Economathematics (M.Sc.)
Summer Term 2016
SPO 2009
Date: 08.03.2016
Contents

1 Studyplan 10
2 Helpful information 19
3 Actual Changes 21
4 Modules 23

4.1 Modules of Mathematics

Differential Geometry- MATHMWAG04 23
Algebra- MATHMWAG05 23
Convex Geometry- MATHMWAG07 24
Algebraic Number Theory- MATHMWAG09 25
Algebraic Geometry- MATHMWAG10 26
Geometry of Schemes- MATHMWAG11 27
Geometric Group Theory- MATHMWAG12 28
Graph Theory- MATHAG26 29
Global Differential Geometry- MATHAG27 30
Combinatorics in the plane- MATHAG28 31
Comparison Geometry- MATHAG30 32
Algebraic Topology- MATHAG34 33
Introduction to geometric measure theory - MATHAG35 34
Combinatorics- MATHAG37 35
L2-Invariants- MATHAG38 36
Group actions in Riemannian geometry- MATHAG40 37
Algebraic Topology II- MATHAG41 38
Extremal Graph Theory- MATHAG42 39
Spin manifolds, alpha invariant and positive scalar curvature- MATHAG43 40
Homotopy theory- MATHAG44 41
The Riemann Zeta function- MATHAG45 42
Integral Equations- MATHMWAN05 43
Classical Methods for Partial Differential Equations- MATHMWAN08 44
Boundary and eigenvalue problems- MATHMWAN09 45
Spectral Theory- MATHMWAN10 46
Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems- MATHMWAN11 47
Evolution Equations- MATHMWAN12 48
Fourier Analysis- MATHMWAN14 49
Complex Analysis II- MATHMWAN16 50
Control Theory- MATHAN18 51
Potential Theory- MATHAN20 52
Stochastic Differential Equations- MATHMWAN24 53
Calculus of variations- MATHMWAN25 54
Maxwell's Equations- MATHMWAN28 55
Special functions and applications in potential theory- MATHAN33 56
Sobolev Spaces- MATHAN37 57
Traveling Waves- MATHAN38 58
Stochastic Evolution Equations- MATHAN40 59
Numerical methods for differential equations- MATHMWNM03 60
Introduction to scientific computing- MATHMWNM05 61
Inverse Problems- MATHMWNM06 62
Finite element methods- MATHMWNM07 63
Parallel computing- MATHMWNM08 64
Optimisation and optimal control for differential equations- MATHMWNM09 65
Numerical Methods in Solid Mechanics- MATHMWNM12 66
Numerical methods in computational electrodynamics- MATHMWNM13 69
Wavelets- MATHMWBNM14 ... 70
Medical imaging- MATHMWBNM15 .. 71
Mathematical methods in signal and image processing- MATHMWBNM16 72
Numerical Methods in Mathematical Finance- MATHMWBNM18 73
Adaptive finite element methods- MATHMWBNM19 ... 74
Numerical methods for time-dependent partial differential equations- MATHMWBNM20 75
Numerical optimisation methods- MATHMWBNM25 ... 76
Numerical methods in mathematical finance II- MATHMWBNM26 77
Mathematical modelling and simulation in practise- MATHMWBNM27 78
Numerical Methods for Integral Equations- MATHMWBNM29 79
Numerical methods for hyperbolic equations- MATHMWBNM28 80
Special topics in numerical linear algebra- MATHMWBNM30 81
Geometric numerical integration- MATHMWBNM31 ... 82
Optimization in Banach spaces- MATHMWBNM32 ... 83
Numerical methods for Maxwell's equations- MATHMWBNM33 84
Numerical methods in fluid mechanics- MATHMWBNM34 85
Compressive Sensing- MATHMWBNM37 ... 86
Functions of operators- MATHMWBNM38 ... 87
Functions of matrices- MATHMWBNM39 ... 88
Project centered Software-Lab- MATHMWBNM40 ... 89
Introduction into particulate flows- MATHMWBNM41 .. 90
Numerical continuation methods- MATHMWBNM42 .. 91
Introduction to Matlab and numerical algorithms- MATHMWBNM43 92
Advanced Inverse Problems: Nonlinearity and Banach spaces- MATHMWBNM44 93
Discrete time finance- MATHST04 ... 94
Stochastic Geometry- MATHMWST06 ... 95
Asymptotic Stochastic- MATHMWST07 ... 96
Continuous time finance- MATHMWST08 ... 97
Generalized Regression Models- MATHMWST09 ... 98
Brownian Motion- MATHMWST10 ... 99
Markov Decision Processes- MATHMWST11 .. 100
Stochastic Control- MATHMWST12 ... 101
Percolation- MATHMWST13 .. 102
Spatial Stochastics- MATHMWST14 ... 103
Mathematical Statistics- MATHMWST15 ... 104
Nonparametric Statistics- MATHMWST16 ... 105
Time Series Analysis- MATHMWST18 ... 106
Poisson processes- MATHST20 .. 107
Extreme value theory- MATHST23 ... 108
Stein's Method- MATHST24 .. 109
Probability theory and combinatorial optimization- MATHST27 110
Forecasting: Theory and Practice- MATHST28 ... 111
Random Graphs- MATHST29 .. 112
Seminar- MATHMWSE01 .. 113

4.2 Modules of Economics and Business Engineering ... 114
Finance 1- MATHMWBWLFBV1 ... 114
Finance 2- MATHMWBWLFBV2 ... 115
Finance 3- MATHMWBWLFBV11 ... 116
Insurance Management I- MATHMWBWLFBV6 .. 117
Energy Economics and Technology- MATHMWBWLIP5 ... 118
Strategic Corporate Management and Organization- MATHMWOU01 119
Marketing Management- MATHMWBWLMAR5 ... 120
Innovation and growth- MATHMWWVLWW1 ... 122
Decision and Game Theory- MATHMWWVL10 ... 123
Growth and Agglomeration- MATHMWWVL12 ... 124
Economic Theory and its Application in Finance- MATHM4VWL14 125
Microeconomic Theory- MATHM4VWL15 ... 126
5 Courses

5.1 All Courses

5.2 General Modules

Module Handbook, Date: 08.03.2016
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Issues in the Insurance Industry</td>
<td>2530350</td>
</tr>
<tr>
<td>Data Mining and Applications</td>
<td>2520375</td>
</tr>
<tr>
<td>Database Systems and XML</td>
<td>2511202</td>
</tr>
<tr>
<td>Poisson processes</td>
<td>MATHST20</td>
</tr>
<tr>
<td>Derivatives</td>
<td>2530550</td>
</tr>
<tr>
<td>The Riemann Zeta function</td>
<td>MATHAG45</td>
</tr>
<tr>
<td>Differential Geometry</td>
<td>1036</td>
</tr>
<tr>
<td>Document Management and Groupware Systems</td>
<td>2511212</td>
</tr>
<tr>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>2581006</td>
</tr>
<tr>
<td>Efficient Algorithms</td>
<td>2511100</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>2540454</td>
</tr>
<tr>
<td>Introduction to scientific computing</td>
<td>EWR</td>
</tr>
<tr>
<td>Introduction to Matlab and numerical algorithms</td>
<td>MATHNM43</td>
</tr>
<tr>
<td>Theory of endogenous growth</td>
<td>2561503</td>
</tr>
<tr>
<td>Energy and Environment</td>
<td>2581003</td>
</tr>
<tr>
<td>Energy Systems Analysis</td>
<td>2581002</td>
</tr>
<tr>
<td>Enterprise Architecture Management</td>
<td>2511600</td>
</tr>
<tr>
<td>Discrete-event Simulation in Production and Logistics</td>
<td>2550488</td>
</tr>
<tr>
<td>Additional Topics on Stochastic Analysis</td>
<td>MATHAN40-2</td>
</tr>
<tr>
<td>Evolution Equations</td>
<td>MATHAN12</td>
</tr>
<tr>
<td>Experimental Economics</td>
<td>2540489</td>
</tr>
<tr>
<td>Extremal Graph Theory</td>
<td>MATHAG42</td>
</tr>
<tr>
<td>Fixed Income Securities</td>
<td>2530260</td>
</tr>
<tr>
<td>Financial Analysis</td>
<td>2530205</td>
</tr>
<tr>
<td>Financial Econometrics</td>
<td>2520022</td>
</tr>
<tr>
<td>Financial Intermediation</td>
<td>2530232</td>
</tr>
<tr>
<td>Discrete time finance</td>
<td>FMDZ</td>
</tr>
<tr>
<td>Mathematical Finance in Continuous Time</td>
<td>MATHST08</td>
</tr>
<tr>
<td>Finite Element Methods</td>
<td>MATHAN07</td>
</tr>
<tr>
<td>Fourier Analysis</td>
<td>MATHAN14</td>
</tr>
<tr>
<td>Complex Analysis II</td>
<td>MATHAN16</td>
</tr>
<tr>
<td>Mixed Integer Programming I</td>
<td>2550138</td>
</tr>
<tr>
<td>Mixed Integer Programming II</td>
<td>25140</td>
</tr>
<tr>
<td>Generalized Regression Models</td>
<td>MATHST09</td>
</tr>
<tr>
<td>Geometry of Schemes</td>
<td>MATHAG11</td>
</tr>
<tr>
<td>Geometric Group Theory</td>
<td>MATHAG12</td>
</tr>
<tr>
<td>Geometric numerical integration</td>
<td>MATHNM31</td>
</tr>
<tr>
<td>Business Strategies of Banks</td>
<td>2530299</td>
</tr>
<tr>
<td>Global Differential Geometry</td>
<td>MATHAG27</td>
</tr>
<tr>
<td>Global Optimization I</td>
<td>2550134</td>
</tr>
<tr>
<td>Global Optimization II</td>
<td>2550136</td>
</tr>
<tr>
<td>Graph Theory and Advanced Location Models</td>
<td>2550484</td>
</tr>
<tr>
<td>Graph Theory- GraphTH</td>
<td>229</td>
</tr>
<tr>
<td>Group actions in Riemannian geometry</td>
<td>MATHAG40</td>
</tr>
<tr>
<td>Homotopy theory</td>
<td>MATHAG44</td>
</tr>
<tr>
<td>Incentives in Organizations</td>
<td>n.n.</td>
</tr>
<tr>
<td>Innovation theory and policy</td>
<td>2560236</td>
</tr>
<tr>
<td>Insurance Marketing</td>
<td>2530323</td>
</tr>
<tr>
<td>Insurance Production</td>
<td>2530324</td>
</tr>
<tr>
<td>Insurance Risk Management</td>
<td>2530335</td>
</tr>
<tr>
<td>Integral Equations</td>
<td>IG</td>
</tr>
<tr>
<td>International Finance</td>
<td>2530570</td>
</tr>
<tr>
<td>International Economic Policy</td>
<td>2560254</td>
</tr>
<tr>
<td>Inverse Problems</td>
<td>01052</td>
</tr>
<tr>
<td>Classical Methods for Partial Differential Equations</td>
<td>KMPD</td>
</tr>
<tr>
<td>Knowledge Discovery</td>
<td>2511302</td>
</tr>
<tr>
<td>Combinatorics</td>
<td>MATHAG37</td>
</tr>
</tbody>
</table>
Combinatorics in the plane- MATHAG28 ... 44
Convex Analysis- 2550120 ... 45
Convex Geometry- 1044 ... 46
Hospital Management- 2550493 ... 47
Credit Risk- 2530565 ... 48
L2-Invariants- MATHAG38 ... 49
Management of IT-Projects- 2511214 . .. 49
Marketing Strategy Business Game- 2571183 50
Marketing Communication- 2540440 51
Markov Decision Processes- MATHST11 ... 52
Market Research- 2571150 ... 53
Market Microstructure- 2530240 ... 54
Mathematical methods in signal and image processing- MATHNM16 55
Mathematical modelling und simulation in practise- MATHNM27 56
Mathematical Statistics- MATHST15 .. 57
Mathematical Theory of Democracy- 2525537 58
Functions of matrices- MATHNM39 .. 59
Maxwell's Equations- MATHAN28 ... 60
Modeling Strategic Decision Making - 2577908 61
Business Process Modelling- 2511210 ... 62
Modelling, Measuring and Managing of Extreme Risks- 2530355 63
Multivariate Statistical Methods- 2520317 ... 64
Nature-inspired Optimisation Methods - 2511106 65
Non- and Semiparametrics- 2521300 ... 66
Nonlinear Optimization I- 2550111 .. 67
Nonlinear Optimization II- 2550113 ... 68
Nonparametric Statistics- MATHST16 ... 69
Numerical continuation methods- MATHNM42 70
Numerical methods for differential equations- NMDG 71
Numerical methods for hyperbolic equations- MATHNM28 72
Numerical Methods for Integral Equations- MATHNM29 73
Numerical methods for time-dependent partial differential equations- MATHNM20 .. 74
Numerical methods in computational electrodynamics- MATHNM13 75
Numerical Methods in Solid Mechanics- MATHNM12 76
Numerical Methods in Mathematical Finance- MATHNM18 77
Numerical methods in mathematical finance II- MATHNM26 78
Numerical optimisation methods- MATHNM25 79
Numerical methods for Maxwell's equations- MATHNM33 80
Open Innovation – Concepts, Methods and Best Practices- 2571199 81
Operations Research in Health Care Management- 2550495 82
Operations Research in Supply Chain Management - 2550480 83
Optimization in a Random Environment- 25687 84
Optimization and optimal control for differential equations- MATHNM09 85
Organic Computing- 2511104 ... 86
Managing Organizations- 2577902 .. 87
Organization Theory- 2577904 .. 88
P&C Insurance Simulation Game- INSGAME - 2520320 89
Parallel computing- MATHNM08 .. 90
Parametric Optimization- 2550115 .. 91
Percolation- MATHST13 ... 92
Portfolio and Asset Liability Management- 2520357 93
Potential Theory- MATHAN20 ... 94
Advanced Lab Informatics- 25070p .. 95
Practical seminar: Health Care Management (with Case Studies)- 2550498 96
Predictive Mechanism and Market Design- 2520402 97
Principles of Insurance Management- 2530055 98
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Geometry- MATHAG30</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>Calculus of variations- MATHAN25</td>
<td></td>
<td>359</td>
</tr>
<tr>
<td>Valuation- 2530212</td>
<td></td>
<td>358</td>
</tr>
<tr>
<td>Management and Strategy- 2577900</td>
<td></td>
<td>357</td>
</tr>
<tr>
<td>Topics in Experimental Economics- 2520400</td>
<td></td>
<td>356</td>
</tr>
<tr>
<td>Theory of Economic Growth- 2520543</td>
<td></td>
<td>355</td>
</tr>
<tr>
<td>Technological Change in Energy Economics- 2581000</td>
<td></td>
<td>354</td>
</tr>
<tr>
<td>Tactical and Operational Supply Chain Management- 2550486</td>
<td></td>
<td>353</td>
</tr>
<tr>
<td>Supply Chain Management in the Process Industry - 2550494</td>
<td></td>
<td>352</td>
</tr>
<tr>
<td>Strategic Management of Information Technology- 2511602</td>
<td></td>
<td>351</td>
</tr>
<tr>
<td>Strategic and Innovative Decision Making in Marketing- 2571165</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>Strategic Management of Information Technology- 2511602</td>
<td></td>
<td>349</td>
</tr>
<tr>
<td>Strategic Brand Management- 2571185</td>
<td></td>
<td>348</td>
</tr>
<tr>
<td>Strategic Aspects of Energy Economy- 2581958</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>Strategic and Innovative Decision Making in Marketing- 2571165</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>Strategic Management of Information Technology- 2511602</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>Supply Chain Management in the Process Industry - 2550494</td>
<td></td>
<td>344</td>
</tr>
<tr>
<td>Tactical and Operational Supply Chain Management- 2550486</td>
<td></td>
<td>343</td>
</tr>
<tr>
<td>Technological Change in Energy Economics- 2581000</td>
<td></td>
<td>342</td>
</tr>
<tr>
<td>Theory of Economic Growth- 2520543</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>Topics in Experimental Economics- 2520400</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>Management and Strategy- 2577900</td>
<td></td>
<td>339</td>
</tr>
<tr>
<td>Valuation- 2530212</td>
<td></td>
<td>338</td>
</tr>
<tr>
<td>Calculus of variations- MATHAN25</td>
<td></td>
<td>337</td>
</tr>
<tr>
<td>Comparison Geometry- MATHAG30</td>
<td></td>
<td>336</td>
</tr>
</tbody>
</table>
Studienplan für den Masterstudiengang Wirtschaftsmathematik
am Karlsruher Institut für Technologie (KIT)

Fakultäten für Mathematik und Wirtschaftswissenschaften

Vorbemerkung

Dieser Studienplan soll die Studien- und Prüfungsordnung des Masterstudiengangs Wirtschaftsmathematik ergänzen, erläutern und den Studierenden konkrete Beispiele zur Organisation des Studiums aufzeigen.

1 Qualifikationsziele und Profil des Studiengangs

Ausbildungsziel des interdisziplinären Masterstudiengangs Wirtschaftsmathematik ist die Qualifizierung für eine berufliche Tätigkeit in den Bereichen Industrie, Banken, Versicherungen, Logistik, Softwareentwicklung und Forschung. Durch die forschungsorientierte Ausbildung werden die Absolventinnen und Absolventen insbesondere auf lebenslanges Lernen vorbereitet.

Fachliche Kernkompetenzen:

Überfachliche Kompetenzen:
Absolventinnen und Absolventen können Probleme in neuen und unvertrauten Situationen, die in einem multidisziplinären Zusammenhang zum Studium stehen, mit ihren erworbenen Fähigkeiten analysieren, bewerten und lösen. Sie sind in der Lage ihr Wissen selbständig zu integrieren, mit hoher Komplexität umzugehen und sie besitzen Ausdauer bei der Lösung schwieriger Probleme. Erhaltene Ergebnisse wissen sie zielführend zu dokumentieren, illustrieren und zu interpretieren. Dabei berücksichtigen sie stets gesellschaftliche, wissen-

Lernergebnisse:

Im Profil Financial Engineering besitzen die Absolventinnen und Absolventen ein breites Wissen über finanzmathematische Modelle und Methoden sowie finanzwirtschaftliche Konzepte und Begriffe. Dies befähigt sie in diesem Bereich komplexe und innovative Aufgaben zu analysieren und die Ergebnisse zu beurteilen.

Im Profil Operations Research erwerben die Absolventinnen und Absolventen ein breites Wissen über mathematische und wirtschaftswissenschaftliche Modelle und Methoden der Unternehmensführung. Dies befähigt sie in diesem Bereich komplexe und innovative Aufgaben zu analysieren und die Ergebnisse zu beurteilen.

2 Gliederung des Studiums

Fach Mathematik
Es gibt die folgenden vier mathematischen Gebiete:
1. Stochastik
2. Angewandte und Numerische Mathematik/Optimierung
3. Analysis
4. Algebra und Geometrie

Fach Wirtschaftswissenschaften

Es müssen je 18 LP aus den beiden Gebieten

1. Finance - Risk Management - Managerial Economics
2. Operations Management - Datenanalyse - Informatik

erworben werden.

Seminare

Des weiteren müssen zwei Seminarmodule über je 3 Leistungspunkte abgelegt werden, jeweils eines aus den beiden Fächern Mathematik und Wirtschaftswissenschaften.

Wahlpflichtbereich und Schlüsselqualifikationen

Weitere 12 LP sind flexibel zu erbringen. Insbesondere ist dadurch die Möglichkeit der fachlichen Vertiefung zur Vorbereitung der Masterarbeit gegeben. Mindestens 8 der 12 LP müssen aus den oben genannten mathematischen oder wirtschaftswissenschaftlichen Vorlesungsmodulen oder aus einem Berufspraktikum stammen. Mindestens 3 LP sind durch Schlüsselqualifikationen zu erbringen.

Masterarbeit

Die Masterarbeit wird in der Regel im vierten Semester geschrieben und ist mit 30 LP versehen. Sie kann in beiden beteiligten Fakultäten betreut werden und soll nach Möglichkeit ein für die Wirtschaftsmathematik inhaltlich und methodisch relevantes Thema behandeln. Voraussetzung ist eine angemessene Vertiefung im Themenbereich der Arbeit.
3 Festlegung des Studienprofils (Schwerpunktbildung)

Im Folgenden werden Umfang und Inhalt für die einzelnen Studienprofile spezifiziert. Im Fach Mathematik entsprechen die Modulnamen den Vorlesungsnamen, während sich im Fach Wirtschaftswissenschaften in der Regel verschiedene Vorlesungen zu einem Modul kombinieren lassen. Die Kombinationsmöglichkeiten sind im Modulhandbuch ausgeführt.

<table>
<thead>
<tr>
<th>Fach Mathematik</th>
<th>Fach Wirtschaftswissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastik</td>
<td>Finance - Risk Management - Managerial Economics</td>
</tr>
<tr>
<td>(8 LP)</td>
<td>(18 LP)</td>
</tr>
<tr>
<td>(bzw. 16 LP*)</td>
<td>(bzw. 12 LP*)</td>
</tr>
<tr>
<td>WP Mathematik</td>
<td></td>
</tr>
<tr>
<td>(20 LP)</td>
<td></td>
</tr>
<tr>
<td>(bzw. 12 LP*)</td>
<td></td>
</tr>
<tr>
<td>Angewandte und Numerische Mathematik / Optimierung oder Analysis</td>
<td>Operations Management - Datenanalyse - Informatik</td>
</tr>
<tr>
<td>(8 LP)</td>
<td>(18 LP)</td>
</tr>
<tr>
<td>Seminar (3 LP)</td>
<td>Seminar (3 LP)</td>
</tr>
<tr>
<td>Wahlpflichtbereich und Schlüsselqualifikationen (12 LP)</td>
<td></td>
</tr>
<tr>
<td>Masterarbeit (30 LP)</td>
<td></td>
</tr>
</tbody>
</table>

* im Profil Financial Engineering
Studienprofil Financial Engineering

Stochastik (16 LP)

<table>
<thead>
<tr>
<th>Module</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzmathematik in diskreter Zeit</td>
<td>8</td>
</tr>
<tr>
<td>Finanzmathematik in stetiger Zeit</td>
<td>8</td>
</tr>
<tr>
<td>Statistik</td>
<td>8</td>
</tr>
<tr>
<td>Mathematische Statistik</td>
<td>4</td>
</tr>
<tr>
<td>Asymptotische Stochastik</td>
<td>8</td>
</tr>
<tr>
<td>Nichtparametrische Statistik</td>
<td>8</td>
</tr>
<tr>
<td>Brownsche Bewegung</td>
<td>4</td>
</tr>
<tr>
<td>Generalisierte Regressionsmodelle</td>
<td>4</td>
</tr>
<tr>
<td>Steuerung stochastatischer Prozesse</td>
<td>4</td>
</tr>
<tr>
<td>Zeitreihenanalyse</td>
<td>4</td>
</tr>
<tr>
<td>Finanzstatistik</td>
<td>4</td>
</tr>
<tr>
<td>Lévy Prozesse</td>
<td>4</td>
</tr>
</tbody>
</table>

Angewandte u. Numerische Mathematik/Optimierung oder Analysis (8 LP)

<table>
<thead>
<tr>
<th>Module</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimierung und optimale Kontrolle für Differentialgleichungen</td>
<td>4</td>
</tr>
<tr>
<td>Numerische Methoden für Differentialgleichungen</td>
<td>8</td>
</tr>
<tr>
<td>Steuerung stochastatischer Prozesse</td>
<td>4</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik</td>
<td>8</td>
</tr>
<tr>
<td>Numerische Methoden in der Finanzmathematik II</td>
<td>8</td>
</tr>
<tr>
<td>Funktionalanalyse</td>
<td>8</td>
</tr>
<tr>
<td>Stochastische Differentialgleichungen</td>
<td>8</td>
</tr>
<tr>
<td>Klassische Methoden für partielle Differentialgleichungen</td>
<td>8</td>
</tr>
<tr>
<td>Kontrolltheorie</td>
<td>4</td>
</tr>
</tbody>
</table>
Finance - Risk Management - Managerial Economics (18 LP)

<table>
<thead>
<tr>
<th>Module</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance 1</td>
<td>9</td>
</tr>
<tr>
<td>Finance 2</td>
<td>9</td>
</tr>
<tr>
<td>Finance 3</td>
<td>9</td>
</tr>
<tr>
<td>Insurance Management I</td>
<td>9</td>
</tr>
<tr>
<td>Mathematical and Empirical Finance</td>
<td>9</td>
</tr>
<tr>
<td>Ökonomische Theorie und ihre Anwendung im Finance</td>
<td>9</td>
</tr>
</tbody>
</table>

Operations Management - Datenanalyse - Informatik (18 LP)

<table>
<thead>
<tr>
<th>Module</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik</td>
<td>9</td>
</tr>
<tr>
<td>Methodische Grundlagen des OR</td>
<td>9</td>
</tr>
<tr>
<td>Mathematische Optimierung</td>
<td>9</td>
</tr>
<tr>
<td>Stochastische Methoden und Simulation</td>
<td>9</td>
</tr>
<tr>
<td>Stochastische Modellierung und Optimierung</td>
<td>9</td>
</tr>
<tr>
<td>Energiewirtschaft und Technologie</td>
<td>9</td>
</tr>
</tbody>
</table>

Studienprofil Operations Research

Stochastik (8 LP)

<table>
<thead>
<tr>
<th>Module</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistik</td>
<td>8</td>
</tr>
<tr>
<td>Mathematische Statistik</td>
<td>4</td>
</tr>
<tr>
<td>Asymptotische Stochastik</td>
<td>8</td>
</tr>
<tr>
<td>Nichtparametrische Statistik</td>
<td>8</td>
</tr>
<tr>
<td>Brownsche Bewegung</td>
<td>4</td>
</tr>
<tr>
<td>Generalisierte Regressionsmodelle</td>
<td>4</td>
</tr>
<tr>
<td>Perkolation</td>
<td>4</td>
</tr>
<tr>
<td>Steuerung stochastischer Prozesse</td>
<td>4</td>
</tr>
<tr>
<td>Zeitreihenanalyse</td>
<td>4</td>
</tr>
</tbody>
</table>
Angewandte u. Numerische Mathematik/Optimierung oder Analysis (8 LP)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimierung und optimale Kontrolle für Differentialgleichungen</td>
<td>4 LP</td>
</tr>
<tr>
<td>Paralleles Rechnen</td>
<td>5 LP</td>
</tr>
<tr>
<td>Numerische Optimierungsmethoden</td>
<td>8 LP</td>
</tr>
<tr>
<td>Steuerung stochastischer Prozesse</td>
<td>4 LP</td>
</tr>
<tr>
<td>Funktionalanalyse</td>
<td>8 LP</td>
</tr>
<tr>
<td>Variationsrechnung</td>
<td>8 LP</td>
</tr>
<tr>
<td>Klassische Methoden für partielle Differentialgleichungen</td>
<td>8 LP</td>
</tr>
<tr>
<td>Kontrolltheorie</td>
<td>4 LP</td>
</tr>
<tr>
<td>Optimierung in Banachräumen</td>
<td>8 LP</td>
</tr>
<tr>
<td>Spieltheorie</td>
<td>4 LP</td>
</tr>
<tr>
<td>Graphentheorie</td>
<td>8 LP</td>
</tr>
<tr>
<td>Modellbildung und numerische Simulation in der Praxis</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Finance - Risk Management - Managerial Economics (18 LP)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance 1</td>
<td>9 LP</td>
</tr>
<tr>
<td>Finance 2</td>
<td>9 LP</td>
</tr>
<tr>
<td>Finance 3</td>
<td>9 LP</td>
</tr>
<tr>
<td>Insurance Management I</td>
<td>9 LP</td>
</tr>
<tr>
<td>Mathematical and Empirical Finance</td>
<td>9 LP</td>
</tr>
<tr>
<td>Entscheidungs- und Spieltheorie</td>
<td>9 LP</td>
</tr>
<tr>
<td>Innovation und Wachstum</td>
<td>9 LP</td>
</tr>
<tr>
<td>Wachstum und Agglomeration</td>
<td>9 LP</td>
</tr>
<tr>
<td>Strategische Unternehmensführung und Organisation</td>
<td>9 LP</td>
</tr>
<tr>
<td>Microeconomic Theory</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

Operations Management - Datenanalyse - Informatik (18 LP)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informatik</td>
<td>9 LP</td>
</tr>
<tr>
<td>Methodische Grundlagen des OR</td>
<td>9 LP</td>
</tr>
<tr>
<td>Mathematische Optimierung</td>
<td>9 LP</td>
</tr>
<tr>
<td>Anwendungen des OR</td>
<td>9 LP</td>
</tr>
<tr>
<td>OR im Supply Chain Management und Health Care Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>Stochastische Methoden und Simulation</td>
<td>9 LP</td>
</tr>
<tr>
<td>Stochastische Modellierung und Optimierung</td>
<td>9 LP</td>
</tr>
<tr>
<td>Energiewirtschaft und Technologie</td>
<td>9 LP</td>
</tr>
<tr>
<td>Marketing Management</td>
<td>9 LP</td>
</tr>
</tbody>
</table>
Studienprofil Klassische Wirtschaftsmathematik

Im Studienprofil *Klassische Wirtschaftsmathematik* besteht die größte Freiheit bei der Wahl der Module. Einzelheiten des Angebots können dem Modulhandbuch entnommen werden.

4 Modulüberschneidungen und Pflichtbelegungen

Bei bestimmten Modulen ist die inhaltliche Überschneidung sehr groß. Daher gelten folgende Ausschlussregeln:

- Falls das Modul *Markov-Ketten* aus dem Bachelor Mathematik eingebracht wird, dann kann in den Modulen *Stochastische Methoden und Simulation* und *Stochastische Modellierung und Optimierung* keine der Veranstaltungen *Stochastische Entscheidungsmodelle I und II* eingebracht werden.
- Falls das Modul *Numerische Optimierungsmethoden* eingebracht wird, dann kann in den Modulen *Methodische Grundlagen des OR* und *Mathematische Optimierung* keine der Veranstaltungen *Nichtlineare Optimierung I und II* eingebracht werden.
- Falls das Modul *Spieltheorie* im Fach Mathematik eingebracht wird, dann kann in den Modulen *Entscheidungs- und Spieltheorie*, *Mathematische Optimierung, OR im Supply Chain Management und Health Care Management* und *Stochastische Modellierung und Optimierung* die Veranstaltung *Einführung in die Spieltheorie* nicht eingebracht werden.

Beim Einbringen des Moduls *Energiewirtschaft und Technologie* ist die Belegung der Vorlesung *Energiesystemanalyse* für den Studiengang Wirtschaftsmathematik verpflichtend.

5 Schlüsselqualifikationen

Der Masterstudiengang Wirtschaftsmathematik an den Fakultäten für Mathematik und Wirtschaftswissenschaften zeichnet sich durch einen außergewöhnlich hohen Grad an Interdisziplinarität aus. Mit der Kombination aus mathematischen und wirtschaftswissen-
schaftlichen Fächern ist die Zusammenführung von Wissensbeständen verschiedener Disziplinen integrativer Bestandteil des Studiengangs. Interdisziplinäres Denken in Zusammenhängen wird dabei in natürlicher Weise gefördert. Darüber hinaus tragen auch die Seminarveranstaltungen des Masterstudiengangs mit der Einübung wissenschaftlich hochqualifizierter Bearbeitung und Präsentation spezieller Themenbereiche wesentlich zur Förderung der Soft Skills bei. Die innerhalb des Studiengangs integrativ vermittelten Schlüsselkompetenzen lassen sich dabei den folgenden Bereichen zuordnen:

Basiskompetenzen (soft skills)

1. Teamarbeit, soziale Kommunikation und Kreativitätstechniken (z.B. Arbeit in Kleingruppen, gemeinsames Bearbeiten der Hausaufgaben und Nacharbeiten des Vorlesungsstoffes)
2. Präsentationserstellung und -techniken
3. Logisches und systematisches Argumentieren und Schreiben (z.B. in Übungen, Seminaren, beim Ausarbeiten der Vorträge und Verfassen der Hausaufgaben)
4. Strukturierte Problemlösung und Kommunikation

Praxisorientierung (enabling skills)

1. Handlungskompetenz im beruflichen Kontext
2. Kompetenzen im Projektmanagement
3. Betriebswirtschaftliche Grundkenntnisse
4. Englisch als Fachsprache

Orientierungswissen

1. Vermittlung von interdisziplinärem Wissen
2. Institutionelles Wissen über Wirtschafts- und Rechtssysteme
3. Wissen über internationale Organisationen
4. Medien, Technik und Innovation

2 Helpful information

Module Handbook

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme, their structure and extent (in CP), their dependencies, their learning outcomes, their learning control and examinations. Therefore it serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0).

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations takes place online via the self-service function for students (https://campus.studium.kit.edu/).

For students of the master programme the registration currently takes place at the advisory service of the faculty or at the respective institutes.

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.
Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme.

Used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/CP</td>
<td>Credit Points/ECTS</td>
<td>Leistungspunkte/ECTS</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>course</td>
<td>Lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>RÜ</td>
<td>computing lab</td>
<td>Rechnerübung</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>summer term</td>
<td>Sommersemester</td>
<td></td>
</tr>
<tr>
<td>Sem.</td>
<td>semester/term</td>
<td>Semester</td>
<td></td>
</tr>
<tr>
<td>SPO</td>
<td>examination regulations</td>
<td>Studien- und Prüfungsordnung</td>
<td>Schlüsselqualifikationen</td>
</tr>
<tr>
<td>SQ</td>
<td>key qualifikation</td>
<td>Semesterwochenstunde</td>
<td>Übung</td>
</tr>
<tr>
<td>SWS</td>
<td>contact hour</td>
<td>Übung</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Ü</td>
<td>excercise course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>winter term</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist. Please also check our updates on http://www.wiwi.kit.edu/lehreMHB.php#mhb_aktuell.

MATHMW4VWL15 - Microeconomic Theory (S. 126)

<table>
<thead>
<tr>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting summer term 2015, the lecture “Auction Theory” [2520408] can be chosen in the module.</td>
</tr>
<tr>
<td>Starting summer term 2016, the lecture “Incentives in Organizations” can be chosen in the module.</td>
</tr>
</tbody>
</table>

MATHMW4VWL17 - Experimental Economics (S. 128)

<table>
<thead>
<tr>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course Advanced Game Theory is not offered before Winter 2014/15.</td>
</tr>
<tr>
<td>The course Predictive Mechanism and Market Design is not offered each year.</td>
</tr>
<tr>
<td>Starting summer term 2016, the lecture “Incentives in Organizations” can be chosen in the module.</td>
</tr>
</tbody>
</table>

MATHMWSTAT5 - Econometrics and Statistics I (S. 130)

<table>
<thead>
<tr>
<th>Bedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course “Advanced Statistics” [2520020] is compulsory and must be examined.</td>
</tr>
<tr>
<td>The course Financial Econometrics [2520022] can only be passed if the course Time Series Analysis [MATHST18] in the module Time Series Analysis [MATHMWST18] and the course Generalized Regression Models [MATHST09] in the module Generalized Regression Models [MATHMWST09] have not be passed.</td>
</tr>
</tbody>
</table>

MATHMWSTAT6 - Econometrics and Statistics II (S. 131)

<table>
<thead>
<tr>
<th>Bedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>This module can only be passed if the module ”Econometrics and Statistics I” [WW4STAT5] has been finished successfully before.</td>
</tr>
<tr>
<td>The course Financial Econometrics [2520022] can only be passed if the course Time Series Analysis [MATHST18] in the module Time Series Analysis [MATHMWST18] and the course Generalized Regression Models [MATHST09] in the module Generalized Regression Models [MATHMWST09] have not be passed.</td>
</tr>
</tbody>
</table>

MATHMWOR8 - Operations Research in Supply Chain Management and Health Care Management (S. 136)

<table>
<thead>
<tr>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some lectures and courses are offered irregularly.</td>
</tr>
<tr>
<td>The planned lectures and courses for the next three years are announced online.</td>
</tr>
<tr>
<td>The module will not be offered any more from summer term 2016. Students who are already assigned on the module can still finish it until summer term 2017 (repeaters only).</td>
</tr>
</tbody>
</table>

MATHMWOR11 - Operations Research in Supply Chain Management (S. 138)

<table>
<thead>
<tr>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The module will be offered from summer term 2016.</td>
</tr>
</tbody>
</table>

2577904 - Organization Theory (S. 291)

<table>
<thead>
<tr>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The course “Organization Theory” will not be offered any more from summer term 2015 on. The examination will be offered latest until winter term 2015/2016 (repeaters only).</td>
</tr>
</tbody>
</table>

2550493 - Hospital Management (S. 247)

<table>
<thead>
<tr>
<th>Bedingungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>None.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The credits have been changed from 3 to 4,5.</td>
</tr>
<tr>
<td>The lecture is held in every semester.</td>
</tr>
<tr>
<td>The planned lectures and courses for the next three years are announced online.</td>
</tr>
</tbody>
</table>
2550495 - Operations Research in Health Care Management (S. 283)
Anmerkungen
The lecture is planned to be held in the summer term 2016. The planned lectures and courses for the next three years are announced online.

2550498 - Practical seminar: Health Care Management (with Case Studies) (S. 300)
Anmerkungen
The credits change from 7 CP to 4,5 CP.
The lecture is offered every term.
The planned lectures and courses for the next three years are announced online.

n.n. - Incentives in Organizations (S. 232)
Anmerkungen
The course will be offered from summer term 2016.

2571199 - Open Innovation – Concepts, Methods and Best Practices (S. 282)
Anmerkungen
In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing & Sales Research Group (marketing.ism.kit.edu) shortly before the lecture period in summer term starts.
Please note that only one of the following courses can be chosen in the Marketing Management Module: Marketing Strategy Business Game, Strategic Brand Management, Open Innovation – Concepts, Methods and Best Practices or Business Plan Workshop.
Exception: In summer term 2016 exceptionally two courses can be chosen or, in case one course has already been chosen previously, a second course can be chosen.
Please note: The number of participants for this course is limited. The Marketing & Sales Research Group typically provides the possibility to attend a course with 1,5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.

2540440 - Marketing Communication (S. 252)
Anmerkungen
New course starting summer term 2015.
The credits for the course have been changed from 3 to 4,5 from summer term 2016 on.

2511312 - Web Science (S. 368)
Anmerkungen

2520317 - Multivariate Statistical Methods (S. 265)
Anmerkungen
The credits for the course “Multivariate Statistical Methods” have been changed from 5 to 4,5 from winter term 2015/2016 on.

2550552 - Advanced Statistics (S. 339)
Anmerkungen
New course starting winter term 2015/2016

2520375 - Data Mining and Applications (S. 186)
Anmerkungen
The credits for the Bachelor-course have been changed from 4,5 to 4 from summer term 2016 on.

2520357 - Portfolio and Asset Liability Management (S. 297)
Anmerkungen
The credits for the course have been changed from 5 to 4,5 from winter term 2015/2016 on.
4 Modules

4.1 Modules of Mathematics

Module: Differential Geometry [MATHMWAG04]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1036</td>
<td>Differential Geometry (p. 192)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
<td>S. Grensing, E. Leuzinger, G. Link, W. Tuschmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam: written or oral exam
Marking: grade of exam

Conditions
None.

Qualification Goals
Content
Module: Algebra [MATHMWAG05]

Coordination: F. Herrlich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

ECTS Credits	Cycle	Duration	Level
8 | Every 2nd term, Winter Term | 1 | Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Convex Geometry [MATHMWAG07]

Coordination: D. Hug
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>Courses in module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>1044</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam: oral exam (30 minutes)
Marking: grade of exam

Conditions
none

Qualification Goals
The students

- know fundamental combinatorial, geometric and analytic properties of convex sets and convex functions and apply these to related problems,
- are familiar with fundamental geometric and analytic inequalities for functionals of convex sets and their applications to geometric extremal problems and can present central ideas and techniques of proofs,
- know selected integral formulas for convex sets and the required results on invariant measures.
- know how to work self-organized and self-reflexive.

Content
1. Convex Sets
1.1. Combinatorial Properties
1.2. Support and Separation Properties
1.3. Extremal Representations
2. Convex Functions
2.1. Basic Properties
2.2. Regularity
2.3. Support Function
3. Brunn-Minkowski Theory
3.1. Hausdorff Metric
3.2. Volume and Surface Area
3.3. Mixed Volumes
3.4. Geometric Inequalities
3.5. Surface Area Measures
3.6. Projection Functions
4. Integralgeometric Formulas
4.1. Invariant Measures
4.2. Projection and Section Formulas
Module: Algebraic Number Theory [MATHMWAG09]

Coordination: C. Schmidt
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG09</td>
<td>Algebraic Number Theory (p. 169)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>F. Januszewski, S. Kühlein, C. Schmidt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Algebraic Geometry [MATHMWAG10]

Coordination: F. Herrlich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG10</td>
<td>Algebraic Geometry (p. 166)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>F. Herrlich, S. Kühlein, G. Weitze-Schmithüsen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Geometry of Schemes [MATHMWAG11]

Coordination: F. Herrlich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG11</td>
<td>Geometry of Schemes (p. 221)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>F. Herrlich, S. Kühlein, G. Weitze-Schmithüsen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Geometric Group Theory [MATHMWAG12]

Coordination: R. Sauer
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations
exam: written or oral exam
Marking: grade of exam

Conditions
None.

Qualification Goals
Content
Module: Graph Theory [MATHAG26]

Coordination: M. Axenovich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphTH</td>
<td>Graph Theory (p. 229)</td>
<td>4+2</td>
<td>W/S</td>
<td>8</td>
<td>M. Axenovich</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Learning outcomes include: understanding structural and algorithmic properties of graphs, learning about graph colorings, unavoidable structures in graphs, probabilistic methods, properties of large graphs.

Content
The graph theory course covers the material starting with the basic graph properties introduced by Euler and finishing up with modern results and techniques in extremal graph theory. The specific topics include: structure of trees, paths, cycles, walks in graphs, unavoidable subgraphs in dense graphs, planar graphs, graph colorings, Ramsey theory, regularity in graphs.
Module: Global Differential Geometry [MATHAG27]

Coordination: W. Tuschmann
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG27</td>
<td>Global Differential Geometry (p. 225)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>S. Grensing, W. Tuschmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam: written or oral exam
Marking: grade of exam

Conditions
None.

Qualification Goals

Content
Module: Combinatorics in the plane [MATHAG28]

Coordination: M. Axenovich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

ECTS Credits: 7 Cycle: Irregular Duration: 1 Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG28</td>
<td>Combinatorics in the plane (p. 244)</td>
<td>3/2</td>
<td>W/S</td>
<td>7</td>
<td>M. Axenovich, T. Ueckerdt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Qualification Goals
Content
Module: Comparison Geometry [MATHAG30]

Coordination: W. Tuschmann
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG30</td>
<td>Comparison Geometry (p. 360)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>W. Tuschmann, M. Radeschi</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Algebraic Topology [MATHAG34]

Coordination: R. Sauer
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG34</td>
<td>Algebraic Topology (p. 167)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>H. Kammeyer, R. Sauer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Introduction to geometric measure theory [MATHAG35]

Coordination: S. Winter
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG35</td>
<td>Introduction to geometric measure theory (p. 150)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>S. Winter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Combinatorics [MATHAG37]

Coordination: M. Axenovich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG37</td>
<td>Combinatorics (p. 243)</td>
<td>4/2</td>
<td>S</td>
<td>8</td>
<td>M. Axenovich, T. Ueckerdt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: L2-Invariants [MATHAG38]

Coordination: H. Kammeyer
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG38</td>
<td>L2-Invariants (p. 249)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>H. Kammeyer, R. Sauer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Group actions in Riemannian geometry [MATHAG40]

Coordination: W. Tuschmann
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG40</td>
<td>Group actions in Riemannian geometry (p. 230)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>W. Tuschmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Algebraic Topology II [MATHAG41]

Coordination: R. Sauer
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG41</td>
<td>Algebraic Topology II (p. 168)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>R. Sauer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Extremal Graph Theory [MATHAG42]

Coordination: M. Axenovich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG42</td>
<td>Extremal Graph Theory (p. 207)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>M. Axenovich, T. Ueckerdt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Spin manifolds, alpha invariant and positive scalar curvature [MATHAG43]

Coordination: W. Tuschmann
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

ECTS Credits 5
Cycle Irregular
Duration 1
Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG43</td>
<td>Spin manifolds, alpha invariant and positive scalar curvature (p. 336)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>S. Klaus, W. Tuschmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Homotopy theory [MATHAG44]

Coordination: R. Sauer
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject_Field: Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG44</td>
<td>Homotopy theory (p. 231)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>R. Sauer</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: The Riemann Zeta function [MATHAG45]

Coordination: F. Januszewski
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Algebra/Geometry

ECTS Credits: 4
Cycle: Irregular
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAG45</td>
<td>The Riemann Zeta function (p. 191)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>F. Januszewski</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Functional Analysis [MATHMawan05]

Coordination: R. Schnaubelt
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01048</td>
<td>(p. 216)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
<td>G. Herzog, D. Hundertmark, T. Lamm, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- exam: written or oral exam
- Marking: grade of exam

Conditions
- None.

Recommendations
- It is recommended to attend the following modules previously:
 - Linear Algebra 1+2
 - Analysis 1-3

Qualification Goals

Content
Module: Integral Equations [MATHMWAN07]

Coordination: F. Hettlich
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IG</td>
<td>Integral Equations (p. 237)</td>
<td>4/2</td>
<td>8</td>
<td></td>
<td>T. Arens, F. Hettlich, A. Kirsch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
Linear Algebra 1+2
Analysis 1-3

Qualification Goals
Content
Module: Classical Methods for Partial Differential Equations [MATHMWAN08]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Boundary and eigenvalue problems [MATHMWAN09]

Coordination: W. Reichel
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUEP</td>
<td>Boundary and eigenvalue problems (p. 310)</td>
<td>4/2</td>
<td>S</td>
<td>8</td>
<td>D. Hundertmark, T. Lamm, M. Plum, W. Reichel, J. Rottmann-Matthes, R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Spectral Theory [MATHMWAN10]

Coordination: L. Weis
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpekTheo</td>
<td>Spectral Theory (p. 328)</td>
<td>4/2</td>
<td>S</td>
<td>8</td>
<td>G. Herzog, C. Schmoeger, R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
- Linear Algebra 1+2
- Analysis 1-3
- Functional Analysis or Differential Equations and Hilbert Spaces

Qualification Goals
Content

Coordination: M. Plum
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

ECTS Credits: 8
Cycle: Irregular
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN11</td>
<td>Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems (p. 183)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>M. Plum</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Evolution Equations [MATHMWAN12]

Coordination: R. Schnaubelt

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN12</td>
<td>Evolution Equations (p. 205)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- exam: written or oral exam after each semester
- Marking: grade of exam
- **Conditions**: None.

Qualification Goals

Content
Module: Fourier Analysis [MATHMWAN14]

Coordination: L. Weis
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN14</td>
<td>Fourier Analysis (p. 215)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content

- Fourier series
- Fourier transform on L_1 and L_2
- Tempered distributions and their Fourier transform
- Explizit solutions of the Heat-, Schrödinger- and Wave equation in \mathbb{R}^n
- the Hilbert transform
- the interpolation theorem of Marcinkiewicz
- Singular integral operators
- the Fourier multiplier theorem of Mihlin
Module: Complex Analysis II [MATHMWAN16]

Coordination: C. Schmoeger
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecture(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN16</td>
<td>Complex Analysis II (p. 217)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>G. Herzog, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam: written or oral exam
Marking: grade of exam

Conditions
None.

Qualification Goals

Content
- infinite products
- Mittag-Leffler theorem
- Montel's theorem
- Riemann mapping theorem
- conformal mappings
- univalent (schlicht) functions
- automorphisms of some domains
- harmonic functions
- Schwarz reflection principle
- regular and singular points of power series
Module: Control Theory [MATHAN18]

Coordination: R. Schnaubelt
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN18</td>
<td>Control Theory (p. 160)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Potential Theory [MATHMWAN20]

Coordination: A. Kirsch
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Stochastic Differential Equations [MATHMWAN24]

Coordination: L. Weis
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN24</td>
<td>Stochastic Differential Equations</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>R. Schnaubelt, L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- **exam:** written or oral exam
- **Marking:** grade of exam

Conditions
None.

Qualification Goals

Content

- Brownian motion
- Martingales and Martingal inequalities
- Stochastic integrals and Ito’s formula
- Existence and uniqueness of solutions for systems of stochastic differential equations
- Perturbation and stability results
- Application to equations in financial mathematics, physics and engineering
- Connection with diffusion equations and potential theory
Module: Calculus of variations [MATHMWAN25]

Coordination: W. Reichel
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

ECTS Credits: 8 Cycle: Irregular Duration: 1 Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN25</td>
<td>Calculus of variations (p. 359)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>A. Kirsch, T. Lamm, M. Plum, W. Reichel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Qualification Goals
Content
Module: Maxwell’s Equations [MATHMWAN28]

Coordination: A. Kirsch
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Special functions and applications in potential theory [MATHAN33]

Coordination: A. Kirsch
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN33</td>
<td>Special functions and applications in potential theory (p. 335)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>A. Kirsch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Sobolev Spaces [MATHAN37]

Coordination: A. Kirsch
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN37</td>
<td>Sobolev Spaces (p. 322)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>A. Kirsch</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Traveling Waves [MATHAN38]

Coordination: J. Rottmann-Matthes
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis

ECTS Credits 6 Cycle Irregular Duration 1 Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN38</td>
<td>Traveling Waves (p. 366)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>J. Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Qualification Goals
Content
Module: Stochastic Evolution Equations [MATHAN40]

Coordination: L. Weis
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics, Analysis

ECTS Credits: 8
Cycle: Irregular
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHAN40-1</td>
<td>Stochastic Evolution Equations (p. 346)</td>
<td>4</td>
<td>W/S</td>
<td>6</td>
<td>L. Weis</td>
</tr>
<tr>
<td>MATHAN40-2</td>
<td>Additional Topics on Stochastic Analysis (p. 204)</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>L. Weis</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Numerical methods for differential equations [MATHMWNM03]

Coordination: W. Dörfler, T. Jahnke
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations
Conditions
None.

Qualification Goals
Content
Module: Introduction to scientific computing [MATHMWNM05]

Coordination: W. Dörfler, T. Jahnke
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWR</td>
<td>Introduction to scientific computing (p. 197)</td>
<td>3/3</td>
<td>S</td>
<td>8</td>
<td>W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam:
written or oral exam or practical
Marking:
grade of exam

Conditions

None.

Qualification Goals

Content
Module: Inverse Problems [MATHWNNM06]

Coordination: A. Kirsch
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Finite element methods [MATHMWNM07]

Coordination: W. Dörfler, C. Wieners
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Parallel computing [MATHMWNM08]

Coordination: C. Wieners

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM08</td>
<td>Parallel computing (p. 294)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>C. Wieners</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

prerequisite:
weekly work assignments in practice,
exam:
written or oral exam
Marking:
grade of exam

Conditions
None.

Qualification Goals

Content
Module: Optimisation and optimal control for differential equations [MATHMWNM09]

Coordination: C. Wieners
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

ECTS Credits 4 Cycle Irregular Duration 1 Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM09</td>
<td>Optimisation and optimal control for differential equations (p. 286)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Numerical Methods in Solid Mechanics [MATHMWNM12]

Coordination: C. Wieners
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Once</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM12</td>
<td>Numerical Methods in Solid Mechanics (p. 277)</td>
<td>4+2</td>
<td>W/S</td>
<td>8</td>
<td>C. Wieners</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Numerical methods in computational electrodynamics [MATHMWNM13]

Coordination: W. Dörfler
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

ECTS Credits 6 Cycle Irregular Duration 1 Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content

Economathematics (M.Sc.)
Module Handbook, Date: 08.03.2016
Module: Wavelets [MATHMWNM14]

Coordination: A. Rieder

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

ECTS Credits

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave</td>
<td>Wavelets (p. 367)</td>
<td>4/2</td>
<td>8</td>
<td>A. Rieder</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Medical imaging [MATHMWNM15]

Coordination: A. Rieder
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM15</td>
<td>Medical imaging (p. 177)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>A. Rieder</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Mathematical methods in signal and image processing [MATHMWNM16]

Coordination: A. Rieder
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

ECTS Credits: 8
Cycle: Irregular
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM16</td>
<td>Mathematical methods in signal and image processing (p. 256)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>A. Rieder</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Numerical Methods in Mathematical Finance [MATHMWNM18]

Coordination: T. Jahnke
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHMWNM18</td>
<td>Numerical Methods in Mathematical Finance (p. 278)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>T. Jahnke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Adaptive finite elemente methods [MATHMWNM19]

Coordination: W. Dörfler
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

ECTS Credits 6 Cycle Irregular Duration 1 Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM19</td>
<td>Adaptive finite elemente methods</td>
<td>3/1 W/S</td>
<td>6</td>
<td>W. Dörfler</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions None.

Qualification Goals

Content
Module: Numerical methods for time-dependent partial differential equations [MATHMWNM20]

Coordination: M. Hochbruck
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Numerical optimisation methods [MATHMWNM25]

Coordination: C. Wieners
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

ECTS Credits Cycle Duration Level
8 Irregular 1 Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Numerical methods in mathematical finance II [MATHNM26]

Coordination: T. Jahnke
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM26</td>
<td>Numerical methods in mathematical finance II (p. 279)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>T. Jahnke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Mathematical modelling und simulation in practise [MATHNM27]

Coordination: G. Thäter
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM27</td>
<td>Mathematical modelling und simulation in practise (p. 257)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>G. Thäter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Numerical Methods for Integral Equations [MATHNM29]

Coordination: T. Arens
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Numerical methods for hyperbolic equations [MATHNM28]

Cooperation: W. Dörfler
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM28</td>
<td>Numerical methods for hyperbolic equations (p. 273)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>W. Dörfler</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

.

Content
Module: Special topics in numerical linear algebra [MATHNM30]

Coordination: M. Hochbruck
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM30</td>
<td>Special topics in numerical linear algebra (p. 158)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>M. Hochbruck</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Geometric numerical integration [MATHNM31]

Coordination: T. Jahnke
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM31</td>
<td>Geometric numerical integration</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>M. Hochbruck, T. Jahnke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions: None.

Qualification Goals

Content
Module: Optimization in Banach spaces [MATHNM32]

Coordination: A. Kirsch
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Analysis, Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM32</td>
<td>Optimization in Banach spaces (p. 154)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>A. Kirsch</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Numerical methods for Maxwell’s equations [MATHNM33]

Coordination: T. Jahnke
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM33</td>
<td>Numerical methods for Maxwell’s equations (p. 281)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>T. Jahnke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Numerical methods in fluid mechanics [MATHNM34]

Coordination: W. Dörfler, G. Thäter
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM34</td>
<td>Numerical methods in fluid mechanics (p. 153)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>W. Dörfler, G. Thäter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Compressive Sensing [MATHNM37]

Coordination: A. Rieder
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM37</td>
<td>Compressive Sensing (p. 155)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>A. Rieder</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Functions of operators [MATHNM38]

Coordination: V. Grimm
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM38</td>
<td>Functions of operators (p. 157)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>V. Grimm</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Functions of matrices [MATHNM39]

Coordination: V. Grimm

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM39</td>
<td>Functions of matrices (p. 260)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>V. Grimm</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Project centered Software-Lab [MATHNM40]

Coordination: G. Thäter
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM40</td>
<td>Project centered Software-Lab (p. 305)</td>
<td>4</td>
<td>W/S</td>
<td>4</td>
<td>G. Thäter</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Introduction into particulate flows [MATHNM41]

Coordination: W. Dörfler
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Once</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course Description</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM41</td>
<td>Introduction into particulate flows</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Dörfler</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Numerical continuation methods [MATHNM42]

Coordination: J. Rottmann-Matthes

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM42</td>
<td>Numerical continuation methods (p. 271)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>J. Rottmann-Matthes</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Introduction to Matlab and numerical algorithms [MATHNM43]

Coordination: D. Weiß
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM43</td>
<td>Introduction to Matlab and numerical algorithms (p. 198)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>D. Weiß, C. Wieners</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Advanced Inverse Problems: Nonlinearity and Banach spaces [MATHNM44]

Coordination: A. Rieder
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Applied and Numerical Mathematics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHNM44</td>
<td>Advanced Inverse Problems: Nonlinearity and Banach spaces (p. 163)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>A. Rieder</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Discrete time finance [MATHST04]

Coordination: N. Bäuerle
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMDZ</td>
<td>Discrete time finance (p. 212)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
<td>N. Bäuerle, V. Fasen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam: written or oral exam
Marking: grade of exam

Conditions
None.

Qualification Goals

Content
Module: Stochastic Geometry [MATHMWST06]

Coordination: D. Hug
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics, Algebra/Geometry

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST06</td>
<td>Stochastic Geometry (p. 347)</td>
<td>4/2</td>
<td>S</td>
<td>8</td>
<td>D. Hug, G. Last</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam: oral exam (30 minutes)
Marking: grade of exam

Conditions
none

Recommendations
It is recommended to attend the following modules previously:
Probability Theory, Spatial Stochastics

Qualification Goals
The students
• know the fundamental geometric models and characteristics in stochastic geometry,
• are familiar with properties of Poisson processes of geometric objects,
• know examples of applications of models of stochastic geometry,
• know how to work self-organised and self-reflexive.

Content
• Random Sets
• Geometric Point Processes
• Stationarity and Isotropy
• Germ Grain Models
• Boolean Models
• Foundations of Integral Geometry
• Geometric densities and characteristics
• Random Tessellations
Module: Asymptotic Stochastics [MATHMWST07]

Coordination: N. Henze
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST07</td>
<td>Asymptotic Stochastics (p. 175)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
<td>V. Fasen, N. Henze, B. Klar</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam: written or oral exam
Marking: grade of exam

Conditions
None.

Qualification Goals

Content
Module: Continuous time finance [MATHMWST08]

Coordination: N. Bäuerle
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

ECTS Credits 8
Cycle Every 2nd term, Summer Term
Duration 1
Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST08</td>
<td>Mathematical Finance in Continuous Time (p. 213)</td>
<td>4/2</td>
<td>S</td>
<td>8</td>
<td>N. Bäuerle, V. Fasen</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Generalized Regression Models [MATHMWST09]

Coordination: B. Klar
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST09</td>
<td>Generalized Regression Models</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>N. Henze, B. Klar</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam:
written or oral exam
Marking:
grade of exam
Conditions
None.

Qualification Goals
Content
Module: Brownian Motion [MATHMWST10]

Coordination: N. Bäuerle
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

ECTS Credits: 4
Cycle: Irregular
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST10</td>
<td>Brownian Motion (p. 179)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>N. Bäuerle, V. Fasen, N. Henze, G. Last</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam: written or oral exam
Marking: grade of exam

Conditions
None.

Qualification Goals

Content
Module: Markov Decision Processes [MATHMWST11]

Coordination: N. Bäuerle

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST11</td>
<td>Markov Decision Processes (p. 253)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>N. Bäuerle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- exam: written or oral exam
- Marking: grade of exam
- **Conditions**: None.

Qualification Goals

Content
Module: Stochastic Control [MATHMWST12]

Coordination: N. Bäuerle
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST12</td>
<td>Stochastic Control (p. 341)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>N. Bäuerle</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Percolation [MATHMWST13]

Coordination: G. Last
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST13</td>
<td>Percolation (p. 296)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>G. Last</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam:
written or oral exam
Marking:
grade of exam

Conditions
It is recommended to attend the following modules previously:
Probability Theory

Qualification Goals
The students
- are acquainted with basic models of discrete and continuum percolation,
- acquire the skills needed to use specific probabilistic and graph-theoretical methods for the analysis of these models,
- know how to work self-organised and self-reflexive.

Content
Module: Spatial Stochastics [MATHMWST14]

Coordination: G. Last
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every 2nd term, Winter Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST14</td>
<td>Spatial Stochastics (p. 309)</td>
<td>4/2</td>
<td>S</td>
<td>8</td>
<td>D. Hug, G. Last</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- exam: written or oral exam
- Marking: grade of exam

Conditions

It is recommended to attend the following modules previously: Probability Theory

Qualification Goals

The students are familiar with some basic spatial stochastic processes. They do not only understand how to deal with general properties of distributions, but also know how to describe and apply specific models (Poisson process, Gaussian random fields). They know how to work self-organised and self-reflexive.

Content

- Point processes
- Random measures
- Poisson processes
- Gibbs point processes
- Ralm distributions
- Spatial ergodic theorem
- Spectral Theory of random fields
- Gaussian fields
Module: Mathematical Statistics [MATHMWST15]

Coordination: B. Klar
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

ECTS Credits 4
Cycle Irregular
Duration 1
Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST15</td>
<td>Mathematical Statistics (p. 258)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>N. Henze, B. Klar</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Nonparametric Statistics [MATHMWST16]

Coordination: N. Henze
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST16</td>
<td>Nonparametric Statistics (p. 270)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>N. Henze, B. Klar</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
Module: Time Series Analysis [MATHMWST18]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Every 2nd term, Summer Term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST18</td>
<td>Time Series Analysis (p. 370)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>N. Henze, B. Klar</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Poisson processes [MATHST20]

Coordination: G. Last
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST20</td>
<td>Poisson processes (p. 189)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>V. Fasen, D. Hug, G. Last</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

- exam: written or oral exam
- Marking: grade of exam

Conditions
None.

Qualification Goals
The students know about important properties of the Poisson process. The focus is on probabilistic methods and results which are independent of the specific phase space. The students understand the central role of the Poisson process as a specific point process and as a random measure.

Content

- Distributional properties of Poisson processes
- The Poisson process as a particular point process
- stationary Poisson and point processes
- Random measures and Cox processes
- Poisson cluster processes and compound Poisson processes
- The spatial Gale-Shapley algorithm
Module: Extreme value theory [MATHST23]

Coordination: V. Fasen
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST23</td>
<td>Extreme value theory (p. 156)</td>
<td>2/1</td>
<td>W/S</td>
<td>4</td>
<td>V. Fasen, N. Henze</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Stein’s Method [MATHST24]

Coordination: M. Schulte
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

ECTS Credits: 5
Cycle: Irregular
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST24</td>
<td>Stein’s Method (p. 159)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>M. Schulte</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Qualification Goals
Content
Module: Probability theory and combinatorial optimization [MATHST27]

Coordination: D. Hug
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

ECTS Credits: 8
Cycle: Irregular
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST27</td>
<td>Probability theory and combinatorial optimization (p. 365)</td>
<td>4/2</td>
<td>W/S</td>
<td>8</td>
<td>D. Hug, G. Last</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Forecasting: Theory and Practice [MATHST28]

Coordination: T. Gneiting
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Irregular</td>
<td>2</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST28I</td>
<td>Forecasting: Theory and Practice I (p. 362)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>T. Gneiting</td>
</tr>
<tr>
<td>MATHST28II</td>
<td>Forecasting: Theory and Practice II (p. 363)</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>T. Gneiting</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Qualification Goals

Content
Module: Random Graphs [MATHST29]

Coordination: M. Schulte
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Stochastics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATHST29</td>
<td>Random Graphs (p. 371)</td>
<td>3/1</td>
<td>W/S</td>
<td>6</td>
<td>M. Schulte</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Seminar [MATHMWSE01]

Coordination: Studiendekan/Studiendekanin
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Seminar

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals
Content
4.2 Modules of Economics and Business Engineering

Module: Finance 1 [MATHMWBWLFBV1]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

ECTS Credits: 9
Cycle: Every term
Duration: 1
Level: Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530550</td>
<td>Derivatives (p. 190)</td>
<td>2/1 S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>2530212</td>
<td>Valuation (p. 358)</td>
<td>2/1 W</td>
<td>4,5</td>
<td>M. Ruckes</td>
<td></td>
</tr>
<tr>
<td>2530555</td>
<td>Asset Pricing (p. 174)</td>
<td>2/1 S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Qualification Goals
The student
- has core skills in economics and methodology in the field of finance
- assesses corporate investment projects from a financial perspective
- is able to make appropriate investment decisions on financial markets

Content
The courses of this module equip the students with core skills in economics and methodology in the field of modern finance. Securities which are traded on financial and derivative markets are presented, and frequently applied trading strategies are discussed. A further focus of this module is on the assessment of both profits and risks in security portfolios and corporate investment projects from a financial perspective.
Module: Finance 2 [MATHMWBWLFBV2]

Coordination: M. Uhrig-Homburg, M. Ruckes
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530260</td>
<td>Fixed Income Securities (p. 208)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530214</td>
<td>Corporate Financial Policy (p. 184)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530240</td>
<td>Market Microstructure (p. 255)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>2530565</td>
<td>Credit Risk (p. 248)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530555</td>
<td>Asset Pricing (p. 174)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
<tr>
<td>2530212</td>
<td>Valuation (p. 358)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 190)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 238)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
<tr>
<td>2530299</td>
<td>Business Strategies of Banks (p. 224)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 178)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530232</td>
<td>Financial Intermediation (p. 211)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 196)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2530205</td>
<td>Financial Analysis (p. 209)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>T. Lüdecke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
It is only possible to choose this module in combination with the module Finance 1 [MATHMWBWLFBV1]. The module is passed only after the final partial exam of Finance 1 is additionally passed. The courses Asset Pricing [VLAP], Valuation [2530212] and Derivatives [2530550] can only be chosen if they have not been chosen in the module Finance 1 [MATHMWBWLFBV1] already.

Qualification Goals
The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.

Content
The module Finance 2 is based on the module Finance 1. The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.

Remarks
The courses eFinance: Information Engineering and Management for Securities Trading [2540454] and Financial Analysis [2530205] can be chosen from summer term 2015 on.
Module: Finance 3 [MATH4BWLFBV11]

Coordination: M. Uhrig-Homburg, M. Ruckes

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
<td></td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course Details</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530555</td>
<td>Asset Pricing (p. 174)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
<tr>
<td>2530212</td>
<td>Valuation (p. 358)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530550</td>
<td>Derivatives (p. 190)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530260</td>
<td>Fixed Income Securities (p. 208)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530565</td>
<td>Credit Risk (p. 248)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>2530214</td>
<td>Corporate Financial Policy (p. 184)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530240</td>
<td>Market Microstructure (p. 255)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>2530232</td>
<td>Financial Intermediation (p. 211)</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530296</td>
<td>Exchanges (p. 178)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>2530299</td>
<td>Business Strategies of Banks (p. 224)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>2530570</td>
<td>International Finance (p. 238)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Dr. Walter</td>
</tr>
<tr>
<td>2540454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (p. 196)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>2530205</td>
<td>Financial Analysis (p. 209)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>T. Lüdecke</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
It is only possible to choose this module in combination with the module Finance 1 [MATHMWBWLFBV1] and Finance 2 [MATHMWBWLFBV2]. The module is passed only after the final partial exams of F1(Finance) and F2 (Finance) are additionally passed.

The courses Asset Pricing [VLAP], Valuation [2530212] and Derivatives [2530550] can only be chosen if they have not been chosen in the module Finance 1 [MATHMWBWLFBV1] or Finance 2 [MATHMWBWLFBV2] already.

Qualification Goals
The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.

Content
The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.

Remarks
The courses eFinance: Information Engineering and Management for Securities Trading [2540454] and Financial Analysis [2530205] can be chosen from summer term 2015 on.
Module: Insurance Management I [MATHMWBWLFBV6]

Coordination: U. Werner
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530055</td>
<td>Principles of Insurance Management (p. 302)</td>
<td>3/0</td>
<td>S</td>
<td>4,5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>2530323</td>
<td>Insurance Marketing (p. 234)</td>
<td>3/0</td>
<td>S</td>
<td>4,5</td>
<td>E. Schwake</td>
</tr>
<tr>
<td>2530324</td>
<td>Insurance Production (p. 235)</td>
<td>3/0</td>
<td>W/S</td>
<td>4,5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>2530335</td>
<td>Insurance Risk Management (p. 236)</td>
<td>2/0</td>
<td>S</td>
<td>2,5</td>
<td>H. Maser</td>
</tr>
<tr>
<td>INSGAME</td>
<td>P&C Insurance Simulation Game (p. 292)</td>
<td>3</td>
<td>W</td>
<td>3</td>
<td>U. Werner</td>
</tr>
<tr>
<td>2530395</td>
<td>Risk Communication (p. 311)</td>
<td>3/0</td>
<td>W/S</td>
<td>4,5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>2530355</td>
<td>Modelling, Measuring and Managing of Extreme Risks (p. 264)</td>
<td>2</td>
<td>S</td>
<td>2,5</td>
<td>U. Werner, S. Hochrainer</td>
</tr>
<tr>
<td>2530350</td>
<td>Current Issues in the Insurance Industry (p. 185)</td>
<td>2/0</td>
<td>S</td>
<td>2</td>
<td>W. Heilmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Qualification Goals
See German version.

Content
See German version.
Module: Energy Economics and Technology [MATHMWBWLIP5]

Coordination: W. Fichtner
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581003</td>
<td>Energy and Environment (p. 200)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>U. Karl, n.n.</td>
</tr>
<tr>
<td>2581958</td>
<td>Strategical Aspects of Energy Economy (p. 349)</td>
<td>2/0</td>
<td>W</td>
<td>3,5</td>
<td>A. Ardone</td>
</tr>
<tr>
<td>2581000</td>
<td>Technological Change in Energy Economics (p. 354)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>M. Wietschel</td>
</tr>
<tr>
<td>2581001</td>
<td>Heat Economy (p. 364)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>2581002</td>
<td>Energy Systems Analysis (p. 201)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>V. Bertsch</td>
</tr>
<tr>
<td>2581006</td>
<td>Efficient Energy Systems and Electric Mobility (p. 194)</td>
<td>2/0</td>
<td>S</td>
<td>3,5</td>
<td>R. McKenna, P. Jochem</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. Additional courses might be accredited upon request.

Conditions

To integrate the module “Energy Economics and Technology” in the degree programme “Wirtschaftsmathematik” it is compulsory to choose the course „Energy Systems Analysis“.

Recommendations

The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Qualification Goals

The student

- gains detailed knowledge about present and future energy supply technologies (focus on final energy carriers electricity and heat),
- knows the techno-economic characteristics of plants for energy provision, for energy transport as well as for energy distribution and demand,
- is able to assess the environmental impact of these technologies.

Content

- **Strategical Aspects of Energy Economy**: Long-term planning methods, generation technologies
- **Technological Change in Energy Economics**: Future energy technologies, learning curves, energy demand
- **Heat Economy**: district heating, heating technologies, reduction of heat demand, statutory provisions
- **Energy Systems Analysis**: Interdependencies in energy economics, energy systems modelling approaches in energy economics
- **Energy and Environment**: emission factors, emission reduction measures, environmental impact
- **Efficient Energy Systems and Electric Mobility**: concepts and current trends in energy efficiency, Overview of and economical, ecological and social impacts through electric mobility
Module: Strategic Corporate Management and Organization [MATHMWO1]

Coordination:
H. Lindstädt

Degree programme:
Wirtschaftsmathematik (M.Sc.)

Subject/Field:
Finance - Risk Management - Managerial Economics

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2577904</td>
<td>Organization Theory (p. 291)</td>
<td>2</td>
<td>W</td>
<td>4,5</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577902</td>
<td>Managing Organizations (p. 290)</td>
<td>2/0</td>
<td>W</td>
<td>3,5</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577908</td>
<td>Modeling Strategic Decision Making (p. 262)</td>
<td>2</td>
<td>S</td>
<td>4,5</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577900</td>
<td>Management and Strategy (p. 357)</td>
<td>2/0</td>
<td>S</td>
<td>3,5</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>2577910</td>
<td>Problem solving, communication and leadership (p. 303)</td>
<td>1/0</td>
<td>S</td>
<td>2</td>
<td>H. Lindstädt</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None.

Qualification Goals
See German version.

Content
The module emphasizes the following aspects: The students learn models and frameworks which are used in strategic management and managing organizations. In addition, the module provides knowledge about management concepts and their practical application.

The module addresses three focal points: First, the students will learn models, frameworks and theoretical findings of the economic organization theory. Further, questions of a value-based concern leadership are discussed. Finally, the limitations of the basic models of economic decision theory are identified and advanced concepts are developed.

Remarks
The module will not be offered any more from summer term 2015. Students who are already assigned on the module can still finish it until summer term 2016.

The course “Organization Theory” will not be offered any more from summer term 2015 on. The examination will be offered latest until winter term 2015/2016 (repeaters only).

The credits for the courses “Managing Organizations” and “Management and Strategy” have been changed from 4 to 3,5 from summer term 2015 on.
Module: Marketing Management [MATHMWBWLMMAR5]

Cooordination: M. Klarmann
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2571154</td>
<td>Product and Innovation Marketing (p. 304)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>M. Klarmann</td>
</tr>
<tr>
<td>2571150</td>
<td>Market Research (p. 254)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Klarmann</td>
</tr>
<tr>
<td>2572167</td>
<td>Behavioral Approaches in Marketing (p. 361)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>2571165</td>
<td>Strategic and Innovative Decision Making in Marketing (p. 350)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>2572184</td>
<td>Business Plan Workshop (p. 180)</td>
<td>1</td>
<td>S</td>
<td>3</td>
<td>M. Klarmann, O. Terzidis</td>
</tr>
<tr>
<td>2571183</td>
<td>Marketing Strategy Business Game (p. 251)</td>
<td>1</td>
<td>S</td>
<td>1,5</td>
<td>M. Klarmann, Mitarbeiter</td>
</tr>
<tr>
<td>2571185</td>
<td>Strategic Brand Management (p. 348)</td>
<td>1/0</td>
<td>S</td>
<td>1,5</td>
<td>M. Klarmann, J. Blickhäuser</td>
</tr>
<tr>
<td>2571199</td>
<td>Open Innovation – Concepts, Methods and Best Practices (p. 282)</td>
<td>1/0</td>
<td>S</td>
<td>1,5</td>
<td>A. Hahn</td>
</tr>
<tr>
<td>2540440</td>
<td>Marketing Communication (p. 252)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>J. Kim</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
See german version.

Qualification Goals
Students
- have an advanced knowledge about central marketing contents
- have a fundamental understanding of the marketing instruments
- know and understand several strategic concepts and how to implement them
- are able to implement their extensive marketing knowledge in a practical context
- know several qualitative and quantitative approaches to prepare decisions in Marketing
- have the theoretical knowledge to write a master thesis in Marketing
- have the theoretical knowledge to work in/together with the Marketing department

Content
The aim of this module is to deepen central marketing contents in different areas. Therefore the students can choose between the following marketing courses:

- “Product and Innovation Marketing”
- “Market Research” – this course has to be completed successfully by students interested in master thesis positions at the chair of marketing
- “Strategic and Behavioral Marketing”
- “Strategic and Innovative Decision Making in Marketing”
- “Business Plan Workshop”
- “Marketing and Strategy Business Game”
Remarks
The course “Open Innovation – Concepts, Methods and Best Practices” [2571199] has been added summer 2015. For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Module: Innovation and growth [MATHMVWWLWW1]

Coordination: I. Ott
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520543</td>
<td>Theory of Economic Growth (p. 355)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Hillebrand</td>
</tr>
<tr>
<td>2560236</td>
<td>Innovation theory and - policy (p. 233)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>I. Ott</td>
</tr>
<tr>
<td>2561503</td>
<td>Theory of endogenous growth (p. 199)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>I. Ott</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

None.

Recommendations

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Qualification Goals

Students shall be given the ability to

- know the basic techniques for analyzing static and dynamic optimization models that are applied in the context of micro- and macroeconomic theories
- understand the important role of innovation to the overall economic growth and welfare
- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Content

The module includes courses that deal with issues of innovation and growth in the context of micro- and macroeconomic theories. The dynamic analysis makes it possible to analyze the consequences of individual decisions over time, and sheds light on the tension between static and dynamic efficiency in particular. In this context is also analyzed, which policy is appropriate to carry out corrective interventions in the market and thus increase welfare in the presence of market failure.
Module: Decision and Game Theory [MATHMWVWL10]

Coordination: C. Puppe

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520408</td>
<td>Auction Theory (p. 176)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>K. Ehrhart</td>
</tr>
<tr>
<td>2540489</td>
<td>Experimental Economics (p. 206)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt, T. Teubner</td>
</tr>
<tr>
<td>2521533</td>
<td>Advanced Game Theory (p. 162)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>P. Reiss, C. Puppe, K. Ehrhart</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

None.

Qualification Goals

The student learns the basics of individual and strategic decisions on an advanced and formal level.

He learns to analyze economic problems through abstract and method-based thinking and to design solution strategies. In the tutorials, the concepts and results of the lecture will be applied in case studies.

Content

See German version.

Remarks

The course “Decision Theory” [2520365] will not be offered any more from summer term 2015 on. The examination will be offered latest until winter term 2015/2016 (repeaters only).
Module: Growth and Agglomeration [MATHMWVWL12]

Coordination: I. Ott
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

ECTS Credits	Cycle	Duration	Level
9 | Every term | 1 | Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2561503</td>
<td>Theory of endogenous growth (p. 199)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>I. Ott</td>
<td></td>
</tr>
<tr>
<td>2561260</td>
<td>Spatial Economics (p. 327)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>I. Ott</td>
<td></td>
</tr>
<tr>
<td>2560254</td>
<td>International Economic Policy (p. 239)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>J. Kowalski</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (see the lectures descriptions). The overall grade for the module is the average of the grades for each course weighted by the credits.

Conditions
Successful completion of the courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014] is required.

Recommendations
Attendance of the course Introduction Economic Policy [2560280] is recommended.

Qualification Goals
The student
- gains deepened knowledge of micro-based general equilibrium models
- understands how based on individual optimizing decisions aggregate phenomena like economic growth or agglomeration (cities / metropolises) result
- is able to understand and evaluate the contribution of these phenomena to the development of economic trends
- can derive policy recommendations based on theory

Content
The module includes the contents of the lectures Endogenous Growth Theory [2561503], Spatial Economics [2561260] and International Economic Policy [2560254]. While the first two lectures have a more formal-analytic focus, the third lecture approaches fundamental ideas and problems from the field of international economic policy from a more verbal perspective. The common underlying principle of all three lectures in this module is that, based on different theoretical models, economic policy recommendations are derived.
Module: Economic Theory and its Application in Finance [MATHMW4VWL14]

Cooperation: K. Mitusch
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520527</td>
<td>Advanced Topics in Economic Theory (p. 164)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Hillebrand, K. Mitusch</td>
</tr>
<tr>
<td>2530214</td>
<td>Corporate Financial Policy (p. 184)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530232</td>
<td>Financial Intermediation (p. 211)</td>
<td>3</td>
<td>W</td>
<td>4,5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>2530555</td>
<td>Asset Pricing (p. 174)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The course „Advanced Topics in Economic Theory“ is compulsory and must be examined.
The module can be chosen in the following study profiles:
- Financial Engineering & Actuarial Sciences
- Classical business mathematics

Recommendations
None.

Qualification Goals
The students
- have learnt the methods of formal economic modeling, particularly of General Equilibrium Theory and contract theory
- will be able to apply these methods to the topics in Finance, specifically the areas of financial markets and institutions and corporate finance
- have gained many useful insights into the relationship between firms and investors and the functioning of financial markets

Content
The mandatory course „Advanced Topics in Economic Theory“ is devoted in equal parts to General Equilibrium Theory and contract theory. The course „Asset Pricing“ will apply techniques of General Equilibrium Theory to valuation of financial assets. The courses „Corporate Financial Policy“ and „Finanzintermediation“ will apply the techniques of contract theory to issues of corporate finance and financial institutions.
Module: Microeconomic Theory [MATHMW4VWL15]

Coordination: C. Puppe
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2521533</td>
<td>Advanced Game Theory (p. 162)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>P. Reiss, C. Puppe, K. Ehrhart</td>
</tr>
<tr>
<td>2520527</td>
<td>Advanced Topics in Economic Theory (p. 164)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>M. Hillebrand, K. Mitisch</td>
</tr>
<tr>
<td>2520537</td>
<td>Social Choice Theory (p. 323)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>2520408</td>
<td>Auction Theory (p. 176)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>K. Ehrhart</td>
</tr>
<tr>
<td>n.n.</td>
<td>Incentives in Organizations (p. 232)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>P. Nieken</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

The module can be chosen in the following profiles:

- Operations Research
- Classical business mathematics

Recommendations

None.

Qualification Goals

Students

- are able to model practical microeconomic problems mathematically and to analyze them with respect to positive and normative questions,
- understand individual incentives and social outcomes of different institutional designs.

An example of a positive question is: which regulation policy results in which firm decisions under imperfect competition? An example of a normative question is: which voting rule has appealing properties?

Content

The student should gain an understanding of advanced topics in economic theory, game theory and welfare economics. Core topics are, among others, strategic interactions in markets, cooperative and non-cooperative bargaining (Advanced Game Theory), allocation under asymmetric information and general equilibrium over time (Advanced Topics in Economic Theory), voting and the aggregation of preferences and judgements (Social Choice Theory).

Remarks

Starting summer term 2015, the lecture “Auction Theory” [2520408] can be chosen in the module.
Starting summer term 2016, the lecture “Incentives in Organizations” can be chosen in the module.
Module: Collective Decision Making [MATHMW4VWL16]

Coordination: C. Puppe
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

ECTS Credits	Cycle	Duration	Level
9 | Every term | 2 | Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2525537</td>
<td>Mathematical Theory of Democracy (p. 259)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Melik-Tangyan</td>
</tr>
<tr>
<td>2520537</td>
<td>Social Choice Theory (p. 323)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>2561127</td>
<td>Public Management (p. 306)</td>
<td>2</td>
<td>W</td>
<td>4,5</td>
<td>B. Wigger, Assistenten</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The module can be chosen in the following profiles:
• Classical business mathematics

Recommendations
None.

Qualification Goals
Students
• are able to model practical problems of the public sector and to analyze them with respect to positive and normative questions,
• understand individual incentives and social outcomes of different institutional designs,
• are familiar with the functioning and design of democratic elections and can analyze them with respect to their individual incentives.

Content
The focus of the module is on mechanisms of public decisions making, including voting and the aggregation of preferences and judgements.
Module: Experimental Economics [MATHMW4VWL17]

Coordination: P. Reiss
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540489</td>
<td>Experimental Economics (p. 206)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt, T. Teubner</td>
</tr>
<tr>
<td>2520402</td>
<td>Predictive Mechanism and Market Design (p. 301)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>P. Reiss</td>
</tr>
<tr>
<td>2520400</td>
<td>Topics in Experimental Economics (p. 356)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>P. Reiss</td>
</tr>
<tr>
<td>n.n.</td>
<td>Incentives in Organizations (p. 232)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>P. Nieken</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

The course Experimental Economics [2540489] is compulsory and must be examined.

The module can be chosen in the following profiles:

- Classical business mathematics

Recommendations

Basic knowledge in mathematics, statistics, and game theory is assumed.

Qualification Goals

Students

- are acquainted with the methods of Experimental Economics along with its strengths and weaknesses;
- understand how theory-guided research in Experimental Economics interacts with the development of theory;
- are provided with foundations in data analysis;
- design an economic experiment and analyze its outcome.

Content

The module Experimental Economics offers an introduction into the methods and topics of Experimental Economics. It also fosters and extends knowledge in theory-guided experimental economics and its interaction with theory development. Throughout the module, readings of selected papers are required.

Remarks

- The course Advanced Game Theory is not offered before Winter 2014/15.
- The course Predictive Mechanism and Market Design is not offered each year.

Starting summer term 2016, the lecture "Incentives in Organizations" can be chosen in the module.
Module: Analytics and Statistics [MATHMW4STAT4]

Coordination: O. Grothe
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520317</td>
<td>Multivariate Statistical Methods (p. 265)</td>
<td>2/2</td>
<td>S</td>
<td>4,5</td>
<td>O. Grothe</td>
</tr>
<tr>
<td>2550552</td>
<td>Advanced Statistics (p. 339)</td>
<td>2/2</td>
<td>W</td>
<td>4,5</td>
<td>O. Grothe</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The course “Advanced Statistics” is compulsory and must be examined.

Qualification Goals
A Student
- Deepens the knowledge of descriptive and inferential statistics.
- Deals with simulation methods.
- Learns basic and advanced methods of statistical analysis of multivariate and high-dimensional data.

Content
- Deriving estimates and testing hypotheses
- Stochastic processes
- Multivariate statistics, copulas
- Dependence measures
- Dimension reduction
- High-dimensional methods
- Prediction

Remarks
The planned lectures and courses for the next three years are announced online.
Module: Econometrics and Statistics I [MATHMWSTAT5]

Coordination: M. Schienle
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courses in module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>2520020</td>
</tr>
<tr>
<td>2520022</td>
</tr>
<tr>
<td>2521300</td>
</tr>
<tr>
<td>2520320</td>
</tr>
<tr>
<td>2521350</td>
</tr>
<tr>
<td>2520375</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The course “Advanced Statistics” [2520020] is compulsory and must be examined.
The course Financial Econometrics [2520022] can only be passed if the course Time Series Analysis [MATHMWST18] in the module Time Series Analysis [MATHMWST18] and the course Generalized Regression Models [MATHMWST09] in the module Generalized Regression Models [MATHMWST09] have not be passed.

Qualification Goals
The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data. He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Content
The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the art data analysis.

Remarks
New module starting winter term 2015/2016. It replaces the module “Mathematical and Empirical Finance” [WW4STAT1].
Module: Econometrics and Statistics II [MATHMWSTAT6]

Coordination: M. Schienle
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>2</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520375</td>
<td>Data Mining and Applications (p. 186)</td>
<td>2 S</td>
<td>4,5</td>
<td>G. Nakhaeizadeh</td>
<td></td>
</tr>
<tr>
<td>2520317</td>
<td>Multivariate Statistical Methods (p. 265)</td>
<td>2/2 S</td>
<td>4,5</td>
<td>O. Grothe</td>
<td></td>
</tr>
<tr>
<td>2520357</td>
<td>Portfolio and Asset Liability Management (p. 297)</td>
<td>2/1 S</td>
<td>4,5</td>
<td>M. Safarian</td>
<td></td>
</tr>
<tr>
<td>2521331</td>
<td>Stochastic Calculus and Finance (p. 342)</td>
<td>2/1 W</td>
<td>5</td>
<td>M. Safarian</td>
<td></td>
</tr>
<tr>
<td>2520020</td>
<td>Applied Econometrics (p. 173)</td>
<td>2/1 S</td>
<td>4,5</td>
<td>M. Schienle</td>
<td></td>
</tr>
<tr>
<td>2520022</td>
<td>Financial Econometrics (p. 210)</td>
<td>2/2 W</td>
<td>4,5</td>
<td>M. Schienle</td>
<td></td>
</tr>
<tr>
<td>2520320</td>
<td>(p. 293)</td>
<td>2/2 S</td>
<td>4,5</td>
<td>W. Heller</td>
<td></td>
</tr>
<tr>
<td>2521350</td>
<td>Statistical Modeling of generalized regression models (p. 340)</td>
<td>2/2 W</td>
<td>4,5</td>
<td>W. Heller</td>
<td></td>
</tr>
<tr>
<td>2521300</td>
<td>Non- and Semiparametrics (p. 267)</td>
<td>2/2 W</td>
<td>4,5</td>
<td>M. Schienle</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
This module can only be passed if the module "Econometrics and Statistics I" [MATHMWSTAT5] has been finished successfully before.
The course Financial Econometrics [2520022] can only be passed if the course Time Series Analysis [MATHMWST18] in the module Time Series Analysis [MATHMWST18] and the course Generalized Regression Models [MATHMWST09] in the module Generalized Regression Models [MATHMWST09] have not been passed.

Qualification Goals
The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data. He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Content
This module builds on prerequisites acquired in Module "Econometrics and Statistics I". The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the-art data analysis.

Remarks
Module: Applications of Operations Research [MATHMWOR5]

Coordination: S. Nickel
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 337)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550486</td>
<td>Tactical and Operational Supply Chain Management (p. 353)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550490</td>
<td>Software Laboratory: OR Models I (p. 324)</td>
<td>1/2</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550134</td>
<td>Global Optimization I (p. 226)</td>
<td>2/1</td>
<td></td>
<td>4,5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550662</td>
<td>Simulation I (p. 319)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4,5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
The module can be chosen in the following profiles:
- Operations Research
- Classical business mathematics

At least one of the courses Facility Location and strategic Supply Chain Management [2550486] and Tactical and operational Supply Chain Management [2550488] has to be taken.

Qualification Goals
The student
- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of Supply Chain Management and their respective optimization problems,
- is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.
Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Remarks
The planned lectures and courses for the next three years are announced online.
Module: Methodical Foundations of OR [MATHMWOR6]

Coordination: O. Stein
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

ECTS Credits 9 Cycle Every term Duration 1 Level Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550111</td>
<td>Nonlinear Optimization I (p. 268)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550113</td>
<td>Nonlinear Optimization II (p. 269)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550134</td>
<td>Global Optimization I (p. 226)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550136</td>
<td>Global Optimization II (p. 227)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 337)</td>
<td>2/1/2 W</td>
<td>4,5</td>
<td>S. Nickel</td>
<td></td>
</tr>
<tr>
<td>2550679</td>
<td>Markov Decision Models I (p. 344)</td>
<td>2/1/2 W</td>
<td>5</td>
<td>K. Waldmann</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
At least one of the lectures Nonlinear Optimization I [2550111] and Global Optimization I [2550134] has to be examined.

Qualification Goals
The student
- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.

Content
The module focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat approaches for global solutions.

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu). For the lectures of Prof. Stein a grade of 30% of the exercise course has to be fulfilled. The description of the particular lectures is more detailed.
Module: Stochastic Methods and Simulation [MATHMWOR7]

Coordination: K. Waldmann
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550679</td>
<td>Markov Decision Models I (p. 344)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550682</td>
<td>Markov Decision Models II (p. 345)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550662</td>
<td>Simulation I (p. 319)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550665</td>
<td>Simulation II (p. 320)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550111</td>
<td>Nonlinear Optimization I (p. 268)</td>
<td>2/1</td>
<td></td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>2550486</td>
<td>Tactical and Operational Supply Chain Management (p. 353)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions

The module can be chosen in the following study profiles:
- Financial Engineering & Actuarial Sciences
- Operations Research
- Classical Economathematics

At least one of the courses Markov Decision Models [2550679] or Simulation I [2550662] has to be attended.

Qualification Goals

The student possesses profound knowledge in modelling, analyzing and optimizing stochastic systems in economy and engineering.

Content

Markov Decision Models I: Markov Chains, Poisson Processes
Markov Decision Models II: Queuing Systems, Stochastic Decision Processes
Simulation I: Generation of random numbers, Monte Carlo integration, Discrete event simulation, Discrete and continuous random variables, Statistical analysis of simulated data.
Simulation II: Variance reduction techniques, Simulation of stochastic processes, Case studies.

Remarks

The planned lectures and courses for the next two years are announced online (http://www.ior.kit.edu/).
Module: Operations Research in Supply Chain Management and Health Care Management [MATHMWOR8]

Coordination: S. Nickel
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 337)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550486</td>
<td>Tactical and Operational Supply Chain Management (p. 353)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550480</td>
<td>Operations Research in Supply Chain Management (p. 284)</td>
<td>2/1</td>
<td>W/S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550495</td>
<td>Operations Research in Health Care Management (p. 283)</td>
<td>2/1</td>
<td>W/S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550493</td>
<td>Hospital Management (p. 247)</td>
<td>3/0</td>
<td>W/S</td>
<td>4,5</td>
<td>S. Nickel, Hansis</td>
</tr>
<tr>
<td>2550498</td>
<td>Practical seminar: Health Care Management (with Case Studies) (p. 300)</td>
<td>3</td>
<td>W/S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550497</td>
<td>Software Laboratory: OR Models II (p. 325)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550488</td>
<td>Discrete-event Simulation in Production and Logistics (p. 203)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel, S. Spieckermann</td>
</tr>
<tr>
<td>2550494</td>
<td>Supply Chain Management in the Process Industry (p. 352)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550484</td>
<td>Graph Theory and Advanced Location Models (p. 228)</td>
<td>2/1</td>
<td>W/S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550494</td>
<td>Challenges in Supply Chain Management (p. 181)</td>
<td>3</td>
<td>S</td>
<td>4,5</td>
<td>R. Blackburn</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.
The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
See German version.

Recommendations
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Qualification Goals
The student

- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of SCM and their respective optimization problems,
- is acquainted with classical location problem models (in planes, in networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is familiar with general procedures and characteristics of Health Care Management and the possibilities for adapting mathematical models for non-profit organizations,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.
Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of SCM. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of Supply Chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of supply chain management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Health Care Management addresses specific Supply Chain Management problems in the health sector. Important applications arise in scheduling and internal logistics of hospitals.

Remarks
Some lectures and courses are offered irregularly.
The planned lectures and courses for the next three years are announced online.
The module will not be offered any more from summer term 2016. Students who are already assigned on the module can still finish it until summer term 2017 (repeaters only).

Coordination: S. Nickel
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

ECTS Credits	Cycle	Duration	Level
9 | Every term | 1 | Undefined

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550486</td>
<td>Facility Location and Strategic Supply Chain Management (p. 337)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550486</td>
<td>Tactical and Operational Supply Chain Management (p. 353)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550480</td>
<td>Operations Research in Supply Chain Management (p. 284)</td>
<td>2/1</td>
<td>W/S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550497</td>
<td>Software Laboratory: OR Models II (p. 325)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2550488</td>
<td>Discrete-event Simulation in Production and Logistics (p. 203)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Nickel, S. Spieckermann</td>
</tr>
<tr>
<td>2550484</td>
<td>Graph Theory and Advanced Location Models (p. 228)</td>
<td>2/1</td>
<td>W/S</td>
<td>4,5</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.
The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
None

Recommendations
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Qualification Goals
The student
- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of SCM and their respective optimization problems,
- is acquainted with classical location problem models (in planes, in networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.
This module considers several areas of SCM. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of Supply Chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of supply chain management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the...
set of possible logistics chains, which asserts the compliance of delivery times and further constraints. Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Remarks
The module will be offered from summer term 2016.
Module: Mathematical Programming [MATHMWOR9]

Coordination: O. Stein
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550138</td>
<td>Mixed Integer Programming I (p. 218)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550128</td>
<td>Special Topics in Optimization I (p. 333)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550126</td>
<td>Special Topics in Optimization II</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550134</td>
<td>Global Optimization I (p. 226)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550111</td>
<td>Nonlinear Optimization I (p. 268)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550113</td>
<td>Nonlinear Optimization II (p. 269)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550136</td>
<td>Global Optimization II (p. 227)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550120</td>
<td>Convex Analysis (p. 245)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
<tr>
<td>2550115</td>
<td>Parametric Optimization (p. 295)</td>
<td>2/1</td>
<td>4,5</td>
<td>O. Stein</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
See German version.

Qualification Goals
The student
- names and describes basic notions for advanced optimization methods, in particular from continuous and mixed integer programming, location theory, and graph theory,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions,
- identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

Content
The module focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous and mixed integer decision variables, for location problems and for problems on graphs.

Remarks
The lectures are partly offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
For the lectures of Prof. Stein a grade of 30 % of the exercise course has to be fulfilled. The description of the particular lectures is more detailed.
Module: Stochastic Modelling and Optimization [MATHMWOR10]

Coordination: K. Waldmann
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

ECTS Credits	Cycle	Duration	Level
9 | Every term | 1 | Undefined |

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550679</td>
<td>Markov Decision Models I (p. 344)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550682</td>
<td>Markov Decision Models II (p. 345)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550674</td>
<td>Quality Control I (p. 307)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550659</td>
<td>Quality Control II (p. 308)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25687</td>
<td>Optimization in a Random Environment (p. 285)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550662</td>
<td>Simulation I (p. 319)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>2550665</td>
<td>Simulation II (p. 320)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25688</td>
<td>OR-oriented modeling and analysis of real problems (project) (p. 287)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
See German version.

Qualification Goals
The student posses detailed knowledge in modelling, analyzing and optimizing stochastic systems in economy and engineering.

Content
Markov Decision Models II: Queuing Systems, Stochastic Decision Processes
Simulation I: Generation of random numbers, Monte Carlo integration, Discrete event simulation, Discrete and continuous random variables, Statistical analysis of simulated data.
Simulation II: Variance reduction techniques, Simulation of stochastic processes, Case studies.
Quality Control I: Statistical Process Control, Acceptance Sampling, Design of experiments
Quality Control II: Reliability of complexe systems with and without repair, Maintenance
OR-orientied modeling and analysis of real problems: project-based modelling and analysis

Remarks
The planned lectures and courses for the next two years are announced online (http://www.ior.kit.edu/).
Module: Informatics [MATHMWINFO1]

Coordination: H. Schmeck, A. Oberweis, R. Studer, Y. Sure-Vetter, J. Zöllner

Degree programme: Wirtschaftsmathematik (M.Sc.)

Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511102</td>
<td>Algorithms for Internet Applications (p. 170)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>2511032</td>
<td>Applied Informatics II - IT Systems for e-Commerce (p. 172)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>J. Zöllner</td>
</tr>
<tr>
<td>2511202</td>
<td>Database Systems and XML (p. 188)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>2511212</td>
<td>Document Management and Groupware Systems (p. 193)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>S. Klink</td>
</tr>
<tr>
<td>2511100</td>
<td>Efficient Algorithms (p. 195)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>2511600</td>
<td>Enterprise Architecture Management (p. 202)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>T. Wolf</td>
</tr>
<tr>
<td>2511302</td>
<td>Knowledge Discovery (p. 242)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>R. Studer</td>
</tr>
<tr>
<td>2511214</td>
<td>Management of IT-Projects (p. 250)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>R. Schätzle</td>
</tr>
<tr>
<td>2511210</td>
<td>Business Process Modelling (p. 263)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>2511106</td>
<td>Nature-inspired Optimisation Methods (p. 266)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>P. Shukla</td>
</tr>
<tr>
<td>25111104</td>
<td>Organic Computing (p. 288)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>2590458</td>
<td>Computational Economics (p. 182)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>P. Shukla, S. Caton</td>
</tr>
<tr>
<td>2511308</td>
<td>Service Oriented Computing 2 (p. 318)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>R. Studer, S. Agarwal, B. Norton</td>
</tr>
<tr>
<td>2511208</td>
<td>Software Quality Management (p. 326)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25700sp</td>
<td>Special Topics of Efficient Algorithms (p. 330)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>SBI</td>
<td>Special Topics of Enterprise Information Systems (p. 329)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>SSEsp</td>
<td>Special Topics of Software- and Systemsengineering (p. 331)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25860sem</td>
<td>Special Topics of Knowledge Management (p. 332)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>R. Studer</td>
</tr>
<tr>
<td>2511602</td>
<td>Strategic Management of Information Technology (p. 351)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>T. Wolf</td>
</tr>
<tr>
<td>2511204</td>
<td>Workflow-Management (p. 369)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>2511218</td>
<td>Requirements Analysis and Requirements Management (p. 171)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>R. Kneuper</td>
</tr>
<tr>
<td>2511310</td>
<td>Semantic Web Technologies (p. 312)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>R. Studer, A. Harth</td>
</tr>
<tr>
<td>2511108</td>
<td>Smart Energy Distribution (p. 321)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>2511312</td>
<td>Web Science (p. 368)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Y. Sure-Vetter</td>
</tr>
<tr>
<td>25070p</td>
<td>Advanced Lab Informatics (p. 299)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>A. Oberweis, H. Schmeck, R. Studer</td>
</tr>
</tbody>
</table>
Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Conditions
It is only allowed to choose one lab.

Qualification Goals
The student

- has the ability to master methods and tools in a complex discipline and to demonstrate innovativeness regarding the methods used,
- knows the principles and methods in the context of their application in practice,
- is able to grasp and apply the rapid developments in the field of computer science, which are encountered in work life, quickly and correctly, based on a fundamental understanding of the concepts and methods of computer science,
- is capable of finding and defending arguments for solving problems.

Content
The thematic focus will be based on the choice of courses in the areas of Efficient Algorithms, Business Information Systems, Software- and Systems Engineering, Web Science and Knowledge Management.
4.3 General Modules

Module: Seminar [MATHMWESEM02]

Coordination: O. Stein, H. Lindstädt
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Finance - Risk Management - Managerial Economics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemBWL A (Master)</td>
<td>Seminar Business Administration A (Master) (p. 313)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>Alle Professoren des Fachs Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>SemVWL A (Master)</td>
<td>Seminar Economics A (Master) (p. 317)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>Alle Professoren des Fachs Volkswirtschaftslehre</td>
</tr>
<tr>
<td>SemSTAT A (Master)</td>
<td>Seminar Statistics A (Master) (p. 316)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>Alle Professoren des Fachs Statistik</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The modul examination consists of one seminar (according to §4 (3), 3 of the examintaion regulation). A detailed description of the assessment is given in the specific course characterization. The final mark for the module is the mark of the seminar.

Conditions
None.

Recommendations
None.

Qualification Goals
The students are in a position to independently handle current, research-based tasks according to scientific criteria.

- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor. Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section “Key Qualifications” of the module handbook. Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.
Module: Seminar [MATHMWSEM03]

Coordination: O. Stein, H. Lindstädt
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Operations Management - Data Analysis - Informatics

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seminar Informatics A (Master) (p. 314)</td>
<td>2 W/S</td>
<td></td>
<td>3</td>
<td>Alle Professoren des Fachs Informatik</td>
</tr>
<tr>
<td></td>
<td>Seminar Operations Research A (Master (p. 315)</td>
<td>2 W/S</td>
<td></td>
<td>3</td>
<td>Alle Professoren des Fachs Operations Research</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The module examination consists of one seminar (according to §4 (3), 3 of the examination regulation). A detailed description of the assessment is given in the specific course characterization.

The final mark for the module is the mark of the seminar.

Conditions
None.

Recommendations
None.

Qualification Goals

- The students are in a position to independently handle current, research-based tasks according to scientific criteria.
- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor. Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section “Key Qualifications” of the module handbook.

Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.
Module: Internship [MATHBERP]

Coordination: Studiendekan/Studiendekanin
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Every term</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Qualification Goals
Content
Module: [MATHWMSQ01]

Coordination: Studiendekan/Studienleiterin
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Key Competences

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Introduction to Python [MATHSQ02]

Coordination: D. Weiß
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field: Key Competences

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Irregular</td>
<td>1</td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Courses in module

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MathSQ02</td>
<td>Introduction to Python (p. 152)</td>
<td>2/1</td>
<td>W/S</td>
<td>3</td>
<td>D. Weiß</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Qualification Goals

Content
Module: Master Thesis [WMATHMAST]

Coordination: Studiendekan/Studiendekanin
Degree programme: Wirtschaftsmathematik (M.Sc.)
Subject/Field:

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Cycle</th>
<th>Duration</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Every term</td>
<td>Undefined</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Qualification Goals
Content
5 Courses

5.1 All Courses

Course: Introduction to geometric measure theory [MATHAG35]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>S. Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>Introduction to geometric measure theory (p. 35)[MATHAG35]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Introduction into particulate flows [MATHNM41]

Coordinators: W. Dörfler
Part of the modules: Introduction into particulate flows (p. 90)[MATHNM41]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Introduction to Python [MATHSQ02]

Coordinators: D. Weiß

Part of the modules: Introduction to Python (p. 148)[MATHSQ02]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Numerical methods in fluid mechanics [MATHNM34]

Coordinators: W. Dörfler, G. Thäter
Part of the modules: Numerical methods in fluid mechanics (p. 85)[MATHNM34]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Optimization in Banach spaces [MATHNM32]

Coordinators: A. Kirsch
Part of the modules: Optimization in Banach spaces (p. 83)[MATHNM32]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Compressive Sensing [MATHNM37]

Coordinators: A. Rieder
Part of the modules: Compressive Sensing (p. 86)[MATHNM37]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Extreme value theory [MATHST23]

Coordinators: V. Fasen, N. Henze

Part of the modules: Extreme value theory (p. 108)[MATHST23]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Functions of operators [MATHNM38]

Coordinators: V. Grimm

Part of the modules: Functions of operators (p. 87)[MATHNM38]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Special topics in numerical linear algebra [MATHNM30]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>M. Hochbruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>Special topics in numerical linear algebra (p. 81)[MATHNM30]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Stein’s Method [MATHST24]

Coordinators: M. Schulte
Part of the modules: Stein’s Method (p. 109) [MATHST24]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Control Theory [MATHAN18]

Coordinators: R. Schnaubelt, L. Weis

Part of the modules: Control Theory (p. 53)[MATHAN18]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Adaptive finite elemente methods [MATHNM19]

Coordinators: W. Dörfler
Part of the modules: Adaptive finite elemente methods (p. 74)[MATHMWNM19]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Advanced Game Theory [2521533]

Coordinators: P. Reiss, C. Puppe, K. Ehrhart

Part of the modules: Decision and Game Theory (p. 123) [MATHMVWL10], Microeconomic Theory (p. 126) [MATHMVWL15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Basic knowledge of mathematics and statistics is assumed.

Learning Outcomes
The student
- deepens and broadens his/her basic knowledge of Game Theory,
- develops a rigorous understanding of newer concepts in Game Theory,
- develops the capability to independently model and analyze complex systems of strategic decision-making, and to develop appropriate solutions.

Content
This course offers an advanced and rigorous treatment of game theory.

Media
Slides, problem sets.

Basic Literature

Compulsory textbook:

Additional Literature:
Course: Advanced Inverse Problems: Nonlinearity and Banach spaces [MATHNM44]

Coordinators: A. Rieder
Part of the modules: Advanced Inverse Problems: Nonlinearity and Banach spaces (p. 93) [MATHNM44]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Advanced Topics in Economic Theory [2520527]

Coordinators: M. Hillebrand, K. Mitusch

Part of the modules: Economic Theory and its Application in Finance (p. 125)[MATHMW4VWL14], Microeconomic Theory (p. 126)[MATHMW4VWL15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the beginning of the recess period or at the beginning of the following semester.

Conditions
None.

Recommendations
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Learning Outcomes
The students

• will understand fundamental questions of General Equilibrium Theory and will be able to solve these questions with appropriate methods,
• will understand fundamental questions of information economics respectively contract theory and will be able to solve these questions with appropriate methods,
• will be able to apply advanced methods of formal economic modelling.

Content
The course deals with basic elements of modern economic theory. It is divided into two parts. The first part introduces the microeconomic foundations of general equilibrium à la Debreu ("The Theory of Value", 1959) and Hildenbrand/Kirman ("Equilibrium Analysis",1988). The second part deals with asymmetric information and introduces the basic techniques of contract theory.

The course is largely based on the textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.

Basic literature
The course is based on the excellent textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.

Remarks
The course Advanced Topics in Economic Theory will not take place in summer semester 2015.
Course: Algebra [1031]

Coordinators: F. Herrlich, S. Kühnlein, C. Schmidt, G. Weitze-Schmithüsen
Part of the modules: Algebra (p. 24)[MATHMWAG05]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam: written or oral exam
Marking: grade of exam

Conditions
None.

Learning Outcomes
Content
Course: Algebraic Geometry [MATHAG10]

Coordinators: F. Herrlich, S. Kühnlein, G. Weitze-Schmithüsen

Part of the modules: Algebraic Geometry (p. 27)[MATHMWAG10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td>English</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Algebraic Topology [MATHAG34]

Coordinators: H. Kammeyer, R. Sauer

Part of the modules: Algebraic Topology (p. 34)[MATHAG34]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Algebraic Topology II [MATHAG41]

Coordinators: R. Sauer
Part of the modules: Algebraic Topology II (p. 39) [MATHAG41]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Algebraic Number Theory [MATHAG09]

Coordinators: F. Januszewski, S. Kühnlein, C. Schmidt
Part of the modules: Algebraic Number Theory (p. 26) [MATHMWAG09]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Algorithms for Internet Applications [2511102]

Coordinators: H. Schmeck
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

ECTS Credits 5
Hours per week 2/1
Term Winter term
Instruction language en

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination (called “bonus exam”, 45 min) (according Section 4(2), 3 of the examination regulation).
The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Conditions
None.

Learning Outcomes
The students will learn to master methods and concepts of essential algorithms within Internet applications and to develop capabilities for innovative improvements. The course aims at teaching advanced concepts for the design and application of algorithms with respect to the requirements in networked systems. Based on a fundamental understanding of taught concepts and methods the students should be able to select appropriate concepts and methods for problem settings in their future professional life, and - if necessary - customize and apply them in an adequate way. The students will be capable to find appropriate arguments for their chosen approach to a problem setting.

In particular, the student will

• know the structure and elementary protocols of the Internet (TCP/IP) and standard routing algorithms (distance vector and link state routing),
• know methods of information retrieval in the WWW, algorithms for searching information and be able to assess the performance of search engines,
• know how to design and use cryptographic methods and protocols to guarantee and check confidentiality, data integrity and authenticity,
• know algorithmic basics of electronic payment systems and of electronic money
• know new developments towards an Internet of Energy

Content
Internet and World Wide Web are changing our world, this core course provides the necessary background and methods for the design of central applications of the Internet. After an introduction into Internet technology the following topics are addressed: information retrieval in the www, structure and functioning of search engines, foundations of secure communication, electronic payment systems and digital money, and new developments and challenges in the Internet of Energy.

Media
Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Basic literature

Elective literature:
• Further references will be given in the course.

Remarks
This course will not be offered after WS 2016/17
Course: Requirements Analysis and Requirements Management [2511218]

Coordinates: R. Kneuper

Part of the modules: Informatics (p. 142) [MATHMINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Learning Outcomes
The students have a full understanding of the foundations of the analysis and management of requirements as part of the development process of software and systems. They know the main terminology and approaches of this topic, and are able to express requirements themselves using different description methods.

Content
The analysis and management of requirements is a central task in the development of software and systems, addressing the border between the application discipline and computer science. The adequate performance of this task has a decisive influence on the whether or not a development project will be successful. The lecture provides an introduction to this topic, using the syllabus for the "Certified Professional for Requirements Engineering" (CPRE) as a guideline.

Lecture structure:
1. Introduction and overview, motivation
2. Identifying requirements
3. Documenting requirements (in natural language or using a modelling language such as UML)
4. Verification and validation of requirements
5. Management of requirements
6. Tool support

Basic literature
Literature will be given in the lecture.
Course: Applied Informatics II - IT Systems for e-Commerce [2511032]

Coordinators: J. Zöllner
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the compulsory exercises is prerequisite for the admission to the written exam. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of content of the module [WI1INFO].

Learning Outcomes
The student learns about concepts and technologies for designing big, distributed application architectures. Students apply industry-relevant technology to solve application-oriented problems in lab classes.

Content
The course Applied Informatics II [2511032] covers various facets of electronic commerce which have to be supported by adequate and efficient distributed information systems. Key topics are middleware technologies and distributed application architectures. Document description and exchange (incl. XML), Java EE, Web technologies, and Web services are additional topics.

Media
Slides, internet resources.

Basic literature
Tba in the lecture.
Course: Applied Econometrics [2520020]

| Coordinators: | M. Schienle |
| Part of the modules: | Econometrics and Statistics II (p. 131)[MATHMWSTAT6], Econometrics and Statistics I (p. 130)[MATHMWSTAT5] |

ECTS Credits	4,5
Hours per week	2/1
Term	Summer term
Instruction language	de

Learning Control / Examinations
The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes

Content
- asymptotics in the linear model, maximum likelihood estimation, IV
- theoretical and computer based exercises

Basic literature
Wooldridge, Greene

Remarks
The credits for the course have been changed from 5 to 4.5 from winter term 2015/2016 on.
Course: Asset Pricing [2530555]

Coordinators: M. Uhrig-Homburg, M. Ruckes
Part of the modules: Finance 2 (p. 115) [MATHMWBWLFBV2], Finance 1 (p. 114) [MATHMWBWLFBV1], Finance 3 (p. 116) [MATH4BWLFBV11], Economic Theory and its Application in Finance (p. 125) [MATHMW4VWL14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
We strongly recommend knowledge of the basic topics in investments (bachelor course), which will be necessary to be able to follow the course.

Learning Outcomes

Students are familiar with advanced concepts in asset pricing (in particular the stochastic discount factor model). They are able to apply their acquired skills to solve empirical questions related to securities.

Content

This lecture deals with the valuation of risky cash flows. A stochastic discount model and a central equation will be introduced, which form the basis of nearly every valuation model in finance. That includes the valuation of stocks, bonds and derivatives. The first part of the lecture will present the theory, the second part covers empirical questions related to this approach.

Basic literature

Elective literature

Course: Asymptotic Stochastics [MATHST07]

Coordinators: V. Fasen, N. Henze, B. Klar

Part of the modules: Asymptotic Stochastics (p. 96)[MATHMWST07]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Auction Theory [2520408]

Coordinators: K. Ehrhart

Part of the modules: Decision and Game Theory (p. 123)[MATHMWVWL10], Microeconomic Theory (p. 126)[MATHMW4VWL15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Conditions
None.

Recommendations
We suggest to attend either Game Theory I or Decision Theory beforehand.

Learning Outcomes
The student
- learns the game-theoretic modeling and analysis of auctions,
- learns about various auction formats and their specific characteristics,
- understands the challenge for participating in auctions as bidder,
- understands the challenge of designing auctions as auctioneer,
- gains insight into practice by case studies,
- participates in and analyzes demonstration experiments.

Content
This course deals with the analysis and modeling of auction which are based on game theory. This also includes aspects of applying and designing auctions as well as experiences with auctions. Main topics are:
- Single- and multi-unit auctions
- Selling and procurement auctions
- Electronic auctions (e.g. eBay, C2C, B2B)
- Multi-attributive auctions.

Media
Script, overhead slides, additional printed material.

Basic literature
- Ehrhart, K.-M. und S. Seifert: Auktionstheorie, Skript zur Vorlesung, KIT, 2011
- Ausubel, L.M. und P. Cromton: Demand Reduction and Inefficiency in Multi-Unit Auctions, University of Maryland, 1999
Course: Medical imaging [MATHNM15]

Coordinators: A. Rieder
Part of the modules: Medical imaging (p. 71) [MATHMWNM15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Exchanges [2530296]

Coordinators: J. Franke
Part of the modules: Finance 3 (p. 116)[MATH4BWLFBV11], Finance 2 (p. 115)[MATHMWBWLFBV2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>1</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Students are in a position to discuss and evaluate current developments regarding the organisation of exchanges and securities trading.

Content
- Organisation of exchanges: Changing Zeitgeist - Corporates instead of cooperative structures
- Market models: order driven vs. market maker - Liquidity provision for less frequently traded securities
- Trading systems: The end of an era? - No more need for running traders?
- Clearing: Diversity instead of uniformity - Safety for all?
- Settlement: Increasing importance - Does efficient settlement assure the “value added” of exchanges in the long run?

Basic literature

Elective literature:
Educational material will be offered within the lecture.
Course: Brownian Motion [MATHST10]

Coordinators: N. Bäuerle, V. Fasen, N. Henze, G. Last
Part of the modules: Brownian Motion (p. 99) [MATHMWST10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Business Plan Workshop [2572184]

Coordinators: M. Klarmann, O. Terzidis

Part of the modules: Marketing Management (p. 120)[MATHMWBWLMAR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
See German version.

Conditions
None.

Learning Outcomes
See German version.

Content
In this workshop the students work in groups to develop a business plan for an innovative business concept.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Please note: This course will not be offered in summer term 2015.
Course: Challenges in Supply Chain Management [2550494]

Coordinators: R. Blackburn

Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136) [MATHMWOR8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written paper and an oral exam (according to §4(2), 3 of the examination regulation).

Conditions
Basic knowledge as conveyed in the module "Introduction to Operations Research [WI1OR]" is assumed.

Recommendations
Advanced knowledge of Operations Research (e.g., as conveyed in the lectures Facility Location and Strategic SCM, Tactical and operational SCM) is recommended.

Learning Outcomes
The student
- analyzes and evaluates current developments and approaches in the design and planning of supply chain strategis, especially with respect to future challenges in this area,
- explains and utilizes theoretical concepts and methods for the design and strategy of supply chains,
- classifies and accounts for trend-setting theories in the SCM context such as Behavioral Supply Chain Management or Supply Chain Analytics.

Content
The course consists of case studies of BASF which cover future challenges of supply chain management. Thus, the course aims at a case-study based presentation, critical evaluation and exemplary discussion of recent questions in supply chain management. The focus lies on future challenges and trends, also with regard to their applicability in practical cases (especially in the chemical industry).

The main part of the course is working on a project together with BASF in Ludwigshafen. The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the project topic.

This course will include working on cutting edge supply chain topics like Industry 4.0 / "Internet of Everything in production", supply chain analytics, risk management, procurement and production in SCM. The team essays / project reports will be linked to industry-related challenges as well as to upcoming theoretical concepts. The topics of the seminar will be announced at the beginning of the term in a preliminary meeting.

Basic literature
To be defined depending on the topic.

Remarks
Please notice that this course can be attended only in the elective part of the course program.
The number of participants is restricted due to the execution of joint projects with BASF teams and the resulting examination effort. Due to these capacity restrictions, registration before course start is required. For further information see the webpage of the course.
The course is offered irregularly. The planned lectures and courses for the next three years are announced online.
Course: Computational Economics [2590458]

Coordinators: P. Shukla, S. Caton
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

ECTS Credits: 4.5 Hours per week: 2/1 Term: Winter term Instruction language: en

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation). By successful completion of the exercises (according to §4(2), 3 of the examination regulation) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4). The bonus only applies to the first and second exam of the semester in which it was obtained.

Conditions
None.

Learning Outcomes
The student
- understands the methods of Computational Economics and applies them on practical issues,
- evaluates agent models considering bounded rational behaviour and learning algorithms,
- analyses agent models based on mathematical basics,
- knows the benefits and disadvantages of the different models and how to use them,
- examines and argues the results of a simulation with adequate statistical methods,
- is able to support the chosen solutions with arguments and can explain them.

Content
Examining complex economic problems with classic analytical methods usually requires making numerous simplifying assumptions, for example that agents behave rationally or homogeneously. Recently, widespread availability of computing power gave rise to a new field in economic research that allows the modeling of heterogeneity and forms of bounded rationality: Computational Economics. Within this new discipline, computer based simulation models are used for analyzing complex economic systems. In short, an artificial world is created which captures all relevant aspects of the problem under consideration. Given all exogenous and endogenous factors, the modelled economy evolves over time and different scenarios can be analyzed. Thus, the model can serve as a virtual testbed for hypothesis verification and falsification.

Media
- PowerPoint

Basic literature

Elective literature:

Remarks
This course is offered in cooperation with the Institute of Applied Informatics and Formal Description Models (AIFB).
Course: Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems [MATHAN11]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>M. Plum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>Computer-Assisted Analytical Methods for Boundary and Eigenvalue Problems (p. 49) [MATHMWAN11]</td>
</tr>
<tr>
<td>ECTS Credits</td>
<td>8</td>
</tr>
<tr>
<td>Hours per week</td>
<td>4/2</td>
</tr>
<tr>
<td>Term</td>
<td>Winter / Summer Term</td>
</tr>
<tr>
<td>Instruction language</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
Content
Course: Corporate Financial Policy [2530214]

Coordinators: M. Ruckes

Part of the modules: Finance 2 (p. 115)[MATHMWBWLFBV2], Finance 3 (p. 116)[MATH4BWLFBV11], Economic Theory and its Application in Finance (p. 125)[MATHMW4VWL14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Conditions
None.

Learning Outcomes
Students
- are in a position to explain the importance of informational frictions for the financing of firms,
- are able to evaluate financing contracts with respect to their incentive effects,
- are able to analyse financing contracts with respect to their information they provide to outsiders,
- are in a position to derive optimal financing contracts in prototypical situations,
- are able to discuss the financial determinants of corporate distribution policy.

Content
The course is concerned with the theory of corporate financing:
- Financing contracts
- Financing capacity
- Issuance of securities
- Capital structure
- Payout policy

Basic literature
Elective literature:
Course: Current Issues in the Insurance Industry [2530350]

Coordinators: W. Heilmann

Part of the modules: Insurance Management I (p. 117)[MATHMWBWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation) . The exam takes place every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
For the understanding of this course knowledge of Private and Social Insurance [2530050] is required.

Learning Outcomes
Knowledge and understanding of important current characteristics of insurance, e.g. insurance markets, lines, products, investment, company pension schemes, corporate structures and governance as well as controlling.

Content
Current topics in insurance markets.

Basic literature

Elective literature:
Farny, D. Versicherungsbetriebslehre. Verlag Versicherungswirtschaft; Auflage: 5. 2011
Koch, P. Versicherungswirtschaft - Ein einführender Überblick. Verlag Versicherungswirtschaft. 2005
Tonndorf, F., Horn, G., and Bohner, N. Lebensversicherung von A-Z. Verlag Versicherungswirtschaft. 1999
Deutsch, E. Das neue Versicherungsvertragsrecht. Verlag Versicherungswirtschaft. 2008
Schwebler, Knauth, Simmert. Kapitalanlagepolitik im Versicherungsbinnenmarkt. 1994
Seng, Betriebliche Altersversorgung. 1995
von Treuberg, Angermayer. Jahresabschluss von Versicherungsunternehmen. 1995

Remarks
Block course. For organizational reasons, please register with the secretay of the chair: thomas.mueller3@kit.edu. The credits have been changed from 2,5 to 2.
Course: Data Mining and Applications [2520375]

Coordinators:
G. Nakhaeizadeh

Part of the modules:
Econometrics and Statistics II (p. 131)[MATHMWSTAT6], Econometrics and Statistics I (p. 130)[MATHMWSTAT5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- Oral examination 70%
- Conduction of a small empirical study 30%

Conditions
None.

Learning Outcomes
After completing of the course the students:
- know the definition of Data Mining
- are familiar with the CRISP-DM
- are Familiar with at least six important Data Mining Tasks
- can recognize whether a given problem can be formulated as a data mining problem
- are familiar with the most important Data Mining Algorithms like Decision Tree, K-Means, Artificial Neural Networks, Association Rules, Regression Analysis
- are familiar with evaluation of DM-algorithms
- will be able to use a DM-Tool

Contents
Part one: Data Mining
Why Data Mining?
- What is Data Mining?
- History of Data Mining
- Conferences and Journals on Data Mining
- Potential Applications
- Data Mining Process:
 - Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment
- Interdisciplinary aspects of Data Mining
- Data Mining tasks
- Data Mining Algorithms (Decision Trees, Association Rules,
 Regression, Clustering, Neural Networks)
- Fuzzy Mining
- OLAP and Data Warehouse
- Data Mining Tools
- Trends in Data Mining

Part two: Examples of application of Data Mining
- Success parameters of Data Mining Projects
- Application in industry
• Application in Commerce

Basic literature

• Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.

• David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining , MIT Press, Fall 2000

Remarks
The credits for the Bachelor-course have been changed from 4,5 to 4 from summer term 2016 on.
Course: Database Systems and XML [2511202]

Coordinators: A. Oberweis
Part of the modules: Informatics (p. 142) [MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions
None.

Learning Outcomes
Students

- know the basics of XML and generate XML documents,
- are able to use XML database systems and to formulate queries to XML documents,
- know to assess the use of XML in operational practice in different application contexts.

Content
Databases are a proven technology for managing large amounts of data. The oldest database model, the hierarchical model, was replaced by different models such as the relational or the object-oriented data model. The hierarchical model became particularly more important with the emergence of the extensible Markup Language XML. XML is a data format for structured, semi-structured, and unstructured data. In order to store XML documents consistently and reliably, databases or extensions of existing data base systems are required. Among other things, this lecture covers the data model of XML, concepts of XML query languages, aspects of storage of XML documents, and XML-oriented database systems.

Media
Slides, access to internet resources.

Basic literature

- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2008
Course: Poisson processes [MATHST20]

Coordinators: V. Fasen, D. Hug, G. Last
Part of the modules: Poisson processes (p. 107) [MATHST20]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Derivatives [2530550]

Coordinators: M. Uhrig-Homburg
Part of the modules: Finance 3 (p. 116)[MATH4BWLFBV11], Finance 1 (p. 114)[MATHMWBWLFBV1], Finance 2 (p. 115)[MATHMWBWLFBV2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Media
Slides, Exercises/Exercise sheets

Basic literature
• Hull (2012): Options, Futures, & Other Derivatives, Prentice Hall, 8th Edition

Elective literature:
Course: The Riemann Zeta function [MATHAG45]

Coordinators: F. Januszewski
Part of the modules: The Riemann Zeta function (p. 43)[MATHAG45]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
Content
Course: Differential Geometry [1036]

Coordinators: S. Grensing, E. Leuzinger, G. Link, W. Tuschmann

Part of the modules: Differential Geometry (p. 23) [MATHMWAG04]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
- exam: written or oral exam
- Marking: grade of exam

Conditions
- None.

Learning Outcomes

Content
Course: Document Management and Groupware Systems [2511212]

Coordinators: S. Klink
Part of the modules: Informatics (p. 142) [MATHMINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period according to Section 4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
Students master the basics of integration and structure of document management systems (DMS) and know the complete DMS process - from document capture of the archiving until retrieval. Students know how to realize operative workflows. They know which activities are needed to carry out the conceptual design and installation of DMS and they are able to apply a DMS as an archive system, workflow system and retrieval system. Furthermore, they know groupware systems exemplarily and can use them for collaborative tasks.

Content
The lecture gives basics of document management and groupware systems. It covers different system categories, their interaction and their use areas and illustrates this with concrete examples. These include document management in the strict sense, scanning, Document Imaging (acquisition and visualization of scanned documents), indexing, electronic archiving, retrieval of relevant documents, workflow, groupware, and office communications.

Media
Slides, access to internet resources.

Basic literature

Further literature is given in each lecture individually.
Course: Efficient Energy Systems and Electric Mobility [2581006]

Coordinators: R. McKenna, P. Jochem
Part of the modules: Energy Economics and Technology (p. 118)[MATHMWBWL1P5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes

- Understand the concept of energy efficiency as applied to specific systems
- Obtain an overview of the current trends in energy efficiency
- Be able to determine and evaluate alternative methods of energy efficiency improvement
- Overview of technical and economical stylized facts on electric mobility
- Judging economical, ecological and social impacts through electric mobility

Content
This lecture series combines two of the most central topics in the field of energy economics at present, namely energy efficiency and electric mobility. The objective of the lecture is to provide an introduction and overview to these two subject areas, including theoretical as well as practical aspects, such as the technologies, political framework conditions and broader implications of these for national and international energy systems.

The energy efficiency part of the lecture provides an introduction to the concept of energy efficiency, the means of affecting it and the relevant framework conditions. Further insights into economy-wide measurements of energy efficiency, and associated difficulties, are given with recourse to several practical examples. The problems associated with market failures in this area are also highlighted, including the Rebound Effect. Finally and by way of an outlook, perspectives for energy efficiency in diverse economic sectors are examined.

The electric mobility part of the lecture examines all relevant issues associated with an increased penetration of electric vehicles including their technology, their impact on the electricity system (power plants and grid), their environmental impact as well as their optimal integration in the future private electricity demand (i.e. smart grids and V2G). Besides technical aspects the user acceptance and behavioral aspects are also discussed.

Media
Media will likely be provided on the e-learning platform ILIAS.

Basic literature
Will be announced in the lecture.
Course: Efficient Algorithms [2511100]

Coordinators: H. Schmeck

Part of the modules: Informatics (p. 142) [MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the week after the end of the lecturing period (wrt §4 (2), 1 SPO).

If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the bonus exam will improve the mark by one level (i.e. by 0.3 or 0.4).

Deviations from this type of assessment are announced at the beginning of this course.

Conditions

None.

Learning Outcomes

The student will learn how to use methods and concepts of efficient algorithms and how to demonstrate adequate innovative capabilities with respect to the used methods.

This course emphasizes the teaching of advanced concepts for the design and application of algorithms, data structures, and computer infrastructures in relation to their applicability in the real world. Based on a fundamental understanding of the covered concepts and methods, students should know how to select appropriate concepts and methods for problem settings in their professional life, and, if necessary, to extend and apply them in an adequate form. The students should be enabled to find adequate arguments for justifying their chosen problem solutions.

Content

In a problem oriented way the course presents systematic approaches to the design and analysis of efficient algorithms using standard tasks of information processing as generic examples. Special emphasis is put on the influence of data structures and computer architectures on the performance and cost of algorithms. In particular, the course emphasizes the design and analysis of algorithms on parallel computers and in hardware, which is increasingly important considering the growing presence of multicore architectures. The course covers algebraic problems like matrix multiplication, evaluation of polynomials, fast Fourier transformation as well as sorting and searching, computational geometry, and leader election in distributed algorithms.

Media

- powerpoint slides with annotations using a tablet pc
- access to applets and Internet resources
- lecture recording (camtasia)

Basic literature

Borodin, Munro: The Computational Complexity of Algebraic and Numeric Problems (Elsevier 1975)

Cormen, Leiserson, Rivest: Introduction to Algorithms (MIT Press)

Sedgewick: Algorithms (Addison-Wesley) (many different versions available)

Elective literature:

will be announced in class
Course: eFinance: Information Engineering and Management for Securities Trading [2540454]

Coordinators: C. Weinhardt
Part of the modules: Finance 3 (p. 116)[MATH4BWLFBV11], Finance 2 (p. 115)[MATHMWBWLFBV2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation) and by submitting written essays as part of the exercise (according to §4(2), 3 of the examination regulation). 70% of the final grade is based on the written exam and 30% is based on assignments from the exercises. The points obtained in the exercises only apply to the first and second exam of the semester in which they were obtained.

Conditions
None.

Learning Outcomes
The students

- are able to understand the theoretical and practical aspects of securities trading,
- are able to handle the relevant electronic tools for the evaluation of financial data,
- are able to identify the incentives of the traders for participation in different market platforms,
- are able to analyse capital marketplaces concerning their efficiency, weaknesses and technical configuration,
- are able to apply theoretical methods of econometrics,
- are able to understand, criticize and present articles with a finance-scientific background,
- learn to elaborate solutions in a team.

Content
The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Media

- Powerpoint presentations
- recorded lecture available on the internet

Basic literature

Elective literature:

Course: Introduction to scientific computing [EWR]

Coordinators: W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Part of the modules: Introduction to scientific computing [p. 63][MATHMWNM05]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3/3</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Introduction to Matlab and numerical algorithms [MATHNM43]

Coordinators: D. Weiß, C. Wieners
Part of the modules: Introduction to Matlab and numerical algorithms (p. 92) [MATHNM43]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Theory of endogenous growth [2561503]

Coordinators: I. Ott

Part of the modules:
- Innovation and growth (p. 122) [MATHMWVWLIWW1]
- Growth and Agglomeration (p. 124) [MATHMWVWL12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Conditions
None.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Learning Outcomes
Students shall be given the ability to understand, analyze and evaluate selected models of endogenous growth theory.

Content
- Basic models of endogenous growth
- Human capital and economic growth
- Modelling of technological progress
- Diversity Models
- Schumpeterian growth
- Directional technological progress
- Diffusion of technologies

Media
- lecture slides
- exercises

Basic literature
Excerpt:

Remarks
The exercise is possibly offered in English.
Course: Energy and Environment [2581003]

Coordinators: U. Karl, n.n.

Part of the modules: Energy Economics and Technology (p. 118)[MATHMWBWLIP5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The examination will be in form of an written exam acc. to §4(2), 2 ER.

Conditions
None.

Learning Outcomes
The student should identify environmental problems of energy from fossil fuels. The student can identify appropriate technologies for pollution control. The student knows methods for assessing environmental problems and their ways of application.

Content
The focus of the lecture is put on environmental impacts of fossil fuel conversion and related assessment methods. The list of topics is given below.

- Fundamentals of energy conversion
- Air pollutant formation from fossil fuel combustion
- Control of air pollutant emissions from fossil-fuelled power plants.
- Measures to improve conversion efficiency of fossil fuelled power plants.
- External effects of energy supply (Life Cycle Assessment of selected energy systems)
- Integrated Assessment models supporting the European Thematic Strategy on Air
- Cost-effectiveness analyses and cost-benefit analyses of air pollution control measures
- Monetary evaluation of external effects of energy supply (external costs)
Course: Energy Systems Analysis [2581002]

Coordinators: V. Bertsch
Part of the modules: Energy Economics and Technology (p. 118)[MATHMWBWLIP5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
The student
- has the ability to understand and critically reflect the methods of energy system analysis, the possibilities of its application in the energy industry and the limits and weaknesses of this approach
- can use select methods of the energy system analysis by her-/himself

Content
1. Overview and classification of energy systems modelling approaches
2. Usage of scenario techniques for energy systems analysis
3. Unit commitment of power plants
4. Interdependencies in energy economics
5. Scenario-based decision making in the energy sector
6. Visualisation and GIS techniques for decision support in the energy sector

Media
Media will likely be provided on the e-learning platform ILIAS.

Remarks
Since 2011 the lecture is offered in winter term. Exams can still be taken in summer term.
Course: Enterprise Architecture Management [2511600]

Coordinators: T. Wolf
Part of the modules: Informatics (p. 142)[MATHMINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Learning Outcomes
Students understand the connection between enterprise strategy, business processes and business objects and IT architecture; they know methods to depict these connections and how they can be developed based on each other.

Content
The following topics will be covered: components of enterprise architecture, enterprise strategy including methods to develop strategies, business process (re)engineering, methods to implement changes within enterprises (management of change)

Media
Slides, access to internet resources.

Basic literature
- Doppler, K., Lauterburg, Ch.: Change Management. Campus Verlag 1997
Course: Discrete-event Simulation in Production and Logistics [2550488]

Coordinators: S. Nickel, S. Spieckermann

Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMOR8], Operations Research in Supply Chain Management (p. 138)[MATHMOR11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written paper and an oral exam (according to §4(2), 3 of the examination regulation).

Conditions
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Recommendations
Besides knowledge of Operations Research students are assumed to be familiar with the following topics:
- Introduction in Statistics
- Programming basics (algorithms and data structures)
- Basic knowledge in production and logistics

Learning Outcomes
The student
- knows basic concepts of discrete event simulation models,
- applies computer-based simulation systems,
- structures and implements simulation studies according to specific process models,
- has an in-depth knowledge for logistics issues and discovers the importance of statistical methods in modeling and evaluation of simulation models,
- explains coupled systems of simulation and meta-heuristics, and characterizes simulation programs.

Content
Simulation of production and logistics systems is an interdisciplinary subject connecting expert knowledge from production management and operations research with mathematics/statistics as well as computer science and software engineering. With completion of this course, students know statistical foundations of discrete simulation, are able to classify and apply related software applications, and know the relation between simulation and optimization as well as a number of application examples. Furthermore, students are enabled to structure simulation studies and are aware of specific project scheduling issues.

Remarks
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The course is planned to be held every summer term. The planned lectures and courses for the next three years are announced online.
Course: Additional Topics on Stochastic Analysis [MATHAN40-2]

Coordinators: L. Weis
Part of the modules: Stochastic Evolution Equations (p. 61) [MATHAN40]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Evolution Equations [MATHAN12]

Coordinators: R. Schnaubelt, L. Weis
Part of the modules: Evolution Equations (p. 50)[MATHMWAN12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Experimental Economics [2540489]

Coordinators: C. Weinhardt, T. Teubner

Part of the modules: Decision and Game Theory (p. 123)[MATHMWVWL10], Experimental Economics (p. 128)[MATHMW4VWL17]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation). By successful completion of the exercises (according to §4(2), 3 of the examination regulation) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4). The bonus only applies to the first and second exam of the semester in which it was obtained.

Conditions
See corresponding module information.

Learning Outcomes
The students should learn

- how to gain scientific experience and knowledge (philosophy of science),
- how Game Theory and Experimental Economics influenced each other in scientific research,
- about the methods as well as the strengths and weaknesses of Experimental Economics,
- some examples of experimental research, such as markets and auctions, coordination games, bargaining, decision making under risk,
- how to evaluate data.

Content
Experimental Economics have become a separate field in Economics. Nearly all fields of the economic discipline use economic experiments to verify theoretical results. Besides being used for empirical validation, this method is applied in political and strategic consulting. The lecture gives an introduction to experimental methods in economics and shows differences to experiments in natural sciences. Scientific studies are used to show exemplary applications.

Media
- PowerPoint
- E-learning platform ILIAS
- Classroom experiments or experiments in the computer laboratory will be conducted

Basic literature
- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2nd ed., 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.
Course: Extremal Graph Theory [MATHAG42]

Coordinators: M. Axenovich, T. Ueckerdt

Part of the modules: Extremal Graph Theory (p. 40)[MATHAG42]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Fixed Income Securities [2530260]

Coordinators: M. Uhrig-Homburg
Part of the modules: Finance 2 (p. 115)[MATHMWBWLFBV2], Finance 3 (p. 116)[MATH4BWLFBV11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with national and international bond markets. Therefore, we first have a look at financial instruments that are of particular importance. Thereafter, specific models and methods that allow the evaluation of interest rate derivatives are introduced and applied.

Content
The lecture deals with both German and international bond markets, which are an important source of funding for both the corporate and the public sector. After an overview of the most important bond markets, various definitions of return are discussed. Based on that, the concept of the yield curve is presented. The modelling of the dynamics of the term structure of interest rates provides the theoretical foundation for the valuation of interest rate derivatives, which is discussed in the last part of the lecture.

Basic literature

Elective literature:
Course: Financial Analysis [2530205]

Coordinators: T. Lüdecke

Part of the modules: Finance 3 (p. 116)[MATH4BWLFBV11], Finance 2 (p. 115)[MATHMWBWLFBV2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
Basic knowledge in corporate finance, accounting, and valuation is required.

Learning Outcomes
Students are able to

- understand the key financial statements according to international standards,
- use financial ratios and financial analysis for different purposes,
- evaluate the financial performance of the firm,
- determine the value of the firm by using residual income and cash flow figures, respectively,
- assess the quality of financial statements.

Content
This lecture reviews the key financial statements according to international financial reporting standards and provides analytical tools to evaluate the income statement, the balance sheet, and the cash flow statement in order to measure a firm’s liquidity, operational efficiency, and profitability.

Media
Slides

Basic literature

Remarks
New course starting summer term 2015.
Course: Financial Econometrics [2520022]

Coordinators: M. Schienle

Part of the modules: Econometrics and Statistics II (p. 131)[MATHMWSTAT6], Econometrics and Statistics I (p. 130)[MATHMWSTAT5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Knowledge of the contents covered by the course “Economics III: Introduction in Econometrics” [2520016]

Learning Outcomes
The student
- shows a broad knowledge of financial econometric estimation and testing techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content
ARMA, ARIMA, ARFIMA, (non-)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer based exercises

Media
slides

Basic literature
References will be provided in the lectures

Remarks
The course is offered in summer term 2016, in winter term 2017/18 and afterwards every second term
Course: Financial Intermediation [2530232]

Coordinators: M. Ruckes

Part of the modules: Finance 2 (p. 115)[MATHMWBLFBV2], Finance 3 (p. 116)[MATH4BWLBV11], Economic Theory and its Application in Finance (p. 125)[MATHMW4VW14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Conditions
None.

Learning Outcomes

Students
- are in a position to describe the arguments for the existence of financial intermediaries,
- are able to discuss and analyze both static and dynamic aspects of contractual relationships between banks and borrowers,
- are able to discuss the macroeconomic role of the banking system,
- are in a position to explain the fundamental principles of the prudential regulation of banks and are able to recognize and evaluate the implications of specific regulations.

Content
- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Stability of the financial system
- The macroeconomic role of financial intermediation
- Principles of the prudential regulation of banks

Basic literature

Elective literature:
Course: Discrete time finance [FMDZ]

Coordinators: N. Bäuerle, V. Fasen
Part of the modules: Discrete time finance (p. 94) [MATHST04]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam: written or oral exam
Marking: grade of exam

Conditions
None.

Learning Outcomes

Content
Course: Mathematical Finance in Continuous Time [MATHST08]

Coordinators: N. Bäuerle, V. Fasen
Part of the modules: Continuous time finance (p. 97) [MATHMWST08]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Finite Element Methods [MATHNM07]

Coordinators: W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Part of the modules: Finite element methods (p. 65)[MATHMWNM07]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Fourier Analysis [MATHAN14]

Coordinators: R. Schnaubelt, L. Weis
Part of the modules: Fourier Analysis (p. 51)[MATHMWAN14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: [01048]

Coordinators: G. Herzog, D. Hundertmark, T. Lamm, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis

Part of the modules: Functional Analysis (p. 44)[MATHMWAN05]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam:
written or oral exam
Marking:
grade of exam

Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
Linear Algebra 1+2
Analysis 1-3

Learning Outcomes

Content
Course: Complex Analysis II [MATHAN16]

Coordinators: G. Herzog, M. Plum, W. Reichel, C. Schmoeger, R. Schnaubelt, L. Weis

Part of the modules: Complex Analysis II (p. 52)[MATHMWAN16]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Mixed Integer Programming I [2550138]

Coordinators: O. Stein
Part of the modules: Mathematical Programming (p. 140) [MATHMWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td></td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2) 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite. The examination can also be combined with the examination of Mixed Integer Programming II [25140]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Recommendations
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Learning Outcomes
The student

• knows and understands the fundamentals of linear mixed integer programming,
• is able to choose, design and apply modern techniques of linear mixed integer programming in practice.

Content
Many optimization problems from economics, engineering and natural sciences are modeled with continuous as well as discrete variables. Examples are the energy minimal design of a chemical process in which several reactors may be switched on or off, or the time minimal covering of a distance with a vehicle equipped with a gear shift. While optimal points can be defined straightforwardly, for their numerical identification an interplay of ideas from discrete and continuous optimization is necessary. The lecture treats methods for the numerical solution of linear optimization problems which depend on continuous as well as discrete variables. It is structured as follows:

• Existence results and concepts of linear as well as convex optimization
• LP relaxation and error bounds for rounding
• Gomory's cutting plane method
• Benders decomposition

Part II of the lecture treats nonlinear mixed integer programs. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Basic literature
Elective literature:

• J. Kallrath: Gemischt-ganzzahlige Optimierung, Vieweg, 2002
• D. Li, X. Sun: Nonlinear Integer Programming, Springer, 2006

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).
Course: Mixed Integer Programming II [25140]

Coordinators: O. Stein
Part of the modules: Mathematical Programming (p. 140)[MATHMWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>de</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation.

The examination is held in the semester of the lecture and in the following semester.

Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

The examination can also be combined with the examination of Mixed Integer Programming I [2550138]. In this case, the duration of the written examination takes 120 minutes.

Conditions

None.

Recommendations

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Learning Outcomes

The student

- knows and understands the fundamentals of convex and of nonconvex mixed integer programming,
- is able to choose, design and apply modern techniques of nonlinear mixed integer programming in practice.

Content

Many optimization problems from economics, engineering and natural sciences are modeled with continuous as well as discrete variables. Examples are the energy minimal design of a chemical process in which several reactors may be switched on or off, or the time minimal covering of a distance with a vehicle equipped with a gear shift. While optimal points can be defined straightforwardly, for their numerical identification an interplay of ideas from discrete and continuous optimization is necessary.

Part I of the lecture deals with linear mixed integer programs.

Part II treats methods for the numerical solution of optimization problems which depend nonlinearly on continuous as well as discrete variables. It is structured as follows:

- Concepts of convex optimization
- Mixed integer convex programming (branch and bound methods)
- Mixed integer nonconvex programming
- Generalized Benders decomposition
- Outer approximation methods
- Heuristics

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media

Lecture notes.

Basic literature

Elective literature:

- J. Kallrath: Gemischt-ganzzahlige Optimierung, Vieweg, 2002
- D. Li, X. Sun: Nonlinear Integer Programming, Springer, 2006

Remarks

The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).
Course: Generalized Regression Models [MATHST09]

Coordinators: N. Henze, B. Klar

Part of the modules: Generalized Regression Models (p. 98)[MATHMWST09]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Geometry of Schemes [MATHAG11]

Coordinators: F. Herrlich, S. Kühnelein, G. Weitze-Schmithüsen
Part of the modules: Geometry of Schemes (p. 28)[MATHMWAG11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Geometric Group Theory [MATHAG12]

Coordinators: F. Herrlich, E. Leuzinger, G. Link, R. Sauer, P. Schwer, W. Tuschmann, G. Weitze-Schmithüsen

Part of the modules: Geometric Group Theory (p. 29)[MATHMWAG12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

exam:
written or oral exam
Marking:
grade of exam

Conditions

None.

Learning Outcomes

Content
Course: Geometric numerical integration [MATHNM31]

Coordinators: M. Hochbruck, T. Jahnke
Part of the modules: Geometric numerical integration (p. 82)[MATHNM31]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
Content
Course: Business Strategies of Banks [2530299]

Coordinators: W. Müller
Part of the modules: Finance 2 (p. 115)[MATHMWBWLFBV2], Finance 3 (p. 116)[MATH4BWLFBV11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Students are in a position to discuss the principles of commercial banking. They are familiar with fundamental concepts of bank management and are able to apply them.

Content
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank's success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management's perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Basic literature
Elective literature:
- A script is disseminated chapter by chapter during the course of the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 6th edition, Springer
Course: Global Differential Geometry [MATHAG27]

Coordinators: S. Grensing, W. Tuschmann
Part of the modules: Global Differential Geometry (p. 31)[MATHAG27]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Global Optimization I [2550134]

Coordinators: O. Stein
Part of the modules: Methodical Foundations of OR (p. 134)[MATHMWOR6], Mathematical Programming (p. 140)[MATHMWOR9], Applications of Operations Research (p. 132)[MATHMWOR5]

ECTS Credits	**Hours per week**	**Term**	**Instruction language**
4.5 | 2/1 | de |

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 50% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite. The examination can also be combined with the examination of Global Optimization II [2550136]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Learning Outcomes
The student
- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:
- Introduction, examples, and terminology
- Existence results
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Numerical methods

Nonconvex optimization problems are treated in part II of the lecture.

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Basic literature
Elective literature:
- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Global Optimization II [2550136]

Coordinators: O. Stein
Part of the modules: Methodical Foundations of OR (p. 134)[MATHMWOR6], Mathematical Programming (p. 140)[MATHMWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td></td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester.
Prerequisite for admission to the written examination is attaining at least 50% of the exercise points. Therefore the online-registration to the written examination is subject to fulfilling the prerequisite.
The examination can also be combined with the examination of Global Optimization I [2550134]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Learning Outcomes
The student
• knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
• is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.
The global solution of convex optimization problems is subject of part I of the lecture.
Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:
• Introduction and examples
• Convex relaxation
• Interval arithmetic
• Convex relaxation via αBB method
• Branch and bound methods
• Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Basic literature
Elective literature:
• W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
• C.A. Floudas Deterministic Global Optimization Kluwer 2000
• R. Horst, H. Tuy Global Optimization Springer 1996
• A. Neumaier Interval Methods for Systems of Equations Cambridge University Press 1990

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Graph Theory and Advanced Location Models [2550484]

Coordinators: S. Nickel

Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMWOR8], Mathematical Programming (p. 140)[MATHMWOR9], Operations Research in Supply Chain Management (p. 138)[MATHMWOR11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a 120 minutes written examination (according to §4(2), 1 of the examination regulation). The examination is held in the term of the lecture and the following lecture.

Conditions
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Learning Outcomes
The student
- knows and classifies basic concepts and algorithms of Graph Theory which are used in engineering, economic and socio-scientific problems,
- describes and utilizes models and methods in order to optimize on graphs and networks
- models advanced problem settings in location theory,
- is capable of analyzing practically-relevant settings and current research topics and develops individual solution concepts.

Content
Graph Theory is an important part of Discrete Mathematics. A special attraction is in its clearness and variety of proof techniques. Object of the first part “Graph Theory” is the mediation of basic graph theoretical concepts and algorithms, which are deployed in many areas. In focus is the modeling of different problems with graph theoretical methods und their solutions with efficient algorithms. Significant focal points are Shortest Paths, Flows, Matchings, Colorings and Matroids. A variety of application areas of location theory has attracted increasing research interest within the last decades, because location decisions are a critical factor in strategic planning. In the second part “Advanced Location Models”, some current research questions of modern industrial location theory are discussed after a short introduction. Thereby, practical models and suitable solution methods for location problems in general networks are presented. The lecture goes into details about Pareto Solutions in Networks, Ordered Median Problems, Covering Problems and Allocation Problems.

Basic literature
- Diestel: Graph Theory, 3rd edition, Springer, 2006
- Bondy, Murt: Graph Theory, Springer, 2008
- Nickel, Puerto: Location Theory, Springer, 2005

Remarks
The lecture is offered irregularly. The planned lectures and courses for the next three years are announced online.
Course: Graph Theory [GraphTH]

Coordinators: M. Axenovich
Part of the modules: Graph Theory (p. 30)[MATHAG26]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4+2</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
Linear Algebra 1+2, Analysis 1+2

Learning Outcomes
Learning outcomes include: understanding structural and algorithmic properties of graphs, learning about graph colorings, unavoidable structures in graphs, probabilistic methods, properties of large graphs.

Content
The graph theory course covers the material starting with the basic graph properties introduced by Euler and finishing up with modern results and techniques in extremal graph theory. The specific topics include: structure of trees, paths, cycles, walks in graphs, unavoidable subgraphs in dense graphs, planar graphs, graph colorings, Ramsey theory, regularity in graphs.
Course: Group actions in Riemannian geometry [MATHAG40]

Coordinators: W. Tuschmann
Part of the modules: Group actions in Riemannian geometry (p. 38)[MATHAG40]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Homotopy theory [MATHAG44]

Coordinators: R. Sauer

Part of the modules: Homotopy theory (p. 42)[MATHAG44]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Incentives in Organizations [n.n.]

Coordinators: P. Nieken

Part of the modules: Experimental Economics (p. 128)[MATHMW4VWL17], Microeconomic Theory (p. 126)[MATHMW4VWL15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Knowledge of microeconomics, game theory, and statistics is assumed.

Learning Outcomes
The student

- develops a strategic understanding about incentives systems and how they work.
- analyzes models from personnel economics.
- understands how econometric methods can be used to analyze performance and compensation data.
- knows incentives schemes that are used in companies and is able to evaluate them critically.
- can develop practical implications which are based on theoretical models and empirical data for companies.
- understands the challenges of managing incentive and compensation systems and their relationship with corporate strategy.

Content
The students acquire profound knowledge about the design and the impact of different incentive and compensation systems. Topics covered are, for instance, performance based compensation, team work, intrinsic motivation, multitasking, and subjective performance evaluations. We will use microeconomic or behavioral models as well as empirical data to analyze incentive systems. We will investigate several widely used compensation schemes and their relationship with corporate strategy. Students will learn to develop practical implications which are based on the acquired knowledge of this course.

Media
Slides

Basic literature
Slides
Additional case studies and research papers will be announced in the lecture.

Remarks
The course will be offered from summer term 2016.
Course: Innovationtheory and -policy [2560236]

Coordinators: I. Ott
Part of the modules: Innovation and growth (p. 122)[MATHMWVWLWW1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Conditions
None.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Learning Outcomes
Students shall be given the ability to
- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- understand the relationships between market structure and the development of innovation
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Content
- Incentives for the emergence of innovations
- Patents
- Diffusion
- Impact of technological progress
- Innovation Policy

Media
- lecture slides
- exercises

Basic literature
Excerpt:

Remarks
The exercise is possibly offered in English.
Course: Insurance Marketing [2530323]

Coordinators: E. Schwake
Part of the modules: Insurance Management I (p. 117)[MATHMBBMLFV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3/0</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the assessment of the oral presentations incl. papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Basic literature
Elective literature:
- Farny, D.. Versicherungsbetriebslehre (Kapitel III.3 sowie V.4). Karlsruhe 2011
- Kurtenbach / Kühlmann / Käßer-Pawelka. Versicherungsmarketing... Frankfurt 2001
- Wiedemann, K.-P./Klee, A. Ertragsorientiertes Zielkundenmanagement für Finanzdienstleister, Wiesbaden 2003
Course: Insurance Production [2530324]

Coordinators: U. Werner
Part of the modules: Insurance Management I (p. 117)[MATHMWBWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3/0</td>
<td>Winter / Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the assessment of the oral presentations incl. papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Basic literature
Elective literature:

Remarks
This course is offered on demand. For further information, see: http://insurance.fbv.uni-karlsruhe.de
Course: Insurance Risk Management [2530335]

Coordinators: H. Maser
Part of the modules: Insurance Management I (p. 117) [MATHMWBFLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written or an oral exam (according to Section 4 (2), 1 or 2 of the examination regulation).

Conditions
None.

Learning Outcomes
Getting to know basic principles of risk management in insurance companies and credit institutions.

Content
Basic literature
Elective literature:

- "Mindestanforderungen an ein (Bank-)Risikomanagement", www.bafin.de

Remarks
Block course. For organizational reasons, please register with the secretary of the chair: thomas.mueller3@kit.edu.
Course: Integral Equations [IG]

Coordinators: T. Arens, F. Hettlich, A. Kirsch
Part of the modules: Integral Equations (p. 45)[MATHMWAN07]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
Linear Algebra 1+2
Analysis 1-3

Learning Outcomes
The students can

- formulate and classify integral equations,
- discuss existence and uniqueness of integral equations,
- reformulate models based on applications by integral equations.

Content

- Riesz and Fredholm theory,
- Fredholm und Volterra integral equations of second kind,
- applications in potential theory,
- convolution equations
Course: International Finance [2530570]

Coordinators: M. Uhrig-Homburg, Dr. Walter
Part of the modules: Finance 3 (p. 116)[MATH4BWLFBV11], Finance 2 (p. 115)[MATHMWBWLFBV2]

ECTS Credits: 3 | Hours per week: 2 | Term: Summer term | Instruction language: de

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on international markets and to manage foreign exchange risks.

Content
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First the point of view of an international investor second that, of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore current exchange rate theories are discussed.

Basic literature
Elective literature:
Course: International Economic Policy [2560254]

Coordinators: J. Kowalski
Part of the modules: Growth and Agglomeration (p. 124)[MATH/MWVL12]

ECTS Credits: 4,5
Hours per week: 2/1
Term: Summer term
Instruction language: de

Learning Control / Examinations
The assessment consists of a written exam (60min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
Previous visit of the lectures Economics II: Macroeconomics [2600014] is recommended.

Learning Outcomes
The student gets acquainted with various modern doctrines and theories pertinent to international economic policy. They should understand the structure of the institutional framework relevant for the global economy and the way it functions. They should be able to form their own judgment on the strategies, measures and outcomes of actions of various actors dealing with the international economic policy.

Content
Basic literature
Elective literature:

Remarks
The examination will be offered latest until summer term 2016 (repeaters only).
Course: Inverse Problems [01052]

Coordinators: T. Arens, F. Hettlich, A. Kirsch, A. Rieder

Part of the modules: Inverse Problems (p. 64)[MATHMWNM06]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
Linear Algebra 1+2
Analysis 1-3
Functional Analysis

Learning Outcomes
The students
- are able to discern well-posed from ill-posed problems,
- know regularization strategies.

Content
- linear equations of the first kind
- ill-posed problems
- theory of regularization
- iterative methods
- applications
Course: Classical Methods for Partial Differential Equations [KMPD]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Knowledge Discovery [2511302]

Coordinators: R. Studer

Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation. Students can be awarded a bonus on their final grade if they successfully complete special assignments.

Conditions
None.

Learning Outcomes

Students
- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery
- are able to design, train and evaluate adaptive systems
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.

Content
The lecture provides an overview of machine learning and data mining techniques for knowledge discovery from large data sets. These techniques are examined in respect of algorithms, applicability to different data representations and application in the real world. Topics of the lectures comprise the whole Machine Learning and Data Mining process like CRISP, data warehousing, OLAP-techniques, learning algorithms, visualization and empirical evaluation. Covered learning techniques range from traditional approaches like decision trees, neural networks and support vector machines to selected approaches resulting from current research. Discussed learning problems are amongst others feauturevector-based learning, text mining and social network analysis.

Media
Slides.

Basic literature
- M. Berhold, D. Hand (eds). Intelligent Data Analysis - An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley
Course: Combinatorics [MATHAG37]

Coordinators: M. Axenovich, T. Ueckerdt

Part of the modules: Combinatorics (p. 36)[MATHAG37]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Combinatorics in the plane [MATHAG28]

Coordinators: M. Axenovich, T. Ueckerdt
Part of the modules: Combinatorics in the plane (p. 32)[MATHAG28]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Convex Analysis [2550120]

Coordinators: O. Stein

Part of the modules: Mathematical Programming (p. 140)[MATHMWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>de</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

Conditions
None.

Recommendations
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Learning Outcomes
The student
- knows and understands the fundamentals of convex analysis,
- is able to choose, design and apply modern techniques of convex analysis in practice.

Content
Convex Analysis deals with properties of convex functions and convex sets, in particular with respect to the minimization of convex functions over convex sets. That the involved functions are not necessarily assumed to be differentiable allows a number of applications which are not covered by techniques from smooth optimization, e.g. approximation problems with respect to the Manhattan or maximum norms, classification problems or the theory of statistical estimates. The lecture develops along another, geometrically simple example, where a nonsmooth obstacle set is to be described by a single smooth convex constraint such that minimal and maximal distances to the obstacle can be computed. The lecture is structured as follows:
- Introductory examples and terminology
- Convex subdifferential, Lipschitz continuity and the safety margin
- Normal cones, error bounds and the maximal distance

Media
Lecture notes.

Basic literature

Elective literature:

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Course: Convex Geometry [1044]

Coordinators: D. Hug
Part of the modules: Convex Geometry (p. 25) [MATHMWAG07]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
- Linear Algebra 1-2
- Analysis 1-3

Learning Outcomes

The students
- know fundamental properties of convex sets and convex functions and apply these to related problems,
- are familiar with fundamental geometric and analytic inequalities and their applications to geometric extremal problems,
- know selected integral formulas for convex sets and the required results on invariant measures.

Content

1. Convex Sets
 1.1. Combinatorial Properties
 1.2. Support and Separation Properties
 1.3. Extremal Representations

2. Convex Functions
 2.1. Basic Properties
 2.2. Regularity
 2.3. Support Function

3. Brunn-Minkowski Theory
 3.1. Hausdorff Metric
 3.2. Volume and Surface Area
 3.3. Mixed Volumes
 3.4. Geometric Inequalities
 3.5. Surface Area Measures

4. Integralgeometric Formulas
 4.1. Invariant Measures
 4.2. Projection and Section Formulas
Course: Hospital Management [2550493]

Coordinators: S. Nickel, Hansis
Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMOR8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3/0</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of attendance, a seminar thesis and a final exam (according to §4(2), 1 of the examination regulation). The examination is held in the term of the lecture and the following lecture.

Conditions
None.

Learning Outcomes
The student

• understands the principles of work flows in hospitals,
• utilizes Operations Research methods in so-called non-profit-organisations to improve service qualities,
• explains, classifies and deals with the most important application areas for mathematical models, e.g. personnel planning or quality management.

Content
The lecture “Hospital management” presents internal organization structures, work conditions and work environments at the example of hospitals and relates this to common and expected conditions of other service industries. Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. Students have the possibility to participate in a final exam.

Remarks
The credits have been changed from 3 to 4.5.
The lecture is held in every semester.
The planned lectures and courses for the next three years are announced online.
Course: Credit Risk [2530565]

Coordinators: M. Uhrig-Homburg
Part of the modules: Finance 2 (p. 115)[MATHMWBWLFBV2], Finance 3 (p. 116)[MATH4BWLFBV11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with the credit markets and the credit risk indicators like ratings, default probabilities and credit spreads. The students learn about the components of credit risk (e.g. default time and default rate) and quantify these in different theoretical models to price credit derivatives.

Content
The lecture deals with the diverse issues arising in the context of measuring and controlling credit risk. At first, the theoretical and empirical relations between ratings, probabilities of default, and credit spreads are analysed. After that, the focus is on the valuation of credit risk. Finally, the management of credit risk, e.g. using credit derivatives and credit portfolio analysis, is examined, and the legal framework and its implications are discussed.

Basic literature

Elective literature:
Course: L2-Invariants [MATHAG38]

Coordinators: H. Kammeyer, R. Sauer
Part of the modules: L2-Invariants (p. 37)[MATHAG38]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Management of IT-Projects [2511214]

Coordinators:
R. Schätzle

Part of the modules:
Informatics (p. 142)[MATHMINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) in the first week after lecture period according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
Students

- explain the terminology of IT project management and typical used methods for planning, handling and controlling,
- apply methods appropriate to current project phases and project contexts,
- consider organisational and social impact factors.

Content
The lecture deals with the general framework, impact factors and methods for planning, handling, and controlling of IT projects. Especially following topics are addressed:

- project environment
- project organisation
- project planning including the following items:
 - plan of the project structure
 - flow chart
 - project schedule
 - plan of resources
- effort estimation
- project infrastructure
- project controlling
- risk management
- feasibility studies
- decision processes, conduct of negotiations, time management.

Media
Slides, access to internet resources.

Basic literature
- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004

Further literature is given in each lecture individually.
Course: Marketing Strategy Business Game [2571183]

Coordinators: M. Klarmann, Mitarbeiter
Part of the modules: Marketing Management (p. 120) [MATHMWBWLMMAR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1</td>
<td>Summer</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
Students
- are able to operate the strategic marketing simulation software “Markstrat”
- are able to take strategic marketing decisions in groups
- know how to apply strategic marketing concepts to practical contexts (e.g. for market segmentation, product launches, coordination of the marketing mix, market research, choice of the distribution channel or competitive behavior)
- are capable to collect and to select information usefully with the aim of decision-making
- are able to react appropriately to predetermined market conditions
- know how to present their strategies in a clear and consistent way
- are able to talk about the success, problems, critical incidents, external influences and strategy changes during the experimental game and to reflect and present their learning success

Content
Using Markstrat, a marketing strategy business game, students work in groups representing a company that competes on a simulated market against the other groups’ companies.

Remarks
In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing & Sales Research Group (marketing.ism.kit.edu) shortly before the lecture period in summer term starts.
Please note: The number of participants for this course is limited. The Marketing & Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.
Course: Marketing Communication [2540440]

Coordinators: J. Kim

Part of the modules: Marketing Management (p. 120)

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written examination (60 min) (according to Section 4 (2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
Students

- get to know marketing communications objectives and strategies
- gain knowledge about positioning and integrated marketing communications as part of advertising strategy
- know how to apply social-technique rules on advertising
- learn techniques for measuring the advertising effects from activation through to actual behavior
- learn about online marketing instruments and how to measure their success
- learn about budgeting models and media planning
- learn about economic and behavioral theories of promotions
- gain knowledge about CSR and how it is connected to marketing

Content
The aim of this lecture is to provide an overview of research on marketing communication tools, such as offline and online advertising, budgeting and media planning, price promotions and corporate social responsibility activities.

Media
Lecture slides will be provided in ILIAS

Basic literature
- Esch, F.-R./Herrmann, A./Sattler, H. “Marketing – Eine managementorientierte Einführung”
- Kroeber-Riel, W./Esch, F.-R. “Strategie und Technik der Werbung”

See lecture slides for further recommendations on literature

Remarks
New course starting summer term 2015.
The credits for the course have been changed from 3 to 4,5 from summer term 2016 on.
Course: Markov Decision Processes [MATHST11]

Coordinators: N. Bäuerle
Part of the modules: Markov Decision Processes (p. 100)[MATHMWST11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Market Research [2571150]

<table>
<thead>
<tr>
<th>Coordinators:</th>
<th>M. Klarmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of the modules:</td>
<td>Marketing Management (p. 120)[MATHMWBWLMAR5]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
Topics addressed in this course are for example:

- Theoretical principles of market research
- Statistical foundations of market research
- Measuring customer attitudes
- Understanding of customer reactions
- Strategical decision making

Content
Topics addressed in this course are for example:

- Theoretical foundations of market research
- Statistical foundations of market research
- Measuring customer attitudes
- Understanding customer reactions
- Strategical decision making

Remarks
Please note that this course has to be completed successfully by students interested in master thesis positions at the Marketing & Sales Research Group.

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Course: Market Microstructure [2530240]

Coordinators:
T. Lüdecke

Part of the modules:
Finance 2 (p. 115)[MATHMWBWLFBV2], Finance 3 (p. 116)[MATH4BWLFBV11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
Knowledge of the content of the course *Asset Pricing* [2530555] is assumed.

Learning Outcomes

This lecture makes students familiar with the fundamental models of trading in financial markets. It starts with generic design features of financial markets which are used to frame price discovery as the key element of the trading process. The link between market design and market quality is pointed out by using alternative measures of market quality. Seminal models of market microstructure are used to show how dealer inventory and/or asymmetric information affect market prices and the pricing of securities. Theoretical models are shown to provide predictions which are consistent with empirical evidence.

Content

The focus of this lecture is on the question how the microstructure of financial markets affects price discovery and market quality. First, issues in designing market structure are presented and linked to fundamental dimensions of market quality, i.e. liquidity and trading costs. In particular, the services and privileges of market makers are stressed. The main part of the lecture covers inventory-models of dealer markets and models of information-based trading. The final part gives attention to some econometric models to analyze the short-term behavior of security prices.

Media

Slides.

Basic literature

keine

Elective literature:

See reading list.

Remarks

This lecture will not be provided any more. The examination will be offered latest until winter term 2015/2016 (repeaters only).
Course: Mathematical methods in signal and image processing [MATHNM16]

Coordinators: A. Rieder
Part of the modules: Mathematical methods in signal and image processing (p. 72) [MATHMWNM16]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Mathematical modelling und simulation in practise [MATHNM27]

Coordinators: G. Thäter

Part of the modules: Mathematical modelling und simulation in practise (p. 78)[MATHNM27]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Mathematical Statistics [MATHST15]

Coordinators: N. Henze, B. Klar
Part of the modules: Mathematical Statistics (p. 104) [MATHMWST15]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Mathematical Theory of Democracy [2525537]

Coordinators: A. Melik-Tangyan

Part of the modules: Collective Decision Making (p. 127) [MATHMW4VWL16]

ECTS Credits	Hours per week	Term	Instruction language
4,5 | 2/1 | Winter term |

Learning Control / Examinations
The assessment consists of a written exam (120 min.) according to §4 (2), 1 of the examination regulation. It may be an oral exam (20 - 30 min.) (according to §4 (2), 2 of the examination regulation) in the case of poor attendance.

Conditions
None.

Recommendations
None.

Learning Outcomes
The student understands the foundations of democracy and the implementation problems and the masters the operationalization of the problems by mathematical models.

Content
The mathematical theory of democracy deals with the selection of representatives who make decisions on behalf of the whole society. The concept of representation is operationalized with the popularity index (average percentage of the population represented on a number of issues), and with the universality index (percentage of cases when a majority of the population is represented). With these indexes, the characteristics of individual representatives (president, dictator) and representative bodies (parliament, coalition, cabinet, council, jurors) are investigated. To bridge the representative and direct democracies, an alternative election method is proposed, which is not based on voting, but on the indexing of the candidates with regard to the political profile of the electorate. In addition, societal applications (federal election, surveys) and non-social applications (multi-criteria decisions, finances, traffic control) are considered.

Media
PowerPoint

Basic literature
Course: Functions of matrices [MATHNM39]

Coordinators: V. Grimm
Part of the modules: Functions of matrices (p. 88)[MATHNM39]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Maxwell’s Equations [MATHAN28]

Coordinators: T. Arens, F. Hettlich, A. Kirsch

Part of the modules: Maxwell’s Equations (p. 57)[MATHMWAN28]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Modeling Strategic Decision Making [2577908]

Coordinators: H. Lindstädt

Part of the modules: Strategic Corporate Management and Organization (p. 119) [MATHMWUO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Written exam 100% following §4, Abs. 2.

Conditions
None.

Learning Outcomes
After passing this course students are able to
- discuss individual decisions under multiple goals and subjective expected utility theory.
- handle group decisions.
- assess the implications of asymmetric information and conflicting goals (Agency Theory) on the design of decision tasks.
- recognize limits of the basic models and of the expected utility theory.
- illustrate and explain advancements in subjective expected utility theory.

Content
Starting from the basic model of economic decision theory, fundamental decision principles and calculi for multi-attribute decisions in certain and uncertain conditions up to subjective expected utility theory and the economic assessment of information are described. Subsequently participants will become familiar with agency-theoretical approaches and models for the function and design of organizational information and decision-making systems. To confront numerous infringements by decision-makers against principles and axioms of this calculus, in addition non-expected utility calculi and advanced models for decisions by economic agents are discussed; these are especially important for management decisions.

Media
Slides.

Basic literature
Course: Business Process Modelling [2511210]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions
None.

Learning Outcomes
Students
- describe goals of business process modeling and apply different modeling languages,
- choose the appropriate modeling language according to a given context,
- use suitable tools for modeling business processes,
- apply methods for analyzing and assessing process models to evaluate specific quality characteristics of the process model.

Content
The proper modeling of relevant aspects of business processes is essential for an efficient and effective design and implementation of processes. This lecture presents different classes of modeling languages and discusses the respective advantages and disadvantages of using actual application scenarios. For that simulative and analytical methods for process analysis are introduced. In the accompanying exercise the use of process modeling tools is practiced.

Media
Slides, access to internet resources.

Basic literature

Further Literature will be given in the lecture.
Course: Modelling, Measuring and Managing of Extreme Risks [2530355]

Coordinators: U. Werner, S. Hochrainer
Part of the modules: Insurance Management I (p. 117)[MATHMWBWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5</td>
<td>2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Recommendations
None.

Learning Outcomes
See German version.

Content
- Threshold models, generalized paretodistribution, threshold selection, parameter estimation, point process characterization, estimation under maximum domain: Pickands’s estimator, Hill’s estimator, Deckers-Einmahl-de Haan estimator.
- Catastrophe model approaches, simulation of earthquakes, hurricanes, and floods, vulnerability functions, loss estimation. Indirectvsdirecteffects.
- Case study presentations: Household level index based insurance systems (India, Ethiopia, SriLanka, China), insurance back-up systems coupled with public private partnerships (France, US), Reinsurance approaches (Munich Re, Swiss Re, Allianz).
- Climate Change topics: IPCC report, global and climate change.

Basic literature
Course: Multivariate Statistical Methods [2520317]

Coordinators: O. Grothe

Part of the modules: Econometrics and Statistics II (p. 131)[MATHMWSTAT6], Analytics and Statistics (p. 129)[MATHMW4STAT4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Conditions
None.

Recommendations
It is strongly recommended to attend the courses Statistics 1, Statistics 2 and Analysis of multivariate Data.

Learning Outcomes
Students
- choose appropriate methods for the illustration of multivariate data, for structure analysis as well as dimension reduction, and apply these.
- apply regression models.
- apply software.

Content
- Graphical methods for multivariate Data
- Regression Analysis (incl. logistic regression)
- Principal Component, Factor and Correspondence Analysis
- Multidimensional Scaling
- Hierarchical Classification

Remarks
The credits for the course “Multivariate Statistical Methods” have been changed from 5 to 4,5 from winter term 2015/2016 on.
Course: Nature-inspired Optimisation Methods [2511106]

Coordinators: P. Shukla
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination called “bonus exam”, 60 min (according Section 4(2), 3 of the examination regulation) or a selection of exercises. The bonus exam may be split into several shorter written tests.
The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Conditions
None.

Learning Outcomes
To learn:
1. Different nature-inspired methods: local search, simulated annealing, tabu search, evolutionary algorithms, ant colony optimization, particle swarm optimization
2. Different aspects and limitation of the methods
3. Applications of such methods
4. Multi-objective optimization methods
5. Constraint handling methods
6. Different aspects in parallelization and computing platforms

Content
Many optimization problems are too complex to be solved to optimality. A promising alternative is to use stochastic heuristics, based on some fundamental principles observed in nature. Examples include evolutionary algorithms, ant algorithms, or simulated annealing. These methods are widely applicable and have proven very powerful in practice. During the course, such optimization methods based on natural principles are presented, analyzed and compared. Since the algorithms are usually quite computational intensive, possibilities for parallelization are also investigated.

Media
Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Basic literature

Weiterführende Literatur:
Course: Non- and Semiparametrics [2521300]

Coordinators: M. Schienle
Part of the modules: Econometrics and Statistics II (p. 131)[MATHMWSTAT6], Econometrics and Statistics I (p. 130)[MATHMWSTAT5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Winter</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Conditions

None.

Recommendations

Knowledge of the contents covered by the course "Applied Econometrics" [2520020]

Learning Outcomes

The student
- shows comprehensive knowledge of non- and semiparametric estimation techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content

Kernel density estimator, local constant and local polynomial regression, choice of bandwidth, Series- and Sieve-Estimators, additive models, semiparametric models

Media

Slides

Basic literature

Li, Racine: Nonparametric Estimation
Course: Nonlinear Optimization I [2550111]

Coordinators: O. Stein

Part of the modules: Stochastic Methods and Simulation (p. 135)[MATHMWOR7], Methodical Foundations of OR (p. 134)[MATHMWOR6], Mathematical Programming (p. 140)[MATHMWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td></td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.
The exam takes place in the semester of the lecture and in the following semester.
The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Conditions
The successful completion of a compulsory prerequisite is mandatory for admission to the exam.
For further information see german version.

Learning Outcomes
The student
- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:
- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions for unconstrained problems
- Optimality conditions for unconstrained convex problems
- Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

Constrained problems are the contents of part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Basic literature

Elective literature:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Nonlinear Optimization II [2550113]

Coordinators: O. Stein

Part of the modules: Methodical Foundations of OR (p. 134) [MATHMWOR6], Mathematical Programming (p. 140) [MATHMWOR9]

ECTS Credits 4.5
Hours per week 2/1
Term
Instruction language de

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.
The exam takes place in the semester of the lecture and in the following semester.
The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Conditions
The successful completion of a compulsory prerequisite is mandatory for admission to the exam.
For further information see german version.

Learning Outcomes
The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions for constrained problems
- Optimality conditions for constrained convex problems
- Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Media
Lecture notes.

Basic literature
Elective literature:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Nonparametric Statistics [MATHST16]

Coordinators: N. Henze, B. Klar
Part of the modules: Nonparametric Statistics (p. 105)[MATHMWST16]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Numerical continuation methods [MATHNM42]

Coordinators: J. Rottmann-Matthes

Part of the modules: Numerical continuation methods (p. 91)[MATHNM42]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Numerical methods for differential equations [NMDG]

Coordinators: W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners
Part of the modules: Numerical methods for differential equations (p. 62)[MATHMWNM03]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Numerical methods for hyperbolic equations [MATHNM28]

Coordinator: W. Dörfler

Part of the modules: Numerical methods for hyperbolic equations (p. 80)[MATHNM28]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes
Content
Course: Numerical Methods for Integral Equations [MATHNM29]

Coordinators: T. Arens, F. Hettlich, A. Kirsch
Part of the modules: Numerical Methods for Integral Equations (p. 79)[MATHNM29]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Numerical methods for time-dependent partial differential equations [MATHNM20]

Coordinators: M. Hochbruck, T. Jahnke

Part of the modules: Numerical methods for time-dependent partial differential equations (p. 75)[MATHMWNM20]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Numerical methods in computational electrodynamics [MATHNM13]

Coordinators: W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners
Part of the modules: Numerical methods in computational electrodynamics (p. 69)[MATHMWNM13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Numerical Methods in Solid Mechanics [MATHNM12]

Coordinators: C. Wieners

Part of the modules: Numerical Methods in Solid Mechanics (p. 68) [MATHMWNM12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4+2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Numerical Methods in Mathematical Finance [MATHNM18]

Coordinators: T. Jahnke

Part of the modules: Numerical Methods in Mathematical Finance (p. 73) [MATHMWNM18]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Numerical methods in mathematical finance II [MATHNM26]

Coordinators: T. Jahnke

Part of the modules: Numerical methods in mathematical finance II (p. 77) [MATHNM26]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Numerical optimisation methods [MATHNM25]

Coordinators: W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners

Part of the modules: Numerical optimisation methods (p. 76)[MATHMWNM25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Conditions
None.

Learning Outcomes
Content
Course: Numerical methods for Maxwell’s equations [MATHNM33]

Coordinators: T. Jahnke
Part of the modules: Numerical methods for Maxwell’s equations (p. 84)[MATHNM33]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Open Innovation – Concepts, Methods and Best Practices [2571199]

Coordinators: A. Hahn
Part of the modules: Marketing Management (p. 120)[MATHMWBWL5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1/0</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (presentation) (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
Students

- know approaches, objectives, advantages and disadvantages of Open Innovation,
- know strategy, processes, methods and fields of application of Open Innovation,
- understand success factors by means of best practices from real life projects,
- can apply Open Innovation methods on their own.

Content
Joy’s Law: “No matter who you are, most of the smartest people work for someone else” (Bill Joy, Co-Founder Sun Microsystems)
This lecture conveys an understanding and practical application of Open Innovation, i.e. the collaborative opening of the innovation process to customers, suppliers, partners, competitors, new markets. . . . The contents encompass among others:

- approaches, objectives, advantages and disadvantages of Open Innovation
- knowledge of approaches, objectives, advantages and disadvantages of Open Innovation
- strategy, processes, methods and fields of application of Open Innovation
- focus mainly on customer integration into the innovation process (e.g. Netnography, Crowdsourcing, Lead User, Trend Receiver,. . .)
- Independent application of Open Innovation methods.

Basic literature
To be announced in the course.

Remarks
In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing & Sales Research Group (marketing.ism.kit.edu) shortly before the lecture period in summer term starts.
Please note that only one of the following courses can be chosen in the Marketing Management Module: Marketing Strategy Business Game, Strategic Brand Management, Open Innovation – Concepts, Methods and Best Practices or Business Plan Workshop.
Exception: In summer term 2016 exceptionally two courses can be chosen or, in case one course has already been chosen previously, a second course can be chosen.
Please note: The number of participants for this course is limited. The Marketing & Sales Research Group typically provides the possibility to attend a course with 1,5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.
Course: Operations Research in Health Care Management [2550495]

Coordinators: S. Nickel

Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMWOR8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a 120 minutes written examination (according to §4(2), 1 of the examination regulation). The examination is held in the term of the lecture and the following lecture.

Conditions
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Learning Outcomes
The student

• knows applications of basic and advanced methods of Operations Research applied to health services,
• gains the ability to use quantitative models for the operations planning and logistics in a hospital environment, e.g. appointment, transportation, operating room planning or nurse rostering as well as inventory management and layout planning
• describes the advantages and benefits of simulation models and OR methods to plan home health care services,
• applies the introduced methods in detail in practical case studies.

Content
In the last years reforms of the German health system, e.g. the introduction of the G-DRG-system, have put an increasing cost pressure on hospitals. Therefore their target is to improve quality, transparency, and efficiency of hospital services, e.g. by reducing the length of stay of patients. To achieve this, processes have to be analyzed in order to optimize them if necessary. When looking at the targets of optimization not only efficiency but also quality of care and patient satisfaction (e.g. waiting times) have to be taken into account.

Besides hospitals also home health care services and their planning are discussed in this lecture. Because of the demographic development this is an emerging field in the health care sector. Here, e.g. nurse rosters have to be built which give details about which nurse visits which patient at what time. While doing so different targets have to be regarded, e.g. the continuity of nurse-patient relationship or the minimization of the distances the nurses have to travel.

Basic literature
Elective literature:

• Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
• Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008

Remarks
The lecture is planned to be held in the summer term 2016. The planned lectures and courses for the next three years are announced online.
Course: Operations Research in Supply Chain Management [2550480]

Coordinators:
S. Nickel

Part of the modules:
Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMWOR8], Operations Research in Supply Chain Management (p. 138)[MATHM-WOR11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a 120 minutes written examination (according to §4(2), 1 of the examination regulation). The examination is held in the term of the lecture and the following lecture.

Conditions
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Recommendations
Advanced knowledge of Operations Research (e.g., as conveyed in the lectures Facility Location and Strategic SCM, Tactical and operational SCM) is recommended.

Learning Outcomes
The student
- knows and applies basic and advanced modeling techniques playing an important role in today's problem solving occurring in supply networks
- models problems with a mathematical approach to technical-economical problems, and derives optimal solutions,
- classifies problems both conceptually and mathematically by identifying central variables and parameters in a specific problem setting,
- evaluates current developments in operations research and supply chain management.

Content
Supply Chain Management constitutes a general tool for logistics process planning in supply networks. To an increasing degree quantitative decision support is provided by methods and models from Operations Research. The lecture “OR in Supply Chain Management” conveys concepts and approaches for solving practical problems and presents an insight to current research topics. The lecture’s focus is set on modeling and solution methods for applications originating in different domains of a supply chain. The emphasis is put on mathematical methods like mixed integer programming, valid inequalities or column generation, and the derivation of optimal solution strategies.

In form and content, the lecture addresses all levels of Supply Chain Management: After a short introduction, the tactical and operational level will be discussed with regard to inventory models, scheduling as well as cutting and packing. The strategic level will be discussed in terms of layout planning. Another main focus of the lecture is the application of methods from online optimization. This optimization discipline has gained more and more importance in the optimization of supply chains over the several past years due to an increasing amount of dynamic data flows.

Basic literature
- Dyckhoff, H.; Finke, U.: Cutting and Packing in Production and Distribution - A Typology and Bibliography, Physica-Verlag, 1992

Remarks
The lecture is planned to be held in the winter term 2016/17. The planned lectures and courses for the next three years are announced online.
Course: Optimization in a Random Environment [25687]

Coordinators: K. Waldmann

Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
Students are enabled to apply their knowledge about techniques and methodology on current problems such as the measurement and evaluation of operational risk as required by the Basel II accord. Subject matter of the course will be announced in due time.

Content
The course is concerned with the quantitative analysis of selected problems arising in engineering and natural sciences. Subject matter of the course will be announced in due time.

Media
Blackboard, slides, flash-animations, java tools, simulation software.

Basic literature
- Lecture Notes
- Elective literature: problem-oriented

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Optimisation and optimal control for differential equations [MATHNM09]

Coordinators: W. Dörfler, M. Hochbruck, T. Jahnke, A. Rieder, C. Wieners
Part of the modules: Optimisation and optimal control for differential equations (p. 67)[MATHMWNM09]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: OR-oriented modeling and analysis of real problems (project) [25688]

Coordinators: K. Waldmann

Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Presentation and documentation of the results.

Conditions
None.

Learning Outcomes
Students are enabled to apply their knowledge about techniques and methodology on real problems and to develop a practically oriented solution an an OR-lab; e.g. in the public health sector. Subject matter of the course will be announced in due time.

Content
The course is concerned with the quantitative analysis of selected problems arising in engineering and natural sciences. Subject matter of the course will be announced in due time.

Media
Blackboard, slides, flash-animations, java tools, simulation software.

Basic literature
- Lecture Notes
- Elective literature: problem -oriented.

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Organic Computing [2511104]

Coordinators: H. Schmeck
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO) and of submitting written exercises that recapitulate the content of the course. The exercises include theoretical questions as well as practical programming. For providing a successful solution to all exercises, a bonus will be granted, improving the grade of a passed exam by one grade-step (0.3 or 0.4, respectively, following §4(2), 3 SPO). The course will be offered every second semester (summer term) and exams may be repeated at every ordinary exam date.

Conditions
None.

Learning Outcomes
The student acquires the ability to master methods and concepts of Organic Computing and to demonstrate innovation skills regarding the used methods.
Therefore the course aims at the teaching of fundamentals and methods of Organic Computing within the context of its applicability in practice. On the basis of a fundamental understanding of the taught concepts and methods the students should be able to choose the adequate methods and concepts, if necessary further develop them according to the situation and use them properly when facing related problems in their later job. The students should be capable of finding arguments for the chosen solutions and express them to others.

Content
The mission of Organic Computing is to tame complexity in technical systems by providing appropriate degrees of freedom for self-organized behaviour adapting to changing requirements of the execution environment, in particular with respect to human needs. According to this vision an organic computer system should be aware of its own capabilities, the requirements of the environment, and it should be equipped with a number of “self-x” properties allowing for the anticipated adaptiveness and for a reduction in the complexity of system management. These self-x properties include self-organisation, self-configuration, self-optimization, self-healing, self-protection and self-explanation. In spite of these self-x properties, an organic system should be open to external control actions which might be necessary to prevent undesired behaviour. The course addresses major concepts and methods of Organic Computing and highlights the impact and potential of Organic Computing with respect to real-world applications, specifically in traffic and energy scenarios.

Media
Powerpoint slides with annotations, access to applets and Internet resources, lecture recording (camtasia).

Basic literature

Elective literature:

further references will be announced in class
Course: Managing Organizations [2577902]

Coordinators: H. Lindstädt
Part of the modules: Strategic Corporate Management and Organization (p. 119)[MATHMWUO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Learning Outcomes
After passing this course students are able to

- evaluate strengths and weaknesses of existing organisational structures and rules.
- compare alternatives of organisational structure in practice and assess and interpret them regarding their effectiveness and efficiency.
- assess the management of organisational changes.

Content
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organizational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.

Remarks
The credits for the course “Managing Organizations” have been changed from 4 to 3,5 from summer term 2015 on.
Course: Organization Theory [2577904]

Coordinators: H. Lindstädt
Part of the modules: Strategic Corporate Management and Organization (p. 119)[MATHMWUO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the examination regulation.

Conditions
None.

Learning Outcomes
The participants are made familiar with mostly classical principles of economic organisational theory and institutional economics. This includes transaction cost theory and agency-theory approaches, models for the function and design of organisational information and decision-making systems, transfer price models to coordinate the exchange of goals and services within companies. The course therefore lays the basis for a deeper understanding of the advanced literature on this key economic area.

Content
Concretely, after passing this course the students should be able to assess effects and implications of the following aspects:

- Design of transactional relationships between different steps of the value-adding process
- Design of decision tasks under diverse aspects
- Organisation under asymmetric information and conflicting goals (agency theory)

Media
Folien.

Basic literature

The relevant excerpts and additional sources are made known during the course.

Remarks
The course “Organization Theory” will not be offered any more from summer term 2015 on. The examination will be offered latest until winter term 2015/2016 (repeaters only).
Course: P&C Insurance Simulation Game [INSGAME]

Coordinators: U. Werner
Part of the modules: Insurance Management I (p. 117)[MATHMWBWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
See German version.

Content
Course: [2520320]

Coordinators: W. Heller
Part of the modules: Econometrics and Statistics II (p. 131)[MATHMWSTAT6], Econometrics and Statistics I (p. 130)[MATHMWSTAT5]

ECTS Credits 4,5 Hours per week 2/2 Term Summer term Instruction language de

Learning Control / Examinations
Conditions None.

Learning Outcomes
Content
Course: Parallel computing [MATHNM08]

Coordinators: C. Wieners
Part of the modules: Parallel computing (p. 66) [MATHMN08]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Parametric Optimization [2550115]

Coordinators: O. Stein

Part of the modules: Mathematical Programming (p. 140)[MATHWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>de</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

Conditions
None.

Recommendations
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Learning Outcomes
The student
- knows and understands the fundamentals of parametric optimization,
- is able to choose, design and apply modern techniques of parametric optimization in practice.

Content
Parametric Optimization deals with the impact of parameter changes on the solution of optimization problems. In practical applications this is of fundamental importance, for example, to assess the quality of a numerically computed solution or to derive quantitative statements about its parameter dependence. Moreover, many optimization algorithms are controlled by varying parameters, and applications may be found in noncooperative game theory, geometric optimization and robust optimization. The lecture provides a mathematically sound introduction to these topics and is structured as follows:

- Introductory examples and terminology
- Stability and regularity conditions
- Sensitivity
- Applications: semi-infinite optimization and Nash games

Media
Lecture notes.

Basic literature

Elective literature:

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Course: Percolation [MATHST13]

Coordinators: G. Last
Part of the modules: Percolation (p. 102)[MATHMWST13]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Portfolio and Asset Liability Management [2520357]

Coordinators: M. Safarian
Part of the modules: Econometrics and Statistics II (p. 131) [MATHMWSTAT6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Conditions
None.

Learning Outcomes
Introduction and deepening of various portfolio management techniques in the financial industry.

Content
Portfolio theory: principles of investment, Markowitz portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitrage pricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment
Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

Media
transparencies, exercises.

Basic literature
To be announced in lecture.

Elective literature:
To be announced in lecture.

Remarks
The credits for the course have been changed from 5 to 4,5 from winter term 2015/2016 on.
Course: Potential Theory [MATHAN20]

Coordinators: T. Arens, F. Hettlich, A. Kirsch, W. Reichel

Part of the modules: Potential Theory (p. 54)[MATHMWAN20]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Advanced Lab Informatics [25070p]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment of this course are practical work, presentations and a written seminar thesis according to §4(2), 3 of the examination regulation. Practical work, presentations and a written thesis are weighted according to the course.

Conditions

None.

Learning Outcomes

Students are able to

- implement a prototype at the computer based on the given topic.
- write the thesis with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the course.
- present results of the research in written form as generally found in scientific publications.

Content

The lab intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.

Media

Slides, access to internet resources

Basic literature

Literature will be given individually.

Remarks

The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu/
Course: Practical seminar: Health Care Management (with Case Studies) [2550498]

Coordinators: S. Nickel

Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMWOR8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>3</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists in a case study, the writing of a corresponding paper, and an oral exam (according to §4(2), 2 of the examination regulation).

Conditions
None.

Recommendations
Basic knowledge as conveyed in the module *Introduction to Operations Research [WI1OR]* is assumed.

Learning Outcomes
The student
- is familiar with real problems arising in a hospital
- develops solution approaches for these problems by using well-known methods of Operations Research,
- is able to analyze processes and structures, to collect relevant data as well as to develop and solve models for hospital-specific problems.

Content
Processes in a hospital are often grown historically (“We have always done it this way”), so that there has not been the need to analyze processes until reforms of the health system have put increasing pressure on hospitals. Consequently, nowadays hospitals look for possibilities to improve their processes. The students are confronted with case studies and are asked to develop a solution. Therefore they have to collect and analyze relevant data, processes and structures. When developing the solution the students have to bear in mind that besides the economic efficiency also the quality of care and patient satisfaction (e.g. measured in waiting time) may not be neglected in the health care sector.

Basic literature

Elective literature:
- Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
- Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008

Remarks
The credits change from 7 CP to 4.5 CP.
The lecture is offered every term.
The planned lectures and courses for the next three years are announced online.
Course: Predictive Mechanism and Market Design [2520402]

Coordinators: P. Reiss

Part of the modules: Experimental Economics (p. [128]) [MATHMW4VWL17]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Recommendations

Basic knowledge of mathematics, statistics, and game theory is assumed.

Learning Outcomes

Students

- are provided with theoretical predictions in a variety of applications of mechanism and market design;
- learn about the robustness and usefulness of theoretical predictions in mechanism and market design;
- shall be able to design mechanisms and market for real-life problems.

Content

Frequently economic agents - individuals, firms, the government - need to define allocation mechanisms and can design the rules of market interactions. Examples include the provision of public goods (e.g., the reduction of CO2 emissions), the solution of matching problems (e.g., the assignment in kidney exchange), resource allocation (e.g., radio spectrum usage rights), and procurement (e.g., choice of supplier and contractual terms). Theoretical predictions are derived and confronted with data from the laboratory and the field. The course focusses on the interplay of theory with evidence to learn about the accuracy and the robustness of the theoretical predictions.

Media

Slides, problem sets.

Basic literature

A selection of published papers is compulsory reading for the course. The course syllabus provides references and is announced at the beginning of the course.

Remarks

See German version.
Course: Principles of Insurance Management [2530055]

Coordinators: U. Werner
Part of the modules: Insurance Management I (p. 117)[MATHMWBWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).

The overall grade consists of the assessment of the oral presentations incl. papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Basic literature
 - U. Werner. Einführung in die Versicherungsbetriebslehre. Skript zur Vorlesung.

Elective literature:
Will be announced during the lecture.
Course: Problem solving, communication and leadership [2577910]

Coordinators:
H. Lindstädt

Part of the modules:
Strategic Corporate Management and Organization (p. 119)[MATHMWUO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (30 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
After passing this course students are able to

- structure problem solving processes.
- apply the principles of focused communication based on charts and presentations.
- understand leadership in the context of situation and personality.

Content
The course deals with various aspects of problem solving and communication processes and is divided into two parts. The first part of the course addresses the fundamental steps in the problem-solving process; namely, problem identification, problem structuring, problem analysis and communication of solution. Ideas for structuring problem solving processes will be discussed and the perquisites for and principles of structured communication based on charts and presentations will be explained. The second part of the course addresses important concepts in leadership, including the context-specificity of influence, the choice of leader and the characteristics of employees. The course content reflects current issues in management and communication practice and is oriented toward the practical application of theoretical insights to these issues. In this respect, the course aims to develop interdisciplinary skills.

Media
Slides.

Basic literature
The relevant excerpts and additional sources are made known during the course.
Course: Product and Innovation Marketing [2571154]

Coordinators: M. Klarmann

Part of the modules: Marketing Management (p. 120)[MATHWBWLMAR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Learning Outcomes
See German version.

Content
This course addresses topics around the management of new as well as existing products. After the foundations of product management, especially the product choice behavior of customers, students get to know in detail different steps of the innovation process. Another section regards the management of the existing product portfolio.

Remarks
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
Course: Project centered Software-Lab [MATHNM40]

Coordinators: G. Thäter
Part of the modules: Project centered Software-Lab (p. 89) [MATHNM40]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Public Management [2561127]

Coordinators: B. Wigger, Assistenten

Part of the modules: Collective Decision Making (p. 127)[MATHMW4VWL16]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Conditions
Basic knowledge of Public Finance is required.

Learning Outcomes
See German version.

Content
The lecture „Public Management“ deals with the economic theory of public sector administration. It is divided into four parts. The first section gives an overview of the legal framework of governmental administration in the Federal Republic of Germany and introduces the classical theory of administration as developed by Weber. Part two studies concepts of public decision-making, which have a significant impact on the operation of public sector administrations and where one focus is on consistency problems of collective decision-making. The third chapter deals with efficiency problems arising in conventionally organized public administrations and companies. X-iniciency, information and control problems, the isolated consideration of income-spending-relations as well as rent-seeking problems will be considered. In section four the concept of New Public Management, which is a new approach to public sector administration that is mainly based in contract theory, is introduced. Its foundations in institutional economics are developed, with a focus on the specific incentive structures in self-administered administrations. Finally, the achievements of New Public Management approaches are discussed.

Basic literature

Elective literature:

Course: Quality Control I [2550674]

Coordinators: K. Waldmann
Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The participants will be enabled to apply modern methods of statistic quality management efficiently in the frame of total quality management. The discussion of practice-oriented case studies provides an overview of problem settings arising in each part of the production process and motivates the introduced statistic methods. The course provides profound knowledge in the areas of statistical process control utilizing modern control charts, acceptance sampling using multilayered sampling plans and the Design and Analysis of Experiments. The facultative computer exercise course comprises a practice-oriented case study in which the participants implements certain methods of quality management in order to analyze their performance.

Content
Introduction to TQM, Statistical Process Control (control charts), Acceptance Sampling (sampling plans), Design and Analysis of Experiments

Media
Blackboard, slides, flash-animations, java tools, simulation software.

Basic literature
- Lecture Notes
- Montgomery, D.C.: Introduction to Statistical Quality Control (5th ed), Wiley

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Quality Control II [2550659]

Coordinators: K. Waldmann
Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The participants will be enabled to apply modern methods of statistic quality management efficiently in the frame of total quality management. The discussion of practice-oriented case studies provides an overview of problem settings arising in each part of the production process and motivates the introduced statistic methods. The course focuses on the methodological background of the reliability of complex systems, the estimation of lifetime distributions and maintenance. The facultative computer exercise course comprises a practice-oriented case study in which the participants implement certain methods of quality management in order to analyze their performance.

Content
Reliability Theory (structure function, reliability of complex systems, modeling and estimating lifetime distributions, systems with repair), Maintenance.

Media
Blackboard, slides, flash/animations, java tools, simulation software.

Basic literature
- Lecture Notes

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Spatial Stochastics [MATHST14]

Coordinators: D. Hug, G. Last

Part of the modules: Spatial Stochastics (p. 103)[MATHMWST14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Boundary and eigenvalue problems [RUEP]

Coordinators: D. Hundertmark, T. Lamm, M. Plum, W. Reichel, J. Rottmann-Matthes, R. Schnaubelt, L. Weis

Part of the modules: Boundary and eigenvalue problems (p. 47)[MATHMWAN09]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
exam: written or oral exam
Marking: grade of exam

Conditions
None.

Learning Outcomes

Content
Course: Risk Communication [2530395]

Coordinators: U. Werner

Part of the modules: Insurance Management I (p. 117)[MATHMWBWLFBV6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>3/0</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of oral presentations (incl. papers) within the lecture (according to Section 4 (2), 3 of the examination regulation) and a final oral exam (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the assessment of the oral presentations incl. papers (50 percent) and the assessment of the oral exam (50 percent).

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Basic literature

Elective literature:
Munich Re. Risikokommunikation. Was passiert, wenn was passiert? www.munichre.com
Fallstudien unter www.krisennavigator.de
Course: Semantic Web Technologies [2511310]

Coordinators: R. Studer, A. Harth
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.
The exam takes place every semester and can be repeated at every regular examination date.

Conditions
Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent are required.

Recommendations
None.

Learning Outcomes
The student
• understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
• demonstrates basic competency in the areas of data and system integration on the web
• masters advanced knowledge representation scenarios involving ontologies

Content
"Semantic Web" denotes an extension of the World Wide Web with meta data and applications to make the meaning (semantics) of data on the web usable in intelligent systems, e.g. in e-commerce and internet portals.
Central concepts are the representation and processing of knowledge in form of ontologies and the access via Linked Data. This lecture provides the foundations of knowledge representation and processing for the corresponding technologies and presents example applications.
The following topics are covered:
• Resource Description Framework (RDF) and RDF Schema (RDFS)
• Web Architecture and Linked Data
• Web Ontology Language (OWL)
• Rule languages
• Applications

Media
Lecture notes.

Basic literature
See German version.

Remarks
The lecture supersedes the existing SWT-1 and SWT-2 lectures beginning from SS 2014. The exams SWT-1 and SWT-2 will be offered latest until winter term 2014/15.
Course: Seminar Business Administration A (Master) [SemBWL A (Master)]

Coordinators: Alle Professoren des Fachs Betriebswirtschaftslehre
Part of the modules: Seminar (p. 144) [MATHMWSEM02]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The alternative exam assessment according to § 4(2), 3 SPO consists of
- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions
None

Recommendations
None

Learning Outcomes
- The students are in a position to independently handle current, research-based tasks according to scientific criteria.
- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
The seminar covers actual topics in the field of Business Administration. The current seminar subject, including the exact topics to work on, will be published on the websites of the institutes and in the course catalogue of the KIT.

Media
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Basic literature
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.
Course: Seminar Informatics A (Master) [SemINFO A (Master)]

Coordinators: Alle Professoren des Fachs Informatik

Part of the modules: Seminar (p. 145) [MATHMWSSEM03]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The alternative exam assessment according to § 4(2), 3 SPO consists of

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions

None

Recommendations

None

Learning Outcomes

- The students are in a position to independently handle current, research-based tasks according to scientific criteria.
- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content

The seminar covers actual topics in the field of Informatics. The current seminar subject, including the exact topics to work on, will be published on the websites of the institutes and in the course catalogue of the KIT.

Media

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Basic literature

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Remarks

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.
Course: Seminar Operations Research A (Master [SemOR A (Master)]

Coordinators: Alle Professoren des Fachs Operations Research

Part of the modules: Seminar (p. 145)[MATHMWSEM03]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The alternative exam assessment according to § 4(2), 3 SPO consists of
- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions
None

Recommendations
None

Learning Outcomes
- The students are in a position to independently handle current, research-based tasks according to scientific criteria.
- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
The seminar covers actual topics in the field of Operations Research. The current seminar subject, including the exact topics to work on, will be published on the websites of the institutes and in the course catalogue of the KIT.

Media
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Basic literature
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.
Course: Seminar Statistics A (Master) [SemSTAT A (Master)]

Coordinators: Alle Professoren des Fachs Statistik
Part of the modules: Seminar (p. 144) [MATHMWSEM02]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The alternative exam assessment according to § 4(2), 3 SPO consists of

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions
None

Recommendations
None

Learning Outcomes

- The students are in a position to independently handle current, research-based tasks according to scientific criteria.
- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
The seminar covers actual topics in the field of Statistics. The current seminar subject, including the exact topics to work on, will be published on the websites of the institutes and in the course catalogue of the KIT.

Media
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Basic literature
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.
The available places are listed on the internet: https://portal.wiwi.kit.edu.
Course: Seminar Economics A (Master) [SemVWL A (Master)]

Coordinators: Alle Professoren des Fachs Volkswirtschaftslehre
Part of the modules: Seminar (p. 144)[MATHMWSEM02]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The alternative exam assessment according to § 4(2), 3 SPO consists of

- a talk about the research topic of the seminar together with discussion,
- a written summary about the major issues of the topic and
- attending the discussions of the seminar

The grade is achieved by the weighted sum of the grades.

Conditions
None

Recommendations
None

Learning Outcomes

- The students are in a position to independently handle current, research-based tasks according to scientific criteria.
- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
The seminar covers actual topics in the field of Economics. The current seminar subject, including the exact topics to work on, will be published on the websites of the institutes and in the course catalogue of the KIT.

Media
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Basic literature
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/).

Remarks
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.
Course: Service Oriented Computing 2 [2511308]

Coordinators: R. Studer, S. Agarwal, B. Norton

Part of the modules: Informatics (p. 142)[MATHMINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

Conditions
None.

Recommendations
It is recommended to attend the course Service-oriented Computing 1 [2511500] beforehand.

Learning Outcomes
Students will extend their knowledge and proficiency in the area of modern service-oriented technologies. Thereby, they acquire the capability to understand, apply and assess concepts and methods that are of innovative and scientific nature.

Content
Building upon basic Web service technologies the lecture introduces select topics of advanced service computing and service engineering. In particular, focus will be placed on new Web-based architectures and applications leveraging Web 2.0, Cloud Computing, Semantic Web and other emerging technologies.

Basic literature
Literature will be announced in the lecture.
Course: Simulation I [2550662]

Coordinators: K. Waldmann

Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10], Applications of Operations Research (p. 132)[MATHMWOR5], Stochastic Methods and Simulation (p. 135)[MATHMWOR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The participants will be enabled to model discrete event systems that underlie stochastic influences and to analyze them using simulation. The discussion of practice-oriented case studies pursues two goals. On the one hand, the participants will be sensitized for different criteria to evaluate the performance of a stochastic discrete-event system. On the other hand, an overview of application areas of stochastic simulation is provided. In the context of the course, the basic elements of discrete-event simulation are introduced and a procedure model for the execution of simulation studies is developed. Properties of existing mathematical methods for the generation of random variables are discussed and are assigned to concrete application cases. Statistical methods for the description of simulation input data and for the interpretation of simulation results will be exemplified. The facultative computer exercise course using a simulation software comprises a practice-oriented case study that illustrates the opportunities and limitations of stochastic simulation.

Content
Generation of random numbers, Monte Carlo Integration, discrete event simulation, discrete random variables, continuous random variables, statistical analysis of simulated data.

Media
Blackboard, slides, flash-animations, java tools, simulation software.

Basic literature
- Lecture Notes

Remarks
The course will be offered in the summer term 2015 and the summer term 2016.
Course: Simulation II [2550665]

Coordinators: K. Waldmann

Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10], Stochastic Methods and Simulation (p. 135)[MATHMWOR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1/2</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
Foundations in the field of *Simulation I* [2550662] are desired.

Learning Outcomes
The participants will be enabled to model and analyze discrete event systems that underlie stochastic influences with efficient simulation techniques. The discussion of practice-oriented case studies illustrates the limits of standard simulation techniques for stochastic discrete event systems regarding the simulation effort to obtain statistical significant results. Variance reducing techniques will be introduced in theory as modern and efficient techniques and will be exemplified by examples from quality management, financial engineering and insurance. The main scope of the applications discussed in the course is the efficient simulation of stochastic processes. The facultative computer exercise course under utilization of the programming language Java comprises a practice-oriented case study, in which the participants implement certain variance reducing techniques in order to analyze the reduction in computer effort in comparison to standard techniques.

Content
Variance reducing techniques, simulation of stochastic processes, case studies.

Media
Blackboard, slides, flash-animations, java tools, simulation software.

Basic literature
- Lecture Notes

Remarks
The course will be offered in the winter term 2015/2016.
Course: Smart Energy Distribution [2511108]

Coordinators: H. Schmeck
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
written exam, unless the number of registered students is too small.

Conditions
The students should have an understanding of informatics, they would benefit from some previous knowledge of self-organisation and methods for optimisation, but this is not mandatory

Learning Outcomes
The students will develop an understanding of the basic problems that arise from decentralisation and an increased share of renewables in the power mix and they will know how to deal with these problems by using concepts like virtualisation and self-organisation. They will know how to design and apply adequate methods for smart energy distribution in various related problem settings and they will be capable to explain the appropriate use of these methods. The students will get to know the scope of topics in energy informatics.

Content
The course addresses the challenges of the Energiewende with respect to the role of information and communication technologies for shaping tomorrow’s energy systems. The increasing share of power generation from renewable sources and the decentralisation of power generation lead to an increasing need for local balancing of power supply and demand. While traditional power management was based on the assumption that power consumption is not controllable and that electric power cannot be stored effectively, future power management will depend significantly on much more flexibility in demand and in innovative ways of storing energy.

The course will present concepts for smart energy management that have been developed in projects on “e-energy” and “ICT for Electric Mobility”, like virtual power plants, local agent-based power management, concepts of load shifting, autonomic and organic approaches to power management in smart homes, utilization of mobile and stationary batteries for stabilization of the power grid. Furthermore, it addresses aspects of security and privacy due to the pervasive use of ICT in energy systems. The concepts presented in this course are essential topics of the emerging discipline of Energy Informatics.

Media
slides, on screen annotations, lecture recording using camtasia

Remarks
This course is offered to students of the (KIC) MSc program EnTech but may also be taken by students of the Master programs Industrial Engineering, Economics Engineering, Information Engineering and Management, and Mathematics in Economics.
Course: Sobolev Spaces [MATHAN37]

Coordinators: A. Kirsch
Part of the modules: Sobolev Spaces (p. 59)[MATHAN37]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Social Choice Theory [2520537]

Coordinators: C. Puppe

Part of the modules: Microeconomic Theory (p. 126)[MATHMW4VWL15], Collective Decision Making (p. 127)[MATHMW4VWL16]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions
None.

Recommendations
None.

Learning Outcomes
The student should acquire knowledge of formal theories of collective decision making and learn to apply them to real life situations.

Content
The course provides a comprehensive treatment of preference and judgement aggregation, including proofs of general results that have Arrow's famous impossibility theorem and Gibbard's oligarchy theorem as corollaries. The second part of the course is devoted to voting theory. Among other things, we prove the Gibbard-Satterthwaite theorem. An introduction into tournament theory concludes the course.

Basic literature
Main texts:

Secondary texts:
Course: Software Laboratory: OR Models I [2550490]

Coordinators: S. Nickel
Part of the modules: Applications of Operations Research (p. 132)[MATHMWOR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>1/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation). The examination is held in the term of the software laboratory and the following term.

Conditions
Firm knowledge of the contents from the lecture *Introduction to Operations Research I* [2550040] of the module *Operations Research* [WI1OR].

Learning Outcomes
The student
- evaluates the possibilities of computer usage in practical applications of Operations Research,
- is capable of classifying and utilizing the general possibilities and fields of usage of modeling and implementation software for solving OR models in practice,
- models and solves problems arising in industry applications with the aid of computer-supported optimization methods.

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, ...), the software IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL will be discussed which can be used to solve OR problems on a computer-aided basis. Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Remarks
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The lecture is offered in every winter term. The planned lectures and courses for the next three years are announced online.
Course: Software Laboratory: OR Models II [2550497]

Coordinators: S. Nickel

Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHM沃R8], Operations Research in Supply Chain Management (p. 138)[MATHM沃R11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the software laboratory and the following term.

Conditions
Successful completion of the course *Software Laboratory: OR-Models I* [2550490].
Basic knowledge as conveyed in the module *Introduction to Operations Research* [WI1OR] is assumed.

Learning Outcomes
The student
- is an expert in using computer systems to model and solve industry-related optimization problems,
- conducts an advanced approach to modeling and implementation software for OR models and is able to use them in practice,
- knows and explains the practical application possibilities of OR software in complex combinatorial and nonlinear optimization problems.

Content
The task of solving combinatorial and nonlinear optimization problems imposes much higher requirements on suggested solution approaches as in linear programming. During the course of this software laboratory, students get to know important methods from combinatorial optimization, e.g. Branch & Cut- or Column Generation methods and are enabled to solve problems with the software system IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL. In addition, issues of nonlinear optimization, e.g. quadratic optimization, are addressed. As an important part of the software laboratory, students get the possibility to model combinatorial and nonlinear problems and implement solution approaches in the software system. The software laboratory also introduces some of the most frequently used modelling and programming languages that are used in practice to solve optimization problems.

Remarks
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The lecture is held irregularly. The planned lectures and courses for the next three years are announced online.
Course: Software Quality Management [2511208]

Coordinators: A. Oberweis
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions
None.

Learning Outcomes
Students
- explain the relevant quality models,
- apply methods to evaluate the software quality and evaluate the results,
- know the mail models of software certification, compare and evaluate these models,
- write scientific theses in the area of software quality management and find own solutions for given problems.

Content
This lecture imparts fundamentals of active software quality management (quality planning, quality testing, quality control, quality assurance) and illustrates them with concrete examples, as currently applied in industrial software development. Keywords of the lecture content are: software and software quality, process models, software process quality, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, software tests.

Media
Slides, access to internet resources.

Basic literature
- Peter Liggesmeyer: Software-Qualität, Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag 2002
- Mauro Pezzè, Michal Young: Software testen und analysieren. Oldenbourg Verlag 2009

Further literature is given in lectures.

Remarks
This course was formely named “Software Technology: Quality Management”.
Course: Spatial Economics [2561260]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required. The attendance of the course Introduction to economic policy [2560280] is recommended.

Learning Outcomes
The student

- analyses how spatial distribution of economic activity is determined
- uses quantitative methods within the context of economic models
- has basic knowledge of formal-analytic methods
- understands the link between economic theory and its empirical applications
- understands to what extent concentration processes result from agglomeration and dispersion forces
- is able to determine theory based policy recommendations

Content
Geography, trade and development
Geography and economic theory
Core models of economic geography and empirical evidence
Agglomeration, home market effect, and spatial wages
Applications and extensions

Media
Slides
Exercises
Internet

Basic literature
Steven Brakman, Harry Garretsen, Charles van Marrewijk (2009), The New Introduction to Geographical Economics
Further literature recommendations will be announced in the course of the lecture.
Course: Spectral Theory [SpekTheo]

Coordinators: G. Herzog, C. Schmoeger, R. Schnaubelt, L. Weis

Part of the modules: Spectral Theory (p. 48)[MATHMWAN10]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Recommendations
It is recommended to attend the following modules previously:
- Linear Algebra 1+2
- Analysis 1-3
- Functional Analysis or Differential Equations and Hilbert Spaces

Learning Outcomes

Content
Course: Special Topics of Enterprise Information Systems [SBI]

Coordinators: A. Oberweis
Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Learning Outcomes
Students
- explain basic knowledge and concepts in a subarea of “Enterprise Information Systems”,
- apply methods and instruments in a subarea of “Enterprise Information Systems”,
- choose the appropriate methods to solve given problems and apply them,
- find and discuss arguments for solution approaches.

Content
This course is a placeholder for special courses that are offered in an irregular sequence and cover selected topics in the field of enterprise information systems. These topics include in particular the design and the management of database systems, the computer-support of business processes and strategic planning of information systems and their organization.

Basic literature
Will be announced at the beginning of the course.
Course: Special Topics of Efficient Algorithms [25700sp]

Coordinators: H. Schmeck
Part of the modules: Informatics (p. 142) [MATHMINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the week after the end of the lecturing period (wrt §4 (2), 1 SPO). The exam will be offered in every semester and can be repeated on regular examination dates.

If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the bonus exam will improve the mark by one level (i.e. by 0.3 or 0.4).

Conditions

None.

Learning Outcomes

The student will learn how to use methods and concepts of efficient algorithms and how to demonstrate adequate innovative capabilities with respect to the used methods.

This course emphasizes the teaching of advanced concepts in relation to their applicability in the real world. Based on a fundamental understanding of the covered concepts and methods, students should know how to select appropriate concepts and methods for problem settings in their professional life, and, if necessary, to extend and apply them in an adequate form. The students should be enabled to find adequate arguments for justifying their chosen problem solutions.

Content

This course emphasizes the new topics in the area of algorithms, data structures, and computer infrastructures. The exact topics can vary according to the audiences and the time it is held.

Basic literature

Elective literature:

Will be announced in the lecture.

Remarks

This course can be particularly used for recognising the external courses with the topics in the area of algorithms, data-structures and computer infrastructures but are not associated in other courses in this subject area.
Course: Special Topics of Software- and Systemsengineering [SSEsp]

Coordinators: A. Oberweis

Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Conditions
None.

Learning Outcomes
Students
- explain basic knowledge and concepts in a subarea of “Software and Systems Engineering”,
- apply methods and instruments in a subarea of “Software and Systems Engineering”,
- choose the appropriate methods to solve given problems and apply them,
- find and discuss arguments for solution approaches.

Content
This course is a placeholder for special courses that are offered in an irregular sequence and cover selected topics in the field of software and systems engineering.

Media
Slides, access to internet resources

Basic literature
Will be announced at the beginning of the course.

Remarks
This course can be used in particular for the acceptance of external courses whose content is in the broader area of software and systems engineering, but cannot assigned to another course of this topic.
Course: Special Topics of Knowledge Management [25860sem]

Coordinators: R. Studer

Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Assessment is provided by a written exam of 60 minutes or an oral exam during the first few weeks after the lecturing period (acc. to §4(2), 1 or 2 SPO). The exam is offered each semester and may be repeated at the regular examination day.

Conditions
None.

Learning Outcomes
The lecture serves as placeholder for course achievements abroad.
The students acquire the skills, methods and tools in one specialized topic of “knowledge management” to demonstrate their mastery and innovativeness.
The lecture aims at providing principles and methods in the context of the practical application of KM. On the basis of a fundamental understanding of concepts, methods, and tools, students will be able to work on advanced problems. The students will be able to find and argue for solutions of KM problems.

Content
The lecture serves as placeholder for course achievements abroad.
The lecture deals with special topics in the area of knowledge management (incl. Knowledge Discovery and Semantic Web). The lecture deepens one of the following topics:

- Dynamic and Interoperable Systems in Knowledge Management
- Personal and Process-oriented Knowledge Management
- Formal Concept Analysis
- Semantic Search and Text Mining
- Combination of Social Software and Semantic Web

Basic literature

Elective literature:
Depends on the actual content.
Course: Special Topics in Optimization I [2550128]

Coordinators: O. Stein
Part of the modules: Mathematical Programming (p. 140)[MATHMWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td></td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation.

The examination is held in the semester of the lecture and in the following semester.

Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

The examination can also be combined with the examination of Special Topics in Optimization II [25126]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Recommendations
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Learning Outcomes
The student

- knows and understands the fundamentals of a special topic in continuous optimization,
- is able to choose, design and apply modern techniques of this special topic in continuous optimization in practice.

Content

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Course: Special Topics in Optimization II [2550126]

Coordinators: O. Stein
Part of the modules: Mathematical Programming (p. 140)[MATHMWOR9]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>de</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation.

The examination is held in the semester of the lecture and in the following semester.

Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

The examination can also be combined with the examination of Special Topics in Optimization I [25128]. In this case, the duration of the written examination takes 120 minutes.

Conditions
None.

Recommendations
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Learning Outcomes
The student

- knows and understands the fundamentals of a special topic in continuous optimization,
- is able to choose, design and apply modern techniques of this special topic in continuous optimization in practice.

Content

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Course: Special functions and applications in potential theory [MATHAN33]

Coordinators: A. Kirsch
Part of the modules: Special functions and applications in potential theory (p. 58)[MATHAN33]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Spin manifolds, alpha invariant and positive scalar curvature [MATHAG43]

Coordinators: S. Klaus, W. Tuschmann
Part of the modules: Spin manifolds, alpha invariant and positive scalar curvature (p. 41)[MATHAG43]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Facility Location and Strategic Supply Chain Management [2550486]

Coordinators: S. Nickel

Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMWOR8], Methodical Foundations of OR (p. 134)[MATHMWOR6], Applications of Operations Research (p. 132)[MATHMWOR5], Operations Research in Supply Chain Management (p. 138)[MATHMWOR11]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester.

Prerequisite for admission to examination is the successful completion of the online assessments.

Conditions
Prerequisite for admission to examination is the successful completion of the online assessments.

Learning Outcomes
The student

- knows and describes basic quantitative methods in location planning in the context of strategic Supply Chain Planning,
- applies several criteria for the evaluation of the locations of facilities in the context of classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models),
- implements the considered models in practical problems.

Content
Since the classical work “Theory of the Location of Industries” of Weber from 1909, the determination of an optimal location of a new facility with respect to existing customers is strongly connected to strategical logistics planning. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning allows an efficient flow of materials and leads to lower costs and increased customer service.

Subject of the course is an introduction to the most important terms and definitions in location planning as well as the presentation of basic quantitative location planning models. Furthermore, specialized location planning models for Supply Chain Management will be addressed as they are part in many commercial SCM tools for strategic planning tasks.

Basic literature

Elective literature:

- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988

Remarks
The lecture is held in every winter term. The planned lectures and courses for the next three years are announced online.
Course: Statistical Methods in Financial Risk Management [2521353]

Coordinators: A. Nazemi
Part of the modules: Statistical Methods in Risk Management (p. ??)[MATHMW4STAT2]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>en</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
The student
- is familiar with probability distributions and stable distributions
- knows the estimation methodologies and Copulas,
- is able to model time series data,
- learns Value-at-Risk (VAR) and Asset-Liability Management, Stress testing and Risk Metrics,
- is familiar with portfolio optimization,
- knows Market risk, Credit risk and Operational risk,
- is familiar with Basel Regulations,
- Works with real financial data in R and Matlab.

Content
Models for Credit Risk. Introduction to Operational Risk
Part 2: Optimal portfolio management: portfolio construction, long/short investing, transaction costs and turnover, performance analysis, asset allocation, benchmark timing. Integrating the equity portfolio management process, active versus passive portfolio management, tracking error (backward-looking versus forward looking tracking error, the impact of portfolio size, benchmark volatility and portfolio betas on tracking error), equity style management (types of equity styles, style classification system), passive strategies/constructing an index portfolio, index tracking and cointegration), active investing (top-down and bottom-up approaches to active investing, fundamental law of active management, strategies based on technical analysis, technical analysis and statistical pattern recognition, market-neutral strategies and statistical arbitrage), Application of Multifactor Risk Models(Risk Decomposition, Portfolio construction and Risk Control, Assessing the exposure of a portfolio, Risk control against a stock-market index, Tilting a portfolio).

Media
transparencies, exercises.

Basic literature
- Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio selection, and Option Pricing, Rachev, S., Menn C. and Fabozzi F., John Wiley, Finance, 2005

Remarks
URL: http://statistik.econ.kit.edu/
Course: Advanced Statistics [2550552]

Coordinators: O. Grothe
Part of the modules: Analytics and Statistics (p. 129)[MATHMW4STAT4]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Conditions
None.

Learning Outcomes
Students
- cope with advanced fundamentals of statistics as well as simulation methods
- know the fundamentals of point and interval estimation as well as testing of hypotheses,
- perform special parametric and nonparametric estimations and tests,
- analyse stochastic processes.

Content
- Moment generating and characteristic function
- Types of convergence and limit theorems
- Simulation techniques
- Estimation and testing
- Stochastic processes

Remarks
New course starting winter term 2015/2016
Course: Statistical Modeling of generalized regression models [2521350]

Coordinators: W. Heller

Part of the modules: Econometrics and Statistics II (p. 131)[MATHMWSTAT6], Econometrics and Statistics I (p. 130)[MATHMWSTAT5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Conditions
None.

Recommendations
Knowledge of the contents covered by the course “Economics III: Introduction in Econometrics” [2520016]

Learning Outcomes
The student

- shows comprehensive knowledge of regression techniques

Content

Media
Slides

Basic literature
Provided in the lecture
Course: Stochastic Control [MATHST12]

Coordinators: N. Bäuerle

Part of the modules: Stochastic Control (p. 101)[MATHMWST12]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Stochastic Calculus and Finance [2521331]

Coordinators: M. Safarian
Part of the modules: Econometrics and Statistics II (p. 131) [MATHMWSTAT6]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
After successful completion of the course students will be familiar with many common methods of pricing and portfolio models in finance. Emphasis will be put on both finance and the theory behind it.

Content
The course will provide rigorous yet focused training in stochastic calculus and finance. The program will cover modern approaches in stochastic calculus and mathematical finance. Topics to be covered:

Media
transparencies, exercises.

Basic literature
To be announced in lecture.

Elective literature:
- An Introduction to Stochastic Integration (Probability and its Applications) by Kai L. Chung, Ruth J. Williams, Birkhaueser
- Methods of Mathematical Finance by Ioannis Karatzas, Steven E. Shreve, Springer 1998
Course: Stochastic Differential Equations [MATHAN24]

Coordinators: R. Schnaubelt, L. Weis

Part of the modules: Stochastic Differential Equations (p. 55)[MATHMWAN24]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Markov Decision Models I [2550679]

Coordinators: K. Waldmann

Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10], Methodical Foundations of OR (p. 134)[MATHMWOR6], Stochastic Methods and Simulation (p. 135)[MATHMWOR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1/2</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
The participants will be enabled to model and analyze stochastic systems with modern techniques. The discussion of practice-oriented case studies pursues two goals. On the one hand, typical problem settings are illustrated and on the other hand, criteria for the evaluation of the performance of stochastic systems are motivated. Properties and characteristics for the evaluation of the performance of Markov Chains, Poisson Processes and queueing systems are developed.

Content
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queueing Systems

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
- Elective literature:
Course: Markov Decision Models II [2550682]

Coordinators: K. Waldmann

Part of the modules: Stochastic Modelling and Optimization (p. 141)[MATHMWOR10], Stochastic Methods and Simulation (p. 135)[MATHMWOR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1/2</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by a 2/3 step of a full grade (according to Section 4(2), 3 of the examination regulation).

Conditions
Foundations in the field of the Markov Decision Models I [2550679] are desired.

Learning Outcomes
The participants will be enabled to utilize Markov Decision Processes as a method for analyzing, controlling and optimizing dynamic stochastic systems. The discussion of practice-oriented case studies in the area of the management of energy systems, revenue management and logistics illustrates the application fields of Markov Decision Processes. Necessary mathematical concepts like theoretical foundations, optimality criteria and the solution of the optimality equation are presented. Particularly the development of simple structured decision rules, that are desired by practitioners on the one hand, and that permit the efficient solutions of the optimality equation on the other hand, are discussed. The facultative computer exercise course using the programming language Java comprises a practice-oriented case study that illustrates the opportunities of the optimization of stochastic systems.

Content
Queuing Systems, Stochastic Decision Processes

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Stochastic Evolution Equations [MATHAN40-1]

Coordinators: L. Weis
Part of the modules: Stochastic Evolution Equations (p. 61)[MATHAN40]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Stochastic Geometry [MATHST06]

Coordinators: D. Hug, G. Last
Part of the modules: Stochastic Geometry (p. 95)[MATHMWST06]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
- Random Sets
- Geometric Point Processes
- Stationarity and Isotropy
- Germ Grain Models
- Boolean Models
- Geometric densities and characteristics
- Random Tessellations
Course: Strategic Brand Management [2571185]

Coordinators: M. Klarmann, J. Blickhäuser
Part of the modules: Marketing Management (p. 120) [MATHMWBWLMAR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Non exam assessment (following §4(2), 3 of the examination regulation).

Conditions
None.

Learning Outcomes
See German version.

Content

Remarks
In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing & Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in summer term starts.

Please note: The number of participants for this course is limited. The Marketing & Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.
Course: Strategical Aspects of Energy Economy [2581958]

Coordinators: A. Ardone
Part of the modules: Energy Economics and Technology (p. 118)[MATHMWBWLII5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2),1 of the examination regulation.

Conditions
None.

Learning Outcomes
Students
- have in-depth knowledge of current and future technologies for power generation,
- know methods and approaches regarding short- to long-term electricity system planning and market modeling - in particular the cost of generating electricity.

Content
1) Energy supply
 1.1 Basic concepts
 1.2 Global supply & demand (oil, coal, gas, electricity)
2) Power plant types
 2.1 Thermal power plants
 2.2 Renewables
3) Cost of electricity generation
 3.1 Cost depending on the investment (CAPEX)
 3.2 Operational fixed cost (OPEX)
 3.3 Variable cost
 3.4 Full cost of power generation
4) Electricity markets
 4.1 Development of power markets
5) Energy system planning
 5.1 basic concepts
 5.2 Drivers
 5.3 Stages of power planning
 5.4 Short-term optimization: dispatch decisions
 5.5 Mid-term optimization: fuel procurement and overhaul planning
 5.6 Long-term optimization: additions & Retirements
 5.7 Mathematical tools for system planning and market modeling

Basic literature
Will be announced in the lecture.
Course: Strategic and Innovative Decision Making in Marketing [2571165]

Coordinators: B. Neibecker
Part of the modules: Marketing Management (p. 120) [MATHWBWLMAR5]

ECTS Credits 4,5
Hours per week 2/1
Term Summer term
Instruction language de

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The examination is offered every semester. Re-examinations are offered at every ordinary examination date.

Conditions
See corresponding module information.

Learning Outcomes
Students have learned the following outcomes and competences:
- To specify the key terms in strategic management and innovation research, based on methodological and behavioral approaches
- To apply statistical tools to analyze and interpret strategic problems in marketing
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
The course places emphasis on the role of marketing in strategic planning. The planning and implementation stages are discussed using a case study in business portfolio analysis, talking about experience effects, approaches in defining strategic business units. A critical view on market orientation and sustainable competitive advantage is given according to Kumar et al. Further topics are innovation and diffusion models, behavioral approaches to innovative decision processes and a discussion on Porter’s single diamond theory and globalization.

Basic literature
Course: Strategic Management of Information Technology [2511602]

Coordinators: T. Wolf

Part of the modules: Informatics (p. 142)[MATHMWINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Conditions
None.

Learning Outcomes
Students know the outer frame of IT in an enterprise and know which functions IT has within an enterprise. They understand the organization and the content of these functions.

Content
The following topics will be covered: strategic planning of ICT, architecture of ICT, overall planning of ICT, outsourcing, operation and controlling of ICT.

Media
Slides, internet resources

Basic literature
• Thome, R.: Wirtschaftliche Informationsverarbeitung. Verlag Franz Vahlen, München 1990
Course: Supply Chain Management in the Process Industry [2550494]

Coordinators:
S. Nickel

Part of the modules:
Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMWR8]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation) (individual grading), case study presentation by student teams (team grading) and classroom participation (individual grading). The examination is held in the term of the lecture.

Conditions

Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Recommendations

Advanced knowledge of Operations Research (e.g., as conveyed in the lectures Facility Location and Strategic SCM, Tactical and operational SCM) is recommended.

Learning Outcomes

The student

- knows and classifies state-of-the art approaches for designing, planning and managing global supply chains in the process industry
- distinguishes quality in supply chains and identifies important building blocks, repeating patterns and concepts crucial to supply chain strategy, design and planning,
- explains specific challenges and approaches towards supply chain operations within the process industry with regards to transportation and warehousing, and describes the interdisciplinary linkage of SCM with information systems, performance management, project management, risk management and sustainability management,
- transfers gained knowledge into practice by using SCM case studies and SCM real life project documentations.

Content

The course "Supply Chain Management in the Process Industry" covers fundamental concepts in the field of supply chain management with special focus on process industry. Strategic, planning and operational topics within the end-to-end supply chain are examined, covering relevant approaches in design, processes and performance measurement. Additional focus within the course is on showing the interdisciplinary linkages SCM has with information systems, performance management, project management, risk management and sustainability management. The course is enriched by various insights from the world’s leading chemical company BASF, provided by executive management as real life examples and cases.

Basic literature

- Various case studies, which will be provided during the course

Remarks

The number of participants is restricted due to the execution of interactive case studies and the resulting examination effort. Due to these capacity restrictions, registration before course start is required according to the information on the course website. The course is planned to be held every winter term. The planned lectures and courses for the next three years are announced online.
Course: Tactical and Operational Supply Chain Management [2550486]

Coordinators: S. Nickel
Part of the modules: Operations Research in Supply Chain Management and Health Care Management (p. 136)[MATHMWOR8], Applications of Operations Research (p. 132)[MATHMWOR5], Operations Research in Supply Chain Management (p. 138)[MATHMWOR11], Stochastic Methods and Simulation (p. 135)[MATHMWOR7]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.
Prerequisite for admission to examination is the successful completion of the online assessments.

Conditions
Prerequisite for admission to examination is the successful completion of the online assessments.

Learning Outcomes
The student
- gathers expertise in fundamental techniques from procurement and distribution logistics, methods from inventory management and lot sizing,
- acquires the ability to efficiently utilize quantitative models from transportation planning (long-distance and distribution planning), inventory management and lot sizing in production,
- applies the introduced methods in more detail and in industry-relevant case-studies.

Content
The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot.
The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.

Basic literature
Elective literature:
- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005

Remarks
The lecture is held in every summer term. The planned lectures and courses for the next three years are announced online.
Course: Technological Change in Energy Economics [2581000]

Coordinators: M. Wietschel

Part of the modules: Energy Economics and Technology (p. 118)[MATHMWBWLIIIP5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam.

Conditions
None.

Learning Outcomes
The student
- has an understanding of innovation theory, innovation economy, and innovation systems,
- has skills in different quantitative method for the forecast of technology change in the energy sector, such as technology cycle models, optimization and simulation models as well as indicators and is able to select the adequate approach depending from the task,
- is able to evaluate most important technological developments in the energy sector (energy supply, energy demand, alternative fuels and propulsion systems in the transport sector, and infrastructure (storage, grids)) from a techno-economic perspective.

Content
Course: Theory of Economic Growth [2520543]

Coordinators: M. Hillebrand
Part of the modules: Innovation and growth (p. 122)[MATHMWVLWW1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer term</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a 60 min. written exam (according to Section 4 (2), 1 of the examination regulation). Examinations are confined to the following dates: At the beginning of the recess period (mid July) and of the winter semester (early October).
Please note: There are no further examination dates for this course.

Conditions
None.

Recommendations
Basic knowledge in micro- and macroeconomics, as conveyed in the courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014], is assumed.
Participants are expected to bring a strong interest in mathematical economics and quantitative model building.

Learning Outcomes
See German version.

Content
The field of economic growth strives to analyze and explain the long-run evolution of economies. The aim of this course is to develop models which offer a mathematical description of the growth process and its structural determinants. Starting with the fundamental models by Solow, Kaldor, and Pasinetti, the main focus is on so-called overlapping generations (OLG) models. For this class of models, the theory of deterministic dynamical systems offers a rich set of mathematical tools to analyze the long-run behavior of the economy. In particular, conditions under which the growth path converges, diverges, or exhibits irregular (chaotic) fluctuations can be derived. Building on the insights obtained, a second set of questions deals with how economic policy can foster and stabilize the growth process. In this regard, the impact of governmental debt and intergenerational redistribution schemes such as Social Security on economic growth and welfare are investigated.

Basic literature

Remarks
All classes will be held in English.
Course: Topics in Experimental Economics [2520400]

Coordinators: P. Reiss
Part of the modules: Experimental Economics (p. 128)[MATHMW4VWL17]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>2/1</td>
<td>Summer</td>
<td>en</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 of the examination regulation).

Conditions
None.

Recommendations
Basic knowledge of Experimental Economics is assumed. Therefore, it is strongly recommended to attend the course Experimental Economics beforehand.

Learning Outcomes
Students

• are familiar with current research in experimental economics;
• can evaluate the results of an economic experiment and are able to assess its significance in the context of relevant research;
• master advanced methodic issues regarding the experimental method.

Content
The course covers selected topics in experimental economics and deepens the understanding of the experimental method. In particular, topics of current research into experimental and behavioral economics are discussed, along with a treatment of advanced methodic issues.

Media
Slides, problem sets.

Basic literature
A selection of published papers is compulsory reading for the course. The course syllabus provides references and is announced at the beginning of the course.

Remarks
The course is offered in summer 2016 for the first time. The course is not offered in every academic year.
Course: Management and Strategy [2577900]

Coordinators: H. Lindstädt

Part of the modules: Strategic Corporate Management and Organization (p. 119)[MATHMWUO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations

The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Conditions

None.

Learning Outcomes

After passing this course students are able to

- prepare strategic decisions along the ideal-typical strategy process in practice (“strategic analysis”).
- assess strategic options.
- explain the portfolio management (Parental advantage and best owner of business entities).
- discuss price and capacity decisions in oligopolies and explain them in examples.

Content

The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration. Thereby a focus is on imparting knowledge about how price developments in oligopolistic markets can be understood, modeled and forecasted based on game theory.

Media

Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.

Remarks

The credits for the course “Management and Strategy” have been changed from 4 to 3.5 from summer term 2015 on.
Course: Valuation [2530212]

Coordinators: M. Ruckes

Part of the modules: Finance 2 (p. 115)[MATHMWBWLFBV2], Finance 1 (p. 114)[MATHMWBWLFBV1], Finance 3 (p. 116)[MATH4BWLFBV11]

ECTS Credits 4,5

Hours per week 2/1

Term Winter term

Instruction language en

Learning Control / Examinations
Conditions None.

Learning Outcomes
Students

- are in a position to evaluate corporate investment projects from a financial point of view,
- are able to value companies,
- are in a position to evaluate the financial consequences of mergers and acquisitions,
- are able to measure the value of flexibility.

Content
Firms prosper when they create value for their shareholders and stakeholders. This is achieved by investing in projects that yield higher returns than their according cost of capital. Students are told the basic tools for firm and project valuation as well as ways to implement these tools in order to enhance a firm’s value and improve its investment decisions. Among other things, the course will deal with the valuation of firms and individual projects using discounted cash flow and relative valuation approaches and the valuation of flexibility deploying real options.

Basic literature
Elective literature:
Course: Calculus of variations [MATHAN25]

Coordinators: A. Kirsch, T. Lamm, M. Plum, W. Reichel

Part of the modules: Calculus of variations (p. 56) [MATHMWAN25]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Comparison Geometry [MATHAG30]

Coordinators: W. Tuschmann, M. Radeschi

Part of the modules: Comparison Geometry (p. 33)[MATHAG30]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions

None.

Learning Outcomes

Content
Course: Behavioral Approaches in Marketing [2572167]

Coordinators: B. Neibecker

Part of the modules: Marketing Management (p. 120) [MATHMWBWLMMAR5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).
The examination is offered every semester. Re-examinations are offered at every ordinary examination date.

Conditions
See module description.

Learning Outcomes
Students have learned the following outcomes and competences:

- To specify the key terms in marketing and communication management
- To identify and define theoretical constructs in marketing communication, based on behavioral theory
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
This course gives an introduction to consumer behavior and the influence of cognitive and emotional information processing on consumer decision making. The contribution of advertising response models is considered and faced with social and environmental aspects (e.g. cross-cultural influences) on consumer behavior, mass communication and internet advertising. In addition, a scientific case study on the effectiveness of TV-commercials is discussed. Central issues of the course:
Case Studies in brand management and advertising response.
Psychological factors (research design and test marketing / arousal / effectiveness of TV-commercials as case studies).
Emotions in marketing.
Information processing and retention in memory (schema theory / visual information processing/grounded theory).
Complex advertising response models (attitude towards the ad / attitude towards the brand / persuasion / context effects in learning / decision making / Means-end-theory and strategic advertising).
Social processes (culture / subculture / cross cultural influence / product design).
Neuromarketing.

Basic literature
(Literature is in English and German, see German description)
Course: Forecasting: Theory and Practice I [MATHST28I]

Coordinators: T. Gneiting
Part of the modules: Forecasting: Theory and Practice (p. 111)[MATHST28]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations
Conditions
None.

Learning Outcomes
Content
Course: Forecasting: Theory and Practice II [MATHST28II]

Coordinators: T. Gneiting

Part of the modules: Forecasting: Theory and Practice (p. 111)[MATHST28]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Heat Economy [2581001]

Coordinators: W. Fichtner
Part of the modules: Energy Economics and Technology (p. 118)[MATHMWBWLIP5]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2/0</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Conditions
None.

Learning Outcomes
The student gains detailed knowledge about heat generating technologies and their areas of application, in particular in the area of combined heat and power. The student is able to deal with technical and economic questions in this field.

Content
1. Introduction: Heat economy
2. CHP technologies (incl. calculation of profitability)
3. Heat systems (incl. calculation of profitability)
4. Distribution of heat
5. Demand for space heating and thermal insulation measures
6. Heat storage
7. Legal framework conditions
8. Laboratory experiment: compression heat pump

Media
Media will be provided on the e-learning platform ILIAS.
Course: Probability theory and combinatorial optimization [MATHST27]

Coordinators: D. Hug, G. Last
Part of the modules: Probability theory and combinatorial optimization (p. 110)[MATHST27]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Traveling Waves [MATHAN38]

Coordinators: J. Rottmann-Matthes
Part of the modules: Traveling Waves (p. 60)[MATHAN38]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>
Course: Wavelets [Wave]

Coordinators: A. Rieder

Part of the modules: Wavelets (p. 70) [MATHMWNM14]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Web Science [2511312]

Coordinators: Y. Sure-Vetter
Part of the modules: Informatics (p. 142)[MATHMINFO1]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Winter term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.
The exam takes place every semester and can be repeated at every regular examination date.

Conditions
None.

Learning Outcomes
The students

- are familiar with current research topics in the field of Web Science and learns in particular about the topics small-world-problem, network theory, social network analysis, bibliometrics as well as link analysis and search.
- are able to apply interdisciplinary thinking.
- are able to apply technological approaches to social science problems.

Content
Media
Lecture slides.

Basic literature

Remarks
Course: Workflow-Management [2511204]

| Coordinators: | A. Oberweis |
| Part of the modules: | Informatics (p. 142)[MATHMINFO1] |

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2/1</td>
<td>Summer term</td>
<td>de</td>
</tr>
</tbody>
</table>

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Conditions
None.

Learning Outcomes
Students
- explain the concepts and principles of workflow management concepts and systems and their applications,
- create and evaluate business process models,
- analyze static and dynamic properties of workflows.

Content
A workflow is that part of a business process which is automatically executed by a computerized system. Workflow management includes the design, modelling, analysis, execution and management of workflows. Workflow management systems are standard software systems for the efficient control of processes in enterprises and organizations. Knowledge in the field of workflow management systems is especially important during the design of systems for process support.

The course covers the most important concepts of workflow management. Modelling and design techniques are presented and an overview about current workflow management systems is given. Standards, which have been proposed by the workflow management coalition (WfMC), are discussed. Petri nets are proposed as a formal modelling and analysis tool for business processes. Architecture and functionality of workflow management systems are discussed. The course is a combination of theoretical foundations of workflow management concepts and of practical application knowledge.

Media
Slides, Access to internet resources.

Basic literature

Further literature is given in the lecture.
Course: Time Series Analysis [MATHST18]

Coordinators: N. Henze, B. Klar
Part of the modules: Time Series Analysis (p. 106)[MATHMWST18]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2/1</td>
<td>Summer term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Course: Random Graphs [MATHST29]

Coordinators: M. Schulte
Part of the modules: Random Graphs (p. 112)[MATHST29]

<table>
<thead>
<tr>
<th>ECTS Credits</th>
<th>Hours per week</th>
<th>Term</th>
<th>Instruction language</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3/1</td>
<td>Winter / Summer Term</td>
<td></td>
</tr>
</tbody>
</table>

Learning Control / Examinations

Conditions
None.

Learning Outcomes

Content
Amtliche Bekanntmachung

2009 Ausgegeben Karlsruhe, den 28. August 2009 Nr. 76

Inhalt

Studien- und Prüfungsordnung der Universität Karlsruhe (TH) 470
für den Masterstudiengang Wirtschaftsmathematik
Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Masterstudiengang Wirtschaftsmathematik

Der Rektor hat seine Zustimmung am 28. August 2009 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich, Zweck der Prüfung
§ 2 Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Aufbau der Prüfungen
§ 5 Anmeldung und Zulassung zu den Prüfungen
§ 6 Durchführung von Prüfungen und Erfolgskontrollen
§ 7 Bewertung von Prüfungen und Erfolgskontrollen
§ 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen
§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 11 Masterarbeit
§ 12 Berufspraktikum
§ 13 Zusatzleistungen, Zusatzmodule, Schlüsselqualifikationen
§ 14 Prüfungsausschuss
§ 15 Prüferinnen und Beisitzende
§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

II. Masterprüfung
§ 17 Umfang und Art der Masterprüfung
§ 18 Bestehen der Masterprüfung, Bildung der Gesamtnote
§ 19 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
§ 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
§ 21 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades
§ 22 Einsicht in die Prüfungsakten
§ 23 In-Kraft-Treten
Die Universität Karlsruhe (TH) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studiendauerausbildung an der Universität Karlsruhe (TH) der Mastergrad stehen soll. Die Universität Karlsruhe (TH) sieht daher die an der Universität Karlsruhe (TH) angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

In dieser Satzung ist nur die weibliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Zweck der Prüfung

(1) Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Wirtschaftsmathematik an der Universität Karlsruhe (TH).

(2) Im Masterstudium sollen die im Bachelorstudium erworbenen wissenschaftlichen Qualifikationen weiter vertieft oder ergänzt werden. Die Studentin soll in der Lage sein, die wissenschaftlichen Erkenntnisse und Methoden selbstständig anzuwenden und ihre Bedeutung und Reichweite für die Lösung komplexer wissenschaftlicher und gesellschaftlicher Problemstellungen zu bewerten.

§ 2 Akademischer Grad

Aufgrund der bestandenen Masterprüfung wird der akademische Grad „Master of Science“ (abgekürzt: „M.Sc.“) verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt vier Semester. Sie umfasst neben den Lehrveranstaltungen Prüfungen und die Masterarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren, beschreibt der Studienplan. Die Fächer und deren Umfang werden in § 17 definiert.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.

(5) Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.

(6) Lehrveranstaltungen können auch in englischer Sprache angeboten werden.
§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Übungsscheine, Projekte, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) In der Regel sind mindestens 50 % einer Modulprüfung in Form von schriftlichen oder mündlichen Prüfungen (Absatz 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (Absatz 2, Nr. 3). Hiervon ausgenommen sind Seminarmodule.

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Um an den Modulprüfungen teilnehmen zu können, muss sich die Studentin schriftlich oder per Online-Anmeldung beim Studienbüro anmelden. Hierbei sind die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nachzuweisen. Darüber hinaus muss sich die Studentin für jede einzelne Modulteilprüfung, die in Form einer schriftlichen oder mündlichen Prüfung (§ 4 Abs. 2, Nr. 1 und 2) durchgeführt wird, beim Studienbüro anmelden. Dies gilt auch für die Anmeldung zur Masterarbeit.

(2) Um zu schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss die Studentin vor der ersten schriftlichen oder mündlichen Prüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgeben.

(3) Die Zulassung darf nur abgelehnt werden, wenn die Studentin in einem mit der Wirtschaftsmathematik oder den Wirtschaftswissenschaften vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat. In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach, durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2, Nr. 1 bis 3) der einzelnen Lehrveranstaltungen wird von der Prüferin der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Prüferin, die Art der Erfolgskontrollen, deren Häufigkeit, Reihenfolge und Gewichtung und die Bildung der Lehrveranstaltungsnote müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen zwischen Prüferin und Studentin kann die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichtigen.

(3) Eine schriftlich durchzuführende Prüfung kann auch mündlich, eine mündlich durchzuführende Prüfung kann auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

(4) Weist eine Studentin nach, dass sie wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen
Form abzulegen, kann der zuständige Prüfungsausschuss – in dringenden Angelegenheiten, deren Erledigung nicht bis zu einer Sitzung des Ausschusses aufgeschoben werden kann, dessen Vorsitzende – gestatten, Erfolgskontrollen in einer anderen Form zu erbringen. Auf begründeten Antrag kann der Prüfungsausschuss auch in anderen Ausnahmefällen gestatten, Erfolgskontrollen in einer anderen Form zu erbringen.

(5) Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung der Studentin die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.

(7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüferinnen (Kollegialprüfung) oder von einer Prüferin in Gegenwart einer Beisitzende als Gruppen- oder Einzelprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört die Prüferin die anderen an der Kollegialprüfung mitwirkenden Prüferinnen an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studentin.

(9) Studentinnen, die sich in einem späteren Prüfungsteil der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen als Zuhörerinnen bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prüfungsergebnisse. Aus wichtigen Gründen oder auf Antrag der zu prüfenden Studentin ist die Zulassung zu versagen.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss in der Regel neben der Prüferin eine Beisitzende anwesend sein, die zusätzlich zur Prüferin die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüferinnen in Form einer Note festgesetzt.

(2) Im Masterzeugnis dürfen nur folgende Noten verwendet werden:

1 = sehr gut (very good) = eine hervorragende Leistung,
2 = gut (good) = eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
3 = befriedigend (satisfactory) = eine Leistung, die durchschnittlichen Anforderungen entspricht,
Für die Masterarbeit und die Modulteilprüfungen sind zur differenzierten Bewertung nur folgende Noten zugelassen:

<table>
<thead>
<tr>
<th>Notenstufe</th>
<th>Spannweite</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0, 1.3</td>
<td>sehr gut</td>
</tr>
<tr>
<td>2</td>
<td>1.7, 2.0, 2.3</td>
<td>gut</td>
</tr>
<tr>
<td>3</td>
<td>2.7, 3.0, 3.3</td>
<td>befriedigend</td>
</tr>
<tr>
<td>4</td>
<td>3.7, 4.0</td>
<td>ausreichend</td>
</tr>
<tr>
<td>5</td>
<td>4.7, 5.0</td>
<td>nicht ausreichend</td>
</tr>
</tbody>
</table>

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann im Studienplan die Benotung mit „bestanden“ (passed) oder „nicht bestanden“ (failed) vorgesehen werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf in demselben Studiengang nur einmal angerechnet werden. Die Anrechnung eines Moduls, einer Lehrveranstaltung oder einer Erfolgskontrolle ist darüber hinaus ausgeschlossen, wenn das betreffende Modul, die Lehrveranstaltung oder die Erfolgskontrolle bereits in einem grundständigen Bachelorstudiengang angerechnet wurde, auf dem dieser Masterstudiengang konsekutiv aufbaut.

(6) Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur eingezeichnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

(9) Die Ergebnisse der Masterarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

(10) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten nachgewiesen wird.

(11) Die Gesamtnote der Masterprüfung und die Modulnoten lauten:

<table>
<thead>
<tr>
<th>Notenstufe</th>
<th>Spannweite</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 1.5</td>
<td></td>
<td>sehr gut</td>
</tr>
<tr>
<td>von 1.6 bis 2.5</td>
<td></td>
<td>gut</td>
</tr>
<tr>
<td>von 2.6 bis 3.5</td>
<td></td>
<td>befriedigend</td>
</tr>
<tr>
<td>von 3.6 bis 4.0</td>
<td></td>
<td>ausreichend</td>
</tr>
</tbody>
</table>
Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Masterprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote, Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>gehört zu den besten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>B</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>C</td>
<td>gehört zu den nächsten 30 % der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>D</td>
<td>gehört zu den nächsten 25 % der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>E</td>
<td>gehört zu den letzten 10 % der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (failed) - es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden,</td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (failed) - es sind erhebliche Verbesserungen erforderlich.</td>
</tr>
</tbody>
</table>

§ 8 Erlöschen des Prüfungsanspruchs, Wiederholung von Prüfungen und Erfolgskontrollen

(1) Studentinnen können eine nicht bestandene schriftliche Prüfung (§ 4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ (4.0) sein.

(2) Studentinnen können eine nicht bestandene mündliche Prüfung (§ 4 Abs. 2, Nr. 2) einmal wiederholen.

(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss geregelt werden.

(4) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Abs. 2, Nr. 3) wird im Studienplan geregelt.

(6) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.
Eine Fachprüfung ist endgültig nicht bestanden, wenn mindestens ein Modul des Faches endgültig nicht bestanden ist.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

2. Eine Modulprüfung gilt als mit „nicht ausreichend“ bewertet, wenn die Studentin einen Prüfungstermin ohne triftigen Grund versäumt oder wenn sie nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, die Studentin hat die Fristüberschreitung nicht zu vertreten.

4. Versucht die Studentin das Ergebnis seiner Modulprüfung durch Täuschung oder Benutzung zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Modulprüfung als mit „nicht ausreichend“ (5.0) bewertet.

(7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika (\textquote{Verhaltensordnung}).

\textbf{§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten}

\textbf{§ 11 Masterarbeit}

(1) Die Masterarbeit soll zeigen, dass die Studentin in der Lage ist, ein Problem aus ihrem Fach selbstständig und in begrenzter Zeit nach wissenschaftlichen Methoden, die dem Stand der Forschung entsprechen, zu bearbeiten. Die Masterarbeit kann auf Deutsch oder Englisch geschrieben werden.

(2) Zum Modul Masterarbeit wird zugelassen, wer mindestens 70 Leistungspunkte gesammelt hat.

(5) Bei der Abgabe der Masterarbeit hat die Studentin schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst hat und keine anderen als die von ihr angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend” (5.0) bewertet.

§ 12 Berufspraktikum

(2) Die Studentin setzt sich in eigener Verantwortung mit geeigneten privaten bzw. öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Die Studentin wird dabei von einer Prüferin nach § 15 Abs. 2 und einer Ansprechpartnerin der betroffenen Einrichtung betreut.

(3) Am Ende des Berufspraktikums ist der Prüferin ein kurzer Bericht abzugeben und eine Kurzpräsentation über die Erfahrungen im Berufspraktikum zu halten.

(4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens sechswöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Das Berufspraktikum geht nicht in die Gesamtnote ein. Ein Berufspraktikum kann als Zusatzleistung im Sinne von § 13 Abs. 1 oder im Rahmen des Wahlpflichtfachs gemäß § 17 Abs. 4 erbracht werden.

§ 13 Zusatzleistungen, Zusatzmodule, Schlüsselqualifikationen

(2) Die Studentin hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

(4) Neben den verpflichtenden fachwissenschaftlichen Modulen sind Module zu den überfachlichen Schlüsselqualifikationen im Umfang von 3 bis 4 Leistungspunkten Bestandteil eines Masterstudiums. Im Studienplan werden Empfehlungen ausgesprochen, welche Module im Rahmen des Angebots zur Vermittlung der additiven Schlüsselqualifikationen belegt werden sollen.
§ 14 Prüfungsausschuss

(2) Die Vorsitzende, ihre Stellvertreterin, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreterinnen werden von den jeweiligen Fakultätsräten bestellt, die Mitglieder der Gruppe der akademischen Mitarbeiterinnen nach § 10 Abs. 1, Satz 2, Nr. 2 LHG und die Vertreterin der Studentinnen auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Die Vorsitzende und deren Stellvertreterin müssen Hochschullehrerin sein. Die Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr.

(3) Der Prüfungsausschuss ist zuständig für die Organisation der Modulprüfungen und die Durchführung der ihm durch diese Studien- und Prüfungsordnung zugewiesenen Aufgaben. Er achtet auf die Einhaltung der Bestimmungen dieser Studien- und Prüfungsordnung und fällt die Entscheidung in Prüfungsangelegenheiten. Er entscheidet über die Anrechnung von Studienzeiten, Studienleistungen und Modulprüfungen und übernimmt die Gleichwertigkeitsbestellung. Er berichtet der jeweiligen Fakultät regelmäßig über die Entwicklung der Prüfungs- und Studienzeiten, einschließlich der Bearbeitungszeiten für die Masterarbeiten und die Verteilung der Gesamtnoten. Er gibt Anregungen zur Reform der Studien- und Prüfungsordnung und der Modulbeschreibungen.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben für alle Regelfälle auf die Vorsitzende des Prüfungsausschusses übertragen.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses eine fachlich zuständige und von der betroffenen Fakultät zu nennende Hochschullehrerin oder Privatdozentin hinzuzuziehen. Sie hat in diesem Punkt Stimmsrecht.

(7) Belastende Entscheidungen des Prüfungsausschusses sind der Studentin schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Widersprüche gegen Entscheidungen des Prüfungsausschusses sind innerhalb eines Monats nach Zugang der Entscheidung schriftlich oder zur Niederschrift beim Rektorat der Universität Karlsruhe (TH) einzulegen.

§ 15 Prüferinnen und Beisitzende

(1) Der Prüfungsausschuss bestellt die Prüferinnen und die Beisitzenden. Er kann die Bestellung der Vorsitzenden übertragen.

(2) Prüferinnen sind Hochschullehrerinnen und habilitierte Mitglieder sowie akademischen Mitarbeiterinnen, denen die Prüfungsbefugnis übertragen wurde. Zur Prüferin und Beisitzenden darf nur bestellt werden, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zu Prüferinnen bestellt werden, wenn die jeweilige Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.
(4) Zur Beisitzenden darf nur bestellt werden, wer einen Masterabschluss in einem Studiengang der Wirtschaftsmathematik oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studienleistungen und Modulprüfungen

(2) Werden Leistungen angerechnet, können die Noten – soweit die Notensysteme vergleichbar sind – übernommen werden und in die Berechnung der Modulnoten und der Gesamtnote einbezogen werden. Liegen keine Noten vor, muss die Leistung nicht anerkannt werden. Die Studentin hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studienleistungen und Modulprüfungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Absatz 1 gilt auch für Studienzeiten, Studienleistungen und Modulprüfungen, die in staatlich anerkannten Fernstudien- und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien erworben wurden.

(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreterinnen zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

II. Masterprüfung

§ 17 Umfang und Art der Masterprüfung

(1) Die Masterprüfung besteht aus den Prüfungen nach Absatz 2, 3 und 4 sowie der Masterarbeit nach Absatz 6.

(2) Es sind Prüfungen aus folgenden Gebieten durch den Nachweis von Leistungspunkten in jeweils einem oder mehreren Modulen abzulegen:

Fach Mathematik:
1. Stochastik: im Umfang von 8 Leistungspunkten,
2. Angewandte und Numerische Mathematik/Optimierung: im Umfang von 8 Leistungspunkten,

Fach Wirtschaftswissenschaften:
4. Finance - Risikomanagement - Managerial Economics: im Umfang von 18 Leistungspunkten,

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Gebieten und Fächern sind im Studienplan festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.

(3) Es sind zwei Seminarmodule über je 3 Leistungspunkte nachzuweisen. Dabei muss je ein Seminarmodul aus den beiden beteiligten Fakultäten bestanden werden.

(4) Es sind weiterhin 12 Leistungspunkte zu erbringen, wobei mindestens 8 Leistungspunkte aus den obigen Gebieten 1.-5. oder dem Berufspraktikum kommen müssen und 3 bis 4 Leistungspunkte aus Modulen zu Schlüsselqualifikationen nach § 13 Abs. 4.

(5) Im Studienplan oder Modulhandbuch können darüber hinaus inhaltliche Schwerpunkte definiert werden, denen Module zugeordnet werden können.

(6) Als weitere Prüfungsleistung ist eine Masterarbeit gemäß § 11 anzufertigen.

§ 18 Bestehen der Masterprüfung, Bildung der Gesamtnote
(1) Die Masterprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mindes
tens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden alle Prüfungsleistungen nach § 17 mit ihren Leistungspunkten gewichtet.

(3) Hat die Studentin die Masterarbeit mit der Note 1.0 und die Masterprüfung mit einem Durch
schnitt von 1.0 abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verlie
hen. Mit einer Masterarbeit mit der Note 1.0 und bis zu einem Durchschnitt von 1.3 kann auf An
trag an den Prüfungsausschuss das Prädikat „mit Auszeichnung“ (with distinction) verliehen werden.

§ 19 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement
(1) Über die Masterprüfung werden nach Bewertung der letzten Prüfungsleistung eine Masterurkunde und ein Zeugnis erstellt. Die Ausfertigung von Masterurkunde und Zeugnis soll nicht spä

(2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen und der Masterarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Ge
samtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist von den Dekaninnen der betei
ligten Fakultäten und von der Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

(3) Weiterhin erhält die Studentin als Anhang ein Diploma Supplement in deutscher und engli

(4) Die Abschrift der Studiendaten (Transcript of Records) enthält in strukturierter Form alle von
der Studentin erbrachten Prüfungsleistungen. Sie beinhaltet alle Fächer, Fachnoten und ihre

(5) Die Masterurkunde, das Masterzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 20 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

(1) Der Bescheid über die endgültig nicht bestandene Masterprüfung wird der Studentin durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

(2) Hat die Studentin die Masterprüfung endgültig nicht bestanden, wird ihr auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten sowie die zur Prüfung noch fehlenden Prüfungsleistungen enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 21 Ungültigkeit der Masterprüfung, Entziehung des Mastergrades

(1) Hat die Studentin bei einer Prüfungsleistung getäuscht und wird diese Tatsache nach der Aushändigung des Zeugnisses bekannt, so können die Noten der Modulprüfungen, bei deren Erbringung die Studentin getäuscht hat, berichtigt werden. Gegebenenfalls kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass die Studentin darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat die Studentin die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(3) Vor einer Entscheidung des Prüfungsausschusses ist der Studentin Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Mit dem unrichtigen Zeugnis ist auch die Masterurkunde einzuziehen, wenn die Masterprüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(6) Die Aberkennung des akademischen Grades richtet sich nach den gesetzlichen Vorschriften.

§ 22 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Masterprüfung wird der Studentin auf Antrag innerhalb eines Jahres Einsicht in ihre Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

Economathematics (M.Sc.)
Module Handbook, Date: 08.03.2016
Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

Die Prüferin bestimmt Ort und Zeit der Einsichtnahme.

Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 23 In-Kraft-Treten

Diese Studien- und Prüfungsordnung tritt am 1. Oktober 2009 in Kraft.

Karlsruhe, den 28. August 2009

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Am häufige Bekanntmachung

2012 Ausgegeben Karlsruhe, den 24. September 2012 Nr. 45

Inhalt

Satzung zur Änderung der Studien- und Prüfungsordnung
des Karlsruher Instituts für Technologie (KIT) für den
Masterstudiengang Wirtschaftsmathematik

Seite

310
Satzung zur Änderung der Studien- und Prüfungsordnung des Karlsruher Instituts für Technologie (KIT) für den Masterstudiengang Wirtschaftsmathematik
vom 24. September 2012

Artikel 1
1. § 7 Abs. 12 wird ersatzlos gestrichen.

2. § 13 Abs. 1 wird wie folgt geändert:

3. § 13 Abs. 3 erhält folgende Fassung:

4. § 14 Abs. 1 erhält folgende Fassung:
 „(1) Für den Masterstudiengang Wirtschaftsmathematik wird ein Prüfungsausschuss gebildet. Er besteht aus sechs stimmberechtigten Mitgliedern, die jeweils zur Hälfte von der Fakultät für Mathematik und der Fakultät für Wirtschaftswissenschaften bestellt werden: vier Hochschullehrerinnen oder Privatdozentinnen, zwei Vertreterinnen der Gruppe der akademischen Mitarbeiterinnen nach § 10 Abs. 1, Satz 2, Nr. 2 LHG und je einer Vertreterin der Studentinnen der Fakultät für Mathematik und der Fakultät für Wirtschaftswissenschaften mit beratender
Stimme. Weitere Mitglieder mit beratender Stimme können von den jeweiligen Fakultätsräten bestellt werden. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die der studentischen Mitglieder ein Jahr.“

5. § 17 Abs. 2 wird wie folgt geändert:

„(2) Es sind Prüfungen aus folgenden Gebieten durch den Nachweis von Leistungspunkten in jeweils einem oder mehreren Modulen abzulegen:

Fach Mathematik:
1. Stochastik: im Umfang von 8 Leistungspunkten,

Fach Wirtschaftswissenschaften:
3. Finance – Risk Management - Managerial Economics: im Umfang von 18 Leistungspunkten,

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den Gebieten und Fächern sind im Studienplan festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen werden, wer die Anforderungen nach § 5 erfüllt.“

6. § 19 Abs. 2 erhält folgende Fassung:

„(2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen und der Masterarbeit erzielten Noten, deren zugeordnete Leistungspunkte und die Gesamtnote. Das Zeugnis ist von den Dekaninnen der beteiligten Fakultäten und von der Vorsitzenden des Prüfungsausschusses zu unterzeichnen.“

7. § 19 Abs. 4 wird wie folgt geändert:

Artikel 2
Diese Satzung tritt am Tage nach ihrer Veröffentlichung in den Amtlichen Bekanntmachungen des Karlsruher Instituts für Technologie (KIT) in Kraft.

Karlsruhe, den 24. September 2012

Professor Dr. Eberhard Umbach (Präsident)