions both along the lifecycle of a single building and the management of real estate portfolios. Innovative operating and financing models are illustrated, as well as the current development when looking at real estate as an asset-class.

This module is also suitable for students who want to discuss macroeconomic, business-management or financial problems in a real estate context.
Module: Foundations of Marketing [WI3BWLMAR]

Coordination: M. Klarmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2572177</td>
<td>Brand Management (p. 221)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>2571152</td>
<td>Managing the Marketing Mix (p. 223)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Klarmann</td>
</tr>
<tr>
<td>2572158</td>
<td>Services Marketing and B2B Marketing (p. 139)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Klarmann</td>
</tr>
<tr>
<td>2572155</td>
<td>International Marketing (p. 205)</td>
<td>1</td>
<td>W</td>
<td>1,5</td>
<td>M. Klarmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

The course Marketing Mix is compulsory and must be examined.

Learning Outcomes

Content

The aim of this module is to prepare the students properly for tasks in marketing or sales departments. Technical oriented companies for instance choose engineers because of their technical knowledge and understanding for these departments.

The core course of the module is “Marketing Mix”. This course is compulsory and must be examined. “Marketing Mix” contains instruments and methods that enable you to goal-oriented decisions in the operative marketing management (product management, pricing, promotion and sales management).

To deepen the marketing knowledge students can complete the module in two ways:

- by choosing the course “Brand Management”.
- by choosing the combination of the courses “Services- and B2B-Marketing” and “International Marketing”.

Remarks

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Module: Management of public- and private-sector organizations [WI3BWLIWW1]

Coordination: B. Wigger, N. Edwards
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Business Administration

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2577902</td>
<td>Managing Organizations (p. 247)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2560132</td>
<td>Introduction to Public Management (p. 149)</td>
<td>2</td>
<td>S</td>
<td>2</td>
<td>B. Wigger, N. Edwards</td>
</tr>
<tr>
<td>2560133</td>
<td>Case Studies in Public Management (p. 166)</td>
<td>1</td>
<td>S</td>
<td>3</td>
<td>B. Wigger, N. Edwards</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) for each individual course in this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade for the module is calculated as weighted average of the individual grades for all courses. Individual course grades are weighted according to the number of credits (LPs) for that course. The final grade is then rounded-off to the first decimal place.

Conditions
Each course in this module is a compulsory element of the entire module; therefore, a passing grade in each course is required in order to receive credit for completion of the module.
Both the lecture „Introduction to Public Management“ and the course „Case Studies in Public Management“ must be taken at the same time.

Recommendations
A good proficiency in the English language (written and oral).

Learning Outcomes
The aim of the module is to provide students with a comprehensive understanding of management in private and public sector organizations, as well as in the provision of public services. Topics covered in the module include the following: strategic management; marketing; financial management; contracting for public service provision; information and communication technologies; human resource management; performance, quality and process management; change management; internal control of organizational processes; auditing and controlling; and, ideal-typical organizational forms.
In addition to the two lectures, the module includes a third course, “Case Studies in Public Management”, in which student achievement of learning goals is realized by the use of case studies. This course utilizes a problem-based learning (PBL) format, which offers students the opportunity to apply knowledge acquired both in the accompanying lectures as well as through independent research, in solving contemporary problems in public management. Students actively participate in the course and contribute to the overall learning experience.
Please also refer to the learning goals related to the individual courses in the module.

Content
Topics covered in the module include, but are not limited to, the following: Strategic management; marketing; financial management; contracting for public service provision; information and communication technologies; human resource management; performance, quality and process management; change management; internal control of organizational processes; auditing and controlling; and, ideal-typical organizational forms.
6.2 Economics

Module: Microeconomic Theory [WI3VWL6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520527</td>
<td>Advanced Topics in Economic Theory (p. 99)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Hillebrand, K. Mitasch</td>
</tr>
<tr>
<td>2520517</td>
<td>Welfare Economics (p. 370)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>2520525</td>
<td>Introduction to Game Theory (p. 146)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Puppe, P. Reiss</td>
</tr>
<tr>
<td>26240</td>
<td>Competition in Networks (p. 367)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>K. Mitasch</td>
</tr>
<tr>
<td>2560238</td>
<td>Industrial Organization (p. 200)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>P. Reiss</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Economics [WW1VWL].

Learning Outcomes
Content
Module: Macroeconomic Theory [WI3VWL8]

Coordination: M. Hillebrand
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520543</td>
<td>Theory of Economic Growth (p. 347)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles (p. 346)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
<tr>
<td>2561503</td>
<td>Theory of endogenous growth (p. 155)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>I. Ott</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Economics [WW1VWL].

Recommendations
Grundlegende mikro- und makroökonomische Kenntnisse, wie sie beispielsweise in den Veranstaltungen Volkswirtschaftslehre I (Mikroökonomie) [2600012] und Volkswirtschaftslehre II (Makroökonomie) [2600014] vermittelt werden, werden vorausgesetzt. Aufgrund der inhaltlichen Ausrichtung der Veranstaltung wird ein Interesse an quantitativ-mathematischer Modellierung vorausgesetzt.

Learning Outcomes

Content
Module: Public Finance [WI3VWL9]

Coordination: B. Wigger
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2560120</td>
<td>Public Revenues (p. 241)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>B. Wigger, Assistenten</td>
</tr>
<tr>
<td>2561129</td>
<td>Specific Aspects in Taxation (p. 330)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, Armin Bader</td>
</tr>
<tr>
<td>2561126</td>
<td>Monetary and Financial Policy (p. 175)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, J. Nagel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the module Economics [WW1VWL].

Recommendations
It is recommended to attend the course Spezielle Steuerlehre [2561129] after having completed the course Öffentliche Einnahmen [2560120].

Learning Outcomes

Content
As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs. Special fields of Public Finance are public revenues, i.e. taxes and public debt, public expenditures for publicly provided goods, and welfare programs.
Module: Economic Policy I [WI3VWL10]

Coordination: I. Ott
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

ECTS Credits: 9

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2561252</td>
<td>International Economics (p. 112)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>J. Kowalski</td>
</tr>
<tr>
<td>26240</td>
<td>Competition in Networks (p. 367)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>K. Mitusch</td>
</tr>
<tr>
<td>2560280</td>
<td>Basic Principles of Economic Policy (p. 147)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>I. Ott</td>
</tr>
<tr>
<td>2560120</td>
<td>Public Revenues (p. 241)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>B. Wigger, Assistenten</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The course “Basic Principles of Economic Policy” is compulsory and must be examined.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014].

Learning Outcomes
Students shall be given the ability to
- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Content
- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Remarks
The module is added in SS 2011 and replaces the module International Economics [WW3VWL3].
The lecture International Economics will be held until winter 2012/13. Examinations are offered until winter 2013/14.
Module: Introduction to Public Finance and Public Management [WI3VWL11]

Coordination: B. Wigger, N. Edwards
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2560131</td>
<td>Introduction to Public Finance (p. 145)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>B. Wigger</td>
</tr>
<tr>
<td>2560132</td>
<td>Introduction to Public Management (p. 149)</td>
<td>2</td>
<td>S</td>
<td>2</td>
<td>B. Wigger, N. Edwards</td>
</tr>
<tr>
<td>2560133</td>
<td>Case Studies in Public Management (p. 166)</td>
<td>1</td>
<td>S</td>
<td>3</td>
<td>B. Wigger, N. Edwards</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The final grade for the module is determined by means of a written exam and the grades on the other assignments. The written exam encompasses all material covered in the individual courses included in this module. The exam is offered every summer semester. The ratio of the final grade for the courses is as follows: 55% written final exam and 45% other assignments (both written and oral).

A re-sit exam (written exam) will be offered during the first week of the following winter semester, for which participation is obligatory for all students who failed the exam on their first attempt. Only students who took the first exam will be allowed to participate in the re-sit exam. Only in exceptional circumstances may the re-sit exam be taken as an oral exam rather than as a written exam.

Conditions

Each course in this module is a compulsory element of the entire module. Both the lecture „Introduction to Public Management“ and the course „Case Studies in Public Management“ must be taken at the same time.

Recommendations

A good proficiency in the English language (written and spoken).

Learning Outcomes

The module Introduction to Public Finance and Public Management is comprised of three courses, Introduction to Public Finance, Introduction to Public Management, and Case Studies in Public Management. This multidisciplinary module aims to provide students with an understanding of the complexities surrounding the economic role of the state in a market economy. While the course Introduction to Public Finance deals with issues such as the determination of the appropriate size and scope of the state as economic actor, the course Introduction to Public Management then looks at the management of the public sector organizations that are tasked with executing the resulting government programs. There are numerous topics on which the two courses overlap and converge, with the result that students are able to analyze single issues by applying theory from several disciplines; namely, economics, management and organization studies. Finally, the course Case Studies in Public Management offers students the opportunity to evaluate and synthesize the material learned in the lecture courses and then apply it in solving contemporary problems in public sector management and governance.

Please also refer to the learning goals related to the individual courses in the module.

Content

Topics covered in the module include, but are not limited to, the following: welfare economics; public choice theory; market failure; collective action problems; Weber’s theory of bureaucracy; the influence of politics on the management of public sector organizations; strategic management and marketing in public sector organizations; modes of public service provision; human resource management in public sector organizations; and performance, quality and process management in public sector organizations.
Module: Economic Theory [WI3VWL12]

Coordination: C. Puppe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

ECTS Credits: 9
Cycle: Every term
Duration: 2

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520525</td>
<td>Introduction to Game Theory (p. 146)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe, P. Reiss</td>
</tr>
<tr>
<td>2520517</td>
<td>Welfare Economics (p. 370)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>2560238</td>
<td>Industrial Organization (p. 200)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>P. Reiss</td>
</tr>
<tr>
<td>2520527</td>
<td>Advanced Topics in Economic Theory</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Hillebrand, K. Mitusch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Learning Outcomes
Content
Module: Applied Microeconomics [WI3VWL13]

Coordination: P. Reiss
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520525</td>
<td>Introduction to Game Theory (p. 146)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe, P. Reiss</td>
</tr>
<tr>
<td>2560238</td>
<td>Industrial Organization (p. 200)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>P. Reiss</td>
</tr>
<tr>
<td>26240</td>
<td>Competition in Networks (p. 367)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>K. Mitsch</td>
</tr>
<tr>
<td>2560120</td>
<td>Public Revenues (p. 241)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>B. Wigger, Assistenten</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
Completion of the module Economics [WW1VWL] is assumed.

Learning Outcomes

Students

- are introduced to the basic theoretical analysis of strategic interaction situations and shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings, (course „Introduction to Game Theory“);
- are exposed to the basic problems of imperfect competition and its implications for policy making; (course „Industrial Organization“);
- are provided with the basic economics of network industries (e.g., telecom, utilities, IT, and transport sectors) and should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion, and state intervention, (course „Competition in Networks“).

Content

The module’s purpose is to extend and foster skills in microeconomic theory by investigating a variety of applications. Students shall be able to analyze real-life problems using microeconomics.

Remarks

The course „Introduction into Game Theory“ was known as „Game Theory I“ earlier.
6.3 Informatics

Module: Emphasis Informatics [WI3INFO1]

Coordination: H. Schmeck, A. Oberweis, D. Seese, R. Studer, S. Tai

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511020</td>
<td>Advanced Programming - Java Network Programming (p. 258)</td>
<td>2/1/2</td>
<td>S</td>
<td>5</td>
<td>D. Seese, D. Ratz</td>
</tr>
<tr>
<td>2540886/2590886</td>
<td>Advanced Programming - Application of Business Software (p. 259)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis, S. Klink</td>
</tr>
<tr>
<td>2511030</td>
<td>Applied Informatics I - Modelling (p. 102)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis, R. Studer, S. Agarwal</td>
</tr>
<tr>
<td>2511032</td>
<td>Applied Informatics II - IT Systems for E-Commerce (p. 103)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>S. Tai</td>
</tr>
<tr>
<td>2511102</td>
<td>Algorithms for Internet Applications (p. 100)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>2511300</td>
<td>Knowledge Management (p. 369)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>R. Studer</td>
</tr>
<tr>
<td>2511400</td>
<td>Complexity Management (p. 134)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>D. Seese</td>
</tr>
<tr>
<td>2511206</td>
<td>Software Engineering (p. 322)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Oberweis, D. Seese</td>
</tr>
<tr>
<td>2511100</td>
<td>Efficient Algorithms (p. 140)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>2511500</td>
<td>Service Oriented Computing 1 (p. 317)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai</td>
</tr>
<tr>
<td>Platzhalter</td>
<td>Special Topics of Applied Informatics (p. 327)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>A. Oberweis, H. Schmeck, D. Seese, R. Studer, S. Tai</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

- Partial exam II: all the rest

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. When every single examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Either the course Advanced Programming - Java Network Programming [25889] or the course Advanced Programming - Application of Business Software [2540886/2590886] has to be attended. Only one of the two courses can be taken.

Learning Outcomes

The student

- has the capability of dealing with the practical application of the Java programming language (which is the dominating programming language in many application areas) or alternatively the ability to configure, parameterize and deploy enterprise software to enable, support and automate business processes,
- is familiar with methods and systems of a core topic or core application area of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.
Content
Module: Electives in Informatic [WI3INFO2]

Coordination: H. Schmeck, A. Oberweis, D. Seese, S. Tai, R. Studer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511030</td>
<td>Applied Informatics I - Modelling (p. 102)</td>
<td>2/1 W</td>
<td>5</td>
<td>A. Oberweis, R. Studer, S. Agarwal</td>
<td></td>
</tr>
<tr>
<td>2511032</td>
<td>Applied Informatics II - IT Systems for e-Commerce (p. 103)</td>
<td>2/1 S</td>
<td>5</td>
<td>S. Tai</td>
<td></td>
</tr>
<tr>
<td>2511102</td>
<td>Algorithms for Internet Applications (p. 100)</td>
<td>2/1 W</td>
<td>5</td>
<td>H. Schmeck</td>
<td></td>
</tr>
<tr>
<td>2511100</td>
<td>Efficient Algorithms (p. 140)</td>
<td>2/1 S</td>
<td>5</td>
<td>H. Schmeck</td>
<td></td>
</tr>
<tr>
<td>2511200</td>
<td>Database Systems (p. 137)</td>
<td>2/1 S</td>
<td>5</td>
<td>A. Oberweis, D. Sommer</td>
<td></td>
</tr>
<tr>
<td>2511400</td>
<td>Complexity Management (p. 134)</td>
<td>2/1 S</td>
<td>5</td>
<td>D. Seese</td>
<td></td>
</tr>
<tr>
<td>2511402</td>
<td>Intelligent Systems in Finance (p. 204)</td>
<td>2/1 S</td>
<td>5</td>
<td>D. Seese</td>
<td></td>
</tr>
<tr>
<td>2511206</td>
<td>Software Engineering (p. 322)</td>
<td>2/1 S</td>
<td>5</td>
<td>A. Oberweis, D. Seese</td>
<td></td>
</tr>
<tr>
<td>2511300</td>
<td>Knowledge Management (p. 369)</td>
<td>2/1 W</td>
<td>5</td>
<td>R. Studer</td>
<td></td>
</tr>
<tr>
<td>2511304</td>
<td>Semantic Web Technologies I (p. 286)</td>
<td>2/1 W</td>
<td>5</td>
<td>R. Studer, S. Rudolph, E. Simperl</td>
<td></td>
</tr>
<tr>
<td>2511500</td>
<td>Service Oriented Computing 1 (p. 317)</td>
<td>2/1 W</td>
<td>5</td>
<td>S. Tai</td>
<td></td>
</tr>
<tr>
<td>Platzhalter</td>
<td>Special Topics of Applied Informatics (p. 327)</td>
<td>2/1 W/S</td>
<td>5</td>
<td>A. Oberweis, H. Schmeck, D. Seese, R. Studer, S. Tai</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as two partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

None.

Learning Outcomes

The student

- knows and has mastered methods and systems for core topics and core application areas of computer science,
- can choose these methods and system situation adequately and can furthermore design and employ them for problem solving,
- is able to independently find strategic and creative answers in the finding of solutions to well defined, concrete, and abstract problems.

Content
6.4 Operations Research

Module: Applications of Operations Research [WI3OR5]

Coordination: S. Nickel
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Operations Research

<table>
<thead>
<tr>
<th>Courses in module</th>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 331)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td></td>
<td>2550488</td>
<td>Tactical and Operational Supply Chain Management (p. 343)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td></td>
<td>2550490</td>
<td>Software Laboratory: OR Models I (p. 323)</td>
<td>1/2</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td></td>
<td>2550134</td>
<td>Global Optimization I (p. 179)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td></td>
<td>2550662</td>
<td>Simulation I (p. 319)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4,5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

At least one of the courses Facility Location and strategic Supply Chain Management [2550486] and Tactical and operational Supply Chain Management [2550488] has to be taken.

Learning Outcomes

The student

- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of Supply Chain Management and their respective optimization problems,
- is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content

Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.

Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.
Remarks
The planned lectures and courses for the next three years are announced online.
Module: Methodical Foundations of OR [WI3OR6]

Coordination: O. Stein
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Operations Research

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550111</td>
<td>Nonlinear Optimization I (p. 239)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550113</td>
<td>Nonlinear Optimization II (p. 240)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550134</td>
<td>Global Optimization I (p. 179)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550136</td>
<td>Global Optimization II (p. 180)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 331)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550679</td>
<td>Markov Decision Models I (p. 336)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

At least one of the lectures Nonlinear Optimization I [2550111] and Global Optimization I [2550134] has to be examined.

Learning Outcomes

The student

- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.

Content

The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat approaches for global solutions.

Remarks

The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu).
For the lectures of Prof. Stein a grade of 30 % of the exercise course has to be fulfilled. The description of the particular lectures is more detailed.
Module: Stochastic Methods and Simulation [WI3OR7]

Coordination: K. Waldmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Operations Research

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550679</td>
<td>Markov Decision Models I (p. 336)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550682</td>
<td>Markov Decision Models II (p. 337)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550662</td>
<td>Simulation I (p. 319)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550665</td>
<td>Simulation II (p. 320)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550111</td>
<td>Nonlinear Optimization I (p. 239)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550488</td>
<td>Tactical and Operational Supply Chain Management (p. 343)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

At least one of the courses Markov Decision Models [2550679] or Simulation I [2550662] has to be attended.

Learning Outcomes

The student knows and understands stochastic relationships and has a competent knowledge in modelling, analyzing and optimizing stochastic systems in economics and engineering.

Content

Topics overview:

Markov Decision Models II: Queuing Systems, Stochastic Decision Processes

Simulation I: Generation of random numbers, Monte Carlo integration, Discrete event simulation, Discrete and continuous random variables, Statistical analysis of simulated data.

Simulation II: Variance reduction techniques, Simulation of stochastic processes, Case studies.

Remarks

The planned lectures and courses for the next two years are announced online (http://www.ior.kit.edu/).
6.5 Engineering Sciences

Module: Automotive Engineering [WI3INGMB5]

Coordination: F. Gauterin
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113805</td>
<td>Automotive Engineering I (p. 181)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>F. Gauterin, Unrau</td>
</tr>
<tr>
<td>2114835</td>
<td>Automotive Engineering II (p. 182)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>F. Gauterin, Unrau</td>
</tr>
<tr>
<td>2115817</td>
<td>Project Workshop-Automotive Engineering (p. 260)</td>
<td>3</td>
<td>W/S</td>
<td>4.5</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2113814</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies I (p. 192)</td>
<td>1</td>
<td>W</td>
<td>1.5</td>
<td>H. Bardehle</td>
</tr>
<tr>
<td>2114840</td>
<td>Fundamentals for Design of Motor-Vehicle Bodies II (p. 193)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>H. Bardehle</td>
</tr>
<tr>
<td>2114093</td>
<td>Fluid Power Systems (p. 173)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2114092</td>
<td>CAN-Bus Release Control (p. 132)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the engineering modules of the core programm.

Recommendations

Learning Outcomes
The student
- knows the most important components of a vehicle,
- knows and understands the functioning and the interaction of the individual components,
- knows the basics of dimensioning the components.

Content
See course descriptions.
Module: Handling Characteristics of Motor Vehicles [WINGMB6]

Coordination: F. Gauterin
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course Description</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113806</td>
<td>Vehicle Comfort and Acoustics I</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2114825</td>
<td>Vehicle Comfort and Acoustics II</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2113807</td>
<td>Handling Characteristics of Motor Vehicles I (p. 161)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Unrau</td>
</tr>
<tr>
<td>2114838</td>
<td>Handling Characteristics of Motor Vehicles II (p. 162)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Unrau</td>
</tr>
<tr>
<td>2115817</td>
<td>Project Workshop-Automotive Engineer (p. 260)</td>
<td>3</td>
<td>W/S</td>
<td>4.5</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2113816</td>
<td>Vehicle Mechatronics I (p. 163)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>D. Ammon</td>
</tr>
<tr>
<td>2114850</td>
<td>Global vehicle evaluation within virtual road test (p. 177)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>B. Schick</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the engineering modules of the core program.

Recommendations

Learning Outcomes
The student
- knows and understands the characteristics of vehicles, owing to the construction and design tokens,
- knows and understands especially the factors being relevant for comfort and acoustics
- is capable of fundamentally evaluating and rating handling characteristics.

Content
See courses.
Module: Emphasis in Fundamentals of Engineering [WI3INGMB8]

Coordination: M. Hoffmann

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2162226</td>
<td>Engineering Mechanics II (p. 345)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Proppe</td>
</tr>
<tr>
<td>23224</td>
<td>Electrical Engineering II (p. 153)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>W. Menesklou</td>
</tr>
<tr>
<td>2126782</td>
<td>Materials Science II for Business Engineers (p. 364)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>M. Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is removed from the average of the partial examinations, with at least two partial exams need to be.

Conditions

The corresponding course of the fundamental studies to each course in this module has to be completed successfully.

Learning Outcomes

Students acquire and deepen skills in engineering fundamentals and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content

The module content depends on the elected courses.
Module: Emphasis Materials Science [WI3INGMB9]

Coordination: M. Hoffmann
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2178643</td>
<td>Constitution and Properties of Wear Resistant Materials (p. 108)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>S. Ulrich</td>
</tr>
<tr>
<td>2125757</td>
<td>Introduction to Ceramics (p. 209)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>M. Hoffmann</td>
</tr>
<tr>
<td>2126784</td>
<td>Functional Ceramics (p. 174)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>M. Hoffmann, M. Bäurer</td>
</tr>
<tr>
<td>2174576</td>
<td>Systematic Selection of Materials (p. 340)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>J. Hoffmeister</td>
</tr>
<tr>
<td>2181612</td>
<td>Physical Basics of Laser Technology (p. 249)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>J. Schneider</td>
</tr>
<tr>
<td>2173590</td>
<td>Polymerengineering I (p. 251)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>P. Elsner</td>
</tr>
<tr>
<td>2174596</td>
<td>Polymerengineering II (p. 252)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>P. Elsner</td>
</tr>
<tr>
<td>2181715</td>
<td>Failure of Structural Materials: Fatigue and Creep (p. 354)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>P. Gruber, O. Kraft</td>
</tr>
<tr>
<td>21711</td>
<td>Failure of Structural Materials: Deformation and Fracture (p. 355)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>P. Gumbsch, O. Kraft, D. Weygand</td>
</tr>
<tr>
<td>2174574</td>
<td>Materials of Leightweight Construction (p. 362)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>K. Weidenmann</td>
</tr>
<tr>
<td>2173553</td>
<td>Materials Science and Engineering III (p. 365)</td>
<td>4/1</td>
<td>W</td>
<td>6</td>
<td>M. Heilmeier</td>
</tr>
<tr>
<td>2126749</td>
<td>High Performance Powder Metallurgy Materials (p. 265)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>R. Oberacker</td>
</tr>
<tr>
<td>2126782</td>
<td>Materials Science II for Business Engineers (p. 364)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>M. Hoffmann</td>
</tr>
<tr>
<td>2126775</td>
<td>Structural Ceramics (p. 339)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>M. Hoffmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The course Material Science I [2125760] has to be completed successfully.

Recommendations
It is recommended to have natural science basic knowledge.

Learning Outcomes
Students acquire and deepen skills in fundamentals of materials science and engineering and can apply them to technical problems. Specific teaching objectives are agreed with the respective coordinator of the course.

Content
The module content depends on the elected courses.
Module: Introduction to Technical Logistics [WI3INGMB13]

Coordination: K. Furmans
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117051</td>
<td>Material Flow in Logistic Systems (p. 224)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>K. Furmans</td>
</tr>
<tr>
<td>2118097</td>
<td>Warehouse and Distribution Systems (p. 211)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>M. Schwab, J. Weiblen</td>
</tr>
<tr>
<td>2117056</td>
<td>Airport Logistics (p. 216)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>A. Richter</td>
</tr>
<tr>
<td>2118085</td>
<td>Automotive Logistics (p. 214)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>K. Furmans</td>
</tr>
<tr>
<td>2118089</td>
<td>Industrial Application of Material Handling Systems in Sorting and Distribution Systems (p. 105)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>J. Föller</td>
</tr>
<tr>
<td>2118094</td>
<td>Information Systems and Supply Chain Management (p. 201)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>C. Kilger</td>
</tr>
<tr>
<td>2117500</td>
<td>Energy efficient intralogistic systems (p. 156)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>F. Schönung</td>
</tr>
<tr>
<td>2117095</td>
<td>Basics of Technical Logistics (p. 189)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>M. Mittwollen, V. Madzharov</td>
</tr>
<tr>
<td>2117096</td>
<td>Elements and Systems of Technical Logistics (p. 154)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>M. Mittwollen, V. Madzharov</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.
To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the IFL. The term paper may not be convalidated in the seminar module.

Conditions
Successful completion of the engineering modules of the core programm.
One of the core courses Material Flow in Logistic Systems [2117051] or Basics of Technical Logistics [2117095] or Elements and systems of Technical Logistics [2117096] is mandatory. Elements and systems of Technical Logistics is only allowed to be examined after Basics of Technical Logistics is passed successfully in this or an other module. For simultaneous attending of both courses, examination dates are sequenced accordingly.

Learning Outcomes
The student acquires

- well-founded knowledge and method knowledge in the main topics of technical logistics,
- expertise and understanding about the functionality of conveyor technology,
- ability for modeling logistic systems with adequate accuracy by using simple models,
- ability to evaluate logistic systems and to identify cause-and-effects-chains within logistic systems.

Content
The module Introduction to Technical Logistics provides first insights into main topics of technical logistics. Within the lectures, the interaction between several components of material handling systems will be clarified. The focus will be on technical characteristics of material handling technology and basics for sizing of material handling systems. To gain a deeper understanding, the course is accompanied by exercises and further improved by case studies.
Module: Vehicle Development [WI3INGMB14]

Coordination: F. Gauterin
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115817</td>
<td>Project Workshop-Automotive Engineering (p. 260)</td>
<td>3</td>
<td>W/S</td>
<td>4,5</td>
<td>F. Gauterin</td>
</tr>
<tr>
<td>2113816</td>
<td>Vehicle Mechatronics I (p. 163)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>D. Ammon</td>
</tr>
<tr>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I (p. 194)</td>
<td>1</td>
<td>W</td>
<td>1,5</td>
<td>J. Zürn</td>
</tr>
<tr>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II (p. 195)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>J. Zürn</td>
</tr>
<tr>
<td>2113810</td>
<td>Fundamentals in the Development of Passenger Vehicles I (p. 196)</td>
<td>1</td>
<td>W</td>
<td>1,5</td>
<td>R. Frech</td>
</tr>
<tr>
<td>2114842</td>
<td>Fundamentals in the Development of Passenger Vehicles II (p. 197)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>R. Frech</td>
</tr>
<tr>
<td>2114843</td>
<td>Basics and Methods for Integration of Tires and Vehicles (p. 191)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>G. Leister</td>
</tr>
<tr>
<td>2114095</td>
<td>Simulation of coupled systems (p. 318)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
Successful completion of the engineering modules of the core programme.

Recommendations

Learning Outcomes
The student

- knows and understands the procedures in automobile development,
- knows and understands the technical specifications at the development procedures,
- is aware of notable boundaries like legislation.

Content
See courses.
Module: Mobile Machines [WI3INGMB15]

Coordination: M. Geimer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits	Cycle	Duration
9 | Every term | 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114093</td>
<td>Fluid Power Systems (p. 173)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2114095</td>
<td>Simulation of coupled systems (p. 318)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2114092</td>
<td>CAN-Bus Release Control (p. 132)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2113073</td>
<td>Mobile Machines (p. 234)</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>M. Geimer</td>
</tr>
<tr>
<td>2113812</td>
<td>Fundamentals in the Development of Commercial Vehicles I (p. 194)</td>
<td>1</td>
<td>W</td>
<td>1,5</td>
<td>J. Zürn</td>
</tr>
<tr>
<td>2114844</td>
<td>Fundamentals in the Development of Commercial Vehicles II (p. 195)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>J. Zürn</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general oral exam (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the oral examination. The assessment may be carried out as partial oral exams (according to Section 4(2), 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. In this case the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. The assessment procedures are described for each course of the module seperately.

Conditions
Successful completion of the engineering modules of the core programm.

Recommendations
Knowledge of Fluid Power Systems are helpful, otherwise it is recommended to take the course Fluid Power Systems [2114093].

Learning Outcomes
The student
- knows and understands the basic structure of the machines
- masters the basic skills to develop the selected machines

Content
In the module of Mobile Machines [WI3INGMB15] the students will learn the structure of the machines and deepen the knowledge of the subject for developing the machines. After conclusion the module the student will know the latest developments in mobile machines and is able to evaluate the concepts and the trends of developments. The module is practically orientated and supported by industry partners.
Module: Combustion Engines I [W3INGMB18]

Coordination: H. Kubach
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2133101</td>
<td>Combustion Engines A (p. 351)</td>
<td>4/2</td>
<td>W</td>
<td>9</td>
<td>U. Spicher</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the module is carried out by a written examination about the lecture *Combustion Engines A [2133101]* (according to Section 4(2), 1 of the examination regulation). The grade of the module corresponds to the grade of this examination.

Conditions

None.

Learning Outcomes

Content

See course.
Module: Combustion Engines II [WI3INGMB19]

Coordination: H. Kubach
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2134135</td>
<td>Combustion Engines B (p. 352)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>U. Spicher</td>
</tr>
<tr>
<td>21112</td>
<td>Supercharging of Internal Combustion Engines (p. 109)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>R. Golloch</td>
</tr>
<tr>
<td>2133109</td>
<td>Motor Fuels for Combustion Engines and their Verifications (p. 123)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>J. Volz</td>
</tr>
<tr>
<td>2134138</td>
<td>Internal Combustion Engines and Exhaust Gas Aftertreatment Technology (p. 185)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>E. Lox</td>
</tr>
<tr>
<td>21134</td>
<td>Methods in Analyzing Internal Combustion (p. 231)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>U. Wagner</td>
</tr>
<tr>
<td>2134137</td>
<td>Engine Measurement Technologies (p. 236)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>S. Bernhardt</td>
</tr>
<tr>
<td>21114</td>
<td>Simulation of Spray and Mixture Formation in Internal Combustion Engines (p. 321)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>C. Baumgarten</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2)), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Conditions
It is only possible to choose this module in combination with the module Combustion Engines I [WI3INGMB18]. The module is passed only after the final partial exam of Combustion Engines I is additionally passed.
The course Combustion Engines B [2134135] has to be attended.

Recommendations
Basic skills in the subject of Thermodynamics are recommended.

Learning Outcomes
Content
See courses.
Module: Product Lifecycle Management [WI3INGMB21]

Coordinations: J. Ovtcharova
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits: 9
Cycle: Every term
Duration: 1

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2121350</td>
<td>Product Lifecycle Management (p. 255)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>J. Ovtcharova</td>
</tr>
<tr>
<td>2122387</td>
<td>Computer Integrated Planning of New Products (p. 271)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>R. Kläger</td>
</tr>
<tr>
<td>2122376</td>
<td>PLM for product development in mechatronics (p. 250)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Eigner</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a written exam about Product Lifecycle Management (90 min) (according to Section 4(2), 1 of the examination regulation) and a oral exam (ca. 30 min.) about another lecture (according to Section 4(2), 2 of the examination regulation), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is made up of the grade for the written examination [67%] and the grade for the oral examination [33%].

Conditions
The course Product Lifecycle Management [2121350] is compulsory and has to be passed.
Successful completion of the engineering modules of the core programm.

Learning Outcomes
The students should:

- have basic knowledge about the challenges in product and process data management regarding the whole product lifecycle;
- have understanding about challenges and functional concepts of product lifecycle management;
- be able to operate common PLM systems.

Content
This module describes management and organizational approaches of Product Lifecycle Management, their application in IT and the potential benefits of PLM system solutions. Optional courses of this module introduce current product development processes in the scope of enterprise PLM system solutions.
Module: Specialization in Production Engineering [WI3INGMB22]

Coordination: V. Schulze
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149667</td>
<td>Quality Management (p. 266)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>G. Lanza</td>
</tr>
<tr>
<td>2149669</td>
<td>Materials and Processes in Automotive Lightweight Construction (p. 225)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>S. Kienzle, D. Steegmüller</td>
</tr>
<tr>
<td>2150681</td>
<td>Metal Forming (p. 348)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>T. Herlan</td>
</tr>
<tr>
<td>2150683</td>
<td>Instrumentation and Control Technologies for Production Systems (p. 335)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>C. Gönnheimer</td>
</tr>
<tr>
<td>2149655</td>
<td>Gear Cutting Technology (p. 356)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Klaiber</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

Conditions

None.

Learning Outcomes

The students

- are able to apply the methods of production science to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- are able to use their knowledge target-oriented to achieve an efficient production technology.
- are able to analyze new situations and choose methods of production science target-oriented based on the analyses, as well as justifying their selection.
- are able to describe and compare complex production processes exemplarily.

Content

Within this module the students will get to know and learn about production science. Manifold lectures and excursions as part of several lectures provide specific insights into the field of production science.
Module: Manufacturing Technology [WI3INGMB23]

Coordination: V. Schulze
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149657</td>
<td>Manufacturing Engineering (p. 170)</td>
<td>4/2</td>
<td>W</td>
<td>9</td>
<td>V. Schulze</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1-3 SPO of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

Conditions
None.

Learning Outcomes
The students

- can name different manufacturing processes, can describe their specific characteristics and are capable to depict the general function of manufacturing processes and are able to assign manufacturing processes to the specific main groups.
- are enabled to identify correlations between different processes and to select a process depending on possible applications.
- are capable to describe the theoretical basics for the manufacturing processes they got to know within the scope of the course and are able to compare the processes.
- are able to correlate based on their knowledge in materials science the processing parameters with the resulting material properties by taking into account the microstructural effects.
- are qualified to evaluate different processes on a material scientific basis.

Content
Within this engineering sciences-oriented module the students will get to learn principle aspects of manufacturing technology. Further information can be found at the description of the lecture “Manufacturing Technology”.

Module: Integrated Production Planning [WI3INGMB24]

Coordination: V. Schulze, Gisela Lanza
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2150660</td>
<td>Integrated Production Planning (p. 203)</td>
<td>4/2</td>
<td>S</td>
<td>9</td>
<td>G. Lanza</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1-3 SPO of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be convalidated in the seminar module.

Conditions
None.

Learning Outcomes
The students

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Content
Within this engineering sciences-oriented module the students will get to learn principle aspects of organization and planning of production systems. Further information can be found at the description of the lecture “Integrated Production Planning”.
Module: Rail System Technology [WI3INGMB25]

Coordination: P. Gratzfeld
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115919</td>
<td>Rail System Technology (p. 116)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>P. Gratzfeld</td>
</tr>
<tr>
<td>2115995</td>
<td>Project Management in Rail Industry (p. 262)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>P. Gratzfeld</td>
</tr>
<tr>
<td>2115996</td>
<td>Rail Vehicle Technology (p. 275)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>P. Gratzfeld</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general oral exam (45 min.) (according to Section 4(2), 2 of the examination regulation) of the single courses of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the oral examination.

Conditions
Successful completion of the engineering modules of the core program.

Recommendations
The lectures can be taken simultaneously.

Learning Outcomes

- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- They deduct the fundamental requirements for rail vehicles out of it and assess concepts of rail vehicles.
- They know about major systems in a rail vehicle and evaluate their fitness in specific fields of application.
- The students realize that the typical business model in railway industry is a project. They learn main features and characteristics of project management in this area.

Content

- Overview about fundamental components of a modern rail system (vehicles, infrastructure, operation)
- History and economic impact of rail systems
- Vehicle dynamics, wheel-rail-contact, train protection, traction power supply
- Main systems of rail vehicles (electric and non-electric traction drive, bogies, brakes)
- Vehicle concepts for mass transit and main line
- Main features and characteristics of project management in railway industry (project management system, organization, main processes)
Module: Machine Tools and Industrial Handling [WI3INGMB32]

Coordination:
J. Fleischer

Degree programme:
Wirtschaftsingenieurwesen (B.Sc.)

Subject:
Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149902</td>
<td>Machine Tools and Industrial Handling (p. 366)</td>
<td>4/2</td>
<td>W</td>
<td>9</td>
<td>J. Fleischer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1-3 SPO of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. To improve the overall grade of the module up to one grading scale (0.3) there might be taken an optional term paper in the field of the wbk. The term paper may not be consolidated in the seminar module.

Conditions
None.

Learning Outcomes

The students

- are capable to explain the use and application of machine tools and handling devices as well as differentiate their characteristics and structure.
- are able to name and describe the essential components (frame, main spindles, feed axis, peripheral equipment, control) of machine tools.
- are capable to distinguish and select and describe the essential components regarding structure, characteristics advantages and disadvantages.
- are enabled to dimension the main components of machine tools.
- are able to name and describe the control principles of machine tools.
- are capable to name examples of machine tools and industrial handling as well as to deduce compare the essential components. Additionally they can allocate manufacturing processes.
- are enabled to identify drawbacks as well as derive and asses measures for improvements.
- are qualified to apply methods for selection and evaluation of machine tools.
- are experienced to deduce the particular failure characteristics of a ball screw.

Content

The module overviews the assembly, dimensioning and application of machine tools and industrial handling. A consolidated and practice oriented knowledge is imparted about the choice, dimensioning and assessment of production machines. At first, the major components of machine tools are explained systematically. At this, the characteristics of dimensioning of machine tools are described in detail. Finally, the application of machine tools is demonstrated by means of example machines of the manufacturing processes turning, milling, grinding, massive forming, sheet metal forming and toothing.
Module: Microsystem Technology [WIIIINGMBIMT1]

Coordination: V. Saile
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2141861</td>
<td>Basics of microsystem technology I (p. 186)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Guber</td>
</tr>
<tr>
<td>2142874</td>
<td>Basics of microsystem technology II (p. 187)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>A. Guber</td>
</tr>
<tr>
<td>2143875</td>
<td>Practical training in basics of microsystem technology (p. 253)</td>
<td>W/S</td>
<td></td>
<td>3</td>
<td>A. Last</td>
</tr>
<tr>
<td>2142890 / 2142891</td>
<td>Physics for Engineers (p. 248)</td>
<td>2/2</td>
<td>S</td>
<td>6</td>
<td>P. Gumbsch, A. Nesterov-Müller, D. Weygand, A. Last, T. Mappes</td>
</tr>
<tr>
<td>2143892</td>
<td>Selected Topics of Optics and Microoptics for mechanical engineers (p. 110)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>T. Mappes</td>
</tr>
<tr>
<td>2142883</td>
<td>BioMEMS II (Microsystem Technology for Life-Sciences and Medicine; part II) (p. 128)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>A. Guber</td>
</tr>
<tr>
<td>2142879</td>
<td>BioMEMS III (Microsystem Technology for Life-Sciences and Medicine; part III) (p. 129)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>A. Guber</td>
</tr>
<tr>
<td>2142881</td>
<td>Microactuators (p. 233)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Kohl</td>
</tr>
<tr>
<td>2143500</td>
<td>Chemical, physical and material science aspects of plastics in the micro technology (p. 133)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>M. Worgull, D. Häringer</td>
</tr>
<tr>
<td>2141865</td>
<td>Novel Actuators and Sensors (p. 238)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>M. Kohl, M. Sommer</td>
</tr>
<tr>
<td>2143876</td>
<td>Nanotechnology with clusters (p. 237)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>J. Gspann</td>
</tr>
<tr>
<td>2142140</td>
<td>Bionics for Engineers and Natural Scientists (p. 130)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Hölscher, S. Walheim</td>
</tr>
<tr>
<td>23486 / 23487</td>
<td>Optoelectronic Components (p. 246)</td>
<td>2 / 1</td>
<td>S</td>
<td>4.5</td>
<td>W. Freude</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
This module cannot be combined with the module Microsystem Technology in the Master studies.
The course Basics of microsystem technology I [2141861] is compulsory and must be examined.

Learning Outcomes
• construction and production of e. g. mechanical, optical, fluidic and sensory microsystems.

Content
The module offers courses in microsystem technology. Knowledge is imparted in various fields like basics in construction and production of e. g. mechanical, optical, fluidic and sensory microsystems.

Remarks
If you have any questions concerning the module, please contact Prof. Dr. Andreas E. Guber.
Module: Control Engineering [WI3INGETIT2]

Coordination: M. Kluwe
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

ECTS Credits: 9
Cycle: Every term
Duration: 2

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23168</td>
<td>Modelling and Identification (p. 235)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Kluwe, S. Hohmann</td>
</tr>
<tr>
<td>23155</td>
<td>System Dynamics and Control Engineering (p. 341)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Kluwe</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The engineering science modules of the fundamental studies have to be completed successfully.

Recommendations
Knowledge of integral transformations is assumed. There it is recommended to attend the courses Complex Analysis and Integral Transformations beforehand.

Learning Outcomes
The students

- get familiar with the basic concepts of control theory,
- learn and understand the elements, the structure and the behavior of dynamic systems,
- have insight in the problems of control and intuition about methods available to solve those problems as well in frequency domain as in time domain,
- get familiar with the basic principles and methods for the theoretical and experimental modelling of dynamic systems.

Content
This module familiarizes students with the basic elements, structures and the behavior of dynamic systems. Both time continuous and time discrete models are regarded. The students gain insight into the problems of control design and methods available to solve such problems in frequency and time domain. Above that, the students learn the basic principles and methods for the theoretical and experimental modelling of dynamic systems.
Module: Power Networks [WI3INGETIT3]

Coordination: T. Leibfried, B. Hoferer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses in module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>23391/23393</td>
</tr>
<tr>
<td>23371/23373</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Conditions
The engineering science modules of the fundamental studies have to be completed successfully.

Learning Outcomes
The student
- has basic and advanced knowledge of electrical power engineering,
- is capable to analyse, calculate and develop electrical power engineering systems.

Content
The module deals with basic knowledge about the structure and operation of electrical power networks and their needed facilities. Further lectures give an insight into specific topics, such as Automation in electric power engineering or the procedures for generating electrical energy.
Module: Energy Generation and Network Components [WI3INGETIT4]

Coordination: T. Leibfried, B. Hoferer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the weighted average of the grades for each course and truncated after the first decimal.

Conditions
It is only possible to choose this module in combination with the module Power Networks [WI3INGETIT3]. The module is passed only after the final partial exam of Power Networks is additionally passed.

Learning Outcomes
The student

- has basic and advanced knowledge of electrical power engineering,
- is capable to analyse, calculate and develop electrical power engineering systems.

Content
The module deals with basic knowledge about the structure and operation of electrical power networks and their needed facilities. Further lectures give an insight into specific topics, such as Automation in electric power engineering or the procedures for generating electrical energy.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23356</td>
<td>Electric Power Generation & Power Grid (p. 159)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>B. Hoferer</td>
</tr>
<tr>
<td>23390</td>
<td>Engineering, Design and Operation of Power Transformers (p. 107)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>M. Schäfer</td>
</tr>
<tr>
<td>23382</td>
<td>Technique of Electrical Installation (p. 150)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>A. Kühner</td>
</tr>
<tr>
<td>23396</td>
<td>Automation of Power Grids (p. 113)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>R. Eichler</td>
</tr>
</tbody>
</table>

Industrial Engineering and Management (B.Sc.)
Module Handbook, Date: 23.08.2013
Module: Mobility and Infrastructure [WI3INGBGU1]

Coordination: R. Roos
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19027</td>
<td>Fundamentals of Transportation Planning and Traffic Engineering (p. 353)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>P. Vortisch, M. Kagerbauer</td>
</tr>
<tr>
<td>19026</td>
<td>Design Basics in Highway Engineering (p. 120)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>R. Roos</td>
</tr>
<tr>
<td>19028</td>
<td>Spatial Planning and Planning Law (p. 268)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>D. Engelke, Brester</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the module is carried out as a general written examination (150 minutes) according to §4(2), 1 of the examination regulation. The exam is offered in each semester as well as the re-examination. In case of failing or to improve the examination grade an additional oral examination (according to §4(2), 2 of the examination regulation) is offered in the same examination period. The overall grade of the module corresponds to the grade of the written examination or the average of the marks for the written and the oral assessment.

Conditions
Successful completion of the engineering modules of the core programm.

Learning Outcomes

Learning the fundamental terminology and methodology of spatial and transportation planning, traffic engineering as well as highway engineering.

Content

Basic tasks and contents of different planning levels, for example: Land use and conflicts, provision of services and infrastructure as well as their costs, planning on local, regional, national and European level.

Fundamentals of transportation planning (convention for analyses, surveys of travel behaviour), fundamentals of traffic engineering.

Design Basics in Highway Engineering: Road network layout, driving dynamics, principles of highway design; earthworks, pavements and their dimensioning.
Module: Fundamentals of construction [W3INGBGU3]

Coordination: S. Haghsheno
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0170409</td>
<td>Construction Technology (p. 117)</td>
<td>4</td>
<td>S</td>
<td>6</td>
<td>S. Haghsheno</td>
</tr>
<tr>
<td>0170106</td>
<td>Project Management (p. 261)</td>
<td>1/1</td>
<td>W</td>
<td>3</td>
<td>S. Gentes, H. Schneider</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
The student

• is familiar with all substantial domains of construction
• knows and understands substantial construction methods and construction machines
• masters basic construction calculations
• knows and understands the fundamentals of project management in civil engineering

can apply his / her knowledge in a goal-oriented manner to accomplish a construction project efficiently

Content
Courses of this module comprise methods and machines from all construction domains. Specifically, the module covers production planning as well as substantial parts of structural engineering and underground engineering, including auxiliary systems. In addition to the explanation of fundamentals, machines, and methods the courses include performance calculations. Further, students receive an introduction to project management in civil engineering which includes project phases, project organization, and the columns of project management which are schedule management, cost management, and quality management.

Remarks
We encourage students to deepen their knowledge in construction by building additional customized modules from the courses offered by TMB. Please consult with the tutors of this module. Further information is available at www.tmb.kit.edu.

Coordination: M. Weigel
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19066</td>
<td>Basics of Track Guided Transport Systems (p. 190)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>E. Hohnecker</td>
</tr>
<tr>
<td>6234801</td>
<td>Operation (p. 122)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>E. Hohnecker, P. Gratzfeld</td>
</tr>
<tr>
<td>6234802 / 6234803</td>
<td>Facilities and Rolling Stock (p. 104)</td>
<td>1/1</td>
<td>S</td>
<td>3</td>
<td>E. Hohnecker</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general written module exam according to Section 4 Abs. 2, Nr. 1 of the examination regulation. The module exam has a duration of 90 min.
The exam is offered each semester. The re-examination is offered upon prior agreement with the interested participants and not later than the next regular examination date.
The overall grade of the module is the grade for the exam.

Conditions
All courses are obligatory. The engineering science modules of the fundamental studies have to be completed successfully.

Recommendations
None.

Learning Outcomes
See German version.

Content
See courses.

Remarks
See German version.
Module: Understanding and Prediction of Disasters 1 [WI3INGINTER6]

Coordination: M. Kunz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2501111</td>
<td>Climatology (p. 210)</td>
<td>3/1</td>
<td>S</td>
<td>5,5</td>
<td>Orphal</td>
</tr>
<tr>
<td>57535</td>
<td>Meteorological Natural Hazards (p. 230)</td>
<td>2</td>
<td>S</td>
<td>3,5</td>
<td>M. Kunz</td>
</tr>
<tr>
<td>GEOD-BFB-1</td>
<td>Remote Sensing (p. 167)</td>
<td>3/2/1</td>
<td>S</td>
<td>7</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20241/42</td>
<td>Remote Sensing Systems (p. 168)</td>
<td>1/1</td>
<td>S</td>
<td>2</td>
<td>S. Hinz, U. Weidner</td>
</tr>
<tr>
<td>20265/66</td>
<td>Remote Sensing Methods (p. 169)</td>
<td>2/1</td>
<td>S</td>
<td>3</td>
<td>S. Hinz, U. Weidner</td>
</tr>
<tr>
<td>20267</td>
<td>Hauptvermessungsübung III (p. 198)</td>
<td>0/1</td>
<td>S</td>
<td>1</td>
<td>S. Hinz, Weidner</td>
</tr>
<tr>
<td>19055</td>
<td>Hydraulic Engineering and Water Resource Management I (p. 361)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>F. Nestmann</td>
</tr>
<tr>
<td>2600101</td>
<td>Geological Hazards and Risks (p. 176)</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>Wenzel, Gottschämmer</td>
</tr>
<tr>
<td>19061</td>
<td>Hydrology (p. 199)</td>
<td>1/1</td>
<td>W</td>
<td>3</td>
<td>E. Zehe</td>
</tr>
<tr>
<td>20712/13</td>
<td>Introduction to GIS for students of natural, engineering and geo sciences (p. 148)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>Rösch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
There are no singular exams for Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66]. Therefore it is only possible to choose either Remote Sensing [GEOD-BFB-1] or one of the courses Remote Sensing Systems, Remote Sensing Methods or main exercise the project Hauptvermessungsübung Angewandte Fernerkundung III [20267] (because they are already included). See also “Recommendations”.

Recommendations
The courses Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66] may be chosen as a minimal combination for the exam. However, it is recommended to choose the comprehensive combination Remote Sensing [GEOD-BFB-1], which includes Remote Sensing Systems [20241/42], Remote Sensing Methods [20265/66] and the project Angewandte Fernerkundung Hauptvermessungsübung III [20267].

Learning Outcomes
See German version.

Content
See German version.

Remarks
The LV 2600101/102 Geological Hazards and Risks is not offered in WS 2013/14. Students, who successfully completed both modules “Understanding and Prediction of Disasters” I and II (alternatively: one of the modules in Bachelor and Master) can get a certificate of the module coordinator (CEDIM). This certificate lists the successful completed courses within the two modules.
Module: Understanding and Prediction of Disasters 2 [WI3INGINTER7]

Coordination: M. Kunz
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2501111</td>
<td>Climatology (p. 210)</td>
<td>3/1</td>
<td>S</td>
<td>5,5</td>
<td>Orphal</td>
</tr>
<tr>
<td>57535</td>
<td>Meteorological Natural Hazards (p. 230)</td>
<td>2</td>
<td>S</td>
<td>3,5</td>
<td>M. Kunz</td>
</tr>
<tr>
<td>GEOD-BFB-1</td>
<td>Remote Sensing (p. 167)</td>
<td>3/2/1</td>
<td>S</td>
<td>7</td>
<td>Hinz, Weidner</td>
</tr>
<tr>
<td>20241/42</td>
<td>Remote Sensing Systems (p. 168)</td>
<td>1/1</td>
<td>S</td>
<td>2</td>
<td>S. Hinz, U. Weidner</td>
</tr>
<tr>
<td>20265/66</td>
<td>Remote Sensing Methods (p. 169)</td>
<td>2/1</td>
<td>S</td>
<td>3</td>
<td>S. Hinz, U. Weidner</td>
</tr>
<tr>
<td>20267</td>
<td>Hauptvermessungsübung III (p. 198)</td>
<td>0/1</td>
<td>S</td>
<td>1</td>
<td>S. Hinz, Weidner</td>
</tr>
<tr>
<td>19055</td>
<td>Hydraulic Engineering and Water Ressource Management I (p. 361)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>F. Nestmann</td>
</tr>
<tr>
<td>2600101</td>
<td>Geological Hazards and Risks (p. 176)</td>
<td>2/1</td>
<td>W</td>
<td>4</td>
<td>Wenzel, Gottschämmmer</td>
</tr>
<tr>
<td>19061</td>
<td>Hydrology (p. 199)</td>
<td>1/1</td>
<td>W</td>
<td>3</td>
<td>E. Zehe</td>
</tr>
<tr>
<td>20712/13</td>
<td>Introduction to GIS for students of natural, engineering and geo sciences (p. 148)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>Rösche</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
There are no singular exams for Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66]. Therefore it is only possible to choose either Remote Sensing [GEOD-BFB-1] or one of the courses Remote Sensing Systems, Remote Sensing Methods or main exercisethe project of HauptvermessungsübungAngewandte FernerkundungIII [20267] (because they are already included). See also “Recommendations”.

Recommendations
The courses Remote Sensing Systems [20241/42] and Remote Sensing Methods [20265/66] may be chosen as a minimal combination for the exam. However, it is recommended to choose the comprehensive combination Remote Sensing [GEOD-BFB-1], which includes Remote Sensing Systems [20241/42], Remote Sensing Methods [20265/66] andthe projectAngewandte FernerkundungHauptvermessungsübungIII [20267].

Learning Outcomes
See German version.

Content
See German version.

Remarks
The LV 2600101/102 Geological Hazards and Risks is not offered in WS 2013/14. Students, who successfully completed both modules “Understanding and Prediction of Disasters” I and II (alternatively: one of the modules in Bachelor and Master) can get a certificate of the module coordinator (CEDIM). This certificate lists the successful completed courses within the two modules.
Module: Extracurricular Module in Engineering [WI3INGAPL]

Coordination: Prüfer einer Ingenieurwissenschaftlichen Fakultät
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Engineering Science

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the module is determined by the respective module coordinator. It can either be in the form of a general exam or partial exams, and must be contain at least 9 credit points and at least 6 hours per week. The examination may contain presentations, experiments, laboratories, term papers, etc. At least 50 percent of the module examination has to be in the form of a written or an oral examination (according to Section 4 (2), 1 or 2 of the examination regulation).

The formation of the overall grade of the module will be determined by the respective module coordinator.

Conditions
None.

Learning Outcomes
Content
6.6 Statistics

Module: Statistical Applications of Financial Risk Management [WI3STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2521325/2521326</td>
<td>Statistics and Econometrics in Business and Economics (p. 332)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>W. Heller</td>
</tr>
<tr>
<td>2520375</td>
<td>Data Mining (p. 136)</td>
<td>2</td>
<td>W/S</td>
<td>5</td>
<td>G. Nakhaeizadeh</td>
</tr>
<tr>
<td>2520016/2520017</td>
<td>Economics III: Introduction in Econometrics (p. 359)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

Successful completion of the module Statistics [WI1STAT].

The lecture *Statistics and Econometrics in Business and Economics* has to be taken.

Learning Outcomes

Content
6.7 Law

Module: Elective Module Law [WI3JURA]

Cooperation: T. Dreier
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Law

ECTS Credits	**Cycle**	**Duration**
9 | Every term | 2

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>Credit Points (CP)</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24012</td>
<td>Civil Law for Beginners (p. 127)</td>
<td>4/0</td>
<td>W</td>
<td>4</td>
<td>T. Dreier</td>
</tr>
<tr>
<td>24016</td>
<td>Public Law I - Basic Principles (p. 242)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>I. Spiecker genannt Döhmann, G. Sydow</td>
</tr>
<tr>
<td>24520</td>
<td>Public Law II - Public Economic Law (p. 243)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place in every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Learning Outcomes

Content
6.8 Sociology

Module: Sociology/Empirical Social Research [WI3SOZ]

Coordination: G. Nollmann

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject: Sociology

ECTS Credits: 9

Cycle: Every term

Duration: 1

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Social structures of modern societies</td>
<td></td>
<td></td>
<td>4</td>
<td>G. Nollmann</td>
</tr>
<tr>
<td></td>
<td>(p. 324)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spezSoz</td>
<td>Special Sociology (p. 329)</td>
<td></td>
<td></td>
<td>2</td>
<td>G. Nollmann, Pfadenhauer, Haupt, Grenz, Eisewicht, Kunz, Dukat, Albrecht, Enderle</td>
</tr>
<tr>
<td></td>
<td>Projectseminar (p. 263)</td>
<td></td>
<td></td>
<td>4</td>
<td>G. Nollmann, Kunz, Haupt, Grenz, Eisewicht, Enderle, Dukat, Albrecht</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
Knowledge of Statistics 1 and Statistics 2 is required.

Learning Outcomes
The student

- Gains theoretical and methodical knowledge of social processes and structures
- Is able to apply acquired knowledge practically
- Is able to present work results in a precise and clear way

Content
This module offers students the possibility to get to know research problems and to answer these theoretically as well as empirically. For example: Who does earn how much in his job and why? How do subcultures emerge? Why are boys' grades in school always worse than those of girls? Do divorces have negative influences on the development of children? How does mass consumption influence the individual? Is there a world society emerging?

In addition, this module contains courses on sociological methods that are essential to answer the above questions scientifically.
Module: Qualitative Social Research [WI3SOZ2]

Coordination: M. Pfadenhauer
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: Sociology

ECTS Credits: 9
Cycle: 2
Duration: 2

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.n.</td>
<td>Interpretative Social Research Methods (p. 232)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Pfadenhauer</td>
</tr>
<tr>
<td>spezSoz</td>
<td>Special Sociology (p. 329)</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>G. Nollmann, Pfadenhauer, Haupt, Grenz, Eisewicht, Kunz, Dukat, Albrecht, Enderle</td>
</tr>
<tr>
<td>n.n.</td>
<td>Explorative-interpretative Project Seminar (p. 264)</td>
<td>2/0</td>
<td>W/S</td>
<td>4</td>
<td>M. Pfadenhauer, Kunz, Grenz, Eisewicht, Dukat, Enderle, Albrecht</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Recommendations
It is recommended to attend the lecture on interpretative methods of social research before attending the project.

Learning Outcomes
The student
- possesses a basic overview of the well-established and some of the advanced explorative methods of data collection and interpretative methods of data evaluation,
- can address basic sociological questions to subjects of different types,
- and is capable of choosing and applying appropriate explorative-interpretative methods according to a research question.

Content
Qualitative Social Research is of major importance not only in (Social) Sciences but also in applied economic contexts. Within the framework of this module the student gets taught basic and advanced methods of non-standardised data collection, fixation and evaluation. Accordingly the module consists of three courses:
- the lecture 'Interpretative Social Research Methods' which ends with a written exam (4 LP).
- a course 'Special Sociology' of choice in which 2 or 4 credits have to be obtained (6 credits needed in course and project course combined).
- a project course focusing on explorative-interpretative methods in which 2 or 4 credits have to be obtained (6 credits needed in course and project course combined).
6.9 General Modules

Module: Seminar Module [WI3SEM]

Coordination: Studiendekan (Fak. f. Wirtschaftswissenschaften)

Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Subject:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemAIFB1</td>
<td>Seminar in Enterprise Information Systems (p. 287)</td>
<td>2 W/S</td>
<td>3</td>
<td>R. Studer, A. Oberweis, T. Wolf, R. Kneuper</td>
<td></td>
</tr>
<tr>
<td>SemAIFB2</td>
<td>Seminar Efficient Algorithms (p. 288)</td>
<td>2 W/S</td>
<td>3</td>
<td>H. Schmeck</td>
<td></td>
</tr>
<tr>
<td>SemAIFB3</td>
<td>Seminar Complexity Management (p. 300)</td>
<td>2 W/S</td>
<td>3</td>
<td>D. Seese</td>
<td></td>
</tr>
<tr>
<td>SemAIFB4</td>
<td>Seminar Knowledge Management (p. 305)</td>
<td>2 W</td>
<td>3</td>
<td>R. Studer</td>
<td></td>
</tr>
<tr>
<td>SemAIFB5</td>
<td>Seminar eOrganization (p. 290)</td>
<td>2 S</td>
<td>3</td>
<td>S. Tai</td>
<td></td>
</tr>
<tr>
<td>2530280</td>
<td>Seminar in Finance (p. 294)</td>
<td>2 W/S</td>
<td>3</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
<td></td>
</tr>
<tr>
<td>SemFBV1</td>
<td>Seminar in Insurance Management (p. 306)</td>
<td>2 W/S</td>
<td>3</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>2577915</td>
<td>Seminar: Management and Organization (p. 315)</td>
<td>2 W/S</td>
<td>3</td>
<td>H. Lindstädt</td>
<td></td>
</tr>
<tr>
<td>2579904</td>
<td>Seminar Management Accounting (p. 301)</td>
<td>2 W/S</td>
<td>3</td>
<td>M. Wouters</td>
<td></td>
</tr>
<tr>
<td>2570005</td>
<td>Special Topics in Management Accounting (p. 325)</td>
<td>2 W/S</td>
<td>3</td>
<td>M. Wouters, S. Morales, M. Kirchberger</td>
<td></td>
</tr>
<tr>
<td>2572197</td>
<td>Seminar in strategic and behavioral marketing (p. 307)</td>
<td>2 W</td>
<td>3</td>
<td>B. Neibecker</td>
<td></td>
</tr>
<tr>
<td>SemETU1</td>
<td>Seminar in Marketing and Sales (Bachelor) (p. 296)</td>
<td>2 S</td>
<td>3</td>
<td>M. Klaremann</td>
<td></td>
</tr>
<tr>
<td>SemEP2</td>
<td>Seminar in Industrial Production (p. 298)</td>
<td>2 W/S</td>
<td>3</td>
<td>F. Schultmann, M. Fröhling</td>
<td></td>
</tr>
<tr>
<td>SemEW</td>
<td>Seminar Energy Economics (p. 289)</td>
<td>2 W/S</td>
<td>3</td>
<td>W. Fichtner, P. Jochem, D. Keles, R. McKenna, V. Bertsch A. Geyer-Schulz</td>
<td></td>
</tr>
<tr>
<td>2540524</td>
<td>Bachelor Seminar in Information Engineering and Management (p. 115)</td>
<td>2 W/S</td>
<td>3</td>
<td>C. Weinhardt</td>
<td></td>
</tr>
<tr>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering (p. 303)</td>
<td>2 W/S</td>
<td>3</td>
<td>C. Weinhardt</td>
<td></td>
</tr>
<tr>
<td>2595475</td>
<td>Seminar Mobility Services (p. 302)</td>
<td>2 W</td>
<td>4</td>
<td>T. Lützkendorf, D. Lorenz</td>
<td></td>
</tr>
<tr>
<td>2585420</td>
<td>Topics of Sustainable Management of Housing and Real Estate (p. 106)</td>
<td>2 W/S</td>
<td>3</td>
<td>T. Lützkendorf, D. Lorenz</td>
<td></td>
</tr>
<tr>
<td>SemWIOR2</td>
<td>Seminar Economic Theory (p. 368)</td>
<td>2 W/S</td>
<td>3</td>
<td>C. Puppe</td>
<td></td>
</tr>
<tr>
<td>SemWIOR3</td>
<td>Seminar in Experimental Economics (p. 309)</td>
<td>2 W/S</td>
<td>3</td>
<td>N. N.</td>
<td></td>
</tr>
<tr>
<td>n.n.</td>
<td>Seminar in Behavioral and Experimental Economics (p. 293)</td>
<td>2 W/S</td>
<td>3</td>
<td>P. Reiss</td>
<td></td>
</tr>
<tr>
<td>SemIWW2</td>
<td>Seminar in International Economy (p. 295)</td>
<td>2/0 W/S</td>
<td>3</td>
<td>J. Kowalski</td>
<td></td>
</tr>
<tr>
<td>SemIWW3</td>
<td>(p. 297)</td>
<td>2 W/S</td>
<td>3</td>
<td>I. Ott</td>
<td></td>
</tr>
<tr>
<td>2560130</td>
<td>Seminar Public Finance (p. 291)</td>
<td>2 W/S</td>
<td>3</td>
<td>B. Wigger, Assistenten</td>
<td></td>
</tr>
<tr>
<td>n.n.</td>
<td>Selected Topics in Public Management and Governance (p. 111)</td>
<td>2 W</td>
<td>3</td>
<td>B. Wigger, N. Edwards</td>
<td></td>
</tr>
<tr>
<td>SemETS3</td>
<td>Seminar on Macroeconomic Theory (p. 311)</td>
<td>2 S</td>
<td>3</td>
<td>M. Hillebrand</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Type</td>
<td>Lecturer(s)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2560263</td>
<td>Seminar on Network Economics</td>
<td>2</td>
<td>W/S</td>
<td>K. Mitusch</td>
<td></td>
</tr>
<tr>
<td>2561209</td>
<td>Seminar Transport Economics</td>
<td>2</td>
<td>W/S</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550131</td>
<td>Seminar in Continuous Optimization</td>
<td>2</td>
<td>W/S</td>
<td>S. Nickel</td>
<td></td>
</tr>
<tr>
<td>SemWIOR1</td>
<td>Seminar in Discrete Optimization</td>
<td>2</td>
<td>W/S</td>
<td>K. Waldmann</td>
<td></td>
</tr>
<tr>
<td>2550491</td>
<td>Seminar in Engineering Science</td>
<td>2</td>
<td>W/S</td>
<td>Fachvertreter ingenieurwissenschaftlicher Fakultäten</td>
<td></td>
</tr>
<tr>
<td>SemING</td>
<td>Seminar Conveying Technology and Logistics</td>
<td>2</td>
<td>W/S</td>
<td>K. Furmans</td>
<td></td>
</tr>
<tr>
<td>21690sem</td>
<td>Seminar paper “Production Engineering”</td>
<td>2</td>
<td>W/S</td>
<td>V. Schulze, G. Lanza, J. Fleischer</td>
<td></td>
</tr>
<tr>
<td>SemMath</td>
<td>Seminar in Mathematics</td>
<td>2</td>
<td>W/S</td>
<td>Fachvertreter der Fakultät für Mathematik</td>
<td></td>
</tr>
<tr>
<td>RECHT</td>
<td>Seminar: Legal Studies</td>
<td>2</td>
<td>W/S</td>
<td>Inst. ZAR</td>
<td></td>
</tr>
<tr>
<td>SQ HoC1</td>
<td>Working and Studying Effectively</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC2</td>
<td>Oral Presentation and Communication Skills</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC3</td>
<td>Scientific Writing</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC4</td>
<td>Teaching and Learning Foreign Languages</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC5</td>
<td>Qualitative Methods</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC6</td>
<td>Law and Economics</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC7</td>
<td>Competencies as a Research Topic</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC8</td>
<td>Transferring Knowledge in School, University and at the Workplace</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ HoC9</td>
<td>Professional Orientation and Job Specific Competencies</td>
<td>2</td>
<td>W/S</td>
<td>HoC</td>
<td></td>
</tr>
<tr>
<td>SQ PEW1</td>
<td>Elective „Educational development for student teachers”</td>
<td>2</td>
<td>W/S</td>
<td>Personalentwicklung</td>
<td></td>
</tr>
<tr>
<td>SQ ZAK1</td>
<td>Key qualifications ZAK</td>
<td>2</td>
<td>W/S</td>
<td>ZAK</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The modul examination consists of two seminars and at least one key qualification (KQ) course (according to §4 (3), 3 of the examination regulation). A detailed description of every singled assessment is given in the specific course characterization. The final mark for the module is the average of the marks for each of the two seminars weighted by the credits and truncated after the first decimal. Grades of the KQ courses are not included.

Conditions

All modules of the core programme should have been absolved. Furthermore the course specific preconditions must be observed.

- **Seminars**: Two seminars out of the course list, that have at least 3 CP each and are offered by a representative of the Department of Economics and Management or of the Center for applied legal studies (Department of Informatics), have to be chosen.
- **Alternatively one of the two seminars can be absolved at a engineering department or at the Department of Mathematics. The seminar has to be offered by a representative of the respective department as well. The assessment has to meet the demands of the Department of Economics and Management(active participation, term paper with a workload of at least 80 h, presentation). This alternative seminar requires an official approval and can be applied at the examination office of the Department of Economics and Management. Seminars at the institutes wbk and IFL do not require these approval.**
- **Key Qualification (KQ)-course(s)**: One or more courses with at least 3 CP in total of additional key qualifications have to be chosen among the courses [HoC, ZAK, Sprachenzentrum].

Learning Outcomes

The student

- investigates with a selected topic in a special subject,
- analyses and discusses topicaly issues in the course and within the final term paper,
- discusses, presents und defends subject-specific arguments within the given topic,
• plans and realizes the final term paper mostly autonomous.

Content
Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor. Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section “Key Qualifications” of the module handbook. Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: http://www.wiwi.kit.edu/2361.php.
Module: Internship [WI3EXPRAK]

Coordination: Der Vorsitzende des Prüfungsausschusses
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)

Learning Control / Examinations
The assessment is carried out by the evidence of completed full-time internships of at least eight weeks and a presentation of the internship in the form of a written report on the activities.

1. Information on evidence of completed full-time internships:

The internship is proofed by the certificate of the intern’s office. The certificate has to be formally correct with official corporate letterhead and handwritten countersigned by a responsible employee of the company.

The certificate must at least contain the following information:

* Company / Location
* Duration: from ... to ...
* Hours of work (weakly)
* Working interruption, indicating the vacation and sick days
* Department
* Headwords to the activities

2. Information on to the presentation:

The internship report should be at least one page (typewritten, not handwritten) for each Location. It must be countersigned by a representative of the intern’s office.

Conditions
Internships, that were completed even before studying may be recognized, if the criteria for recognition are met. After recognition of the compulsory internship, there can be taken a semester off for a voluntary, student-related internship. The possibility is particularly interesting in view of the master programme, which requires internships of at least 12 weeks.

Regarding to the election of the company, in which the internship is completed, there are no specific rules. With a view to the future professional career, it is recommended to absolve the internship in a larger, possibly international company.

Learning Outcomes
Students

- engage in practical aspects of Industrial Engineering and Management and get to know the professional requirements,
- gain a general insight into the operations of a company,
- identify companies complexity and developing knowledge and skills, which facilitate the understanding of operational sequences,
- train key qualifications such as personal initiative (already in the application), team skills and the ability to integrate into occupational hierarchie.

Content
The internship may be done in economic, business and/or technical companies. At best, it is done on activities which are located at the intersection of the two fields - getting to know the specific requirements of Industrial Engineering and Management.

A commercial internship provides an insight into business or administrative processes of business transactions. Therefor departments such as controlling, organizing, marketing and planning appear particularly suitable.

Work experiences in the departments of engineering, work preparation and provision of material or IT cover more technical aspects of the internship. But work experiences in an engineering firm go with a technical internship.

It remains the companies and interns left, which stations and areas the intern will eventually go through. But the focus should always be in accordance with operational realities of the company.

Remarks
Vacation days are not figured into the internship.

Only three sick leave days may incurred at all. Any additional sick days are not figured into the internship.

A relevant vocational education of at least two years is accepted as a performance equivalent to the internship.
Module: Bachelor Thesis [WI3THESIS]

Coordination: Der Vorsitzende des Prüfungsausschusses
Degree programme: Wirtschaftsingenieurwesen (B.Sc.)
Subject: ECTS Credits 12 Cycle Duration

Learning Control / Examinations
The Bachelor Thesis is a written exam which shows that the student can autonomously investigate a scientific problem in Industrial Engineering and Management. The Bachelor Thesis is described in detail in § 11 of the examination regulation. The review is carried out by at least one examiner of the Department of Economics and Management, or, after approval by at least one examiner of another faculty. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme.

The regular processing time takes three months. On a reasoned request of the student, the examination board can extend the processing time of a maximum of one month. If the Bachelor Thesis is not completed in time, this exam is “failed”, unless the student is not being responsible (e.g. maternity leave).

With consent of the examiner the thesis can be written in English as well. Other languages require besides the consent of the examiner the approval of the examination board. The issue of the Bachelor Thesis may only returned once and only within the first month of processing time. A new topic has to be released within four weeks.

The overall grade of the module is the grade of the Bachelor Thesis.

Conditions
Prerequisite for admission to the Bachelor thesis is that the student is usually in the 3rd Academic year (5th and 6th semester) and has at most one of the exams of the core program (according to § 17 paragraph 2 examination regulation) not been completed.

It is recommended to begin the Bachelor Thesis in the 5th or 6th Semester.
A written confirmation of the examinor about supervising the Bachelor's Thesis is required.
Please pay regard to the institute specific rules for supervising a Bachelor Thesis.

The Bachelor Thesis has to contain the following declaration: “I hereby declare that I produced this thesis without external assistance, and that no other than the listed references have been used as sources of information. Passages taken literally or analogously from published or non published sources is marked as this.” If this declaration is not given, the Bachelor Thesis will not be accepted.

Learning Outcomes
Content
The Bachelor Thesis is the first major scientific work. The topic of the Bachelor Thesis will be chosen by the student themselves and adjusted with the examinor. The topic has to be related to Industrial Engineering and Management and has to refer to subject-specific or interdisciplinary problems.
7 Courses

7.1 All Courses

Course: Advanced Topics in Economic Theory [2520527]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>M. Hillebrand, K. Mitusch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>Economic Theory (p. 56), Microeconomic Theory (p. 51)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) (following §4(2), 1 of the examination regulation) at the beginning of the recess period or at the beginning of the following semester.

Conditions

None.

Recommendations

This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Learning Outcomes

Content

The course deals with basic elements of modern economic theory. It is divided into two parts. The first part introduces the microeconomic foundations of general equilibrium à la Debreu ("The Theory of Value", 1959) and Hildenbrand/Kirman ("Equilibrium Analysis", 1988). The second part deals with asymmetric information and introduces the basic techniques of contract theory.

The course is largely based on the textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A. Mas-Colell, M. D. Whinston, and J. R. Green.

Literature

The course is based on the excellent textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A. Mas-Colell, M. D. Whinston, and J. R. Green.
Course: Algorithms for Internet Applications [2511102]

Coordinators: H. Schmeck
Part of the modules: Electives in Informatic (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination (called “bonus exam”, 45 min) (according Section 4(2), 3 of the examination regulation).

The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Conditions

None.

Learning Outcomes

The students will learn to master methods and concepts of essential algorithms within Internet applications and to develop capabilities for innovative improvements. The course aims at teaching advanced concepts for the design and application of algorithms with respect to the requirements in networked systems. Based on a fundamental understanding of taught concepts and methods the students should be able to select appropriate concepts and methods for problem settings in their future professional life, and - if necessary - customize and apply them in an adequate way. The students will be capable to find appropriate arguments for their chosen approach to a problem setting.

In particular, the student will

- know the structure and elementary protocols of the Internet (TCP/IP) and standard routing algorithms (distance vector and link state routing),
- know methods of information retrieval in the WWW, algorithms for searching information and be able to assess the performance of search engines,
- know how to design and use cryptographic methods and protocols to guarantee and check confidentiality, data integrity and authenticity,
- know algorithmic basics of electronic payment systems and of electronic money.

Content

Internet and World Wide Web are changing our world, this core course provides the necessary background and methods for the design of central applications of the Internet. After an introduction into Internet technology the following topics are addressed: information retrieval in the www, structure and functioning of search engines, foundations of secure communication, electronic payment systems and digital money, and - if time permits - security architectures.

Media

Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Literature

Elective literature:

- Further references will be given in the course.
Course: Analytical CRM [2540522]

Coordinators: A. Geyer-Schulz
Part of the modules: Specialization in Customer Relationship Management (p. 45)[WI3BWLISM5], CRM and Service Management (p. 44)[WI3BWLISM4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from excersise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>95</td>
</tr>
<tr>
<td>1.3</td>
<td>90</td>
</tr>
<tr>
<td>1.7</td>
<td>85</td>
</tr>
<tr>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>2.3</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>70</td>
</tr>
<tr>
<td>3.0</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>55</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conditions
None.

Recommendations
We expect knowledge about data models and the UML modelling language concerning information systems.

Learning Outcomes
The Student
- understands the principal scientific methods from statistics and informatics used in analytical CRM and their application to enterprise decision problems and independently applies these methods to standard cases,
- understands the components for creating and managing a data warehouse from operative system sources including the processes and steps involved and applies these methods to a simple example, and
- uses his knowledge to conduct a standard CRM analysis on enterprise data for a busines decision problem and deduces and justifies a recommendation for appropriate action.

Content
The course Analytical CRM deals with methods and techniques for analysis concerning the management and improval of customer relationships. Knowledge about customers is aggregated and used for enterprise decision problems like product line planning, customer loyalty, etc. A necessary precondition for these analyses is the transformation of data stemming from operative systems into a common data warehouse that assembles all necessary information. This requires transformation of data models and processes for creating and managing a data warehouse, like ETL processes, data quality and monitoring. The generation of customer oriented and flexible reports for different business purposes is covered. The course finally treats several different statistical analysis methods like clustering, regression etc. that are necessary for generating important indicators (like customer lifetime value, customer segmentation). As external data source, customer surveys are introduced.

Media
slides

Literature
Course: Applied Informatics I - Modelling [2511030]

Coordinators: A. Oberweis, R. Studer, S. Agarwal

Part of the modules: Electives in Informatics (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

ECTS Credits 5
Hours per week 2/1
Term Winter term
Instruction language de

Learning Control / Examinations
The assessment consists of a written examination (60 min) in the first week after lecture period (according to Section 4 (2),1 of the examination regulation).

Conditions
None.

Learning Outcomes
Basic knowledge about the strengths and weaknesses of various modeling approaches including their application areas.

Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspects, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets as well as event driven process chains together with their respective analysis techniques will be introduced.

Media
Slides.

Literature

Elective literature:
Course: Applied Informatics II - IT Systems for e-Commerce [2511032]

Coordinators: S. Tai
Part of the modules: Electives in Informatic (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the compulsory exercises is prerequisite for the admission to the written exam. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of content of the module [WI1INFO].

Learning Outcomes
The student learns about concepts and technologies for designing big, distributed application architectures. Students apply industry-relevant technology to solve application-oriented problems in lab classes.

Content
The course Applied Informatics II [2511032] covers various facets of electronic commerce which have to be supported by adequate and efficient distributed information systems. Key topics are middleware technologies and distributed application architectures. Document description and exchange (incl. XML), Java EE, Web technologies, and Web services are additional topics.

Media
Slides, internet resources.

Literature
Tba in the lecture.
Course: Facilities and Rolling Stock [6234802 / 6234803]

Coordinators: E. Hohnecker

Part of the modules: Basics of Guided Transport Systems (p. 86) [WI3INGBGU4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See module description.

Learning Outcomes
See German version.

Content
stations and terminals for passengers and freight, basics of rolling stock and electrical drive

Remarks
See German version.
Course: Industrial Application of Material Handling Systems in Sorting and Distribution Systems [2118089]

Coordinators: J. Fölter
Part of the modules: Introduction to Technical Logistics (p. 69)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Learning Outcomes
Students are able to:

- Describe and classify basics and characteristics of application of sorting and distribution of goods,
- Solve drive and control tasks with appropriate concept selection,
- Design systems with appropriate calculation methods and evaluate them financially, and
- Judge about the confirmity of the system by using relevant standards and set of rules.

Content

- Operation characteristics, classification, configuration, dimensioning, cost consideration, sorting systems
- Relevant regulations, modern control and drive concepts
Course: Topics of Sustainable Management of Housing and Real Estate [2585420/2586420]

Coordinators: T. Lützkendorf, D. Lorenz
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is (according to §4(2), 3 SPO) in form of an examination of the written seminar thesis and a presentation.

Conditions
None.

Learning Outcomes

- Students autonomously compile a paper treating of a marked-off subject within the area of real estate economics respectively sustainable construction, and present their results within the seminar.
- Therefore they master the principles of scientific writing, especially research, reasoning and citation, as well as handling information suspiciously.
- Through own and observed experiences they develop the ability to hold scientific presentations, including technical, formal, rhetorical and didactical aspects.

Content
The seminar deals with changing up-to-date topics concerning Real Estate Economics or Sustainable Construction. Current topics and schedules are announced at the beginning of term.

Media
A reader dealing with the basics of scientific writing is provided (in german language).
Course: Engineering, Design and Operation of Power Transformers [23390]

Coordinators: M. Schäfer
Part of the modules: Energy Generation and Network Components (p. 83) [WI3INGETIT4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The goal is to relay theoretical fundamentals about Power Transformers and its applications. Main topics are the physical fundamentals and their application in transformer pre-calculation and design. Based on that the different variations in design and the various applications are being discussed. Finally future trends and research and development activities in the field of power transformers are presented.

Content
The lecture is divided into the following clauses

- Applications and design variations of power transformers
- Components and design of power transformers
- Working principle of power transformers and shunt reactors. Induction law and its application for the precalculation of transformers. The magnetic field in iron cores, core designs, variations and air gaps in magnetic circuits. Magnetic materials and their properties, application in transformers and shunt reactors. Main and stray flux in transformers and calculation of the equivalent circuit. Stresses inside transformers during inrush and short circuits.
- Winding connections and vector groups of transformers, three phase power system, connected voltages and line to earth voltage, description of three phase systems, parallel connection of transformers.
- Precalculation of transformers.
- Losses in transformers and its origins in core and in the windings. Possible measures to influence loss generation. Cooling systems and its applications.
- High voltage DC transformers
- Factory testing of transformers. Performance of type tests, standard test and special tests.
- Overload capability of transformers. Controlled overloading and emergency overload.
- Condition and monitoring.
- Future trends and research and development activities.

Media
The material is distributed during any lecture

Remarks
The course consists of seven lecture blocks and one factory visit. Date and time is announced on the blackboards.
Course: Constitution and Properties of Wear Resistant Materials [2178643]

Coordinators: S. Ulrich
Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
The course Material Science I [21760] has to be completed beforehand.

Recommendations
Basic knowledge of natural science and knowledge of the content Material Science II [21782] is recommended.

Learning Outcomes
Students shall become familiar with the constitution, properties and changing properties of the most important groups of materials. With this basic knowledge they shall be able to decide about the technical and economical application of materials.

Content
After presentation of a general overview, concepts of surface modification (optimisation of microstructure and surface reactions) will be shown as well as innovative coating concepts (dispersion-, composite material-, gradient-, multilayer, super lattice-, solid solution strengthening, metastable- and nano-crystalline coatings).

During realisation of these coating concepts different coating materials will be used:
Metallic alloy and metal-based materials, hard alloy and composite materials, metallic, covalent and heteropolar hard materials as well as ceramic and novel, metastable materials.

This will be followed by lectures on the methods of surface modification

1. mechanical: milling, blasting
2. thermal: melting, heat treatment, quench hardening
3. thermochemical: diffusion, heat treatment
4. ion implantation

and of coating: (mechanical, thermal, mechanothermal, electrochemical, CVD, PVD)

Afterwards, methods of characterisation of surfaces, thin films and bulk materials will be presented, based on the constitution (element-, phase and structure analyses), structure (macro-, micro- and nano structure, texture), properties (hardness, adhesion, toughness) and tribological behaviour of the material.

At the end of the lecture, the status quo of industrial coatings for tools and components as well as the latest developments of coating technology will be discussed.

Literature

Elective literature:

Course: Supercharging of Internal Combustion Engines [21112]

Coordinators: R. Golloch
Part of the modules: Combustion Engines II (p. 73)[WI3INGMB19]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to Section 4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Conditions
The course *Combustion Engines A* [21101] has to be completed beforehand.

Learning Outcomes

Content
Course: Selected Topics of Optics and Microoptics for mechanical engineers [2143892]

Coordinators: T. Mappes
Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (20 min) (following §4 (2), 2 of the examination regulation.

Conditions
none

Recommendations
none

Learning Outcomes
- knows the basics of linear optics
- understands the optical effects used for technical measurements
- judges upon the technical capabilities of selected optical instruments
- has the basic knowledge to fabricate macroscopic and microscopic optical elements
- may select appropriate microscopic contrast techniques for technical questions

Content
The first part of the lecture deals with:
- laws of optics
- linear optics
- aberrations of opt. systems
- wave optics & polarization

Based on the introduction to the basics in the first part, the second half of the lecture deals with the discussion of
- optical instruments
- contrast enhancement
- optical position control

Different fabrication methods for macroscopic and microscopic optical elements are discussed

Media
Lecture script as *.pdf

Literature
Hecht Eugene: Optik; 4., überarb. Aufl.; Oldenbourg Verlag, München und Wien, 2005
Course: Selected Topics in Public Management and Governance [n.n.]

Coordinators: B. Wigger, N. Edwards
Part of the modules: Seminar Module (p. 94)[WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Recommendations
Prior knowledge of public management and public governance, as evidenced by participation in courses such as Introduction to Public Management and Case Studies in Public Management, is strongly recommended.

Learning Outcomes
The student will demonstrate an advanced understanding of key topics dealt with in the seminar.

Content
Selected topics in public management and governance.

Media
Academic journal articles

Literature
Will be announced on IlIAS.
Course: International Economics [2561252]

Coordinators: J. Kowalski

Part of the modules: Economic Policy I (p. 54) [WI3VWL10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Learning Outcomes

Content

Literature

Elective literature:

- Siebert H., Außenwirtschaft. Fischer-Verlag 1994
Course: Automation of Power Grids [23396]

Course: Automation of Power Grids [23396]

Coordinators: R. Eichler

Part of the modules: Energy Generation and Network Components (p. 83)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions
Basic knowledge of power transmission and distribution; basic knowledge of IT

Learning Outcomes
Understand methods, equipment, standards, current and future technology, state-of-the-art and trends of power systems control from a global (i.e. worldwide) perspective

Digital design fundamental lecture. Focus of the lecture are formal, methodical and mathematic fundamentals for the design of digital systems. Based on these, technical implementation of digital systems is elaborated, especially the design of standard digital building blocks and more complex systems based on these.

Content
This lecture presents an introduction to the important theoretical fundamentals of digital system design, which is scheduled for the students in the first semester of Electrical Engineering. Since the lecture cannot be based on student’s knowledge of circuit technology, it focuses on abstract models for behaviours and structures. In addition the lecture will also relay the fundamentals, which are needed in other lectures.

At first the lecture delves into important conceptual information and shows that digital system design represents a special technical solution for the treatment of information. After this the concept of a system will be introduced and illustrated that complex systems require a hierarchical partitioning in order to be able to understand and design them. Based on this it can be concluded then that system design can be understood as a repeated transformation from descriptions of behaviour to descriptions of structure.

The terms message and signal are subject matter of a further chapter. Starting from time and amplitude continuous signals, simple time and value discrete binary signal representations will be introduced, as well as more complex signal forms derived from binary signals.

The representation of information by signals presupposes or implies an “agreement of allocation” between distinguishable elements of information representation and signal representation, the so-called codes. Therefore the lecture delivers the fundamental concepts of codes & coding and describes a few important classes & types of codes, which serve some of the following uses: analog/digital conversion for interfaces, error detection & error correction for numerical purposes, and optimal representation of information and/or signals. Code conversion and related topics finalize the consideration of this topic.

Formal and mathematical fundamentals will be treated in an extensive chapter. To begin the subject matter of the lecture is comprised of sets and quantities, the operations on these quantities, as well as the relations between set elements. Afterwards several fundamentals of graph theory are introduced. It will be shown that logic algebra can serve as a basis for special Boolean algebra. Building upon the associated rules the concept of switching functions, their graphical representation and classification, the standard theories, and important basis systems for the representation of Boolean expressions will be derived and considered. Expansion theory, the computation with allocation blocks and terms, as well as measures for minimization are further topics of this chapter.

Having the formal basics available, applicable technical components and structures will be developed on the basis of binary switches, which allow for a direct conversion of formal relationships into solutions. Gates, circuit networks, synchronized sequential circuits, as well as specially derived functional units such as counters, registers, and digital memories lead to complex structures. The “All-purpose Computer” from J. von Neumann will be particularly dealt with.

To accompany the lecture material, assignments and the corresponding solutions will be given out and discussed during lecture hall exercises. Furthermore tutorials in small study groups will be held to deepen the understanding of the curriculum and methods taught. Furthermore computer exercises are offered in which digital circuits and their pattern of behaviour will be modeled and simulated with the help of the program LogicWorks.

Media
Slides of the lecture presentation.

Literature
Elective literature:

• Ernst-Günther Tietze: Netzleittechnik 1. Grundlagen; VWEW Energieverlag GmbH
• Ernst-Günther Tietze: Netzleittechnik Teil 2: Systemtechnik; VDE-Verlag
• Stuart A. Boyer: SCADA: Supervisory Control and Data Acquisition; ISA 3rd edition (June 2004)
Course: Bachelor Seminar in Information Engineering and Management [2540524]

Coordinators: A. Geyer-Schulz
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the examination regulation in form of the written seminar thesis and a presentation.

The final mark is given, if the written seminar thesis was handed in as well as the presentation was held.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Conditions
See module description.
Furthermore, knowledge from CRM is required. Therefore, at least one of the following lectures has to be successfully completed:

- *Customer Relationship Management [2540508]*
- *Analytic CRM [2540522]*
- *Operative CRM [2540520]*

Learning Outcomes
The student is able to

- to perform a literature search for a given topic, to identify, find, value and evaluate the relevant literature.
- to write his seminar thesis (and later on, the bachelors/masters thesis) with the text setting system LaTeX and include format requirements as used by scientific publishers.
- to do a presentation in an adequate scientific manner.
- to write down the results of his investigations in the form of scientific publications.

Content
This seminar serves as an introduction into the process of scientific work. Students write a review for a selected scientific article. A profound literature search is required to judge the article. The review is written with LaTeX by using formatting styles similar to those of scientific publishers.
The seminar treats questions of Customer Relationship Management.

Literature
A CRM-specific article is assigned to every student participating in this seminar. The chosen articles are published in the beginning of every term.

Elective literature:

Course: Rail System Technology [2115919]

Coordinators: P. Gratzfeld

Part of the modules: Rail System Technology (p. 78) [WI3INGMB25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See modul description.

Conditions
See modul description.

Learning Outcomes
The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system. They can assess the suitability of existing elements in the overall system. They deduct the fundamental requirements for rail vehicles out of it.

Content
Introduction: railway as system, history, networks, traffic development, economic impact
Vehicle dynamics: driving resistance, tractive effort diagram, load cycles
Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance
Train protection: succession of trains, guideway
Traction power supply: power networks, power distribution, substations
Vehicles: definitions, compositions
Environmental aspect: energy consumption, traffic area, noise

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).
Course: Construction Technology [0170409]

Coordinators:
S. Haghsheno

Part of the modules:
Fundamentals of construction (p. 85)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Course: Design and Construction of Buildings [26404w]

Coordinators: T. Lützkendorf

Part of the modules: Design, Construction and Sustainability Assessment of Buildings (p. 47)[WI3BWLOOW1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Conditions

None.

Recommendations

A combination with the module Real Estate Management [WI3BWLUNO1] and with engineering science modules in the area of building physics and structural design is recommended.

Learning Outcomes

Knowledge in the area of sustainable construction concerning whole buildings, building components, equipment and appliances as well as building material.

Content

Taking low-energy buildings as an example the course is an introduction to cheap, energy-efficient, resource-saving and health-supporting design, construction and operation of buildings. Questions of the implementation of the principles of a sustainable development within the building sector are discussed on the levels of the whole building, its components, building equipment as well as the materials. Besides technical interrelationships basics dimensioning and various approaches to ecological and economical assessment play a role during the lectures, as well as the different roles of people involved into the building process. Topics are the integration of economical and ecological aspects into the design process, strategies of energy supply, low-energy and passive buildings, active and passive use of solar energy, selection and assessment of construction details, selection and assessment of insulation materials, greened roofs plus health and comfort.

Media

For a better clearness videos and simulation tools will be presented during the lectures.

Literature

Elective literature:

See german version.
Course: Sustainability Assessment of Buildings [2585404/2586404]

Coordinators: T. Lützkendorf

Part of the modules: Design, Construction and Sustainability Assessment of Buildings (p. 47)[WI3BWLOOW1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
A combination with the module Real Estate Management [WI3BWLOOW2] and with engineering science modules from the areas building physics and structural designis recommended.

Learning Outcomes
Knowledge in the area of economic and environmental assessment of construction works.

Content
The course identifies problems concerning the economical and environmental assessment of buildings along their lifecycle and discusses suitable procedures and tools supporting the decision making process. For example, the course addresses topics like operating costs, heat cost allocation, comparisons of heating costs, applied economical assessment methods, life cycle assessment as well as related design and assessment tools (e.g. element catalogues, databases, emblems, tools) and assessment procedures (e.g. carbon footprint, MIPS, KEA), which are currently available.

Literature
Elective literature:
See german version.
Course: Design Basics in Highway Engineering [19026]

Coordinators: R. Roos

Part of the modules: Mobility and Infrastructure (p. 84)[WI3INGBGU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
See corresponding module information.

Learning Outcomes
Provision of first insights into methodologies and techniques in the fields of highway design and road construction.

Content
- Highway design
- Road network layout
- Driving dynamics
- Fundamental principles of highway design in location, elevation and cross section
- Road construction
- Earthworks (requirements and test methods)
- Pavements (structure, construction methods and requirements)
- Pavement design according to the German guideline RStO

Media
Lecture notes are provided for download (information will be made available in the lecture)
Course: Power Network Analysis [23371/23373]

Coordinators: T. Leibfried

Part of the modules: Power Networks (p. 82)[WI3INGETIT3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place at the beginning of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every winter semester. Re-examinations are offered at every ordinary examination date.

Conditions
See German version.

Learning Outcomes
The goal is to relay theoretical fundamentals in the field of electric power technology and power transmission. In the first part the lecture deals with the basics of High-Voltage technology. Then the basics of transmission and distribution of electric energy is presented as well as the load flow calculation and the short-circuit calculation methods.

Supporting the lecture, assignments to the curriculum are distributed. Their solution is presented and discussed during lecture hall exercises.

Content
In its first part, this lecture introduces the High-Voltage technology and its basics. Especially, the reasons for the necessity for the power transmission with high voltages are given. Basic electrical configurations and stresses occurring at multi dielectric systems are presented. Finally the first chapter deals with discharge phenomena.

The second chapter deals with the three phase system. Especially, the mathematical treatment of three phase systems and the introduction of component systems are contained in this chapter.

The third and very comprehensive chapter deals with the transmission and distribution of electric energy. Firstly, the laws of power transmission via transmission lines are presented. Then, the stability of electric power systems and possibilities to increase the power transmission capacity are discussed. Finally, the physics of energy distribution in the medium and low voltage grid is shown.

The fourth chapter deals with the Calculation of electric power networks and systems. Firstly, the preparatory steps for the calculation of the power network are shown. After discussing the basic network analysis methods, the load flow calculation are shown. Especially, the method of current iteration and the Newton Raphson method are presented and the algorithms of the individual methods are shown using an example.

The fifth chapter deals with methods for the calculation of the 3 phase short circuit. Thereby, it is distinguished between the short circuit nearby the generator and far from the generator.

In the sixth chapter the unsymmetrical faults in power networks and their calculation are discussed. Therefore, the symmetrical components are introduced as a first step. Then, the circuits in symmetrical components of all important power network equipment are presented. The chapter closes with the mathematical treatment of unsymmetrical short circuits using the symmetrical component method.

To accompany the lecture, a collection of problems can be downloaded. During lecture hall exercises their solutions will be discussed.

Media
Online material is available on: https://www.ieh.kit.edu/studium_und_lehre_bee.php and can be downloaded using a password.

Literature
Elective literature:
Will be announced in the lecture notes.
Course: Operation [6234801]

Coordinators: E. Hohnecker, P. Gratzfeld
Part of the modules: Basics of Guided Transport Systems (p. 86) [WI3INGBGU4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See module description.

Learning Outcomes
See German version.

Content
Operation systems, signalling systems, operation schedule and timetable construction

Literature
Elective literature:
Fiedler: Grundlagen der Bahntechnik, Werner Verlag Düsseldorf
Pacht: Systemtechnik des Schienenverkehrs, Teubner-Verlag, Stuttgart

Remarks
See German version.
Course: Motor Fuels for Combustion Engines and their Verifications [2133109]

Coordinators: J. Volz

Part of the modules: Combustion Engines II (p. 73) [WI3INGMB19]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Conditions
Successful completion of the course *Combustion Engines A* [21101].

Recommendations
Basic knowledge of chemistry is recommended.

Learning Outcomes

Content
Course: Business Administration: Finance and Accounting [2600026]

Coordinators: M. Ruckes, M. Uhrig-Homburg
Part of the modules: Business Administration (p. 21)[WI1BWL], Business Administration (p. 20)[WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0/2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The goal of this course and the tutorials of this course is to equip students with the fundamentals and basics in the fields of investment and finance, financial and management accounting.

Content
- **Investment and Finance:**
 - Valuation of Bonds and Stocks
 - Capital Budgeting
 - Portfolio Theory
- **Financial Accounting**
- **Management Accounting**

Literature
Extensive bibliographic information will be given in the materials to the lecture.

Remarks
In the winter term 2012/13 this lecture has been modified and is taught separately for students in their first term and students in higher terms. Its former title was Business Administration and Management Science C.

Key qualifications can be shown in an active participation through presentations of solutions and discussions in the tutorials which accompany the course. Each part of the course is taught by instructors specialised in the field of that part.
Course: Business Administration: Production Economics and Marketing [2600024]

Coordinators: M. Ruckes, W. Fichtner, M. Klarmann, Th. Lützkendorf, F. Schultmann

Part of the modules: Business Administration (p. 21)[WI1BWL], Business Administration (p. 20)[WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
The target of this course and the tutorials of this course are the basic points of marketing and production economics. After this basic course students have to be familiar with these three topics in Business Administration and Management Science.

Content
The course is made up of the following topics:

Marketing
- Foundations of marketing
- Strategic marketing
- Consumer behaviour
- Product
- Price
- Promotion
- Sales
- Marketing Metrics

Production economics
In the part of production economics the student will learn basics in the field of production theory, procurement and resource acquisitions, production and operations management and industrial engineering. Aspects of electrical engineering industry, technological foresights, construction industry and real estate markets will be treated.

Literature
Further literature references are announced in the materials to the lecture.

Remarks
In the winter semester 2012/13 the title has changed. The former title was Business Administration and Management Science B.

Key qualifications can be shown in an active participation through presentations of solutions and discussions in the tutorials which accompany the course.

Each part of the course is taught by instructors specialised in the field of that part.
Course: Business Administration: Strategic Management and Information Engineering and Management [2600023]

Coordinators: M. Ruckes, H. Lindstädt, Ch. Weinhardt

Part of the modules: Business Administration (p. 21)[WI1BWL], Business Administration (p. 20)[WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
This lecture introduces the student to the discipline of business administration and management science. Due to this the student is equipped to become familiar with all their different fields very efficiently and effectively. Moreover, this lecture gives some kind of orientation among these fields.

After this, foundations of management and organization as well as information engineering and management are taught.

Content
The following topics are treated:

Foundations of Business Administration
- Economic Principle
- Business administration as science
- Firm and company
- Functions in firms
- Constitutional decisions in firms
- Die curraxit AG - a case study for the core program

Strategic Management
- Mangarial decisions in firms
- Corporate Governance
- Organization of the firm
- Foundations of strategic management

Information Engineering and Management
- Digital economies and services
- Auctions
- Service markets und network effects
- Information processing on financial markets

Literature
Further literature references are announced in the materials to the lecture.

Remarks
In the winter semester 2012/13 the title of this lecture has been changed. The former title was Business Administration and Management Science A.
Course: Civil Law for Beginners [24012]

Coordinators: T. Dreier

Part of the modules: Elective Module Law (p. 91) [W13JURA]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4, (2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
To begin with, the course provides students with a general introduction into law. It shall enable them to understand legal problems and solutions both with regard to lawmaking and to individual cases. Students shall grasp the differences between civil law, public law and criminal law. In particular, students shall learn the fundamental notions and constructions of Civil law as laid down in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises etc. Students shall be trained to understand legal problems and legal solutions. They shall be able to recognise the legal problems of a given factual situation and develop solutions to simple legal problems.

Content
The course starts with a general introduction into law. What is law, why are legal rules valid, and what is the role of law in conjunction with social behaviour, technological and market developments? What is the relationship between law and justice? Moreover, the distinction between civil law, public law and criminal law will be highlighted. The basics of jurisdiction, international conflicts and alternative dispute settlement will be discussed. The main focus of the course is on the fundamental notions of civil law as defined and regulated in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, agency, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises. The course ends with an outlook to the law of contracts and property law.

Media
Transparencies/Slides

Literature
Tba at the beginning of the course,

Elective literature:
Tba at the beginning of the course,
Course: BioMEMS II (Microsystem Technology for Life-Sciences and Medicine; part II) [2142883]

Coordinators: A. Guber
Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
It is recommended to attend course BioMEMS I [2141864] beforehand.

Learning Outcomes
The student

- Knows typical applications of BioMEMS in the fields of medical engineering and life sciences
- Has extensive knowledge about the realisation of micro analysing systems like e.g. LabCD-systems, BioChips or microarrays, cell based systems, systems for tissue engineering, Patch-Clamping-systems and Drug-Delivery-systems
- Understands the fundamentals of micro process engineering
- Knows different monitoring systems for intensive care and the diagnostics of respiratory air
- Masters the required basic knowledge for the realisation of neuro-prosthetics and nano surgery

Content
Table of Contents:

- Micro fluidic systems: LabCD, systems for protein crystallization
- BioChips and micro arrays
- Tissue engineering
- Biohybrid cell-chip systems
- Drug delivery systems
- Micro reaction technology
- Micro fluidic systems for FTIR measurements of biological fluids
- Micro systems for anesthesia, intensive care (monitoring) and infusion therapy
- Respiratory diagnostics
- Neural prostheses
- Nano surgery

Media
Detailed script is provided free of charge.

Literature
- "Fundamentals of Microfabrication" by M. J. Madou
- "Medizintechnik: Life Science Engineering. Interdisziplinarität, Biokompatibilität, Technologien, Implantate, Diagnostik, Werkstoffe, Zertifizierung, Business" by Erich Wintermantel
Course: BioMEMS III (Microsystem Technology for Life-Sciences and Medicine; part III) [2142879]

Coordinators: A. Guber
Part of the modules: Microsystem Technology (p. 80) [WI3INGMBIMT1]

ECTS Credits 3
Hours per week 2
Term Summer term
Instruction language de

Learning Control / Examinations
The assessment will consist of a oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
It is recommended to attend course BioMEMS I [2141864] beforehand.

Learning Outcomes
The student
• has fundamental as well as advanced knowledge of different BioMEMS applications, especially in the micro technical based field of medical engineering
• knows the first principles of the minimal invasive surgery (MIC), NOTES and of endoscopic neurosurgery
• understands the use and procedure of catheter based systems in the interventional vascular therapy
• has extensive knowledge in the field of stent based systems
• knows aspects of surgery robots and video pills
• has available knowledge of the Medical Devices Act

Content
Table of Contents:
• Minimal Invasive Surgery (MIS)
• Endoscopic Neurosurgery
• Interventional Cardiology and Vascular Therapy
• NOTES (Natural Orifice Transluminal Endoscopic Surgery)
• robotic surgery and Endosystems
• Approval of medical devices (Medical Device Directive) and Quality Management

Media
Detailed script is provided free of charge.

Literature
• "Fundamentals of Microfabrication" by M. J. Madou
• "Medizintechnik: Life Science Engineering. Interdisziplinarität, Biokompatibilität, Technologien, Implantate, Diagnostik, Werkstoffe, Zertifizierung, Business" by Erich Wintermantel
Course: Bionics for Engineers and Natural Scientists [2142140]

Coordinator: H. Hölscher, S. Walheim
Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
Knowledge in physics and chemistry.

Learning Outcomes
The students should be able analyze, judge, plan and develop biomimetic strategies and products.

Content
Bionics focuses on the design of technical products following the example of nature. For this purpose we have to learn from nature and to understand its basic design rules. Therefore, the lecture focuses on the analysis of the fascinating effects used by many plants and animals. Possible implementations into technical products are discussed in the end.

Media
Slides of the lectures.

Literature
Course: Exchanges [2530296]

Coordinators: J. Franke
Part of the modules: Topics in Finance II (p. 38)[WI3BWLFBV6], Topics in Finance I (p. 37)[WI3BWLFBV5], eFinance (p. 43)[WI3BWLISM3]

ECTS Credits: 1.5 | Hours per week: 1 | Term: Summer term | Instruction language: de

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Students learn about current developments regarding organisation of exchanges and securities trading.

Content
- Organisation of exchanges: Changing Zeitgeist - Corporates instead of cooparative structures
- Market models: order driven vs. market maker - Liquidity provision for less frequently traded securities
- Trading systems: The end of an era? - No more need for running traders?
- Clearing: Diversity instead of uniformity - Safety for all?
- Settlement: Increasing importance - Does efficient settlement assure the “value added” of exchanges in the long run?

Literature
Elective literature:
Educational material will be offered within the lecture.
Course: CAN-Bus Release Control [2114092]

Coordinators: M. Geimer

Part of the modules:
- Automotive Engineering (p. 65) [WI3INGMB5], Mobile Machines (p. 71) [WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module *Mobile Machines*: See module description.
Assessment for the module *Automotive Engineering*: The assessment consists of an oral exam (20 min) taking place in the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Basic knowledge of electrical engineering is recommended. Programming skills are also helpful.

Learning Outcomes
The students will get an overview of the theoretic and practical functioning of different bus systems.

After the practical oriented lessons the students will be able to visualize the communication structure of different applications, design basic systems and evaluate the complexity of programming of the complete system.

Content
- Knowledge of the basics of data communication in networks
- Overview of the operating mode of current field buses
- Explicit observation of the operating mode and application areas of CAN buses
- Practical programming of an example application (hardware is provided)

Literature

Elective literature:

Remarks
The course will be replenished by interesting lectures of professionals.
Course: Chemical, physical and material science aspects of plastics in the micro technology [2143500]

Coordinators: M. Worgull, D. Häringer

Part of the modules: Microsystem Technology (p. 80)\[WI3INGMBIMT1\]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
This Lecture can be combined with “Replication processes in micro technology” [2143893]
Intermediate examination or bachelor degree of mach/wing necessary.
Basic knowledge of the micro-system technology (but not a requirement) and interdisciplinary interest are favourable.

Learning Outcomes

Content

- **Introduction to the world of the plastics**
- **Chemistry of the polymers - synthesis and chemical characteristics**
- **Tailor-made composite / polymer blends**
- **Physical characteristics of plastics and their description**
 - Morphologic structure
 - Thermal behaviour
 - Time temperature - equivalence
 - Rheology of polymer melts
 - Thermo analysis

- **Plastics processing in the micro technology**
- **Application of polymers as construction material in the micro-system technology**
 - Composites / Compounds
 - MID – injection moulding of circuit carriers
 - Assembling and welding of plastics
 - Engineering with plastics
 - Environmental problems - biological degradable polymers

- **Meaning of the plastics in the micro technology explained by examples of current developments of polymer-based applications**
 - Semi conducting organic plastics
 - Nano-structured polymer surfaces
 - Polymer sensors (biologically, chemically, optically)

Media
Printouts of the lecture presentation, if applicable further scientific articles.
Course: Complexity Management [2511400]

Coordinators: D. Seese
Part of the modules: Electives in Informatic (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO). The exam will be offered every semester and may be repeated at every ordinary exam date.
Questions are in German and English, answers are possible in German or in English.
In case that only a small number of candidates apply for the examination there will be offered an oral examination according to Section 4(2),1 of the examination regulation.

Conditions
None.

Recommendations
A basic knowledge in informatics is suitable.

Learning Outcomes
Students will be enabled to acquire abilities, methods and instruments in the area of complexity management and learn to use them in an innovative way. The students should be enabled to find arguments for the solution of problems in this area. The basic goal of the lecture is to enable to understand the difficulties to manage complex systems and processes.

Content
Complexity is one of the biggest challenges of our time. Central questions are: - Why humans often fail in complex situations? - What is complexity? - What are reasons for complexity? - Which parameters are essential to control complexity? - How systems have to be designed to reduce their complexity and to enable management of complexity?
The lecture gives a survey on fundamental results and handles the following topics: - Understanding of the difficulties produced by complex systems and complex processes - Foundations: modelling complex systems, complexity theory, descriptive, structural and parametric complexity, dynamic systems, topology, dimension, non-linearity, chaos, randomness and emerging structures, human shortcomings, simulation - Complexity of products and production - Complexity of markets - How to improve complexity management? - Decision support by intelligent use of IT

Media
The slides of the lectures will be provided on the website of the lecture.

Literature
see lecture

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described content and schedule.
The course “Complexity Management” will not be offered any more from summer term 2016 on. The examination will be offered latest until summer term 2015 (repeaters only).
Course: Customer Relationship Management [2540508]

Coordinators: A. Geyer-Schulz
Part of the modules: CRM and Service Management (p. 44)[WI3BWLISM4]

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.
The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>95</td>
</tr>
<tr>
<td>1.3</td>
<td>90</td>
</tr>
<tr>
<td>1.7</td>
<td>85</td>
</tr>
<tr>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>2.3</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>70</td>
</tr>
<tr>
<td>3.0</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>55</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conditions
None.

Learning Outcomes
The students
- understand service management as an economic basis for Customer Relationship Management and learn the resulting consequences for the management, the organisation itself and their departments,
- design and develop service concepts and service systems at a conceptual level,
- work on case studies in the CRM-area in small groups with limit time,
- learn English as the technical language in the area of CRM and consult internationale literature from this field for the case studies.

Content
The course begins with an introduction into Service Management as the strategic concept which also covers all CRM applications. The course is divided in the basics of Service Management as well as different topics within this concept like external and internal marketing, quality management and organizational requirements.

Media
Slides, Audio, Reader

Literature

Elective literature:
Course: Data Mining [2520375]

Coordinators: G. Nakhaeizadeh

Part of the modules: Statistical Applications of Financial Risk Management (p. 90) [WI3STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content

Part one: Data Mining

Why Data Mining?

- What is Data Mining?
- History of Data Mining
- Conferences and Journals on Data Mining
- Potential Applications
- Data Mining Process:
 - Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment
 - Interdisciplinary aspects of Data Mining
 - Data Mining tasks
 - Data Mining Algorithms (Decision Trees, Association Rules,
 Regression, Clustering, Neural Networks)
- Fuzzy Mining
- OLAP and Data Warehouse
- Data Mining Tools
- Trends in Data Mining

Part two: Examples of application of Data Mining

- Success parameters of Data Mining Projects
- Application in industry
- Application in Commerce

Literature

- Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.
- David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining , MIT Press, Fall 2000
Course: Database Systems [2511200]

Coordinators: A. Oberweis, Dr. D. Sommer
Part of the modules: Electives in Informatic (p. 60)[WI3INFO2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Conditions
Knowledge of course Applied Informatics I - Modelling [2511030] is expected.

Learning Outcomes
Students
- are familiar with the concepts and principles of data base models, languages and systems and their applications,
- can design and model relational data bases on the basis of theoretical foundations,
- are able to ensure an error-free operation and the integrity of the data base and
- know how to handle enhanced data base problems occurring in the enterprises.

Content
Database systems (DBS) play an important role in today’s companies. Internal and external data is stored and processed in databases in every company. The proper management and organization of data helps to solve many problems, enables simultaneous queries from multiple users and is the organizational and operational base for the entire working procedures and processes of the company. The lecture leads in the area of the database theory, covers the basics of database languages and database systems, considers basic concepts of object-oriented and XML databases, conveys the principles of multi-user control of databases and physical data organization. In addition, it gives an overview of business problems often encountered in practice such as:
- Correctness of data (operational, semantic integrity)
- Restore of a consistent database state
- Synchronization of parallel transactions (phantom problem).

Media
Slides, Access to internet resources

Literature
Elective literature:

Further literature will be given individually.
Course: Derivatives [2530550]

Coordinators: M. Uhrig-Homburg

Part of the modules: Topics in Finance II (p. 38)[WI3BWLFBV6], Topics in Finance I (p. 37)[WI3BWLFBV5], eFinance (p. 43)[WI3BWLI3M3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Media
Slides, Exercises/Exercise sheets

Literature

Elective literature:
Course: Services Marketing and B2B Marketing [2572158]

Coordinators: M. Klarmann

Part of the modules: Foundations of Marketing (p. 49) [WI3BWLMAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes

Content
The aim of this course is to prepare students for two certain marketing perspectives. The service marketing is concentrated on the particularities coming up when a company sells services instead of products. Subjects in this section are for example:

- Measuring service quality
- Pricing services
- Management of service staff

The second part of the course contains a business-to-business marketing perspective. Topics are below others:

- Management of buying centers
- Competitive Bidding
- B2B-Branding

Remarks
For further information please contact Marketing & Sales Research Group (marketing.ism.kit.edu).
Course: Efficient Algorithms [2511100]

Coordinators: H. Schmack

Part of the modules: Electives in Informatic (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the week after the end of the lecturing periodwrt (§4 (2), 1 SPO).
If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the bonus exam will improve the mark by one level (i.e. by 0.3 or 0.4).
Deviations from this type of assessment are announced at the beginning of this course.

Conditions
credits for the Informatics modules of years 1 and 2.

Learning Outcomes
The student will learn how to use methods and concepts of efficient algorithms and how to demonstrate adequate innovative capabilities with respect to the used methods.
This course emphasizes the teaching of advanced concepts for the design and application of algorithms, data structures, and computer infrastructures in relation to their applicability in the real world. Based on a fundamental understanding of the covered concepts and methods, students should know how to select appropriate concepts and methods for problem settings in their professional life, and, if necessary, to extend and apply them in an adequate form. The students should be enabled to find adequate arguments for justifying their chosen problem solutions.

Content
In a problem oriented way the course presents systematic approaches to the design and analysis of efficient algorithms using standard tasks of information processing as generic examples. Special emphasis is put on the influence of data structures and computer architectures on the performance and cost of algorithms. In particular, the course emphasizes the design and analysis of algorithms on parallel computers and in hardware, which is increasingly important considering the growing presence of multicore architectures.

Media
- powerpoint slides with annotations using a tablet pc
- access to applets and Internet ressources
- lecture recording (camtasia)

Literature
Borodin, Munro: The Computational Complexity of Algebraic and Numeric Problems (Elsevier 1975)
Cormen, Leiserson, Rivest: Introduction to Algorithms (MIT Press)
Sedgewick: Algorithms (Addison-Wesley) (many different versions available)

Elective literature:
will be announced in class
Course: eFinance: Information Engineering and Management for Securities Trading [2540454]

Coordinator: C. Weinhardt
Part of the modules: Topics in Finance II (p. 38)[WI3BWLFBV6], eFinance (p. 43)[WI3BWLISM3], Topics in Finance I (p. 37)[WI3BWLFBV5], eBusiness and Service Management (p. 39)[WI3BWLISM1]

ECTS Credits: 4,5
Hours per week: 2/1
Term: Winter term
Instruction language: en

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation) and by submitting written essays as part of the exercise (according to §4(2), 3 of the examination regulation). 70% of the final grade is based on the written exam and 30% is based on assignments from the exercises. The points obtained in the exercises only apply to the first and second exam of the semester in which they were obtained.

Conditions
None.

Learning Outcomes
The students

• are able to understand the theoretical and practical aspects of securities trading,
• are able to handle the relevant electronic tools for the evaluation of financial data,
• are able to identify the incentives of the traders for participation in different market platforms,
• are able to analyse capital marketplaces concerning their efficiency, weaknesses and technical configuration,
• are able to apply theoretical methods of econometrics,
• are able to understand, criticize and present articles with a finance-scientific background,
• learn to elaborate solutions in a team.

Content
The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Media
• Powerpoint presentations
• recorded lecture available on the internet

Literature

Elective literature:
Course: Introduction to Operations Research I [2550040]

Coordinators: S. Nickel, O. Stein, K. Waldmann

Part of the modules: Introduction to Operations Research (p. 24)[WI1OR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2/2</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
See module information.

Learning Outcomes
See module information.

Content
Examples for typical OR problems.
Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, multicriteria optimization.
Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal flows in networks.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software.

Literature
Course: Introduction to Operations Research II [2530043]

Coordinators: S. Nickel, O. Stein, K. Waldmann

Part of the modules: Introduction to Operations Research (p. 24)[WI1OR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
See corresponding module information. Especially the course Introduction to Operations Research I [2550040] is assumed.

Learning Outcomes
See module information.

Content
Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.
Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.
Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynamic and stochastic inventory models, queuing theory.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software

Literature
Course: Introduction to Energy Economics [2581010]

Coordinators: W. Fichtner
Part of the modules: Energy Economics (p. 34)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,5</td>
<td>2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Conditions
See module description.

Learning Outcomes
The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Content
1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

Media
Media will be provided on the e-learning platform ILIAS.

Literature
Complementary literature:
Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
Course: Introduction to Public Finance [2560131]

Coordinators: B. Wigger

Part of the modules: Introduction to Public Finance and Public Management (p. 55)[WI3VWL11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
Since this course is a compulsory element of the module, a passing grade is required in order to receive credit for completion of both the course and the module.

Recommendations
None.

Learning Outcomes
Students are able to:

- critically assess the economic role of the state in a market economy
- explain and discuss key concepts in public finance, including: public goods; economic externalities; and market failure
- explain and critically discuss competing theoretical approaches to public finance, including welfare economics and public choice theory
- explain the theory of bureaucracy according to Weber and critically assess its strengths and weaknesses
- evaluate the incentives inherent in the bureaucratic model, as well as the more recent introduction of market-oriented incentives associated with public-sector reform
- analyze the strategic implications of public decision making

Content
The course *Introduction to Public Finance* provides an overview of the fundamental issues in public economics. The first part of the course deals with normative theories about the economic role of the state in a market economy. Welfare economics theory is offered as a base model, with which alternative normative theories are compared and contrasted. Within this theoretical framework, arguments concerning efficiency and equity are developed as justification for varying degrees of economic intervention by the state. The second part of the course deals with the positivist theory of public economics. Processes of public decision making are examined and the conditions that lead to market failures resulting from collective action problems are discussed. The third part of the course examines a variety of public spending programs, including social security systems, the public education system, and programs aimed at reducing poverty. The fifth part of the course addresses the key theoretical and political issues associated with fiscal federalism.

Media
Lecture slides.

Literature
Course: Introduction to Game Theory [2520525]

Coordinators: C. Puppe, P. Reiss

Part of the modules: Economic Theory (p. 56)[WI3VWL12], Microeconomic Theory (p. 51)[WI3VWL6], Applied Microeconomics (p. 57)[WI3VWL13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be resited at every ordinary examination date.

Conditions
None.

Recommendations
Basic knowledge of mathematics and statistics is assumed.

Learning Outcomes
This course offers an introduction to the theoretical analysis of strategic interaction situations. At the end of the course, students shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings.

Content
The course focusses on non-cooperative game theory. It discusses models, solution concepts, and applications for simultaneous games as well as sequential games. Various solution concepts, e.g., Nash equilibrium and subgame-perfect equilibrium, are introduced along with more advanced concepts. A short introduction to cooperative game theory is given if there is sufficient time.

Media
Slides, problem sets.

Literature
Compulsory textbook:

Additional Literature:

Remarks
This course was formerly named “Game Theory I”.
Course: Basic Principles of Economic Policy [2560280]

Coordinators: I. Ott
Part of the modules: Economic Policy I (p. 54) [WI3VWL10]

ECTS Credits	Hours per week	Term	Instruction language
4,5 | 2/1 | Summer term | de

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
The course “Basic Principles of Economic Policy” is compulsory and must be examined.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014].

Learning Outcomes
Students shall be given the ability to

- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Content
- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Media
- lecture slides
- exercises

Literature
See announcements to the lecture
Course: Introduction to GIS for students of natural, engineering and geo sciences [20712/13]

Coordinators: Rösch

Part of the modules: Understanding and Prediction of Disasters 2 (p. 88), Understanding and Prediction of Disasters 1 (p. 87)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Remarks

For further information, see http://www.gik.uni-karlsruhe.de/print/index.html?&no_cache=1&P=1
Course: Introduction to Public Management [2560132]

Coordinators: B. Wigger, N. Edwards

Part of the modules: Management of public- and private-sector organizations (p. 50)[WI3BWLIWW1], Introduction to Public Finance and Public Management (p. 55)[WI3VWL11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Module Management of public- and private-sector organizations:
Student achievement of learning goals is assessed by means of a written exam (90 min.), in accordance with §4(2), 1 SPO of the exam regulations. The grade for the exam constitutes the final grade for the course.
A re-sit exam (written exam) will be offered during the first week of the following winter semester, for which participation is obligatory for all students who failed the exam on their first attempt. Only students who took the first exam will be allowed to participate in the re-sit exam. Only in exceptional circumstances may the re-sit exam be taken as an oral exam rather than as a written exam.

Module Introduction to Public Finance and Public Management:
See module description

Conditions
Both the lecture „Introduction to Public Management“ and the course „Case Studies in Public Management“ must be taken at the same time.
Since this course is a compulsory element of the entire module, a passing grade is required in order to receive credit for completion.

Recommendations
A good proficiency in the English language (written and spoken).

Learning Outcomes
Course objective: The aim of the course is to provide students with a comprehensive understanding of management in public sector organizations and management of the provision of public services, also by private organizations.

Learning goals
Successful completion of the course will enable students to*:
1. Discuss management issues unique to the public sector;
2. Explain the main managerial functions involved in the management of public organizations and the provision of public services;
3. Explain and discuss the nature of “public services”;
4. Evaluate normative arguments (both political and economic) for and against public versus private provision of certain goods and services;
5. Critically discuss the role of politicians in and the impact of politics on organizational management in the public sector;
6. Explain the opportunities and limitations associated with the application of private sector management practices in public sector organizations;
7. Explain and discuss the managerial challenges in private and public sector organizations, respectively, posed by the following organizational characteristics: ownership, funding, control and purpose.

*Further learning goals related to specific topics covered in the lecture can be found in the textbook (see “Required reading”).

Content
Strategic management; Marketing; Financial management; Contracting for public service provision; Use of information and communication technologies; Human resource management; Performance, quality and process management; Auditing and controlling

Literature
Course: Technique of Electrical Installation [23382]

Coordinators: A. Kühner

Part of the modules: Energy Generation and Network Components (p. 83)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam taking place at the beginning of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The goal is to relay practical fundamentals. The lecture gives an overview about the classical and modern methods of electrical installations of and in buildings. Furthermore the students get an insight to regulations and engineer standards.

Content
- Capture 1: Electrical Power Distribution and Networking
- Capture 2: Electrical Power Supply of Buildings
- Capture 3: Electrical Power Supply in Buildings
- Capture 4: Protective Equipments
- Capture 5: Electrical Energy Applications
- Capture 6: Electrical Automation and System Engineering of Buildings
- Capture 7: Powermanagement of Buildings

Media
Online material is available on: https://www.ieh.kit.edu/studium_und_lehre_elektrische_installationstechnik.php
Course: Systems for Electrical Energy [23391/23393]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (120 min) taking place at the beginning of the recess period (according to Section 4 (2), 1 of the examination regulation). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Conditions

For a successful participation knowledge of the content of the course Higher mathematics and especially of complex computation is assumed.

The course is an obligatory course within the module and has to be attended.

Learning Outcomes

The goal is to relay theoretical fundamentals in the field of electrical network analysis and in the field of electrical power networks.

In the first part the lecture deals with the calculation of transients in linear electrical networks using differential equations and the Laplace transform. In the second part of the lecture the electrical power network equipment is described. Supporting the lecture, assignments to the curriculum are distributed. Their solution is presented and discussed during lecture hall exercises.

Content

In its first part, this lecture is a consequent continuation of the calculation of electrical networks as it is presented in the lecture “Linear electrical networks”. In the second part of this lecture, the basics of electric power network equipment are presented. This is the basis for all further lectures of power system technology.

The first chapter gives an introduction in the single phase and three phase AC system.

The second chapter deals with or is a repetition of electromagnetic basics. In a first step magnetic circuits and their calculation is treated. Subjects like main flux and stray flux are introduced, as well as self induction main inductance and stray inductance. The induction law leads directly to the transformer and the calculation of inductances and finally to the calculation of forces caused by a current flowing in a conduction which is located within a magnetic field.

The third and very comprehensive chapter deals with the mathematical description of electrical networks. Hereby, it is distinguished between networks with concentrated elements and networks with distributed elements. The calculation of networks with concentrated elements leads to differential equations with constant coefficients. Their solution as well as a special case, the sinusoidal excitation of such networks, is comprehensively demonstrated using examples. Finally, the description of electrical networks by a system of first order differential equations is shown and their solution is presented. Circuits with distributed elements are transmission lines. The transmission line theory for sinusoidal voltages and currents as well as for impulse voltages and currents is shown.

The fourth chapter deals with the Laplace Transform as a tool for electrical network analysis. First, the Duhamel integral (convolution integral) is presented. Then the Laplace Transform is derived out of the convolution integral and in a further sub-chapter the solution of differential equations using the Laplace Transform is demonstrated.

The fifth chapter deals with methods for network analysis. It demonstrates the mesh analysis, the nodal analysis, the superposition theorem, Norton's theorem, Thevenin's theorem and the Tellegen-Theorem. These formal methods are demonstrated using two examples circuits. These circuits are transistor amplifier with and without a transformer. This allows the calculation of networks with voltage or current dependent sources.

In the sixth chapter the structure of the electric power network is shown and explained.

The seventh chapter deals with power network equipment. Thereby, their steady state behaviour in the power network as well as their electrical and mechanical basic design is presented. The chapter contains synchronous generators, power transformers, reactors, capacitors, transmission lines and switch gear. For all of this power network equipment its steady state electrical circuit is derived. This gives the basis for all further lectures in the field of power network engineering.

To accompany the lecture, a collection of problems can be downloaded. During lecture hall exercises their solutions will be discussed.

The course comprises of the interleaved lecture blocks and exercises. Current information can be found on the IEH webpage.

Media

Online material is available on: www.ieh.kit.edu and can be downloaded using a password.

Literature

Elective literature:
Will be announced in the lecture notes.
Course: Electrical Engineering I [23223]

Coordinators: W. Menesklou
Part of the modules: Electrical Engineering (p. 28)[WI1NG4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>2/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (120 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The student is supposed to develop an understanding for the basic terms of electrical engineering and should be able to carry out simple calculations of DC and AC circuits.

Content
This course introduces undergraduate students of Industrial Engineering and Management into the basics of electrical science and engineering. Supporting the lecture, assignments to the curriculum are distributed. These are solved into additional (voluntary) tutorials.

- DC: Electrical sources, resistance, circuits, Kirchhoff’s law
- Fields: Electrical and magnetic fields, dielectrics, inductance
- AC: Complex calculus, RLC circuits, filters

Media
Online material is available at http://www.iwe.kit.edu

Literature
Online material is available on http://www.iwe.kit.edu/

Elective literature:

Course: Electrical Engineering II [23224]

Coordinators: W. Menesklo
Part of the modules: Emphasis in Fundamentals of Engineering (p. 67)[WI3INGMB8]

ECTS Credits

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (120 min) taking place in the recess period (according to Section 4[2], 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

The module Electrical Engineering [WI1ING4] has to be completed beforehand.

Learning Outcomes

The student knows and understands basic components and techniques of electrical engineering.

Content

This course introduces undergraduate students of Industrial Engineering and Management into topics of advanced electrical engineering like electrical instrumentation, semiconductors, control engineering and electric motors. Within the lecture, assignments to the curriculum are discussed and are used for preparation for written examination.

Media

Online material is available at http://www.iwe.kit.edu

Literature

Online material is available on http://www.iwe.kit.edu/

Elective literature:

Will be announced during the lecture.
Course: Elements and Systems of Technical Logistics [2117096]

Coordinators: M. Mittwollen, V. Madzharov

Part of the modules: Introduction to Technical Logistics (p. 69)[WI3INGMB13]

ECTS Credits 6 **Hours per week** 3/1 **Term** Winter term **Instruction language** de

Learning Control / Examinations
The assessment consists due to the number of attendees, of an oral or a written exam according to Section 4 (2), 1 of the examination regulation.

Conditions
LV 2117095 must be passed successfully - examination dates are sequenced accordingly

Learning Outcomes
Students are able to:

- Describe elements and systems of technical logistics,
- Model and calculate structures and functions of special conveying machines,
- Describe interdependence of material flow systems and technique quantitatively and qualitatively and
- Equip material flow systems with appropriate machines.

Content
material flow systems and their (conveying) technical components
mechanical behaviour of conveyors;
dedicated use of knowledge from *basics of technical logistics*
detailed structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
sample applications and calculations in addition to the lectures inside practical lectures

Media
- supplementary sheets, projector, blackboard

Literature
- recommendations during lectures
Course: Theory of endogenous growth [2561503]

Coordinators: I. Ott
Part of the modules: Macroeconomic Theory (p. 52)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Conditions
None.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Learning Outcomes
Students shall be given the ability to understand, analyze and evaluate selected models of endogenous growth theory.

Content
- Basic models of endogenous growth
- Human capital and economic growth
- Modelling of technological progress
- Diversity Models
- Schumpeterian growth
- Directional technological progress
- Diffusion of technologies

Media
- lecture slides
- exercises

Literature
Excerpt:

Remarks
Please note that this course is probably not available in winter term 2013/14. For further information please visit http://wipo.econ.kit.edu/.
Course: Energy efficient intralogistic systems [2117500]

Coordinators: F. Schönung
Part of the modules: Introduction to Technical Logistics (p. 69)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Recommendations
Knowledge of Electrical Engineering and Technical Mechanics is recommended.

Learning Outcomes
Students are able to:

- Describe and choose basic measures to enhance energy efficiency,
- Specify these measures considering material handling processes like steady conveyors,
- unsteady conveyors,
- as well as the necessary drives,
- Model based on this material handling systems and calculate their energy efficiency and
- Choose resource efficient material handling systems.

Content
The main focuses of the course are:

- processes in Intralogistic systems
- evaluation of energy consumption of conveyors
- modeling of conveying systems
- methods for energy savings
- approaches for energy efficiency increasing of continuous and discontinuous conveyors
- dimensioning energy efficient drives
- new approaches for resource efficient conveying systems.
Course: Energy Policy [2581959]

Coordinators: M. Wietschel

Part of the modules: Energy Economics (p. 34)[WI3BWLIIP2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes

Content
The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Literature
Will be announced in the lecture.
Course: Enterprise Risk Management [2530326]

Coordinators: U. Werner
Part of the modules: Risk and Insurance Management (p. 36)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the assessment of the oral presentations incl. term papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions
None.

Learning Outcomes
Learning to identify, to analyse and to assess business risks; this serves as a basis for strategy and policy design regarding risks and opportunities of an enterprise. Introduction to approaches that allow to consider area-specific risk objectives, risk-bearing capacity and risk acceptance.

Content
1. Concepts and practice of risk management, based on decision theory
2. Goals, strategies and policies for the identification, analysis, assessment and management of risks
3. Insurance as an instrument for loss-financing
4. Selected aspects of risk management: e.g. environmental protection, organizational failure and D&O-coverage, development of a risk management culture
5. Organisation of risk management
6. Approaches for determining optimal combinations of risk management measures considering their investment costs and outcomes.

Literature

Elective literature:
Additional literature is recommended during the course.
Course: Electric Power Generation & Power Grid [23356]

Coordinators: B. Hoferer
Part of the modules: Energy Generation and Network Components (p. 83) [WI3INGETIT4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every winter semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The goal is to relay theoretical fundamentals. The lecture covers the entire topic of power generation from conversion of primary energy resources in coal fired power plants and nuclear power plants to utilisation of renewable energy. The lecture gives a review of the physical fundamentals, technical-economic aspects and potential for development of power generation both conventional generation and renewable generation.

Content

- Energy resources
- Energy consumption
- Types and use of power plants
- Conversion of primary energy in power plants
- Thermodynamical fundamental terms
- Process in steam power plants
- Steam power plants components
- Flue gas cleaning
- Thermal power plants
- Nuclear power plants
- Hydroelectric power plants
- Wind energy converters
- Solar energy plants

Media
Material is available at the beginning of the lecture.

Literature

Elective literature:
Schwab; Elektroenergiesysteme; 1. Auflage 2006.
Course: eServices [2595466]

Coordinators: C. Weinhardt, H. Fromm, J. Kunze von Bischhoffshausen

Part of the modules:
- eBusiness and Service Management (p. 39)[WI3BWLISM1]
- Specialization in Customer Relationship Management (p. 45)[WI3BWLISM5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation). By successful completion of the exercises (according to §4(2), 3 of the examination regulation) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4). The bonus only applies to the first and second exam of the semester in which it was obtained.

Conditions
None.

Learning Outcomes
This course conveys the fundamental knowledge to understand the importance of services in our economy and the impact of information and communication technology (ICT) on existing and emerging service industries. Combining theoretical models with multiple case studies and application scenarios, this course will enable students:

- to understand different service perspectives and apply the general concept of “value co-creation”
- to know and to be able to apply concepts, methods and tools used for the design, engineering and management of eServices
- to be familiar with current research topics
- to gain experience in group work and to improve their presentation skills
- to be exposed to English language in preparation for working in international environments

Content
The world is moving more and more towards “service-led” economies: in developed countries services already account for around 70% of gross value added. In order to design, engineer, and manage services, traditional “goods-oriented” models are often inappropriate. In addition, the rapid development of information and communication technology (ICT) pushes the economic importance of services that are rendered electronically (eServices) and, thus, drives competitive changes: increased interaction and individualization open up new dimensions of “value co-creation” between providers and customers; dynamic and scalable service value networks replace static value chains; digital services can be globally delivered and exchanged across today’s geographic boundaries;

Building on a systematic categorization of (e)Services and on the general notion of “value co-creation”, we cover concepts and foundations for engineering and managing IT-based services, allowing for further specialization in subsequent KSRI courses. Topics include service innovation, service economics, service modeling as well as the transformation and coordination of service value networks.

In addition, case studies, hands-on exercises and guest lectures will illustrate the applicability of the concepts. English language is used throughout the course to acquaint students with international environments.

Media
- PowerPoint

Literature
- Stauss, B. et al. (Hrsg.) (2007), Service Science – Fundamentals Challenges and Future Developments.
- Teboul, (2007), Services is Front Stage.

Remarks
The lecture is not offered in the M.Sc. modules anymore, starting with the summer term 2012.
Course: Handling Characteristics of Motor Vehicles I [2113807]

Coordinators: H. Unrau
Part of the modules: Handling Characteristics of Motor Vehicles (p. 66)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30-40 min) taking place in the recess period and in the lecture period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Basics of Automotive Engineering I and II [2113805 and 2114835] beforehand.

Learning Outcomes
The students know the basic connections between drivers, vehicles and environment. They can build up a vehicle simulation model, with which forces of inertia, aerodynamic forces and tyre forces as well as the appropriate moments are considered. They have proper knowledge in the area of tyre characteristics, since a special meaning comes to the tire behavior during driving dynamics simulation.

Content
1. Problem definition: Control loop driver - vehicle - environment (e.g. coordinate systems, modes of motion of the car body and the wheels)
2. Simulation models: Creation from motion equations (method according to D'Alembert, method according to Lagrange, programme packages for automatically producing of simulation equations), model for handling characteristics (task, motion equations)
3. Tyre behavior: Basics, dry, wet and winter-smooth roadway

Literature
Elective literature:
Course: Handling Characteristics of Motor Vehicles II [2114838]

Coordinators:
H. Unrau

Part of the modules:
Handling Characteristics of Motor Vehicles (p. 66) [W3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30-40 min) taking place in the recess period and in the lecture period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Handling Characteristics of Motor Vehicles I [2113807] and Basics of Automotive Engineering I and II [2113805 and 2114835] beforehand.

Learning Outcomes
The students have an overview of common test methods, with which the handling of vehicles is gauged. They are able to interpret results of different stationary and transient testing methods. Apart from the methods, with which e.g. the driveability in curves or the transient behaviour from vehicles can be registered, also the influences from cross-wind and from uneven roadways on the handling characteristics are well known. They are familiar with the stability behavior from single vehicles and from vehicles with trailer.

Content
1. Vehicle handling: Bases, steady state cornering, steering input step, single sine, double track switching, slalom, cross-wind behavior, uneven roadway
2. stability behavior: Basics, stability conditions for single vehicles and for vehicles with trailer

Literature
Elective literature:
1. Richter, B.: Schwerpunkte der Fahrzeugdynamik, Verlag TÜV, 1990
Course: Vehicle Mechatronics I [2113816]

Coordinators: D. Ammon

Part of the modules: Handling Characteristics of Motor Vehicles (p. 66) [WI3INGMB6], Vehicle Development (p. 70) [WI3INGMB14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30-40 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to have knowledge of control engineering, technical mechanics and automobile technology.

Learning Outcomes
The students have an overview of the system science field of mechatronics and its application in the area of vehicle conception, especially in the context of vehicle system dynamics. They know the tools and methods for a systematical analysis, conception, and design of mechatronic systems, focussing on mechatronically extended suspension systems.

Content
1. Introduction: Mechatronics in vehicle technology
2. Vehicle Control systems
 Brake- and traction controls (ABS, ASR, automated power train controls)
 Active and semiactive suspension systems, active stabilizor bars
 Vehicle dynamics controls, driver assistance systems
3. Modelling technology
 Mechanics - multi body dynamics
 Electrical and electronic systems, control systems
 Hydraulics
 Interdisciplinary coupled systems
4. Computer simulation technology
 Numerical integration methods
 Quality (validation, operating areas, accuracy, performance)
 Simulator-coupling (hardware-in-the-loop, software-in-the-loop)
5. Systemdesign (example: brake control)
 Demands, requirements (funktion, safety, robustness)
 Problem setup (analysis - modelling - model reduction)
 Solution approaches
 Evaluation (quality, efficiency, validation area, concept ripeness)

Literature
Elective literature:
1. Ammon, D., Modellbildung und Systementwicklung in der Fahrzeugdynamik, Teubner, Stuttgart, 1997
5. Roddeck, W., Einführung in die Mechatronik, Teubner, Stuttgart, 1997
Course: Vehicle Comfort and Acoustics I [2113806]

Coordinators: F. Gauterin
Part of the modules: Handling Characteristics of Motor Vehicles (p. 66)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30-40 min) taking place in the recess period and in the lecture period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students know what are noise and vibration, how they are generated, and how they are perceived by human beings. They have knowledge about the requirements given by users and the public. They know which components of the vehicle are participating in which way on noise and vibration phenomenon and how they could be improved.

Content

Media
Lecture Script

Literature
Elective literature:
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Remarks
In the following summer semester this lecture is to be continued with the lecture Vehicle Comfort and Acoustics II [21825]. In this lecture, noise and vibration characteristics as well as optimization possibilities of other components will be discussed. Moreover, the issue of traffic handled will be brought up. This lecture may be visited independently of the first part.
Course: Vehicle Comfort and Acoustics II [2114825]

Coordinators: F. Gauterin
Part of the modules: Handling Characteristics of Motor Vehicles (p. 66)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30-40 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
The course can be attended independently from the course Vehicle Comfort and Acoustics II [2113806].

Learning Outcomes
The students have knowledge about the noise and vibration properties of the chassis components and the drive train. They know what kind of noise and vibration phenomena do exist, what are the generation mechanisms behind, which components of the vehicle participate in which way and how could they be improved.

They have knowledge in the subject area of noise emission of automobiles: Noise impact, legal requirements, sources and influencing parameters, component and system optimization, target conflicts and development methods.

Content
Media
Lecture script.
Course: Case Studies in Public Management [2560133]

Coordinators: B. Wigger, N. Edwards
Part of the modules: Management of public- and private-sector organizations (p. 50) [WI3BWLIWW1], Introduction to Public Finance and Public Management (p. 55) [WI3VWL11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Module Management of public- and private-sector organizations:
Successful completion of the course is determined by an alternative form of assessment rather than by an exam, in accordance with §4(2), 3 of the examination regulations.
The overall grade for the course is calculated as the weighted average of the grades for the individual assignments, rounded to the first decimal place.
Restrictions for the Re-sit Exam: Students, who do not pass the course on their first attempt, are obliged to re-take the entire course. The final possibility to earn a passing grade for the course will encompass the (individual, written and oral) preparation and presentation of a case study.

Module Introduction to Public Finance and Public Management:
See module description

Conditions
Both the lecture „Introduction to Public Management“ and the course „Case Studies in Public Management“ must be taken at the same time.
Since this course is a compulsory element of the entire module, a passing grade is required in order to receive credit for completion.

Recommendations
A good proficiency in the English language (written and spoken).

Learning Outcomes
Course objective: The aim of the course is to facilitate the application of knowledge acquired in the accompanying lecture, as well as through students’ own independent research, in formulating solutions to contemporary problems in public management and in the provision of public services.

Learning goals:
Successful completion of the course will enable students to:

1. Apply relevant theory from different disciplines in formulating solutions to case studies;
2. Demonstrate the ability to manage own (and group) learning needs, learning processes, and learning goals;
3. Effectively communicate results of work in both oral and written forms;
4. Contribute to group learning by actively participating in class and by actively engaging with peers outside of class.

Content

Media
PBL tasks (i.e. case studies) will be made available via ILIAS, as will the following:

- All relevant assessment forms
- Recommended reading

Literature
Course: Remote Sensing [GEOD-BFB-1]

Coordinators: Hinz, Weidner

Part of the modules: Understanding and Prediction of Disasters 2 (p. 88)[WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 87)[WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3/2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Media
e-Learning-Modul “Fernerkundung” (geoinformation.net)
lecture notes

Literature

Elective literature:
Albertz: Fernerkundung

Remarks
For further information, see http://www.ipf.kit.edu/
Course: Remote Sensing Systems [20241/42]

Coordinator: S. Hinz, U. Weidner
Part of the modules: Understanding and Prediction of Disasters 2 (p. 88) [WHEREINTER7], Understanding and Prediction of Disasters 1 (p. 87) [WHEREINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Outcomes

Content

Media
e-Learning-Modul “Fernerkundung” (geoinformation.net)
lecture notes

Remarks
For further information, see www.ipf.kit.edu
Course: Remote Sensing Methods [20265/66]

Coordinators: S. Hinz, U. Weidner
Part of the modules: Understanding and Prediction of Disasters 2 (p. 88) [WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 87) [WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
It is recommended to attend the course *Thermodynamics* beforehand.

Learning Outcomes

Content

Media
- e-Learning-Modul “Fernerkundung” (geoinformation.net)
- lecture notes
Course: Manufacturing Engineering [2149657]

Coordinators: V. Schulze
Part of the modules: Manufacturing Technology (p. 76)[WI3INGMB23]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam taking place during the recess period (according to Section 4(2), 1) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
Successfull Completion of the modules Material Science [WI1ING2] and Engineering Mechanics [WI1ING3]

Learning Outcomes
The students
• are capable to specify the different manufacturing processes and to explain their functions.
• are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
• have the ability to perform a process selection based on their specific characteristics.
• are enabled to identify correlations between different processes and to select a process regarding possible applications.
• are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
• are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.
The following topics will be covered:
• Quality control
• Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
• Forming (sheet-metal forming, massive forming, plastics engineering)
• Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
• Joining
• Coating
• Heat treatment and surface treatment
• Process chains in manufacturing

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Financial Management [2530216]

Coordinators: M. Ruckes
Part of the modules: Essentials of Finance (p. 35)[WI3BWLFBV1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of the content of the course Business Administration: Finance and Accounting [25026/25027] is recommended.

Learning Outcomes
Students get an comprehensive insight into financing, capital investments of firms and the essentials of valuation.

Content
Analytical methods and theories in the field “Capital investments and financing” with the main focus on:

- Capital Structure
- Dividend policy
- Essentials of valuation
- Investment decisions
- Short term/ long term finance
- Working Capital Management
- Corporate Governance

Literature
Elective literature:

- Berk, De Marzo (2007): Corporate Finance, Pearson Addison Wesley
Course: Financial Intermediation [2530232]

Coordinators: M. Ruckes
Part of the modules: Topics in Finance II (p. 38) [WI3BWLFBV6], Topics in Finance I (p. 37) [WI3BWLFBV5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Students are introduced to the theoretical fundamentals of financial intermediation.

Content
- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Competition in the banking sector
- Stability of the financial system
- The macroeconomic role of financial intermediation

Literature
Elective literature:
Course: Fluid Power Systems [2114093]

Coordinators: M. Geimer
Part of the modules: Automotive Engineering (p. 65)[WI3INGMB5], Mobile Machines (p. 71)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module Mobile Machines: See module description.
Assessment for the module Automotive Engineering: The assessment consists of an oral exam (20 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students will be able to
- know and understand physical principles of fluid power systems
- know the current components and their operating mode
- know the advantages and disadvantages of different components
- dimension the components for a given purpose and to
- calculate simple systems

Content
In the range of hydrostatics the following topics will be introduced:
- Hydraulic fluids
- Pumps and motors
- Valves
- Accessories
- Hydraulic circuits.

In the range of pneumatics the following topics will be introduced:
- Compressors
- Motors
- Valves
- Pneumatic circuits.
Course: Functional Ceramics [2126784]

Coordinators: M. Hoffmann, M. Bäurer
Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
None.

Recommendations
Basic knowledge of experimental physics and chemistry is recommended. It is recommended to attend the course Ceramics-Introduction [2125757].

Learning Outcomes
The students know the correlation among crystal structure, defect chemistry and electrical, dielectric and piezoelectric properties and are familiar with the different methods for powder preparation, shaping and sintering. They know the functionality and application fields of semiconducting, piezoelectric and pyroelectric ceramics.

Content
The course gives an introduction to physics and chemistry of functional ceramics, provides an overview of the corresponding processing methods and highlights the properties and application of the most relevant materials.

It is arranged in the following units:

- Crystal structures and defect chemistry
- Thermodynamic of interfaces and grain boundaries
- Methods for the preparation of functional ceramics
- Dielectric materials and insulators
- Semiconducting ceramics (varistors, PTC- und NTC-ceramics)
- Ion conductive ceramics (oxygen sensors, solid oxid fuel cells)
- Piezoelectric ceramics
- Pyroelectric ceramics
- Electrooptical ceramics

Media
Slides for the lecture available under http://www.iam.kit.edu/km

Literature
Elective literature:

Remarks
The course will not take place every year.
Course: Monetary and Financial Policy [2561126]

Coordinators: B. Wigger, J. Nagel

Part of the modules: Public Finance (p. 53)[WI3VWL9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions

None.

Learning Outcomes

Challenges for monetary and financial policy; experiences from the financial crisis.

Structure of the lecture:
1. Monetary and financial policy before the financial crisis
2. Cause of the financial crisis
3. Monetary policy in crisis mode
4. Boundaries of monetary and financial policy
5. Challenges for monetary policy: the example of the European monetary union
6. Financial stability vs. monetary mandate - a contradiction?

Content

The current financial crisis changed the operationel implementation of financial policy within the big currency areas. Especially financial policy within the European union faces great challenges because of the dept problems of some union members. Limitations seem to disappear.

The lecture covers this range of topics and explores the question whether the financial crisis changes/will change monetary policy.
Course: Geological Hazards and Risks [2600101]

Coordinators: Wenzel, Gottschämmer

Part of the modules: Understanding and Prediction of Disasters 2 (p. 88) [WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 87) [WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Global vehicle evaluation within virtual road test [2114850]

Coordinators: B. Schick
Part of the modules: Handling Characteristics of Motor Vehicles (p. 66)[WI3INGMB6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30-40 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
none

Recommendations
Previous visit of Handling Characteristics of Motor Vehicles I [21807] is recommended.

Learning Outcomes
The students have an overview of the vehicle dynamics simulation, the model parametrization and the related data sources. They have good knowledge about vehicle dynamics test methods and related execution of virtual test driving (open loop, closed loop). They are able to evaluate driving behavior based on self-created results. They have achieved knowledge about influences and interactions of components such as tires, suspension, kinematics and compliance, roll bars, steering, brakes, mass distribution and powertrain and they have the qualification to design components with regard to global vehicle behavior.

Content
1. Testing and evaluation methods
2. Fundamentals of vehicle dynamics simulation
3. Execution of virtual test driving and evaluation of the results
4. Influence of several components and optimization of global driving behavior

Literature
Elective literature:
2. Unrau, H.-J.: Scriptum zur Vorlesung “Fahreigenschaften I”
4. IPG: Benutzerhandbuch CarMaker
Course: Business Strategies of Banks [2530299]

Coordinators: W. Müller
Part of the modules: Topics in Finance II (p. 38)[WI3BWLFBV6], Topics in Finance I (p. 37)[WI3BWLFBV5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Students are told the basics of commercial banking.

Content
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank's success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Literature
Elective literature:
- A script is disseminated chapterwise within the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 2. Auflage, Springer
Course: Global Optimization I [2550134]

Coordinators: O. Stein

Part of the modules: Applications of Operations Research (p. 61)[WI3OR5], Methodical Foundations of OR (p. 63)[WI3OR6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite. The examination can also be combined with the examination of Global Optimization II [2550136]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Learning Outcomes
The student

- knows and understands the fundamentals of deterministic global optimization,
- is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Numerical methods

Nonconvex optimization problems are treated in part II of the lecture.

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Literature
Elective literature:

- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Global Optimization II [2550136]

Coordinators: O. Stein
Part of the modules: Methodical Foundations of OR (p. 63) [WI3OR6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester.
Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration to the written examination is subject to fulfilling the prerequisite.
The examination can also be combined with the examination of Global Optimization I [2550134]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Learning Outcomes
The student

- knows and understands the fundamentals of deterministic global optimization,
- is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.
The global solution of convex optimization problems is subject of part I of the lecture.
Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via αBB method
- Branch and bound methods
- Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Literature
Elective literature:

- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Automotive Engineering I [2113805]

Coordinators: F. Gauterin, Unrau

Part of the modules: Automotive Engineering (p. 65)[WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students know the movements and the forces at the vehicle and are familiar with active and passive security. They have proper knowledge about operation of engines, the necessary transmission between engine and drive wheels and the power distribution. They have an overview of the components necessary for the drive and the calculation methods for sizing. They are able to lay out the appropriate modules of a vehicle.

Content
1. Driving mechanics: Driving resistances and driving performances, mechanics of the longitudinal and transverse forces, collision mechanics
2. Engines: Combustion engine, alternative drives (e.g. fuel cell with electric motor)
3. Transmission: Clutches (e.g. friction clutch, visco clutch), transmission (e.g. mechanical transmission, hydraulic fluid transmission)
4. Power transmission and distribution: drive shafts, cardon joints, differentials

Literature

Elective literature:
3. Gnadler, R.: Skript zur Vorlesung "Grundlagen der Fahrzeugtechnik I"
Course: Automotive Engineering II [2114835]

Coordinators: F. Gauterin, Unrau
Part of the modules: Automotive Engineering (p. 65) [WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Basics of Automotive Engineering I [2113805].

Learning Outcomes
The students have an overview of the modules, which are necessary for the road holding of a motor vehicle and the power transmission between vehicle bodywork and roadway. They have knowledge of different wheel suspensions, the tyres, the steering elements and the brakes. They know different execution forms, the function and the influence on the driving or brake behavior. They are able to construct the appropriate components correctly.

Content
1. Chassis: Wheel suspensions (rear axles, front axles, kinematics of axles), tyres, springs, damping devices
2. Steering elements: Steering elements of single vehicles and of trailers
3. Brakes: Disc brake, drum brake, retarder, comparison of the designs

Literature
Elective literature:
Course: Foundations of Informatics I [2511010]

Coordinators: R. Studer, E. Simperl
Part of the modules: Introduction to Informatics (p. 23)[WI1INFO]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
Central theoretic basics and solution approaches coming from all areas of computer science are presented as well as illustrated and exercised using examples.

The following topics are covered:
- Object Oriented Modeling
- Logic (Propositional Calculus, Predicate Logic, Boolean Algebra)
- Algorithms and Their Properties
- Sort-and Search-Algorithms
- Complexity Theory
- Problem Specification
- Dynamic Data Structures

Content

Media
Lecture slides

Literature
Elective literature:

Additional literature will be announced in the lecture.
Course: Foundations of Informatics II [2511012]

Coordinators: H. Schmeck
Part of the modules: Introduction to Informatics (p. 23)[WI1INFO]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. If the grade obtained in the written exam is in between 1.3 and 4.0, a successful bonus exam will improve the grade by one level. The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Foundations of Informatics I [2511010] beforehand. Active participation in the practical lessons is strongly recommended.

Learning Outcomes
Content

Literature
Elective literature:
Will be announced in the lecture.
Course: Internal Combustion Engines and Exhaust Gas Aftertreatment Technology [2134138]

Coordinators: E. Lox
Part of the modules: Combustion Engines II (p. 73)[WI31NGMB19]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Conditions
The course Combustion Engines A [21101] has to be completed beforehand.

Learning Outcomes

Content

Literature
Will be announced in the lecture.
Course: Basics of microsystem technology I [2141861]

Coordinators: A. Guber
Part of the modules: Microsystem Technology (p. 80) [WI3INGMB1MT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
The course Microsystem technology II [2142874] and the practical exercise [2143875] are recommended.

Learning Outcomes
Learning the basics of structuring silicon, crystallographic background and the processes required.

Content
- Silicon and microelectronics techniques
- Physical basics and materials for the micro structure technology
- Basic technologies
- Silicon micro mechanics

Media
Lecture notes at the institute's website

Literature

Remarks
There are two fixed examination dates per year, both Thursdays, in the second complete week in September and the second week after Ash Wednesday in March or April.
Course: Basics of microsystem technology II [2142874]

Coordinators: A. Guber
Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
The course Microsystem technology I [2141861] and the practical exercise [2143875] are recommended.

Learning Outcomes
Learning the basics of UV-lithography, deep X-ray lithography, LIGA-process and divers other processes used for micro structuring.

Content
- lithography
- LIGA-process
- mechanical micro structuring
- structuring with lasers
- joining techniques
- micro systems

Media
Lecture notes at the institutes website

Literature

Remarks
There are two fixed examination dates per year, both Thursdays, in the second complete week in September and the second week after Ash Wednesday in March or April.
Course: Fundamentals of Production Management [2581950]

Coordinators: F. Schultmann
Part of the modules: Industrial Production I (p. 33)[WI3BWLIIP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,5</td>
<td>2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
- Students should describe the tasks of strategic corporate planning.
- Students should be able to use general approaches in order to solve these problems.

Content
This lecture focuses on strategic production management with respect to various economic aspects. Interdisciplinary approaches of systems theory will be used to describe the challenges of industrial production. This course will emphasize the importance of R&D as the central step in strategic corporate planning to ensure future long-term success.

In the field of site selection and planning for firms and factories, attention will be drawn upon individual aspects of existing and greenfield sites as well as existing distribution and supply centres. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Media
Media will be provided on learning platform.

Literature
will be announced in the course
Course: Basics of Technical Logistics [2117095]

Coordinators: M. Mittwollen, V. Madzharov

Part of the modules: Introduction to Technical Logistics (p. 69)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists due to the number of attendees, of an oral or a written exam according to Section 4 (2), 1 of the examination regulation.

Conditions
None.

Recommendations
Some technical knowledge

Learning Outcomes
Students are able to:

- Describe processes and machines of technical logistics,
- Model the fundamental structures and the impacts of material handling machines with mathematical models,
- Refer to industrially used machines and
- Model real machines applying knowledge from lessons and calculate their dimensions.

Content
Bases effect model of conveyor machines made for the change of position and orientation; conveyor processes; identification systems; drives; mechanical behaviour of conveyors; structure and function of conveyor machines; basic examples for elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation)
sample applications and calculations in addition to the lectures inside practical lectures

Media
supplementary sheets, projector, blackboard

Literature
Recommendations during lessons
Course: Basics of Track Guided Transport Systems [19066]

Coordinators: E. Hohnecker
Part of the modules: Basics of Guided Transport Systems (p. 86)[WI3INGBGU4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
See module description.

Learning Outcomes
See German version.

Content
Definitions and classifications, basics of railway vehicles, track guided operation, railway alignment and operation

Literature
Zilch, Diederichs, Katzenbach, Beckmann (Hrsg): Handbuch für Bauingenieure, Springer-Verlag 2012

Remarks
See German version.
Course: Basics and Methods for Integration of Tires and Vehicles [2114843]

Coordinators: G. Leister
Part of the modules: Vehicle Development (p. 70) [W31NGMB14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (30 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of automobile technology is recommended.

Learning Outcomes
Content
Course: Fundamentals for Design of Motor-Vehicle Bodies I [2113814]

Coordinators: H. Bardehle

Part of the modules: Automotive Engineering (p. 65)[WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students have an overview of the fundamental possibilities for design and manufacture of motor-vehicle bodies. They know the complete process, from the first idea, through the concept to the dimensioned drawings (e.g. with FE-methods). They have knowledge about the fundamentals and their correlations, so that the design of relevant assemblies can be performed to the required demands.

Content

Literature

Elective literature:

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals for Design of Motor-Vehicle Bodies II [2114840]

Coordinators: H. Bardehle
Part of the modules: Automotive Engineering (p. 65) [WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Fundamentals for Design of Motor-Vehicle Bodies I [21814] beforehand.

Learning Outcomes
The students know that, often the design of seemingly simple detail components can result in the solution of complex problems. They have knowledge in testing procedures of body properties. They have an overview of body parts such as bumpers, window lift mechanism and seats. They understand, as well as, parallel to the normal electrical system, about the electronic side of a motor vehicle. They have knowledge of the inert safety of a motor vehicle.

Content

Literature

Elective literature:

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
Course: Fundamentals in the Development of Commercial Vehicles I [2113812]

Coordinators: J. Zürn
Part of the modules: Vehicle Development (p. 70)[WI3INGMB14], Mobile Machines (p. 71)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module Mobile Machines: See module description.
Assessment for the module Automotive Engineering: The assessment consists of an oral exam (20 min) taking place in the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students have proper knowledge about the process of commercial vehicle development starting from the concept and the underlying original idea to the real design. They know that the customer requirements, the technical realisability, the functionality and the economy are important drivers. The students are able to develop parts and components. Furthermore they have knowledge about different cap concepts, the interior and the interior design process.

Content
1. Definitions in the area of commercial vehicles
2. Driver of the commercial vehicle development process
3. Development process
4. Development tools
5. Specification criteria
6. Component and parts development
7. Cab

Literature
Elective literature:
Course: Fundamentals in the Development of Commercial Vehicles II [2114844]

Coordinators: J. Zürn

Part of the modules: Vehicle Development (p. 70)[WI3INGMB14], Mobile Machines (p. 71)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module Mobile Machines: See module description.
Assessment for the module Automotive Engineering: The assessment will consist of an oral exam (20 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to attend the course Fundamentals in the Development of Passenger Vehicles I [21810] beforehand.

Learning Outcomes
The students are able to create general vehicle concepts tailored for different areas of application. They know the advantages and disadvantages of different drives. Furthermore they are familiar with components, such as transfer box, propeller shaft, powered and non-powered front axle etc. Beside other mechanical components, such as chassis, axle suspension and braking system, also electric and electronic systems, such as lighting, control, bus and diagnostic systems, are known.

Content
1. Drive and Drive train of Commercial Vehicles
2. Chassis
3. Axle suspension
4. Braking System
5. Elektrics
6. Elektronic Systems

Literature
Elective literature:
Course: Fundamentals in the Development of Passenger Vehicles I [2113810]

Coordinators: R. Frech
Part of the modules: Vehicle Development (p. 70)[IW3INGMB14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students have an overview of the fundamentals of the development of automobiles. They know the development process, the national and the international legal requirements that are to be met. They have knowledge about the thermo-management, aerodynamics and the design of an automobile.

Content
1. Process of automobile development
2. Conceptual dimensioning and design of an automobile
3. Laws and regulations -- National and international boundary conditions
4. Aerodynamical dimensioning and design of an automobile I
5. Aerodynamical dimensioning and design of an automobile II
6. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines I
7. Thermo-management in the conflict of objectives between styling, aerodynamic and packaging guidelines II

Media
Lecture script (will be provided during the first lesson).
Course: Fundamentals in the Development of Passenger Vehicles II [2114842]

Coordinators:
R. Frech

Part of the modules:
Vehicle Development (p. 70)[WI3INGMB14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Recommendations

It is recommended to attend the course *Fundamentals in the Development of Passenger Vehicles I* [21810] beforehand.

Learning Outcomes

The students are familiar with the selection of appropriate materials and the choice of adequate production technology. They have knowledge of the acoustical properties of the automobiles, covering both the interior sound and exterior noise. They have an overview of the testing procedures of the automobiles. They know in detail the evaluation of the properties of the complete automobile.

Content

1. Application-oriented material and production technology I
2. Application-oriented material and production technology II
3. Overall vehicle acoustics in the automobile development
4. Drive train acoustics in the automobile development
5. Testing of the complete vehicle
6. Properties of the complete automobile

Media

Lecture script (provided during the first lessons).
Course: Hauptvermessungsübung III [20267]

Coordinators: S. Hinz, Weidner

Part of the modules: Understanding and Prediction of Disasters 2 (p. 88)[WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 87)[WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Media
e-Learning-Modul “Fernerkundung” (geoinformation.net)
lecture notes

Literature

Elective literature:
Albertz: Fernerkundung
Course: Hydrology [19061]

Coordinators: E. Zehe
Part of the modules: Understanding and Prediction of Disasters 2 (p. 88)[WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 87)[WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1/1</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Industrial Organization [2560238]

Coordinators: P. Reiss
Part of the modules: Economic Theory (p. 56)[WI3VWL12], Microeconomic Theory (p. 51)[WI3VWL6], Applied Microeconomics (p. 57)[WI3VWL13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Completion of the module Economics [WW1VWL] is assumed.

Learning Outcomes
Students are introduced to imperfect markets, its allocative implications and its implications for policy making. At the end of the course, students shall be able to analyze real-life markets and market imperfections and to give advice to, e.g., policy makers, firms, or business associations.

Content
This course introduces the theory of industrial organization using game theoretical models. The course is divided into two parts: The first part reviews standard market forms (monopoly, oligopoly, perfect competition). The second part discusses more advanced topics including price discrimination, strategic product differentiation, cartel formation, market entry, and research and development.

Media
Slides, problem sets.

Literature
Compulsory Textbook:

Additional Literature:
Course: Information Systems and Supply Chain Management [2118094]

Coordinators: C. Kilger

Part of the modules: Introduction to Technical Logistics (p. 69)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
Technical understanding is required.

Recommendations
It is recommended to attend the lecuture Logistics - Organisation, Design, and Control of Logistic Systems.

Learning Outcomes
Students are able to:

- Describe requirements of logistical processes regarding IT systems,
- Choose information systems to support logistical processes and use them according to the requirements of a supply chain.

Content
1. Overview of logistics systems and processes
2. Basic concepts of information systems and information technology
3. Introduction to IS in logistics: Overview and applications
4. Detailed discussion of selected SAP modules for logistics support

Literature

Elective literature:
Course: Seminar in Engineering Science [SemING]

Coordinators: Fachvertreter ingenieurwissenschaftlicher Fakultäten

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Literature
Will be announced in the respective seminar.

Elective literature:
Will be announced in the seminar.
Course: Integrated Production Planning [2150660]

Coordinators: G. Lanza

Part of the modules: Integrated Production Planning (p. 77)[WI3INGMB24]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as an written exam according §4(2), 1 SPO. The examination is offered every semester. Reexaminations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Attendance of the lecture ‘Manufacturing Technology’ [2149657] prior to attending this lecture is recommended.

Learning Outcomes
The students

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Content
As part of this lecture further engineering aspects of production technology are taught. This includes content from the manufacturing technology, machine tools and handling techniques as well as the organization and planning. Planning factories within the context of value networks and integrated production systems (Toyota etc.) requires an integrated perspective for the consideration of all functions included in the “factory” system. This includes the planning of manufacturing systems including the product, the value network and factory production, and the examination of SOPs, the running of a factory and maintenance. Content and theory covered by this lecture are completed with many examples from industry and exercises based on real-life situations and conditions.

Main topics covered by the lecture:
1. The basic principles of production planning
2. Links between product planning and production planning
3. Integrating a production site into a production network
4. Steps and methods of factory planning
5. Approach to the integrated planning of manufacturing and assembly plants
6. Layout of production sites
7. Maintenance
8. Material flow
9. Digital factory
10. Process simulation for material flow optimisation
11. Start-up

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Intelligent Systems in Finance [2511402]

Coordinators: D. Seese
Part of the modules: Electives in Informatic (p. 60)[WI3INFO2], eFinance (p. 43)[WI3BWLISM3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a written examination.
See the German part for special requirements to be admitted for the examination.

Conditions
None.

Learning Outcomes

- The students acquire abilities and knowledge of methods and systems from the area of machine learning and learn how to use them in the area of finance, which is the core area of application of this lecture.
- It is taught the ability to choose and change these methods and systems adequate to the situation and to use them for problem solving in the area of finance.
- The students get the ability to find strategic and creative answers in their search for solutions for precisely defined, concrete and abstract problems.
- At the same time the lecture aims to give foundational knowledge and methods in the context of their application in practise. On the basis of the basic understanding of concepts and methods of informatics the students should be able to comprehend quickly the new developments in the area and to use them correctly.

Content
A new generation of computing methods, commonly known as “intelligent systems”, has recently been successfully applied to a variety of business and financial modelling tasks. In many application fields these novel methods outperform traditional statistical techniques. The lecture provides a comprehensive coverage of the area, including foundations and applications. In particular it deals with genetic algorithms, neural networks, support vector machines, fuzzy-logic, expert systems and intelligent hybrid systems. The presented applications focus on the finance area.

Media
Slides.

Literature
see lecture

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described contend and schedule.

The course “Intelligent Systems in Finance” will not be offered any more from summer term 2016 on. The examination will be offered latest until summer term 2015 (repeaters only).
Course: International Marketing [2572155]

Coordinators: M. Klarmann

Part of the modules: Foundations of Marketing (p. 49)[WI3BWLMAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes

Content
Doing marketing abroad creates a number of significant new challenges for firms. This class is intended to prepare you for meeting these challenges. In the first session, we will discuss the peculiarities of international marketing. The next five sessions will then be dedicated to methods that can be used to address them. For instance, we will look at the following issues:

- Internationalization strategies
- Market entry strategies
- Standardization vs. individualization (e.g. regarding products, prices, and communication)
- Measurement equivalence in international market research

In the final session, we will apply this knowledge to the case of Wal Mart. In particular, Wal Mart, despite being the largest retailing company worldwide, failed to successfully enter the German Market. We will discuss Wal Mart’s failure using the methods taught in the weeks before.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Course: International Finance [2530570]

Coordinators: M. Uhrig-Homburg, Dr. Walter

Part of the modules: Topics in Finance II (p. 38)[WI3BWLFBV6], Topics in Finance I (p. 37)[WI3BWLFBV5], eFinance (p. 43)[WI3BWLISM3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
None.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on international markets and to manage foreign exchange risks.

Content
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First the point of view of an international investor second that of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore current exchange rate theories are discussed.

Literature
Elective literature:

Course: Cost and Management Accounting [2530210]

Coordinators: T. Lüdecke
Part of the modules: Topics in Finance II (p. 38)[WI3BWLFBV6], Topics in Finance I (p. 37)[WI3BWLFBV5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
This course aims at providing students with the understanding of the purposes of alternative costing systems as well as the use of relevant information for decision making. The course will also examine techniques for the purpose of cost management and accounting for control.

Content
- Design of Cost Systems
- Cost Classifications, Cost Behavior, and Principles of Cost Allocation
- Activity-based Costing
- Product Costing
- Production Decisions
- Cost-based Pricing
- Cost Management
- Decisions under Risk
- Cost Accounting for Control

Literature
Elective literature:
Course: Investments [2530575]

Coordinators: M. Uhrig-Homburg
Part of the modules: Essentials of Finance (p. 35)[WI3BWLFBV1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (75 min) according to Section 4(2), 1 of the examination regulation.
The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.
By submitting the exercises (according to Section 4(2), 3 of the examination regulation) up to 4 bonus points can be acquired.

Conditions
None.

Recommendations
Knowledge of Business Administration: Finance and Accounting [2600026] is recommended.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on stock and bond markets. Basic economic concepts and models are discussed and applied on introductory level. Interlinkages between markets, different decision makings concepts and models are demonstrated.

Content
The lecture deals with investment decisions under uncertainty, where the main emphasis is on investment decisions on stock markets. After a discussion of the basic questions of corporate valuation, the lecture focuses on portfolio theory. After that, risk and return in equilibrium are derived using the Capital Asset Pricing Model and the Arbitrage Pricing Theory. The lecture concludes with investments on bond markets.

Literature
Elective literature:
Course: Introduction to Ceramics [2125757]

Coordinators: M. Hoffmann

Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
The course *Material Science I* [21760] has to be completed beforehand.

Recommendations
Basic knowledge of natural science and knowledge of the content *Material Science II* [21782] is recommended.

Learning Outcomes
The students know the most relevant crystal structures and defects of non metallic inorganic materials, are able to read binary and ternary phase diagrams and are familiar with powdertecnological shaping techniques, sintering and grain growth. They know the basics of the linear elastic fracture mechanics, are familiar with Weibull statistics, K-concept, subcritical crack growth, creep and the opportunities for microstructural reinforcement of ceramics. The students are able to explain the correlation among chemical bonding, crystal and defect structures and the electrical properties of ceramics.

Content
After a short introduction to interatomic bonding, fundamental concepts of crystallography, the stereographic projection and the most important symmetry elements will be given. Different types of crystal structures are explained and the relevance of imperfections are analysed with respect to the mechanical and electrical properties of ceramics. Then, the impact of surfaces, interfaces and grain boundaries for the preparation, microstructural evolution and the resulting properties is discussed. Finally, an introduction is given to ternary phase diagrams.

The second part of the course covers structure, preparation and application aspects of nonmetallic inorganic glasses, followed by an introduction to the properties and processing methods of fine-grained technical powders. The most relevant shaping methods, such as pressing, slip casting, injection moulding and extrusion are introduced. Subsequently, the basics of science of sintering and the mechanisms for normal and abnormal grain growth are discussed. Mechanical properties of ceramics are analysed using basic principles of linear elastic fracture mechanics, Weibull statistics, concepts for subcritical crack growth and creep models to explain the behaviour at elevated temperatures. Furthermore it is demonstrated that mechanical properties can be significantly enhanced by various types of microstructural toughening mechanisms. The electronic and ionic conductivity of ceramic materials are explained based on defect-chemical considerations and band structure models. Finally, the characteristics of a dielectric, pyroelectric, and piezoelectric behaviour is discussed.

Media
Slides for the lecture: available under http://www.iam.kit.edu/km

Literature

Elective literature:
- Kingery, Bowen, Uhlmann, “Introduction To Ceramics”, Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, “Physical Ceramics”, Wiley
Course: Climatology [2501111]

Coordinators: Orphal

Part of the modules: Understanding and Prediction of Disasters 2 (p. 88)[WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 87)[WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>3/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
See German version.

Learning Outcomes

Content

Remarks
For further information, see http://www.imk.uni-karlsruhe.de/english/17.php.
See German version.
Course: Warehouse and Distribution Systems [2118097]

Course: Warehouse and Distribution Systems [2118097]

Coordinators: M. Schwab, J. Weiblen

Part of the modules: Introduction to Technical Logistics (p. 69)[WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Learning Outcomes
Students are able to:

- Describe the areas of typical warehouse and distribution systems with the respective processes and can illustrate it with sketches,
- Use and choose strategies of warehouse and distribution systems according to requirements,
- Classify typical systems using criteria discussed in the lecture, and
- Reason about the choice of appropriate technical solutions.

Content

- Introduction
- Yard management
- Receiving
- Storage and picking
- Workshop on cycle times
- Consolidation and packing
- Shipping
- Added Value
- Overhead
- Case Study: DCRM
- Planning of warehouses
- Case study: Planning of warehouses
- Distribution networks
- Lean Warehousing
Course: Logistics - Organisation, Design, and Control of Logistic Systems [2118078]

Course: Logistics - Organisation, Design, and Control of Logistic Systems [2118078]

Coordinators: K. Furmans

Part of the modules: Supply Chain Management (p. 41)[WI3BWLISM2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The grade of the exam may be improved by passing case studies.

Conditions

None.

Recommendations

Required are lectures on “Linear Algebra” and “Stochastic”.

Learning Outcomes

Students are able to:

- Describe logistical tasks,
- Design logistical systems suitable to the respective task,
- Dimension stochastic stock models,
- Determine essential influencing parameters on the bullwhip effect and
- Use optimizing solution methods.

Content

Introduction

- historical overview
- lines of development

Structure of logistics systems

Distribution logistics

- location planning
- Vehicle Routing Planning
- distribution centers

Inventory management

- demand forecasting
- Inventory management policies
- Bullwhip effect

Production logistics

- layout planning
- material handling
- flow control

Supply Managament

- information flow
- transportation organization
• controlling and development of a logistics system
• co-operation mechanisms
• Lean SCM
• SCOR model

Identification Technologies

Media
Blackboard, LCD projector, in exercises also PCs.

Literature

Elective literature:

• Arnold/Isermann/Kuhn/Tempelmeier. Handbuch Logistik, Springer Verlag, 2002 (Neuausgabe in Arbeit)
• Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
• Domschke/Drexel. Logistik, Standorte, Oldenbourg Verlag, 1996
• Gudehus. Logistik, Springer Verlag, 2007
• Neumann-Morlock. Operations-Research, Hanser-Verlag, 1993
• Tempelmeier. Bestandsmanagement in Supply Chains, Books on Demand 2006
Course: Automotive Logistics [2118085]

Coordinators: K. Furmans
Part of the modules: Introduction to Technical Logistics (p. 69) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Learning Outcomes
Students are able to:

- Describe essential logistic questions, in a complex production network. As an example the automobile industry is used.
- Choose and apply solution possibilities for logistic problems in this area.

Content
A basic model of the automobile production and distribution is used to study the main elements of the automotive supply chain:

- Supply side logistics (Tasks due to disposition and physical accomplishment; methods; solution models)
- Car manufacturing with the specific questions of the interaction of body shell, paint shop and assembly (sequence planning; partial allocation for assembly)
- Car distribution and the connection to sale processes (physical accomplishment; planning and control)
Course: Logistics and Supply Chain Management [2581996]

Coordinators: F. Schultmann
Part of the modules: Industrial Production I (p. 33)[WI3BWLIIP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following § 4(2), 1 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
Students shall learn foundations and main characteristics of managerial logistics and supply chain management. Following an overview of basic managerial logistics functions, students will learn the interdependencies and trade-offs between these functions and concurring aims. Additionally, students will gain knowledge in designing and steering internal and external value-creating networks.

Content
This course covers following topics:

- Introduction into logistics
- Fields of activity
- Aims and costs of logistics
- Performance and performance figures
- Supply logistics
- Production logistics
- Distributing logistics
- Reverse logistics
- Definition and aims of Supply Chain Management
- Concepts of Supply Chain Management
- Modeling Supply Chains

Media
Medie will be provided on learning platform.

Literature
will be announced in the course
Course: Airport Logistics [2117056]

Coordinators: A. Richter
Part of the modules: Introduction to Technical Logistics (p. 69)[WI3INGMB13]

ECTS Credits 4 Hours per week 2 Term Winter Instruction language de

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Learning Outcomes
Students are able to:

• Describe material handling and informations technology activities on airports,
• Evaluate processes and systems on airports as the law stands, and
• Choose appropriate processes and material handling systems for airports.

Content
Development of air traffic:

• Legal basics
• Infrastructure (among other things person, luggage and freight conveyance)
• Supply and disposal activities
• Logistic process networks
• Information logistics

Remarks
The course takes place as a block course.
Course: Management Accounting 1 [2579900]

Coordinators: M. Wouters

Part of the modules: Management Accounting (p. 32) [WI3BWLIBU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation) at the end of each semester.

Conditions
The examination “Business Administration: Finance and Accounting” must have been completed before starting this course.

Learning Outcomes
Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Media
The recorded lectures and the teaching materials are available on Ilias during the current and next semester.

Literature

- In addition, several papers that will be available on ILIAS.
Course: Management Accounting 2 [2579902]

Coordinators: M. Wouters
Part of the modules: Management Accounting (p. 32)[WI3BWLIBU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/2</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation) at the end of each semester.

Conditions
The examination “Business Administration: Finance and Accounting” must have been completed before starting this course.

Recommendations
It is recommended to take part in the course “Management Accounting 1” before this course.

Learning Outcomes
Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems and customer value propositions.
We will use international material written in English.
We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).
The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Media
The recorded lectures and the teaching materials are available on ILIAS during the current and next semester.

Literature

- In addition, several papers that will be available on ILIAS.
Course: Management of Business Networks [2590452]

Coordinators: C. Weinhardt
Part of the modules: eBusiness and Service Management (p. 39)[WI3BWLISM1], Supply Chain Management (p. 41)[WI3BWLISM2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation) and by submitting written essays as part of the exercise (according to §4(2), 3 of the examination regulation). 65% of the final grade is based on the written exam and 35% is based on assignments from the exercises. Successful completion of the exercises is a prerequisite for admission to the written exam. The points obtained in the exercises only apply to the first and second exam of the semester in which they were obtained.

Conditions
None.

Learning Outcomes
The student
- identifies the coordination problems in a business network,
- explains the theories of strategic and operative management,
- analyses case studies in logistics considering the organization theory and network analysis,
- argues and constructs new solutions for the case studies by means of electronic tools.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Media
- PowerPoint
- E-learning platform ILIAS
- Recorded lecture available on the internet, if circumstances allow

Literature
Course: Management of Business Networks (Introduction) [2540496]

Coordinators: C. Weinhardt

Part of the modules: Supply Chain Management (p. 41)[WI3BWLISM2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
The student
- identifies the coordination problems in a business network,
- explains the theory of strategic and operative management,
- analyses case studies in logistics considering the organization theory and network analysis,
- argues and constructs new solutions for the case studies by means of electronic tools.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Media
- PowerPoint
- E-learning platform ILIAS
- Recorded lecture available on the internet, if circumstances allow

Literature

Remarks
This version of the MBN course does not include the case study in the second part of the lecture, so that it is worth less credits.
Course: Brand Management [2572177]

Coordinators: B. Neibecker

Part of the modules: Foundations of Marketing (p. 49)[W3BWLMAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
Students have learned the following outcomes and competences:

- To specify the key terms in brand management
- To identify and define theoretical constructs in marketing management to build brand value
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
The students should learn the essential scientific and practical principles of Marketing, especially branding. Branding consists of any name, design, words or symbols, singly or in any combination that distinguish one product from another in the eyes of the consumer. Brand positioning, brand loyalty and brand equity are discussed as important elements of a management concept. The focus of the course is not limited to short-term ROI, but also long-term benefits of communication strategies facing company’s responsibilities to all of its stakeholders, e.g. consumers, investors and public. The strategies and techniques in branding are broaden by several case studies. English as an international technical language in marketing is practiced with course readings and scientific papers. Content:
The course brand management starts with the development of the corporate objectives as the heart of the brand planning process followed by definitions of brand. Setting up on the psychological and social bases of consumer behavior, aspects of an integrated marketing communication are discussed. The students should acquire the particular value of branding strategies. The concept of brand personality is considered in two perspectives, from a practical point of view and the challenging position of the theoretical construct. Methods for the measurement of a consumer-based brand equity are compared with the financial valuation of the brand. The information provided by this equity measurements are related to the equity drivers in brand management. The marketers perspective will be accomplish with the analysis of several case studies. Within the limits of a knowledge based system for advertising evaluation many of the issues accomplished in the course are summarized. At the same time it is discussed as a tool to use marketing knowledge systematically.

Media
Slides, Powerpoint presentations, Website with Online Course Readings

Literature

Course: Managing the Marketing Mix [2571152]

Coordinators: M. Klarmann
Part of the modules: Foundations of Marketing (p. 49)[WI3BWLMAR]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
This course is compulsory within or the module “Foundations of Marketing” and must be examined.

Learning Outcomes

Content
The content of this course concentrates on the four elements of the marketing mix. Therefore the four main chapters are:

- Product management
- Pricing
- Promotion
- Sales management

Remarks
For further information please contact Marketing & Sales Research Group (marketing.ism.kit.edu).
Course: Material Flow in Logistic Systems [2117051]

Coordinators: K. Furmans

Part of the modules: Introduction to Technical Logistics (p. 69) [WI3INGMB13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The grade of the exam may be improved by passing case studies.

Conditions
None.

Learning Outcomes
Students are able to:

- describe material flow processes qualitativ and quantitativ,
- assign possibilities of technical solutions to a open operational task,
- plan material flow systems, illustrate them in simple models and analyse them regarding their performance,
- use methods to determine performance indicators like throughput, utilization, etc., and
- evaluate material flow systems regarding performance and availability.

Content

- Material handling equipment: conveyor system, diverts, merges
- Modelling of material handling systems by graphs and matrixes
- Queueing theory
- Simulation
- Analysis of the current situation
- Planning of the target state by using material and information flow

Literature

Elective literature:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen, Springer, 2005 (VDI)

Remarks
The course was formerly known as Materialflow.
Course: Materials and Processes in Automotive Lightweight Construction [2149669]

Coordinators: S. Kienzle, D. Steegmüller

Part of the modules: Specialization in Production Engineering (p. 75)[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students

- are able to name the various lightweight approaches and identify possible areas of application
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions
- are able to perform a process selection based on the methods and their characteristics
- are able to evaluate the different methods against lightweight applications on the basis of technical and economic aspects

Content
The objective of the lecture is to build up an overview of the relevant materials and processes for the production of a lightweight body. This includes both the actual production and the joining for the body. The lecture covers the different lightweight approaches and possible fields of application in the automotive industry. The methods are discussed with practical examples from the automotive industry.

The following topics will be covered:

- lightweight designs
- aluminum and steel for lightweight construction
- fibre-reinforced plastics by the RTM and SMC process
- joining of steel and aluminum (clinching, riveting, welding)
- bonding
- coating
- finishing
- quality assurance
- virtual factory

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Mathematics I [01350]

Coordinators: G. Last, M. Folkers, D. Hug, S. Winter
Part of the modules: Mathematics (p. 29)[W1MATH]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4/2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of Mathematics I consists of two written partial exams (both according to Section 4 (2), 1 of the examination regulation):

1. Midterm exam after half of the lecture time (60 min) without utilities
2. Final exam at the beginning of the following recess period (60 min) without utilities

A re-examination is offered at the beginning of the lecture period of the following summer term. Both re-examinations taking place at the same day.

For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.

Oral re-examinations (according to Section 8 (2) of the examination regulation) take place as individual examinations (ca. 20 min).

Mid-term exam as well as final exam has to be passed separately. The overall grade of Mathematics 1 consists of the grade of the midterm exam (50 percent) and the final exam (50 percent).

Conditions
None.

Learning Outcomes

Content

Literature

Elective literature:

Course: Mathematics II [01830]

Coordinators: G. Last, M. Folkers, D. Hug, S. Winter

Part of the modules: Mathematics (p. 29) [WI1MATH]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4/2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of Mathematics 2 consists of two written partial exams (both according to Section 4 (2), 1 of the examination regulation):

1. Midterm exam after half of the lecture time (60 min) without utilities
2. Final exam at the beginning of the following recess period (60 min) without utilities

A re-examination is offered at the beginning of the lecture period of the following winter term. Both re-examinations take place at the same day.

For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.

Oral re-examinations (according to Section 8 (2) of the examination regulation) take place as individual examinations (ca. 20 min).

Midterm exam as well as final exam has to be passed separately. The overall grade of Mathematics 2 consists of the grade of the mid-term exam (50 percent) and the final exam (50 percent).

Conditions

Good knowledge of the content of the course Mathematics I [01350].

Learning Outcomes

Content

Literature

Elective literature:

Course: Mathematics III [01352]

Coordinators: G. Last, M. Folkers, D. Hug, S. Winter
Part of the modules: Mathematics (p. 29)[WI1MATH]

Learning Control / Examinations
The assessment consists of a written exam (75 min) at the beginning of the recess period (according to Section 4(2), 1 of the examination regulation.
A re-examination is offered at the beginning of the lecture period of the following summer term. For the re-examinations both types of candidates (candidates who failed the midterm or the final exam, as well as those candidates who do not yet have passed their first attempt) are admitted.

Conditions
Good knowledge of the content of the courses Mathematics I [01350] and Mathematics II [01830].

Learning Outcomes

Content

Literature
Elective literature:

Course: Seminar in Mathematics [SemMath]

Coordinators: Fachvertreter der Fakultät für Mathematik
Part of the modules: Seminar Module (p. 94)[WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content

Literature
Will be announced in the respective seminar.

Elective literature:
Will be announced in the seminar.
Course: Meteorological Natural Hazards [57535]

Coordinators: M. Kunz

Part of the modules: Understanding and Prediction of Disasters 2 (p. 88)\[W3INGINTER7\], Understanding and Prediction of Disasters 1 (p. 87)\[W3INGINTER6\]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.imk.uni-karlsruhe.de/english/17.php
Course: Methods in Analyzing Internal Combustion [21134]

Coordinators: U. Wagner
Part of the modules: Combustion Engines II (p. 73)[WI3INGMB19]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Conditions
The course Combustion Engines A [21101] has to be completed beforehand.

Learning Outcomes

Content
Course: Interpretative Social Research Methods [n.n.]

Coordinators: M. Pfadenhauer

Part of the modules: Qualitative Social Research (p. 93)[WI3SOZ2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation).

Conditions
The lecture is obligatory and has to be attended.

Learning Outcomes
The student

- gains a basic overview of the well-established and some of the advanced explorative methods of data collection and interpretative methods of data evaluation.
- acquires basic knowledge of methodology/the philosophy of science.
- is capable of choosing and applying appropriate explorative-interpretative methods according to a research question and arranging them in a conceptual research design.

Content
See lecture announcement.

Media
Will be announced in the lecture.

Literature
Will be announced in the lecture.

Elective literature:
Will be announced in the lecture.
Course: Microactuators [2142881]

Coordinators: M. Kohl

Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Recommendations
It is recommended to attend the lecture “Novel Actuators and Sensors” [2141865].

Learning Outcomes
The student
- knows the basics of the actuation principles
- has the required knowledge on the design, fabrication and operation of microactuators
- is familiar with important microactuators in use and their application areas
- knows typical specifications, advantages and disadvantages of the different microactuators

Content
- Microrobotics: linear actuators, micromotors
- Medical and Life Sciences: Microvalves, Micropumps, microfluidic Systems
- Information technology: Optical Switches, mirror systems, read/write heads
- Microelectromechanical systems: Microrelais

Media
Script of ppt-slides

Literature

Course: Mobile Machines [2113073]

Coordinators: M. Geimer

Part of the modules: Mobile Machines (p. 71)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See modul description.

Conditions
Knowledge in Fluid Power are required.

Recommendations
It is recommended to attend the course *Fluid Power Systems* [21093] beforehand.

Learning Outcomes
The students will learn the basic structure and construction of mobile machines. The basis will be practically introduced by consultants from industry area. Thereby, the typical working process will be described.

Content
- Introduction of the required components and machines
- Basics of the structure of the whole system
- Practical insight in the development techniques

Media
Lecture notes.
Course: Modelling and Identification [23168]

Coordinators: M. Kluwe, S. Hohmann
Part of the modules: Control Engineering (p. 81) [WI3INGETIT2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as an oral exam (20 min.) according to § 4(2), 2 of the examination regulation. The examination is offered at several dates every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The Students are able to apply the general approach for the modelling process to technical systems. They can differentiate between causal modelling and acausal modelling and can apply these two types to real world problems. Students are able to structure complex systems and to analyse systematically the interconnections of subsystems. Students have an understanding of physical phenomena across multiple domains and their interrelations. They know how to develop models for electrical, mechanical, pneumatic and hydraulic systems. Thereby, they can identify states of a system and system constraints. Also they know various model reduction methods to reduce the complexity of mathematical models. Students are able to apply several identification methods for parametric and non-parametric models to static and dynamic technical systems and can evaluate the influence of disturbances on identification results.

Content
Introduction: Overview, Motivation, Modelling procedure with top down approach, Modelling procedure with bottom up approach, Validation and Verification
Structuring: Overview, Structuring with Matlab/Simulink, structured Analysis
Generalized equivalent circuit diagrams: Method with generalized variables, basic system elements, Interconnection rules
Theoretical Modelling: Method of the generalized network analysis, Method of the variation analysis, creation of state space equations
Identification with nonparametric models: Frequency response analysis, correlation analysis
Identification with parametric models: Overview, calculation of characteristic values, model matching methods, Least-Squares method for static processes, Least-Squares method for dynamical static processes, Instrumental variables method

Media
Online material is available on: www.irs.kit.edu and can be downloaded using a password.

Literature
Course: Engine Measurement Technologies [2134137]

Coordinators: S. Bernhardt
Part of the modules: Combustion Engines II (p. 73)[WI3INGMB19]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to Section 4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Conditions
The course Combustion Engines A [21101] has to be completed beforehand.

Learning Outcomes
Content
Course: Nanotechnology with clusters [2143876]

Coordinators: J. Gspann
Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (30 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Learning Outcomes

Content
Production and properties of atom clusters (nanoparticles) for either coating or for micro- and nanostructure generation via high-speed cluster erosion are described. The technical significance of nanostructures (Lotus-effect, Gecko-adhesion) as well as the new carbon modifications (Fullerenes, Graphene, Nanotubes) are treated. The concept of the molecular nanotechnology is considered and compared with biological molecular motors.

Media
Lecture script
Course: Novel Actuators and Sensors [2141865]

Coordinators: M. Kohl, M. Sommer

Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (20 min) (following §4 (2), 2 of the examination regulation).

Conditions
None.

Learning Outcomes
The student

- knows physical principles and basics on novel actuators and sensors
- has the required knowledge on the design, fabrication and operation of novel actuators and sensors
- is familiar with important novel actuators and sensors in use
- can name typical fields of application
- knows typical specifications

Content
Topics of the first part:

-Piezo actuators
-Magnetostrictive actuators
-Shape memory actuators
-Electrorheological actuators

Topics of the second part:

-Nano sensors: materials, fabrication
-Nano fibres
-Examples: gas sensors, electronic nose
-Data processing /interpretation

Media
Script / script of ppt foils (part 2)
Course: Nonlinear Optimization I [2550111]

Coordinators: O. Stein

Part of the modules: Methodical Foundations of OR (p. 63)[WI3OR6], Stochastic Methods and Simulation (p. 64)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite. The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Learning Outcomes

The student

- knows and understands fundamentals of nonlinear optimization,
- is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content

The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions for unconstrained problems
- Optimality conditions for unconstrained convex problems
- Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

Constrained problems are the contents of part II of the lecture. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Literature
Elective literature:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Nonlinear Optimization II [2550113]

| Coordinates: | O. Stein |
| Part of the modules: | Methodological Foundations of OR (p. 63) [WI3OR6] |

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to §4(2), 1 of the examination regulation. The exam takes place in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite. The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Conditions
None.

Learning Outcomes
The student
- knows and understands fundamentals of nonlinear optimization,
- is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:
- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions for constrained problems
- Optimality conditions for constrained convex problems
- Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Literature
Elective literature:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Public Revenues [2560120]

Coordinators: B. Wigger, Assistenten

Part of the modules: Economic Policy I (p. 54)[WI3VWL10], Public Finance (p. 53)[WI3VWL9], Applied Microeconomics (p. 57)[WI3VWL13]

ECTS Credits 4,5

Hours per week 2/1

Term Summer term

Instruction language de

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions
Basic knowledge of Public Finance is required.

Learning Outcomes

Content
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Literature
Elective literature:

Course: Public Law I - Basic Principles [24016]

Coordinators: I. Spiecker genannt Döhmann, G. Sydow
Part of the modules: Elective Module Law (p. 91)[WI3JURA]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam concerning the courses Public Law I [24016] and Public Law II [24520] (according to Section 4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Parallel to the lectures tutoria are offered in which legal thinking and argumentation is practised. Their attendance is strongly recommended. During the semester, test exams to each lecture are offered with extensive coaching. During the lecture-free time, a Q-and-A-lecture is offered. Details on the homepage of the ZAR (www.kit.edu/zar).

Learning Outcomes
The lecture covers the core principles of public law. Students shall become acquainted with the basics of constitutional law, the fundamental rights which route governmental actions and the entire legal system, as well as possibilities of actions and instruments (especially law, administrative act, public-private contract) of the public authority. Furthermore, the distinction between public and private law will be clarified. Moreover, possibilities of legal protection regarding administrative behavior will be addressed. Students shall learn to classify problems in public law and to solve (simple) administrative and constitutional cases.

Content
The course covers core material of constitutional and administrative law. It begins with the differentiation between public and private law. In the constitutional law part, the course will concentrate on the rule of law and individual rights, especially those protecting communication and entrepreneurship. The administrative law part will explain the different legal instruments of the administration how to act (rule, order, contract, etc.) and their propositions. Also, court proceedings to sue the administrative will be discussed. Students will learn the technique how to solve (simple) administrative and constitutional cases.

Media
extensive script with cases; content structure, further information in the lectures

Literature
TBA in scriptum
Elective literature: TBA in scriptum
Course: Public Law II - Public Economic Law [24520]

Coordinators: I. Spiecker genannt Döhmann
Part of the modules: Elective Module Law (p. 91)[WI3JURA]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60min) according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Recommendations
Parallel to the lectures tutoria are offered in which legal thinking and argumentation is practised. Their attendance is strongly recommended.
During the semester, test exams to each lecture are offered with extensive coaching. During the lecture-free time, a Q-and-A-lecture is offered.Details on the homepage of the ZAR (www.kit.edu/zar)

Learning Outcomes
Public economic law is of significant importance to supervise the German economy. In order to understand the functionality of mandatory interventions into market mechanisms in a thoroughly normed legal system, appropriate legal knowledge is required. This knowledge is to be provided in the lecture. In doing so, substantive law ought to be dealt with in a deepened way, while responsible authorities and institutions as well as possibilities of legal protection in the area of public commercial law will be taught at a glance. The lecture’s primary aim is to exercise handling the corresponding legal norms. It proceeds the lecture public law I.

Content
In a first step legal basics of the economic system (such as financial system and freedom of property and profession) will be presented. In this context, interaction between the Basic Constitutional Law and presettings of European Community law will be elaborated on as well. Thereafter, regulatory instruments of the administrative law will be analysed extensively. As particular matters, we will deal with industrial code, further trade law (handicrafts code; law of gastronomy), basic principles of telecommunication law, state aid law and public procurement law. A last part is devoted to the institutional design of the economy’s regulation.

Media
extensive script with cases; content structure, further information in the lectures

Literature
Will be announced in the lecture.
Elective literature:
tba in lecture slides
Course: Operative CRM [2540520]

Coordinators: A. Geyer-Schulz

Part of the modules: Specialization in Customer Relationship Management (p. 45)[WI3BWLISM5], CRM and Service Management (p. 44)[WI3BWLISM4]

ECTS Credits: 4.5

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation. The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>95</td>
</tr>
<tr>
<td>1.3</td>
<td>90</td>
</tr>
<tr>
<td>1.7</td>
<td>85</td>
</tr>
<tr>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>2.3</td>
<td>75</td>
</tr>
<tr>
<td>2.7</td>
<td>70</td>
</tr>
<tr>
<td>3.0</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>55</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conditions
None.

Recommendations
The attendance of courses Customer Relationship Management [2540508] and Analytical CRM [2540522] is advised.

Learning Outcomes
The Student

- understands the theory of methods for process and data analyses and applies them for the design and implementation of operative CRM-processes in the complex context of companies,
- takes privacy problems into account,
- evaluates existing operative CRM-processes in companies and gives recommendation for their improvement. This requires the knowledge of example processes and the ability to transform them according to the given setting.
- uses literature for the solution of case studies, communicates with professionals and summarizes his recommendations and drafts in precise and coherent texts.

Content
The Student should be able to understand and implement methods and applications within the operative CRM. This includes, but is not limited to the analysis of business processes, as a basis for improvements in CRM, and applications like call centers.

Literature

Elective literature:
Chris Todman. Designing a Data Warehouse : Supporting Customer Relationship Management.
Course: Optoelectronic Components [23486 / 23487]

Coordinates: W. Freude

Part of the modules: Microsystem Technology (p. 80) [WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2 / 1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a oral exam (20 min) according to §4 (2), 1 of the examination regulation.

Conditions
This course can not be combined with the course Optical Sources and Detectors [23462 / 23463] and/or Optical Waveguides and Fibers [23464 / 23465].

Recommendations
Recommendations for lectures (but this is not mandatory for this course): “Electrodynamics and field calculations” or similar course on electrodynamics, “Semiconductor Devices” or similar course, “High-frequency Technology”.

Minimal background required: Calculus, differential equations, Fourier transforms and p-n junction physics.

Learning Outcomes
The students understand the components of the physical layer of optical communication systems. To this end, the students

- acquire the knowledge of operation principles and impairments of optical waveguides,
- know the basics of laser diodes, luminescence diodes and semiconductor optical amplifiers,
- understand pin-photodiodes, and
- know the systems’ sensitivity limits, which are caused by optical and electrical noise.

The knowledge presented is important in comprehending the physical layer of optical communication systems. It is this very basic understanding which enables a designer to read a device's data sheet, to make most of its favourite properties, and to avoid hitting its limitations.

Content
Learning the working principles of key components in optical communications opens the road to understand design and performance aspects of modern transmission systems. The following components are discussed:

- Light waveguides: Wave propagation, slab waveguides, strip wave-guides, integrated optical waveguides, fibre waveguides
- Light sources and amplifiers: Luminescence and laser radiation, luminescent diodes, laser diodes, stationary and dynamic behavior, semiconductor optical amplifiers
- Receivers: pin photodiodes, electronic amplifiers, noise

Media
Detailed textbook-style lecture notes, and lecture slides

Literature
Course: Managing Organizations [2577902]

Coordinators: H. Lindstädt
Part of the modules: Management of public- and private-sector organizations (p. 50)[WI3BWLIWW1], Strategy and Organization (p. 31)[WI3BWLIGO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organisational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Content
- Principles of organisational management
- Managing organisational structures and processes: the selection of design parameters
- Ideal-typical organisational structures: choice and effect of parameter combinations
- Managing organisational changes

Media
Slides.

Literature

The relevant excerpts and additional sources are made known during the course.
Course: Physics for Engineers [2142890 / 2142891]

Coordinates: P. Gumbsch, A. Nesterov-Müller, D. Weygand, A. Last

Part of the modules: Microsystem Technology (p. 80) [WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Knowledge of bases in mechanics and optics are necessary.

Learning Outcomes
Orientation in topics of modern physics.

Content
Laser, superconductivity and transistor will be presented from the point of view of quantum phenomena up to technical applications.

Media
script

Literature
Bergmann-Schäfer, Lehrbuch der Experimentalphysik, Band I-III.
Course: Physical Basics of Laser Technology [2181612]

Coordinators: J. Schneider
Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
Basic knowledge of physics, chemistry and material science is assumed.
It is not possible to combine this lecture with the lecture Laser Application in Automotive Engineering [2182642]

Learning Outcomes
The student can

- explain the principles of light generation, the conditions for light amplification as well as the basic structure and function of different laser sources.
- describe the influence of laser, material and process parameters for the most important methods of laser-based materials processing and choose laser sources suitable for specific applications.
- illustrate the possible applications of laser sources in measurement and medicine technology
- explain the requirements for safe handling of laser radiation and for the design of safe laser systems.

Content
Based on the description of the physical basics about the formation and the properties of laser light the lecture goes through the different types of laser beam sources used in industry these days. The lecture focus on the usage of lasers especially in materials engineering. Other areas like measurement technology or medical applications are also mentioned. An excursion to the laser laboratory of the Institute for Applied Materials (IAM) will be offered.

- physical basics of laser technology
- laser beam sources (solid state, diode, gas, liquid and other lasers)
- beam properties, guiding and shaping
- lasers in materials processing
- lasers in measurement technology
- lasers for medical applications
- safety aspects

Media
Lecture notes via ILIAS.

Literature
Elective literature:

Course: PLM for product development in mechatronics [2122376]

Coordinators: M. Eigner

Part of the modules: Product Lifecycle Management (p. 74)[WI3INGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of an oral exam (20 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation.

Conditions

None.

Learning Outcomes

Content
Course: Polymerengineering I [2173590]

Coordinators: P. Elsner

Part of the modules: Emphasis Materials Science (p. 68) [WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material “polymer” meeting its requirements in an economical and ecological way.

Content
1. Economical aspects of polymers
2. Introduction of mechanical, chemical and electrical properties
3. Processing of polymers (introduction)
4. Material science of polymers
5. Synthesis

Literature
Recommended literature and selected official lecture notes are provided in the lecture.
Course: Polymerengineering II [2174596]

Coordinators: P. Elsner

Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

Polymerengineering I [21590].

Learning Outcomes

The field of Polymer Engineering includes synthesis, material science, processing, construction, design, tool engineering, production technology, surface engineering and recycling. The aim is, to equip the students with knowledge and technical skills, and to use the material “polymer” meeting its requirements in an economical and ecological way. Also the manifold production processes are discussed and compared regarding the component design.

Content

1. Processing of polymers

2. Properties of polymer components
 Based on practical examples and components
 2.1 Selection of material
 2.2 Component design
 2.3 Tool engineering
 2.4 Production technology
 2.5 Surface engineering
 2.6 Sustainability, recycling

Literature

Recommended literature and selected official lecture notes are provided in the lecture.
Course: Practical training in basics of microsystem technology [2143875]

Coordinators: A. Last
Part of the modules: Microsystem Technology (p. 80)[WI3INGMBIMT1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 SPO).

Conditions
None

Recommendations
Courses Microsystem technology I [2141861] and II [2142874] are recommended.

Learning Outcomes
Practical training in micro structure technology

Content
Five different practical exercises in microsystem technological themes per student are offered.

Media
Each student gets a booklet for the preparation of the practical exercise with descriptions of the experiments at the end of the Microsystem technology I respectively II - lecture.

Literature
• Fundamentals of Microfabrication, M. Madou, CRC Press, Boca Raton 1997

Remarks
The registration for the practical exercises takes place in the course Microsystem technology I respectively II. There are two fixed examination dates per year, both Thursdays, in the second complete week in September and the second week after Ash Wednesday in March or April.
Course: Principles of Insurance Management [2550055]

Coordinators: U. Werner
Part of the modules: Risk and Insurance Management (p. 36)[WI3BWLFBV3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the assessment of the oral presentations incl. papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Literature
• U. Werner. Einführung in die Versicherungsbetriebslehre. Skript zur Vorlesung.

Elective literature:
Will be announced during the lecture.
Course: Product Lifecycle Management [2121350]

Coordinates: J. Ovtcharova
Part of the modules: Product Lifecycle Management (p. 74) [W31NGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as a general written exam (90 min.) (according to Section 4 (2), 1 of the examination regulation) of the single course of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date. The overall grade of the module is the grade of the written examination.

Conditions
This course Product Lifecycle Management [2121350] is compulsory for the module Product Lifecycle Management [WW41NGMB21] and must be examined.

Learning Outcomes
The objective of the PLM lecture is to provide an overview about management and organizational approaches to product lifecycle management.

The students should:

- know the PLM management concept, its objectives and they should be able to highlight the economic benefits of the concept;
- know PLM solution vendors and can estimate the current market situation;
- understand the demand for integrated and cross-department business processes, regarding portfolio planning, manufacturing and recirculation of customer feedback from the market. The overall lifecycle including maintenance and recycling is regarded.
- know required processes and functions to support the entire product life cycle;
- are aware of the major industrial software systems in PDM, ERP, SCM, CRM and the methods for systems integration;
- Acquire techniques to successfully introduce PLM Management concepts.

Content
Product Lifecycle Management (PLM) is an approach for holistic and enterprise spanning management and governing of all product related processes and data throughout the product life cycle including an extended supply chain - from design and production and sales to the dismantling and recycling of the product.

Product Lifecycle Management is a comprehensive approach for effective and efficient design of information from the cradle to the grave of a product. Based on the entirety of product information, acquired across the entire value chain and across multiple partners, processes methods and tools are made available to provide the right information at the right time and achieve high quality at the right place.

The course covers:

- a consistent description of all business processes that occur during the product life cycle (development, production, sales, dismantling, ...)
- the presentation of methods for performing PLM business processes,
- explaining the most important corporate information systems to support the life cycle (PDM, ERP, SCM, CRM systems) using the software manufacturer SAP as an example.
Course: Production Economics and Sustainability [2581960]

Coordinators: M. Fröhling
Part of the modules: Industrial Production I (p. 33}[WI3BWLIIP]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
Students shall be aware of issues concerning industrial production and sustainability and shall apply strategies to resolve these issues.

Content
The analysis and management of material flows on the company level and above will be the focus of this lecture. Herein, the discussion will be about cost-effective and environmentally acceptable steps to avoid, abate and recycle emissions and waste as well as ways of efficient resources handling. As methods material flow analysis (MFA), life cycle assessment (LCA) and OR methods, e.g. for decision support, are introduced.

Topics:
- regulations related to materials and substances
- raw materials, reserves and their availabilities/lifetimes
- material and substance flow analysis (MFA/SFA)
- material related ecoprofiles, e.g. Carbon Footprint
- LCA
- resource efficiency
- emission abatement
- waste management and closed-loop recycling
- raw material oriented production systems
- environmental management (EMAS, ISO 14001, Ecoprofit), eco-controlling

Media
Media will be provided on e-learning platform.

Literature
will be announced in the course

Remarks
This course was formerly named “Material flows in industrial production”.

Course: Introduction to Programming with Java [2511000]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/1/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written resp. computer-based exam (60 min) according to Section 4 (2), 1 of the examination regulation.

The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written resp. computer-based exam.

The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Learning Outcomes

see German version

Content

see German version

Literature

Remarks

see German version
Course: Advanced Programming - Java Network Programming [2511020]

Coordinators: D. Seese, D. Ratz
Part of the modules: Emphasis Informatics (p. 58) [WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the compulsory tests in the computer lab is prerequisite for admission to the written exam. Further information about attendance to the exercises and practical terms will be announced in the first lecture and at the lecture homepage. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
This course cannot be taken together with Advanced Programming - Application of Business Software [2540886/2590886].

Recommendations
Successful completion of the course Introduction to Programming with Java [2511000].

Learning Outcomes
see German version

Content
see German version

Literature

Elective literature:

- Further references will be given in the lecture.
Course: Advanced Programming - Application of Business Software [2540886/2590886]

Coordinators: A. Oberweis, S. Klink
Part of the modules: Emphasis Informatics (p. 58) [W3INFO1]

ECTS Credits: 5
Hours per week: 2/1/2
Term: Winter term
Instruction language: de

Learning Control / Examinations
The assessment consists of a written examination of 2 hours (according to Section 4 (2), 1 of the examination regulation) and of assignments during the course (according to Section 4 (2), 3 of the examination regulation).
Successful participation to the computer lab is precondition for permission to the assessment. Further information will be given at the first lesson and via the homepage of the course.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
This course cannot be taken together with Advanced Programming - Java Network Programming [2511020].

Recommendations
Knowledge of the course “Grundlagen der Informatik I und II” are helpful.

Learning Outcomes
Students
- master basic concepts and principles of enterprise information systems,
- apply standard software for modelling business processes and for analysing them to given criteria
- master the installation, configuration, and parameterisation of enterprise information systems in business and
- assess economical aspects of such systems.

Content
Business information systems enable, support, and accelerate new forms of business processes and forms of organisation. They are the central infrastructure of the economy in the age of eBusiness. Thus, basic knowledge is given in lectures, in excercises and in the computer lab which deals with installation, configuration and parameterization of busine information systems. The course communicates profound knowledge in following topics:
- Analysis of cooperation scenarios and business process scenarios
- Selection of modelling methods according to defined criteria
- Implementation of business process modells and cooperation modells with the help of standard software
- Identification and assessment of challenges during the installation of information systems
- Economical evaluation of business information systems.

Media
Slides, access to internet resources.

Literature
Elective literature:
- Schwabe, Streitz, Unland. CSCW-Kompendium. Lehr- und Handbuch zum computerunterstützen kooperativen Arbeiten.
- Krcmar, Schwarzer. Wirtschaftsinformatik.

Further literature will be given during the course.
Course: Project Workshop-Automotive Engineering [2115817]

Coordinators: F. Gauterin

Part of the modules: Handling Characteristics of Motor Vehicles (p. 66)[WI3INGMB6], Vehicle Development (p. 70)[WI3INGMB14], Automotive Engineering (p. 65)[WI3INGMB5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed on the basis of a project presentation at the end of the lecture period (according to Section 4(2), 3 of the examination regulation), the followed discussion and a final project report.
Re-examinations are offered at every ordinary examination date.
The overall grade of the course consists of the weighted grades of both assessments
- Processing and results of the project: 75%
- Oral exam: 25 percent

Conditions
None.

Learning Outcomes
The students will get familiar with typical industrial development processes and working style. They will learn to apply knowledge gained at the university to a practical task.

Content
Within the Project Workshop Automotive Engineering a team of six persons will work on a task concerted with an industrial partner using the instruments of project management. The task is relevant for the actual business of the industrial partner and the results are intended to be industrialized after the completion of the project workshop. The team will generate approaches in its own responsibility and will develop solutions for practical application. Coaching will be supplied by both, company and institute. Goals and structure of the project will be specified within a start-up meeting at the beginning. During the project workshop there will be weekly team meetings. Also a milestone meeting will be held together with persons from the industrial company. In a final presentation the project results will be presented to the company management and to institute representatives.

Media
Course script (will be supplied during the start-up meeting).

Literature

Elective literature
VDI-Fachbereich Produktentwicklung und Mechatronik: VDI Richtline 2221 - Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte
Course: Project Management [0170106]

Coordinators: S. Gentes, H. Schneider

Part of the modules: Fundamentals of construction (p. 85)[WI3INGBGU3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Literature

DIETHELM, G.: Projektmanagement, Band 1: Grundlagen, Verlag Neue Wirtschafts-Briefe, Herne, 2000

Course: Project Management in Rail Industry [2115995]

Coordinators: P. Gratzfeld

Part of the modules: Rail System Technology (p. 78) [WI3INGMB25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See modul description.

Conditions
See modul description.

Learning Outcomes
The students learn the basic of project management.
They learn about the roles of project manager and project core team.
They understand the project phases and know about processes and tools.
They understand the governance process behind.

Content
The lecturer provides a comprehensive overview about modern project management for small series of capital-intensive goods.
The content is not only valid for rail vehicles but also other areas.
The following topics will be discussed:
- Introduction: definition of project and project management
- Project management system: project phases, main processes and supporting processes, governance
- Organization: organizational structure within a company, project organization, roles in a project organization
- Main processes: project start, project plan, work brake down structure, detailed project schedule, risk and opportunity management, change management, project closure
- Governance

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).
Course: Projectseminar [SozSem]

Coordinators: G. Nollmann, Kunz, Haupt, Grenz, Eisewicht, Enderle, Dukat, Albrecht

Part of the modules: Sociology/Empirical Social Research (p. 92) [WI3SOZ]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

The student:

- Is able to develop sociological analyses based on the topic of the seminar
- Is able to organize a small survey or to evaluate a given data set on the research problem

Content

In this class, students will conduct small empirical projects.
Course: Explorative-interpretative Project Seminar [n.n.]

Coordinators: M. Pfadenhauer, Kunz, Grenz, Eisewicht, Dukat, Enderle, Albrecht

Part of the modules: Qualitative Social Research (p. 93)[WI3SOZ2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The form of the assessment will be announced at the beginning of the course by the resp. lecturer. Usually at 2 Credit Points it will be an oral presentation, at 4 LP there has to be passed a term paper as well.

The modality of grading will be announced at the beginning of the course by the lecturer. Usually at 2 Credit Points the overall grade consists of the oral presentation and the active participation in the project - at 4 Credit Points it consists of the active participation and the term paper.

Conditions

Successful completion of the lecture *Interpretative Social Research Methods* [n.n.].

Knowledge of this lecture is required.

The lecture is compulsory in the module and has to be attended.

Learning Outcomes

The student

- is, based on the lecture ‘Interpretative Social Research Methods’, capable of choosing and applying appropriate explorative-interpretative methods according to a research question and arranging them in a conceptual research design.
- uses this capability to concretise a scientific question and to collect, fixate and evaluate suitable data.

Content

See seminar announcement.

Media

Will be announced in the lecture.

Literature

Will be announced in the lecture.

Elective literature:

Will be announced in the lecture.
Course: High Performance Powder Metallurgy Materials [2126749]

Coordinators: R. Oberacker
Part of the modules: Emphasis Materials Science (p. 68) [WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
None.

Recommendations
Knowledge of basic material science is assumed. Therefore it is recommended to attend the courses Material Science I [21760] and Material Science II [21782] beforehand.

Learning Outcomes
The students know the basics of powder metallurgy. They are able to assess the conditions for applying either powder metallurgy or competing production methods. They have knowledge on production, properties and application of the most important PM materials.

Content
The lecture gives an overview on production, properties and application structural and functional powder metallurgy material. The following groups of materials are presented: PM High Speed Steels, Cemented Carbides, PM Metal Matrix Composites, PM Specialties, PM Soft Magnetic and Hard Magnetic Materials.

Media
Slides for the lecture available under http://www.iam.kit.edu/km

Literature
Elective literature:
R.M. German. “Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
Course: Quality Management [2149667]

Coordinators: G. Lanza
Part of the modules: Specialization in Production Engineering (p. 75) [WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Performance is assessed in the form of one written examination (as per §4(2), 1 SPO [study and examination regulations]) during the lecture-free period. The examination will take place once every semester and can be retaken at every official examination date.

Conditions
None.

Learning Outcomes
The students
- are capable to comment on the content covered by the lecture,
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service-related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:
1. The term “quality”
2. Total Quality Management (TQM) and Six Sigma
3. Universal methods and tools
4. QM during early product stages – product definition
5. QM during product development and in procurement
6. QM in production – manufacturing metrology
7. QM in production – statistical methods
8. QM in service
9. Quality management systems
10. Legal aspects of QM

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Quantitative Methods for Supply Chain Risk Management [2118090]

Coordinators: A. Cardeneo
Part of the modules: Supply Chain Management (p. 41)[WI3BWLISM2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Conditions
None.

Recommendations
Knowledge in Logistics and Operations Research are recommended (linear and mixed integer optimization, simple graph theory, and basic knowledge of statistics).

Learning Outcomes
The student
- identifies, analyzes and assigns risks of logistic systems
- plans location and transport decisions under uncertainty
- knows risk-relevant elements and knows adequate countermeasures for planning processes (regarding procurement, demand, infrastructure, continuity management)

Content
The planning and the operation of logistics systems are strongly connected with uncertainty: It is the unknown demand, varying transportation times, unexpected delays, irregularly production yield or volatile rates of exchange: Quantities, times, qualities and prices are uncertain values. Therefore it is necessary to deal with particular these uncertain values to avoid negative effects. In this lecture we mostly work with mathematical models and methods to control the various kinds of risks.

Literature
Will be announced in the lecture.
Course: Spatial Planning and Planning Law [19028]

Coordinators: D. Engelke, Brester
Part of the modules: Mobility and Infrastructure (p. 84)[W13INGBGU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See module description.

Conditions
None.

Learning Outcomes
The educational aim of the lecture is to give a first view on spatial planning and its main tasks. At the end of the semester the participants should be able to work on modest issues of spatial planning on the local level. This is due to assess quantitative aspects like temporal processes and display spatial data.

Content
- Tasks and strategies of spatial planning
- Spaces, uses and conflicts of local planning
- Spatial planning on the local level: Properties and buildings including the public technical and social infrastructure
- Planning on municipality level
- Sustainable settlement structure and land use management
- Historic view on urbanism and regional development
- Planning on different levels: Regional plans, structure plans and zoning plans
- Spatial planning and the European Dimension
- Real estate economy
- Exercise: Urban Planning in Karlsruhe Nordstadt

Literature
Elective literature:
- W. Müller: Städtebau
- W. Braam: Stadtplanung
- D. Bökemann (1982): Theorie der Raumplanung
Course: Real Estate Management I [26400w]

Coordinators: T. Lützkendorf
Part of the modules: Real Estate Management (p. 48) [WI3BWLOOW2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Conditions

None.

Recommendations

A combination with the module Design Construction and Assessment of Green Buildings I [WI3BWLOOW1] is recommended. Furthermore it is recommended to choose courses of the following fields:

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Learning Outcomes

Application of economic methods to the fields of real estate economics and sustainable construction.

Content

The course Real Estate Management I deals with questions concerning the economy of a single building throughout its lifecycle. Among other topics this includes project development, location and market studies, german federal building codes as well as finance and assessment of economic efficiency.

The tutorial recesses the contents of the course by means of practical examples and, in addition to that, goes into the possible use of software tools.

Media

Presentation slides and supplementary material is provided partly as printout, partly online for download.

Literature

Elective literature:

Remarks

The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
Course: Real Estate Management II [2585400/2586400]

Coordinators: T. Lützkendorf

Part of the modules: Real Estate Management (p. 48) [WI3BWLOOW2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Reexaminations are offered at every ordinary examination date.

Conditions
None.

Recommendations

A combination with the module Design Construction and Assessment of Green Buildings I [WI3BWLOOW1] is recommended. Furthermore it is recommended to choose courses of the following fields

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Learning Outcomes

Application of economic methods to the fields of real estate economics and sustainable construction.

Content

The course Real Estate Management II gives special attention to topics in connection to the management of large real estate portfolios. This especially includes property valuation, market and object rating, maintenance and modernization, as well as real estate portfolio and risk management. The tutorial provides examples in order to practice the application of theoretical knowledge to practical problems.

Media

Presentation slides and supplementary material is provided partly as printout, partly online for download.

Literature

Elective literature:

See german version.

Remarks

The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
Course: Computer Integrated Planning of New Products [2122387]

Coordinators: R. Kläger
Part of the modules: Product Lifecycle Management (p. 74)[WI3INGMB21]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade corresponds to the grade of the oral exam.

Conditions
Limited number of participants, for selection procedure and registration see course homepage.

Learning Outcomes
Content
Course: Financial Accounting and Cost Accounting [2600002]

Coordinators: T. Lüdecke

Part of the modules:
- Business Administration (p. 21) [WI1BWL]
- Business Administration (p. 20) [WI1BWL1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The student should learn advanced topics in accounting.

Content

Media
- slides

Remarks
The content of this lecture will be changed in the winter semester 2013/14 and will be different from the content of its predecessors. Foundations of accounting is taught in Business Administration: Finance and Accounting since the winter semester 2012/13.
Course: Renewable Energy – Resources, Technology and Economics [2581012]

Coordinators: R. McKenna
Part of the modules: Energy Economics (p. 34)

ECTS Credits: 3.5
Hours per week: 2/0
Term: Winter term
Instruction language: en

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
The student:

- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Content
1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the “Energieberg” in Mühlburg

Media
Media will be provided on the e-learning platform ILIAS.

Literature
Elective literature:

Course: Risk Management in Industrial Planning and Decision-Making [2581993]

Coordinators: F. Schultmann
Part of the modules: Industrial Production I (p. 33)[WI3BWLIIP]

ECTS Credits: 3.5
Hours per week: 2/0
Term: Summer term
Instruction language: en

Learning Control / Examinations
The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
This class is an introduction to risk management and decision support. Students will learn the concepts and methods of risk analysis and management and procedures that help to make decisions about risk management strategies. This course will focus on techniques to manage complexity and uncertainty, for instance by taking into account different value systems resulting from multiple objectives and the involvement of multiple experts and stakeholders. The students will also learn how to apply risk analysis and management in real world settings, and many examples from industrial production and crisis management will be used.

Topics include the identification of relevant risks, the modelling of uncertainty, methods and tools for risk assessment, decision analysis (single and multiple criteria), risk mitigation and management.

Content
This course covers the following topics:

- Introduction to the basic concepts of risk analysis
- Risk Identification: core concepts and tools
- Relationship between probability theory and modelling, risk analysis, and decision analysis
- Using probability theory, probabilistic modeling and probabilistic simulation for risk analysis
- Using basic tools of risk analysis – fault trees, event trees, simulation models, and influence diagrams
- Eliciting and using expert judgment in risk analysis
- Risk analysis in decision making, especially in regulatory settings
- Core concepts to support decision making under uncertainty
- Frameworks for decision problem structuring, preference modelling and choice under risk, along with their characteristics, techniques, tools and applicability for risk management in organisations and industrial companies.
- Understand risk management, including risk communication, implementation, and monitoring of risk management strategies
- Relation of all concepts to practice and modelling of real-world problems in a structured way that supports efficient and effective risk management and rational decision making

Media
Media will be provided on the e-learning platform.

Literature

Further reading will be announced in the course

Remarks
This lecture will not be held in winter term any more but in Summer term.
Course: Rail Vehicle Technology [2115996]

Coordinators: P. Gratzfeld
Part of the modules: Rail System Technology (p. 78)[W13INGMB25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Contro / Examinations
See modul description.

Conditions
See modul description.

Learning Outcomes
The students learn about advantages and disadvantages of different types of traction drives and judge which one fits best for each application.
They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
They know about the basics of running dynamics and bogies.
They define suitable vehicle concepts based on requirements for modern rail vehicles.

Content
Vehicle system technology: structure and main systems of rail vehicles
Drives: Electric and non-electric traction drives
Brakes: Tasks, basics, principles, brake control
Bogies: forces, running gears, axle configuration
Vehicle concepts: trams, metros, regional trains, double deck coaches, locomotives
Examples of existing rail vehicles were discussed.

Media
All slides are available for download (Ilias-platform).

Literature
A bibliography is available for download (Ilias-platform).
Course: Key qualifications ZAK [SQ ZAK1]

Coordinators: ZAK
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
Content
Course: Working and Studying Effectively [SQ HoC1]

Coordinators: HoC

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-4</td>
<td>meist 2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Oral Presentation and Communication Skills [SQ HoC2]

Coordinators: HoC

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>meist 2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

See German version.

Conditions

None.

Recommendations

None.

Learning Outcomes

See German version.

Content

See German version.
Course: Scientific Writing [SQ HoC3]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>meist 2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Teaching and Learning Foreign Languages [SQ HoC4]

Coordinators: HoC

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Qualitative Methods [SQ HoC5]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Law and Economics [SQ HoC6]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Competencies as a Research Topic [SQ HoC7]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94) [WI SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Transferring Knowledge in School, University and at the Workplace [SQ HoC 8]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Professional Orientation and Job Specific Competencies [SQ HoC9]

Coordinators: HoC
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
See German version.
Course: Semantic Web Technologies I [2511304]

Coordinators: R. Studer, S. Rudolph, E. Simperl

Part of the modules: Electives in Informatics (p. 60) [WI3INFO2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.
The exam takes place every semester and can be repeated at every regular examination date.

Conditions
Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent.

Learning Outcomes
- Basic knowledge about the main ideas and the realisation of Semantic Web Technologies

Content
"Semantic Web" denotes an extension of the World Wide Web by meta data and applications in order to make the meaning (semantics) of data on the web usable by intelligent systems, e.g. in e-commerce and internet portals. Central to this is the representation and processing of knowledge in form of ontologies. This lecture provides the foundations for knowledge representation and processing for the corresponding technologies and presents example applications. It covers the following topics:

- Extensible Markup Language (XML)
- Resource Description Framework (RDF) and RDF Schema
- Web Ontology Language (OWL)
- Rule Languages
- Applications

Media
Slides.

Literature

Elective literature:
Course: Seminar in Enterprise Information Systems [SemAIFB1]

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis and a presentation.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.
The seminar is for bachelor as well as master students. The differentiation will be made by selection of different topics and different standards of evaluation.

Conditions
See corresponding module information.

Learning Outcomes
Students are able to

- do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
- write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the seminar.
- present results of the research in written form generally found in scientific publications.

Content
The seminar intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.
Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre

Literature
Literature will be given individually in the specific seminar.
Course: Seminar Efficient Algorithms [SemAIFB2]

Coordinators: H. Schmeck

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a talk (presentation of 45-60 minutes) about the research topic of the seminar together with discussion, a written summary about the major issues of the topic (approx. 15 pages) and attending the discussions of the seminar (according Section 4(2), 3 of the examination regulation).

This seminar is for bachelor as well as master students. The difference between them is calculated according to different evaluation mechanisms for the written summary work and the talk.

Conditions
See corresponding module information.

Learning Outcomes
The students should learn to work on research papers by searching for new topics in computer science and by presenting the major issues of the papers.

The master students should deepen their ability to develop independent insight into new scientific topics and to communicate them through oral presentation and written summary to others.

The students will learn to deal with critical discussions on scientific presentations and written summaries through active participation in the seminar.

Content
Topics include the new research issues of the research group “applied Informatics”. The new topics are in the area Organic Computing. Nature-inspired optimization and service oriented architectures.

The topics of the seminars are introduced around the end of the former semester on the board A12 of the institute AIFB (building 11.40) and in Internet http://www.aifb.kit.edu/web/SeminarePraktika

Literature
Will be announced at the beginning of the semester.

Remarks
There is a limited number of participants. The students have to register for the seminar.
Course: Seminar Energy Economics [SemEW]

Coordinators: W. Fichtner, P. Jochem, D. Keles, R. McKenna, V. Bertsch
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Seminar eOrganization [SemAIFB5]

Coordinators: S. Tai
Part of the modules: Seminar Module (p. 94) [WISEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis (15-20 pages), a presentation and active participation in class.

The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Conditions
None.

Learning Outcomes
Research in the field of eOrganization adhering to scientific standards.

Content
The seminar explores current research topics of Cloud Service Engineering (including service computing, service engineering, cloud computing and service networks). Each time, a particular focus theme will be chosen.
Course: Seminar Public Finance [2560130]

Coordinators: B. Wigger, Assistenten

Part of the modules: Seminar Module (p. 94) [W3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
See module description.
Adequate for students in an advanced stage of their studies.

Learning Outcomes

Content
Preparation, presentation, and discussion of recent research papers on varying Public Finance issues. The current seminar subject, including the exact topics to work on, will be announced under http://fiwi.iww.kit.edu and on the notice board prior to the start of semester.

Literature
Will be announced at the beginning of the seminar.
Course: Seminar Conveying Technology and Logistics [SemIFL]

Coordinators: K. Furmans

Part of the modules: Seminar Module (p. 94) [WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Participation during the information presentation. The performance review is based on the written paper and the two presentations. Active participation during the presentations is required.

Conditions
See module.

Recommendations
See German version.

Learning Outcomes
Students are able to work on scientific subjects under guidance, which includes:

- the self driven outline of the inquired subject,
- investigating and argumenting in the context of logistics and material handling,
- the presentation of the results in front of professionals and
- the written work.

Thereby presentation technique is used and enlarged.

Content
The topics of the seminar will be published under http://www.ifl.kit.edu/seminare.php one semester before. To participate it is necessary to sign in the semester before.
Course: Seminar in Behavioral and Experimental Economics [n.n.]

Coordinators: P. Reiss

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Students write (according to Section 4 (2), 3 SPO) a seminar paper on an assigned topic (15-20 pages), present it in class and discuss results during seminar sessions. These three elements are graded individually. The seminar grade is the weighted average of these individual grades where the weighting is announced on the course syllabus.

Conditions
None.

Recommendations
Basic knowledge of mathematics, statistics, microeconomics, and game theory is assumed.

Learning Outcomes
Students develop basic academic writing skills by writing a seminar paper that is presented and discussed in class. For fostering academic writing skills, the grading of master students pays particular attention to a critical and deep coverage of the assigned topic.

Content
Seminar topics are announced online at http://io.econ.kit.edu (-> Studium und Forschung).

Media
Slides.

Literature
A selection of published papers is compulsory reading for the course.

Remarks
Language: german or english.
Course: Seminar in Finance [2530280]

Coordinators: M. Uhrig-Homburg, M. Ruckes
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
Knowledge of the content of the module Essentials of Finance [WI3BWLFBV1] is assumed.

Learning Outcomes
The student gets in touch with scientific work. Through profound working on a specific scientific topic the student is meant to learn the foundations of scientific research and reasoning in particular in finance. Through the presentations in this seminar the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures. The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Literature
Will be announced at the end of the foregoing semester.
Course: Seminar in International Economy [SemIWW2]

Coordinators: J. Kowalski
Part of the modules: Seminar Module (p. 94) [WISEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Seminar in Marketing and Sales (Bachelor) [SemETU1]

Coordinators: M. Klarmann

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Grading system: written seminar paper (weighting 60%), presentation of the seminar paper (weighting 30%), oral participation (weighting 10%).

Conditions
None.

Learning Outcomes

Content

Remarks
Students interested in bachelor thesis positions at the chair of marketing should participate in the marketing seminar.
For further information please contact Marketing & Sales Research Group (marketing.ism.kit.edu).
Course: [SemIWW3]

Coordinators: I. Ott
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out through a term paper within the range of 12 to 15 pages, a presentation of the results of the work in a seminar meeting, and active participation in the discussions of the seminar meeting (§ 4 (2), 3 SPO).

The final grade is composed of the weighted graded examinations. (Essay 50%, 40% oral presentation, active participation 10%).

The seminar is intended for students both of bachelor and master degree program. They are differentiated by different assessment criteria for term paper and presentation grading.

Conditions
At least one of the lectures “Theory of Endogenous Growth” or “Innovation Theory and Policy” should be attended in advance, if possible.

Learning Outcomes

Content
The current topic of the seminar including the subjects treated will be announced before the semester begins at http://wipo.iww.kit.edu.

Previous Topics:
- Economic Aspects of General Purpose Technologies (SS 2010)
- Questions of Modern Economic Growth Theories (WS 2010/2011)
- Beans or fully automated machines? Determinants of Development and Growth in a globalized World (SS 2011)
- Technology Assessment and strategic Patent Analyses (WS 2011/2012)
- Innovation Potentials and Spatial Dimension in Cultural and Creative Industries (WS 2011/2012)
- Quantitative Methods in Economics with Mathematica (SS 2012)

Remarks
Please note that this course is probably not available in winter term 2013/14. For further information please visit http://wipo.econ.kit.edu/.
Course: Seminar in Industrial Production [SemIIP2]

Coordinators: F. Schultmann, M. Fröhling
Part of the modules: Seminar Module [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment acc. to §4 (2), No.3 ER by assessing the written seminar thesis (approx. 20 pages), the oral presentation and active participation in public discussions. The final grade will be formed by weighing the individual assessment grades.

Conditions
Students should have completed the modules „Industrial Production I“ [WI3BWLIIP], „Industrial Production II“ [WW4BWLIIP2] or „Industrial Production III“ [WW3BWLIIP6].

Learning Outcomes
Students shall gain insights into selected research of the Institute of Industrial Production (IIP).

- Students search for, identify, review and evaluate relevant literature.
- Students prepare their seminar thesis (and later on bachelor/master thesis) with a minimum expense in becoming acquainted with their topic and general layout.
- Students produce an oral presentation in a scientific context by using the outlined techniques of scientific presentation.
- Students learn to present their written results in an adequate form for scientific publishing.

Students in M.Sc. studies will have to put special emphasis on a critical discussion and evaluation of their topic, since they will have to look into actual scientific results in the field of industrial production.

Content
This seminar covers actual topics of industrial production, logistics, environmental science, project management and similar fields. We recommend a successful attendance of previous IIP modules (not compulsory!). Actual topics covered in this seminar will be published before the start of semester.
Course: Seminar Information Engineering and Management [SemIW]

Coordinators: C. Weinhardt

Part of the modules: Seminar Module (p. 94) [WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Conditions
See corresponding module information.

Recommendations
At least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on a academic level. This process gives him the knowledge and practice for further research work like a master thesis or a doctoral thesis.

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination.

Media
- PowerPoint
- E-learning platform ILIAS
- Software Tools, if necessary

Literature
The student will receive the necessary literature for his research topic.

Remarks
- Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
- All the seminars offered at the chair of Prof. Dr. Weinhardt can be chosen. The current topics of the seminars are available at the following homepage: www.iism.kit.edu/im?lehre .
Course: Seminar Complexity Management [SemAIFB3]

Coordinators: D. Seese

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
see German version

Conditions
None.

Learning Outcomes
see German version

Content
see German version

Literature
Will be announced in the seminar.

Remarks
The number of participants is limited. Please take notice about the inscription procedure at the institutes website. Specific titles and the topics of offered seminars will be announced before the start of a semester on the website of AIFB.
Course: Seminar Management Accounting [2579904]

Coordinators: M. Wouters
Part of the modules: Seminar Module (p. 94)[WISSEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The final grade of the course is the grade awarded to the paper.

Conditions
The LV “Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen” (2600026) must have been completed before starting this seminar.

Learning Outcomes
Students are familiar with topics in management accounting literature and practice that are most relevant to their studies and to their research projects.

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. Meetings are concentrated in three weeks that are spread throughout the semester.

Week 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.
Week 2: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.
Week 3: In the third week we are going to present and discuss the final papers.

Media
The instructor uses a LCD projector and makes the slides available for the students. Students should have their own notebook computer with the usual software for spreadsheets, word processing, internet, etc.

Literature
Will be announced in the course.

Remarks
Maximum of 24 students.
Course: Seminar Mobility Services [2595475]

Coordinators: W. Michalk, B. Chlond, U. Leyn, H. Fromm
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
A final written exam will be conducted.

Conditions
See module description.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of mobility services. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on an academic level.

Content
The seminar gives an insight in different aspects of services in the context of mobility. Changes in business models in the mobility sector as well as the adaptation of new demand patterns for mobility play a crucial role in this context. These shifts are accompanied by a technological evolution including new mobile devices that enable dynamic and flexible access to information. In the seminar, the student should learn to apply the research methods to predefined research questions; in this context, e.g. literature reviews, structured interviews, and the comparison of business models are employed.
Course: Seminar Service Science, Management & Engineering [2595470]

Coordinators: C. Weinhardt, R. Studer, S. Nickel, H. Fromm, W. Fichtner

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis (15-20 pages), a presentation and active participation in class.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Conditions
See corresponding module information.

Recommendations
Lecture eServices [2595466] is recommended.

Learning Outcomes
Autonomously deal with a special topic in the Service Science, Management and Engineering field adhering to scientific standards.

Content
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering.
Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.
See the KSRI website for more information about this seminar: www.ksri.kit.edu

Literature
The student will receive the necessary literature for his research topic.
Course: Seminar Stochastic Models [SemWIOR1]

Coordinators: K. Waldmann

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course is in form of an examination of the written seminar thesis and a presentation. The final mark is the result of both the paper and its presentation.

Conditions

None.

Learning Outcomes

In case studies students comprehend stochastic relationships and gain deep knowledge of modelling, evaluation, and optimization of stochastic systems. In group presentations, students learn basic academic presentation and argument skills.

Content

The actual topic as well as the contemporary issues are available online.

Media

Power Point and related presentation techniques.

Literature

Will be presented with the actual topic.
Course: Seminar Knowledge Management [SemAIFB4]

Coordinators: R. Studer
Part of the modules: Seminar Module (p. 94)[WI3SEM]

ECTS Credits: 3 Hours per week: 2 Term: Winter term Instruction language: de

Learning Control / Examinations
The success monitoring is done through a presentation about a research topic from the current topic of the seminar (45-60 minutes) followed by a discussion, a written summary of the main points (approx. 15 pages) and of active participation in discussions (in accordance with §4(2),3 SPO).
The total mark is composed of the graded and weighted success controls (50% lecture, 30% written paper, and 20% participation and discussion.
The seminar can be attended by both bachelor and master students. A differentiation is made by different topic assignment and evaluation standards for seminar paper and presentation.

Conditions
See module description.

Learning Outcomes
The students will learn to perform literature searches on current topics in computer science and holistic knowledge management as well as preparing and presenting the contents of scientific publications.

During the work on the seminar topics the master students will deepen their skills to autonomously comprehend current scientific knowledge and to convey it to others through oral presentations and written summaries.

Through active participation in the seminar, students acquire skills in critical appraisal of research topics and in oral and written presentation of independently developed research content.

Content
Each year, the seminar will cover topics from a different selected subfield of knowledge management, e.g.:

- Ontology-based knowledge management,
- Information Retrieval and Text Mining,
- Data Mining,
- Personal Knowledge Management,
- Case Based Reasoning (CBR),
- Collaboration and Social Computing,
- Business-process Oriented Knowledge Management.

Media
Slides.

Literature

Remarks
The number of students is limited. Students have to observe the designated registration process.
Course: Seminar in Insurance Management [SemFBV1]

Coordinators: U. Werner

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Oral presentation and written report of about 10 pages on the same topic, as well as active participation in discussion and working groups (according to §4(2), 3 SPO).

The grading consists of the weighted performance of the tasks delivered.

Conditions

See corresponding module information.

The seminar is held within the courses of Risk and Insurance Management and Insurance Management ([WI3BWLFBV3], [WW3BWLFBV4] and [WW4BWLFBV6/7], respectively.

A course taken as a seminar cannot be chosen as a part of a course module (and vice versa).

Recommendations

The seminar fits well with the bachelor modules Risk and Insurance Management [WI3BWLFBV3] as well as with the master modules Insurance Management I [WW4BWLFBV6] and Insurance Management II [WW4BWLFBV7]. These modules, though, are not required to be taken.

Learning Outcomes

See German version.

Content

The seminar is offered within the following courses:

- Principles of Insurance Management
- Insurance Accounting (s.o.)
- Insurance Marketing
- Insurance Production
- Service Management

For their contents refer to the information given for these courses.

Literature

Will be announced at the beginning of the lecture period.

Remarks

Some of the courses mentioned above are offered on demand. For further information, see: http://insurance.fbv.kit.edu.

To attend the course please register with the secretary of the chair: thomas.mueller3@kit.edu
Course: Seminar in strategic and behavioral marketing [2572197]

Coordinators: B. Neibecker

Part of the modules: Seminar Module (p. 94) [W1SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The student is evaluated based on the written work, a presentation of the results in front of an audience and his contribution to the discussion.

Conditions
None.

Learning Outcomes
At the seminar (with a "Referat" as its goal) the student should be able to do a literature review based on a predefined topic in the context of marketing research. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on an academic level.

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in marketing. This problem analysis requires an interdisciplinary examination. As a special option, the implementation of methodological solutions for market research can be accomplished and discussed with respect to its application.

Literature
Will be allocated according to the individual topics.

Remarks
Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
Course: Seminar in Discrete Optimization [2550491]

Coordinators: S. Nickel

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 35-40 minutes (according to §4(2), 3 of the examination regulation).

The final mark for the seminar is the weighted average of the marks for the assessed assignments (seminar thesis 30 %, presentation 60%, handout 10%).

The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Conditions

Successful completion of the module *Introduction to Operations Research* [WI1OR].

Learning Outcomes

The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management).

The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Content

The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Dates will be announced on the internet.

Literature

Literature and relevant sources will be announced at the beginning of the seminar.

Remarks

The seminar is offered in each term.
Course: Seminar in Experimental Economics [SemWIOR3]

Coordinators: N. N.
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Term paper and presentation

Conditions
See corresponding module information.
A course in the field of Game Theory should be attended beforehand.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in Experimental Economics.
Students learn the technical basics of presentation and to argument scientifically. Also rethoric skills shall be amplified.

Content
The seminar's topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Media
Slides.

Literature
Will be announced at the end of the recess period.
Course: Seminar in Continuous Optimization [2550131]

Coordinators: O. Stein

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation.
The total grade is composed of the equally weighted grades of the written and oral assessments.
The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the seminar presentation.

Conditions
See corresponding module information.
Attendance is compulsory.
Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.
The student is introduced to the style of scientific work. By focussed treatment of a scientific topic the student learns the basics of scientific investigation and reasoning.
For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.
With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetoric abilities may be improved.

Content
The current seminar topics are announced under http://kop.ior.kit.edu at the end of the preceding semester.

Literature
References and relevant sources are announced at the beginning of the seminar.
Course: Seminar on Macroeconomic Theory [SemETS3]

Coordinators: M. Hillebrand
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
At least one of the courses *Theory of Business Cycles* [25549] and *Theory of Economic Growth* [2520543] should have been attended beforehand.

Learning Outcomes

Content

Literature
Will be announced at the end of the recess period.

Remarks
for details see German version.
Course: Seminar on Network Economics [2560263]

Coordinators: K. Mitusch

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a seminar paper of 15-20 pages, a presentation of results and active participation in the discussion during the seminar (according to §4(2), 3 ERSC). The grading is carried out primarily in reference to the seminar paper, however, divergent performance in the presentation will be accounted for by a corresponding adjustment. In particular, there is the chance to improve grades through good participation during the seminar.

Conditions

See module description.

Basic knowledge of network economics is required. The course *Competition in Networks* [26240] should be completed.

Learning Outcomes

The student

- can acquire a scientific article to an economic topic,
- deepens his/her knowledge in network economics,
- gets inspiration for a potential master thesis.

Content

The current theme of the seminar including the suggestion of topics for the seminar papers will be announced in KIM and on the notice board at the institute (http://netze.iww.kit.edu).

(The title of the seminar may change from term to term depending on the topic)
Course: Seminar Transport Economics [2561209]

Coordinators:

Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Seminar: Legal Studies [RECHT]

Coordinators: Inst. ZAR
Part of the modules: Seminar Module (p. 94)[WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Seminar: Management and Organization [2577915]

Coordinators: H. Lindstädt

Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Term paper (50%) and presentation (50%).

Conditions
See corresponding module information.

Learning Outcomes
The aim of the seminar is to describe corporate and organisational management approaches, to assess them critically and clarify them using practical examples. The focus is on assessing the models with a view to their applicability and theoretical limits.

Content
The subjects are redefined each semester on the basis of current issues.

Media
Slides.

Literature
The relevant sources are made known during the course.
Course: Seminar paper “Production Engineering” [21690sem]

Coordinators: V. Schulze, G. Lanza, J. Fleischer
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The following work and performance is required for the successful completion of the seminar:

- active participation in the seminar,
- completion of a seminar paper on the topic of the seminar (minimum input: 80 h) and
- a presentation given after completion of the seminar paper.

The seminar paper can be submitted:

- for the module: seminar module [SemING] OR
- to improve the module grade of modules: Manufacturing Engineering [WI3INGMB23], Integrated Production Planning [WI3INGMB24] or Vertiefung der Produktionstechnik [WI4INGMB22].

Each seminar paper can be submitted only once. One paper cannot be submitted for both the seminar module and the improvement of the grade.

The score of the seminar paper can be used to improve the grade of one of the above-mentioned modules. The module grade can be improved by three tenths maximum. Only seminar papers written at wbk Institute of Production Science qualify for an improvement of the module grade.

One seminar paper can be used for the improvement of one module grade (named above) maximum. For the improvement of a grade, no more than one seminar paper can be submitted.

Conditions
None.

Learning Outcomes
The students are able to

- find appropriate data sources, evaluate and extract information.
- apply a predetermined citation style correctly.
- summarize information and results shortly and concisely in a written form.
- to design visual preparations of scientific problems or results and to make an oral presentation.
- to work in task-oriented cooperation as a team.

Content
Students independently deal with production engineering related problems from the fields of manufacturing engineering, machine tools and handling technology and organisation, planning and logistics with tutorial assistance. The results are aggregated in the form of a seminar paper and are then illustrated in the form of a presentation.

Media
Lecture notes of the Institute of Production Science.
Course: Service Oriented Computing 1 [2511500]

Coordinators: S. Tai
Part of the modules: Electives in Informatics (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60min.) in the first week after lecture period (nach §4(2), 1 SPO).

Conditions
None.

Recommendations
Lecture AI2 [2511032] is recommended.

Learning Outcomes
The course introduces concepts, methods, and techniques of “service-oriented computing”, including languages for (Web) service description, methods and tools for the development of services, and platforms (middleware, runtimes) for the Web-based deployment, delivery, and execution of services. The course provides a solid technical foundation that enables the student to address the increasingly relevant challenges of developing “service-oriented architectures (SOA)” in the industry.

Content
Web services represent the next-generation of Web technology, and are an evolution of conventional distributed middleware. They enable new and improved ways for enterprise computing, including application interoperability and integration, and business process management. Modern software systems are being designed as service-oriented architectures (SOA), introducing increased agility and flexibility at both the software systems and the business level. Web services and SOA thus have a profound impact on software development and the businesses that they support. The course “Service-oriented Computing” introduces the concepts, methods and technology that provide a solid foundation in this area. Topics include:

- Service description
- Service engineering, including development and implementation
- Service composition (aggregation), including process-based service orchestration
- Interoperability formats and protocols
- Service platforms and runtimes (middleware)

Media
Slides, access to internet resources.

Literature
Will be announced in the lecture.
Course: Simulation of coupled systems [2114095]

Coordinators: M. Geimer
Part of the modules: Vehicle Development (p. 70)[WI3INGMB14], Mobile Machines (p. 71)[WI3INGMB15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment for the module Mobile Machines: See module description.
Assessment for the module Automotive Engineering: The assessment consists of an oral exam (20 min) taking place in the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
It is recommended to have:
- Knowledge of ProE (ideally in actual version)
- Basic knowledge of Matlab/Simulink
- Basic knowledge of dynamics of machines
- Basic knowledge of hydraulics

Learning Outcomes
The limitation of the simulation programs and the related problems will be introduced by using the example of the working movement of a wheel loader. As a solution the coupled simulation of multiple programs by using the mentioned example will be shown.

Content
- Knowledge of the basics of multi-body and hydraulic simulation programs
- Possibilities of coupled simulations
- Development of a simulation model by using the example of a wheel loader
- Documentation of the results in a short report

Literature
Elective literature:
- miscellaneous guides according the software-tools pdf-shaped
- information to the wheel-type loader
Course: Simulation I [2550662]

Coordinators: K. Waldmann
Part of the modules: Applications of Operations Research (p. 61)[WI3OR5], Stochastic Methods and Simulation (p. 64)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is often not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.

Topics overview: Discrete event simulation, generation of random numbers, generating discrete and continuous random variables, statistical analysis of simulated data.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Literature
- Lecture Notes

Elective literature:

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation II [2550665]

Coordinators: K. Waldmann
Part of the modules: Stochastic Methods and Simulation (p. 64)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).

Conditions
Foundations in the field of Simulation I[2550662] are desired.

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is often not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.

Topics overview: Variance reduction techniques, simulation of stochastic processes, case studies.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Literature
• Lecture Notes

Elective literature:

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation of Spray and Mixture Formation in Internal Combustion Engines [21114]

Coordinators: C. Baumgarten
Part of the modules: Combustion Engines II (p. 73)[WI3INGMB19]

ECTS Credits: 4 Hours per week: 2 Term: Winter term Instruction language: de

Learning Control / Examinations
The assessment consists of an oral exam (30 min) according to §4 (2), 2 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 3.

Conditions
The course Combustion Engines A [21101] has to be completed beforehand.

Learning Outcomes
Content
Course: Software Engineering [2511206]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Conditions
Modul “Introduction to Informatics” [WI1INFO] is precondition

Learning Outcomes
Students
- are familiar with the concepts and principles of software engineering
- know important and common software development process models
- know methods for requirements analysis and know how to model and evaluate use case models
- know models for systems structuring and controlling as well as architecture principles of software systems.
- can model and evaluate component diagrams
- are familiar with basic concepts of software quality management and are able to apply software test and evaluation methods.

Content
The course deals with fundamental aspects of the systematically development of huge software systems. The course covers topics such as:
- software developing process models
- methods and tools for the development phases: requirements analysis, system specification, system design, programming and testing.

Media
Slides, access to internet resources.

Literature

Elective literature:
- E. Gamma et al., Design Patterns. Addison Wesley 1995.

Further literature is given in the course.
Course: Software Laboratory: OR Models I [2550490]

Coordinators: S. Nickel

Part of the modules: Applications of Operations Research (p. 61) [WI3OR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1/2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the software laboratory and the following term.

Conditions

Firm knowledge of the contents from the lecture Introduction to Operations Research I [2550040] of the module Operations Research [WI1OR].

Learning Outcomes

The software laboratory has the goal to make the students familiar with the usage of computers in practical applications of Operations Research. An important benefit lies in the ability to assess and estimate general possibilities and fields of usage of modeling and implementation software for solving OR models in practice. As software-based planning modules are used in many companies, this course provides a reasonable preparation for students for practical planning activities.

Content

After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, ...), the software IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL will be discussed which can be used to solve OR problems on a computer-aided basis.

Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Remarks

Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The planned lectures and courses for the next three years are announced online.
Course: Social structures of modern societies [11005]

Coordinators: G. Nollmann
Part of the modules: Sociology/Empirical Social Research (p. 92)[WI3SOZ]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written test according to Section 4 (2), 1 of the examination regulation. The test will be graded. The test takes place in the last lecture. Generally re-examinations are offered six weeks later.

Conditions
The lecture is obligatorily in the module and has to be completed.

Learning Outcomes
The student:

• Gains knowledge on social structures of modern societies
• Describes and explains current societal processes
• Gets to know selected research, problems and data.

Content
The lecture begins with definitions of social structures and their relation to the culture of human behaviour. Furthermore, important research, current debates, and controversies will be presented as well as continuity and change of German social structures in comparative fashion.

Important topics will be modernisation, individualisation, class structures, education and job market, social mobility, life courses and cohorts, distributions of income and wealth, family, marriage market, fertility.

The lecture stresses knowledge about data sources, official statistics, and relevant results of survey research.
Course: Special Topics in Management Accounting [2570005]

Coordinators: M. Wouters, S. Morales, M. Kirchberger
Part of the modules: Seminar Module (p. 94) [WI3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>en</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The final grade of the course is the grade awarded to the paper.

Conditions
The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Learning Outcomes
Students are familiar with topics in management accounting literature and practice that are most relevant to their studies and to their research projects.

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. Meetings are concentrated in three weeks that are spread throughout the semester.

Week 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.

Week 2: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.

Week 3: In the third week we are going to present and discuss the final papers.

Media
The instructor uses a LCD projector and makes the slides available for the students. Students should have their own notebook computer with the usual software for spreadsheets, word processing, internet, etc.

Literature
Will be announced in the course.

Remarks
Maximum of 24 students.
Course: Special Topics in Information Engineering & Management [2540498]

Coordinates: C. Weinhardt

Part of the modules: eBusiness and Service Management (p. 39)[WI3BWLISM1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class)

Conditions
None.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The practical work components should enable the student to learn and independently use scientific methods employed e.g. in case studies or experiments.

The student learns to present his results in a paper and in front of an audience on an academic level. This process is helpful for further scientific work like the bachelor, master or doctoral thesis.

Content
In this course the student should learn to apply the search methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination. Experiments, case studies or software development can be part of the practical work that offers the students an opportunity to get a deeper insight into the field of Information Engineering and Management. The course also encompasses a documentation of the implemented work.

Media
- PowerPoint
- E-learning platform ILIAS
- Software tools for development, if needed

Literature
The basic literature will be made available to the student according to the respective topic.

Remarks
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Engineering & Management course. The current topics of the practical seminars are available at the following homepage: www.ism.kit.edu/im/lehre

The Special Topics Information Engineering and Management is equivalent to the practical seminar, as it was only offered for the major in “Information Management and Engineering” so far. With this course students majoring in “Industrial Engineering and Management” and “Economics Engineering” also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Engineering and Management can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.
Course: Special Topics of Applied Informatics [Platzhalter]

Coordinators: A. Oberweis, H. Schmeck, D. Seese, R. Studer, S. Tai
Part of the modules: Electives in Informatic (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Learning Outcomes
Students are able to handle methods and instruments in a area of applied informatics and to show the capability to be innovative with regard to applied methods.

The course will impart knowledge of basics and methods in the context of their application in practice. Based on the understanding of the imparted concepts and methods students will be able to choose the appropriate methods and apply them in the right way for problems they will face in their professional life.

Students will be enabled to find arguments for solution approaches and to argue for them.

Content
This course is a placeholder for special courses that are offered in an irregular sequence and cover selected topics in the field of applied informatics.

Media
Will be announced at the beginning of the course.

Literature
Will be announced at the beginning of the course.

Remarks
This course can be used in particular for the acceptance of external courses whose content is in the broader area of applied informatics, but cannot assigned to another course of this topic.
Course: Special Topics in Management: Management and IT [2577907]

Coordinators: H. Lindstädt

Part of the modules: Strategy and Organization (p. 31)]{WI3BWLUO1}

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/0</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (30 min) at the beginning of the recess period (according to Section 4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The course discusses management questions and concepts that are clearly motivating from a current and practical perspective. Here the integration of IT and process issues into corporate management from the management's perspective is one of the subjects of particular interest. The event takes place in close cooperation with leading, practical managers.

Content
(Excerpt):
- A summary of current management concepts and questions.

Media
Slides.

Literature
The relevant excerpts and additional sources are made known during the course.
Course: Special Sociology [spezSoz]

Coordinators: G. Nollmann, Pfadenhauer, Haupt, Grenz, Eisewicht, Kunz, Dukat, Albrecht, Enderle

Part of the modules: Sociology/Empirical Social Research (p. 92)[WI3SOZ], Qualitative Social Research (p. 93)[WI3SOZ2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Module Sociology/Empirical Social Research [WI3SOZ]: The assessment consists of lecture minutes (graded) and an oral presentation (according to Section 4 (2), 3 of the examination regulation.
Modul Qualitative Social Research [WI3SOZ2]: The assessment consists of an oral exam according to Section 4(2), 2 of the examination regulation.

Conditions
The form of the lecture has to be attended and must be completed with 2 Credit Points. The form of the lecture must not be swapped by a seminar according sociological theory, according techniques of social research or any other lecture.

Learning Outcomes
The student

- gains basic knowledge of a Special Sociology.
- gains knowledge of a specific problem in the Social Sciences.
- accordingly is capable of questioning further phenomena of the Social Sciences.
- is able to specify, pursue and explain own scientific questions.

Content
The student has the choice of the broad range of course offerings at the institute. In the course specific scientific problems and their debate will be introduced and discussed.

Media
Will be announced in the lecture.

Literature
Will be announced in the lecture.

Elective literature:
Will be announced in the lecture.
Course: Specific Aspects in Taxation [2561129]

Coordinators: B. Wigger, Armin Bader
Part of the modules: Topics in Finance II (p. 38)[WI3BWLFBV6], Public Finance (p. 53)[WI3VWL9], Topics in Finance I (p. 37)[WI3BWLFBV5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions
None.

Recommendations
Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course “Öffentliche Einnahmen” beforehand.

Learning Outcomes

Content
The lecture „Special Aspects of Taxation“ focuses on the effects of different taxes. The main emphasis is on German tax legislation. In addition to that, international aspects of taxation, in particular with respect to the European integration, will be discussed.

The lecture consists of four parts: First specific tax problems of corporate, income and consumption taxes are treated. Part two introduces the advantages and disadvantages of each of these taxes, in particular their incidence (“Who actually carries the tax burden?”) and their effects within the value chain. The third part then deals with the question how the different taxes contribute to public revenues. Finally, the last part compares tax systems within and outside Europe.

As a special feature, guest lecturers will provide insight into practical aspects of taxation.

Literature
Elective literature:

Course: Facility Location and Strategic Supply Chain Management [2550486]

Coordinators: S. Nickel

Part of the modules:
- Supply Chain Management (p. 41)[WI3BWLISM2], Methodical Foundations of OR (p. 63)[WI3OR6], Applications of Operations Research (p. 61)[WI3OR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester. Prerequisite for admission to examination is the successful completion of the online assessments.

Conditions
Prerequisite for admission to examination is the successful completion of the online assessments.

Learning Outcomes
The lecture covers basic quantitative methods in location planning in the context of strategic Supply Chain Planning. Besides the discussion of several criteria for the evaluation of the locations of facilities, the students are acquainted with classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models). The exercises accompanying the lecture offer the possibility to apply the considered models to practical problems.

Content
Since the classical work “Theory of the Location of Industries” of Weber from 1909, the determination of an optimal location of a new facility with respect to existing customers is strongly connected to strategical logistics planning. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning allows an efficient flow of materials and leads to lower costs and increased customer service.

Subject of the course is an introduction to the most important terms and definitions in location planning as well as the presentation of basic quantitative location planning models. Furthermore, specialized location planning models for Supply Chain Management will be addressed as they are part in many commercial SCM tools for strategic planning tasks.

Literature
Elective literature:
- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988

Remarks
The planned lectures and courses for the next three years are announced online.
Course: Statistics and Econometrics in Business and Economics [2521325/2521326]

Coordinators: W. Heller
Part of the modules: Statistical Applications of Financial Risk Management (p. 90) [WI3STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
Basic knowledge in statistics is required.

Learning Outcomes
statistically accurate use of financial market data, particularly time series analysis
Evaluation of various time series models and their applicability

Content
In Part 1 we will provide a thorough description of the quantitative part of investment theory paying attention to the mathematical, probabilistic and statistical methods now widely used in financial practice.
In Part 2 we shall study the methods of construction, identification and verification of the time-series models, which are among most powerful instruments of the financial econometrics. The emphasis will be on the financial and economic indicators forecasting the financial time-series.

Media
transparencies lecture

Literature

 e.g.
 • Franke/Härdle/Hafner: Einführung in die Statistik der Finanzmärkte.
 • Ruppert: Statistics and Finance
 • Cochran J.H.: Time Series for Macroeconomics and Finance

Elective literature:
See reading list
Course: Statistics I [2600008]

Coordinators: W. Heller

Part of the modules: Statistics (p. 30)[WI1STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4/0/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Conditions

None.

Learning Outcomes

The Student should understand and apply

- the basic concepts of statistical data exploration
- the basic definitions and theorems of probability theory

Content

A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities

Media

lecture notes

Literature

Skriptum: Kurzfassung Statistik I

Elective literature:

Course: Statistics II [2600020]

Coordinators: W. Heller

Part of the modules: Statistics (p. 30)[WI1STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4/0/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Conditions

None.

Recommendations

It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2600020].

Learning Outcomes

- probability theory (continued), introduction to estimation and testing theory

Content

B. Probability Theory:
- transformation of probabilities,
- parameters of location and dispersion,
- most important discrete and continuous distributions,
- covariance and correlation,
- convolution and limit distributions

C. Theory of estimation and testing:
- sufficiency of statistics,
- point estimation (optimality, ML-method),
- internal estimations,
- theory of tests (optimality, most important examples of tests)

Media

lecture notes

Literature

Script: Kurzfassung Statistik II

Elective literature:

Course: Instrumentation and Control Technologies for Production Systems [2150683]

Coordinators: C. Gönnheimer
Part of the modules: Specialization in Production Engineering (p. 75)|[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place during the recess period (according to Section 4(2), 2) of the examination regulation).
The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students
- are able to name the electrical controls which occur in the industrial environment and explain their function.
- can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
- are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
- can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Content
The lecture control technology gives an integral overview of available control components within the field of industrial production systems. The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states. The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems.
The lecture is very practice-oriented and illustrated with numerous examples from different branches.
The following topics will be covered
- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Process control systems
- Field bus
- Trends in the area of control technology

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Markov Decision Models I [2550679]

Coordinators: K. Waldmann
Part of the modules: Methodical Foundations of OR (p. 63)[WI3OR6], Stochastic Methods and Simulation (p. 64)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques of stochastic modelling. Students are able to properly describe and analyze basic stochastic systems.

Content
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems

Media
Blackboard, Slides, Flash Animations, Simulation Software

Literature
Elective literature:
Bremaud, P. (1999): Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues; Springer
Course: Markov Decision Models II [2550682]

Coordinators: K. Waldmann

Part of the modules: Stochastic Methods and Simulation (p. 64)[WI3OR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.6 (according to Section 4(2), 3 of the examination regulation).

Conditions
Foundations in the field of the Markov Decision Models I [2550679] are desired.

Learning Outcomes
The lecture provides students with knowledge on Markov decision processes for analysis to control and optimize stochastic dynamic systems. They are able to apply the theory acquired and to adjust the models to actual problems. They develop the optimality criterion and can solve the resulting optimal value function efficiently to gain optimal policies and the optimal value.

Content
Markov decision models: Foundations, optimality criteria, solution of the optimality equation, optimality of simply structured decision rules, applications.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Literature

Elective literature:

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Mass and Energy Balances for Reacting Systems [22130]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Coordinators: P. Pfeifer, B. Kraushaar-Czarnetzki

Part of the modules: Mass and Energy Balances for Reacting Systems (p. 25)[WI1ING1]

Learning Control / Examinations
The assessment consists of a written exam (according §4(2), 1 of the examination regulation).
Permitted utilities: calculator.

Conditions
None.

Learning Outcomes
The student
- knows and understands energy and mass balances and the analysis of balance envelopes,
- can apply energy and mass balances on selected systems and processes,
- knows the problems, methods and processes of process engineering.

Content
- Aims and approaches
- Mass balance
- Water
- Nitrogen and ammonia
- Energy balance
- Natural gas
- Carbon dioxide

Media
Lecture script (available at KIT-Studierendenportal: https://studium.kit.edu)
Exercises and accompanying lecture material (available at KIT-Studierendenportal: https://studium.kit.edu)
Course: Structural Ceramics [2126775]

Coordinators: M. Hoffmann

Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions

None.

Recommendations

Basic knowledge of experimental physics and chemistry is recommended. It is recommended to attend the course Ceramics-Introduction [2125757].

Learning Outcomes

The students know the most relevant structural ceramics (silicon carbide, silicon nitride, alumina, boron nitride, zirconia, fibre-reinforced ceramics) and their applications. They are familiar with the microstructural features, fabrication methods, and mechanical properties.

Content

The lecture gives an overview on structure and properties of the technical relevant structural ceramics silicon nitride, silicon carbide, alumina, zirconia, boron nitride and fibre-reinforced ceramics. All types of structural ceramics will be discussed in detail in terms of preparation methods of the raw materials, shaping techniques, densification, microstructural development, mechanical properties and application fields.

Media

Slides for the lecture available under http://www.iam.kit.edu/km

Literature

Elective literature:

Remarks

The course will not take place every year.
Course: Systematic Selection of Materials [2174576]

Coordinators: J. Hoffmeister

Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (3h) (following §4(2), 1 of the examination regulation).

Conditions
The course *Material Science I* [21760] has to be completed beforehand.

Recommendations
Basic knowledge of natural science and knowledge of the content *Material Science II* [21782] is recommended.

Learning Outcomes
The students are able to select the best material for a given application. They are proficient in selecting materials on base of performance indices and materials selection charts. They can identify conflicting objectives and find sound compromises. They are aware of the potential and the limits of hybrid material concepts (composites, bimaterials, foams) and can determine whether following such a concept yields a useful benefit.

Content
Important aspects and criteria of materials selection are examined and guidelines for a systematic approach to materials selection are developed. The following topics are covered: the status of materials selection in mechanical design and product development; the most important classes of materials and their property profiles;

Literature
Elective literature:

Course: System Dynamics and Control Engineering [23155]

Coordinators: M. Kluwe

Part of the modules: Control Engineering (p. 81)[WI3INGETIT2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of integral transformations is assumed. There it is recommended to attend the course Complex Analysis and Integral Transformations beforehand.

Learning Outcomes
The goal is to relay theoretical fundamentals in control theory. The students can recognize control theory problem statements and treat them systematically. They can name basic control structures and describe the behavior of time continuous and discrete control circuit elements as well as elements of digital control circuits.

The students can describe real processes formally and derive requirements of control structures. They can analyze the dynamic of systems using graphic and algebraic methods.

The students can name controller design methods for single input single output systems select them according to appropriate criteria as well as conduct the design steps and evaluate the designed control system. Furthermore they can compensate disturbances through appropriate control structures.

Content
Introduction: overview and definitions, open-loop and closed-loop control, design process for control systems;

Classification and Description of control circuit elements: introduction and basic concepts, block diagram, behaviour of elementary control circuit elements, standard control circuit and block diagram transformations, simulation of time continous control circuits, structure of digital control circuits, description of digital control circuits discretization of time continuous control circuit elements;

Analysis of linear control circuits in continous time: steady-state behaviour and characteristic signals, polar plot (Nyquist diagram), Bode diagram, basic concepts of stability, algebraic stability criteria, graphic stability criteria;

Analysis of linear control circuits in discrete time: steady-state behaviour, polar plot (Nyquist diagram) and Bode diagram, basic concepts of stability, algebraic stability criteria, graphic stability criteria;

Synthesis of linear control circuits in continous time: control circuit requirements, heuristic controller design, direct methods, controller design using the Bode diagram, controller design using the root locus, simple optimality-based controller design, feed forward control, secondary control and cascaded control;

Synthesis of linear control circuits in discrete time: fast sampling design, direct methods, controller design using the Bode diagram and the root locus.

Media
Online material is available on:www.irs.kit.eduand can be downloaded using a password.

Literature
- O. Föllinger unter Mitwirkung von F. Dörrscheidt und M. Klittich:
 Regelungstechnik, Einführung in die Methoden und ihre Anwendung
 10. Auflage, Hüthig-Verlag, 2008
- J. Lunze:
 Regelungstechnik I
- R. Dorf - R. Bishop:
 Modern Control Systems
- C. Phillips - R. Harbor:
 Feedback Control Systems
- O. Föllinger:
 Lineare Abtastsysteme
 5. Auflage, R. Oldenbourg Verlag, 1993
• K. Ogata:
 Discrete-Time control systems
 Prentice Hall Verlag, 1987

• G.C. Goodwin:
 Control System Design
 Prentice Hall Verlag,
Course: Tactical and Operational Supply Chain Management [2550488]

Coordinators: S. Nickel

Part of the modules: Supply Chain Management (p. 41)[WI3WLISM2], Stochastic Methods and Simulation (p. 64)[WI3OR7], Applications of Operations Research (p. 61)[WI3OR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester. Prerequisite for admission to examination is the successful completion of the online assessments.

Conditions
Successful completion of the module Introduction to Operations Research [WI1OR].

Learning Outcomes
The main goal of the lecture is the presentation of fundamental techniques from procurement and distribution logistics. A further aspect is set on methods from inventory management and lot sizing. Students acquire the ability to efficiently utilize quantitative models from transportation planning (long-distance and distribution planning), inventory management and lot sizing in production. The introduced methods will be discussed in more detail and illustrated with case-studies in the accompanying exercises.

Content
The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot. The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.

Literature
Elective literature:

- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005

Remarks
The planned lectures and courses for the next three years are announced online.
Course: Engineering Mechanics I [2161208]

Coordinators: C. Proppe
Part of the modules: Engineering Mechanics (p. 27) [WI1ING3]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1/0.5</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.
Permitted utilities: non-programmable calculator, literature

Conditions
None.

Learning Outcomes
The student

- knows and understands the basic elements of statics,
- is able to solve basic calculations in statics independently.

Content
Statics: force · moment · general equilibrium conditions · center of mass · inner force in structure · plane frameworks · theory of adhesion
Course: Engineering Mechanics II [2162226]

Coordinators: C. Proppe
Part of the modules: Emphasis in Fundamentals of Engineering (p. 67)[WI3INGMB8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (75 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination is offered every semester. Re-examinations are offered at every ordinary examination date.

Permitted utilities: non-programmable calculator, literature.

Conditions
The module *Technical Mechanics I* [WI1ING3] has to be completed beforehand.

Learning Outcomes

Content
Course: Theory of Business Cycles [25549]

Coordinators: M. Hillebrand
Part of the modules: Macroeconomic Theory (p. 52)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of 60 min. written exam (according to Section 4 (2), 1 of the examination regulation). Exams are confined to the following dates: Beginning of the recess period (mid February) and beginning of the summer semester (early April).
Please note: There are no further examination dates for this course.

Conditions
The courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014] have to be completed beforehand.
According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Recommendations
Basic knowledge in micro- and macroeconomics, as conveyed in the courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014], is assumed.
Participants are expected to bring a strong interest in mathematical economics and quantitative model building.

Learning Outcomes

Content
Business Cycle research strives to analyze and explain short-run fluctuations in key macroeconomic variables such as production output, income, employment, and prices. The course develops mathematical models which unveil the structural reasons for these fluctuations and the underlying economic mechanisms. Starting with the class of so-called Real Business Cycle (RBC) models, particular emphasis is placed on models of the labor market including models with labor indivisibilities, search-and matching, and home production. Based on the findings obtained, policy implications and the general scope for fiscal and monetary policy to stabilize the economy and foster production output, employment, and price stability are investigated. Numerical simulations based on realistic (calibrated) parameter choices are employed to replicate the empirically observed patterns and to quantify the effects of different policies. Participants are provided with MATLAB scripts allowing them to replicate the simulation results presented in class.

Literature
Elective literature:

Remarks
All classes will be held in English.
Course: Theory of Economic Growth [2520543]

Classified as: M. Hillebrand

Part of the modules:
- Macroeconomic Theory (p. 52)[W3VWL8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 60 min. written exam (according to Section 4 (2), 1 of the examination regulation).
Examinations are confined to the following dates: At the beginning of the recess period (mid July) and of the winter semester (early October).
Please note: There are no further examination dates for this course.

Conditions
The courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014] have to be completed beforehand.
According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Recommendations
Basic knowledge in micro- and macroeconomics, as conveyed in the courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014], is assumed.
Participants are expected to bring a strong interest in mathematical economics and quantitative model building.

Learning Outcomes

Content
The field of economic growth strives to analyze and explain the long-run evolution of economies. The aim of this course is to develop models which offer a mathematical description of the growth process and its structural determinants. Starting with the fundamental models by Solow, Kaldor, and Pasinetti, the main focus is on so-called overlapping generations (OLG) models. For this class of models, the theory of deterministic dynamical systems offers a rich set of mathematical tools to analyze the long-run behavior of the economy. In particular, conditions under which the growth path converges, diverges, or exhibits irregular (chaotic) fluctuations can be derived. Building on the insights obtained, a second set of questions deals with how economic policy can foster and stabilize the growth process. In this regard, the impact of governmental debt and intergenerational redistribution schemes such as Social Security on economic growth and welfare are investigated.

Literature

Remarks
All classes will be held in English.
Course: Metal Forming [2150681]

Coordinators: T. Herlan

Part of the modules: Specialization in Production Engineering (p. 75)[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place during the recess period (according to Section 4(2), 2) of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students

- are able to reflect the basics, forming processes, tools, Machines and equipment of metal forming in an integrated and systematic way.
- are capable to illustrate the differences between the forming processes, tools, machines and equipment with concrete examples and are qualified to analyze and assess them in terms of their suitability for the particular application.
- are also able to transfer and apply the acquired knowledge to other metal forming problems.

Content
At the beginning of the lecture the basics of metal forming are briefly introduced. The focus of the lecture is on massive forming (forging, extrusion, rolling) and sheet forming (car body forming, deep drawing, stretch drawing). This includes the systematic treatment of the appropriate metal forming Machines and the corresponding tool technology.
Aspects of tribology, as well as basics in material science and aspects of production planning are also discussed briefly. The plastic theory is presented to the extent necessary in order to present the numerical simulation method and the FEM computation of forming processes or tool design. The lecture will be completed by product samples from the forming technology.
The topics are as follows:

- Introduction and basics
- Hot forming
- Metal forming machines
- Tools
- Metallographic fundamentals
- Plastic theory
- Tribology
- Sheet forming
- Extrusion
- Numerical simulation

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Corporate Governance in Energy Economics [2581005]

Coordinators: H. Villis

Part of the modules: Energy Economics (p. 34)[WI3BWLIIP2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Learning Outcomes

Content
Course: Management and Strategy [2577900]

Coordinators: H. Lindstädt
Part of the modules: Strategy and Organization (p. 31)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration.

Content

- Corporate management principles
- Strategic management principles
- Strategic analysis
- Competitive strategy: modelling and selection on a divisional level
- Strategies for oligopolies and networks: anticipation of dependencies
- Corporate strategy: modelling and evaluation on a corporate level
- Strategy implementation

Media
Slides.

Literature

The relevant excerpts and additional sources are made known during the course.
Course: Combustion Engines A [2133101]

Coordinators: U. Spicher

Part of the modules: Combustion Engines I (p. 72)[WI3INGMB18]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to §4 (2), 1 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 6.

Conditions
None.

Recommendations
It is recommended to have basic knowledge of thermodynamics.

Learning Outcomes

Content
Course: Combustion Engines B [2134135]

Coordinators: U. Spicher

Part of the modules: Combustion Engines II (p. 73) [WI3INGMB19]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The grade of the exam is included in the overall grade of the module with a weighting factor of 5.

Conditions
The course *Combustion Engines A* [21101] has to be completed beforehand.

Recommendations
Knowledge of thermodynamics is recommended.

Learning Outcomes

Content
Course: Fundamentals of Transportation Planning and Traffic Engineering [19027]

Coordinators: P. Vortisch, M. Kagerbauer

Part of the modules: Mobility and Infrastructure (p. 84)[WI3INGBGU1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

In the module Fundamentals of Transportation [WI4INGBGU15] the assessment consists of an oral exam (15 minutes) according to §4(2), 2 of the examination regulation. For other modules and more information, see the corresponding module description.

Conditions

See module description.

Learning Outcomes

Content
Course: Failure of Structural Materials: Fatigue and Creep [2181715]

Coordinators: P. Gruber, O. Kraft

Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral examination (30 min) according to Section 4(2), 2 of the examination regulation.

Conditions
None.

Learning Outcomes
The student
- has the basic understanding of mechanical processes to explain the relationships between externally applied load and materials strength.
- can describe the main empirical materials models for fatigue and creep and can apply them.
- has the physical understanding to describe and explain phenomena of failure.
- can use statistical approaches for reliability predictions.
- can use its acquired skills, to select and develop materials for specific applications.

Content

1 Fatigue
1.1 Introduction
1.2 Statistical Aspects
1.3 Lifetime
1.4 Fatigue Mechanisms
1.5 Material Selection
1.6 Thermomechanical Loading
1.7 Notches and Shape Optimization
1.8 Case Study: ICE-Desaster

2 Creep
2.1 Introduction
2.2 High Temperature Plasticity
2.3 Phänomenological DEsciption of Creep
2.4 Creep Mechanisms
2.5 Alloying Effects

Literature

Elective literature:

3. Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relatively simple but yet comprehensive overview of metallic materials

4. Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); standard textbook on fatigue, all classes of materials, extensive, for first-time user as well as advanced learners
Course: Failure of Structural Materials: Deformation and Fracture [21711]

Coordinators: P. Gumbsch, O. Kraft, D. Weygand
Part of the modules: Emphasis Materials Science (p. 68) [WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral examination (30 min) according to Section 4(2), 2 of the examination regulation.

Conditions
None.

Learning Outcomes
The student
- has the basic understanding of mechanical processes to explain the relationship between externally applied load and materials strength.
- can explain the foundation of linear elastic fracture mechanics and is able to determine if this concept can be applied to a failure by fracture.
- can describe the main empirical materials models for deformation and fracture and can apply them.
- has the physical understanding to describe and explain phenomena of failure.

Content
1. Introduction
2. linear elasticity
3. classification of stresses
4. Failure due to plasticity
 * tensile test
 * dislocations
 * hardening mechanisms
 * guidelines for dimensioning
5. composite materials
6. fracture mechanics
 6.1 hypotheses for failure
 6.2 linear elastic fracture mechanics
 6.3 crack resistance
 6.4 experimental measurement of fracture toughness
 6.5 defect measurement
 6.6 crack propagation
 6.7 application of fracture mechanics
 6.8 atomistics of fracture

Literature
Elective literature:
3. Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relatively simple but yet comprehensive overview of metallic materials
Course: Gear Cutting Technology [2149655]

Coordinators: M. Klaiber

Part of the modules: Specialization in Production Engineering (p. 75)[WI3INGMB22]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam taking place during the recess period (according to Section 4(2), 2) of the examination regulation).

The examination takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students

- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings.
- are able to make an appropriate selection of a process based on a given application
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

Content
Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

The following topics will be covered:

- Sample applications
- Basics of gearing geometry
- Need of gearboxes
- Soft machining processes
- Hardening processes
- Hard machining processes
- Bevel gear production
- Measurement and testing
- Manufacturing of gearbox components
- Special gearings

Media
Lecture slides will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Economics I: Microeconomics [2600012]

Coordinators: C. Puppe, P. Reiss
Part of the modules: Economics [p. 22][W1VWL]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/0/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. There may be offered a practice exam in the middle of the semester. The results of this exam may be used to improve the grade of the main exam. A detailed description of the examination modalities will be given by the respective lecturer. The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. Only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Conditions
None.

Learning Outcomes
It is the main aim of this course to provide basic knowledge in economic modelling. Particularly, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative but more effective policy measures.
In particular, the student should learn
• to apply simple microeconomic concepts,
• to analyze the structure of real world economic phenomena,
• to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
• to possibly suggest alternative policy measures,
• to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
• practicing to solve the home work in due time,
• to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems
• to analyze the structure of microeconomics relationships and possibly to present own problem solutions,

Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics.
In the two main parts of the course problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) as well are discussed. In the final part of the course basics of imperfect competition (oligopolistic markets) and of game theory are presented.

Media
downloadable from IT server

Literature
• H. Varian, Grundzüge der Mikroökonomik, 5. edition (2001), Oldenburg Verlag
• Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. Münchens, 2005

Elective literature:
• Offer for interested and top students: detailed top articles with proofs, algorithms, ... state-of-the-art surveys, industrial magazines and scientific journals, pointers to recent developments related to the course.
• Tutorials and perhaps simpler literature alternatives for students to fill in gaps in prerequisites (or to fresh up their memory). Alternatives with a different mode of explanation to help students understand ...
Course: Economics II: Macroeconomics [2600014]

Coordinates: B. Wigger

Part of the modules: Economics (p. 22) [WI1VWL]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3/0/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes

Content
The lecture deals with the following topics:
Chapter 1: Macroeconomic targets
Chapter 2: Gross domestic product: a classical model
Chapter 3: Economic growth
Chapter 4: Money and inflation
Chapter 5: The open economy
Chapter 6: IS-LM model and business cycles
Chapter 7: Mundell-Fleming Model
Chapter 8: Macroeconomic equilibrium
Chapter 9: Unemployment

Literature

Elective literature:
Course: Economics III: Introduction in Econometrics [2520016/2520017]

Coordinators: N.N.
Part of the modules: Statistical Applications of Financial Risk Management (p. 90) [WI3STAT]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation.

Conditions
Knowledge of the lectures Statistics I + II is required.

Learning Outcomes
Familiarity with the basic concepts and methods of econometrics
Preparation of simple econometric surveys

Content
Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)
Multi equation models
Dynamic models

Literature
- Schneeweiß: Ökonometrie ISBN 3-7908-0008-2

Elective literature:
Additional literature will be suggested in course
Course: Elective „Educational development for student teachers“ [SQ PEW1]

Coordinators: Personalentwicklung
Part of the modules: Seminar Module (p. 94) [W13SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 / 3</td>
<td>k.A.</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Success is controlled according to §4(2), 3 SPO in the course of completion of different units of the tutoring program. These units consist of successful processing of online-units on Ilias platform, participating on the tutoring workshop and in at least one practice consulting, authoring a concluding work of reflection about own work of tutoring as well as writing a feedback on the work of reflection of another tutor. Participants will receive guidelines prior to writing the work of reflection and the feedback. If the participant works for two semesters as a tutor, 3 ECTS-points are credited. If the participant works for one semester as a tutor, only 2 ECTS-points are credited.

Conditions
Activity as tutor during the semester participating in the tutorial program is obligatory.

Recommendations
None.

Learning Outcomes
- Tutors are able to create their specific teaching situation based on their knowledge on didactical methods and learning processes.
- Tutors are able to analyze and control communications in teaching according to established models of communication (Watzlawick, Schulz von Thun).
- Tutors are able to explain and apply different instruments to purposefully intervene in learning and teaching situations in single or group settings.
- Tutors are able to name the rights and duties of their role as tutors and act according to them.
- Tutors are able to estimate their strengths and weaknesses as a teacher and are able to name strategies of further development.

Content
The tutoring program deals with theoretical and practical aspects of teaching behavior within the scope of a self-learning period by means of online-learning issues as well as in an classroom event lasting several days. The following topics are introduced and a thematical overview is given of:
- tutoring role and expectations, partly contrary, connected with it
- giving and receiving feedback
- basics of conversation
- aspects of learning process
- basics of planning a lecture/class
- evaluation/assessment and psychological sources of error connected with it
- intercultural communication during lecture/class
- moderation of a colloquium and moderation in teaching
- techniques of presentation with video feedback
- guiding teams and integrating group processes in the setting of teaching
- handling of difficult teaching-learning-situations

Students get to know and practice the method of collegial coaching. They sit in on each other's lectures/classes and give each other feedback with the aid of a guideline. Tutors reflect in written form their own development as a teacher during the semester. Moreover they give each other a written feedback on this work of reflection.

Remarks
Please note that a maximum of 3 ECTS-points in the seminar module is distributed over Bachelor and Master. The language of all events of the tutoring program is German.

Further information on the tutoring program is found on the homepage of Personnel Development service unit www.pew.kit.edu/387.php.
Course: Hydraulic Engineering and Water Resource Management I [19055]

Coordinators: F. Nestmann

Part of the modules: Understanding and Prediction of Disasters 2 (p. 88)[WI3INGINTER7], Understanding and Prediction of Disasters 1 (p. 87)[WI3INGINTER6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content

Remarks
For further information, see http://www.iwk.uni-karlsruhe.de/kurse_grundfachstudium.php
Course: Materials of Leightweight Construction [2174574]

Coordinators:
K. Weidenmann

Part of the modules:
Emphasis Materials Science (p. 68)[WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (20-30 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
Successfull completion of the course Material Science I [2125760].

Recommendations
Basic knowledge of natural science and knowledge of the content Material Science II [2126782] is recommended.

Learning Outcomes
The students know different lightweight materials, their composition, properties and fields of application and can apply this knowledge effectively and precisely.
They master the hardening mechanisms of lightweight materials and can transfer this knowledge to applied problems.
The students have a basic understanding of basic mechanical models of composites - mainly polymer matrix composites - and can depict differences in the mechanical properties depending on composition and structure.

Content
- Introduction
- Constructive, production-oriented and material aspects of lightweight construction
- Aluminium-based alloys
- Aluminium wrought alloys
- Aluminium cast alloys
- Magnesium-based alloys
- Magnesium wrought alloys
- Magnesium cast alloys
- Titanium-based alloys
- Titanium wrought alloys
- Titanium cast alloys
- High-strength steels
- High-strength structural steels
- Heat-treatable and hardenable steels
- Composites - mainly PMC
- Matrices
- Reinforcements

Media
lecture notes are handed out during the lecture

Literature
Elective literature:

Course: Materials Science I [2125760]

Coordinators: M. Hoffmann
Part of the modules: Materials Science (p. 26)[WI1ING2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the summer term is carried out by a written or oral exam.

Conditions
None.

Learning Outcomes
The student

- knows and understands the correlation between atomic structure, microstructure and related macroscopic properties (e.g. mechanical or electrical behaviour)
- has basic knowledge on materials development and characterization

Content
- Atomic structure and interatomic bonding
- Structure of crystalline solids
- Imperfections in solids
- Mechanical behaviour
- Physical properties
- Solidification
- Thermodynamics of heterogeneous systems
- Phase diagrams
- Ferrous alloys

Literature
Elective literature:
Werkstoffwissenschaften, Schatt, Werner / Worch, Hartmut (Hrsg.) Wiley-VCH, Weinheim, ISBN-10: 3-527-30535-1
Course: Materials Science II for Business Engineers [2126782]

Coordinators: M. Hoffmann
Part of the modules: Emphasis Materials Science (p. 68)[WI3INGMB9], Emphasis in Fundamentals of Engineering (p. 67)[WI3INGMB8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (150 min) taking place in the recess period (according to Section 4(2), 1 of the examination regulation). The examination takes place every semester. Re-examinations are offered at every ordinary examination date. The examination at the end of the winter term is carried out by a written or oral exam.

Conditions
The module Material Science [WI1ING2] has to be completed beforehand.

Learning Outcomes
Students know how to read binary phase diagrams and are able to explain the microstructural evolution of metallic and ceramic materials under equilibrium and non-equilibrium conditions. They know the most important alloys of iron-, aluminium-, and copper-based materials. Students are aware of the principle structures of polymers, nonmetallic inorganic glasses and ceramics and are able to derive differences in materials properties.

Content
The course gives an overview of different heat treatments for steels to obtain defined microstructures such as martensite or pearlite and discusses their impact on the mechanical properties. Different thermally activated processes, such as diffusion, creep, recovery and recrystallization are introduced and analyzed and terms of their relevance for materials engineering. Heat treatments and thermally activated processes are also related to aluminium and copper alloys. The second part of the course covers structure, processing and applications of polymers, nonmetallic inorganic glasses and ceramics. Finally an overview is given of the most important materials testing methods.

Literature
Elective literature:

Course: Materials Science and Engineering III [2173553]

Coordinators: M. Heilmeier
Part of the modules: Emphasis Materials Science (p. 68) [WI3INGMB9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an oral exam (30-40 min) taking place at the agreed date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered upon agreement.

Conditions
None.

Recommendations
It is recommended to have basic knowledge of natural science and knowledge of the content of the course Material Science II [2126782].

Learning Outcomes
The students are familiar with the thermodynamic foundations of phase transformations, the kinetics of phase transformations in the solid states (nucleation and growth phenomena), the mechanisms of microstructure formation and microstructure-property relationships. They can assess the effects of heat treatmens and of alloying on the microstructure and the properties of iron-based materials (steels in particular). They can select steels for structural applications in mechanical engineering and subject them to appropriate heat treatmens.

Content
Properties of pure iron; thermodynamic foundations of single-component and of binary systems; nucleation and growth; diffusion processes in crystalline iron; the phase diagram Fe-Fe3C; effects of alloying on Fe-C-alloys; nonequilibrium microstructures; multicomponent iron-based alloys; heat treatment technology; hardenability and hardenability tests.

Media
Lecture notes and working material will be released within the lecture.

Literature
Elective literature:
1. VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984
Course: Machine Tools and Industrial Handling [2149902]

Coordinators: J. Fleischer
Part of the modules: Machine Tools and Industrial Handling (p. 79)[WI3INGMB32]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
The students
- are capable to explain the use and application of machine tools and handling devices as well as differentiate their characteristics and structure.
- are able to name and describe the essential components (frame, main spindles, feed axis, peripheral equipment, control) of machine tools.
- Are capable to distinguish and select and describe the essential components regarding structure, characteristics advantages and disadvantages.
- are enabled to dimension the main components of machine tools.
- are able to name and describe the control principles of machine tools.
- are capable to name examples of machine tools and industrial handling as well as to deduce compare the essential components. Additionally they can allocate manufacturing processes.
- are enabled to identify drawbacks as well as derive and asses measures for improvements.
- are qualified to apply methods for selection and evaluation of machine tools.
- are experienced to deduce the particular failure characteristics of a ball screw.

Content
The lecture provides an overview of machine tool and handling devices structures, use and application areas. Within the lecture based and industrially oriented knowledge for selection, dimensioning and evaluation is conveyed. First the components of machine tools are explained systematically. Here the distinctive features of dimensioning machine tools are deduced followed by the integral dimensioning of machine tools. Subsequently the use of machine tools is shown in exemplary application areas e.g. turning, milling, grinding, metal forming, sheet metal forming and gear cutting.
The lecture provides an inside view of industrial application and is illustrated with current examples.
The topics are as follows:
- Frame and frame components
- Main drives and main spindles
- Requirements for feed axes
- Electro-mechanical feed axis
- Fluidic feed axes
- Control technologies
- Peripheral components
- Metrological assessment
- Machine maintenance
- Process-diagnosis
- Machine tool examples

Media
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Course: Competition in Networks [26240]

Coordinators: K. Mitusch

Part of the modules: Applied Microeconomics (p. 57)[WI3VWL13], Economic Policy I (p. 54)[WI3VWL10], Microeconomic Theory (p. 51)[WI3VWL6], Specialization in Customer Relationship Management (p. 45)[WI3BWLISM5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required. Useful, but not necessary, are basic knowledge of industrial economics, principal agent theory, and contract theory.

Learning Outcomes
The lecture provides the students with the basic economic understanding of network industries like telecom, utilities, IT and transport sectors. Students are prepared for a possible job in the network industries. The student should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion and state intervention. He should be able to apply abstract concepts and formal methods to use in these fields.

Content
Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies – competition or cooperation or both – are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims of industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Literature
Will be announced in the lecture.
Course: Seminar Economic Theory [SemWIOR2]

Coordinators: C. Puppe
Part of the modules: Seminar Module (p. 94)[W3SEM]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
See corresponding module information.
At least one of the courses Game Theory I [2520525] and Welfare Economics [2520517] should have been attended beforehand.

Learning Outcomes

Content

Literature
Will be announced at the end of the recess period.

Remarks
see German version.
Course: Knowledge Management [2511300]

Coordinators: R. Studer

Part of the modules: Electives in Informatic (p. 60)[WI3INFO2], Emphasis Informatics (p. 58)[WI3INFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written Examination (60 min) according to §4, Abs. 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Conditions
Basics in logic, e.g. from lecture Foundations of Informatics 1.

Learning Outcomes
Making students sensitive to the problems of corporate knowledge management, knowledge about the central dimensions of influence as well as of relevant technologies for supporting knowledge management.

Content
In modern companies, knowledge is increasingly important for fulfilling central tasks (such as continuous business process improvement, increasing innovation, increasing customer satisfaction, strategic planning etc). Therefore, knowledge management has become a critical success factor.

The lecture covers different types of knowledge that play a role in knowledge management, the corresponding knowledge processes (generation, capture, access and usage of knowledge) as well as methodologies for the introduction of knowledge management solutions.

The lecture will emphasize computer-based support for knowledge management, such as:
- Ontology-based Knowledge Management
- Communities of Practice, Collaboration Tools, Social Software
- Business-process Oriented Knowledge Management
- Personal Knowledge Management
- Case Based Reasoning (CBR)
- Linked Open Data

Media
Slides and scientific publications as reading material.

Literature
- C. Beierle, G. Kern-Isberner: Methoden wissensbasierter Systeme, Vieweg, Braunschweig/Wiesbaden, 2. überarb. Auflage, 2005

Elective literature:
Course: Welfare Economics [2520517]

Coordinators: C. Puppe
Part of the modules: Economic Theory (p. 56)[WI3VWL12], Microeconomic Theory (p. 51)[WI3VWL6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam at the end of the semester (according to Section 4 (2), 1 or 2 of the examination regulation).

Conditions
The courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014] have to be completed beforehand.

Learning Outcomes

Content

Literature

Elective literature:

Remarks
For details see German version.
Die Absolvent/innen des Bachelorstudiengangs Wirtschaftsingenieurwesen verfügen über ein im dreisemestrigen Kernprogramm erworbenes methodisch ausgerichtetes wirtschaftswissenschaftliches, ingenieurwissenschaftliches, mathematisches und technologisches Grundlagenwissen.

Der wirtschaftswissenschaftliche Bereich umfasst betriebswirtschaftliche Fragestellungen der Finanzwirtschaft, der Unternehmensführung, der Informationswirtschaft, der Produktionswirtschaft, des Marketings und des Rechnungswesens sowie volkswirtschaftliche Zusammenhänge der Mikroökonomie und Makroökonomie.

Der mathematische Bereich gliedert sich in Mathematik, Statistik und Operations Research. Er beinhaltet Analysis und lineare Algebra, deskriptive und induktive Statistik, elementare Wahrscheinlichkeitsrechnung sowie Optimierungsverfahren.

Im ingenieurwissenschaftlichen Bereich liegen die Schwerpunkte auf Material- und Energiebilanzen, in der Werkstoffcharakterisierung und -entwicklung, in der technischen Mechanik sowie in der Elektrotechnik. Der technologische Bereich wird durch die Angewandte und Theoretische Informatik abgedeckt.

Sie können fachspezifische Probleme klassifizieren sowie modellieren und wählen geeignete Methoden und Verfahren aus, um diese zu lösen sowie Verbesserungspotentiale abzuleiten. Die erhaltenen Ergebnisse wissen sie zu validieren, illustrieren und interpretieren.

Dieser praktische Umgang mit dem Fachwissen erfolgt unter Berücksichtigung von gesellschaftlichen, wissenschaftlichen und ethischen Aspekten.

Sie besitzen die Fähigkeit, das erworbenen Wissen berufsfeldbezogen in der Industrie, im Dienstleistungssektor oder in der öffentlichen Verwaltung anzuwenden sowie das Masterstudium Wirtschaftsingenieurwesen oder ein verwandtes Studium aufzunehmen.
Neubekanntmachung der Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Bachelorstudiengang Wirtschaftsingenieurwesen

in der Fassung vom 15. August 2008

Der Rektor hat seine Zustimmung am 06. März 2007 erteilt.

Aus Gründen der Lesbarkeit ist in dieser Satzung nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermäßen.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
 § 1 Geltungsbereich, Ziele
 § 2 Akademischer Grad
 § 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
 § 4 Aufbau der Prüfungen
 § 5 Anmeldung und Zulassung zu den Prüfungen
 § 6 Durchführung von Prüfungen und Erfolgskontrollen
 § 7 Bewertung von Prüfungen und Erfolgskontrollen
 § 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfungen, Wiederholung von Prüfungen
 § 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
 § 10 Mutterschutz, Elternzeit
 § 11 Bachelorarbeit
 § 12 Berufspraktikum
 § 13 Zusatzmodule, Zusatzleistungen
 § 14 Prüfungsausschuss
 § 15 Prüfer und Beisitzende
 § 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Bachelorprüfung
 § 17 Umfang und Art der Bachelorprüfung
 § 18 Leistungsnachweise für die Bachelorprüfung
 § 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
 § 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
 § 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
 § 22 Aberkennung des Bachelorgrades
 § 23 Einsicht in die Prüfungsakten
 § 24 In-Kraft-Treten
I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Ziele

(1) Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Wirtschaftsingenieurwesen an der Universität Karlsruhe (TH).

(2) Im Bachelorstudium sollen die wissenschaftlichen Grundlagen und die Methodenkompetenz der Fachwissenschaften vermittelt werden. Ziel des Studiums ist die Fähigkeit, das erworbene Wissen berufsfeldbezogen anzuwenden sowie einen konsekutiven Masterstudiengang erfolgreich absolvieren zu können.

§ 2 Akademischer Grad

Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science“ (abgekürzt: „B.Sc.“) für den Bachelorstudiengang Wirtschaftsingenieurwesen verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt sechs Semester. Sie umfasst ein Betriebspraktikum, Prüfungen und die Bachelorarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind auf Fächer verteilt. Die Fächer sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Studienplan oder Modulhandbuch beschreiben Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren. Die Fächer und ihr Umfang werden in § 17 definiert.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 180 Leistungspunkte.

(5) Die Leistungspunkte sind in der Regel gleichmäßig auf die Semester zu verteilen.

(6) Lehrveranstaltungen/Prüfungen können auch in englischer Sprache angeboten/abgenommen werden.

§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:

1. schriftliche Prüfungen,
2. mündliche Prüfungen,
3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z. B. Vorträge, Marktstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Modulhandbuch ausgewiesen sind.
(3) In den Fachprüfungen (nach § 17 Absatz 2 und Absatz 3 Nr. 1 bis 7) sind mindestens 50 vom Hundert einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Absatz 2 Nr. 1 und 2) abzulegen, die restliche Prüfung erfolgt durch Erfolgskontrollen anderer Art (Absatz 2 Nr. 3).

§ 5 Anmeldung und Zulassung zu den Prüfungen
(1) Die Zulassung zu den Prüfungen nach § 4 Absatz 2 Nr. 1 und 2 sowie zur Bachelorarbeit erfolgt im Studienbüro.

Um zu Prüfungen in einem Modul zugelassen zu werden, muss beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgegeben werden.

(2) Die Zulassung darf nur abgelehnt werden, wenn

1. der Studierende in einem mit Wirtschaftsingenieurwesen vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat oder
2. die in § 18 genannte Voraussetzung nicht erfüllt ist.

In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen
(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrollen (§ 4 Absatz 2 Nr. 1 bis 3) eines Moduls wird im Studienplan oder Modulhandbuch in Bezug auf die Lehreinhalte der betreffenden Lehrveranstaltungen und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Grundsätze zur Bildung der Moduleinprüfungsnoten und der Modulnote sowie Prüfer müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen von Prüfer und Studierendem kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Absatz 3 zu berücksichtigen.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

Bei Einvernehmen zwischen Prüfer und Kandidat kann der Prüfungsausschuss in begründeten Ausnahmefällen auch kurzfristig die Änderung der Prüfungsform genehmigen.

Wird die Wiederholungsprüfung einer schriftlichen Prüfung in mündlicher Form abgelegt, entfällt die mündliche Nachprüfung nach § 8 Absatz 2.

(4) Macht ein Studierender glaubhaft, dass er wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorge schriebenen Form abzulegen, entscheidet der Prüfungsausschuss über eine alternative Form der Erfolgskontrollen.

(5) Bei Lehrveranstaltungen in englischer Sprache werden die entsprechenden Erfolgskontrollen in der Regel in englischer Sprache abgenommen.

(7) Mündliche Prüfungen (§ 4 Absatz 2 Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kollegialprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studierendem.

(10) Für Erfolgskontrollen anderer Art sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entsprechende Dokumentation sicherzustellen, dass die erbrachte Studienleistung dem Studierenden zurechenbar ist.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Beisitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note festgesetzt.

(2) Im Bachelorzeugnis dürfen nur folgende Noten verwendet werden:

1	sehr gut (very good)	hervorragende Leistung
2	gut (good)	eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt
3	befriedigend (satisfactory)	eine Leistung, die durchschnittlichen Anforderungen entspricht
4	ausreichend (sufficient)	eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt
5	nicht ausreichend (failed)	eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt

Für die Bachelorarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1	1.0, 1.3	sehr gut
2	1.7, 2.0, 2.3	gut
3	2.7, 3.0, 3.3	befriedigend
4	3.7, 4.0	ausreichend
5	4.7, 5.0	nicht ausreichend
Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann die Benotung „bestanden“ (passed) oder „nicht bestanden“ (failed) vergeben werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf jeweils nur einmal angerechnet werden.

(6) Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur angerechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan oder Modulhandbuch festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

(9) Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten über die im Studienplan oder Modulhandbuch definierten Modulprüfungen nachgewiesen wird.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein.

(10) Die Ergebnisse der Bachelorarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

(11) Innerhalb der Regelstudienzeit, einschließlich der Urlaubssemester für das Studium an einer ausländischen Hochschule (Regelprüfungszeit), können in einem Fach auch mehr Leistungspunkte erworben werden als für das Bestehen der Fachprüfung erforderlich sind. In diesem Fall werden bei der Festlegung der Fachnote nur die Modulnoten berücksichtigt, die unter Abdeckung der erforderlichen Leistungspunkte die beste Fachnote ergeben.

Die in diesem Sinne für eine Fachprüfung nicht gewerteten Erfolgskontrollen und Leistungspunkte können im Rahmen der Zusatzfachprüfung nach § 13 nachträglich geltend gemacht werden.

(12) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Notenbereich</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1,5</td>
<td>sehr gut</td>
</tr>
<tr>
<td>1.6 bis 2.5</td>
<td>gut</td>
</tr>
<tr>
<td>2.6 bis 3.5</td>
<td>befriedigend</td>
</tr>
<tr>
<td>3.6 bis 4.0</td>
<td>ausreichend</td>
</tr>
</tbody>
</table>
(13) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Bachelorprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (failed) – es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (failed) – es sind erhebliche Verbesserungen erforderlich</td>
<td></td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

§ 8 Erlöschen des Prüfungsanspruchs, Orientierungsprüfung, Wiederholung von Prüfungen und Erfolgskontrollen

(1) Die Modulteilprüfung Mikroökonomie (VWL I) im Fach Volkswirtschaftslehre (gemäß § 17 Absatz 2 Nr. 2) und die Modulteilprüfung Statistik I im Fach Statistik (gemäß § 17 Absatz 2 Nr. 7) sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass er die Fristüberschreitung nicht zu vertreten hat, hierüber entscheidet der Prüfungsausschuss auf Antrag des Studierenden. Eine zweite Wiederholung der Orientierungsprüfungen ist ausgeschlossen.

(2) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Absatz 2 Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als 4.0 (ausreichend) sein.

(3) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Absatz 2 Nr. 2) einmal wiederholen.

(5) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Absatz 2 Nr. 3) wird im Modulhandbuch geregelt.

Bei nicht bestandener Erfolgskontrolle sind dem Kandidaten Umfang und Frist der Wiederholung in geeigneter Weise bekannt zu machen.

Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.

Eine Fachprüfung ist nicht bestanden, wenn mindestens ein Modul des Faches nicht bestanden ist.

Ist gemäß § 34 Absatz 2 Satz 3 LHG die Bachelorprüfung bis zum Beginn der Vorlesungszeit des zehnten Fachsemesters einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass der Studierende die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss.

Der Prüfungsanspruch erlischt endgültig, wenn mindestens einer der folgenden Gründe vorliegt:
1. Der Prüfungsausschuss lehnt einen Antrag auf Fristverlängerung nach Absatz 1 oder Absatz 10 ab.
2. Die Bachelorarbeit ist endgültig nicht bestanden.
3. Eine Erfolgskontrolle nach § 4 Absatz 2 Nr. 1 und 2 ist in einem Fach endgültig nicht bestanden.

Eine Erfolgskontrolle ist dann endgültig nicht bestanden, wenn keine Wiederholungsmöglichkeit im Sinne von Absatz 2 mehr besteht oder gemäß Absatz 6 genehmigt wird. Dies gilt auch sinngemäß für die Bachelorarbeit.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

Eine Modulprüfung wird mit „nicht ausreichend“ bewertet, wenn der Studierende einen Prüfungstermin ohne triftigen Grund versäumt oder wenn er nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der Studierende hat die Fristüberschreitung nicht zu vertreten.

Die Anerkennung des Rücktritts ist ausgeschlossen, wenn bis zum Eintritt des Hinderungsgrundes bereits Prüfungsleistungen erbracht worden sind und nach deren Ergebnis die Prüfung nicht bestanden werden kann.

Wird der Grund anerkannt, wird ein neuer Termin anberaumt. Die bereits vorliegenden Prüfungsergebnisse sind in diesem Fall anzurechnen.

Bei Modulprüfungen, die aus mehreren Prüfungen bestehen, werden die Prüfungsleistungen dieses Moduls, die bis zu einem anerkannten Rücktritt bzw. einem anerkannten Versäumnis einer Prüfungsleistung dieses Moduls erbracht worden sind, angerechnet.

(4) Versucht der Studierende das Ergebnis einer Erfolgskontrolle durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Erfolgskontrolle als mit „nicht ausreichend“ (5.0) bewertet.

(7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit

§ 11 Bachelorarbeit

(1) Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass der Studierende sich in der Regel im 3. Studienjahr befindet und nicht mehr als eine der Fachprüfungen der ersten drei Fachsemester laut § 17 Absatz 2 noch nachzuweisen ist.

(2) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind vom Betreuer so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

(4) Die Bachelorarbeit kann von jedem Prüfer nach § 15 Absatz 2 vergeben und betreut werden. Soll die Bachelorarbeit außerhalb der Fakultät angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses gemäß Absatz 1. Dem Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Studierenden aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz 3 erfüllt.

(5) Bei der Abgabe der Bachelorarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erläuterung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5.0) bewertet.

§ 12 Berufspraktikum

(1) Während des Bachelorstudiums ist ein mindestens achtwöchiges Berufspraktikum, welches mit acht Leistungspunkten bewertet wird, abzuleisten.

(2) Der Studierende setzt sich dazu in eigener Verantwortung mit geeigneten Unternehmen in Verbindung. Der Praktikant wird von einem Prüfer nach § 15 Absatz 2 und einem Mitarbeiter des Unternehmens betreut.

(3) Am Ende des Berufspraktikums ist dem Prüfer ein kurzer Bericht abzugeben und eine Kurzpräsentation über die Erfahrungen im Berufspraktikum zu halten.

(4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens achtwöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Die Durchführung des Berufspraktikums ist im Studienplan oder Modulhandbuch zu regeln. Das Berufspraktikum geht nicht in die Gesamtnote ein.
§ 13 Zusatzmodule, Zusatzleistungen

(1) Der Studierende kann sich weiteren Prüfungen in Modulen unterziehen. § 3, § 4 und § 8 Absatz 10 der Prüfungsordnung bleiben davon unberührt.

(2) Maximal zwei Zusatzmodule mit jeweils mindestens neun Leistungspunkten werden auf Antrag des Studierenden in das Bachelorzeugnis aufgenommen und entsprechend gekennzeichnet.

Zusatzmodule müssen nicht im Studienplan oder Modulhandbuch definiert sein. Im Zweifelsfall entscheidet der Prüfungsausschuss.

(3) Der Studierende hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

§ 14 Prüfungsausschuss

(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden vom Fakultätsrat bestellt, die Mitglieder der Gruppe der wissenschaftlichen Mitarbeiter nach § 10 Absatz 1 Satz 2 Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor sein. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch ein Prüfungsssekretariat unterstützt.

(3) Der Prüfungsausschuss regelt die Auslegung und die Umsetzung der Prüfungsordnung in die Prüfungspraxis der Fakultät. Er achtet darauf, dass die Bestimmungen der Prüfungsordnung eingehalten werden. Er berichtet regelmäßig dem Fakultätsrat über die Entwicklung der Prüfungen und Studienzeiten sowie über die Verteilung der Fach- und Gesamtnoten und gibt Anregungen zur Reform des Studienplans und der Prüfungsordnung.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben in dringenden Angelegenheiten und für alle Regelfälle auf den Vorsitzenden des Prüfungsausschusses übertragen.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennender Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuzuziehen. Er hat in diesem Punkt Stimmrecht.

§ 15 Prüfer und Beisitzende
(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.
(2) Prüfer sind Hochschullehrer und habilitierte Mitglieder sowie wissenschaftliche Mitarbeiter der jeweiligen Fakultät, denen die Prüfungsbefugnis übertragen wurde. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Bachelorarbeit muss ein Prüfer Hochschullehrer sein.
(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die Fakultät ihnen eine diesbezügliche Prüfungsbedürfnis erteilt hat.
(4) Zum Beisitzenden darf nur bestellt werden, wer einen dem jeweiligen Prüfungsgegenstand entsprechenden akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen
(2) Werden Leistungen angerechnet, so werden die Noten – soweit die Notensysteme vergleichbar sind – übernommen und in die Berechnung der Modulnoten und der Gesamtnote einbezogen. Falls es sich dabei um Leistungen handelt, die im Rahmen eines Auslandsstudiums erbracht werden, während der Studierende an der Universität Karlsruhe (TH) für Wirtschaftsingenieurwesen immatrikuliert ist, kann der Prüfungsausschuss für ausgewählte Sprachen die Dokumentation anerkannter Studienleistungen im Transcript of Records mit ihrer fremdsprachlichen Originalbezeichnung festlegen. Liegen keine Noten vor, wird die Leistung nicht anerkannt. Der Studierende hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.
(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen und Modulprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.
(4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen und Modulprüfungen, die in staatlich anerkannten Fernstudien und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien erworben wurden.
(5) Die Anerkennung von Teilen der Bachelorprüfung kann versagt werden, wenn in einem Studiengang mehr als die Hälfte aller Erfolgskontrollen und/oder mehr als die Hälfte der erforderlichen Leistungspunkte und/oder die Bachelorarbeit anerkannt werden sollen.
(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreter zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.
II. Bachelorprüfung

§ 17 Umfang und Art der Bachelorprüfung

(2) In den ersten drei Semestern sind Fachprüfungen aus folgenden Fächern durch den Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:

1. Betriebswirtschaftslehre im Umfang von 15 Leistungspunkten,
2. Volkswirtschaftslehre im Umfang von 10 Leistungspunkten,
3. Informatik im Umfang von 15 Leistungspunkten,
4. Operations Research im Umfang von 9 Leistungspunkten,
5. Ingenieurwissenschaften im Umfang von 10 Leistungspunkten,
6. Mathematik im Umfang von 21 Leistungspunkten,
7. Statistik im Umfang von 10 Leistungspunkten.

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Fächern sind im Studienplan oder Modulhandbuch festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(3) Im vierten bis sechsten Semester sind Fachprüfungen im Umfang von sieben Modulen mit je neun Leistungspunkten abzulegen. Die Module verteilen sich folgendermaßen auf die Fächer:

1. Betriebswirtschaftslehre,
2. Volkswirtschaftslehre,
3. Informatik,
4. Operations Research,
5. Ingenieurwissenschaften,
6. Betriebswirtschaftslehre oder Ingenieurwissenschaften,

Die in den Fächern zur Auswahl stehenden Module sowie die diesen zugeordneten Lehrveranstaltungen werden im Studienplan oder Modulhandbuch bekannt gegeben. Der Studienplan oder das Modulhandbuch kann auch Mehrfachmodule definieren, die aus 18 Leistungspunkten (Doppelmodul) bzw. 27 Leistungspunkten (Dreifachmodul) bestehen und für Fachprüfungen nach 1. bis 7. bei in Summe mindestens gleicher Leistungspunktezahl entsprechend anrechenbar sind. Auch die Mehrfachmodule mit ihren zugeordneten Lehrveranstaltungen, Leistungspunkten und Fächern bzw. Fächerkombinationen sind im Studienplan oder Modulhandbuch geregelt.

(6) Prüfungen nach § 17 Absatz 3 können in einem Fach nur absolviert werden, wenn eine eventuelle Prüfung dieses Fachs nach § 17 Absatz 2 erfolgreich absolviert wurde. Auf Antrag eines Studierenden kann der Prüfungsausschuss hierzu Ausnahmen genehmigen.
§ 18 Leistungsnachweise für die Bachelorprüfung

Voraussetzung für die Anmeldung zur letzten Prüfung der Bachelorprüfung nach § 17 Absatz 1 ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 12. In Ausnahmefällen, die der Studierende nicht zu vertreten hat, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Leistungsnachweises genehmigen.

§ 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote

(1) Die Bachelorprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mindes- tens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewicchte- ter Notendurchschnitt. Dabei werden die Noten gemäß § 17 Absatz 3 und 4 sowie der Bachelorar- beit jeweils mit dem doppelten Gewicht der Noten gemäß § 17 Absatz 2 berücksichtigt.

(3) Hat der Studierende die Bachelorarbeit mit der Note 1.0 und die Bachelorprüfung mit einem Durchschnitt von 1.1 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

(2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen sowie dem Seminarmodul und der Bachelorarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist vom Dekan der Fakultät und vom Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(5) Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.
III. Schlussbestimmungen

§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
(1) Der Bescheid über die endgültig nicht bestandene Bachelorprüfung wird dem Studierenden durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

(2) Hat der Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 22 Aberkennung des Bachelorgrades
(1) Hat der Studierende bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei denen getäuscht wurde, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend” (5.0) und die Bachelorprüfung für „nicht bestanden” erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Studierende die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend” (5.0) und die Bachelorprüfung für „nicht bestanden” erklärt werden.

(3) Vor einer Entscheidung ist Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Bachelorurkunde einzuziehen, wenn die Bachelorprüfung auf Grund einer Täuschung für nicht bestanden erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach den gesetzlichen Vorschriften.

§ 23 Einsicht in die Prüfungsakten
(1) Nach Abschluss der Bachelorprüfung wird dem Studierenden auf Antrag innerhalb eines Jahres Einsicht in seine Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(3) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 24 In-Kraft-Treten

(2) Gleichzeitig tritt die Prüfungsordnung der Universität Karlsruhe (TH) für den Diplomstudien- gang Wirtschaftsingenieurwesen vom 15. November 2001 (Amtliche Bekanntmachung der Uni-

Karlsruhe, den 06. März 2007

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Index

Advanced Programming - Application of Business Software, 259
Advanced Programming - Java Network Programming, 258
Advanced Topics in Economic Theory, 99
Airport Logistics, 216
Algorithms for Internet Applications, 100
Analytical CRM, 101
Applications of Operations Research (M), 61
Applied Informatics I - Modelling, 102
Applied Informatics II - IT Systems for e-Commerce, 103
Applied Microeconomics (M), 57
Automation of Power Grids, 113
Automotive Engineering (M), 65
Automotive Engineering I, 181
Automotive Engineering II, 182
Automotive Logistics, 214
Bachelor Seminar in Information Engineering and Management, 115
Bachelor Thesis (M), 98
Basic Principles of Economic Policy, 147
Basics and Methods for Integration of Tires and Vehicles, 191
Basics of Guided Transport Systems (M), 86
Basics of microsystem technology II, 187
Basics of microsystemtechnology I, 186
Basics of Technical Logistics, 189
Basics of Track Guided Transport Systems, 190
BioMEMS II (Microsystem Technology for Life-Sciences and Medicine; part II), 128
BioMEMS III (Microsystem Technology for Life-Sciences and Medicine; part III), 129
Bionics for Engineers and Natural Scientists, 130
Brand Management, 221
Business Administration (M), 20, 21
Business Administration: Finance and Accounting, 124
Business Administration: Production Economics and Marketing, 125
Business Administration: Strategic Management and Information Engineering and Management, 126
Business Strategies of Banks, 178
CAN-Bus Release Control, 132
Case Studies in Public Management, 166
Chemical, physical and material science aspects of plastics in the micro technology, 133
Civil Law for Beginners, 127
Climatology, 210
Combustion Engines A, 351
Combustion Engines B, 352
Combustion Engines I (M), 72
Combustion Engines II (M), 73
Competencies as a Research Topic, 283
Competition in Networks, 367
Complexity Management, 134
Computer Integrated Planning of New Products, 271
Constitution and Properties of Wear Resistant Materials, 108
Construction Technology, 117
Control Engineering (M), 81
Corporate Governance in Energy Economics, 349
Cost and Management Accounting, 207
CRM and Service Management (M), 44
Customer Relationship Management, 135
Data Mining, 136
Database Systems, 137
Derivatives, 138
Design and Construction of Buildings, 118
Design Basics in Highway Engineering, 120
Design, Construction and Sustainability Assessment of Buildings (M), 47
eBusiness and Service Management (M), 39
Economic Policy I (M), 54
Economic Theory (M), 56
Economics (M), 22
Economics I: Microeconomics, 357
Economics II: Macroeconomics, 358
Economics III: Introduction in Econometrics, 359
Efficient Algorithms, 140
eFinance (M), 43
eFinance: Information Engineering and Management for Securities Trading, 141
Elective „Educational development for student teachers“, 360
Elective Module Law (M), 91
Electives in Informatic (M), 60
Electric Power Generation & Power Grid, 159
Electrical Engineering (M), 28
Electrical Engineering I, 152
Electrical Engineering II, 153
Elements and Systems of Technical Logistics, 154
Emphasis in Fundamentals of Engineering (M), 67
Emphasis Informatics (M), 58
Emphasis Material Science (M), 68
Energy Economics (M), 34
Energy efficient intralogistic systems, 156
Energy Generation and Network Components (M), 83
Energy Policy, 157
Engine Measurement Technologies, 236
Engineering Mechanics (M), 27
Engineering Mechanics I, 344
Engineering Mechanics II, 345
Engineering, Design and Operation of Power Transformers, 107
Enterprise Risk Management, 158
eServices, 160
Essentials of Finance (M), 35
Exchanges, 131
Explorative-interpretative Project Seminar, 264
Extracurricular Module in Engineering (M), 89
Facilities and Rolling Stock, 104
Facility Location and Strategic Supply Chain Management, 331
Failure of Structural Materials: Deformation and Fracture, 355
Failure of Structural Materials: Fatigue and Creep, 354
Financial Accounting and Cost Accounting, 272
Financial Intermediation, 172
Financial Management, 171
Fluid Power Systems, 173
Foundations of Informatics I, 183
Foundations of Informatics II, 184
Foundations of Marketing (M), 49
Functional Ceramics, 174
Fundamentals for Design of Motor-Vehicle Bodies I, 192
Fundamentals for Design of Motor-Vehicle Bodies II, 193
Fundamentals in the Development of Commercial Vehicles I, 194
Fundamentals in the Development of Commercial Vehicles II, 195
Fundamentals in the Development of Passenger Vehicles I, 196
Fundamentals in the Development of Passenger Vehicles II, 197
Fundamentals of construction (M), 85
Fundamentals of Production Management, 188
Fundamentals of Transportation Planning and Traffic Engineering, 353
Gear Cutting Technology, 356
Geological Hazards and Risks, 176
Global Optimization I, 179
Global Optimization II, 180
Global vehicle evaluation within virtual road test, 177
Handling Characteristics of Motor Vehicles (M), 66
Handling Characteristics of Motor Vehicles I, 161
Handling Characteristics of Motor Vehicles II, 162
Hauptvermessungsoffnung III, 198
High Performance Powder Metallurgy Materials, 265
Hydraulic Engineering and Water Resource Management I, 361
Hydrology, 199
Industrial Application of Material Handling Systems in Sorting and Distribution Systems, 105
Industrial Organization, 200
Industrial Production I (M), 33
Information Systems and Supply Chain Management, 201
Instrumentation and Control Technologies for Production Systems, 335
Integrated Production Planning, 203
Integrated Production Planning (M), 77
Intelligent Systems in Finance, 204
Internal Combustion Engines and Exhaust Gas Aftertreatment Technology, 185
International Economics, 112
International Finance, 206
International Marketing, 205
Internship (M), 97
Interpretative Social Research Methods, 232
Introduction to Ceramics, 209
Introduction to Energy Economics, 144
Introduction to Game Theory, 146
Introduction to GIS for students of natural, engineering and geosciences, 148
Introduction to Informatics (M), 23
Introduction to Operations Research (M), 24
Introduction to Operations Research I, 142
Introduction to Operations Research II, 143
Introduction to Programming with Java, 257
Introduction to Public Finance, 145
Introduction to Public Finance and Public Management (M), 55
Introduction to Public Management, 149
Introduction to Technical Logistics (M), 69
Investments, 208
Key qualifications ZAK, 276
Knowledge Management, 369
Law and Economics, 282
Logistics - Organisation, Design, and Control of Logistic Systems, 212
Logistics and Supply Chain Management, 215
Machine Tools and Industrial Handling, 366
Machine Tools and Industrial Handling (M), 79
Macroeconomic Theory (M), 52
Management Accounting (M), 32
Management Accounting I, 217
Management Accounting II, 218
Management and Strategy, 350
Management of Business Networks, 219
Management of Business Networks (Introduction), 220
Management of public- and private-sector organizations (M), 50
Managing Organizations, 247
Managing the Marketing Mix, 223
Manufacturing Engineering, 170
Manufacturing Technology (M), 76
Markov Decision Models I, 336
Markov Decision Models II, 337
Mass and Energy Balances for Reacting Systems, 338
Mass and Energy Balances for Reacting Systems (M), 25
Material Flow in Logistic Systems, 224
Materials and Processes in Automotive Lightweight Construction, 225
Materials of Lightweight Construction, 362
Materials Science (M), 26
Materials Science and Engineering III, 365
Materials Science I, 363
Materials Science II for Business Engineers, 364
Mathematics (M), 29
Mathematics I, 226
Mathematics II, 227
Mathematics III, 228
Metal Forming, 348
Meteorological Natural Hazards, 230
Methodical Foundations of OR (M), 63
Methods in Analyzing Internal Combustion, 231
Microactuators, 233
Microeconomic Theory (M), 51
Microsystem Technology (M), 80
Mobile Machines, 234
Mobile Machines (M), 71
Mobility and Infrastructure (M), 84
Modelling and Identification, 235
Monetary and Financial Policy, 175
Motor Fuels for Combustion Engines and their Verifications, 123
Nanotechnology with clusters, 237
Nonlinear Optimization I, 239
Nonlinear Optimization II, 240
Novel Actuators and Sensors, 238
Operation, 122
Operative CRM, 244
Optoelectronic Components, 246
Oral Presentation and Communication Skills, 278
Physical Basics of Laser Technology, 249
Understanding and Prediction of Disasters 2 (M), 88
Vehicle Comfort and Acoustics I, 164
Vehicle Comfort and Acoustics II, 165
Vehicle Development (M), 70
Vehicle Mechatronics I, 163
Warehouse and Distribution Systems, 211
Welfare Economics, 370
Working and Studying Effectively, 277