Table Of Contents

1. Welcome to the new module handbook of your study programme ... 11

2. About this handbook ... 12

 2.1. Notes and rules ... 12

 2.1.1. Begin and completion of a module ... 12

 2.1.2. Module versions .. 12

 2.1.3. General and partial examinations ... 12

 2.1.4. Types of exams .. 12

 2.1.5. Repeating exams .. 12

 2.1.6. Examiners ... 13

 2.1.7. Additional accomplishments .. 13

 2.1.8. Further information ... 13

 2.2. Contact ... 13

3. The Master's degree program in Economics Engineering .. 14

 3.1. Qualification objectives of the Master's program in Economics Engineering ... 14

 3.2. Structure of the Master's degree program in Economics Engineering (M.Sc.) SPO 2015 14

 3.3. Key Skills .. 15

4. Field of study structure .. 16

 4.1. Master Thesis ... 16

 4.2. Economics .. 16

 4.3. Business Administration ... 17

 4.4. Informatics .. 17

 4.5. Operations Research ... 17

 4.6. Compulsory Elective Modules 1 .. 18

 4.7. Compulsory Elective Modules 2 .. 21

5. Modules ... 24

 5.1. Advanced Module Logistics - M-MACH-104888 ... 24

 5.2. Advanced Topics in Public Finance - M-WIWI-101511 ... 25

 5.3. Advanced Topics in Strategy and Management - M-WIWI-103119 ... 26

 5.4. Agglomeration and Innovation - M-WIWI-101497 ... 27

 5.5. Analytics and Statistics - M-WIWI-101637 ... 28

 5.6. Applied Strategic Decisions - M-WIWI-101453 ... 29

 5.7. Automated Manufacturing Systems - M-MACH-101298 ... 30

 5.8. BioMEMS - M-MACH-101290 ... 31

 5.9. Business & Service Engineering - M-WIWI-101410 .. 33

 5.10. Collective Decision Making - M-WIWI-101504 .. 34

 5.11. Combustion Engines I - M-MACH-101275 ... 35

 5.12. Combustion Engines II - M-MACH-101303 .. 36

 5.13. Control Engineering II - M-ETIT-101157 ... 37

 5.15. Data Science for Finance - M-WIWI-105032 .. 39

 5.16. Data Science: Advanced CRM - M-WIWI-101470 .. 40

 5.17. Data Science: Data-Driven Information Systems - M-WIWI-103117 ... 42

 5.18. Data Science: Evidence-based Marketing - M-WIWI-101647 ... 44

 5.19. Designing Interactive Information Systems - M-WIWI-104080 ... 45

 5.20. Digital Service Systems in Industry - M-WIWI-102808 ... 46

 5.22. Econometrics and Statistics II - M-WIWI-101639 ... 48

 5.23. Economic Theory and its Application in Finance - M-WIWI-101502 ... 49

 5.24. eEnergy: Markets, Services and Systems - M-WIWI-103720 ... 50

 5.25. Electives in Informatics - M-WIWI-101630 ... 51

 5.27. Emphasis in Informatics - M-WIWI-101628 ... 55

 5.28. Energy and Process Technology I - M-MACH-101296 ... 57

 5.29. Energy and Process Technology II - M-MACH-101297 .. 58

 5.31. Energy Economics and Technology - M-WIWI-101452 .. 60

 5.32. Entrepreneurship (EnTechnon) - M-WIWI-101488 ... 61
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.33. Environmental Economics - M-WIWI-101468</td>
<td>62</td>
</tr>
<tr>
<td>5.34. Experimental Economics - M-WIWI-101505</td>
<td>63</td>
</tr>
<tr>
<td>5.35. Extracurricular Module in Engineering - M-WIWI-101404</td>
<td>64</td>
</tr>
<tr>
<td>5.36. Finance 1 - M-WIWI-101482</td>
<td>65</td>
</tr>
<tr>
<td>5.37. Finance 2 - M-WIWI-101483</td>
<td>66</td>
</tr>
<tr>
<td>5.38. Finance 3 - M-WIWI-101480</td>
<td>67</td>
</tr>
<tr>
<td>5.39. FinTech Innovations - M-WIWI-105036</td>
<td>68</td>
</tr>
<tr>
<td>5.40. Fundamentals of Transportation - M-BGU-101064</td>
<td>69</td>
</tr>
<tr>
<td>5.41. Generation and Transmission of Renewable Power - M-ETIT-101164</td>
<td>70</td>
</tr>
<tr>
<td>5.42. Global Production and Logistics - M-MACH-101282</td>
<td>71</td>
</tr>
<tr>
<td>5.43. Governance, Risk & Compliance - M/INFO-101242</td>
<td>72</td>
</tr>
<tr>
<td>5.44. Growth and Agglomeration - M-WIWI-101496</td>
<td>73</td>
</tr>
<tr>
<td>5.45. High-Voltage Technology - M-ETIT-101163</td>
<td>74</td>
</tr>
<tr>
<td>5.46. Industrial Production II - M-WIWI-101471</td>
<td>75</td>
</tr>
<tr>
<td>5.47. Industrial Production III - M-WIWI-101412</td>
<td>77</td>
</tr>
<tr>
<td>5.48. Informatics - M-WIWI-101472</td>
<td>79</td>
</tr>
<tr>
<td>5.49. Information Engineering - M-WIWI-101411</td>
<td>81</td>
</tr>
<tr>
<td>5.50. Information Systems in Organizations - M-WIWI-104068</td>
<td>82</td>
</tr>
<tr>
<td>5.51. Innovation and Growth - M-WIWI-101478</td>
<td>83</td>
</tr>
<tr>
<td>5.52. Innovation Economics - M-WIWI-101514</td>
<td>84</td>
</tr>
<tr>
<td>5.53. Innovation Management - M-WIWI-101507</td>
<td>85</td>
</tr>
<tr>
<td>5.54. Integrated Production Planning - M-MACH-101272</td>
<td>87</td>
</tr>
<tr>
<td>5.55. Intellectual Property Law - M-INFO-101215</td>
<td>88</td>
</tr>
<tr>
<td>5.56. Lean Management in Construction - M-BGU-101884</td>
<td>89</td>
</tr>
<tr>
<td>5.57. Logistics and Supply Chain Management - M-MACH-105298</td>
<td>91</td>
</tr>
<tr>
<td>5.58. Machine Tools and Industrial Handling - M-MACH-101286</td>
<td>92</td>
</tr>
<tr>
<td>5.60. Management Accounting - M-WIWI-101498</td>
<td>94</td>
</tr>
<tr>
<td>5.61. Manufacturing Technology - M-MACH-101276</td>
<td>95</td>
</tr>
<tr>
<td>5.63. Marketing and Sales Management - M-WIWI-105312</td>
<td>97</td>
</tr>
<tr>
<td>5.64. Material Flow in Logistic Systems - M-MACH-101277</td>
<td>98</td>
</tr>
<tr>
<td>5.65. Material Flow in Networked Logistic Systems - M-MACH-101278</td>
<td>99</td>
</tr>
<tr>
<td>5.66. Mathematical Programming - M-WIWI-101473</td>
<td>100</td>
</tr>
<tr>
<td>5.67. Microeconomic Theory - M-WIWI-101300</td>
<td>102</td>
</tr>
<tr>
<td>5.68. Microfabrication - M-MACH-101291</td>
<td>103</td>
</tr>
<tr>
<td>5.69. Microoptics - M-MACH-101292</td>
<td>104</td>
</tr>
<tr>
<td>5.70. Microsystem Technology - M-MACH-101293</td>
<td>105</td>
</tr>
<tr>
<td>5.71. Module Masterarbeit - M-WIWI-101659</td>
<td>106</td>
</tr>
<tr>
<td>5.72. Nanotechnology - M-MACH-101294</td>
<td>107</td>
</tr>
<tr>
<td>5.73. Natural Hazards and Risk Management - M-WIWI-104837</td>
<td>108</td>
</tr>
<tr>
<td>5.74. Network Economics - M-WIWI-101406</td>
<td>109</td>
</tr>
<tr>
<td>5.75. Operations Research in Supply Chain Management - M-WIWI-102832</td>
<td>110</td>
</tr>
<tr>
<td>5.76. Optoelectronics and Optical Communication - M-MACH-101295</td>
<td>112</td>
</tr>
<tr>
<td>5.77. Principles of Food Process Engineering - M-CIWVT-101120</td>
<td>113</td>
</tr>
<tr>
<td>5.78. Private Business Law - M-INFO-101216</td>
<td>114</td>
</tr>
<tr>
<td>5.79. Process Engineering in Construction - M-BGU-101110</td>
<td>115</td>
</tr>
<tr>
<td>5.80. Project Management in Construction - M-BGU-101888</td>
<td>116</td>
</tr>
<tr>
<td>5.81. Public Business Law - M-INFO-101217</td>
<td>118</td>
</tr>
<tr>
<td>5.82. Rail System Technology - M-MACH-101274</td>
<td>119</td>
</tr>
<tr>
<td>5.83. Seminar Module - M-WIWI-101808</td>
<td>121</td>
</tr>
<tr>
<td>5.84. Service Analytics - M-WIWI-101506</td>
<td>123</td>
</tr>
<tr>
<td>5.85. Service Design Thinking - M-WIWI-101503</td>
<td>125</td>
</tr>
<tr>
<td>5.86. Service Economics and Management - M-WIWI-102754</td>
<td>127</td>
</tr>
<tr>
<td>5.87. Service Innovation, Design & Engineering - M-WIWI-102806</td>
<td>128</td>
</tr>
<tr>
<td>5.88. Service Management - M-WIWI-101448</td>
<td>130</td>
</tr>
<tr>
<td>5.89. Service Operations - M-WIWI-102805</td>
<td>131</td>
</tr>
<tr>
<td>5.90. Sociology - M-GEISSTOZ-101169</td>
<td>133</td>
</tr>
<tr>
<td>5.91. Specialization in Food Process Engineering - M-CIWVT-101119</td>
<td>134</td>
</tr>
<tr>
<td>5.92. Specialization in Production Engineering - M-MACH-101284</td>
<td>135</td>
</tr>
</tbody>
</table>

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
6. Courses

6.1. A Closer Look at Social Innovation - T-WIWI-109932 .. 152
6.3. Advanced Game Theory - T-WIWI-102861 .. 154
6.4. Advanced Information Systems - T-WIWI-110373 .. 155
6.5. Advanced Lab Informatics (Master) - T-WIWI-110548 .. 157
6.6. Advanced Lab Security - T-WIWI-109786 .. 161
6.9. Advanced Management Accounting - T-WIWI-102885 .. 165
6.10. Advanced Management Accounting 2 - T-WIWI-110179 ... 167
6.11. Advanced Statistics - T-WIWI-103123 .. 168
6.15. Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines - T-MACH-105173 173
6.17. Analyzing and Evaluating Innovation Processes - T-WIWI-108774 ... 175
6.18. Application of Social Science Methods (WiWi) - T-GEISTSOZ-109052 176
6.19. Applied Econometrics - T-WIWI-103125 .. 177
6.21. Artificial Intelligence in Service Systems - T-WIWI-108715 .. 180
6.22. Asset Pricing - T-WIWI-102647 ... 181
6.23. Auction Theory - T-WIWI-102613 .. 183
6.25. Automation of Discrete Event and Hybrid Systems - T-ETIT-100981 187
6.26. Automotive Logistics - T-MACH-105165 .. 188
6.27. Basics of German Company Tax Law and Tax Planning - T-WIWI-108711 189
6.28. Basics of Technical Logistics I - T-MACH-109919 ... 190
6.29. Basics of Technical Logistics II - T-MACH-109920 ... 191
6.31. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II - T-MACH-100967 193
6.32. BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III - T-MACH-100968 195
6.33. Bionics for Engineers and Natural Scientists - T-MACH-102172 ... 197
6.34. Blockchains & Cryptofinance - T-WIWI-108880 ... 199
6.35. Building Laws - T-BGU-103429 ... 200
6.36. Business Administration for Engineers and IT professionals - T-MACH-109933 201
6.37. Business Administration in Information Engineering and Management - T-WIWI-102886 202
6.40. Business Dynamics - T-WIWI-102762 .. 206
6.41. Business Intelligence Systems - T-WIWI-105777 ... 208
6.42. Business Models in the Internet: Planning and Implementation - T-WIWI-102639 210
6.43. Business Planning - T-WIWI-102865 ... 212
6.44. Business Planning for Founders - EUCOR - T-WIWI-110389 ... 213
6.46. Business Strategies of Banks - T-WIWI-102626 ... 216
Table Of Contents

6.49. CATIA Advanced - T-MACH-105312 ... 220
6.50. CATIA CAD Training Course - T-MACH-102185 .. 221
6.51. Challenges in Supply Chain Management - T-WIWI-102872 223
6.52. Characteristics of Transportation Systems - T-BGU-106609 225
6.53. Combustion Engines I - T-MACH-102194 .. 226
6.54. Combustion Engines II - T-MACH-104609 .. 228
6.56. Competition in Networks - T-WIWI-100005 .. 230
6.57. Computational Economics - T-WIWI-102680 ... 231
6.58. Computational Risk and Asset Management - T-WIWI-102878 232
6.60. Computer Contract Law - T-INFO-102036 .. 235
6.61. Construction Equipment - T-BGU-101845 .. 236
6.62. Control of Linear Multivariable Systems - T-ETIT-100666 237
6.63. Control Technology - T-MACH-105185 ... 238
6.64. Convex Analysis - T-WIWI-102856 ... 240
6.65. Conveying Technology and Logistics - T-MACH-102135 241
6.66. Copyright - T-INFO-101308 ... 242
6.67. Corporate Compliance - T-INFO-101288 ... 243
6.68. Corporate Financial Policy - T-WIWI-102622 ... 244
6.69. Corporate Risk Management - T-WIWI-109050 .. 245
6.70. Credit Risk - T-WIWI-102645 ... 247
6.71. Critical Information Infrastructures - T-WIWI-109248 248
6.73. Current Topics on BioMEMS - T-MACH-102176 .. 251
6.74. Data Mining and Applications - T-WIWI-103066 .. 252
6.75. Data Protection by Design - T-INFO-108405 ... 254
6.76. Data Protection Law - T-INFO-101303 .. 255
6.77. Database Systems and XML - T-WIWI-102661 .. 256
6.78. Decently Controlled Intralogistic Systems - T-MACH-105230 257
6.79. Derivatives - T-WIWI-102643 ... 259
6.80. Design Thinking - T-WIWI-102666 ... 260
6.81. Designing Interactive Systems - T-WIWI-110851 ... 261
6.82. Developing Business Models for the Semantic Web - T-WIWI-102851 262
6.83. Digital Health - T-WIWI-109246 ... 263
6.84. Digital Marketing and Sales in B2B - T-WIWI-106981 265
6.85. Digital Service Design - T-WIWI-105773 ... 267
6.86. Digital Services: Business Models and Transformation - T-WIWI-110280 269
6.87. Digital Transformation and Business Models - T-WIWI-108875 271
6.88. Digital Transformation of Organizations - T-WIWI-106201 272
6.89. Digitalization from Production to the Customer in the Optical Industry - T-MACH-110176 .. 274
6.90. Digitalization of Products, Services & Production - T-MACH-108491 276
6.91. Disassembly Process Engineering - T-BGU-101850 ... 277
6.92. Discrete-Event Simulation in Production and Logistics - T-WIWI-102718 278
6.93. Dynamic Macroeconomics - T-WIWI-109194 ... 280
6.94. Efficient Energy Systems and Electric Mobility - T-WIWI-102793 281
6.95. eFinance: Information Systems for Securities Trading - T-WIWI-110797 283
6.96. Electronics and EMC - T-ETIT-100723 ... 285
6.97. Elements and Systems of Technical Logistics - T-MACH-102159 286
6.98. Emerging Trends in Digital Health - T-WIWI-110144 287
6.100. Emissions into the Environment - T-WIWI-102634 289
6.102. Employment Law II - T-INFO-101330 ... 292
6.103. Energy and Environment - T-WIWI-102650 ... 293
6.106. Energy Conversion and Increased Efficiency in Internal Combustion Engines - T-MACH-105564 .. 297
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.109. Energy Networks and Regulation - T-WIWI-107503</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>6.112. Energy Trade and Risk Management - T-WIWI-102691</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>6.115. Engineering Hydrology - T-BGU-108943</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>6.117. Entrepreneurial Leadership & Innovation Management - T-WIWI-102833</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>6.118. Entrepreneurship - T-WIWI-102864</td>
<td></td>
<td>318</td>
</tr>
<tr>
<td>6.119. Entrepreneurship Research - T-WIWI-102894</td>
<td></td>
<td>319</td>
</tr>
<tr>
<td>6.120. Environmental and Resource Policy - T-WIWI-102616</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>6.121. Environmental Communication - T-BGU-101676</td>
<td></td>
<td>321</td>
</tr>
<tr>
<td>6.122. Environmental Economics and Sustainability - T-WIWI-102615</td>
<td></td>
<td>322</td>
</tr>
<tr>
<td>6.123. Environmental Law - T-INFO-101348</td>
<td></td>
<td>323</td>
</tr>
<tr>
<td>6.124. European and International Law - T-INFO-101312</td>
<td></td>
<td>324</td>
</tr>
<tr>
<td>6.125. Examination Prerequisite Environmental Communication - T-BGU-106620</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>6.126. Experimental Economics - T-WIWI-102614</td>
<td></td>
<td>326</td>
</tr>
<tr>
<td>6.127. Extraordinary additional course in the module Cross-Functional</td>
<td></td>
<td>327</td>
</tr>
<tr>
<td>Management Accounting - T-WIWI-108651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.128. Fabrication Processes in Microsystem Technology - T-MACH-102166</td>
<td></td>
<td>328</td>
</tr>
<tr>
<td>6.130. Financial Econometrics - T-WIWI-103064</td>
<td></td>
<td>331</td>
</tr>
<tr>
<td>6.131. Financial Intermediation - T-WIWI-102623</td>
<td></td>
<td>333</td>
</tr>
<tr>
<td>6.132. Firm creation in IT security - T-WIWI-110374</td>
<td></td>
<td>334</td>
</tr>
<tr>
<td>6.133. Fixed Income Securities - T-WIWI-102644</td>
<td></td>
<td>337</td>
</tr>
<tr>
<td>6.134. Freight Transport - T-BGU-106611</td>
<td></td>
<td>338</td>
</tr>
<tr>
<td>6.137. Gas Engines - T-MACH-102197</td>
<td></td>
<td>343</td>
</tr>
<tr>
<td>6.138. Gear Cutting Technology - T-MACH-102148</td>
<td></td>
<td>344</td>
</tr>
<tr>
<td>6.139. Global Optimization I - T-WIWI-102726</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>6.140. Global Optimization I and II - T-WIWI-103638</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>6.141. Global Optimization II - T-WIWI-102727</td>
<td></td>
<td>348</td>
</tr>
<tr>
<td>T-MACH-105158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.144. Graph Theory and Advanced Location Models - T-WIWI-102723</td>
<td></td>
<td>354</td>
</tr>
<tr>
<td>6.146. High-Voltage Technology - T-ETIT-110266</td>
<td></td>
<td>356</td>
</tr>
<tr>
<td>6.147. High-Voltage Test Technique - T-ETIT-110195</td>
<td></td>
<td>357</td>
</tr>
<tr>
<td>6.149. Incentives in Organizations - T-WIWI-105781</td>
<td></td>
<td>359</td>
</tr>
<tr>
<td>6.150. Industrial Services - T-WIWI-102822</td>
<td></td>
<td>361</td>
</tr>
<tr>
<td>6.151. Information Engineering - T-MACH-102209</td>
<td></td>
<td>363</td>
</tr>
<tr>
<td>6.152. Information Management for Public Mobility Services - T-BGU-106608</td>
<td></td>
<td>364</td>
</tr>
<tr>
<td>6.154. Information Systems and Supply Chain Management - T-MACH-102128</td>
<td></td>
<td>367</td>
</tr>
<tr>
<td>6.155. Innovation Lab - T-ETIT-110291</td>
<td></td>
<td>368</td>
</tr>
<tr>
<td>6.156. Innovation Management: Concepts, Strategies and Methods -</td>
<td></td>
<td>369</td>
</tr>
<tr>
<td>T-WIWI-102893</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.159. Integrated Product Development - T-MACH-105401</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>6.160. Integrated Production Planning in the Age of Industry 4.0 - T-MACH-</td>
<td></td>
<td>378</td>
</tr>
<tr>
<td>109054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.161. Integrative Strategies in Production and Development of High</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>Performance Cars - T-MACH-105188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.162. Intelligent CRM Architectures - T-WIWI-103549</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>6.163. International Finance - T-WIWI-102646</td>
<td></td>
<td>385</td>
</tr>
<tr>
<td>6.164. International Management in Engineering and Production -</td>
<td></td>
<td>386</td>
</tr>
<tr>
<td>T-WIWI-102882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.166. Internet Law - T-INFO-101307</td>
<td></td>
<td>389</td>
</tr>
<tr>
<td>6.167. Introduction to Data Science - T-WIWI-110863</td>
<td></td>
<td>390</td>
</tr>
<tr>
<td>6.168. Introduction to Hydrogeology - T-BGU-101499</td>
<td></td>
<td>391</td>
</tr>
<tr>
<td>Code</td>
<td>Course Name</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization</td>
<td></td>
</tr>
<tr>
<td>T-MACH-106743</td>
<td>IoT Platform for Engineering</td>
<td></td>
</tr>
<tr>
<td>T-INFO-109910</td>
<td>IT Security Law</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT Fundamentals of Logistics</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109064</td>
<td>Joint Entrepreneurship Summer School</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Laboratory Production Metrology</td>
<td></td>
</tr>
<tr>
<td>T-CIJWT-103351</td>
<td>Laboratory Work Water Chemistry</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimization</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-100741</td>
<td>Laser Physics</td>
<td></td>
</tr>
<tr>
<td>T/INFO-101316</td>
<td>Law of Contracts</td>
<td></td>
</tr>
<tr>
<td>T-BGU-108000</td>
<td>Lean Construction</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105783</td>
<td>Learning Factory "Global Production"</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107043</td>
<td>Liberalised Power Markets</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110512</td>
<td>Life Cycle Assessment</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110771</td>
<td>Logistics and Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>T-BGU-106301</td>
<td>Long-Distance and Air Traffic</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106340</td>
<td>Machine Learning 1 - Basic Methods</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102158</td>
<td>Machine Tools and Industrial Handling</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102800</td>
<td>Management Accounting 1 - T-WIWI-102800</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102801</td>
<td>Management Accounting 2 - T-WIWI-102801</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management of IT-Projects</td>
<td></td>
</tr>
<tr>
<td>T-BGU-106597</td>
<td>Management of Water Resources and River Basins</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102612</td>
<td>Managing New Technologies</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102640</td>
<td>Market Engineering: Information in Institutions</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103139</td>
<td>Marketing Analytics</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102835</td>
<td>Marketing Strategy Business Game</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103142</td>
<td>Master Thesis</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105189</td>
<td>Mathematical Models and Methods for Production Systems</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105177</td>
<td>Metal Forming</td>
<td></td>
</tr>
<tr>
<td>T-BGU-101797</td>
<td>Methods and Models in Transportation Planning</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102906</td>
<td>Methods in Economic Dynamics</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110263</td>
<td>Methods in Innovation Management</td>
<td></td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Microactuators</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102719</td>
<td>Mixed Integer Programming I</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Mixed Integer Programming II</td>
<td></td>
</tr>
<tr>
<td>T-BGU-103425</td>
<td>Mobility Services and new Forms of Mobility</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102199</td>
<td>Model Based Application Methods</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102899</td>
<td>Modeling and Analyzing Consumer Behavior with R</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106200</td>
<td>Modeling and OR-Software: Advanced Topics</td>
<td></td>
</tr>
<tr>
<td>T-BGU-101859</td>
<td>Morphodynamics</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Statistical Methods</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105180</td>
<td>Nanotechnology for Engineers and Natural Scientists</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102080</td>
<td>Nanotechnology with Clusterbeams</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102167</td>
<td>Nanotribology and -Mechanics</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Nature-Inspired Optimization Methods</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Non- and Semiparametrics</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nonlinear Optimization I and II</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nonlinear Optimization II</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td></td>
</tr>
<tr>
<td>T-BGU-101801</td>
<td>Operation Methods for Earthmoving</td>
<td></td>
</tr>
<tr>
<td>T-BGU-101832</td>
<td>Operation Methods for Foundation and Marine Construction</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102884</td>
<td>Operations Research in Health Care Management</td>
<td></td>
</tr>
<tr>
<td>Course Number</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>6.230.</td>
<td>Optical Transmitters and Receivers - T-ETIT-100639</td>
<td></td>
</tr>
<tr>
<td>6.231.</td>
<td>Optical Waveguides and Fibers - T-ETIT-101945</td>
<td></td>
</tr>
<tr>
<td>6.233.</td>
<td>Optimization under Uncertainty - T-WIWI-106545</td>
<td></td>
</tr>
<tr>
<td>6.234.</td>
<td>Optoelectronic Components - T-ETIT-101907</td>
<td></td>
</tr>
<tr>
<td>6.235.</td>
<td>Panel Data - T-WIWI-103127</td>
<td></td>
</tr>
<tr>
<td>6.236.</td>
<td>Parametric Optimization - T-WIWI-102855</td>
<td></td>
</tr>
<tr>
<td>6.238.</td>
<td>Personalization and Services - T-WIWI-102848</td>
<td></td>
</tr>
<tr>
<td>6.239.</td>
<td>PH APL-ING-TL01 - T-WIWI-106291</td>
<td></td>
</tr>
<tr>
<td>6.240.</td>
<td>PH APL-ING-TL02 - T-WIWI-106292</td>
<td></td>
</tr>
<tr>
<td>6.241.</td>
<td>PH APL-ING-TL03 - T-WIWI-106293</td>
<td></td>
</tr>
<tr>
<td>6.242.</td>
<td>PH APL-ING-TL04 ub - T-WIWI-106294</td>
<td></td>
</tr>
<tr>
<td>6.243.</td>
<td>PH APL-ING-TL05 ub - T-WIWI-106295</td>
<td></td>
</tr>
<tr>
<td>6.244.</td>
<td>PH APL-ING-TL06 ub - T-WIWI-106296</td>
<td></td>
</tr>
<tr>
<td>6.245.</td>
<td>PH APL-ING-TL07 - T-WIWI-108384</td>
<td></td>
</tr>
<tr>
<td>6.246.</td>
<td>Photovoltaic System Design - T-ETIT-100724</td>
<td></td>
</tr>
<tr>
<td>6.247.</td>
<td>Physics for Engineers - T-MACH-100530</td>
<td></td>
</tr>
<tr>
<td>6.248.</td>
<td>Planning and Management of Industrial Plants - T-WIWI-102631</td>
<td></td>
</tr>
<tr>
<td>6.249.</td>
<td>PLM for Product Development in Mechatronics - T-MACH-102181</td>
<td></td>
</tr>
<tr>
<td>6.250.</td>
<td>PLM-CAD Workshop - T-MACH-102153</td>
<td></td>
</tr>
<tr>
<td>6.251.</td>
<td>Plug-and-play Material Handling - T-MACH-106693</td>
<td></td>
</tr>
<tr>
<td>6.253.</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications - T-MACH-102191</td>
<td></td>
</tr>
<tr>
<td>6.254.</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics - T-MACH-102200</td>
<td></td>
</tr>
<tr>
<td>6.255.</td>
<td>Portfolio and Asset Liability Management - T-WIWI-103128</td>
<td></td>
</tr>
<tr>
<td>6.256.</td>
<td>Power Network - T-ETIT-100830</td>
<td></td>
</tr>
<tr>
<td>6.257.</td>
<td>Power Transmission and Power Network Control - T-ETIT-101941</td>
<td></td>
</tr>
<tr>
<td>6.258.</td>
<td>Practical Course Polymers in MEMS - T-MACH-105556</td>
<td></td>
</tr>
<tr>
<td>6.259.</td>
<td>Practical Seminar Digital Service Systems - T-WIWI-106563</td>
<td></td>
</tr>
<tr>
<td>6.261.</td>
<td>Practical Seminar: Data-Driven Information Systems - T-WIWI-106207</td>
<td></td>
</tr>
<tr>
<td>6.262.</td>
<td>Practical Seminar: Health Care Management (with Case Studies) - T-WIWI-102716</td>
<td></td>
</tr>
<tr>
<td>6.264.</td>
<td>Practical Training in Basics of Microsystem Technology - T-MACH-102164</td>
<td></td>
</tr>
<tr>
<td>6.265.</td>
<td>Predictive Mechanism and Market Design - T-WIWI-102862</td>
<td></td>
</tr>
<tr>
<td>6.266.</td>
<td>Price Management - T-WIWI-105946</td>
<td></td>
</tr>
<tr>
<td>6.267.</td>
<td>Price Negotiation and Sales Presentations - T-WIWI-102891</td>
<td></td>
</tr>
<tr>
<td>6.268.</td>
<td>Pricing - T-WIWI-102883</td>
<td></td>
</tr>
<tr>
<td>6.271.</td>
<td>Process Mining - T-WIWI-109799</td>
<td></td>
</tr>
<tr>
<td>6.274.</td>
<td>Production and Logistics Controlling - T-WIWI-103091</td>
<td></td>
</tr>
<tr>
<td>6.275.</td>
<td>Production and Logistics Management - T-WIWI-102632</td>
<td></td>
</tr>
<tr>
<td>6.276.</td>
<td>Project Lab Cognitive Automobiles and Robots - T-WIWI-109985</td>
<td></td>
</tr>
<tr>
<td>6.277.</td>
<td>Project Lab Machine Learning - T-WIWI-109983</td>
<td></td>
</tr>
<tr>
<td>6.278.</td>
<td>Project Management - T-WIWI-103134</td>
<td></td>
</tr>
<tr>
<td>6.279.</td>
<td>Project Management in Construction and Real Estate Industry I - T-BGU-103432</td>
<td></td>
</tr>
<tr>
<td>6.280.</td>
<td>Project Management in Construction and Real Estate Industry II - T-BGU-103433</td>
<td></td>
</tr>
<tr>
<td>6.281.</td>
<td>Project Paper Lean Construction - T-BGU-101007</td>
<td></td>
</tr>
<tr>
<td>6.282.</td>
<td>Project Studies - T-BGU-101847</td>
<td></td>
</tr>
<tr>
<td>6.283.</td>
<td>Public Management - T-WIWI-102740</td>
<td></td>
</tr>
<tr>
<td>6.284.</td>
<td>Public Media Law - T-INFO-101311</td>
<td></td>
</tr>
<tr>
<td>6.286.</td>
<td>Python for Computational Risk and Asset Management - T-WIWI-110213</td>
<td></td>
</tr>
<tr>
<td>6.287.</td>
<td>Quality Management - T-MACH-102107</td>
<td></td>
</tr>
</tbody>
</table>

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.289</td>
<td>Quantum Functional Devices and Semiconductor Technology</td>
</tr>
<tr>
<td>6.290</td>
<td>Rail System Technology</td>
</tr>
<tr>
<td>6.291</td>
<td>Recommender Systems</td>
</tr>
<tr>
<td>6.292</td>
<td>Regulation Theory and Practice</td>
</tr>
<tr>
<td>6.293</td>
<td>Risk Management in Industrial Supply Networks</td>
</tr>
<tr>
<td>6.294</td>
<td>Roadmapping</td>
</tr>
<tr>
<td>6.295</td>
<td>Safety Engineering</td>
</tr>
<tr>
<td>6.296</td>
<td>Selected Applications of Technical Logistics</td>
</tr>
<tr>
<td>6.297</td>
<td>Selected Issues in Critical Information Infrastructures</td>
</tr>
<tr>
<td>6.298</td>
<td>Selected Legal Issues of Internet Law</td>
</tr>
<tr>
<td>6.299</td>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
</tr>
<tr>
<td>6.300</td>
<td>Semantic Web Technologies</td>
</tr>
<tr>
<td>6.301</td>
<td>Seminar Data-Mining in Production</td>
</tr>
<tr>
<td>6.302</td>
<td>Seminar in Business Administration A (Master)</td>
</tr>
<tr>
<td>6.303</td>
<td>Seminar in Business Administration B (Master)</td>
</tr>
<tr>
<td>6.304</td>
<td>Seminar in Economic Policy</td>
</tr>
<tr>
<td>6.305</td>
<td>Seminar in Economics A (Master)</td>
</tr>
<tr>
<td>6.306</td>
<td>Seminar in Economics B (Master)</td>
</tr>
<tr>
<td>6.307</td>
<td>Seminar in Engineering Science Master (approval)</td>
</tr>
<tr>
<td>6.308</td>
<td>Seminar in Informatics A (Master)</td>
</tr>
<tr>
<td>6.309</td>
<td>Seminar in Informatics B (Master)</td>
</tr>
<tr>
<td>6.310</td>
<td>Seminar in Operations Research A (Master)</td>
</tr>
<tr>
<td>6.311</td>
<td>Seminar in Operations Research B (Master)</td>
</tr>
<tr>
<td>6.312</td>
<td>Seminar in Statistics A (Master)</td>
</tr>
<tr>
<td>6.313</td>
<td>Seminar in Statistics B (Master)</td>
</tr>
<tr>
<td>6.314</td>
<td>Seminar in Transportation</td>
</tr>
<tr>
<td>6.315</td>
<td>Seminar Mobility Services (Master)</td>
</tr>
<tr>
<td>6.316</td>
<td>Seminar Production Technology</td>
</tr>
<tr>
<td>6.317</td>
<td>Seminar: Governance, Risk & Compliance</td>
</tr>
<tr>
<td>6.318</td>
<td>Seminar: Legal Studies I</td>
</tr>
<tr>
<td>6.319</td>
<td>Seminar: Legal Studies II</td>
</tr>
<tr>
<td>6.320</td>
<td>Service Analytics A</td>
</tr>
<tr>
<td>6.321</td>
<td>Service Design Thinking</td>
</tr>
<tr>
<td>6.322</td>
<td>Service Innovation</td>
</tr>
<tr>
<td>6.323</td>
<td>SIL Entrepreneurship Emphasis</td>
</tr>
<tr>
<td>6.324</td>
<td>SIL Entrepreneurship Project</td>
</tr>
<tr>
<td>6.325</td>
<td>Simulation Game in Energy Economics</td>
</tr>
<tr>
<td>6.326</td>
<td>Site Management</td>
</tr>
<tr>
<td>6.327</td>
<td>Smart Energy Infrastructure</td>
</tr>
<tr>
<td>6.328</td>
<td>Smart Grid Applications</td>
</tr>
<tr>
<td>6.329</td>
<td>Social Choice Theory</td>
</tr>
<tr>
<td>6.330</td>
<td>Sociotechnical Information Systems Development</td>
</tr>
<tr>
<td>6.331</td>
<td>Software Quality Management</td>
</tr>
<tr>
<td>6.332</td>
<td>Spatial Economics</td>
</tr>
<tr>
<td>6.333</td>
<td>Special Topics in Information Systems</td>
</tr>
<tr>
<td>6.334</td>
<td>Specialization in Food Process Engineering</td>
</tr>
<tr>
<td>6.335</td>
<td>Statistical Modeling of Generalized Regression Models</td>
</tr>
<tr>
<td>6.336</td>
<td>Stochastic Calculus and Finance</td>
</tr>
<tr>
<td>6.337</td>
<td>Strategic Finance and Technology Change</td>
</tr>
<tr>
<td>6.338</td>
<td>Strategic Management of Information Technology</td>
</tr>
<tr>
<td>6.339</td>
<td>Strategic Transport Planning</td>
</tr>
<tr>
<td>6.340</td>
<td>Strategy and Management Theory: Developments and "Classics"</td>
</tr>
<tr>
<td>6.341</td>
<td>Supplement Enterprise Information Systems</td>
</tr>
<tr>
<td>6.342</td>
<td>Supplement Software- and Systems Engineering</td>
</tr>
<tr>
<td>6.343</td>
<td>Supplementary Claim Management</td>
</tr>
<tr>
<td>6.344</td>
<td>Supply Chain Management in the Automotive Industry</td>
</tr>
<tr>
<td>6.345</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
</tr>
<tr>
<td>6.346</td>
<td>Tax Law I</td>
</tr>
<tr>
<td>6.347</td>
<td>Tax Law II</td>
</tr>
<tr>
<td>6.348</td>
<td>Technologies for Innovation Management</td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Name</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6.349</td>
<td>Technology Assessment - T-WIWI-102858</td>
</tr>
<tr>
<td>6.350</td>
<td>Telecommunication and Internet Economics - T-WIWI-102713</td>
</tr>
<tr>
<td>6.351</td>
<td>Telecommunications Law - T-INFO-101309</td>
</tr>
<tr>
<td>6.352</td>
<td>Tendering, Planning and Financing in Public Transport - T-BGU-101005</td>
</tr>
<tr>
<td>6.353</td>
<td>The negotiation of open innovation - T-WIWI-110867</td>
</tr>
<tr>
<td>6.354</td>
<td>Theory of Endogenous Growth - T-WIWI-102785</td>
</tr>
<tr>
<td>6.355</td>
<td>Topics in Experimental Economics - T-WIWI-102863</td>
</tr>
<tr>
<td>6.356</td>
<td>Trademark and Unfair Competition Law - T-INFO-101313</td>
</tr>
<tr>
<td>6.357</td>
<td>Traffic Engineering - T-BGU-101798</td>
</tr>
<tr>
<td>6.358</td>
<td>Traffic Flow Simulation - T-BGU-101800</td>
</tr>
<tr>
<td>6.359</td>
<td>Traffic Management and Transport Telematics - T-BGU-101799</td>
</tr>
<tr>
<td>6.360</td>
<td>Transport Economics - T-WIWI-100007</td>
</tr>
<tr>
<td>6.361</td>
<td>Transportation Data Analysis - T-BGU-100010</td>
</tr>
<tr>
<td>6.362</td>
<td>Transportation Systems - T-BGU-106610</td>
</tr>
<tr>
<td>6.363</td>
<td>Tunnel Construction and Blasting Engineering - T-BGU-101846</td>
</tr>
<tr>
<td>6.364</td>
<td>Turnkey Construction I - Processes and Methods - T-BGU-103430</td>
</tr>
<tr>
<td>6.365</td>
<td>Turnkey Construction II - Trades and Technology - T-BGU-103431</td>
</tr>
<tr>
<td>6.366</td>
<td>Valuation - T-WIWI-102621</td>
</tr>
<tr>
<td>6.367</td>
<td>Virtual Engineering I - T-MACH-102123</td>
</tr>
<tr>
<td>6.368</td>
<td>Virtual Engineering II - T-MACH-102124</td>
</tr>
<tr>
<td>6.369</td>
<td>Virtual Engineering Lab - T-MACH-106740</td>
</tr>
<tr>
<td>6.370</td>
<td>Virtual Training Factory 4.X - T-MACH-106741</td>
</tr>
<tr>
<td>6.371</td>
<td>Warehousing and Distribution Systems - T-MACH-105174</td>
</tr>
<tr>
<td>6.372</td>
<td>Water Chemistry and Water Technology I - T-CIWVT-101900</td>
</tr>
<tr>
<td>6.373</td>
<td>Water Chemistry and Water Technology II - T-CIWVT-101901</td>
</tr>
<tr>
<td>6.374</td>
<td>Web Science - T-WIWI-103112</td>
</tr>
<tr>
<td>6.375</td>
<td>Wildcard Key Competences Seminar 1 - T-WIWI-104680</td>
</tr>
<tr>
<td>6.376</td>
<td>Wildcard Key Competences Seminar 2 - T-WIWI-104681</td>
</tr>
<tr>
<td>6.377</td>
<td>Wildcard Key Competences Seminar 3 - T-WIWI-104682</td>
</tr>
<tr>
<td>6.378</td>
<td>Wildcard Key Competences Seminar 4 - T-WIWI-104683</td>
</tr>
<tr>
<td>6.379</td>
<td>Wildcard Key Competences Seminar 5 - T-WIWI-104684</td>
</tr>
<tr>
<td>6.380</td>
<td>Wildcard Key Competences Seminar 6 - T-WIWI-104685</td>
</tr>
<tr>
<td>6.381</td>
<td>Wildcard Key Competences Seminar 8 - T-WIWI-105956</td>
</tr>
<tr>
<td>6.382</td>
<td>Wildcard Seminar Module Master - T-WIWI-110215</td>
</tr>
<tr>
<td>6.383</td>
<td>Workshop Business Wargaming – Analyzing Strategic Interactions - T-WIWI-106189</td>
</tr>
<tr>
<td>6.384</td>
<td>Workshop Current Topics in Strategy and Management - T-WIWI-106188</td>
</tr>
<tr>
<td>6.385</td>
<td>X-ray Optics - T-MACH-109122</td>
</tr>
</tbody>
</table>
1 Welcome to the new module handbook of your study programme

We are delighted that you have decided to study at the KIT Department of Economics and Management and wish you a good start into the new semester!

The following contact persons are at your disposal for questions and problems at any time.

Ralf Hilser, Anabela Relvas
Examination Office
📞 +49 721 608-43768
✉️ pruefungssekretariat@wiwi.kit.edu

Dr. André Wiesner
Editorial responsibility
📞 +49 721 608-44061
✉️ modul@wiwi.kit.edu
2 About this handbook

2.1 Notes and rules

The program exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinarity character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

2.1.1 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

2.1.2 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student's "binding declaration" on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive at http://www.wiwi.kit.edu/Archiv_MHB.php.

2.1.3 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

2.1.4 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.

2.1.5 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a
second repetition has to be made in written form to the examination committee two months after loosing the examination claim. A counseling interview is mandatory.

For further information see http://www.wiwi.kit.edu/hinweiseZweitwdh.php.

2.1.6 Examiners

The examination committee has appointed the KIT examiners and lecturers listed in the module handbook for the modules and their courses as examiners for the courses they offer.

2.1.7 Additional accomplishments

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Additional accomplishments with at most 30 CP may appear additionally in the certificate.

2.1.8 Further information

More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

2.2 Contact

If you have any questions about modules or exams, please contact the examination office of the KIT Department of Economics and Management:

 Ralf Hilser
 Anabela Relvas
 Telefon +49 721 608-43768
 E-Mail: pruefungssekretariat@wiwi.kit.edu

Editorial responsibility:

 Dr. André Wiesner
 Telefon: +49 721 608-44061
 Email: modul@wiwi.kit.edu
3 The Master's degree program in Economics Engineering

3.1 Qualification objectives of the Master's program in Economics Engineering

Graduates of the interdisciplinary Master's program in Economics Engineering have advanced and in-depth knowledge in economics, business administration, computer science and operations research. This mainly has its focus on business administration. Here, the students analyze how macroeconomic variables (e.g., the national product, the inflation rate or unemployment) are affected by interaction of individual decisions in alternative institutional arrangements and what roles the state and the increasing internationalization have to take up. Formal-theoretical models are analytically derived and simulated using quantitative methods. The objective here is a theoretically based derivation of economic policy recommendations. Other areas of specialization can be chosen based on individual interests. Depending on one's wishes, courses on statistics, engineering sciences and law or sociology can be taken up and specialized in.

They have generalized or specialized expertise in the different disciplines.

The graduates are in a position to define and interpret the specifics, limits, terminologies and doctrines in the selected areas of these subjects, reproduce the current state of research and selectively use this as a basis for further development. Their extensive know-how enables them to think across the various disciplines as well as identify trends and macroeconomic developments at an early stage. They are able to evaluate, select and combine appropriate courses of action for research-related topics. They can then transfer and apply these to solve specific problems.

They can separately analyze extensive problems such as information and current challenges and analyze, compare and evaluate these using appropriate methods and concepts. They evaluate the complexity and risks, identify the improvement potentials and choose sustainable solution processes and improvement methods. This puts them in a position where they are able to make responsible and science-based decisions. They are able to come up with innovative ideas and apply them accordingly. They can oversee these approaches either independently or in teams. They are able to explain and discuss their decisions. They can independently interpret, validate and illustrate the obtained results.

The interdisciplinary use of knowledge also takes account of social, scientific and ethical insights.

The graduates can communicate with expert representatives on a scientific level and assume prominent responsibility both in local and international teams. Karlsruhe's economic engineers are characterized by their interdisciplinary thinking as well as their innovation and management capability. They are particularly qualified for industrial occupations, the service sector or in public administration as well as a downstream scientific career (PhD).

3.2 Structure of the Master's degree program in Economics Engineering (M.Sc.) SPO 2015

The Master’s degree program in Economics Engineering (M.Sc.) has 4 terms and consists of 120 credits (CP) including Master's thesis. The Master’s degree program further deepens or complements the scientific qualifications acquired in the Bachelor program. The students should be made capable of independently applying scientific knowledge and methods and evaluate their implications and scope concerning solutions of complex scientific and social problems.

Furthermore, the student has to attend two seminars with a minimum of six CP within the seminar module. In addition to the key skills gained in the seminars (3 CP), the student has to acquire additional key skills totalling at least 3 credits.

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
<th>Business Administration</th>
<th>Economics</th>
<th>Informatics</th>
<th>Operations Research</th>
<th>Electives 1</th>
<th>Electives 2</th>
<th>Master Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>BUS 9 CP</td>
<td>ECON 9 CP</td>
<td>INFO 9 CP</td>
<td>OR 9 CP</td>
<td>Seminar Module 9 CP</td>
<td>Elect. Module 3 9 CP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Elect. Module 1 9 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td></td>
<td>ECON 9 CP</td>
<td></td>
<td></td>
<td>Elect. Module 2 9 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Master Thesis 30 CP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Structure of the Master’s degree program SPO 2015 (Recommendation)
Figure 2 shows the structure of the subjects and the credits allocated to the subjects. The student has to choose four elective modules of the mentioned disciplines. Thereby it is only possible to select a maximum of two modules from the same discipline and it is only allowed to choose either one module in law or in sociology.

It is left to the student's individual curriculum (taking into account the examination and module regulations), in which terms the chosen modules will be started and completed. However, it is highly recommended to complete all courses and seminars before beginning the Master's thesis.

3.3 Key Skills

The master program Economics Engineering (M.Sc.) at the KIT Department of Economics and Management distinguishes itself by an exceptionally high level of interdisciplinarity. With the combination of business science, economics, informatics, operations research, mathematics as well as engineering and natural science, the integration of knowledge of different disciplines is an inherent element of the programme. As a result, interdisciplinary and connected thinking is encouraged in a natural way. Furthermore, the seminar courses in the master degree programme contribute significantly to the development of key skills by practicing to elaborate and write scientifically sound papers and presentations about special topics. The integrative taught key skills, which are acquired throughout the entire programme, can be classified into the following fields:

Soft skills
- Team work, social communication and creativity techniques
- Presentations and presentation techniques
- Logical and systematical arguing and writing
- Structured problem solving and communication

Enabling skills
- Decision making in business context
- Project management competences
- Fundamentals of business science
- English as a foreign language

Orientational knowledge
- Acquisition of interdisciplinary knowledge
- Institutional knowledge about economic and legal systems
- Knowledge about international organisations
- Media, technology and innovation

The integrative acquisition of key skills especially takes place in several obligatory courses during the master programme, namely

- Seminar module
- Mentoring of the Master's thesis
- Business science, economics and informatics modules

Besides the integrated key skills, the additive acquisition of key skills, which are totalling at least three credits within the seminar module, is scheduled. Students may choose freely among the offered courses of HoC, ZAK and Sprachenzentrum.
4 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Thesis</td>
<td>30 CR</td>
</tr>
<tr>
<td>Economics</td>
<td>18 CR</td>
</tr>
<tr>
<td>Business Administration</td>
<td>9 CR</td>
</tr>
<tr>
<td>Informatics</td>
<td>9 CR</td>
</tr>
<tr>
<td>Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>Compulsory Elective Modules 1</td>
<td>27 CR</td>
</tr>
<tr>
<td>Compulsory Elective Modules 2</td>
<td>18 CR</td>
</tr>
</tbody>
</table>

4.1 Master Thesis

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101659 Module Masterarbeit</td>
<td>30 CR</td>
</tr>
</tbody>
</table>

Modelled Conditions

The following conditions have to be fulfilled:

1. You need to earn at least 60 credits in the following fields:
 - Business Administration
 - Informatics
 - Operations Research
 - Economics
 - Compulsory Elective Modules 1
 - Compulsory Elective Modules 2

4.2 Economics

<table>
<thead>
<tr>
<th>Election block: Economics (2 items)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101497 Agglomeration and Innovation</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101453 Applied Strategic Decisions</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101504 Collective Decision Making</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101505 Experimental Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101514 Innovation Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101478 Innovation and Growth</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101500 Microeconomic Theory</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101406 Network Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101502 Economic Theory and Its Application in Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101468 Environmental Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101485 Transport Infrastructure Policy and Regional Development</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101511 Advanced Topics in Public Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101496 Growth and Agglomeration</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
4.3 Business Administration

Credits: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101410</td>
<td>Business & Service Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101510</td>
<td>Cross-Functional Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101470</td>
<td>Data Science: Advanced CRM</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103117</td>
<td>Data Science: Data-Driven Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101647</td>
<td>Data Science: Evidence-based Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105032</td>
<td>Data Science for Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104080</td>
<td>Designing Interactive Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103720</td>
<td>eEnergy: Markets, Services and Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101409</td>
<td>Electronic Markets</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101452</td>
<td>Energy Economics and Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101488</td>
<td>Entrepreneurship (EnTechnon)</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101482</td>
<td>Finance 1</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101483</td>
<td>Finance 2</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101480</td>
<td>Finance 3</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105036</td>
<td>FinTech Innovations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101471</td>
<td>Industrial Production II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101412</td>
<td>Industrial Production III</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101411</td>
<td>Information Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104068</td>
<td>Information Systems in Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101507</td>
<td>Innovation Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105312</td>
<td>Marketing and Sales Management new</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101446</td>
<td>Market Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101506</td>
<td>Service Analytics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101448</td>
<td>Service Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101503</td>
<td>Service Design Thinking</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102754</td>
<td>Service Economics and Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102806</td>
<td>Service Innovation, Design & Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103119</td>
<td>Advanced Topics in Strategy and Management</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

4.4 Informatics

Credits: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101472</td>
<td>Informatics</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

4.5 Operations Research

Credits: 9

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101473</td>
<td>Mathematical Programming</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102832</td>
<td>Operations Research in Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102805</td>
<td>Service Operations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103289</td>
<td>Stochastic Optimization</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
4.6 Compulsory Elective Modules 1

Election notes
In the field "Compulsory Elective Modules 1", the seminar module (independent of subject) is to be attended over two seminars and further key qualification courses. In addition, two elective modules from the subjects of Economics, Business Administration, Informatics, Operations Research, Engineering sciences / Natural Sciences and Statistics are to be chosen in each of the two elective areas. Within a compulsory elective area, the modules must come from different subjects.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101808 Seminar Module</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Economics (at most 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101497</td>
<td>Agglomeration and Innovation</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101453</td>
<td>Applied Strategic Decisions</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101504</td>
<td>Collective Decision Making</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101505</td>
<td>Experimental Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101478</td>
<td>Innovation and Growth</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101514</td>
<td>Innovation Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101500</td>
<td>Microeconomic Theory</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101406</td>
<td>Network Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101502</td>
<td>Economic Theory and its Application in Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101468</td>
<td>Environmental Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101485</td>
<td>Transport Infrastructure Policy and Regional Development</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101511</td>
<td>Advanced Topics in Public Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101496</td>
<td>Growth and Agglomeration</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Business Administration (at most 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101410</td>
<td>Business & Service Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101510</td>
<td>Cross-Functional Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101470</td>
<td>Data Science: Advanced CRM</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103117</td>
<td>Data Science: Data-Driven Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101647</td>
<td>Data Science: Evidence-based Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105032</td>
<td>Data Science for Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104080</td>
<td>Designing Interactive Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102808</td>
<td>Digital Service Systems in Industry</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103720</td>
<td>eEnergy: Markets, Services and Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101409</td>
<td>Electronic Markets</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101452</td>
<td>Energy Economics and Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101488</td>
<td>Entrepreneurship (EnTechnon)</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101482</td>
<td>Finance 1</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101483</td>
<td>Finance 2</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101480</td>
<td>Finance 3</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105036</td>
<td>FinTech Innovations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101471</td>
<td>Industrial Production II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101412</td>
<td>Industrial Production III</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101411</td>
<td>Information Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104068</td>
<td>Information Systems in Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101507</td>
<td>Innovation Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105312</td>
<td>Marketing and Sales Management NEW</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101446</td>
<td>Market Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101506</td>
<td>Service Analytics</td>
<td>9 CR</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>M-WIWI-101503</td>
<td>Service Design Thinking</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102754</td>
<td>Service Economics and Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102806</td>
<td>Service Innovation, Design & Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101448</td>
<td>Service Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103119</td>
<td>Advanced Topics in Strategy and Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105010</td>
<td>Student Innovation Lab (SIL) 1</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105011</td>
<td>Student Innovation Lab (SIL) 2</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Informatics (at most 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101628</td>
<td>Emphasis in Informatics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101630</td>
<td>Electives in Informatics</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Operations Research (at most 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101473</td>
<td>Mathematical Programming</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102832</td>
<td>Operations Research in Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102805</td>
<td>Service Operations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103289</td>
<td>Stochastic Optimization</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Natural and Engineering Sciences (at most 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-101298</td>
<td>Automated Manufacturing Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101404</td>
<td>Extracurricular Module in Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Rail System Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101290</td>
<td>BioMEMS</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101296</td>
<td>Energy and Process Technology I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101297</td>
<td>Energy and Process Technology II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-101164</td>
<td>Generation and Transmission of Renewable Power</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Manufacturing Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101282</td>
<td>Global Production and Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101064</td>
<td>Fundamentals of Transportation</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-CIWVT-101120</td>
<td>Principles of Food Process Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-101163</td>
<td>High-Voltage Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrated Production Planning</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-102626</td>
<td>Major Field: Integrated Product Development</td>
<td>18 CR</td>
</tr>
<tr>
<td>M-BGU-101884</td>
<td>Lean Management in Construction</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-105298</td>
<td>Logistics and Supply Chain Management new</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101277</td>
<td>Material Flow in Logistic Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101278</td>
<td>Material Flow in Networked Logistic Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101291</td>
<td>Microfabrication</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101292</td>
<td>Microoptics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101293</td>
<td>Microsystem Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101294</td>
<td>Nanotechnology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104837</td>
<td>Natural Hazards and Risk Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101295</td>
<td>Optoelectronics and Optical Communication</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101888</td>
<td>Project Management in Construction</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-101157</td>
<td>Control Engineering II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101279</td>
<td>Technical Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Combustion Engines I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Combustion Engines II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101110</td>
<td>Process Engineering in Construction</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101065</td>
<td>Transportation Modelling and Traffic Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Specialization in Production Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-CIWVT-101119</td>
<td>Specialization in Food Process Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-104888</td>
<td>Advanced Module Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101283</td>
<td>Virtual Engineering A</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
Compulsory Elective Modules 1

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-101281</td>
<td>Virtual Engineering B</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-CIWVT-101121</td>
<td>Water Chemistry and Water Technology I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-CIWVT-101122</td>
<td>Water Chemistry and Water Technology II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Machine Tools and Industrial Handling</td>
<td>9 CR</td>
</tr>
<tr>
<td>Elective block: Statistics (at most 9 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101637</td>
<td>Analytics and Statistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101638</td>
<td>Econometrics and Statistics I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101639</td>
<td>Econometrics and Statistics II</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
4.7 Compulsory Elective Modules 2

Credits: 18

Election notes
In the field "Compulsory Elective Modules 2", **two elective modules** are to be chosen from the subjects Economics, Business Administration, Informatics, Operations Research, Engineering / Natural Sciences and Statistics. Within a compulsory elective area, the modules must come from different subjects. In elective area 2, the subjects Law or Sociology can also be taken in one of the two elective modules.

Election block: Economics (at most 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101497</td>
<td>Agglomeration and Innovation</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101453</td>
<td>Applied Strategic Decisions</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101504</td>
<td>Collective Decision Making</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101505</td>
<td>Experimental Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101478</td>
<td>Innovation and Growth</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101514</td>
<td>Innovation Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101500</td>
<td>Microeconomic Theory</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101406</td>
<td>Network Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101502</td>
<td>Economic Theory and its Application in Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101468</td>
<td>Environmental Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101485</td>
<td>Transport Infrastructure Policy and Regional Development</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101511</td>
<td>Advanced Topics in Public Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101496</td>
<td>Growth and Agglomeration</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Business Administration (at most 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101410</td>
<td>Business & Service Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101510</td>
<td>Cross-Functional Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101470</td>
<td>Data Science: Advanced CRM</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103117</td>
<td>Data Science: Data-Driven Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101647</td>
<td>Data Science: Evidence-based Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105032</td>
<td>Data Science for Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104080</td>
<td>Designing Interactive Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102808</td>
<td>Digital Service Systems in Industry</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103720</td>
<td>eEnergy: Markets, Services and Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101409</td>
<td>Electronic Markets</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101452</td>
<td>Energy Economics and Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101488</td>
<td>Entrepreneurship (EnTechnon)</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101482</td>
<td>Finance 1</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101483</td>
<td>Finance 2</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101480</td>
<td>Finance 3</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105036</td>
<td>FinTech Innovations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101411</td>
<td>Information Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104068</td>
<td>Information Systems in Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101471</td>
<td>Industrial Production II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101412</td>
<td>Industrial Production III</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101507</td>
<td>Innovation Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105312</td>
<td>Marketing and Sales Management new</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101446</td>
<td>Market Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101506</td>
<td>Service Analytics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101503</td>
<td>Service Design Thinking</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102754</td>
<td>Service Economics and Management</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
4 FIELD OF STUDY STRUCTURE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-102806</td>
<td>Service Innovation, Design & Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101448</td>
<td>Service Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103119</td>
<td>Advanced Topics in Strategy and Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105010</td>
<td>Student Innovation Lab (SIL) 1</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105011</td>
<td>Student Innovation Lab (SIL) 2</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Informatics (at most 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101628</td>
<td>Emphasis in Informatics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101630</td>
<td>Electives in Informatics</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Operations Research (at most 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101473</td>
<td>Mathematical Programming</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102832</td>
<td>Operations Research in Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102805</td>
<td>Service Operations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103289</td>
<td>Stochastic Optimization</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Election block: Natural and Engineering Sciences (at most 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101404</td>
<td>Extracurricular Module in Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101298</td>
<td>Automated Manufacturing Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Rail System Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101290</td>
<td>BioMEMS</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101296</td>
<td>Energy and Process Technology I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101297</td>
<td>Energy and Process Technology II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-101164</td>
<td>Generation and Transmission of Renewable Power</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Manufacturing Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101282</td>
<td>Global Production and Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101064</td>
<td>Fundamentals of Transportation</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-CIWVT-101120</td>
<td>Principles of Food Process Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-101163</td>
<td>High-Voltage Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-102626</td>
<td>Major Field: Integrated Product Development</td>
<td>18 CR</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrated Production Planning</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101884</td>
<td>Lean Management in Construction</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-105298</td>
<td>Logistics and Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101277</td>
<td>Material Flow in Logistic Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101278</td>
<td>Material Flow in Networked Logistic Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101291</td>
<td>Microfabrication</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101292</td>
<td>Microoptics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101293</td>
<td>Microsystem Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101294</td>
<td>Nanotechnology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104837</td>
<td>Natural Hazards and Risk Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101295</td>
<td>Optoelectronics and Optical Communication</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101888</td>
<td>Project Management in Construction</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-ETIT-101157</td>
<td>Control Engineering II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101279</td>
<td>Technical Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Combustion Engines I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Combustion Engines II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101110</td>
<td>Process Engineering in Construction</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-101065</td>
<td>Transportation Modelling and Traffic Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Specialization in Production Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-CIWVT-101119</td>
<td>Specialization in Food Process Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-104888</td>
<td>Advanced Module Logistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101283</td>
<td>Virtual Engineering A</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101281</td>
<td>Virtual Engineering B</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-CIWVT-101121</td>
<td>Water Chemistry and Water Technology I</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
Compulsory Elective Modules 2

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-CIWVT-101122</td>
<td>Water Chemistry and Water Technology II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Machine Tools and Industrial Handling</td>
<td>9 CR</td>
</tr>
<tr>
<td>Election block: Statistics (at most 9 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101637</td>
<td>Analytics and Statistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101638</td>
<td>Econometrics and Statistics I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101639</td>
<td>Econometrics and Statistics II</td>
<td>9 CR</td>
</tr>
<tr>
<td>Election block: Law and Sociology (at most 9 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-INFO-101242</td>
<td>Governance, Risk & Compliance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101217</td>
<td>Public Business Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101216</td>
<td>Private Business Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101215</td>
<td>Intellectual Property Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-GEISTSOZ-101169</td>
<td>Sociology</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
5 Modules

5.1 Module: Advanced Module Logistics [M-MACH-104888]

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105174</td>
<td>Warehousing and Distribution Systems</td>
<td>3 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105175</td>
<td>Airport Logistics</td>
<td>3 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>4 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-WIWI-103091</td>
<td>Production and Logistics Controlling</td>
<td>3 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>3 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Safety Engineering</td>
<td>4 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>4 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-102159</td>
<td>Elements and Systems of Technical Logistics</td>
<td>4 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-102160</td>
<td>Selected Applications of Technical Logistics</td>
<td>4 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105230</td>
<td>Decentrally Controlled Intralogistic Systems</td>
<td>4 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-106693</td>
<td>Plug-and-play Material Handling</td>
<td>4 CR</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student acquires:

- well-founded knowledge and method knowledge in the main topics of logistics,
- ability for modeling logistic systems with adequate accuracy by using simple models,
- ability to evaluate logistic systems and to identify cause-and-effects-chains within logistic systems.

Prerequisites

One of the modules M-MACH-101279, M-MACH-101277 or M-MACH-101280 must be completed.

Workload

270 hours

Learning type

Lecture, tutorial.
5 MODULES

5.2 Module: Advanced Topics in Public Finance [M-WIWI-101511]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: Economics
Compulsory Elective Modules 1 (Economics)
Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory
T-WIWI-102740 Public Management 4,5 CR Wigger

Election block: Supplementary Courses (between 4,5 and 5 credits)
T-WIWI-108880 Blockchains & Cryptofinance 4,5 CR Schuster, Uhrig-Homburg
T-WIWI-108711 Basics of German Company Tax Law and Tax Planning 4,5 CR Gutekunst, Wigger
T-WIWI-102739 Public Revenues 4,5 CR Wigger

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- understands the theory and politics of taxation
- has knowledge in the area of public debt.
- understands efficiency problems of public organizations.
- is able to work on fiscal problems.

Prerequisites
The course "Public Management" is compulsory and must be examined.

Content
As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs.

In the course of the lectures within this module the students achieve knowledge in the areas of public revenues, national and international law of taxation and theory of public sector organizations.

Recommendation
Basic knowledge in the area of public finance and public management is required.

Annotation
The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Students who successfully passed the exam in "Public Management" before the introduction of the module "Advanced Topics in Public Finance" in winter term 2014/15 are allowed to take both courses "Public Revenues" and "Specific Aspects in Taxation".

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.3 Module: Advanced Topics in Strategy and Management [M-WIWI-103119]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: Business Administration

Compulsory Elective Modules 1 (Business Administration)

Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106188</td>
<td>Workshop Current Topics in Strategy and Management</td>
<td>3 CR</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-106189</td>
<td>Workshop Business Wargaming – Analyzing Strategic Interactions</td>
<td>3 CR</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-106190</td>
<td>Strategy and Management Theory: Developments and “Classics”</td>
<td>3 CR</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- are able to analyze business strategies and derive recommendations using appropriate frameworks
- learn to express their position through compelling reasoning in structured discussions
- are qualified to critically examine recent research topics in the field of strategic management
- can derive own conclusions from less structured information by using interdisciplinary knowledge

Prerequisites

None

Content

The module is divided into three main topics:

The students

- analyze and discuss a wide range of business strategies on the basis of collectively selected case studies.
- participate in a business wargaming workshop and analyze strategic interactions.
- write a paper about current topics in the field of strategic management theory.

Recommendation

None

Annotation

This course is admission restricted. After being admitted to one course of this module, the participation at the other courses will be guaranteed.

Every course of this module will be at least offered every second term. Thus, it will be possible to complete the module within two terms.
5.4 Module: Agglomeration and Innovation [M-WIWI-101497]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: Economics
Compulsory Elective Modules 1 (Economics)
Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4.5 CR</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-109194</td>
<td>Dynamic Macroeconomics</td>
<td>4.5 CR</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-102840</td>
<td>Innovation Theory and Policy</td>
<td>4.5 CR</td>
<td>Ott</td>
</tr>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics</td>
<td>4.5 CR</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must add up to at least 9.

The overall grade for the module is the average of the grades for each course weighted by the credits.

Competence Goal
The student
- applies quantitative methods in the context of economic models
- learns advanced micro- and macroeconomic theories
- is able to derive policy recommendations based on theory
- can identify the importance of alternative incentive mechanisms for the development and spread of innovations
- begins to understand the connections between market form and the development of innovations
- analyzes the determinants of the spatial distribution of economic activity
- understands how processes of concentration result from the interplay of agglomeration and dispersion forces

Prerequisites
None

Content
The module comprises theories of incentives for the development of innovations as well as theories of wage-based labor mobility, which leads to spatial concentration processes. The microfounded optimality decisions of the actors are in each case transformed into macroeconomic results. In the context of the theory of innovations the diffusion of technological knowledge and the resulting effect on growth due to technological progress is discussed and economic-policy implications are derived. Spatial economics adds to the picture of economic activity by introducing a spatial point of view.

Recommendation
Successful completion of the courses Economics I: Microeconomics and Economics II: Macroeconomics is required.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Analytics and Statistics [M-WIWI-101637]

Responsible: Prof. Dr. Oliver Grothe

Organisation: KIT Department of Economics and Management

Part of: Compulsory Elective Modules 1 (Statistics)
Compulsory Elective Modules 2 (Statistics)

Credits: 9
Recurrence: Each term
Language: German
Level: 4
Version: 2

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103123</td>
<td>Advanced Statistics</td>
<td>4,5 CR</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (between 4,5 and 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td>4,5 CR</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Statistical Methods</td>
<td>4,5 CR</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

A Student

- Deepens the knowledge of descriptive and inferential statistics.
- Deals with simulation methods.
- Learns basic and advanced methods of statistical analysis of multivariate and high-dimensional data.

Prerequisites

The course "Advanced Statistics" is compulsory.

Content

- Deriving estimates and testing hypotheses
- Stochastic processes
- Multivariate statistics, copulas
- Dependence measures
- Dimension reduction
- High-dimensional methods
- Prediction

Annotation

The planned lectures and courses for the next three years are announced online.

Workload

The total workload for this module is approximately 270 hours.
5.6 Module: Applied Strategic Decisions [M-WIWI-101453]

Responsible: Prof. Dr. Johannes Philipp Reiß
Organisation: KIT Department of Economics and Management
Part of: Economics
Compulsory Elective Modules 1 (Economics)
Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German/English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4,5</td>
<td>Ehrhart, Puppe, Reiß</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (between 45 and 5 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102613</td>
<td>Auction Theory</td>
<td>4,5</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimental Economics</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102640</td>
<td>Market Engineering: Information in Institutions</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design</td>
<td>4,5</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students

- can model and analyze complex situations of strategic interaction using advanced game theoretic concepts;
- are provided with essential and advanced game theoretic solution concepts on a rigorous level and can apply them to understand real-life problems;
- learn about the experimental method, ranging from designing an economic experiment to data analysis.

Prerequisites
The course "Advanced Game Theory" is obligatory. Exception: The course "Introduction to Game Theory" was completed.

Content
The module provides solid skills in game theory and offers a broad range of game theoretic applications. To improve the understanding of theoretical concepts, it pays attention to empirical evidence as well.

Recommendation
Basic knowledge in game theory is assumed.

Annotation
The course Predictive Mechanism and Market Design is not offered each year.

Workload
The total workload for this module is approximately 270 hours. The exact distribution is made according to the credit points of the courses of the module.
Module: Automated Manufacturing Systems [M-MACH-101298]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering
Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Mandatory

T-MACH-102162 Automated Manufacturing Systems 9 CR Fleischer

Competence Certificate
written exam (120 minutes)

Competence Goal
The students

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: "Handling Technology", "Industrial Robotics", "Sensory" and "Controls".
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Prerequisites
none

Content
The lecture provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included. In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics. Within tutorials, the contents from the lecture are advanced and applied to specific problems and tasks.

Workload
regular attendance: 63 hours
self-study: 207 hours

Learning type
Lectures, exercise, excursion
5.8 Module: BioMEMS [M-MACH-101290]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

| Mandatory | | | | | |
|-----------|---|---|---|---|
| T-MACH-100966 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I | 3 CR | Guber |
| T-MACH-102164 | Practical Training in Basics of Microsystem Technology | 3 CR | Last |
| T-MACH-102165 | Selected Topics on Optics and Microoptics for Mechanical Engineers | 3 CR | Hecke, Mappes |
| T-MACH-100967 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II | 3 CR | Guber |
| T-MACH-100968 | BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III | 3 CR | Guber |
| T-MACH-101910 | Microactuators | 3 CR | Kohl |
| T-MACH-102172 | Bionics for Engineers and Natural Scientists | 3 CR | Hölscher |
| T-MACH-102176 | Current Topics on BioMEMS | 4 CR | Guber |

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student
- has basic as well as extensive knowledge about different fields of applications of BioMEMS
- understands continuative aspects of the related subjects optics and microoptics, micro actuators, replications techniques and bionics

Prerequisites

none

Content

Operations through small orifices, a pill which will take pictures on its way through your body or lab results right at the point of care - the need for easier and faster ways to help people is an important factor in research. The module BioMEMS (Bio(medical)-Micro-Electro-Mechanical-Systems) describes the application of microtechnology in the field of Life-Science, medical applications and Biotechnology and will teach you the necessary skills to understand and develop biological and medical devices.

The BioMEMS lectures will cover the fields of minimal invasive surgery, lab-on-chip systems, NOTES-Technology (Natural Orifice Transluminal Endoscopic Surgery), as well as endoscopic surgery and stent technology.

Additionally to the BioMEMS lectures you can specialize in various related fields like fabrication, actuation, optics and bionics. The course Replication processes will teach you some cost efficient and fast ways to produce parts for medical or biological devices. In the course Microactuation it is discussed how to receive movements in micrometer scale in a microsystem, this could be e.g. to drive micro pumps or micro valves. The necessary tools for optical measurement and methods of analysis to gain high resolution pictures are also part of this module. To deepen your knowledge and to get a hands-on experience this module contains a one week lab course. In the lecture bionics you can see how biological effects can be transferred into technical products.
Workload

270 hours
5.9 Module: Business & Service Engineering [M-WIWI-101410]

Responsible:
Prof. Dr. Christof Weinhardt

Organisation:
KIT Department of Economics and Management

Part of:
- Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

Credits: 9
Recurrence: Each term
Language: German/English
Level: 4
Version: 3

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106201</td>
<td>Digital Transformation of Organizations</td>
<td>4.5</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-102639</td>
<td>Business Models in the Internet: Planning and Implementation</td>
<td>4.5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102848</td>
<td>Personalization and Services</td>
<td>4.5</td>
<td>Sonnenbichler</td>
</tr>
<tr>
<td>T-WIWI-102847</td>
<td>Recommender Systems</td>
<td>4.5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>T-WIWI-102799</td>
<td>Practical Seminar Service Innovation</td>
<td>4.5</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-102641</td>
<td>Service Innovation</td>
<td>4.5</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td>4.5</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student should

- learn to develop and implement new markets with regards to the technological progresses of information and communication technology and the increasing economic networking
- learn to restructure and develop new business processes in markets under those conditions
- understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services.
- improve his statistics skills and apply them to appropriate cases
- learn to elaborate solutions in a team

Prerequisites
None

Content
This module addresses the challenges of creating new kinds of products, processes, services, and markets from a service perspective in the context of new developed information and communication technologies and the globalization process. The module describes service competition as a business strategy in the long term that leads to the design of business processes, business models, forms of organization, markets, and competition. This will be shown by actual examples from personalized services, recommender services and social networks.

Recommendation
None

Annotation
All practical Seminars offered at the IM can be chosen for Special Topics in Information Systems. Please update yourself on www.ism.kit.edu/im/lehre.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
5.10 Module: Collective Decision Making [M-WIWI-101504]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics
Compulsory Elective Modules 1 (Economics)
Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management</td>
<td>4.5 CR</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory</td>
<td>4.5 CR</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students
- are able to model practical problems of the public sector and to analyze them with respect to positive and normative questions,
- understand individual incentives and social outcomes of different institutional designs,
- are familiar with the functioning and design of democratic elections and can analyze them with respect to their individual incentives.

Prerequisites
None

Content
The focus of the module is on mechanisms of public decisions making, including voting and the aggregation of preferences and judgements.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.11 Module: Combustion Engines I [M-MACH-101275]

Responsible: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 semester</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Wahlpflicht (between 1 and 2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>5 CR</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-105564</td>
<td>Energy Conversion and Increased Efficiency in Internal Combustion Engines</td>
<td>4 CR</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination contains of two oral examinations. The module score results from the two scores weighted according to the ECTS.

Competence Goal

The student can name and explain the working principle of combustion engines. He is able to analyse and evaluate the combustion process. He is able to evaluate influences of gas exchange, mixture formation, fuels and exhaust gas aftertreatment on the combustion performance. He can solve basic research problems in the field of engine development.

The student can name all important influences on the combustion process. He can analyse and evaluate the engine process considering efficiency, emissions and potential.

Prerequisites

None

Content

Working Principle of ICE
Characteristic Parameters
Characteristic parameters
Engine parts
Crank drive
Fuels
Gasoline engine operation modes
Diesel engine operation modes
Emissions
Fundamentals of ICE combustion
Thermodynamics of ICE
Flow field
Wall heat losses
Combustion in Gasoline and Diesel engines
Heat release calculation
Waste heat recovery

Workload

regular attendance: 62 hours
self-study: 208 hours
5.12 Module: Combustion Engines II [M-MACH-101303]

Responsible: Dr.-Ing. Heiko Kubach
Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104609</td>
<td>Combustion Engines II</td>
<td>5 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Verbrennungsmotoren II (at least 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>4 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>4 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>4 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105167</td>
<td>Analysis Tools for Combustion Diagnostics</td>
<td>4 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102197</td>
<td>Gas Engines</td>
<td>4 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102199</td>
<td>Model Based Application Methods</td>
<td>4 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Engine Measurement Techniques</td>
<td>4 CR</td>
<td>Each term</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (60 min) taking place in the recess period (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Competence Goal

See courses.

Prerequisites

None

Content

Compulsory:
- Supercharging and air management
- Engine maps
- Emissions and Exhaust gas aftertreatment
- Transient engine operation
- ECU application
- Electrification and alternative powertrains

Elective:
- Fuels and lubricants for ICE
- Fundamentals of catalytic EGA
- Analysis tools for combustion diagnostics
- Engine measurement techniques
- Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines

Workload

- regular attendance: 62 h
- self-study: 208 h
Module: Control Engineering II [M-ETIT-101157]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Dr.-Ing. Mathias Kluwe

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Credits 9 Recurrence Each term Level 4 Version 2

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Automation of Discrete Event and Hybrid Systems</th>
<th>3 CR</th>
<th>Hohmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100981</td>
<td>Control of Linear Multivariable Systems</td>
<td>6 CR</td>
<td>Hohmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams of the single courses of this module (T-ETIT-100981 and T-ETIT-100666). The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students
- have deeper knowledge in the field of control theory and system dynamics,
- are able to analyze multivariable systems in state space and frequency domain and are familiar with adequate methods for the control design,
- know the basics of modelling, simulation, analyses and control of discrete-event and hybrid systems.

Prerequisites
none

Content
This module broadens the basic knowledge of system dynamics of the students to the multivariable case. Both I/O-models in frequency domain and mainly state space models are regarded, for which several methods for the analysis and the control design with different goals (decoupling, robustness) and constraints (disturbances, sensor failures) are presented. Above that, the basics of modelling, simulation, analysis and control of discrete-event and hybrid systems are discussed.

Recommendation
For this module a basic knowledge in system theory and control engineering is assumed. These subjects can be found in the course System Dynamics and Control Engineering (2303155) which is recommended to have been attended beforehand.

Workload
See German version.
5.14 Module: Cross-Functional Management Accounting [M-WIWI-101510]

Responsible:
Prof. Dr. Marcus Wouters

Organisation:
KIT Department of Economics and Management

Part of:
Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102885</td>
<td>Advanced Management Accounting</td>
<td>4.5 CR</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (4,5 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110179</td>
<td>Advanced Management Accounting 2</td>
<td>4.5 CR</td>
<td>Wouters</td>
</tr>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4.5 CR</td>
<td>Mädche, Nadj, Toreini</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4.5 CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-102835</td>
<td>Marketing Strategy Business Game</td>
<td>1.5 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td>4.5 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102883</td>
<td>Pricing</td>
<td>4.5 CR</td>
<td>Feurer</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>3 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-108651</td>
<td>Extraordinary additional course in the module Cross-Functional Management Accounting</td>
<td>4.5 CR</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students will be able to apply advanced management accounting methods to managerial decision-making problems in marketing, finance, organization and strategy.

Prerequisites
The course "Advanced Management Accounting" is compulsory.

The additional courses can only be chosen after the compulsory course has been completed successfully.

Content
The module includes a course on several advanced management accounting methods that can be used for various decisions in operations and innovation management. By selecting another course, each student looks in more detail at one interface between management accounting a particular field in management, namely marketing, finance, or organization and strategy.

Recommendation
None

Annotation
The module "Cross-functional Management Accounting" always includes the compulsory course "Advanced Management Accounting." Students look at the interface between management accounting and another field in management. Students build the module by adding a course from the specified list. Students can also suggest another suitable course for this module for evaluation by the coordinator.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.15 Module: Data Science for Finance [M-WIWI-105032]

Responsible: Prof. Dr Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102878</td>
<td>Computational Risk and Asset Management</td>
<td>6 CR</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-WIWI-110213</td>
<td>Python for Computational Risk and Asset Management</td>
<td>3 CR</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module.

The assessment of "Computational Risk and Asset Management" is carried out in form of a written exam (90 minutes), the assessment of "Python for Computational Risk and Asset Management" is carried out in form of twelve weekly Python programming tasks and offered each winter term.

The overall grade of the module is the grade of the written exam weighted with factor 0.75 and the grade for the Python programming tasks weighted with factor 0.25. The resulting grade is truncated after the first decimal.

Competence Goal

Students learn how to implement solutions for advanced and real-world challenges in portfolio management. The focus of this module is on the realization of statistical concepts in Python and enable students to solve a broad range of problems along the investment process on their own.

Content

The module covers several topics, among them:

- Quantitative Portfolio Strategies: Extensions to Mean-Variance Portfolio Optimization
- Return Densities: Forecasting with Traditional and Machine Learning Approaches, Monte Carlo Simulation
- Financial Economics: Rationalizing Risk Premiums via Stochastic Discount Factor
- Multi-Asset Valuation: DCF Approach, No-Arbitrage and Ito Calculus

Recommendation

Good knowledge of statistics and first programming experience with Python is recommended.

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module. The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
5.16 Module: Data Science: Advanced CRM [M-WIWI-101470]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109921</td>
<td>Advanced Machine Learning</td>
<td>4.5</td>
</tr>
<tr>
<td>T-WIWI-102762</td>
<td>Business Dynamics</td>
<td>4.5</td>
</tr>
<tr>
<td>T-WIWI-103549</td>
<td>Intelligent CRM Architectures</td>
<td>4.5</td>
</tr>
<tr>
<td>T-WIWI-102848</td>
<td>Personalization and Services</td>
<td>4.5</td>
</tr>
<tr>
<td>T-WIWI-102847</td>
<td>Recommender Systems</td>
<td>4.5</td>
</tr>
<tr>
<td>T-WIWI-105778</td>
<td>Service Analytics A</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services,
- models, analyzes and optimizes the structure and dynamics of complex business applications,
- develops and realizes personalized services, especially in the field of recommendation services,
- analyzes social networks and knows their application field in CRM,
- works in teams.

Prerequisites
None

Content
Building on the basics of CRM from the Bachelor's degree program, the module "Data Science: Advanced CRM" is focusing on the use of information technology and its related economic issues in the CRM environment. The course "Intelligent CRM Architectures" deals with the design of modern intelligent systems. The focus is on the software architecture and design patterns that are relevant to learning systems. It also covers important aspects of machine learning that complete the picture of an intelligent system. Examples of presented systems are "Taste Map"-architectures, "Counting Services", as well as architectures of "Business Games". The impact of management decisions in complex systems is considered in the course "Business dynamics". The understanding, modeling and simulation of complex systems allows the analysis, the goal-oriented design and the optimization of markets, business processes and regulations throughout the company. Specific problems of intelligent systems are covered in the courses "Personalization and Services", "Recommender Systems", "Service Analytics" and "Social Network Analysis in CRM". The content includes procedures and methods to create user-oriented services. The measurement and monitoring of service systems, the design of personalized offers, and the generation of recommendations based on the collected data of products and customers are discussed. The importance of user modeling and recognition, data security and privacy are addressed as well.

Recommendation
None

Annotation
The module has been renamed to "Data Science: Advanced CRM" in winter term 2016/2017.
Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.17 Module: Data Science: Data-Driven Information Systems [M-WIWI-103117]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109863</td>
<td>Business Data Analytics: Application and Tools</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-106187</td>
<td>Business Data Strategy</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4,5 CR</td>
<td>Mädche, Nadj. Toreini</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-106207</td>
<td>Practical Seminar: Data-Driven Information Systems</td>
<td>4,5 CR</td>
<td>Mädche, Setzer, Weinhardt</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-105778</td>
<td>Service Analytics A</td>
<td>4,5 CR</td>
<td>Fromm</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Competence Goal
The student

- understands the strategic role of integrating, transforming, and analyzing large and complex enterprise data in modern business information systems and is capable of comparing and assessing strategic alternatives
- has the core skills to design, model, and control complex, inter-organisational analytical, processes, including various business functions as well as customers and markets
- understands the usage of performance indicators for a variety of controlling and management issues and is able to define models for generating the relevant performance indicators under considerations of data availability
- distinguishes different analytics methods and concepts and learn when to apply to better understand and anticipate business relationships and developments of industrial and in particular service companies to derive fact- and data-founded managerial actions and strategies.
- knows how to capture uncertainty in the data and how to appropriately consider and visualize uncertainty in decision support or business intelligence systems and analytical processes as a whole.

Prerequisites
None.
Content
The amount of business-related data available in modern enterprise information systems grows exponentially, and the various data sources are more and more integrated, transformed, and analyzed jointly to gain valuable business insights, pro-actively control and manage business processes, to leverage planning and decision making, and to provide appropriate, potentially novel services to customers based on relationships and developments observed in the data.

Also, data sources are more and more connected and single business unit that used to operate on separate data pools are now becoming highly integrated, providing tremendous business opportunities but also challenges regarding how the data should be represented, integrated, preprocessed, transformed, and finally used in analytics planning and decision processes.

The courses of this module equip the students with core skills to understand the strategic role of integrating, transforming, and analyzing large and complex enterprise data in modern business information systems. Students will be capable to designing, comparing, and evaluating strategic alternatives. Also, students will learn how to design, model, and control complex analytical processes, including various business functions of industrial and service companies including customers and markets. Students learn core skills to understand fundamental strategies for integrating analytic models and operative controlling mechanisms while ensuring the technical feasibility of the resulting information systems.

Furthermore, the student can distinguish different methods and concepts in the realm of data science and learns when to apply. She/he will know the means of characterizing and analyzing heterogeneous, high-dimensional data available in data warehouses and external data sources to gain additional insights valuable for enterprise planning and decision making. Also, the students know how to capture uncertainty in the data and how to appropriately consider and visualize uncertainty in business information and business intelligence systems.

The module offers the opportunity to apply and deepen this knowledge in a seminar and hands-on tutorials that are offered with all lectures.

Texteintrag

Recommendation
Basic knowledge of Information Management, Operations Research, Descriptive Statistics, and Inferential Statistics is assumed.

Annotation
The course „Business Data Strategy” can be chosen from winter term 2016 on.
5.18 Module: Data Science: Evidence-based Marketing [M-WIWI-101647]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Election block: Compulsory Elective Courses (9 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103139</td>
</tr>
<tr>
<td>T-WIWI-107720</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the rst decimal.

Competence Goal
Students
- possess advanced knowledge of relevant market research contents
- know many different qualitative and quantitative methods for measuring customer behavior, preparation of strategic decisions, making causal deductions, usage of social media data and sales forecasting
- possess the statistical skills required for working in marketing research

Prerequisites
Keine.

Content
This module provides in-depth knowledge of relevant quantitative and qualitative methods used in market research. Students can attend the following courses:

- The course "Market Research" provides contents of practical relevance for measuring customer attitudes and customer behavior. The participants learn using statistical methods for strategic decision-making in marketing. Students who are interested in writing their master thesis at the Marketing & Sales Research Group are required to take this course.
- The course „Marketing Analytics“ is based on „Market Research“ and teaches advanced statistical methods for analyzing relevant marketing and market research questions.

Recommendation
None

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.19 Module: Designing Interactive Information Systems [M-WIWI-104080]

Responsible: Prof. Dr. Alexander Mädche
Organisation: KIT Department of Economics and Management
Part of: Business Administration
 Compulsory Elective Modules 1 (Business Administration)
 Compulsory Elective Modules 2 (Business Administration)

Credits 9
Recurrence Each term
Language German/English
Level 4
Version 2

Mandatory

T-WIWI-110851 Designing Interactive Systems 4,5 CR Mädche, Morana

Election block: Supplementary Courses (at most 4,5 credits)

T-WIWI-105773 Digital Service Design 4,5 CR Mädche
T-WIWI-108437 Practical Seminar: Information Systems and Service Design 4,5 CR Mädche

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Competence Goal
The student

- has a comprehensive understanding of conceptual and theoretical foundations of interactive systems
- knows design processes for interactive systems
- is aware of the most important techniques and tools for designing interactive systems and knows how to apply them to real-world problems
- is able to apply design principles for the design of most important classes of interactive systems,
- creates new solutions of interactive systems teams

Prerequisites
The course “Interactive Information Systems” is compulsory and must be examined.

Content
Advanced information and communication technologies make interactive systems ever-present in the users’ private and business life. They are an integral part of smartphones, devices in the smart home, mobility vehicles as well as at the working place in production and administration (e.g. in the form of dashboards).

With the continuous growing capabilities of computers, the design of the interaction between human and computer becomes even more important. This module focuses on design processes and principles for interactive systems. The contents of the module abstract from the technical implementation details and focus on foundational concepts, theories, practices and methods for the design of interactive systems. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

Each lecture in the module is accompanied with a capstone project that is carried out with an industry partner.

Annotation

Workload
The total workload for this module is approximately 270 hours.
5.20 Module: Digital Service Systems in Industry [M-WIWI-102808]

Responsible: Prof. Dr. Wolf Fichtner
Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of: Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

- T-WIWI-102872 Challenges in Supply Chain Management 4,5 CR Mohr
- T-WIWI-106201 Digital Transformation of Organizations 4,5 CR Mädche
- T-WIWI-102822 Industrial Services 4,5 CR Fromm
- T-WIWI-107043 Liberalised Power Markets 3 CR Fichtner
- T-WIWI-106200 Modeling and OR-Software: Advanced Topics 4,5 CR Nickel
- T-WIWI-106563 Practical Seminar Digital Service Systems 4,5 CR Satzger

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students
- understand the basics of the management of digital services applied on an industrial context
- gain an industry-specific insight into the importance and most relevant characteristics of information systems as key components of the digitalization of business processes, products and services
- are able to transfer and apply the models and methods introduced on practical scenarios and simulations.
- understand the control and optimization methods in the sector of service management and are able to apply them properly.

Prerequisites
This module can only be assigned as an elective module.

Content
This module aims at deepening the fundamental knowledge of digital service management in the industrial context. Various mechanisms and methods to shape and control connected digital service systems in different industries are discussed and demonstrated with real life application cases.

Recommendation
None

Annotation
This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.21 Module: Econometrics and Statistics I [M-WIWI-101638]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of:
- Compulsory Elective Modules 1 (Statistics)
- Compulsory Elective Modules 2 (Statistics)

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103125</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (between 4,5 and 5 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications</td>
<td>4.5 CR</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4.5 CR</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Non- and Semiparametrics</td>
<td>4.5 CR</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Panel Data</td>
<td>4.5 CR</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4.5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data. He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Prerequisites

The course "Advanced Statistics" [2520020] is compulsory and must be examined.

Content

The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the art data analysis.

Workload

The total workload for this module is approximately 270 hours.
5.22 Module: Econometrics and Statistics II [M-WIWI-101639]

Responsible: Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: Compulsory Elective Modules 1 (Statistics) Compulsory Elective Modules 2 (Statistics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Wahlpflichtangebot (between 9 and 10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications</td>
<td>4.5</td>
<td>Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4.5</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Statistical Methods</td>
<td>4.5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Non- and Semiparametrics</td>
<td>4.5</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Panel Data</td>
<td>4.5</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-103128</td>
<td>Portfolio and Asset Liability Management</td>
<td>4.5</td>
<td>Safarian</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4.5</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-103129</td>
<td>Stochastic Calculus and Finance</td>
<td>4.5</td>
<td>Safarian</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data. He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Prerequisites
This module can only be passed if the module “Econometrics and Statistics I” has been finished successfully before.

Content
This modula builds on prerequisites acquired in Module “Econometrics and Statistics I”. The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the art data analysis.

Workload
The total workload for this module is approximately 270 hours.
5.23 Module: Economic Theory and its Application in Finance [M-WIWI-101502]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: Economics
Compulsory Elective Modules 1 (Economics)
Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German/English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4,5</td>
<td>Ehrhart, Puppe, Reiß</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- have learnt the methods of formal economic modeling, particularly of General Equilibrium Theory and contract theory
- will be able to apply these methods to the topics in Finance, specifically the areas of financial markets and institutions and corporate finance
- have gained many useful insights into the relationship between firms and investors and the functioning of financial markets

Prerequisites

One of the courses T-WIWI-102861 "Advanced Game Theory" and T-WIWI-102609 "Advanced Topics in Economic Theory" is compulsory.

Content

The mandatory course "Advanced Topics in Economic Theory" is devoted in equal parts to General Equilibrium Theory and to contract theory. The course "Asset Pricing" will apply techniques of General Equilibrium Theory to valuation of financial assets. The courses "Corporate Financial Policy" and "Finanzintermediation" will apply the techniques of contract theory to issues of corporate finance and financial institutions.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

Credits 9
Recurrence Each term
Language German
Level 4
Version 1

Election block: Compulsory Elective Courses (at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107503</td>
<td>Energy Networks and Regulation</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107504</td>
<td>Smart Grid Applications</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- is aware of design options for energy and especially electricity markets and can derive implications for the market results from the market design,
- knows about current trends regarding the Smart Grid and understands affiliated modelling approaches,
- can evaluate business models of electricity grids according to the regulation regime
- is prepared for scientific contributions in the field of energy system analysis.

Prerequisites
None.

Content
The module conveys scientific and practical knowledge to analyse energy markets and according business models. To do so the scientific discussion on energy market designs is evaluated and analysed. Different energy market models are presented and their design implications are evaluated. Furthermore, the electricity system is analysed with regards to being a network industry and resulting regulation and business models are discussed. Besides these traditional areas of energy economics we will look at methods and models of digitalisation in the energy sector.

Annotation
The lecture Smart Grid Applications will be available starting in the winter term 2018/19.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Electives in Informatics [M-WIWI-101630]

Responsible:
- Prof. Dr. Andreas Oberweis
- Prof. Dr. Harald Sack
- Prof. Dr. Ali Sunyaev
- Prof. Dr. York Sure-Vetter
- Prof. Dr. Melanie Volkamer
- Prof. Dr.-Ing. Johann Marius Zöllner

Organisation:
- KIT Department of Economics and Management

Part of:
- Compulsory Elective Modules 1 (Informatics)
- Compulsory Elective Modules 2 (Informatics)

Credits: 9
Recurrence: Each term
Duration: 1 semester
Level: 4
Version: 11

<table>
<thead>
<tr>
<th>Election block: Compulsory Elective Area ()</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102680 Computational Economics</td>
<td>4,5 CR</td>
<td>Shukla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109248 Critical Information Infrastructures</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109246 Digital Health</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109270 Human Factors in Security and Privacy</td>
<td>4,5 CR</td>
<td>Volkamer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102661 Database Systems and XML</td>
<td>4,5 CR</td>
<td>Oberweis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102668 Enterprise Architecture Management</td>
<td>4,5 CR</td>
<td>Wolf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110346 Supplement Enterprise Information Systems</td>
<td>4,5 CR</td>
<td>Oberweis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110372 Supplement Software- and Systemsengineering</td>
<td>4,5 CR</td>
<td>Oberweis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106423 Information Service Engineering</td>
<td>4,5 CR</td>
<td>Sack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110863 Introduction to Data Science</td>
<td>4,5 CR</td>
<td>Herbold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102666 Knowledge Discovery</td>
<td>4,5 CR</td>
<td>Sure-Vetter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102667 Management of IT-Projects</td>
<td>4,5 CR</td>
<td>Schätzle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106340 Machine Learning 1 - Basic Methods</td>
<td>4,5 CR</td>
<td>Zöllner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106341 Machine Learning 2 – Advanced Methods</td>
<td>4,5 CR</td>
<td>Zöllner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102697 Business Process Modelling</td>
<td>4,5 CR</td>
<td>Oberweis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102679 Nature-Inspired Optimization Methods</td>
<td>4,5 CR</td>
<td>Shukla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109799 Process Mining</td>
<td>4,5 CR</td>
<td>Oberweis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110848 Semantic Web Technologies</td>
<td>4,5 CR</td>
<td>Sure-Vetter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102895 Software Quality Management</td>
<td>4,5 CR</td>
<td>Oberweis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102669 Strategic Management of Information Technology</td>
<td>4,5 CR</td>
<td>Wolf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103112 Web Science</td>
<td>4,5 CR</td>
<td>Sure-Vetter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Election block: Seminars and Advanced Labs ()</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110144 Emerging Trends in Digital Health</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110143 Emerging Trends in Internet Technologies</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109249 Sociotechnical Information Systems Development</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110548 Advanced Lab Informatics (Master)</td>
<td>4,5 CR</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109786 Advanced Lab Security</td>
<td>4,5 CR</td>
<td>Volkamer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109271 Advanced Lab User Studies in Security</td>
<td>4,5 CR</td>
<td>Volkamer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109985 Project Lab Cognitive Automobiles and Robots</td>
<td>4,5 CR</td>
<td>Zöllner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109983 Project Lab Machine Learning</td>
<td>4,5 CR</td>
<td>Zöllner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109251 Selected Issues in Critical Information Infrastructures</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- has the ability to master methods and tools in a complex discipline and to demonstrate innovativeness regarding the methods used,
- knows the principles and methods in the context of their application in practice,
- is able to grasp and apply the rapid developments in the field of computer science, which are encountered in work life, quickly and correctly, based on a fundamental understanding of the concepts and methods of computer science,
- is capable of finding and defending arguments for solving problems.

Prerequisites
None.

Content
The thematic focus will be based on the choice of courses in the areas of Effiziente Algorithmen, Betriebliche Informations- und Kommunikationssysteme, Wissensmanagement, Komplexitätsmanagement and Software- und Systems Engineering.

Annotation
Detailed information on the recognition of examinations in the field of Informatics can be found at http://www.aifb.kit.edu/web/Auslandsaufenthalt.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.26 Module: Electronic Markets [M-WIWI-101409]

Responsible: Prof. Dr. Andreas Geyer-Schulz

Organisation: KIT Department of Economics and Management

Part of: Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (at least 9 credits)

T-WIWI-108880	Blockchains & Cryptofinance	4,5 CR	Schuster, Uhrig-Homburg
T-WIWI-102762	Business Dynamics	4,5 CR	Geyer-Schulz
T-WIWI-102886	Business Administration in Information Engineering and Management	5 CR	Geyer-Schulz
T-WIWI-102640	Market Engineering: Information in Institutions	4,5 CR	Weinhardt
T-WIWI-105946	Price Management	4,5 CR	Geyer-Schulz, Glenn
T-WIWI-102713	Telecommunication and Internet Economics	4,5 CR	Mitsuex

Competence Certificate

Please note that the course "Business Administration in Information Engineering and Management" is no longer offered and that the examination is only offered in exceptional cases (see description of T-WIWI-102886).

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- knows coordination and motivation methods and analyzes them regarding their efficiency,
- classifies markets and describes the roles of the participants in a formal way,
- knows the conditions for market failure and knows and develops countermeasures,
- knows institutions and market mechanisms, their fundamental theories and empirical research results,
- knows the design criteria of market mechanisms and a systematical approach for creating new markets,
- models, analyzes and optimizes the structure and dynamics of complex business applications.

Prerequisites

None
Content

What are the conditions that make electronic markets develop and how can one analyse and optimize such markets?

In this module, the selection of the type of organization as an optimization of transaction costs is treated. Afterwards, the efficiency of electronic markets (price, information and allocation efficiency) as well as reasons for market failure are described. Finally, motivational issues like bounded rationality and information asymmetries (private information and moral hazard), as well as the development of incentive schemes, are presented. Regarding the market design, especially the interdependencies of market organization, market mechanisms, institutions and products are described and theoretical foundations are lectured.

Electronic markets are dynamic systems that are characterized by feedback loops between many different variables. By means of the tools of business dynamics such markets can be modelled. Simulations of complex systems allow the analysis and optimization of markets, business processes, policies, and organizations.

Topics include:

- classification, analysis, and design of markets
- simulation of markets
- auction methods and auction theory
- automated negotiations
- nonlinear pricing
- continuous double auctions
- market-maker, regulation, control

Recommendation

None

Annotation

The course Price Management is offered for the first time in summer term 2016.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Emphasis in Informatics [M-WIWI-101628]

5.27 Module: Emphasis in Informatics [M-WIWI-101628]

Responsible:
- Prof. Dr. Andreas Oberweis
- Prof. Dr. Harald Sack
- Prof. Dr. Ali Sunyaev
- Prof. Dr. York Sure-Vetter
- Prof. Dr. Melanie Volkamer
- Prof. Dr.-Ing. Johann Marius Zöllner

Organisation:
KIT Department of Economics and Management

Part of:
- Compulsory Elective Modules 1 (Informatics)
- Compulsory Elective Modules 2 (Informatics)

Credits: 9
Recurrence: Each term
Duration: 1 semester
Level: 4
Version: 11

Election block: Compulsory Elective Area (between 1 and 3 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102680</td>
<td>Computational Economics</td>
<td>4.5</td>
<td>Shukla</td>
</tr>
<tr>
<td>T-WIWI-109248</td>
<td>Critical Information Infrastructures</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109246</td>
<td>Digital Health</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109270</td>
<td>Human Factors in Security and Privacy</td>
<td>4.5</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-102661</td>
<td>Database Systems and XML</td>
<td>4.5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102668</td>
<td>Enterprise Architecture Management</td>
<td>4.5</td>
<td>Wolf</td>
</tr>
<tr>
<td>T-WIWI-110346</td>
<td>Supplement Enterprise Information Systems</td>
<td>4.5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-109249</td>
<td>Critical Information Infrastructures</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110372</td>
<td>Supplement Software- and Systemsengineering</td>
<td>4.5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-106423</td>
<td>Information Service Engineering</td>
<td>4.5</td>
<td>Sack</td>
</tr>
<tr>
<td>T-WIWI-110863</td>
<td>Introduction to Data Science</td>
<td>4.5</td>
<td>Herbold</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td>4.5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management of IT-Projects</td>
<td>4.5</td>
<td>Schätzle</td>
</tr>
<tr>
<td>T-WIWI-106340</td>
<td>Machine Learning 1 - Basic Methods</td>
<td>4.5</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td>4.5</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling</td>
<td>4.5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Nature-Inspired Optimization Methods</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109799</td>
<td>Process Mining</td>
<td>4.5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4.5</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software Quality Management</td>
<td>4.5</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategic Management of Information Technology</td>
<td>4.5</td>
<td>Wolf</td>
</tr>
<tr>
<td>T-WIWI-103112</td>
<td>Web Science</td>
<td>4.5</td>
<td>Sure-Vetter</td>
</tr>
</tbody>
</table>

Election block: Seminars and Advanced Labs ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110144</td>
<td>Emerging Trends in Digital Health</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110143</td>
<td>Emerging Trends in Internet Technologies</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109249</td>
<td>Sociotechnical Information Systems Development</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4.5</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
</tr>
<tr>
<td>T-WIWI-109786</td>
<td>Advanced Lab Security</td>
<td>4.5</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-109271</td>
<td>Advanced Lab User Studies in Security</td>
<td>4.5</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-109985</td>
<td>Project Lab Cognitive Automobiles and Robots</td>
<td>4.5</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-109983</td>
<td>Project Lab Machine Learning</td>
<td>4.5</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-109251</td>
<td>Selected Issues in Critical Information Infrastructures</td>
<td>4.5</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>
Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.
The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- has the ability to master methods and tools in a complex discipline and to demonstrate innovativeness regarding the methods used,
- knows the principles and methods in the context of their application in practice,
- is able to grasp and apply the rapid developments in the field of computer science, which are encountered in work life, quickly and correctly, based on a fundamental understanding of the concepts and methods of computer science,
- is capable of finding and defending arguments for solving problems.

Prerequisites
None.

Content
The thematic focus will be based on the choice of courses in the areas of Effiziente Algorithmen, Betriebliche Informations- und Kommunikationssysteme, Wissensmanagement, Komplexitätsmanagement and Software- und Systems Engineering.

Annotation
Detailed information on the recognition of examinations in the field of Informatics can be found at http://www.aifb.kit.edu/web/Auslandsaufenthalt.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.28 Module: Energy and Process Technology I [M-MACH-101296]

Responsible: Heiner Wirbser
Organisation: KIT Department of Mechanical Engineering

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102211</td>
<td>Energy and Process Technology I</td>
<td>9 CR</td>
<td>Bauer, Schwitzke, Velji, Wirbser</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module, whose sum of credits must meet the requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

In this modul students achieve a basic understanding of the technical properties of energy conversion processes and machines.

Prerequisites

None

Content

Energy and Process Technology 1:
1. thermodynamic basics and cycle processes (ITT)
2. basics of piston engines (IFKM)
3. basics of turbomachines (FSM)
4. basics of thermal turbomachines (ITS)

Annotation

All lectures and exams are held in German only.
5.29 Module: Energy and Process Technology II [M-MACH-101297]

Responsible: Heiner Wirbser

Organisation: KIT Department of Mechanical Engineering

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>1 semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102212</td>
<td>Energy and Process Technology II</td>
<td>9 CR Schwitzke, Wirbser</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module, whose sum of credits must meet the requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
In this module students achieve the ability to evaluate solitary and interconnected energy systems with respect to societal and economical aspects.

Prerequisites
None

Content
Energy and Process Technology 2:
1. basics in combustion and pollutant formation (ITT)
2. technical realisation and application of piston engines (IFKM) fluid flow engines (FSM) and thermal turbomachines (ITS)
3. technical aspects of energy supply systems and networks (ITS)

Annotation
All lectures and exams are held in German only.

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory
T-WIWI-107043 Liberalised Power Markets 3 CR Fichtner

Elective block: Supplementary Courses (at least 6 credits)
T-WIWI-102691 Energy Trade and Risk Management 3 CR Cremer, Keles
T-WIWI-102607 Energy Policy 3.5 CR Wietschel
T-WIWI-107501 Energy Market Engineering 4.5 CR Weinhardt
T-WIWI-108016 Simulation Game in Energy Economics 3 CR Genoese
T-WIWI-107446 Quantitative Methods in Energy Economics 3 CR Keles, Plötz
T-WIWI-102712 Regulation Theory and Practice 4.5 CR Mitusch

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal. Additional courses might be accredited upon request.

Competence Goal
The student
- gains detailed knowledge about the new requirements of liberalised energy markets,
- describes the planning tasks on the different energy markets,
- knows solution approaches to respective planning tasks.

Prerequisites
The lecture Liberalised Power Markets has to be examined.

Content
Liberalised Power Markets: The European liberalisation process, energy markets, pricing, market failure, investment incentives, market power
Energy Trade and Risk Management: trade centres, trade products, market mechanisms, position and risk management
Simulation Game in Energy Economics: Simulation of the German electricity system

Recommendation
The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Energy Economics and Technology [M-WIWI-101452]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

Election block: Compulsory Elective Courses (at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102793</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>3.5</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-102650</td>
<td>Energy and Environment</td>
<td>4.5</td>
<td>Each term</td>
<td>1 semester</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-102830</td>
<td>Energy Systems Analysis</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-107464</td>
<td>Smart Energy Infrastructure</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-102695</td>
<td>Heat Economy</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- gains detailed knowledge about present and future energy supply technologies (focus on final energy carriers electricity and heat),
- knows the techno-economic characteristics of plants for energy provision, for energy transport as well as for energy distribution and demand,
- is able to assess the environmental impact of these technologies.

Prerequisites
None

Content
Heat Economy: district heating, heating technologies, reduction of heat demand, statutory provisions
Energy Systems Analysis: interdependencies in energy economics, energy systems modelling approaches in energy economics
Energy and Environment: emission factors, emission reduction measures, environmental impact
Efficient Energy Systems and Electric Mobility: concepts and current trends in energy efficiency, Overview of and economical, ecological and social impacts through electric mobility

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Entrepreneurship (EnTechnon) [M-WIWI-101488]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Election notes
The courses "Business Planning for Founders - EUCOR" and the course "International Selling - EUCOR" must be taken together.

Election block: Mandatory part (1 item)
- T-WIWI-102864 Entrepreneurship 3 CR Terzidis

Election block: Compulsory Elective Courses (1 item)
- T-WIWI-102865 Business Planning 3 CR Terzidis
- T-WIWI-110389 Business Planning for Founders - EUCOR 3 CR Terzidis
- T-WIWI-102866 Design Thinking 3 CR Terzidis
- T-WIWI-102833 Entrepreneurial Leadership & Innovation Management 3 CR Terzidis
- T-WIWI-102894 Entrepreneurship Research 3 CR Terzidis
- T-WIWI-110381 International Selling - EUCOR 3 CR Casenave, Klarmann

Election block: Supplementary Courses (1 item)
- T-WIWI-102866 Design Thinking 3 CR Terzidis
- T-WIWI-102851 Developing Business Models for the Semantic Web 3 CR Sure-Vetter
- T-WIWI-102833 Entrepreneurial Leadership & Innovation Management 3 CR Terzidis
- T-WIWI-102894 Entrepreneurship Research 3 CR Terzidis
- T-WIWI-102852 Case Studies Seminar: Innovation Management 3 CR Weissenberger-Eibl
- T-WIWI-102639 Business Models in the Internet: Planning and Implementation 4,5 CR Weinhardt
- T-WIWI-102865 Business Planning 3 CR Terzidis
- T-WIWI-110389 Business Planning for Founders - EUCOR 3 CR Terzidis
- T-WIWI-110374 Firm creation in IT security 3 CR Terzidis
- T-WIWI-110381 International Selling – EUCOR 3 CR Casenave, Klarmann
- T-WIWI-109064 Joint Entrepreneurship Summer School 6 CR Terzidis
- T-WIWI-102612 Managing New Technologies 3 CR Reiß
- T-WIWI-102853 Roadmapping 3 CR Koch

Competence Certificate
See German version.

Competence Goal
See German version.

Prerequisites
None

Recommendation
None

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.33 Module: Environmental Economics [M-WIWI-101468]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: Economics
Compulsory Elective Modules 1 (Economics)
Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102650</td>
<td>Energy and Environment</td>
<td>4.5</td>
<td>Karl</td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transport Economics</td>
<td>4.5</td>
<td>Mitusch, Szimba</td>
</tr>
<tr>
<td>T-WIWI-102615</td>
<td>Environmental Economics and Sustainability</td>
<td>5</td>
<td>Walz</td>
</tr>
<tr>
<td>T-WIWI-102616</td>
<td>Environmental and Resource Policy</td>
<td>4</td>
<td>Walz</td>
</tr>
<tr>
<td>T-INFO-101348</td>
<td>Environmental Law</td>
<td>3</td>
<td>Barczak</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students
- understand the treatment of non-market resources as well as future resource shortages
- are able to model markets of energy and environmental goods
- are able to assess the results of government intervention
- know legal basics and are able to evaluate conflicts with regard to legal situation

Prerequisites
None

Content
Environmental degradation and increasing resource use are global challenges, which have to be tackled on a worldwide level. The module addresses these challenges from the perspective of economics, and imparts the fundamental knowledge of environmental and sustainability economics, and environmental and resource policy to the students. Additional courses address environmental law, environmental pressure, and applications to the transport sector.

Recommendation
Knowledge in the area of microeconomics and of the content of the course Economics I: Microeconomics [2600012], respectively, is required.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5 MODULES

5.34 Module: Experimental Economics [M-WIWI-101505]

Responsible: Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of:
- Economics
- Compulsory Elective Modules 1 (Economics)
- Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102614</td>
<td>Experimental Economics</td>
<td>4.5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4.5</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design</td>
<td>4.5</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-102863</td>
<td>Topics in Experimental Economics</td>
<td>4.5</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students
- are acquainted with the methods of Experimental Economics along with its strengths and weaknesses;
- understand how theory-guided research in Experimental Economics interacts with the development of theory;
- are provided with foundations in data analysis;
- design an economic experiment and analyze its outcome.

Prerequisites
None.

Content
The module Experimental Economics offers an introduction into the methods and topics of Experimental Economics. It also fosters and extends knowledge in theory-guided experimental economics and its interaction with theory development. Throughout the module, readings of selected papers are required.

Recommendation
Basic knowledge in mathematics, statistics, and game theory is assumed.

Annotation
The course "Predictive Mechanism and Market Design" is offered every second winter semester, e.g. WS2013 / 14, WS2015 / 16, ...

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.35 Module: Extracurricular Module in Engineering [M-WIWI-101404]

Responsible: Prüfungsausschuss der KIT-Fakultät für Wirtschaftswissenschaften

Organisation: KIT Department of Economics and Management

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Election block: Compulsory Elective Courses (between 9 and 12 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106291 PH APL-ING-TL01</td>
</tr>
<tr>
<td>T-WIWI-106292 PH APL-ING-TL02</td>
</tr>
<tr>
<td>T-WIWI-106293 PH APL-ING-TL03</td>
</tr>
<tr>
<td>T-WIWI-106294 PH APL-ING-TL04 ub</td>
</tr>
<tr>
<td>T-WIWI-106295 PH APL-ING-TL05 ub</td>
</tr>
<tr>
<td>T-WIWI-106296 PH APL-ING-TL06 ub</td>
</tr>
<tr>
<td>T-WIWI-108384 PH APL-ING-TL07</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the module is determined by the respective module coordinator. It can either be in the form of a general exam or partial exams, and must contain at least 9 credit points (max. 12 credits) and at least 6 hours per week (max. 8 hours per week). The examination may contain presentations, experiments, laboratories, term papers, etc. At least 50 percent of the module examination has to be in the form of a written or an oral examination (according to Section 4 (2), 1 or 2 of the examination regulation).

The formation of the overall grade of the module will be determined by the respective module coordinator.

Competence Goal

See German version.

Prerequisites

The intended composition of courses, the module designation and the details of the examination for an Extracurricular Module in Engineering must be confirmed by a module coordinator (professor) of the responsible engineering department. The module coordinator makes sure that the individual courses of the module complement each other in a meaningful way and that no random sequence of various individual examinations is combined.

The responsible module coordinator certifies that the examination can be taken as described and that the details of the courses in the application are correct.

The informal application (not handwritten!) will then be submitted to the Examination Office of the KIT Department of Economics and Management.

The examination board of the KIT Department of Economics and Management decides on the basis of the rules and regulations that have been adopted, in particular with regard to the content (see also https://www.wiwi.kit.edu/Genehmigung_Ingenieurmodul.php, Ingenieurmodul.php) as well as the application form completed by the student and signed by the respective module coordinator.

A maximum of one Extracurricular Module in Engineering can be taken.

Workload

The total workload for this module is about 270 hours (9 credits). The distribution is based on the credit points of the courses completed as part of the module.
5.36 Module: Finance 1 [M-WIWI-101482]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4,5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5 CR</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- has core skills in economics and methodology in the field of finance
- assesses corporate investment projects from a financial perspective
- is able to make appropriate investment decisions on financial markets

Prerequisites
None

Content
The courses of this module equip the students with core skills in economics and methodology in the field of modern finance. Securities which are traded on financial and derivative markets are presented, and frequently applied trading strategies are discussed. A further focus of this module is on the assessment of both profits and risks in security portfolios and corporate investment projects from a financial perspective.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.37 Module: Finance 2 [M-WIWI-101483]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110513</td>
<td>Advanced Empirical Asset Pricing</td>
<td>4.5 CR</td>
<td>Thimme</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4.5 CR</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4.5 CR</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102644</td>
<td>Fixed Income Securities</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis</td>
<td>4.5 CR</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Credit Risk</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.

Prerequisites

It is only possible to choose this module in combination with the module Finance 1. The module is passed only after the final partial exam of Finance 1 is additionally passed.

Content

The module Finance 2 is based on the module Finance 1. The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.

Annotation

The courses eFinance: Information Engineering and Management for Securities Trading [2540454] and Financial Analysis [2530205] can be chosen from summer term 2015 on.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
5.38 Module: Finance 3 [M-WIWI-101480]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Credits 9

Recurrence Each term

Duration 1 semester

Language German/English

Level 4

Version 6

Election block: Compulsory Elective Courses (at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>CR</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110513</td>
<td>Advanced Empirical Asset Pricing</td>
<td>4,5</td>
<td>CR</td>
<td>Thimme</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5</td>
<td>CR</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4,5</td>
<td>CR</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5</td>
<td>CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4,5</td>
<td>CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4,5</td>
<td>CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102644</td>
<td>Fixed Income Securities</td>
<td>4,5</td>
<td>CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis</td>
<td>4,5</td>
<td>CR</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4,5</td>
<td>CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3</td>
<td>CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3</td>
<td>CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102645</td>
<td>Credit Risk</td>
<td>4,5</td>
<td>CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1,5</td>
<td>CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4,5</td>
<td>CR</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.

Prerequisites
It is only possible to choose this module in combination with the module Finance 1 and Finance 2. The module is passed only after the final partial exams of Finance 1 and Finance 2 are additionally passed.

Content
The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.39 Module: FinTech Innovations [M-WIWI-105036]

Responsibility: Prof. Dr Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

Credits: 9
Recurrence: Each term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106193</td>
<td>Engineering FinTech Solutions</td>
<td>9 CR Ulrich</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out in form of a written thesis based on the course “Engineering FinTech Solutions”.

Competence Goal
Students with a strong technological background and/or a strong interest for software development and investments will learn how to build a prototype that automates essential steps for a fully automated investment and risk management process. Students also learn to organize themselves efficiently in teams of several developers in order to complete a prototype in a limited amount of time. Moreover, students deepen their understanding of finance and technology and learn how to combine both in an effective way. Students will hence be well prepared to become leaders and pioneers for upcoming FinTech innovations (and beyond) to help society to better invest for the future and to better protect from adverse risks.

Prerequisites
see T-WIWI-106193 "Engineering FinTech Solutions"

Content
The module is targeted to students with strong knowledge in the field of computational risk and asset management and strong programming skills. It offers students the opportunity to develop an algorithmic solution and hence ample their programming experience and their understanding of financial economics or asset and risk management.

Recommendation
None

Workload
Total effort for 9 credit points: approx. 270 hours.
5.40 Module: Fundamentals of Transportation [M-BGU-101064]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>2 semester</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Examination (between 1 and 2 items as well as between 3 and 6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106609</td>
<td>Characteristics of Transportation Systems</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-106610</td>
<td>Transportation Systems</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Election block: Electives (between 1 and 2 items as well as between 3 and 6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-106611</td>
<td>Freight Transport</td>
<td>3 CR</td>
<td>Chlond</td>
</tr>
<tr>
<td>T-BGU-106301</td>
<td>Long-Distance and Air Traffic</td>
<td>3 CR</td>
<td>Chlond</td>
</tr>
<tr>
<td>T-BGU-101005</td>
<td>Tendering, Planning and Financing in Public Transport</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-100014</td>
<td>Seminar in Transportation</td>
<td>3 CR</td>
<td>Chlond, Vortisch</td>
</tr>
<tr>
<td>T-WIWI-103174</td>
<td>Seminar Mobility Services (Master)</td>
<td>3 CR</td>
<td>Satzger, Stryja</td>
</tr>
<tr>
<td>T-BGU-103425</td>
<td>Mobility Services and new Forms of Mobility</td>
<td>3 CR</td>
<td>Kagerbauer</td>
</tr>
<tr>
<td>T-BGU-103426</td>
<td>Strategic Transport Planning</td>
<td>3 CR</td>
<td>Waßmuth</td>
</tr>
<tr>
<td>T-BGU-106608</td>
<td>Information Management for Public Mobility Services</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Compétence Goal
See German version.

Prerequisites
None

Recommendation
None
5.41 Module: Generation and Transmission of Renewable Power [M-ETIT-101164]

Responsible: Dr.-Ing. Bernd Hoferer
Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: compulsory optional subject (at least 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100830</td>
<td>Power Network</td>
<td>6</td>
<td>Leibfried</td>
</tr>
<tr>
<td>T-ETIT-101941</td>
<td>Power Transmission and Power Network Control</td>
<td>5</td>
<td>Leibfried</td>
</tr>
<tr>
<td>T-ETIT-100724</td>
<td>Photovoltaic System Design</td>
<td>3</td>
<td>Grab</td>
</tr>
<tr>
<td>T-ETIT-101915</td>
<td>High-Voltage Test Technique</td>
<td>4</td>
<td>Badent</td>
</tr>
</tbody>
</table>

Competence Goal
The student

- has wide knowledge of electrical power engineering.
- is capable to analyse and develop electrical power engineering systems.

Prerequisites
None

Content
The module deals with wide knowledge about the electrical power engineering. This ranges from the electric power equipment networks in terms of function, structure and interpretation on the calculation of electrical power networks to special areas such as the FACTS elements or power transformers.
5.42 Module: Global Production and Logistics [M-MACH-101282]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105158</td>
<td>Global Production and Logistics - Part 1: Global Production</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>4 CR</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Election block: Globale Produktion und Logistik (Ergänzungsbereich) (1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Kilger</td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategies in Production and Development of High Performance Cars</td>
<td>4 CR</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105783</td>
<td>Learning Factory "Global Production"</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-105165</td>
<td>Automotive Logistics</td>
<td>4 CR</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-WIWI-103091</td>
<td>Production and Logistics Controlling</td>
<td>3 CR</td>
<td>Rausch</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Quality Management</td>
<td>4 CR</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-110176</td>
<td>Digitalization from Production to the Customer in the Optical Industry</td>
<td>4 CR</td>
<td>Wawerla</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Competence Goal

The students

- are able to analyze the main topics of global production and logistics.
- can explain the main topics about planning and operations of global supply chains and are able to use simple models for planning.
- are capable to name the main topics about planning of global production networks.

Prerequisites

None

Content

The module Global Production and Logistics provides comprehensive and well-founded basics for the main topics of global production and logistics. The lectures aim to show opportunities and market conditions for global enterprises. Part 1 focuses on economic backgrounds, opportunities and risks of global production. Part 2 focuses on the structure of international logistics, their modeling, design and analysis. The threats in international logistics are discussed in case studies.

Workload

The work load is about 270 hours, corresponding to 9 credit points.

Learning type

Lectures, seminars, workshops, excursions
5.43 Module: Governance, Risk & Compliance [M-INFO-101242]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Compulsory Elective Modules 2 (Law and Sociology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101288</td>
<td>Corporate Compliance</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Election block: Governance, Risk & Compliance (at least 1 item as well as at least 6 credits)

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101316</td>
<td>Law of Contracts</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-108405</td>
<td>Data Protection by Design</td>
<td>3 CR</td>
<td>Raabe</td>
</tr>
<tr>
<td>T-INFO-102047</td>
<td>Seminar: Governance, Risk & Compliance</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-109910</td>
<td>IT-Security Law</td>
<td>3 CR</td>
<td>Raabe</td>
</tr>
</tbody>
</table>
5.44 Module: Growth and Agglomeration [M-WIWI-101496]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: Economics
Compulsory Elective Modules 1 (Economics)
Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109194</td>
<td>Dynamic Macroeconomics</td>
<td>4.5 CR</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-102785</td>
<td>Theory of Endogenous Growth</td>
<td>4.5 CR</td>
<td>Ott</td>
</tr>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics</td>
<td>4.5 CR</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (see the lectures descriptions).
The overall grade for the module is the average of the grades for each course weighted by the credits.

Competence Goal
The student

- gains deepened knowledge of micro-based general equilibrium models
- understands how based on individual optimizing decisions aggregate phenomena like economic growth or agglomeration (cities / metropolises) result
- is able to understand and evaluate the contribution of these phenomena to the development of economic trends
- can derive policy recommendations based on theory

Prerequisites
None

Content
The module includes the contents of the lectures *Endogenous Growth Theory* [2561503], *Spatial Economics* [2561260] and *International Economic Policy* [2560254]. While the first two lectures have a more formal-analytic focus, the third lecture approaches fundamental ideas and problems from the field of international economic policy from a more verbal perspective.
The common underlying principle of all three lectures in this module is that, based on different theoretical models, economic policy recommendations are derived.

Recommendation
Attendance of the course *Introduction Economic Policy* [2560280] is recommended.
Successful completion of the courses *Economics I: Microeconomics* and *Economics II: Macroeconomics* is required.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.45 Module: High-Voltage Technology [M-ETIT-101163]

Responsible: Dr.-Ing. Bernd Hoferer
Prof. Dr.-Ing. Thomas Leibfried

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-110266</td>
<td>High-Voltage Technology</td>
<td>6 CR</td>
<td>Badent</td>
</tr>
<tr>
<td>T-ETIT-100723</td>
<td>Electronics and EMC</td>
<td>3 CR</td>
<td>Sack</td>
</tr>
</tbody>
</table>

Competence Goal

The student

- has wide knowledge of electrical power engineering.
- is capable to analyse and develop electrical power engineering systems.
- know coupling mechanisms and possible coupling paths for interference signals in electronic circuits and systems, as well as measures for interference suppression and for the functionally reliable construction of such systems.
5.46 Module: Industrial Production II [M-WIWI-101471]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-WIWI-102631 Planning and Management of Industrial Plants 5,5 CR Schultmann

Election block: Supplementary Courses (at most 1 item)

T-WIWI-102763 Supply Chain Management with Advanced Planning Systems 3,5 CR Bosch, Göbelt
T-WIWI-102826 Risk Management in Industrial Supply Networks 3,5 CR Schultmann, Wiens
T-WIWI-102828 Supply Chain Management in the Automotive Industry 3,5 CR Heupel, Lang
T-WIWI-103134 Project Management 3,5 CR Schultmann

Election block: Supplementary Courses (at most 1 item)

T-WIWI-102634 Emissions into the Environment 3,5 CR Karl
T-WIWI-102882 International Management in Engineering and Production 3,5 CR Sasse
T-WIWI-110512 Life Cycle Assessment 3,5 CR Schultmann

Competence Certificate
The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course Planning and Managing of Industrial Plants [2581952] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

- Students shall be able to describe the tasks of tactical production management with special attention drawn upon industrial plants.
- Students shall understand the relevant tasks in plant management (projection, realisation and supervising tools for industrial plants).
- Students shall be able to describe the special need of a techno-economic approach to solve problems in the field of tactical production management.
- Students shall be proficient in using selected techno-economic methods like investment and cost estimates, plant layout, capacity planning, evaluation principles of production techniques, production systems as well as methods to design and optimize production systems.
- Students shall be able to evaluate techno-economical approaches in planning tactical production management with respect to their efficiency, accuracy and relevance for industrial use.

Prerequisites
The course Planning and Managing of Industrial Plants [2581952] and at least one additional activity are compulsory and must be examined.

Content

- Planning and Management of Industrial Plants: Basics, circulation flow starting from projecting to techno-economic evaluation, construction and operating up to plant dismantling.

Annotation
Apart from the core course the courses offered are recommendations and can be replaced by courses from the Module Industrial Production III.
Workload
Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h.

The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.
Module: Industrial Production III [M-WIWI-101412]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses from Module Industrial Production II (at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102632</td>
<td>Production and Logistics Management</td>
<td>5.5 CR</td>
</tr>
<tr>
<td>T-WIWI-102634</td>
<td>Emissions into the Environment</td>
<td>3.5 CR Karl</td>
</tr>
<tr>
<td>T-WIWI-102882</td>
<td>International Management in Engineering and Production</td>
<td>3.5 CR Sasse</td>
</tr>
<tr>
<td>T-WIWI-110512</td>
<td>Life Cycle Assessment</td>
<td>3.5 CR Schultmann</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102763</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>3.5 CR Bosch, Göbelt</td>
</tr>
<tr>
<td>T-WIWI-102826</td>
<td>Risk Management in Industrial Supply Networks</td>
<td>3.5 CR Schultmann, Wiens</td>
</tr>
<tr>
<td>T-WIWI-102828</td>
<td>Supply Chain Management in the Automotive Industry</td>
<td>3.5 CR Heupel, Lang</td>
</tr>
<tr>
<td>T-WIWI-103134</td>
<td>Project Management</td>
<td>3.5 CR Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course Production and Logistics Management [2581954] and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

- Students describe the tasks concerning general problems of an operative production and logistics management.
- Students describe the planning tasks of supply chain management.
- Students use proficiently approaches to solve general planning problems.
- Students explain the existing interdependencies between planning tasks and applied methods.
- Students describe the mail goals and set-up of software supporting tools in production and logistics management (i.e. APS, PPS-, ERP- and SCM Systems).
- Students discuss the scope of these software tools and their general disadvantages.

Prerequisites

The course Production and Logistics Management [2581954] and at least one additional activity are compulsory and must be examined.

Content

- Planning tasks and exemplary methods of production planning and control in supply chain management.
- Supporting software tools in production and logistics management (APS, PPS- and ERP Systems).
- Project management in the field of production and supply chain management.

Annotation

Apart from the core course the courses offered are recommendations and can be replaced by courses from the Module Industrial Production II.
Workload
The total amount of work for this module is approx. 270 hours (9 credits). The allocation is made according to the credit points of the courses of the module.

The total number of hours per course results from the effort required to attend the lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
5.48 Module: Informatics [M-WIWI-101472]

Responsible:
- Prof. Dr. Andreas Oberweis
- Prof. Dr. Harald Sack
- Prof. Dr. Ali Sunyaev
- Prof. Dr. York Sure-Vetter
- Prof. Dr. Melanie Volkamer
- Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of: Informatics

#### Credits	Recurrence	Duration	Level	Version
9	Each term	1 semester	4	12

Election block: Compulsory Elective Area ()

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110339</td>
<td>Applied Informatics – Principles of Internet Computing: Foundations for Emerging Technologies and Future Services</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102680</td>
<td>Computational Economics</td>
<td>4,5 CR</td>
<td>Shukla</td>
</tr>
<tr>
<td>T-WIWI-109248</td>
<td>Critical Information Infrastructures</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109246</td>
<td>Digital Health</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109270</td>
<td>Human Factors in Security and Privacy</td>
<td>4,5 CR</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-102661</td>
<td>Database Systems and XML</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102668</td>
<td>Enterprise Architecture Management</td>
<td>4,5 CR</td>
<td>Wolf</td>
</tr>
<tr>
<td>T-WIWI-110346</td>
<td>Supplement Enterprise Information Systems</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110372</td>
<td>Supplement Software- and Systemsengineering</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-106423</td>
<td>Information Service Engineering</td>
<td>4,5 CR</td>
<td>Sack</td>
</tr>
<tr>
<td>T-WIWI-110863</td>
<td>Introduction to Data Science</td>
<td>4,5 CR</td>
<td>Herbold</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td>4,5 CR</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102667</td>
<td>Management of IT-Projects</td>
<td>4,5 CR</td>
<td>Schätzle</td>
</tr>
<tr>
<td>T-WIWI-106340</td>
<td>Machine Learning 1 - Basic Methods</td>
<td>4,5 CR</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td>4,5 CR</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102679</td>
<td>Nature-Inspired Optimization Methods</td>
<td>4,5 CR</td>
<td>Shukla</td>
</tr>
<tr>
<td>T-WIWI-109799</td>
<td>Process Mining</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4,5 CR</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software Quality Management</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategic Management of Information Technology</td>
<td>4,5 CR</td>
<td>Wolf</td>
</tr>
<tr>
<td>T-WIWI-103112</td>
<td>Web Science</td>
<td>4,5 CR</td>
<td>Sure-Vetter</td>
</tr>
</tbody>
</table>

Election block: Seminars and Advanced Labs (between 0 and 1 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110144</td>
<td>Emerging Trends in Digital Health</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110143</td>
<td>Emerging Trends in Internet Technologies</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109249</td>
<td>Sociotechnical Information Systems Development</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4,5 CR</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
</tr>
<tr>
<td>T-WIWI-109786</td>
<td>Advanced Lab Security</td>
<td>4,5 CR</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-109271</td>
<td>Advanced Lab User Studies in Security</td>
<td>4,5 CR</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-109985</td>
<td>Project Lab Cognitive Automobiles and Robots</td>
<td>4,5 CR</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-109983</td>
<td>Project Lab Machine Learning</td>
<td>4,5 CR</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-109251</td>
<td>Selected Issues in Critical Information Infrastructures</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>
Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.
Please note the following information about the module component exams of Prof. Dr. H. Schmeck:

Competence Goal
The student
- has the ability to master methods and tools in a complex discipline and to demonstrate innovativeness regarding the methods used,
- knows the principles and methods in the context of their application in practice,
- is able to grasp and apply the rapid developments in the field of computer science, which are encountered in work life, quickly and correctly, based on a fundamental understanding of the concepts and methods of computer science,
- is capable of finding and defending arguments for solving problems.

Prerequisites
It is only allowed to choose one lab.

Content
The thematic focus will be based on the choice of courses in the areas of Effiziente Algorithmen, Betriebliche Informations- und Kommunikationssysteme, Wissensmanagement, Komplexitätsmanagement and Software- und Systems Engineering.

Annotation
Detailed information on the recognition of examinations in the field of Informatics can be found at http://www.aifb.kit.edu/web/Auslandsaufenthalt.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Information Engineering [M-WIWI-101411]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Business Administration

Compulsory Elective Modules 1 (Business Administration)

Compulsory Elective Modules 2 (Business Administration)

Credits 9

Recurrence Each term

Duration 1 semester

Level 4

Version 6

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110373</td>
<td>Advanced Information Systems</td>
<td>5 CR</td>
<td>Mädche, Weinhardt</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (between 4 and 4,5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102640</td>
<td>Market Engineering: Information in Institutions</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- understands and analyzes the central role of information as an economic good, a production factor, and a competitive factor,
- identifies, evaluates, prices, and markets information goods,
- analyze and evaluate existing markets regarding the missing incentives and the optimal solution of a given market mechanism, respectively,
- develop solutions in teams.

Content

In the lecture *Foundations of Information Systems*, a clear distinction of information as a production, competitive, and economic good is introduced. The central role of information is explained through the concept of the "information lifecycle". The single phases from existence/generation through allocation and evaluation until the distribution and usage of information are analyzed from the business administration perspective and the microeconomic perspective.

In a second course the student can deepen his knowledge on the one hand on the design and operation of markets and on the other hand on the impact of digital goods in network industries regarding the pricing policies, business strategies and regulation issues. If chosen, the course *Special Topics in Information Engineering & Management* additionally provides an opportunity of practical research in the aforementioned range of subjects.

Annotation

All practical Seminars offered at the IM can be chosen for *Special Topics in Information Systems*. Please update yourself on www.iism.kit.edu/im/lehre.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
5.50 Module: Information Systems in Organizations [M-WIWI-104068]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of: Business Administration
 - Compulsory Elective Modules 1 (Business Administration)
 - Compulsory Elective Modules 2 (Business Administration)

Credits: 9

Recurrence: Each term

Language: German

Level: 4

Version: 3

Election block: Compulsory Elective Courses (at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Level</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4,5 CR</td>
<td></td>
<td>German</td>
<td>Mädche, Nadji, Toreini</td>
</tr>
<tr>
<td>T-WIWI-110851</td>
<td>Designing Interactive Systems</td>
<td>4,5 CR</td>
<td></td>
<td>German</td>
<td>Mädche, Morana</td>
</tr>
<tr>
<td>T-WIWI-106201</td>
<td>Digital Transformation of Organizations</td>
<td>4,5 CR</td>
<td></td>
<td>German</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-108437</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>4,5 CR</td>
<td></td>
<td>German</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- has a comprehensive understanding of conceptual and theoretical foundations of information systems in organizations
- is aware of the most important classes of information systems used in organizations: process-centric, information-centric and people-centric information systems.
- knows the most important activities required to execute in the pre-implementation, implementation and post-implementation phase of information systems in organizations in order to create business value
- has a deep understanding of key capabilities of business intelligence systems and/or interactive information systems used in organizations

Prerequisites

None

Content

During the last decades we witnessed a growing importance of Information Technology (IT) in the business world along with faster and faster innovation cycles. IT has become core for businesses from an operational company-internal and external customer perspective. Today, companies have to rethink their way of doing business, from an internal as well as an external digitalization perspective.

This module focuses on the internal digitalization perspective. The contents of the module abstract from the technical implementation details and focus on foundational concepts, theories, practices and methods for information systems in organizations. The students get the necessary knowledge to guide the successful digitalization of organizations. Each lecture in the module is accompanied with a capstone project that is carried out in cooperation with an industry partner.

Annotation

New module starting summer term 2018.

Workload

The total workload for this module is approximately 270 hours.
Module: Innovation and Growth [M-WIWI-101478]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of:
- Economics
- Compulsory Elective Modules 1 (Economics)
- Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (between 9 and 10 credits)

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109194</td>
<td>Dynamic Macroeconomics</td>
<td>4,5 CR</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-102785</td>
<td>Theory of Endogenous Growth</td>
<td>4,5 CR</td>
<td>Ott</td>
</tr>
<tr>
<td>T-WIWI-102840</td>
<td>Innovation Theory and Policy</td>
<td>4,5 CR</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students shall be given the ability to

- know the basic techniques for analyzing static and dynamic optimization models that are applied in the context of micro- and macroeconomic theories
- understand the important role of innovation to the overall economic growth and welfare
- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Prerequisites

None

Content

The module includes courses that deal with issues of innovation and growth in the context of micro- and macroeconomic theories. The dynamic analysis makes it possible to analyze the consequences of individual decisions over time, and sheds light on the tension between static and dynamic efficiency in particular. In this context is also analyzed, which policy is appropriate to carry out corrective interventions in the market and thus increase welfare in the presence of market failure.

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload

Total expenditure of time for 9 credits: 270 hours

- Attendance time per lecture: 3x14h
- Preparation and wrap-up time per lecture: 3x14h
- Rest: Exam Preparation

The exact distribution is subject to the credits of the courses of the module.
5.52 Module: Innovation Economics [M-WIWI-101514]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of:
- Economics
- Compulsory Elective Modules 1 (Economics)
- Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (between 9 and 10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102840</td>
<td>Innovation Theory and Policy</td>
<td>4.5 CR</td>
<td>Ott</td>
</tr>
<tr>
<td>T-WIWI-102906</td>
<td>Methods in Economic Dynamics</td>
<td>1.5 CR</td>
<td>Ott</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>3 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102789</td>
<td>Seminar in Economic Policy</td>
<td>3 CR</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students shall be given the ability to

- understand the important role of innovation for economic growth and welfare
- understand the relevance of alternative incentive mechanisms for the emergence and dissemination of innovations
- know basic terms of product and innovation concepts
- know fundamental concepts of innovation management
- work with fundamental theoretical innovation models and to implement them in appropriate computer algebra systems
- query appropriate data sources and to analyse and visualise them using statistical methods

Prerequisites
None

Content
The module provides students with knowledge about implications of technological and organizational changes.

Addressed economic issues are incentives for developing innovations, diffusion processes, and associated effects. In this context the module analyses appropriate policies in the presence of market failures to take corrective action on the market process and thus to increase the dynamic efficiency of economies.

Furthermore, the module offers the possibility to learn about different aspects of theoretical modelling of innovation-based growth as a part of the seminar and the methods-workshop. This includes the implementation of formal models in computer algebra systems as well as recording, processing and econometric analysis of related data from relational databases (concerning for example patents or trademarks). Moreover, methods of network theory are applied.

Finally, the module emphasises the business perspective: Issues of all stages of innovation processes will be discussed, from innovation strategies up to the market commercialisation.

Recommendation
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012] and Economics II [2600014]. Further, it is assumed that students have interest in using quantitative-mathematical methods.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.53 Module: Innovation Management [M-WIWI-101507]

Responsible: Prof. Dr. Marion Weissenberger-Eibl
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102893</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102873</td>
<td>Current Issues in Innovation Management</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>T-WIWI-110867</td>
<td>The negotiation of open innovation</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-108875</td>
<td>Digital Transformation and Business Models</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102852</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>T-WIWI-108774</td>
<td>Analyzing and Evaluating Innovation Processes</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-110234</td>
<td>Innovation Processes Live</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-110263</td>
<td>Methods in Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102853</td>
<td>Roadmapping</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-109932</td>
<td>A Closer Look at Social Innovation</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-102858</td>
<td>Technology Assessment</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102854</td>
<td>Technologies for Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102873</td>
<td>Current Issues in Innovation Management</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>T-WIWI-102866</td>
<td>Design Thinking</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-110867</td>
<td>The negotiation of open innovation</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-108875</td>
<td>Digital Transformation and Business Models</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102833</td>
<td>Entrepreneurial Leadership & Innovation Management</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102864</td>
<td>Entrepreneurship</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102852</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>T-WIWI-108774</td>
<td>Analyzing and Evaluating Innovation Processes</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-110234</td>
<td>Innovation Processes Live</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-110263</td>
<td>Methods in Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102853</td>
<td>Roadmapping</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-109932</td>
<td>A Closer Look at Social Innovation</td>
<td>3 CR</td>
<td>Beyer</td>
</tr>
<tr>
<td>T-WIWI-102854</td>
<td>Technologies for Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Competence Goal
Students develop a comprehensive understanding of the innovation process and its conditionality. There is an additional focus on the concepts and processes which are of particular relevance with regard to shaping the entire process. Various strategies and methods are then taught based on this.

After completing the module, students should have developed a systemic understanding of the innovation process and be able to shape this by developing and applying suitable methods.
Prerequisites
The lecture “Innovation Management: Concepts, Strategies and Methods” and one of the seminars of the chair for Innovation and Technology Management are compulsory. The third course can be chosen from the courses of the module.

Content
The Innovation Management: Concepts, Strategies and Methods lecture course teaches concepts, strategies and methods which help students to form a systemic understanding of the innovation process and how to shape it. Building on this holistic understanding, the seminar courses then go into the subjects in greater depth and address specific processes and methods which are central to innovation management.

Recommendation
None

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Integrated Production Planning [M-MACH-101272]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Credits: 9
Recurrence: Each summer term
Duration: 1 semester
Language: German
Level: 4
Version: 3

Mandatory
T-MACH-109054 Integrated Production Planning in the Age of Industry 4.0 9 CR Lanza

Competence Certificate
Written Exam (120 min)

Competence Goal
The students
- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Prerequisites
none

Content
Within this engineering sciences-oriented module the students will get to learn principle aspects of organization and planning of production systems.

Workload
regular attendance: 63 hours
self-study: 207 hours

Learning type
Lecture, exercise, excursion

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Compulsory Elective Modules 2 (Law and Sociology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Intellectual Property Law (at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102036</td>
<td>Computer Contract Law</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101308</td>
<td>Copyright</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101310</td>
<td>Patent Law</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101313</td>
<td>Trademark and Unfair Competition Law</td>
<td>3 CR</td>
<td>Matz</td>
</tr>
<tr>
<td>T-INFO-101307</td>
<td>Internet Law</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-108462</td>
<td>Selected Legal Issues of Internet Law</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Prerequisites
None
5.56 Module: Lean Management in Construction [M-BGU-101884]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory
- T-BGU-108000 Lean Construction 4,5 CR Haghsheno
- T-BGU-101007 Project Paper Lean Construction 1,5 CR Haghsheno

Election block: Electives (between 1 and 2 items as well as between 3 and 4,5 credits)
- T-BGU-103430 Turnkey Construction I - Processes and Methods 1,5 CR Haghsheno
- T-BGU-103431 Turnkey Construction II - Trades and Technology 3 CR Haghsheno
- T-BGU-103427 Site Management 1,5 CR Haghsheno
- T-BGU-103429 Building Laws 3 CR Haghsheno
- T-BGU-103432 Project Management in Construction and Real Estate Industry I 3 CR Haghsheno
- T-BGU-103433 Project Management in Construction and Real Estate Industry II 3 CR Haghsheno

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.
The exam must be repeated at the latest 2 semesters after the first try. The exam will be based on the content of the latest lecture.
The exam of of the course Lean Construction consists of a preparatory and oral assessment. The preparatory assessment is a group work and consists of an assignment with presentation. The preparatory assessment is precondition to attend the oral examination (30 min) of the course Lean Construction. The grade of the exam Lean Construction is defined by weighted average of grades for oral examination (75 %) and preparatory assignment (25 %).
Examination of courses Projektmanagement in der Bau- und Immobilienwirtschaft I, Projektmanagement in der Bau- und Immobilienwirtschaft II, and Baurecht are carried out written. Combinations of courses Schlüsselfertiges Bauen I, Schlüsselfertiges Bauen II, Bauleitung, and Nachtragsmanagement are examined orally.

Competence Goal
see German version

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Prerequisites
The course Lean Construction is compulsory and must be examined.

Content
see German version

Recommendation
It is recommend to take the module Fundamentals of construction [WI3INGBGU3] from the Bachelor’s degree program.

Annotation
none

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Literature
5.57 Module: Logistics and Supply Chain Management [M-MACH-105298]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-MACH-110771 Logistics and Supply Chain Management 9 CR Furmans

Competence Certificate
The assessment consists of a 120 minutes written examination (according to §4(2), 1 of the examination regulation).

Competence Goal
The student
- has comprehensive and well-founded knowledge of the central challenges in logistics and supply chain management, an overview of various practical issues and the decision-making requirements and models in supply chains,
- can model supply chains and logistics systems using simple models with sufficient accuracy,
- identifies cause-effect relationships in supply chains,
- is able to evaluate supply chains and logistics systems based on the methods they have mastered.

Prerequisites
None

Content
Logistics and Supply Chain Management provides comprehensive and well-founded fundamentals for the crucial issues in logistics and supply chain management. Within the scope of the lectures, the interaction of different design elements of supply chains is emphasized. For this purpose, qualitative and quantitative description models are used. Methods for mapping and evaluating logistics systems and supply chains are also covered. The lecture contents are enriched by exercises and case studies and partially the comprehension of the contents is provided by case studies. The interacting of the elements will be shown, among other things, in the supply chain of the automotive industry.

Learning type
Lectures, tutorials, case studies.

Literature
Dieter Arnold et. al.: Handbuch Logistik, 2008
Marc Goetschalkx: Supply Chain Engineering, 2011
Module: Machine Tools and Industrial Handling [M-MACH-101286]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 semester</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-MACH-102158</th>
<th>Machine Tools and Industrial Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 CR</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam (120 minutes)

Competence Goal
The students

- are able to assess the use and application of machine tools and handling equipment and to differentiate between them in terms of their characteristics and design
- can describe and discuss the essential elements of the machine tool (frame, main spindle, feed axes, peripheral equipment, control unit)
- are able to select and dimension the essential components of a machine tool
- are capable of selecting and evaluating machine tools according to technical and economic criteria.

Prerequisites
None

Content
The module overviews the construction, use and application of machine tools and industrial handling equipment. A well-founded and practice-oriented knowledge is imparted about the selection, design and evaluation of machine tools. First, the main components of the machine tools are systematically explained and their design principles as well as the integral machine tool design are discussed. Subsequently, the use and application of machine tools will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0.

The individual topics are:

- Frames and frame components
- Feed axes
- Spindles
- Peripheral equipment
- Control unit
- Metrological evaluation and machine testing
- Process monitoring
- Maintenance of machine tools
- Safety assessment of machine tools
- Machine examples

Workload
regular attendance: 63 hours
self-study: 207 hours

Learning type
Lecture, exercise, excursio
Competence Certificate
oral examination (60 minutes)

Competence Goal
By working practically in experience-based learning arrangements with industrial development tasks, graduates are able to succeed in new and unknown situations when developing innovative products by using methodological and systematic approaches. They can apply and adapt strategies of development and innovation management, technical system analysis and team leadership to the situation. As a result, they are able to foster the development of innovative products in industrial development teams in prominent positions, taking into account social, economic and ethical aspects.

Prerequisites
None

Content
Organizational integration: integrated product development model, core team management and simultaneous engineering, informational integration: innovation management, cost management, quality management and knowledge management
Personal integration: team development and leadership
Guest lectures from the industry

Annotation
The participation in "Integrated Product Development" requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).
Due to organizational reasons, the number of participants is limited. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Workload
The work load is about 480 hours, corresponding to 16 credit points.

Learning type
lecture
tutorial
product development project
5.60 Module: Management Accounting [M-WIWI-101498]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102800</td>
<td>Management Accounting 1</td>
<td>4,5 CR</td>
<td>Wouters</td>
</tr>
<tr>
<td>T-WIWI-102801</td>
<td>Management Accounting 2</td>
<td>4,5 CR</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students
- are familiar with various management accounting methods,
- can apply these methods for cost estimation, profitability analysis, and product costing,
- are able to analyze short-term and long-decisions with these methods,
- have the capacity to devise instruments for organizational control.

Prerequisites
None

Content
The module consists of two courses "Management Accounting 1" and "Management Accounting 2". The emphasis is on structured learning of management accounting techniques.

Annotation
The following courses are part of this module:
- The course Management Accounting 1, which is offered in every summer semester
- The course Management Accounting 2, which is offered in every winter semester

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.61 Module: Manufacturing Technology [M-MACH-101276]

Responsible: Prof. Dr.-Ing. Volker Schulze
Organisation: KIT Department of Mechanical Engineering
Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 semester</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>9 CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102105</td>
<td>Manufacturing Technology</td>
<td></td>
<td>Schulze, Zanger</td>
</tr>
</tbody>
</table>

Competence Certificate
Written Exam (180 min)

Competence Goal
The students

- can name different manufacturing processes, can describe their specific characteristics and are capable to depict the general function of manufacturing processes and are able to assign manufacturing processes to the specific main groups.
- are enabled to identify correlations between different processes and to select a process depending on possible applications.
- are capable to describe the theoretical basics for the manufacturing processes they got to know within the scope of the course and are able to compare the processes.
- are able to correlate based on their knowledge in materials science the processing parameters with the resulting material properties by taking into account the microstructural effects.
- are qualified to evaluate different processes on a material scientific basis.

Prerequisites
None

Content
Within this engineering sciences-oriented module the students will get to learn principle aspects of manufacturing technology. Further information can be found at the description of the lecture “Manufacturing Technology”.

Workload
regular attendance: 63 hours
self-study: 207 hours

Learning type
Lectures, exercise, excursion
Module: Market Engineering [M-WIWI-101446]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Business Administration

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102640</td>
<td>Market Engineering: Information in Institutions</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (4,5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102613</td>
<td>Auction Theory</td>
<td>4,5 CR</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4,5 CR</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107503</td>
<td>Energy Networks and Regulation</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimental Economics</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107504</td>
<td>Smart Grid Applications</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- know the design criteria of market mechanisms and the systematic approach to create new markets,
- understand the basics of the mechanism design and auction theory,
- analyze and evaluate existing markets regarding the missing incentives and the optimal solution of a given market mechanism, respectively,
- develop solutions in teams.

Prerequisites

The course *Market Engineering: Information in Institutions* [2540460] is compulsory and must be examined.

Content

This module explains the dependencies between the design of markets and their success. Markets are complex interaction of different institution and participants in a market behave strategically according to the market rules. The development and the design of markets or market mechanisms has a strong influence on the behavior of the participants. A systematic approach and a thorough analysis of existing markets is inevitable to design, create and operate a market place successfully. The approaches for a systematic analysis are explained in the mandatory course *Market Engineering* [2540460] by discussing theories about mechanism design and institutional economics. The student can deepen his knowledge about markets in a second course.

Recommendation

None

Annotation

The course *"Computational Economics"* [2590458] will not be offered any more in this module from winter term 2015/2016 on. The examination will be offered latest until summer term 2016 (repeaters only).

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
5.63 Module: Marketing and Sales Management [M-WIWI-105312]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: Business Administration

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each summer term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (at least 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>ECTS</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td>4.5 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>3 CR</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>ECTS</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102834</td>
<td>Case Studies in Sales and Pricing</td>
<td>1.5 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-106981</td>
<td>Digital Marketing and Sales in B2B</td>
<td>1.5 CR</td>
<td>Konhäuser</td>
</tr>
<tr>
<td>T-WIWI-102835</td>
<td>Marketing Strategy Business Game</td>
<td>1.5 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102891</td>
<td>Price Negotiation and Sales Presentations</td>
<td>1.5 CR</td>
<td>Klarmann, Schröder</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students
- have an advanced knowledge about central marketing contents
- have a fundamental understanding of the marketing instruments
- know and understand several strategic concepts and how to implement them
- are able to implement their extensive marketing knowledge in a practical context
- know several qualitative and quantitative approaches to prepare decisions in Marketing
- have the theoretical knowledge to write a master thesis in Marketing
- have the theoretical knowledge to work in/together with the Marketing department

Prerequisites

None

Content

The aim of this module is to deepen central marketing contents in different areas.

Annotation

Please note that only one of the listed 1.5-ECTS courses can be chosen in the module.

Workload

The total workload for this module is approximately 270 hours.
Module: Material Flow in Logistic Systems [M-MACH-101277]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Credits 9
Recurrence Each winter term
Language German
Level 4
Version 3

Mandatory
T-MACH-102151 Material Flow in Logistic Systems 9 CR Furmans

Competence Certificate
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under T-MACH-102151.

Competence Goal
The student

- acquires comprehensive and well-founded knowledge on the main topics of logistics, an overview of different logistic questions in practice and knows the functionality of material handling systems,
- is able to illustrate logistic systems with adequate accuracy by using simple models,
- is able to realize coherences within logistic systems,
- is able to evaluate logistic systems by using the learnt methods.

Prerequisites
none

Content
The module Material Flow in Logistic Systems provides comprehensive and well-founded basics for the main topics of logistics. Within the lectures, the interaction between several components of logistic systems will be shown. The module focuses on technical characteristics of material handling systems as well as on methods for illustrating and evaluating logistics systems. To gain a deeper understanding, the course is accompanied by exercises and case studies.

Workload
270 hours

Learning type
Lectures, tutorials.
5.65 Module: Material Flow in Networked Logistic Systems [M-MACH-101278]

Responsibility: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Credits: 9
Recurrence: Each term
Duration: 1 semester
Language: German
Level: 4
Version: 3

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105189</td>
<td>Mathematical Models and Methods for Production Systems</td>
<td>6 CR</td>
<td>Baumann, Furmans</td>
</tr>
</tbody>
</table>

Election block: Materialflow in vernetzten Logistiksystemen (at least 3 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105174</td>
<td>Warehousing and Distribution Systems</td>
<td>3 CR</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-105175</td>
<td>Airport Logistics</td>
<td>3 CR</td>
<td>Richter</td>
</tr>
<tr>
<td>T-WIWI-103091</td>
<td>Production and Logistics Controlling</td>
<td>3 CR</td>
<td>Rausch</td>
</tr>
<tr>
<td>T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>4 CR</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>3 CR</td>
<td>Kliger</td>
</tr>
<tr>
<td>T-MACH-105187</td>
<td>IT-Fundamentals of Logistics</td>
<td>3 CR</td>
<td>Thomas</td>
</tr>
<tr>
<td>T-MACH-105171</td>
<td>Safety Engineering</td>
<td>4 CR</td>
<td>Kany</td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>4 CR</td>
<td>Braun, Schönung</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- acquires in-depth knowledge on the main topics of logistics, gets an overview of different logistic questions in practice,
- is able to evaluate logistic systems by using the learnt methods,
- is able to analyze and explain the phenomena of industrial material and value streams.

Prerequisites

none

Content

The module *Material Flow in networked Logistic Systems* provides in-depth basics for the main topics of logistics and industrial material and value streams. The obligatory lecture focuses on queuing methods to model production systems. To gain a deeper understanding, the course is accompanied by exercises.

Recommendation

It is recommended to successfully complete the course "Material Flow in Logistics Systems" [T-MACH-102151] before starting the module.

Workload

Regular attendance: 270 hours (9 credits). Lectures with 180 hours attendance 6 credits. Lectures with 120 hours 4 credits.

Learning type

Lecture, tutorial.
5.66 Module: Mathematical Programming [M-WIWI-101473]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: Operations Research
Compulsory Elective Modules 1 (Operations Research)
Compulsory Elective Modules 2 (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (at most 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102719</td>
<td>Mixed Integer Programming I</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Global Optimization I and II</td>
<td>9</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102856</td>
<td>Convex Analysis</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nonlinear Optimization I and II</td>
<td>9</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102855</td>
<td>Parametric Optimization</td>
<td>4,5</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at most 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106548</td>
<td>Advanced Stochastic Optimization</td>
<td>4,5</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Mixed Integer Programming II</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Global Optimization II</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models</td>
<td>4,5</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimization</td>
<td>4,5</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Statistical Methods</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nonlinear Optimization II</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management</td>
<td>4,5</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-110162</td>
<td>Optimization Models and Applications</td>
<td>4,5</td>
<td>Sudermann-Merx</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- names and describes basic notions for advanced optimization methods, in particular from continuous and mixed integer programming,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions,
- identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

Prerequisites
At least one of the courses "Mixed Integer Programming I", "Parametric Optimization", "Convex Analysis", "Nonlinear Optimization I" and "Global Optimization I" has to be taken.

Students who choose the module in the field "compulsory elective modules" may select any two courses of the module.
Content
The module focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous and mixed integer decision variables.

Annotation
The lectures are partly offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
For the lectures of Prof. Stein a grade of 30 % of the exercise course has to be fulfilled. The description of the particular lectures is more detailed.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.67 Module: Microeconomic Theory [M-WIWI-101500]

Responsibility: Prof. Dr. Clemens Puppe

Organisation: KIT Department of Economics and Management

Part of:
- Economics
- Compulsory Elective Modules 1 (Economics)
- Compulsory Elective Modules 2 (Economics)

Credits: 9
Recurrence: Each term
Language: German/English
Level: 4
Version: 3

Election block: Compulsory Elective Courses (at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4.5 CR</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4.5 CR</td>
<td>Ehrhart, Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory</td>
<td>4.5 CR</td>
<td>Puppe</td>
</tr>
<tr>
<td>T-WIWI-102613</td>
<td>Auction Theory</td>
<td>4.5 CR</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4.5 CR</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Compentence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Compentence Goal
Students
- are able to model practical microeconomic problems mathematically and to analyze them with respect to positive and normative questions,
- understand individual incentives and social outcomes of different institutional designs.

An example of a positive question is: which regulation policy results in which firm decisions under imperfect competition? An example of a normative question is: which voting rule has appealing properties?

Prerequisites
None

Content
The student should gain an understanding of advanced topics in economic theory, game theory and welfare economics. Core topics are, among others, strategic interactions in markets, cooperative and non-cooperative bargaining (Advanced Game Theory), allocation under asymmetric information and general equilibrium over time (Advanced Topics in Economic Theory), voting and the aggregation of preferences and judgements (Social Choice Theory).

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.68 Module: Microfabrication [M-MACH-101291]

Responsible: Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102166</td>
</tr>
</tbody>
</table>

Election block: Mikrofertigung (Ergänzungsbereich) (at least 6 credits)

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102164</td>
</tr>
<tr>
<td>T-MACH-100530</td>
</tr>
<tr>
<td>T-MACH-102167</td>
</tr>
<tr>
<td>T-MACH-102191</td>
</tr>
<tr>
<td>T-MACH-102192</td>
</tr>
<tr>
<td>T-MACH-102200</td>
</tr>
<tr>
<td>T-MACH-105556</td>
</tr>
<tr>
<td>T-MACH-109122</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams
(according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- gains advanced knowledge concerning fabrication techniques in micrometer scale
- acquires knowledge in up-to-date developing research
- can detect and use causal relation in microfabrication process chains.

Prerequisites
none

Content
This engineering module allows the student to gain advanced knowledge in the area of microfabrication. Different manufacturing methods are described and analyzed in an advanced manner. Necessary interdisciplinary knowledge from physics, chemistry, materials science and also up-to-date developments (nano and x-ray optics) in micro fabrication is offered.

Workload
270 hours
5.69 Module: Microoptics [M-MACH-101292]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Election block: Mikrooptik (at least 9 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102164 Practical Training in Basics of Microsystem Technology</td>
</tr>
<tr>
<td>T-MACH-102165 Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
</tr>
<tr>
<td>T-MACH-101910 Microactuators</td>
</tr>
<tr>
<td>T-ETIT-100741 Laser Physics</td>
</tr>
<tr>
<td>T-ETIT-101945 Optical Waveguides and Fibers</td>
</tr>
<tr>
<td>T-MACH-109122 X-ray Optics</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams
(according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- basic knowledge for the applications of microoptical systems
- understanding fabrication processes of microoptical elements & systems
- analyzing strengths and weaknesses of lithography processes
- knowledge on the basics of optical sources and detectors and their use in technical systems
- fundamental knowledge on different lasers and their design
- knowledge on X-ray imaging methods

Prerequisites
none

Content
Optical imaging, measuring and sensor systems are a base for modern natural sciences. In particular life sciences and telecommunications have an intrinsic need for the application of optical technologies. Numerous fields of physics and engineering, e.g. astronomy and material sciences, require optical techniques. Micro optical systems are introduced in medical diagnostics and biological sensing as well as in products of the daily life.
In this module, an introduction to the basics of optics is provided; optical effects are presented with respect to their technical use.
Optical elements and instruments are presented. Fabrication processes of micro optical systems and elements, in particular lithography, are discussed.
In addition X-ray optics and X-ray imaging systems are presented as well as elements of optical telecommunication. A closer look on the physics behind lasers, being one of the most important technical light sources, is provided. As high end technology and clean room equipment is present in all the lectures of this module, the students will have a hands-on training with several experiments in micro optics.

Workload
270 hours
5.70 Module: Microsystem Technology [M-MACH-101293]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105182</td>
<td>Introduction to Microsystem Technology I</td>
<td>3 CR</td>
<td>Badilita, Jouda, Korvink</td>
</tr>
</tbody>
</table>

Election block: Mikrosystemtechnik (Ergänzungsbereich) (at least 6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102165</td>
<td>Selected Topics on Optics and Microoptics for Mechanical Engineers</td>
<td>3 CR</td>
<td>Heckele, Mappes</td>
</tr>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II</td>
<td>3 CR</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td>3 CR</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-102172</td>
<td>Bionics for Engineers and Natural Scientists</td>
<td>3 CR</td>
<td>Hölscher</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>3 CR</td>
<td>Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Microactuators</td>
<td>3 CR</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-MACH-102080</td>
<td>Nanotechnology with Clusterbeams</td>
<td>3 CR</td>
<td>Gspann</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-ETIT-101907</td>
<td>Optoelectronic Components</td>
<td>4 CR</td>
<td>Freude</td>
</tr>
<tr>
<td>T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>6 CR</td>
<td>Dienwiebel, Gumbsch, Nesterov-Müller, Weygand</td>
</tr>
<tr>
<td>T-MACH-102192</td>
<td>Polymers in MEMS A: Chemistry, Synthesis and Applications</td>
<td>3 CR</td>
<td>Rapp</td>
</tr>
<tr>
<td>T-MACH-102191</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
<td>3 CR</td>
<td>Worgull</td>
</tr>
<tr>
<td>T-MACH-102200</td>
<td>Polymers in MEMS C: Biopolymers and Bioplastics</td>
<td>3 CR</td>
<td>Rapp, Worgull</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>3 CR</td>
<td>Last</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Construction and production of e.g. mechanical, optical, fluidic and sensory microsystems.

Prerequisites

None

Workload

270 hours
5.71 Module: Module Masterarbeit [M-WIWI-101659]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of: Master Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103142</td>
<td>Master Thesis</td>
<td>30 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

See German version.

Competence Goal

The student can independently handle a complex and unfamiliar subject based on scientific criteria and on the current state of research.

He/she is in a position to critically analyze and structure the researched information as well as derive principles and regularities. He/she knows how to apply the thereby achieved results to solve the task at hand. Taking into account this knowledge and his/her interdisciplinary knowledge, he/she can draw own conclusions, derive improvement potentials, propose and implement science-based decisions.

This is basically also done under consideration of social and/or ethical aspects.

He/she can interpret, evaluate and if required, graphically present the obtained results.

He/she is in a position to sensibly structure a research paper, document them and clearly communicate the results in scientific form.

Prerequisites

See German version.

Content

See German version.

Annotation

See German version.

Workload

The total workload for this module is approximately 900 hours. For further information see German version.
M 5.72 Module: Nanotechnology [M-MACH-101294]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering
Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105180</td>
<td>Nanotechnology for Engineers and Natural Scientists</td>
<td>4 CR</td>
<td>Dienwiebel, Hölscher, Walheim</td>
</tr>
</tbody>
</table>

Election block: Nanotechnologie (Ergänzungsbereich) (at least 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102080</td>
<td>Nanotechnology with Clusterbeams</td>
<td>3 CR</td>
<td>Gspann</td>
</tr>
<tr>
<td>T-MACH-102167</td>
<td>Nanotribology and -Mechanics</td>
<td>3 CR</td>
<td>Dienwiebel, Hölscher</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Practical Training in Basics of Microsystem Technology</td>
<td>3 CR</td>
<td>Last</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-MACH-102172</td>
<td>Bionics for Engineers and Natural Scientists</td>
<td>3 CR</td>
<td>Hölscher</td>
</tr>
<tr>
<td>T-ETIT-100740</td>
<td>Quantum Functional Devices and Semiconductor Technology</td>
<td>3 CR</td>
<td>Koos</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams
(according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- has detailed knowledge in the field of nanotechnology
- is able to evaluate the specific characteristics of nanosystems.

Prerequisites
none

Content
The module deals with the most important principles and fundamentals of modern nanotechnology. The compulsory module “Nanotechnology with scanning probe methods” introduces the basics of nanotechnology and nanoanalytics. The specific phenomena and properties found in nanoscale systems are the main topic of the module.

Workload
270 hours
Module: Natural Hazards and Risk Management [M-WIWI-104837]

Responsible: Prof. Dr. Michael Kunz

Organisation: KIT Department of Economics and Management

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Wahlpflichtangebot (between 9 and 12 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101499</td>
<td>Introduction to Hydrogeology</td>
<td>5</td>
<td>Goldscheider</td>
</tr>
<tr>
<td>T-BGU-108943</td>
<td>Engineering Hydrology</td>
<td>3</td>
<td>Ehret</td>
</tr>
<tr>
<td>T-BGU-106597</td>
<td>Management of Water Resources and River Basins</td>
<td>6</td>
<td>Ehret</td>
</tr>
<tr>
<td>T-BGU-101859</td>
<td>Morphodynamics</td>
<td>3</td>
<td>Nestmann</td>
</tr>
<tr>
<td>T-BGU-106620</td>
<td>Examination Prerequisite Environmental Communication</td>
<td>0</td>
<td>Kämpf</td>
</tr>
<tr>
<td>T-BGU-101676</td>
<td>Environmental Communication</td>
<td>4</td>
<td>Kämpf</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
See German version

Prerequisites
None

Content
See German version

Annotation
Students, who successfully completed both modules “Understanding and Prediction of Disasters” I and II (alternatively: one of the modules in Bachelor and Master) can get a certificate of the module coordinator (CEDIM). This certificate lists the successful completed courses within the two modules.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.74 Module: Network Economics [M-WIWI-101406]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of:
- Economics
 - Compulsory Elective Modules 1 (Economics)
 - Compulsory Elective Modules 2 (Economics)

Credits: 9

Recurrence: Each term

Language: German/English

Level: 4

Version: 2

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4.5</td>
<td>1</td>
<td>German/English</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transport Economics</td>
<td>4.5</td>
<td>1</td>
<td>German/English</td>
<td>Mitusch, Szimba</td>
</tr>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4.5</td>
<td>1</td>
<td>German/English</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102712</td>
<td>Regulation Theory and Practice</td>
<td>4.5</td>
<td>1</td>
<td>German/English</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102713</td>
<td>Telecommunication and Internet Economics</td>
<td>4.5</td>
<td>1</td>
<td>German/English</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students

- have acquired the basic knowledge for a future job in a network company or in a regulatory agency, ministry etc.
- recognize the specific characterizations of network sectors, know fundamental methods for an economic analysis of network sectors and recognize the interfaces for an interdisciplinary cooperation of economists, engineers and lawyers
- understand the interactions between infrastructures, control systems, and the users of networks, especially concerning their implications on investments, price setting and competitive behavior, and they can model or simulate exemplary applications
- can assess the necessity of regulation of natural monopolies and identify regulatory measures that are important for networks.

Prerequisites
None

Content
The module is concerned with network or infrastructure industries in the economy, e.g. telecommunication, traffic and energy sectors. These sectors are characterized by close interdependencies of operators and users of infrastructure as well as on states. States intervene in various forms, by the public and regulation authorities, due to the importance of network industries and due to limited abilities of markets to work properly in these industries. The students are supposed to develop a broad knowledge of these sectors and of the political options available.

Recommendation
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.75 Module: Operations Research in Supply Chain Management [M-WIWI-102832]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Operations Research
Compulsory Elective Modules 1 (Operations Research)
Compulsory Elective Modules 2 (Operations Research)

Credits 9
Recurrence Each term
Language German
Level 4
Version 7

Election block: Compulsory Elective Courses (at most 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106200</td>
<td>Modeling and OR-Software: Advanced Topics</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at most 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization</td>
<td>4.5</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-102718</td>
<td>Discrete-Event Simulation in Production and Logistics</td>
<td>4.5</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102719</td>
<td>Mixed Integer Programming I</td>
<td>4.5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Mixed Integer Programming II</td>
<td>4.5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-110162</td>
<td>Optimization Models and Applications</td>
<td>4.5</td>
<td>Sudermann-Merx</td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimization</td>
<td>4.5</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of SCM and their respective optimization problems,
- is acquainted with classical location problem models (in planes, in networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Prerequisites
At least one of the courses "Operations Research in Supply Chain Management", "Graph Theory and Advanced Location Models", "Modeling and OR-Software: Advanced Topics" and "Special Topics of Stochastic Optimization (elective)" has to be taken. Students who choose the module in the field "compulsory elective modules" may select any two courses of the module.
Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of SCM. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of Supply Chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of supply chain management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Recommendation
Basic knowledge as conveyed in the module Introduction to Operations Research is assumed.

Annotation
Some lectures and courses are offered irregularly.
The planned lectures and courses for the next three years are announced online.

Workload
Total effort for 9 credits: ca. 270 hours

- Presence time: 84 hours
- Preparation/Wrap-up: 112 hours
- Examination and examination preparation: 74 hours
Module: Optoelectronics and Optical Communication [M-MACH-101295]

Responsible: Prof. Dr. Jan Gerrit Korvink
Organisation: KIT Department of Mechanical Engineering
Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Election block: Optoelektronik und Optische Kommunikationstechnik (Kernbereich) (1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100639</td>
<td>Optical Transmitters and Receivers</td>
<td>6 CR</td>
<td>Freude</td>
</tr>
</tbody>
</table>

Election block: Optoelektronik und Optische Kommunikationstechnik (Ergänzungsbereich) (at least 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>4 CR</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-ETIT-101938</td>
<td>Communication Systems and Protocols</td>
<td>5 CR</td>
<td>Becker, Becker</td>
</tr>
<tr>
<td>T-ETIT-100741</td>
<td>Laser Physics</td>
<td>4 CR</td>
<td>Koos</td>
</tr>
<tr>
<td>T-ETIT-100740</td>
<td>Quantum Functional Devices and Semiconductor Technology</td>
<td>3 CR</td>
<td>Koos</td>
</tr>
<tr>
<td>T-ETIT-101945</td>
<td>Optical Waveguides and Fibers</td>
<td>4 CR</td>
<td>Koos</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams
(according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Student has basic knowledge of optical communication systems and related device and fabrication technologies.

- He/she can apply this knowledge to specific problems.

Prerequisites
none

Content
This module covers practical and theoretical aspects in the areas of optical communications and optoelectronics. System aspects of communication networks are complemented by fundamental principles and device technologies of optoelectronics as well as and microsystem fabrication technologies.

Workload
270 hours
Module: Principles of Food Process Engineering [M-CIWVT-101120]

Responsible: Dr. Volker Gaukel

Organisation: KIT Department of Chemical and Process Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101874</td>
</tr>
</tbody>
</table>

Competence Goal
See German version.

Prerequisites
none
5.78 Module: Private Business Law [M-INFO-101216]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Compulsory Elective Modules 2 (Law and Sociology)

Credits 9 Recurrence Each term Language German Level 4 Version 3

Election block: Private Business Law (at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101329</td>
<td>Employment Law I</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101330</td>
<td>Employment Law II</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101315</td>
<td>Tax Law I</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101314</td>
<td>Tax Law II</td>
<td>3 CR</td>
<td>Dietrich, Dreier</td>
</tr>
<tr>
<td>T-INFO-101316</td>
<td>Law of Contracts</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Competence Goal
The student

- has gained in-depth knowledge of German company law, commercial law and civil law;
- is able to analyze, evaluate and solve complex legal and economic relations and problems;
- is well grounded in individual labour law, collective labour law and commercial constitutional law, evaluates and critically assesses clauses in labour contracts;
- recognizes the significance of the parties to collective labour agreements within the economic system and has differentiated knowledge of labour disputes law and the law governing the supply of temporary workers and of social law;
- possesses detailed knowledge of national earnings and corporate tax law and is able to deal with provisions of tax law in a scientific manner and assesses the effect of these provisions on corporate decision-making.

Prerequisites
None

Content
The module provides the student with knowledge in special matters in business law, like employment law, tax law and business law, which are essential for managerial decisions.
Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Credits 9
Recurrence Each winter term
Duration 1 semester
Language German
Level 4
Version 1

Mandatory
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101844</td>
<td>Process Engineering</td>
<td>3 CR Schneider</td>
</tr>
</tbody>
</table>

Election block: Electives (between 2 and 3 items as well as between 6 and 7,5 credits)
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101845</td>
<td>Construction Equipment</td>
<td>3 CR Gentes</td>
</tr>
<tr>
<td>T-BGU-101832</td>
<td>Operation Methods for Foundation and Marine Construction</td>
<td>1,5 CR Schneider</td>
</tr>
<tr>
<td>T-BGU-101801</td>
<td>Operation Methods for Earthmoving</td>
<td>1,5 CR Schlick</td>
</tr>
<tr>
<td>T-BGU-101846</td>
<td>Tunnel Construction and Blasting Engineering</td>
<td>3 CR Haghsheno</td>
</tr>
<tr>
<td>T-BGU-101847</td>
<td>Project Studies</td>
<td>3 CR Gentes</td>
</tr>
<tr>
<td>T-BGU-101850</td>
<td>Disassembly Process Engineering</td>
<td>3 CR Gentes</td>
</tr>
</tbody>
</table>

Competence Certificate
- *Teilleistung* T-BGU-101844 with written examination according to § 4 Par. 2 No. 1 according to selected course:
- *Teilleistung* T-BGU-101845 with written examination according to § 4 Par. 2 No. 1
- *Teilleistung* T-BGU-101832 with oral examination according to § 4 Par. 2 No. 2
- *Teilleistung* T-BGU-101801 with oral examination according to § 4 Par. 2 No. 2
- *Teilleistung* T-BGU-101846 with oral examination according to § 4 Par. 2 No. 2
- *Teilleistung* T-BGU-101847 with oral examination according to § 4 Par. 2 No. 2
- *Teilleistung* T-BGU-101850 with oral examination according to § 4 Par. 2 No. 2

details about the learning controls see at the respective *Teilleistung*

Competence Goal
Students understand different processes and the related construction equipment, it's technology, capabilities and constraints. Students can define process solutions consisting of machinery and devices. They can evaluate existing processes through knowledge about process performance and operating conditions, and the can identify potential for improvement.

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Prerequisites
The course Verfahrenstechnik [6241704] is compulsory and must be examined.

Content
Within the frame of this module, various construction und conditioning processes will be presented as well as performance calculations conducted. Students learn about the construction machinery and devices of these processes. Transmission, generation, conversion and controlling of power are explained with the help of various practical examples. Moreover, the module includes possibilities for an on-site familiarization.

Recommendation
none

Annotation
None

Workload
see German version
5.80 Module: Project Management in Construction [M-BGU-101888]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

- T-BGU-103432 Project Management in Construction and Real Estate Industry I 3 CR Haghsheno
- T-BGU-103431 Turnkey Construction II - Trades and Technology 3 CR Haghsheno

Election block: Electives (between 1 and 2 items as well as between 3 and 4,5 credits)

- T-BGU-103427 Site Management 1.5 CR Haghsheno
- T-BGU-103430 Turnkey Construction I - Processes and Methods 1.5 CR Haghsheno
- T-BGU-103428 Supplementary Claim Management 1.5 CR Haghsheno
- T-BGU-103429 Building Laws 3 CR Haghsheno
- T-BGU-103433 Project Management in Construction and Real Estate Industry II 3 CR Haghsheno

Competence Certificate
- 'Teilleistung' T-BGU-103432 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-103431 with oral examination according to § 4 Par. 2 No. 2

According to selected course:
- 'Teilleistung' T-BGU-103427 with written examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-103430 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-103428 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-103429 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-103433 with oral examination according to § 4 Par. 2 No. 2

Details about the learning controls see at the respective 'Teilleistung'

Competence Goal
see German version

Module grade calculation
grade of the module is CP weighted average of grades of the partial exams

Prerequisites
The courses Projektmanagement in der Bau- und Immobilienwirtschaft I and Schlüsselfertiges Bauen II are compulsory and must be examined.

Content
see German version

Recommendation
none

Annotation
none

Workload
see German version
Literature
ESCHENBRUCH, K.: Recht der Projektsteuerung, Werner Verlag, München, 2003
VOLKMAN, W.: Projektabwicklung, Verlag für Wirtschaft und Verwaltung Hubert Wingen, Essen, 2002
HELLER, Jörg: Sicherung der Nachtragsvergütung nach VOB und BGB, Zeittechnik-Verlag, Neu-Isenburg, 2000
Module: Public Business Law [M-INFO-101217]

Responsible: Dr. Tristan Barczak

Organisation: KIT Department of Informatics

Part of: Compulsory Elective Modules 2 (Law and Sociology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Public Business Law (at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits (CR)</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101309</td>
<td>Telecommunications Law</td>
<td>3 CR</td>
<td>Marsch</td>
</tr>
<tr>
<td>T-INFO-101303</td>
<td>Data Protection Law</td>
<td>3 CR</td>
<td>Marsch</td>
</tr>
<tr>
<td>T-INFO-101311</td>
<td>Public Media Law</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101312</td>
<td>European and International Law</td>
<td>3 CR</td>
<td>Brühann</td>
</tr>
<tr>
<td>T-INFO-101348</td>
<td>Environmental Law</td>
<td>3 CR</td>
<td>Barczak</td>
</tr>
</tbody>
</table>

Competence Certificate

see course description.
5.82 Module: Rail System Technology [M-MACH-101274]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld
Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Credits 9
Recurrence Each term
Language German
Level 4
Version 4

Mandatory
T-MACH-102143 Rail System Technology 9 CR Gratzfeld

Competence Certificate
Oral examination
Duration: ca. 45 minutes
No tools or reference materials may be used during the exam.

Competence Goal
- The students understand relations and interdependencies between rail vehicles, infrastructure and operation in a rail system.
- Based on operating requirements and legal framework they derive the requirements concerning a capable infrastructure and suitable concepts of rail vehicles.
- They recognize the impact of alignment, understand the important function of the wheel-rail-contact and estimate the impact of driving dynamics on the operating program.
- They evaluate the impact of operating concepts on safety and capacity of a rail system.
- They know the infrastructure to provide power supply to rail vehicles with different drive systems.
- The students learn the role of rail vehicles and understand their classification. They understand the basic structure and know the functions of the main systems. They understand the overall tasks of vehicle system technology.
- They learn functions and requirements of car bodies and judge advantages and disadvantages of design principles. They know the functions of the car body’s interfaces.
- They know about the basics of running dynamics and bogies.
- The students learn about advantages and disadvantages of different types of traction drives and judge, which one fits best for each application.
- They understand brakes from a vehicular and an operational point of view. They assess the fitness of different brake systems.
- They know the basic setup of train control management system and understand the most important functions.
- They specify and define suitable vehicle concepts based on requirements for modern rail vehicles.

Content
1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)
9. Vehicle system technology: structure and main systems of rail vehicles
10. Car body: functions, requirements, design principles, crash elements, interfaces
11. Bogies: forces, running gears, axle configuration
12. Drives: vehicle with/without contact wire, dual-mode vehicle
13. Brakes: tasks, basics, principles, blending, brake control
14. Train control management system: definitions, networks, bus systems, components, examples
15. Vehicle concepts: trams, metros, regional trains, intercity trains, high speed trains, double deck coaches, locomotives, freight wagons
Annotation
A bibliography is available for download (Ilias-platform).
The lectures can be attended in the same term.

Workload
1. Regular attendance: 42 hours
2. Self-study: 42 hours
3. Exam and preparation: 186 hours

Learning type
Lectures
5.83 Module: Seminar Module [M-WIWI-101808]

Responsible: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften
Organisation: KIT Department of Economics and Management
Part of: Compulsory Elective Modules 1 (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Election block: Seminar in Economics and Management, Mathematics and Law (between 3 and 6 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103474</td>
<td>Seminar in Business Administration A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103476</td>
<td>Seminar in Business Administration B (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103477</td>
<td>Seminar in Economics B (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103478</td>
<td>Seminar in Economics A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103479</td>
<td>Seminar in Informatics A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103480</td>
<td>Seminar in Informatics B (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103481</td>
<td>Seminar in Operations Research A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103482</td>
<td>Seminar in Operations Research B (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103483</td>
<td>Seminar in Statistics A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103484</td>
<td>Seminar in Statistics B (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T/INFO-101997</td>
<td>Seminar: Legal Studies I</td>
<td>3 CR</td>
</tr>
<tr>
<td>T/INFO-105945</td>
<td>Seminar: Legal Studies II</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Election block: Seminar in Engineering Science (at most 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102135</td>
<td>Conveying Technology and Logistics</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-109062</td>
<td>Seminar Production Technology</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-MACH-108737</td>
<td>Seminar Data-Mining in Production</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-BGU-100014</td>
<td>Seminar in Transportation</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-108763</td>
<td>Seminar in Engineering Science Master (approval)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-110215</td>
<td>Wildcard Seminar Module Master</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Election block: SQ-Seminar (between 3 and 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-104680</td>
<td>Wildcard Key Competences Seminar 1</td>
<td>1 CR</td>
</tr>
<tr>
<td>T-WIWI-104681</td>
<td>Wildcard Key Competences Seminar 2</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-WIWI-104682</td>
<td>Wildcard Key Competences Seminar 3</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-104683</td>
<td>Wildcard Key Competences Seminar 4</td>
<td>1 CR</td>
</tr>
<tr>
<td>T-WIWI-104684</td>
<td>Wildcard Key Competences Seminar 5</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-WIWI-104685</td>
<td>Wildcard Key Competences Seminar 6</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-105956</td>
<td>Wildcard Key Competences Seminar 8</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
Competence Certificate
The modul examination consists of two seminars and of at least one key qualification (KQ) course (according to §4 (3), 3 of the examination regulation). A detailed description of every singled assessment is given in the specific course characterization. The final mark for the module is the average of the marks for each of the two seminars weighted by the credits and truncated after the first decimal. Grades of the KQ courses are not included.

Competence Goal
- The students are in a position to independently handle current, research-based tasks according to scientific criteria.
- They are able to research, analyze, abstract and critically review the information.
- They can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- They can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Prerequisites
The course specific preconditions must be observed.

- **Seminars**: Two seminars out of the course list, that have at least 3 CP each and are offered by a representative of the Department of Economics and Management or of the Center for applied legal studies (Department of Informatics), have to be chosen.
- Alternatively one of the two seminars can be absolved at a engineering department. The seminar has to be offered by a representative of the respective department as well. The assessment has to meet the demands of the Department of Economics and Management (active participation, term paper with a workload of at least 80 h, presentation). This alternative seminar requires an official approval and can be applied at the examination office of the Department of Economics and Management. Seminars at the institutes wbk and IFL do not require these approval.
- **Key Qualification (KQ)-course(s)**: One or more courses with at least 3 CP in total of additional key qualifications have to be chosen among the courses [HoC, ZAK, Sprachzentrum].

Content
Competences which are gained in the seminar module especially prepare the student for composing the final thesis. Within the term paper and the presentation the student exercises himself in scientific working techniques supported by the supervisor. Beside advancing skills in techniques of scientific working there are gained integrative key qualifications as well. A detailed description of these qualifications is given in the section “Key Qualifications” of the module handbook. Furthermore, the module also includes additional key qualifications provided by the KQ-courses.

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required. The available places are listed on the internet: https://portal.wiwi.kit.edu.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Service Analytics [M-WIWI-101506]

5.84 Module: Service Analytics [M-WIWI-101506]

Responsible: Prof. Dr. Hansjörg Fromm
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108715</td>
<td>Artificial Intelligence in Service Systems</td>
<td>4.5 CR</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4.5 CR</td>
<td>Mädche, Nadj, Toreini</td>
</tr>
<tr>
<td>T-WIWI-102822</td>
<td>Industrial Services</td>
<td>4.5 CR</td>
<td>Fromm</td>
</tr>
<tr>
<td>T-WIWI-102899</td>
<td>Modeling and Analyzing Consumer Behavior with R</td>
<td>4.5 CR</td>
<td>Dorner, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105778</td>
<td>Service Analytics A</td>
<td>4.5 CR</td>
<td>Fromm</td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- knows the theoretical bases and the key components of Business Intelligence systems,
- acquires the basic skills to make use of business intelligence and analytics software in the service context
- are introduced into various application scenarios of analytics in the service context
- are able to distinguish different analytics methods and apply them in context
- learn how to apply analytics software in the service context
- are trained for the structured compilation and solution of practice relevant problems with the help of commercial business intelligence software packages as well as analytics methods and tools

Prerequisites

None

Content

The importance of services in modern economies is most evident – nearly 70% of gross value added are achieved in the tertiary sector and a growing number of industrial enterprises add customer specific services to their material goods or transform their business models fundamentally. The growing availability of data “Big Data” and their intelligent processing by applying analytic methods and business intelligence systems plays a key role.

It is the goal of the module to give students a comprehensive overview on the subject Business Intelligence & Analytics focusing on service issues. Various scenarios illustrate how the methods and systems introduced help to improve existing services or create innovative data-based services.

Recommendation

The course Service Analytics A [2595501] should be taken.

Annotation

This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.
Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.85 Module: Service Design Thinking [M-WIWI-101503]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

Credits: 9
Recurrence: Each term
Duration: 1 semester
Language: English
Level: 4
Version: 1

Mandatory
T-WIWI-102849 Service Design Thinking 12 CR Satzger

Competence Certificate
The assessment is carried out as a general exam (according to Section 4(2), 3 of the examination regulation). The overall grade of the module is the grade of the examination (according to Section 4(2), 3 of the examination regulation).

Competence Goal
- Deep knowledge of the innovation method Design Thinking, as introduced and promoted by Stanford University
- Development of new, creative solutions through extensive observation of oneself and one's environment, in particular with regard to the relevant service users
- Know how to use prototyping and experimentation to visualize one's ideas, to test and iteratively develop them, and to converge on a solution
- Learn to apply the method to a real innovation projects issued by industry partners.

Prerequisites
None

Content
- Paper Bike: Learning about the basic method elements by building a paper bike that has to fulfill a given set of challenges. The bikes will be tested in a race during an international Kick-Off event with other universities of the SUGAR network (intern. Design Thinking network).
- Design Space Exploration: Exploring the problem space through customer and user observation as well as desk research.
- Critical Function Prototype: Identification of critical features from the customer’s perspective that can contribute to the solution of the overarching problem. Building and testing prototypes that integrate these functionalities.
- Dark Horse Prototype: Inverting earlier assumptions and experiences, which leads to the inclusion of new features and solutions. Developing radically new ideas are in the focus of this phase.
- Funky Prototype: Integration of the individually tested and successful functions to several complete solution scenarios, which are further tested and developed.
- Functional Prototype: Selection of successful scenarios from the previous phase and building a higher resolution prototype. The final solution to the challenge is laid out in detail and tested with users.
- Final Prototype: Implementing the functional prototype and presenting it to the customer.

Recommendation
This course is held in English – proficiency in writing and communication is required.
Our past students recommend to take this course at the beginning of the masters program.

Annotation
Due to practical project work as a component of the program, access is limited. The module (as well as the module component) spans two semesters. It starts in September every year and runs until end of June in the subsequent year. Entering the program is only possible at its beginning - after prior application in May/June. For more information on the application process and the program itself are provided in the module component description and the program's website (http://sdt-karlsruhe.de).
Furthermore, the KSRI conducts an information event for applicants every year in May.
This module is part of the KSRI Teaching Program „Digital Service Systems“. For more information see the KSRI Teaching website: www.ksri.kit.edu/teaching.
Workload
The total amount of work for this module is approx. 270 hours (9 credits). The workload for this course is comparably high as the course runs in cooperation with partner universities from around the world as well as partner companies. This causes overhead.
Module: Service Economics and Management [M-WIWI-102754]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- Business Administration
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

- **T-WIWI-110280** Digital Services: Business Models and Transformation 4 CR Satzger
- **T-WIWI-106201** Digital Transformation of Organizations 4 CR Mädche
- **T-WIWI-102640** Market Engineering: Information in Institutions 4,5 CR Weinhardt

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students

- understand the scientific basics of the management of digital services and corresponding systems
- gain a comprehensive insight in the importance and the most important features of information systems as an central component of the digitalization of business processes, products and services
- know the most relevant concepts and theories to shape the digital transformation process of service systems successfully
- understand the OR methods in the sector of service management and apply them adequately
- are able to use large amounts of available data systematically for the planning, operation and improvement of complex service offers and to design and control information systems
- are able to develop market-oriented coordination mechanisms and apply service systems.

Prerequisites
None

Content
This module provides the foundation for the management of digital services and corresponding systems. The courses in this module cover the major concepts for a successful management of service systems and their digital transformation. Current examples from the research and practice enhance the relevance of the discussed topics.

Recommendation
None

Annotation
This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.87 Module: Service Innovation, Design & Engineering [M-WIWI-102806]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of:
Business Administration
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

Credits 9
Recurrence Each term
Language German
Level 4
Version 2

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-105773</td>
<td>Digital Service Design</td>
<td>4.5 CR</td>
<td>Each term</td>
<td>Mädche</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-WIWI-102639</td>
<td>Business Models in the Internet: Planning and Implementation</td>
<td>4.5 CR</td>
<td>Each term</td>
<td>Weinhardt</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-WIWI-108437</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>4.5 CR</td>
<td>Each term</td>
<td>Mädche</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-WIWI-102799</td>
<td>Practical Seminar Service Innovation</td>
<td>4.5 CR</td>
<td>Each term</td>
<td>Satzger</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-WIWI-102641</td>
<td>Service Innovation</td>
<td>4.5 CR</td>
<td>Each term</td>
<td>Satzger</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- know about the challenges, concepts, methods and tools of service innovation management and are able to use them successfully.
- have a profound comprehension of the development and design of innovative services and are able to apply suitable methods and tools on concrete and specific issues.
- are able to embed the concepts of innovation management, development and design of services into organisations
- are aware of the strategic importance of services, are able to present value creation in the context of services systems and to strategically exploit the possibilities of their digital transformation
- elaborate concrete and problem-solving solutions for practical tasks in teams.

Prerequisites

Dependencies between courses:

The course Practical Seminar Service Innovation cannot be applied in combination with the course Practical Seminar Digital Service Design.

Content

This module is designed to constitute the basis for the development of successful ICT supported innovations thus including the methods and tools for innovation management, for the design and the development of digital services and the implementation of new business models. Current examples from science and practice enhance the relevance of the topics addressed.

Recommendation

Attending the course Practical Seminar Service Innovation [2595477] is recommended in combination with the course Service Innovation [2595468].

Attending the course Practical Seminar Digital Service Design [new] is recommended in combination with the course Digital Service Design [new].

Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.
Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Service Management [M-WIWI-101448]

Responsible:
Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation:
KIT Department of Economics and Management

Part of:
Business Administration

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110280</td>
<td>Digital Services: Business Models and Transformation</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (4.5 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108715</td>
<td>Artificial Intelligence in Service Systems</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-106201</td>
<td>Digital Transformation of Organizations</td>
<td>4.5</td>
<td>CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-102822</td>
<td>Industrial Services</td>
<td>4.5</td>
<td>CR</td>
<td>Fromm</td>
</tr>
<tr>
<td>T-WIWI-102899</td>
<td>Modeling and Analyzing Consumer Behavior with R</td>
<td>4.5</td>
<td>CR</td>
<td>Dorner, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105778</td>
<td>Service Analytics A</td>
<td>4.5</td>
<td>CR</td>
<td>Fromm</td>
</tr>
<tr>
<td>T-WIWI-102641</td>
<td>Service Innovation</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students
- understand the basics of developing and managing IT-based services,
- understand and apply OR methods in service management,
- systematically use vast amounts of available data for planning, operation, personalization and improvement of complex service offerings, and
- understand and analyze innovation processes in corporations.

Prerequisites
The course "Digital Services: Business Models and Transformation" is compulsory and must be examined.

Content
The module service management addresses the basics of developing and managing IT-based services. The lectures contained in this module teach the basics of developing and managing IT-based services and the application of OR methods in the field of service management. Moreover, students learn to systematically analyze vast amounts of data for planning, operation and improvement for complex service offerings. These tools enhance operational and strategic decision support and help to analyze and understand the overall innovation processes in corporations. Current examples from research and industry demonstrate the relevance of the topics discussed in this module.

Recommendation
None

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Service Operations [M-WIWI-102805]

5.89 Module: Service Operations [M-WIWI-102805]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Operations Research
Compulsory Elective Modules 1 (Operations Research)
Compulsory Elective Modules 2 (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (at most 2 items)

T-WIWI-102718	Discrete-Event Simulation in Production and Logistics	4.5 CR	Nickel
T-WIWI-102884	Operations Research in Health Care Management	4.5 CR	Nickel
T-WIWI-102715	Operations Research in Supply Chain Management	4.5 CR	Nickel
T-WIWI-102716	Practical Seminar: Health Care Management (with Case Studies)	4.5 CR	Nickel

Election block: Supplementary Courses (at most 2 items)

| T-WIWI-102872 | Challenges in Supply Chain Management | 4.5 CR | Mohr |

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- knows the theoretical bases and the key components of Business Intelligence systems,
- acquires the basic skills to make use of business intelligence and analytics software in the service context
- are introduced into various application scenarios of analytics in the service context
- are able to distinguish different analytics methods and apply them in context
- learn how to apply analytics software in the service context
- are trained for the structured compilation and solution of practice relevant problems with the help of commercial business intelligence software packages as well as analytics methods and tools

Prerequisites

At least one of the four courses Operations Research in Supply Chain Management, Operations Research in Health Care Management, Practical seminar: Health Care Management or Discrete-Event Simulation in Production and Logistics has to be assigned.

Students who choose the module in the field "compulsory elective modules" may select any two courses of the module.

Content

The importance of services in modern economies is most evident – nearly 70% of gross value added are achieved in the tertiary sector and a growing number of industrial enterprises add customer specific services to their material goods or transform their business models fundamentally. The growing availability of data "Big Data" and their intelligent processing by applying analytic methods and business intelligence systems plays a key role.

It is the goal of the module to give students a comprehensive overview on the subject Business Intelligence & Analytics focusing on service issues. Various scenarios illustrate how the methods and systems introduced help to improve existing services or create innovative data-based services.

Recommendation

The course Practical Seminar Health Care should be combined with the course OR in Health Care Management.

Annotation

This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.
Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Sociology [M-GEISTSOZ-101169]

Responsible: Prof. Dr. Gerd Nollmann

Organisation: KIT Department of Humanities and Social Sciences

Part of: Compulsory Elective Modules 2 (Law and Sociology)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>1 semester</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-104565</td>
<td>Computer Aided Data Analysis</td>
<td>0 CR</td>
<td>Nollmann</td>
<td></td>
</tr>
<tr>
<td>T-GEISTSOZ-109052</td>
<td>Application of Social Science Methods (WiWi)</td>
<td>9 CR</td>
<td>Nollmann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Goal

The student

- Gains theoretical and methodical knowledge of social processes and structures,
- Learns a script based data analysis tool (R, Stata, Python),
- Gathers his/her data within an own framework and/or analyzes complex data,
- Is able to present his/her work results in a precise and clear way.

Prerequisites

Students must pass three excersise sheets within the seminar "Computer based data analysis".

Content

The Sociology module offers students the opportunity to learn a data analysis tool (R, Stata, Python) within the framework of a two-semester course and to independently transfer this tool to a content-related question. Both the tool and the contents are determined by the lecturers. The contents can refer to the analysis of large population surveys (SOEP, Microcensus, ALLBUS), to own experiments, to own field studies or to Big Data analyses.

Annotation

Basic knowledge in multivariate regression and inference statistics is required.
5.91 Module: Specialization in Food Process Engineering [M-CIWVT-101119]

Responsible: Dr. Volker Gaukel

Organisation: KIT Department of Chemical and Process Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101875 | Specialization in Food Process Engineering | 9 CR | Gaukel |

Competence Goal
See German version.

Prerequisites
The module "Principles of Food Process Engineering" must be passed.

Content
See courses.
Module: Specialization in Production Engineering [M-MACH-101284]

Responsible: Prof. Dr.-Ing. Volker Schulze
Organisation: KIT Department of Mechanical Engineering

Part of:
- Compulsory Elective Modules 1 (Natural and Engineering Sciences)
- Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Election block: Vertiefung der Produktionstechnik (at least 9 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110176</td>
</tr>
<tr>
<td>T-MACH-105188</td>
</tr>
<tr>
<td>T-MACH-105783</td>
</tr>
<tr>
<td>T-MACH-108878</td>
</tr>
<tr>
<td>T-MACH-110318</td>
</tr>
<tr>
<td>T-MACH-102107</td>
</tr>
<tr>
<td>T-MACH-105185</td>
</tr>
<tr>
<td>T-MACH-105177</td>
</tr>
<tr>
<td>T-MACH-102148</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral exams: duration approx. 5 min per credit point
Written exams: duration approx. 20 - 25 min per credit point
Amount, type and scope of the success control can vary according to the individually choice.

Competence Goal
The students

- are able to apply the methods of production science to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques for a specific problem.
- are able to use their knowledge target-oriented to achieve an efficient production technology.
- are able to analyze new situations and choose methods of production science target-oriented based on the analyses, as well as justifying their selection.
- are able to describe and compare complex production processes exemplarily.

Prerequisites
none

Content
Within this module the students will get to know and learn about production science. Manifold lectures and excursions as part of several lectures provide specific insights into the field of production science.

Workload
The work load is about 270 hours, corresponding to 9 credit points.

Learning type
Lectures, seminars, workshops, excursions.
Module: Stochastic Optimization [M-WIWI-103289]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of: Operations Research
Compulsory Elective Modules 1 (Operations Research)
Compulsory Elective Modules 2 (Operations Research)

Credits: 9
Recurrence: Each term
Duration: 1 semester
Language: German/English
Level: 4
Version: 8

Election block: Compulsory Elective Courses (between 1 and 2 Items)
- T-WIWI-106546: Introduction to Stochastic Optimization 4.5 CR Rebennack
- T-WIWI-106548: Advanced Stochastic Optimization 4.5 CR Rebennack
- T-WIWI-106549: Large-scale Optimization 4.5 CR Rebennack

Election block: Supplementary Courses (at most 1 Item)
- T-WIWI-102723: Graph Theory and Advanced Location Models 4.5 CR Nickel
- T-WIWI-102719: Mixed Integer Programming I 4.5 CR Stein
- T-WIWI-102720: Mixed Integer Programming II 4.5 CR Stein
- T-WIWI-103124: Multivariate Statistical Methods 4.5 CR Grothe
- T-WIWI-106545: Optimization under Uncertainty 4.5 CR Rebennack
- T-WIWI-110162: Optimization Models and Applications 4.5 CR Sudermann-Merx

Competence Certificate
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- names and describes basic notions for advanced stochastic optimization methods, in particular, ways to algorithmically exploit the special model structures,
- knows the indispensable methods and models for quantitative analysis of stochastic optimization problems,
- models and classifies stochastic optimization problems and chooses the appropriate solution methods to solve also challenging stochastic optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions,
- identifies drawbacks of the solution methods and, if necessary, is able to make suggestions to adapt them to practical problems.

Prerequisites
At least one of the courses "Advanced Stochastic Optimization" and "Large-scale Optimization" has to be taken.
Students who choose the module in the field "compulsory elective modules" may select any two courses of the module.

Content
The module focuses on the modeling as well as the imparting of theoretical principles and solution methods for optimization problems with special structure, which occur for example in the stochastic optimization.

Recommendation
It is recommended to listen to the lecture "Introduction to Stochastic Optimization" before the lecture "Advanced Stochastic Optimization" is visited.
Annotation
The course "Introduction to Stochastic Optimization" will be offered until the summer semester 2019 as an additional option in the elective offer of the module. Thereafter, the course can only be selected in the supplementary offer.
The courses are sometimes offered irregularly. The curriculum, planned for three years in advance, can be found on the Internet at http://sop.ior.kit.edu/28.php.

Workload
The total workload for this module is approximately 270 hours (9 credits). The allocation is made according to the credit points of the courses of the module. The total number of hours per course is determined by the amount of time spent attending the lectures and exercises, as well as the exam times and the time required to achieve the module's learning objectives for an average student for an average performance.
Module: Student Innovation Lab (SIL) 1 [M-WIWI-105010]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
Compulsory Elective Modules 1 (Business Administration)
Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102864</td>
<td>Entrepreneurship</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-110166</td>
<td>SIL Entrepreneurship Project</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-110287</td>
<td>SIL Entrepreneurship Emphasis</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this module comprises a written examination of 60 minutes on the lecture contents of the lecture “Entrepreneurship” as well as two seminars. All examinations are graded. In both seminars the following tasks have to be fulfilled:

- "SIL Entrepreneurship Project": Presentation of the Value Profile & submission of the Business Plan
- "SIL Entrepreneurship Emphasis": Submission of price calculation, market potential analysis, competition analysis, financial plan, risk analysis, decision basis for funding and legal form

In addition, both courses provide for smaller, ungraded tasks to monitor progress.

The grade consists of 60 % of the written examination, 20 % of the examination "SIL Entrepreneurship Project" and 20 % of the examination "SIL Entrepreneurship Advanced".
Competence Goal

Personal competence

- Ability to reflect: Students can analyse certain elements of their actions in social interaction, critically assess them and develop alternative actions.
- Decision-making ability: Students can prepare a decision template in due time and provide the necessary factual arguments for alternative decisions and thus make timely decisions.
- Interdisciplinary cooperation: Students can recognise the limits of their domain competence and adjust to domains outside their subject area. The students are able to recognise missing (own) competences and to supplement them with complementary competences (of other persons in the team). Students can communicate their domain to others and develop a basic understanding of foreign domains.
- Value-based action: Students can use selected tools of psychology to recognize their own values. They can compare these values with other team members and critically reflect on whether their offers match these values.

Social competence

- Ability to cooperate: Students can analyse and assess their cooperation behaviour in the group.
- Communication skills: Students can present their information in a convincing, focused and target group-oriented way.
- Conflict ability: Students can recognise conflicts at an early stage, analyse conflict situations and name solution concepts.

Innovation and Entrepreneurship Competence

- Agile product development: Students can apply methods of agile product development such as Scrum.
- Methodical innovation finding: Students can perform user- or technology-centric innovation processes to develop sustainable value propositions for dedicated target groups (e.g. Design Thinking (DT), Technology Application Selection (TAS) process).
- Orientation on the management of new technology-based companies (NTBF): Students can name the central concepts of intellectual property and legal form. Students can name the most important tasks of entrepreneurial leadership. They can identify the relevant forms of business modelling and draw up a business plan. Students know the central approaches to building an organisation. Students will be able to identify the ownership structure of investments and how to develop a strategy. The students can name marketing concepts and create a business model.
- Create investment readiness: The students are able to create a rudimentary sales and cost planning. Furthermore, they are able to create a project plan for a company and derive an investment plan from it. The students can present the business plan to potential investors and develop investor empathy.
- Business model development competence: Students are able to use relevant tools for business modelling, e.g. the Business Model Canvas. Students can develop and evaluate alternative business models.
- Dealing with risks: Students can identify the basic risks in terms of desirability, technical feasibility and profitability. Students can use customer interaction methods to test desirability and willingness to pay. Students can draw up a rudimentary competitive analysis. Students can identify and identify risks and possible reactions.

Systemic technical competence

- Problem-solving competence: Students can analyse, assess and solve a technical problem in a structured way.
- Agile Methodology of System Development: Students can name the different system development processes and apply them appropriately.
- Validation in a volatile environment: Students can perform a technical and economic validation under volatile boundary conditions. For this purpose they can name the boundary conditions and interpret the results of the validation.
- Functional decomposition: Students are able to identify and interpret complex customer needs and derive functional requirements from them.
- Architecture development: The students are able to recognize correlations from the functional requirements and to derive a suitable system architecture.

Prerequisites
The module can only be completed together with the module M-WIWI-105011 “Student Innovation Lab 2”.

An application is required for participation in the modules Student Innovation Lab (SIL) 1 and Student Innovation Lab (SIL) 2. Information about the application can be found at http://www.kit-student-innovation-lab.de/index.php/for-students/.
Content
In a real laboratory, the module imparts professional, social and personal competences in entrepreneurship and in the respective technical domain. The aim is to prepare students in the best possible way for an entrepreneurial activity within or outside an established organisation. Our teaching is research-based and practice-oriented.

As an integral part, the lecture Entrepreneurship offers the theoretical basis and gives an overview of important theoretical concepts and empirical evidence. Current case studies and practical experiences of successful founders underline the theoretical and empirical contents. In order to operate a company on a long-term basis, important specialist knowledge is also of decisive importance. The content of the lecture therefore includes an introduction to Entrepreneurial Marketing and Leadership as well as the basics of Opportunity Recognition and Business Modeling. Customer-centric development methods, the lean start-up approach and methods for technology-oriented innovation are presented. Future founders must be able to develop and manage resources such as financial and human capital, infrastructure and intellectual property. Further aspects relate to the establishment of an organisation and the financing of one’s own project.

The knowledge gained in the lecture Entrepreneurship will be applied in a practice-oriented seminar and in the labs. We use an action learning approach to complement the knowledge with skills and reflective attitudes. In five-member teams, the students experience their way from idea generation to the final investor pitch.

With regard to the labs, students have the following options:

- As an innovation platform, the Automation Innovation Lab offers flying robots for cooperative swarm solutions.
- The Industry 4.0 Innovation Lab enables innovations in the area of the next industrial revolution with mobile robot platforms.
- In the Internet of Things Innovation Lab, innovations in Assisted Living and Smart Housing are made possible by a comprehensive kit of mobile robots and sensors.

The module also teaches methods of agile system development (Scrum) and the associated validation methods as well as methods of functional prototyping. Gate plans are applied within the module to determine project progress.

Methods for the reflection of individual & team work are treated and applied as well as group work specific knowledge about different roles of team members, solution of conflict situations and interdisciplinary teams are obtained.

Annotation

Workload
Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module. The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
MI Module: Student Innovation Lab (SIL) 2 [M-WIWI-105011]

Responsible:
- Prof. Dr.-Ing. Sören Hohmann
- Prof. Dr.-Ing. Eric Sax
- Prof. Dr. Wilhelm Stork
- Prof. Dr. Orestis Terzidis
- Prof. Dr.-Ing. Thomas Zwick

Organisation:
KIT Department of Economics and Management

Part of:
- Compulsory Elective Modules 1 (Business Administration)
- Compulsory Elective Modules 2 (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-110291</td>
<td>Innovation Lab</td>
<td>9 CR Hohmann, Sax, Stork, Zwick</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination in this module comprises the submission of graded intermediate results in the form of prototypes (low fidelity and high fidelity) as well as various technical and economic reports (according to § 4 (2), 3 SPO):

1. Submission of a technical report with requirements list and system architecture
2. Submission of the reflection of the gate plans
3. Presentation of the High-fidelity

The module grade consists of 50% of the evaluation of the low fidelity prototype including intermediate results of a technical and economic nature and 50% of the evaluation of the high fidelity prototype including intermediate results of a technical and economic nature.
Competence Goal

Personal competence

- Ability to reflect: Students can analyse certain elements of their actions in social interaction, critically assess them and develop alternative actions.
- Decision-making ability: Students can prepare a decision template in due time and provide the necessary factual arguments for alternative decisions and thus make timely decisions.
- Interdisciplinary cooperation: Students can recognise the limits of their domain competence and adjust to domains outside their subject area. The students are able to recognise missing (own) competences and to supplement them with complementary competences (of other persons in the team). Students can communicate their domain to others and develop a basic understanding of foreign domains.
- Value-based action: Students can use selected tools of psychology to recognize their own values. They can compare these values with other team members and critically reflect on whether their offers match these values.

Social competence

- Ability to cooperate: Students can analyse and assess their cooperation behaviour in the group.
- Communication skills: Students can present their information in a convincing, focused and target group-oriented way.
- Conflict ability: Students can recognise conflicts at an early stage, analyse conflict situations and name solution concepts.

Innovation and Entrepreneurship Competence

- Agile product development: Students can apply methods of agile product development such as Scrum.
- Methodical innovation finding: Students can perform user- or technology-centric innovation processes to develop sustainable value propositions for dedicated target groups (e.g. Design Thinking (DT), Technology Application Selection (TAS) process).
- Orientation on the management of new technology-based companies (NTBF): Students can name the central concepts of intellectual property and legal form. Students can name the most important tasks of entrepreneurial leadership. They can identify the relevant forms of business modelling and draw up a business plan. Students know the central approaches to building an organisation. Students will be able to identify the ownership structure of investments and how to develop a strategy. The students can name marketing concepts and create a business model.
- Create investment readiness: The students are able to create a rudimentary sales and cost planning. Furthermore, they are able to create a project plan for a company and derive an investment plan from it. The students can present the business plan to potential investors and develop investor empathy.
- Business model development competence: Students are able to use relevant tools for business modelling, e.g. the Business Model Canvas. Students can develop and evaluate alternative business models.
- Dealing with risks: Students can identify the basic risks in terms of desirability, technical feasibility and profitability. Students can use customer interaction methods to test desirability and willingness to pay. Students can draw up a rudimentary competitive analysis. Students can identify and identify risks and possible reactions.

Systemic technical competence

- Problem-solving competence: Students can analyse, assess and solve a technical problem in a structured way.
- Agile Methodology of System Development: Students can name the different system development processes and apply them appropriately.
- Validation in a volatile environment: Students can perform a technical and economic validation under volatile boundary conditions. For this purpose they can name the boundary conditions and interpret the results of the validation.
- Functional decomposition: Students are able to identify and interpret complex customer needs and derive functional requirements from them.
- Architecture development: The students are able to recognize correlations from the functional requirements and to derive a suitable system architecture.

Prerequisites

The module can only be completed together with the module M-WIWI-105010 "Student Innovation Lab (SIL) 1".
An application is required for participation in the modules Student Innovation Lab (SIL) 1 and Student Innovation Lab (SIL) 2. Information about the application can be found at http://www.kit-student-innovation-lab.de/index.php/for-students/.
Content
In a real laboratory, the module imparts professional, social and personal competences in entrepreneurship and in the respective technical domain. The aim is to prepare students in the best possible way for an entrepreneurial activity within or outside an established organisation. Our teaching is research-based and practice-oriented.

As an integral part, the lecture Entrepreneurship offers the theoretical basis and gives an overview of important theoretical concepts and empirical evidence. Current case studies and practical experiences of successful founders underline the theoretical and empirical contents. In order to operate a company on a long-term basis, important specialist knowledge is also of decisive importance. The content of the lecture therefore includes an introduction to Entrepreneurial Marketing and Leadership as well as the basics of Opportunity Recognition and Business Modeling. Customer-centric development methods, the lean start-up approach and methods for technology-oriented innovation are presented. Future founders must be able to develop and manage resources such as financial and human capital, infrastructure and intellectual property. Further aspects relate to the establishment of an organisation and the financing of one’s own project.

The knowledge gained in the lecture Entrepreneurship will be applied in a practice-oriented seminar and in the labs. We use an action learning approach to complement the knowledge with skills and reflective attitudes. In five-member teams, the students experience their way from idea generation to the final investor pitch.

With regard to the labs, students have the following options:

- As an innovation platform, the Automation Innovation Lab offers flying robots for cooperative swarm solutions.
- The Industry 4.0 Innovation Lab enables innovations in the area of the next industrial revolution with mobile robot platforms.
- In the Internet of Things Innovation Lab, innovations in Assisted Living and Smart Housing are made possible by a comprehensive kit of mobile robots and sensors.

The module also teaches methods of agile system development (Scrum) and the associated validation methods as well as methods of functional prototyping. Gate plans are applied within the module to determine project progress.

Methods for the reflection of individual & team work are treated and applied as well as group work specific knowledge about different roles of team members, solution of conflict situations and interdisciplinary teams are obtained.

Annotation

Workload
The module comprises a total of 270 hours (8 hours attendance time, 213 hours preparation and follow-up time, 49 hours preparation time for examination), which corresponds to a total of 9 credit points for two semesters.
5.96 Module: Technical Logistics [M-MACH-101279]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109919</td>
<td>Basics of Technical Logistics I</td>
<td>4 CR</td>
<td>Mittwollen, Oellerich</td>
</tr>
<tr>
<td>T-MACH-109920</td>
<td>Basics of Technical Logistics II</td>
<td>5 CR</td>
<td>Hochstein</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the requirement of credits of this module. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

T-MACH-109920 "Basics of Technical Logistics II" is based on T-MACH-109919 "Basics of Technical Logistics I". The contents are taught one after the other in one course in the winter semester. The individual exams are taken on one day at the end of the semester.

Competence Goal

The student
- acquires well-founded knowledge on the main topics of technical logistics
- gets an overview of different applications of technical logistics in practice,
- acquires expertise and understanding about functionality of material handling systems.

Prerequisites

none

Content

The module Technical Logistics provides in-depth basics on the main topics of technical logistics. The module focuses on technical characteristics of material handling technology. To gain a deeper understanding, the course is accompanied by exercises.

Workload

270 hours
5.97 Module: Transport Infrastructure Policy and Regional Development [M-WIWI-101485]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of:
- Economics
- Compulsory Elective Modules 1 (Economics)
- Compulsory Elective Modules 2 (Economics)

<table>
<thead>
<tr>
<th>Election block: Compulsory Elective Courses (2 items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103107</td>
</tr>
<tr>
<td>T-WIWI-100007</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students
- understand the economic issues related to transport and regional development with a main focus on economic policy issues generated by the relationship of transport and regional development with the public sector
- are able to compare different considerations of politics, regulation and the private sector and to analyse and assess the respective decision problems both qualitatively and by applying appropriate methods from economic theory
- are prepared for careers in the public sector, particularly for public companies, politics, regulatory agencies, related consultancies, mayor construction companies or infrastructure project corporations

Prerequisites
None

Content
The development infrastructure (e.g. transport, energy, telecommunications) has always been one of the most relevant factors for economic development and particularly influences the development of the regional economy. From the repertoire of state actions, investments into transport infrastructure are often regarded the most important measure to foster regional economic growth. Besides the direct effects of transport policy on passenger and freight transport, a variety of individual economic activities is significantly dependent on the available or potential transport options. Decisions on the planning, financing and realization of major infrastructure projects require a solid and far-reaching consideration of direct and indirect growth effects with the occurring costs.

Through its combination of lectures the module reflects the complex interdependencies between infrastructure policy, transport industry and regional policy and provides its participants with a comprehensive understanding of the functionalities of one of the most important sectors of the economy and its relevance for economic policy.

Annotation
The courses Assessment of Public Policies and Projects I (winter term) and Assessment of Public Policies and Projects II (summer term) will no longer be part of this module. Student who have already had exams in this courses can integrate these exams in this module.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Transportation Modelling and Traffic Management [M-BGU-101065]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

Credits: 9
Recurrence: Each term
Duration: 2 semester
Language: German/English
Level: 4
Version: 3

Election block: Compulsory Examination (between 2 and 3 items as well as between 6 and 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101797</td>
<td>Methods and Models in Transportation Planning</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-101798</td>
<td>Traffic Engineering</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-101799</td>
<td>Traffic Management and Transport Telematics</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-101800</td>
<td>Traffic Flow Simulation</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Election block: Electives (at most 1 item as well as between 0 and 3 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-100010</td>
<td>Transportation Data Analysis</td>
<td>3 CR</td>
<td>Kagerbauer</td>
</tr>
<tr>
<td>T-BGU-106611</td>
<td>Freight Transport</td>
<td>3 CR</td>
<td>Chlond</td>
</tr>
<tr>
<td>T-BGU-106301</td>
<td>Long-Distance and Air Traffic</td>
<td>3 CR</td>
<td>Chlond</td>
</tr>
<tr>
<td>T-BGU-101005</td>
<td>Tendering, Planning and Financing in Public Transport</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
<tr>
<td>T-BGU-100014</td>
<td>Seminar in Transportation</td>
<td>3 CR</td>
<td>Chlond, Vortisch</td>
</tr>
<tr>
<td>T-WIWI-103174</td>
<td>Seminar Mobility Services (Master)</td>
<td>3 CR</td>
<td>Satzger, Stryja</td>
</tr>
<tr>
<td>T-BGU-103425</td>
<td>Mobility Services and new Forms of Mobility</td>
<td>3 CR</td>
<td>Kagerbauer</td>
</tr>
<tr>
<td>T-BGU-103426</td>
<td>Strategic Transport Planning</td>
<td>3 CR</td>
<td>Waßmuth</td>
</tr>
<tr>
<td>T-BGU-106608</td>
<td>Information Management for Public Mobility Services</td>
<td>3 CR</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Competence Goal
See German version.

Prerequisites
None

Recommendation
None
5.99 Module: Virtual Engineering A [M-MACH-101283]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102123</td>
<td>Virtual Engineering I</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-109933</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>4 CR</td>
<td>Sebregondi</td>
</tr>
<tr>
<td>T-MACH-102185</td>
<td>CATIA CAD Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105312</td>
<td>CATIA Advanced</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-108491</td>
<td>Digitalization of Products, Services & Production</td>
<td>4 CR</td>
<td>Pätzold</td>
</tr>
<tr>
<td>T-MACH-102209</td>
<td>Information Engineering</td>
<td>3 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-106743</td>
<td>IoT Platform for Engineering</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102181</td>
<td>PLM for Product Development in Mechatronics</td>
<td>4 CR</td>
<td>Eigner</td>
</tr>
<tr>
<td>T-MACH-106740</td>
<td>Virtual Engineering Lab</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-106741</td>
<td>Virtual Training Factory 4.X</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students should:

- have basic knowledge about the industrial application of Information Technology in product development,
- have understanding about current and future application of information systems in product development processes in the context of Product Lifecycle Management and Virtual Engineering,
- be able to operate current CAx- and PLM-systems in the product development process
- understands demands and relevance of interconnected IT-systems and respective methods for product development

Prerequisites
None

Content
The Module Virtual Engineering A gives an overview about product development processes, beginning with requirement engineering, verification of manufacturing feasibility and virtual operation in the scope of Digital Factory. The guest-lectures contained in this module complete the content of the lecture with introducing current product development processes focusing.

Workload
- regular attendance: 140 hours
- Preparation and reworking: 20 hours
- Exam and exam revision/preparation: 110 hours

Learning type
Lecture, exercise
Module: Virtual Engineering B [M-MACH-101281]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102124</td>
<td>Virtual Engineering II</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Election block: Virtual Engineering B (at least 5 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-109933</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>4 CR</td>
<td>Sebregondi</td>
</tr>
<tr>
<td>T-MACH-102185</td>
<td>CATIA CAD Training Course</td>
<td>2 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-105312</td>
<td>CATIA Advanced</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-108491</td>
<td>Digitalization of Products, Services & Production</td>
<td>4 CR</td>
<td>Pätzold</td>
</tr>
<tr>
<td>T-MACH-102209</td>
<td>Information Engineering</td>
<td>3 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-106743</td>
<td>IoT Platform for Engineering</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102181</td>
<td>PLM for Product Development in Mechatronics</td>
<td>4 CR</td>
<td>Eigner</td>
</tr>
<tr>
<td>T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-106740</td>
<td>Virtual Engineering Lab</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-106741</td>
<td>Virtual Training Factory 4.X</td>
<td>4 CR</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students should:

- have basic knowledge about industrial practice of Information Technology in the field of product development,
- have basic knowledge about innovative visualization techniques like Virtual Reality and feasible application of Virtual Mock-Ups (VMU) for validating product properties.
- is able to estimate potentials and risks of current Virtual Reality Systems in product development.
- understands demands and relevance of interconnected IT-systems and respective methods for product development.

Prerequisites
keine

Content
The module Virtual Engineering B communicates basics of Virtual Reality applications and their fields of application for validating product properties and for supporting product development processes.

Optional courses of this module complete the content with practical application of VR techniques in product development (Virtual Reality Exercise) and current product development processes.

Workload
Workload at 9 graduate credits / credit points: ca. 270 hours.

- regular attendance: 100 hours
- Preparation and reworking: 50 hours
- Exam and exam revision/preparation: 120 hours

Detailed apportionment results from credit points of the courses of the module.
Learning type
Lecture, Exercise.
5.101 Module: Water Chemistry and Water Technology I [M-CIWVT-101121]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)
Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each winter term</td>
<td>1 semester</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CIWVT-101900</td>
<td>Water Chemistry and Water Technology I</td>
<td>6 CR</td>
<td>Horn</td>
</tr>
<tr>
<td>T-CIWVT-103351</td>
<td>Laboratory Work Water Chemistry</td>
<td>4 CR</td>
<td>Abbt-Braun, Horn</td>
</tr>
</tbody>
</table>

Competence Goal
The student

- has knowledge of types and sum of the water constituents and their interaction with each other and with the water molecules,
- knows and understands the basics of water chemistry and the most important methods for the treatment of different types of raw water.

Prerequisites
none

Content
This module gives the basis to understand the most important methods of raw water treatment.
Therefore types and sum of water constituents and their interaction with each other and with water molecules are introduced. The effects of the different treatment and purification methods are shown.
5.102 Module: Water Chemistry and Water Technology II [M-CIWVT-101122]

Responsible: Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: Compulsory Elective Modules 1 (Natural and Engineering Sciences)

Compulsory Elective Modules 2 (Natural and Engineering Sciences)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Each term</td>
<td>2 semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-CIWVT-101901 | Water Chemistry and Water Technology II | 9 CR | Horn |

Competence Goal

The student

- has knowledge of types and sum of the water constituents and their interaction with each other and with the water molecules,
- knows and understands the basics of water chemistry and the most important methods for the treatment of different types of raw water.
- knows about the different types of water treatment and water purification methods to convert, reduce or concentrate water constituents.

Prerequisites

The Module "Water Chemistry and Water Technology I" must be passed.

Content

The effects of the different treatment and purification methods are shown and it is explained how they can convert, reduce or concentrate water constituents.
6 Courses

6.1 Course: A Closer Look at Social Innovation [T-WIWI-109932]

Responsible: Dr. Daniela Beyer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101507 - Innovation Management
M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2545105</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Negotiating Open Innovation</td>
</tr>
</tbody>
</table>

Competence Certificate

Non exam assessment (following §4(2) 3 of the examination regulation). The grade consists of an innovation plan (comparable to an exposé) (15%), a guideline interview (25%), a presentation of the results (20%) and a seminar paper (40%).

Prerequisites

None

Recommendation

The previous attendance of the lecture Innovation Management is recommended.

Below you will find excerpts from events related to this course:

1. **Negotiating Open Innovation**
 - 2545105, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
 - Seminar (S)

Notes

In times of great challenges, it is no longer sufficient for individual experts to be responsible for innovation success. This is precisely why there is currently so much hype surrounding the topic of Open Innovation. The exchange of knowledge within and between organizations is crucial, but requires the right attitudes and decisions. This seminar examines how this can be achieved in the best possible way, depending on the objectives. By visiting two practitioners from science-economics cooperations and the company’s own Startup Accelerator Programme, theory and practice are linked. Furthermore, a simulation game will take place in the last session, in which the learned will be applied. The grading is based on a group seminar work, which requires an empirical analysis and the preparation of this in the course of the semester (expose, preparation of the methodology) as well as well-informed participation.
6.2 Course: Advanced Empirical Asset Pricing [T-WIWI-110513]

Responsible: Jun.-Prof. Dr. Julian Thimme
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530569</td>
<td>Advanced Empirical Asset Pricing</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2530570</td>
<td>Übung zu Advanced Empirical Asset Pricing</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900319</td>
<td>Advanced Empirical Asset Pricing</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The success control takes place in form of a written examination (60 min) during the semester break (according to §4(2), 1 SPO). If the number of participants is low, an oral examination (according to §4 (2), 2 SPO) may also be offered. The examination is offered every semester and can be repeated at any regular examination date. A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Recommendation

We strongly recommend knowledge of the basic topics in investments (bachelor course), which will be necessary to be able to follow the course. In addition, prior participation in the Asset Pricing Master course is strongly recommended.

Annotation

New course from winter semester 2019/2020.

Below you will find excerpts from events related to this course:

Advanced Empirical Asset Pricing
2530569, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)
Lecture (V)

Notes

In this course we will discuss the fundamentals of Asset Pricing and how to test them. Although this is an Empirical Asset Pricing course, we deal with some concepts from Asset Pricing Theory that we can test afterwards (CAPM, ICAPM, CCAPM, recursive utility). Besides, the course will cover the most important empirical methods to do so. For that purpose, we will discuss the overarching tool Generalized Method of Moments, and the special cases of OLS and FMB regressions. Every second week, we will meet for a programming session, in which we will look at the data to draw our own conclusions. An introduction to the software MATLAB will be given at the beginning of the course. Students should bring a laptop to these sessions. Programming skills are not required but helpful.

We start with a review of the Stochastic Discount Factor, which is already known from the course „Asset Pricing“. We then derive the CAPM and the Consumption-CAPM as special cases from the general consumption-savings optimization problem of the rational investor. In the first part of the course we discuss the CAPM and, as natural extensions, models with multiple factors. Prominent phenomena such as the value premium and momentum are discussed. In the second part of the lecture we will study extensions of Consumption-CAPM and study the implications of exotic preferences.
6.3 Course: Advanced Game Theory [T-WIWI-102861]

Responsible:
Prof. Dr. Karl-Martin Ehrhart
Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101453 - Applied Strategic Decisions
M-WIWI-101500 - Microeconomic Theory
M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2521533</td>
<td>Advanced Game Theory</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Reiß</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2521534</td>
<td>Übung zu Advanced Game Theory</td>
<td>Practice (Ü)</td>
<td>1 SWS</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900279</td>
<td>Advanced Game Theory</td>
<td>Prüfung (PR)</td>
<td>Puppe</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900317</td>
<td>Advanced Game Theory</td>
<td>Prüfung (PR)</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Basic knowledge of mathematics and statistics is assumed.

Below you will find excerpts from events related to this course:

Advanced Game Theory
2521533, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Learning Content
This course offers an advanced and rigorous treatment of game theory.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
6.4 Course: Advanced Information Systems [T-WIWI-110373]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101411 - Information Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (V)</th>
<th>Practice (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2540450 Advanced Information Systems 2 SWS Weinhardt, Mädche, Staudt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 2540451 Advanced Information Systems 1 SWS Mädche, Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900195 Advanced Information Systems Weinhardt</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900231 Advanced Information Systems Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Please note that the lecture will no longer be offered as of summer semester 2020. The last opportunity to take an examination is in the winter semester 2020/2021.

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation).

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-WIWI-109918 - Foundations of Information Systems must not have been started.

Recommendation

None

Annotation

The course starts with a short summary of Information Systems I and II. The course is held in English.

Below you will find excerpts from events related to this course:

Advanced Information Systems

2540450, WS 19/20, 2 SWS, Language: German/English, Open in study portal

Description

Information plays a central role in today’s society. The resulting structures and processes cannot be explained intuitively with traditional approaches of economic theory. Formerly, information has only been implicitly treated as a production factor; its role as a competitive factor used to be neglected. In order to deal with the central role of information we developed the concept of the ‘information lifecycle’ that systematizes all phases from information generation to information distribution. The state of the art of economic theory is presented across this information lifecycle within the lectures. The content of the lecture is deepened in accompanying lecture courses.
Learning Content
Information plays a central role in today’s society. The resulting structures and processes cannot be explained intuitively with traditional approaches of economic theory. Formerly, information has only been implicitly treated as a production factor; its role as a competitive factor used to be neglected. In order to deal with the central role of information we developed the concept of the "information lifecycle" that systematizes all phases from information generation to information distribution. The single phases of that cycle,

- extraction/generation,
- storage,
- transformation,
- evaluation,
- marketing
- and usage of information

are analyzed from the business administration perspective and the microeconomic perspective. The state of the art of economic theory is presented across this information lifecycle within the lectures. The content of the lecture is deepened in accompanying lecture courses.

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature

6 COURSES

6.5 Course: Advanced Lab Informatics (Master) [T-WIWI-110548]

Responsible: Professorenschaft des Fachbereichs Informatik

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101472 - Informatics
M-WIWI-101628 - Emphasis in Informatics
M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2512301</td>
<td>Linked Data and the Semantic Web</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Sure-Vetter, Acosta Deibe, Käfer, Heling</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2512501</td>
<td>Project lab Cognitive automobiles and robots</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2512600</td>
<td>Project lab Information Service Engineering</td>
<td>2 SWS</td>
<td>Practical course (P)</td>
<td>Sack</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2512205</td>
<td>Lab Business Information Systems: Realisation of innovative services (Master)</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Oberweis, Schiefer, Schüler, Toussaint</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2512401</td>
<td>Development of Sociotechnical Information Systems (Master)</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Sunyaev, Sturm</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2512403</td>
<td>Praktikum Blockchain (Master)</td>
<td>SWS</td>
<td>Practical course (P)</td>
<td>Sunyaev, Beyene, Kannengießer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2512500</td>
<td>Project Lab Machine Learning</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2512555</td>
<td>Practical lab Security, Usability and Society (Master)</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Volkamer, Mayer, Aldag</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900038</td>
<td>Linked Data and the Semantic Web</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900046</td>
<td>Sicherheit</td>
<td>Prüfung (PR)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900047</td>
<td>Praktikum Betriebliche Informationssysteme: Realisierung von Diensten</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900102</td>
<td>Advanced Lab Information Service Engineering</td>
<td>Prüfung (PR)</td>
<td>Sack</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900107</td>
<td>Advanced Lab Cognitive Automobile and Robots</td>
<td>Prüfung (PR)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900115</td>
<td>Development of Sociotechnical Information Systems</td>
<td>Prüfung (PR)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900116</td>
<td>Advanced Lab Security, Usability and Society</td>
<td>Prüfung (PR)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900187</td>
<td>Real-World Challenges in Data Science und Analytics</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
</tbody>
</table>

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Annotation

The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu.

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020

157
Below you will find excerpts from events related to this course:

Linked Data and the Semantic Web
2512301, WS 19/20, 3 SWS, Language: German/English, [Open in study portal](#)

Notes
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this practical seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this practical seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups.

Topics of interest include, but are not limited to:
- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Project lab Cognitive automobiles and robots
2512501, WS 19/20, 3 SWS, Language: German/English, [Open in study portal](#)

Practical course (P)

Notes
The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:
The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Project lab Information Service Engineering
2512600, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Practical course (P)
Notes
The ISE project course is based on the summer semester lecture “Information Service Engineering”. Goal of the course is to work on a research problem in small groups (3-4 students) related to the ISE lecture topics, i.e. Natural Language Processing, Knowledge Graphs, and Machine Learning. The solution of the given research problem requires the development of a software implementation.

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

Required coursework includes:

- Mid term presentation (5-10 min)
- Final presentation (10-15 min)
- Course report (c. 20 pages)
- Participation and contribution of the students during the course
- Software development and delivery

Notes:
The ISE project course can also be credited as a seminar.
The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.
The project course will be restricted to 15 participants.
Participation in the lecture “Information Service Engineering” (summer semester) is required.

ISE Tutor Team:
- Dr. Mehwish Alam
- M. Sc. Rima Türker
- M. Sc. Russa Biswas
- M. Sc. Fabian Hoppe
- M. Sc. Genet Asefa Gesese
- B. Sc. Tabea Tietz

Lab Business Information Systems: Realisation of innovative services (Master)
2512205, SS 2020, 3 SWS, Language: German, Open in study portal

Notes
As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students).
Further information can be found on the ILIAS page of the lab.

Development of Sociotechnical Information Systems (Master)
2512401, SS 2020, 3 SWS, Language: German/English, Open in study portal

Notes
The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.
Registration information will be announced on the course page.
Notes
The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.
In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.
The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:
The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.
6.6 Course: Advanced Lab Security [T-WIWI-109786]

Responsible: Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2512100</td>
<td>Security</td>
<td>4 SWS</td>
<td>Baumgart, Volkamer, Mayer, Zarei</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900046</td>
<td>Sicherheit</td>
<td>Prüfung (PR)</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Recommendation

Knowledge from the lecture “Information Security” is recommended.

Below you will find excerpts from events related to this course:

Security

2512100, WS 19/20, 4 SWS, Language: German, Open in study portal

Notes

The lab deals with the IT security of everyday utensils. Implemented security mechanisms are first theoretically investigated and put to the test with practical attacks. Finally, countermeasures and suggestions for improvement are worked out. The lab is offered within the competence center for applied security technologies (KASTEL) and is supervised by several institutes.

The success control takes the form of a final presentation, a thesis and the handing over of the developed code.

More information on https://ilias.studium.kit.edu/goto_produktiv_crs_998421.html

Responsibility: Prof. Dr. Melanie Volkamer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101472 - Informatics
M-WIWI-101628 - Emphasis in Informatics
M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites
None
6.8 Course: Advanced Machine Learning [T-WIWI-109921]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Dr. Abdolreza Nazemi

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101470 - Data Science: Advanced CRM

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event Description</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2540535</td>
<td>Advanced Machine Learning</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Nazemi</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2540536</td>
<td>Exercise Advanced Machine Learning</td>
<td>Practice (Ü)</td>
<td>1 SWS</td>
<td>Nazemi</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900253</td>
<td>Advanced Machine Learning (Nachklausur 2019)</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Below you will find excerpts from events related to this course:

Advanced Machine Learning

2540535, SS 2020, 2 SWS, Language: English, Open in study portal

Lecture (V)
Notes
In recent years, the volume, variety, velocity, veracity, and variability of available data have increased due to improvements in computational and storage power. The rise of the Internet has made available large sets of data that allow us to use and merge them for different purposes. Data science helps us to extract knowledge from the continually-increasing large datasets. This course will introduce students to a wide range of machine learning and statistical techniques such as deep learning, LASSO, and support vector machine. You will get familiar with text mining, and the tools you need to analyze the various facets of data sets in practice. Students will learn theory and concepts with real data sets from different disciplines such as marketing, finance, and business.

Tentative Course Outline:
- Introduction
- Statistical Inference
- Shrinkage Methods
- Model Assessment and Selection
- Tree-based Machine Learning Algorithms
- Dimensionality Reduction
- Neural Networks and Deep Learning
- Natural Language Processing with Deep Learning
- Support Vector Machine

Time of attendance
- Attending the lecture: 13 x 90min = 19h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m

The student will learn
- A wide range of machine learning algorithms and their weaknesses.
- The fundamental issues and challenges: data, high-dimension, train, model selection, etc.
- How to imply machine learning algorithms for real-world applications.
- The fundamentals of deep learning, main research activities, and on-going research in this field.
Course: Advanced Management Accounting [T-WIWI-102885]

Responsible: Prof. Dr. Marcus Wouters

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2579907</td>
<td>Advanced Management Accounting</td>
<td>4</td>
<td>Lecture (V)</td>
<td>Wouters, Riar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>79-2579907-M</td>
<td>Advanced Management Accounting</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (30 min) (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None.

Recommendation

The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Annotation

This course is held in English. Lectures and tutorials are integrated.

The course is compulsory and must be examined.

Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters@kit.edu).

Below you will find excerpts from events related to this course:

Advanced Management Accounting

2579907, WS 19/20, 4 SWS, Language: English, Open in study portal

Lecture (V)
Notes
This course is held in English. Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters@kit.edu).

Inhalt:
- The course addresses several topics where management accounting is strongly related to marketing, finance, or organization and strategy, such as customer value propositions, financial performance measures, managing new product development, and technology investment decisions.

Learning objectives:
- Students will be able to consider advanced management accounting methods in an interdisciplinary way and to apply these to managerial decision-making problems in operations and innovation.
- They will also be able to identify relevant research results on such methods.

Examination:
- The assessment consists of an oral exam (30 min) taking place in the recess period (according to § 4 (2) No. 2 of the examination regulation).
- The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Required prior Courses:
- The course is compulsory and must be examined.

Recommendations:
- The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Workload:
- The total workload for this course is approximately 135 hours. For further information see German version.

Learning Content
The course addresses several topics where management accounting is strongly related to marketing, finance, or organization and strategy, such as customer value propositions, financial performance measures, managing new product development, and technology investment decisions.

Annotation
This course is held in English. Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters@kit.edu).

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Literature is mostly made available via ILIAS.
6.10 Course: Advanced Management Accounting 2 [T-WIWI-110179]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Status</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2579908</td>
<td>Advanced Management Accounting 2</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Wouters, Ebinger</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (30 min) (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Recommendation
The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Annotation
This course is held in English. Lectures and tutorials are integrated.
Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters@kit.edu).

Below you will find excerpts from events related to this course:

Advanced Management Accounting 2
2579908, SS 2020, 4 SWS, Language: English, Open in study portal

Learning Content
6.11 Course: Advanced Statistics [T-WIWI-103123]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101637 - Analytics and Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550552</td>
<td>Statistik für Fortgeschrittene</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Grothe</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550553</td>
<td>Übung zu Statistik für Fortgeschrittene</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Grothe, Kaplan</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900289</td>
<td>Advanced Statistics</td>
<td>Prüfung (PR)</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. A bonus program can improve the grade by one grade level (i.e. by 0.3 or 0.4). The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites

None

Annotation

New course starting winter term 2015/2016

Below you will find excerpts from events related to this course:

Statistik für Fortgeschrittene

2550552, WS 19/20, 2 SWS, [Open in study portal](#)

Learning Content

- Basic principles
- Types of convergence and limit theorems
- Multivariate Distributions
- Copulas
- Simulation techniques, Bootstrap
- Statistical Estimation
- Statistical Testing
- Simulation studies

Literature

- Comprehensive lecture notes
6 COURSES

Course: Advanced Stochastic Optimization [T-WIWI-106548]

| Responsible: | Prof. Dr. Steffen Rebennack |
| Organisation: | KIT Department of Economics and Management |
| Part of: | M-WIWI-101473 - Mathematical Programming
M-WIWI-103289 - Stochastic Optimization |

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900245</td>
<td>Advanced Stochastic Optimization</td>
<td>Prüfung (PR)</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites

None.
6.13 Course: Advanced Topics in Economic Theory [T-WIWI-102609]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101406 - Network Economics
- M-WIWI-101497 - Agglomeration and Innovation
- M-WIWI-101500 - Microeconomic Theory
- M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2520527</th>
<th>Advanced Topics in Economic Theory</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Mitusch, Scheffel</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2520528</td>
<td>Übung zu Advanced Topics in Economic Theory</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Pegorari</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the end of the lecture period or at the beginning of the following semester.

Prerequisites
None

Recommendation
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Below you will find excerpts from events related to this course:

Advanced Topics in Economic Theory

2520527, SS 2020, 2 SWS, Language: English, [Open in study portal]

Learning Content
The course deals with basic elements of modern economic theory. It is divided into two parts. The first part introduces the microeconomic foundations of general equilibrium à la Debreu ("The Theory of Value", 1959) and Hildenbrand/Kirman ("Equilibrium Analysis", 1988). The second part deals with asymmetric information and introduces the basic techniques of contract theory.

The course is largely based on the textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
The course is based on the excellent textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.
6.14 Course: Airport Logistics [T-MACH-105175]

Responsible: Dr.-Ing. André Richter

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101263 - Introduction to Logistics
- M-MACH-101278 - Material Flow in Networked Logistic Systems
- M-MACH-101280 - Logistics in Value Chain Networks
- M-MACH-104888 - Advanced Module Logistics

Type: Oral examination

Credits: 3

Recurrence: Each winter term

Version: 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Lectures</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2117056</td>
<td>Airport logistics</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Richter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Lectures</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105175</td>
<td>Airport Logistics</td>
<td>Prüfung (PR)</td>
<td>Richter, Furmans</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Airport logistics

2117056, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Description

Media:

presentations
Learning content
- Introduction
- Airport installations
- Luggage transport
- Passenger transport
- Security on the airport
- Legal bases of the air traffic
- Freight on the airport

Learning goals
The students are able to:
- Describe material handling and information technology activities on airports,
- Evaluate processes and systems on airports as the law stands, and
- Choose appropriate processes and material handling systems for airports.

Recommendations
None

Workload
Regular attendance: 21 hours
Self-study: 99 hours

Note
Limited number of participants: allocation of places in sequence of registration (first come first served). Registration via "ILIAS" mandatory.
Personal presence during lectures mandatory.

Learning Content
Introduction
airport installations
luggage transport
passenger transport
security on the airport
legal bases of the air traffic
freight on the airport

Annotation
Limited number of participants: allocation of places in sequence of application (first come first served)
Application via "ILIAS" mandatory
personal presence during lectures mandatory

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
„Gepäcklogistik auf Flughäfen” à http://www.springer.com/de/book/9783642328527
6.15 Course: Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines [T-MACH-105173]

Responsible: Dr.-Ing. Marcus Gohl

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134150</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Gohl</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76--T-Mach-105173</td>
<td>Analysis of Exhaust Gas and Lubricating Oil in Combustion Engines</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
Letter of attendance or oral exam (25 minutes, no auxillary means)

Prerequisites
none

Below you will find excerpts from events related to this course:

Analysis of Exhaust Gas und Lubricating Oil in Combustion Engines

2134150, SS 2020, 2 SWS, Language: German, [Open in study portal]

Description

Media:
Lecture with Powerpoint slides

Learning Content
The students get involved in the application of different measurement techniques in the field of exhaust gas and lubricating oil analysis. The functional principles of the systems as well as the application areas of the latter are discussed. In addition to a general overview of standard applications, current specific development and research activities are introduced.

Workload
regular attendance: 24 hrs
self study: 96 hrs

Literature
The lecture documents are distributed during the courses.
6.16 Course: Analysis Tools for Combustion Diagnostics [T-MACH-105167]

Responsible: Jürgen Pfeil
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Pfeil</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Analysis Tools for Combustion Diagnostics</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Analysis Tools for Combustion Diagnostics</td>
<td>Prüfung (PR)</td>
<td>Koch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Analysis tools for combustion diagnostics
2134134, SS 2020, 2 SWS, Language: German, [Open in study portal]

Learning Content
energy balance at the engine
energy conversion in the combustion chamber
thermodynamics of the combustion process
flow velocities
flame propagation
special measurement techniques

Workload
regular attendance: 24 hours
self-study: 96 hours

Literature
Lecture notes available in the lectures

Responsible: Dr. Daniela Beyer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2545108 Innovation Processes Live</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Beyer</td>
</tr>
</tbody>
</table>

Competence Certificate
Non exam assessment (following §4(2) 3 of the examination regulation).
Innovation plan (exposé) (20%), Guided interviews/quantitative survey (20%), presentation of results (20%), seminar paper (about 5 pages per person) (40%).

Prerequisites
None

Recommendation
Prior attendance of the course Innovation Management is recommended.
Course: Application of Social Science Methods (WiWi) [T-GEISTSOZ-109052]

Responsible: Prof. Dr. Gerd Nollmann
Organisation: KIT Department of Humanities and Social Sciences
Part of: M-GEISTSOZ-101169 - Sociology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Grading Period</th>
<th>Course ID</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>5011006</td>
<td>Natural Language Processing</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Nollmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Grading Period</th>
<th>Course ID</th>
<th>Course Name</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7400048</td>
<td>Application of Social Science Methods (WiWi)</td>
<td>Prüfung (PR)</td>
<td>Nollmann</td>
</tr>
</tbody>
</table>
6.19 Course: Applied Econometrics [T-WIWI-103125]

Responsible: Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101638 - Econometrics and Statistics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Registration Code</th>
<th>Exam Title</th>
<th>Type</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900251</td>
<td>Applied Econometrics</td>
<td>Prüfung (PR)</td>
<td>Krüger</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900280</td>
<td>Applied Econometrics</td>
<td>Prüfung (PR)</td>
<td>Krüger</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation.

Prerequisites

None

Annotation

The course is not offered regularly.

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2511032</td>
<td>Applied Informatics - Principles of Internet Computing: Foundations for Emerging Technologies and Future Services</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2511033</td>
<td>Übungen zu Angewandte Informatik - Internet Computing</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is recommended for the written exam, which is offered at the end of the winter semester and at the end of the summer semester.

By successful processing the exercises a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Annotation

Replaces from winter semester 2019/2020 T-WIWI-109445 "Applied Informatics - Internet Computing".

Below you will find excerpts from events related to this course:

Applied Informatics - Principles of Internet Computing: Foundations for Emerging Technologies and Future Services
2511032, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Notes
The lecture Applied Computer Science II provides insights into fundamental concepts and future technologies of distributed systems and Internet computing. Students should be able to select, design and apply the presented concepts and technologies. The course first introduces basic concepts of distributed systems (e.g. design of architectures for distributed systems, internet architectures, web services, middleware).

In the second part of the course, emerging technologies of Internet computing will be examined in depth. These include, among others:

- Cloud Computing
- Edge & Fog Computing
- Internet of Things
- Blockchain
- Artificial Intelligence

Learning objectives:
The student learns about basic concepts and emerging technologies of distributed systems and internet computing. Practical topics will be deepened in lab classes.

Recommendations:
Knowledge of content of the module [WI1INFO].

Workload:
The total workload for this course is approximately 135-150 hours.
6.21 Course: Artificial Intelligence in Service Systems [T-WIWI-108715]

Responsible: Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101448 - Service Management
- M-WIWI-101506 - Service Analytics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2595650</td>
<td>4,5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| WS 19/20 7900303 | |

Competence Certificate
The assessment consists of a written exam (60 min). Successful completion of the exercises is a prerequisite for admission to the written exam.

Prerequisites
None

Below you will find excerpts from events related to this course:

Artificial Intelligence in Service Systems
2595650, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Learning Content
Artificial Intelligence and the application of machine learning is becoming more and more popular to solve relevant business challenges. However, it is not only important to be familiar with precise algorithms, but rather a general understanding of the necessary steps with a holistic view—from real-world challenge to successful deployment of an AI. As part of this course, we teach the complete lifecycle of an AI project with a focus on supervised machine learning challenges. We do so by also teaching the use of Python and the required packages like scikit-learn and tensorflow with exemplary data. We then take this knowledge to the more complex case of service systems with different entities (e.g. companies) who interact with each other and show possibilities on how to derive holistic insights. Two possibilities to do so are the use of meta and transfer machine learning, where we teach insights in their theory, design and application.
6.22 Course: Asset Pricing [T-WIWI-102647]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101480 - Finance 3
M-WIWI-101482 - Finance 1
M-WIWI-101483 - Finance 2
M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2530555</td>
<td>Asset Pricing</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Uhrig-Homburg, Thimme</td>
</tr>
<tr>
<td>SS 2020 2530556</td>
<td>Übung zu Asset Pricing</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Uhrig-Homburg, Reichenbacher</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900056</td>
<td>Asset Pricing</td>
<td>Prüfung (PR)</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The success control takes place in form of a written examination (75 min) during the semester break (according to §4(2), 1 SPO). The examination is offered every semester and can be repeated at any regular examination date. A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites
None

Recommendation
We strongly recommend knowledge of the basic topics in investments (bachelor course), which will be necessary to be able to follow the course.

Below you will find excerpts from events related to this course:

Asset Pricing

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530555, SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Uhrig-Homburg, Thimme</td>
</tr>
</tbody>
</table>

Description
The lecture deals with the diverse issues arising in the context of measuring and controlling credit risk. At first, the theoretical and empirical relations between ratings, probabilities of default, and credit spreads are analysed. After that, the focus is on the valuation of credit risk. Finally, the management of credit risk, e.g. using credit derivatives and credit portfolio analysis, is examined, and the legal framework and its implications are discussed.

Learning Content
This lecture deals with the valuation of risky cash flows. A stochastic discount model and a central equation will be introduced, which form the basis of nearly every valuation model in finance. That includes the valuation of stocks, bonds and derivatives. The first part of the lecture will present the theory, the second part covers empirical questions related to this approach.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature

Basic literature

Elective literature
6.23 Course: Auction Theory [T-WIWI-102613]

Responsible: Prof. Dr. Karl-Martin Ehrhart

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101500 - Microeconomic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2520408</td>
<td>Auktionstheorie</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2520409</td>
<td>Übungen zu Auktionstheorie</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900290</td>
<td>Auction Theory</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Below you will find excerpts from events related to this course:

Auktionstheorie

2520408, WS 19/20, 2 SWS, Open in study portal

Learning Content

This course deals with the analysis and modeling of auction which are based on game theory. This also includes aspects of applying and designing auctions as well as experiences with auctions. Main topics are:

- Single- and multi-unit auctions
- Selling and procurement auctions
- Electronic auctions (e.g. eBay, C2C, B2B)
- Multi-attributive auctions.

Annotation

We suggest to attend either Game Theory I or Decision Theory beforehand.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

- Ehrhart, K.-M. und S. Seifert: Auktionstheorie, Skript zur Vorlesung, KIT, 2011
- Ausubel, L.M. und P. Cramton: Demand Reduction and Inefficiency in Multi-Unit Auctions, University of Maryland, 1999
6.24 Course: Automated Manufacturing Systems [T-MACH-102162]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101298 - Automated Manufacturing Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150904</td>
<td>Automated Manufacturing Systems</td>
<td>6 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102162</td>
<td>Automated Manufacturing Systems</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (120 minutes)

Prerequisites

"T-MACH-108844 - Automatisierte Produktionsanlagen" must not be commenced.

Below you will find excerpts from events related to this course:

Automated Manufacturing Systems

2150904, SS 2020, 6 SWS, Language: German, Open in study portal

Description

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
Notes
The lecture provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

An interdisciplinary view of these subareas enables Industry 4.0 solutions.
In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included.
In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics.
Within tutorials, the contents from the lecture are advanced and applied to specific problems and tasks.

Learning Outcomes:
The students ...

- are able to analyze implemented automated manufacturing systems and describe their components.
- are capable to assess the implemented examples of implemented automated manufacturing systems and apply them to new problems.
- are able to name automation tasks in manufacturing plants and name the components which are necessary for the implementation of each automation task.
- are capable with respect to a given task to plan the configuration of an automated manufacturing system and to determine the necessary components to its realization.
- are able to design and select components for a given use case of the categories: “Handling Technology”, “Industrial Robotics”, “Sensory” and “Controls”.
- are capable to compare different concepts for multi-machine systems and select a suitable concept for a given use case.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours
WING:
regular attendance: 63 hours
self-study: 207 hours
Learning Content
The lecture provides an overview of the structure and functioning of automated manufacturing systems. In the introduction chapter the basic elements for the realization of automated manufacturing systems are given. This includes:

- Drive and control technology
- Handling technology for handling work pieces and tools
- Industrial Robotics
- Quality assurance in automated manufacturing
- automatic machines, cells, centers and systems for manufacturing and assembly
- structures of multi-machine systems
- planning of automated manufacturing systems

An interdisciplinary view of these subareas enables Industry 4.0 solutions.
In the second part of the lecture, the basics are illustrated using implemented manufacturing processes for the production of automotive components (chassis and drive technology). The analysis of automated manufacturing systems for manufacturing of defined components is also included.
In the field of vehicle power train both, the automated manufacturing process for the production of the conventional internal-combustion engine and the automated manufacturing process for the production of the prospective electric power train (electric motor and battery) are considered. In the field of car body, the focus is on the analysis of the process chain for the automated manufacturing of conventional sheet metal body parts, as well as for automated manufacturing of body components made out of fiber-reinforced plastics.
Within tutorials, the contents from the lecture are advanced and applied to specific problems and tasks.

Annotation
None

Workload
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING/TVWL:
regular attendance: 63 hours
self-study: 207 hours

Literature
Lecture Notes
Course: Automation of Discrete Event and Hybrid Systems [T-ETIT-100981]

Responsible: Prof. Dr.-Ing. Sören Hohmann

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-101157 - Control Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2303160 | Automatisierung ereignisdiskreter und hybrider Systeme | 2 SWS | Lecture (V) | Kluwe |

Exams

| WS 19/20 | 7303160 | Automation of Discrete Event and Hybrid Systems | Prüfung (PR) | Kluwe |

Prerequisites

none
6.26 Course: Automotive Logistics [T-MACH-105165]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101263 - Introduction to Logistics
- M-MACH-101280 - Logistics in Value Chain Networks
- M-MACH-101282 - Global Production and Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105165</td>
<td>Automotive Logistics</td>
<td>Prüfung (PR)</td>
<td>Furmans, Mittwollen</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

Prerequisites
none
6.27 Course: Basics of German Company Tax Law and Tax Planning [T-WIWI-108711]

Responsible: Gerd Gutekunst
Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>3 SWS</td>
<td>Wigger, Gutekunst</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>0 SWS</td>
<td>Wigger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

None

Recommendation

Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course “Öffentliche Einnahmen” beforehand.

Below you will find excerpts from events related to this course:

Basics of German Company Tax Law and Tax Planning

WS 19/20, 3 SWS, Language: German, Open in study portal

Notes

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.
6.28 Course: Basics of Technical Logistics I [T-MACH-109919]

Responsible: Dr.-Ing. Martin Mittwollen
Jan Oellerich

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101279 - Technical Logistics

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
none

Below you will find excerpts from events related to this course:

Basics of Technical Logistics
2117095, WS 19/20, 3 SWS, Language: German, [Open in study portal]

Lecture / Practice (VÜ)

Description
Media:
supplementary sheets, presentations, blackboard

Learning Content
- effect model of conveyor machines
- elements for the change of position and orientation
- conveyor processes
- identification systems
- drives
- mechanical behaviour of conveyors
- structure and function of conveyor machines
- elements of intralogistics
- sample applications and calculations in addition to the lectures inside practical lectures

Annotation
Basics knowledge of technical mechanics is preconditioned

Workload
presence: 48h
rework: 132h

Literature
Recommendations during lessons

6.29 Course: Basics of Technical Logistics II [T-MACH-109920]

Responsible: Maximilian Hochstein
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101279 - Technical Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Basics of Technical Logistics II</td>
<td>Lecture / Practice (VÜ)</td>
<td>Hochstein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Basics of Technical Logistics II</td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

none
6.30 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I [T-MACH-100966]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101290 - BioMEMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>2141864</td>
<td></td>
<td>Guber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>76-T-MACH-100966</td>
<td></td>
<td>Guber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

written exam (75 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine I
2141864, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Description

Media:

Lecture script

Learning Content

Introduction into various microtechnical manufacturing methods: LIGA, Micro milling, Silicon Micromachining, Laser Microstructuring, µEDM, Metal-Etching
Biomaterials, Sterilisation.
Examples of use in the life science sector: basic micro fluidic structures: micro channels, micro filters, micromixers, micropumps, microvalves, Micro and nanotiter plates, Microanalysis systems (µTAS), Lab-on-chip applications.

Annotation

The exam is held during the semester break. The date will be announced at the beginning of the semester.

Workload

Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature

Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
6.31 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II [T-MACH-100967]

Responsibility: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101290 - BioMEMS
M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

SS 2020 2142883 BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II 2 SWS Lecture (V) Guber

Exams

WS 19/20 76-T-MACH-100967 BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II Prüfung (PR) Guber

Competence Certificate
Written exam (75 Min.)

Prerequisites
none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine II
2142883, SS 2020, 2 SWS, Language: German, Open in study portal

Description

Media:
Lecture script

Notes
Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
LabCD, Protein Cristallisation
Microarrays
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery
Learning Content
Examples of use in Life-Sciences and biomedicine: Microfluidic Systems:
LabCD, Protein Crystallisation
Microarrays
Tissue Engineering
Cell Chip Systems
Drug Delivery Systems
Micro reaction technology
Microfluidic Cells for FTIR-Spectroscopy
Microsystem Technology for Anesthesia, Intensive Care and Infusion
Analysis Systems of Person’s Breath
Neurobionics and Neuroprosthesis
Nano Surgery

Workload
Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
6.32 Course: BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III [T-MACH-100968]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101290 - BioMEMS
M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence Each summer term</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture (V)</th>
<th>Guber</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2142879</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td>Guber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture (PR)</th>
<th>Guber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
<td>Guber</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (75 Min.)

Prerequisites

none

Below you will find excerpts from events related to this course:

BioMEMS - Microsystems Technologies for Life-Sciences and Medicine III

2142879, SS 2020, 2 SWS, Language: German, Open in study portal

Description

Media:
Lecture script

Notes

Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management

Learning Content

Examples of use in minimally invasive therapy
Minimally invasive surgery (MIS)
Endoscopic neurosurgery
Interventional cardiology
NOTES
OP-robots and Endosystems
License of Medical Products and Quality Management
Workload
Literature: 20 h
Lessons: 21 h
Preparation and Review: 50 h
Exam preparation: 30 h

Literature
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994
M. Madou
Fundamentals of Microfabrication
6.33 Course: Bionics for Engineers and Natural Scientists [T-MACH-102172]

Responsible: PD Dr. Hendrik Hölscher
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101290 - BioMEMS
- M-MACH-101293 - Microsystem Technology
- M-MACH-101294 - Nanotechnology

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written or oral exam

Prerequisites
none

Below you will find excerpts from events related to this course:

Bionics for Engineers and Natural Scientists

2142140, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Description

Media:
Slides of the lectures

Notes

Bionics focuses on the design of technical products following the example of nature. For this purpose we have to learn from nature and to understand its basic design rules. Therefore, the lecture focuses on the analysis of the fascinating effects used by many plants and animals. Possible implementations into technical products are discussed in the end.

The students should be able analyze, judge, plan and develop biomimetic strategies and products.

Basic knowledge in physics and chemistry

lectures 30 h
self study 30 h
preparation for examination 30 h

The successful attendance of the lecture is controlled by a written examination.

Learning Content

Bionics focuses on the design of technical products following the example of nature. For this purpose we have to learn from nature and to understand its basic design rules. Therefore, the lecture focuses on the analysis of the fascinating effects used by many plants and animals. Possible implementations into technical products are discussed in the end.

Workload

lectures 30 h
self study 30 h
preparation for examination 30 h
Literature
6.34 Course: Blockchains & Cryptofinance [T-WIWI-108880]

Responsible: Dr. Philipp Schuster
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101409 - Electronic Markets
- M-WIWI-101446 - Market Engineering
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2
- M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module Code</th>
<th>Title</th>
<th>Weeks</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530567</td>
<td>Blockchains & Cryptofinance</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>4.5</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2530568</td>
<td>Übung zu Blockchains & Cryptofinance</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>1</td>
<td>Müller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900028</td>
<td>Blockchains & Cryptofinance</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (75 min) (§4(2), 1 of the examination regulations). A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

None

Annotation

6.35 Course: Building Laws [T-BGU-103429]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-101884 - Lean Management in Construction
- M-BGU-101888 - Project Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6241803</td>
<td>Baurecht</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Miernik, Kohlhammer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240103429</td>
<td>Building Laws</td>
<td>Prüfung (PR)</td>
<td>Haghsheno</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.36 Course: Business Administration for Engineers and IT professionals [T-MACH-109933]

Responsible: Peter Sebregondi
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2122303</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Sebregondi</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2122303</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Sebregondi</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-109933</td>
<td>Business Administration for Engineers and IT professionals</td>
<td>Prüfung (PR)</td>
<td>Sebregondi</td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment of another type. Two presentations and six written compositions in team work. Grading: each composition 1/8 and each presentation 1/8.

Prerequisites
None

Below you will find excerpts from events related to this course:

Business Administration for Engineers and IT professionals

2122303, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
Number of participants limited to 30 people.

Business Administration for Engineers and IT professionals

2122303, SS 2020, 2 SWS, Open in study portal

Notes
Number of participants limited to 30 people.
Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101409 - Electronic Markets

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Exam Code</th>
<th>Exam Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7979537</td>
<td>Business Administration in Information Engineering and Management</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The lecture is no longer offered.

Prerequisites

None

Recommendation

Basic knowledge from Operations Research (linear programming) and from decision theory are expected.
6.38 Course: Business Data Analytics: Application and Tools [T-WIWI-109863]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Each summer term</td>
</tr>
<tr>
<td>SS 2020</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out by a written examination (60 minutes) and a written elaboration. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Prerequisites

None

Recommendation

Knowledge of object-oriented programming and statistics is helpful.

Annotation

Course name until winter semester 2018/2019 "Applied Analytics with Open Source Tools" (T-WIWI-108438)

Below you will find excerpts from events related to this course:

Business Data Analytics: Application and Tools

2540466, SS 2020, 2 SWS, Language: German, [Open in study portal]

Lecture (V)

Description

The ongoing digitalization and digitization of businesses, industries and societies is generating vast amounts of data. Hence, researchers and businesses are facing increasing pressure to build capabilities to cope with the data and generate value from the contained but yet to be discovered knowledge, insights and information. Researchers and practitioners tackling this task are referred to as data scientists and need skills at the intersection of programming, statistics and development operations. This course provides a hands-on perspective on these fields.

Learning Content

The aim of this course is to introduce practical foundations, concepts, tools and current practice of Analytics from a data scientist's perspective. The lecture is complemented with an Analytics challenge that is based on real-world data from research projects. The students immediately apply their newly acquired knowledge and learn to use a range of open source tools to solve the challenge.

Content:

- Conceptual and theoretical Foundations
- Programming languages common in data science
- Data acquisition, pre-processing
- Basics of data organization and DevOps
- Tool chain selection and automation
- Open source analytics frameworks and data processing infrastructures
- Applied analytics challenge (based on a current research project or a cooperation with an industry partner)

Workload

The total workload for this course is approximately 135 hours.
6.39 Course: Business Data Strategy [T-WIWI-106187]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Business Data Strategy</td>
<td></td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Übung zu Business Data Strategy</td>
<td></td>
<td>Weinhardt, Knierim</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Business data strategy</td>
<td></td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Business Data Strategy</td>
<td></td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation and an alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation. The grade is determined by 2/3 through the written exam and by 1/3 through the alternative exam assessment (e.g., presentation).

Prerequisites

None

Recommendation

Students should be familiar with basic concepts of business organisations, information systems, and programming. However, all material will be introduced, so no formal pre-conditions are applied.

Annotation

Limited number of participants.

Below you will find excerpts from events related to this course:

Business Data Strategy

2540484, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Notes

With new methods for capturing and using different types of data and industry's recognition that society's use of data is less than optimal, the need for comprehensive strategies is more important than ever before. Advances in cybersecurity and information sharing and the use of data in its raw form for decision making all add to the complexity of integrated processes, ownership, stewardship, and sharing. The life cycle of data in its entirety spans the infrastructure, system design, development, integration, and implementation of information-enabling solutions. This lecture focuses on teaching about these dynamics and tools to comprehend and manage them in organisation contexts. Given the increasing size and complexity of data, methods for the transformation and structured preparation are an important tool in the process of sense-making. Modern software solutions and programming languages provide frameworks for such tasks that form another part of this course ranging from conceptual systems modelling to data manipulation to automated generation of HTML reports and web-applications.

Learning Content

With new methods for capturing and using different types of data and industry's recognition that society's use of data is less than optimal, the need for comprehensive strategies is more important than ever before. Advances in cybersecurity and information sharing and the use of data in its raw form for decision making all add to the complexity of integrated processes, ownership, stewardship, and sharing. The life cycle of data in its entirety spans the infrastructure, system design, development, integration, and implementation of information-enabling solutions. This lecture focuses on teaching about these dynamics and tools to comprehend and manage them in organisation contexts. Given the increasing size and complexity of data, methods for the transformation and structured preparation are an important tool in the process of sense-making. Modern software solutions and programming languages provide frameworks for such tasks that form another part of this course ranging from conceptual systems modelling to data manipulation to automated generation of HTML reports and web-applications.
Literature

- Fleckenstein & Fellows (2017) – Modern Data Strategy
- Leimeister (2015) – Einführung in die Wirtschaftsinformatik
- Urbach & Ahlemann (2016) – IT-Management im Zeitalter der Digitalisierung
6.40 Course: Business Dynamics [T-WIWI-102762]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101409 - Electronic Markets
M-WIWI-101470 - Data Science: Advanced CRM

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540531</td>
<td>Business Dynamics</td>
<td>4.5</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540532</td>
<td>Exercise Business Dynamics</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Exams</td>
<td>7979777</td>
<td>Business Dynamics</td>
<td>1</td>
</tr>
</tbody>
</table>

Competition Certificate
Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.
A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Business Dynamics
2540531, WS 19/20, 2 SWS, Language: German, Open in study portal

Learning Content
Corporate growth, the diffusion of new technologies, business processes, project management, product development, service quality management – all these are examples for application areas of business dynamics. They all are dynamic systems that are characterized by feedback loops between many different variables. By means of the tools of business dynamics such systems can be modelled. Simulations of complex systems allow the analysis, the goal centered design, as well as the optimization of markets, business processes, policies, and organizations.

Annotation
The course is generally held as block course.
Workload
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance
- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study
- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Literature
6.41 Course: Business Intelligence Systems [T-WIWI-105777]

Responsible: Prof. Dr. Alexander Mädche
Mario Nadj
Peyman Toreini

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101506 - Service Analytics
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-103117 - Data Science: Data-Driven Information Systems
- M-WIWI-104068 - Information Systems in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Exams</td>
<td>Prüfung (PR)</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment consists of a written exam of 1 hour length and by submitting written papers as part of the exercise. Details will be announced at the beginning of the course.

Prerequisities
None

Recommendation
Basic knowledge on database systems is helpful.

Below you will find excerpts from events related to this course:

Business Intelligence Systems
2540422, WS 19/20, 3 SWS, Language: English,

Description
In most modern enterprises, Business Intelligence Systems represent a core enabler of managerial decision making in that they are supplying up-to-date and accurate information about all relevant aspects of a company's planning and operations: from stock levels to sales volumes, from process cycle times to key indicators of corporate performance.

The aim of this course is to introduce theoretical foundations, concepts, tools, and current practice of Business Intelligence Systems from a managerial and technical perspective. The lecture is complemented with a Business Intelligence System challenge, where students work with real-world data and enable system-based decision making using commercial Business Intelligence software packages.

Learning Content
- Conceptual Foundations
- Provisioning: ETL Process, Metadata, Data Warehouse & Data Marts and Big Data Technologies
- Consumption: Reporting, Dashboards and its relation to (Big Data) Analytics
- BI Strategy & Governance
- BI Implementation & Post-Implementation Management
- Business Intelligence System Challenge (in cooperation with industry partner)
Literature
Economist Intelligence Unit. 2015 “Big data evolution: Forging new corporate capabilities for the long term”
Responsibility: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-102806 - Service Innovation, Design & Engineering

Type: Examination of another type
Credits: 4.5
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2540456</td>
<td>Internet Business Models</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Peukert, Dann, Dorner</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2540457</td>
<td>Übungen zu Geschäftsmodelle im Internet: Planung und Umsetzung</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Peukert, Dann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900260</td>
<td>Business Models in the Internet: Planning and Implementation (Nachklausur aus dem SS19)</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

Please note that in the summer semester 2020 the exam will only be offered to students who have completed the semester performance but have not yet taken the exam. From summer semester 2021 the exam will be offered again regularly.

Success is monitored through ongoing elaborations and presentations of tasks and a written exam (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Successful participation in the exercises is a prerequisite for admission to the written examination.

Prerequisites
None

Recommendation
None

Annotation
Please note that the lecture will not be offered in summer semester 2020 due to the research semester of Prof. Weinhardt.

Below you will find excerpts from events related to this course:

Internet Business Models
2540456, SS 2020, 2 SWS, Language: German, Open in study portal

Description
The emergence of internet economy has resulted in an accelerated evolution of commerce models in eBusiness. Early adopters have experimented with a variety of new business models, technologies and application designs. At the same time, there has been a growing demand for new standards to facilitate the exchange of information, catalogue content and transactions between buyers and sellers. But the true understanding of how to bring buyers and sellers together is still widely missing, leading to multiple cases of costly missed investments. This course focuses on the design and implementation of successful business models for eBusiness applications for the World Wide Web (WWW), imparting the basic knowledge for building successful eBusiness applications. We consider not only technical foundations of eBusiness applications but also economical aspects. In small groups, students develop and implement an eBusiness model that is eventually discussed with a representative from the venture capitalist industry.
Learning Content
The emergence of internet economy has resulted in an accelerated evolution of commerce models in eBusiness. Early adopters have experimented with a variety of new business models, technologies and application designs. At the same time, there has been a growing demand for new standards to facilitate the exchange of information, catalogue content and transactions between buyers and sellers. But the true understanding of how to bring buyers and sellers together is still widely missing, leading to multiple cases of costly missed investments. This course focuses on the design and implementation of successful business models for eBusiness applications for the World Wide Web (WWW), imparting the basic knowledge for building successful eBusiness applications. We consider not only technical foundations of eBusiness applications but also economical aspects. In small groups, students develop and implement an eBusiness model that is eventually discussed with a representative from the venture capitalist industry.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Will be announced within the course.
6.43 Course: Business Planning [T-WIWI-102865]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2545007</td>
<td>Business Planning for Founders (ENTECH)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Wohlfeil, Bauman</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2545007</td>
<td>Business Planning for Founders</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Kleinn, Mohammadi, Terzidis</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900023</td>
<td>Business Planning for Founders</td>
<td>Prüfung (PR)</td>
<td>Terzidis</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7900040</td>
<td>Business Planning</td>
<td>Prüfung (PR)</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Business Planning for Founders (ENTECH)

2545007, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Notes

The seminar introduces students to the basic concepts of business planning for entrepreneurs. On the one hand, this involves concepts for the concretisation of business ideas (business modelling, market potential assessment, resource planning, etc.) and on the other hand, the preparation of an implementable business plan (with or without VC financing). In the course of the seminar, the students are familiarized with methods of further developing patents and business ideas into a more concrete business plan and formulating them in a business plan.

Business Planning for Founders

2545007, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Notes

The seminar introduces students to the basic concepts of business planning for entrepreneurs. On the one hand, this involves concepts for the concretisation of business ideas (business modelling, market potential assessment, resource planning, etc.) and on the other hand, the preparation of an implementable business plan (with or without VC financing). In the course of the seminar, the students are familiarized with methods of further developing patents and business ideas into a more concrete business plan and formulating them in a business plan.
6.44 Course: Business Planning for Founders - EUCOR [T-WIWI-110389]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101487 - Sales Management
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>2545020</th>
<th>Business Planning for Founders (EUCOR Edition)</th>
<th>2 SWS</th>
<th>Seminar (S)</th>
<th>Terzidis</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>7900274</th>
<th>Business Planning for Founders - EUCOR</th>
<th>Prüfung (PR)</th>
<th>Terzidis</th>
</tr>
</thead>
</table>

Competence Certificate
Alternative exam assessment.

Prerequisites
The course can only be combined with the course "International Selling - EUCOR" to be completed. The course is a combination of 6 ECTS, 3 ECTS per part. The combination can be credited either in the Entrepreneurship module or in the Sales Management module.

Below you will find excerpts from events related to this course:

Business Planning for Founders (EUCOR Edition)

2545020, WS 19/20, 2 SWS, Language: English, Open in study portal
Notes
The seminar introduces students to basic concepts of business planning for entrepreneurs. This involves concepts for the description of business opportunities (problem, solution, target group, value proposition etc.), the evaluation of the opportunity (market potential, competitor analysis, feasibility etc.) as well as the creation of an executable business plan (team set-up, product development, market entry approach, marketing approach, financial planning).

Organizational Information:
- An application is required to participate in this event. The registration for the two courses "Business Planning for Founders - EUCOR" (3 ECTS) and "International Selling - EUCOR" (3 ECTS) is open now at Wiwi-Portal.
- Please note that this course "Business Planning for Founders - EUCOR" (3 ECTS) and the course "International Selling - EUCOR" (3 ECTS) can only be taken together (a total of 6 ECTS). In combination with the compulsory lecture "Entrepreneurship" (3 ECTS) the module "Entrepreneurship" is completed (or in combination with "Sales Management and Retailing" (3 ECTS) the module "Sales Management").
- Both courses will be held in English.
- This event is also open to participants of the EUCOR programme.

Further information about the courses can be found in the module handbook (https://www.wiwi.kit.edu/lehreMHB.php) and in the course catalog:
Business Planning for Founders
International Selling

If you have any questions, please contact the following persons:
Business Planning for Founders: andreas.kleinn@kit.edu
International Selling: anika.honold@kit.edu

Course Dates and Locations:
- Business Planning for Founders:
 Wednesday, January 22, 2020, 1 pm - 6 pm
 Thursday, January 23, 2020, 9 am - 1 pm
 20.21, Raum 115

- International Selling:
 Thursday, January 23, 2020, 2 pm - 7 pm
 Friday, January 24, 2020, 10 am - 4 pm
 20.21, Raum 115

- Both courses will be continued from March 18 to March 20, 2020 at the EM Strasbourg in France. Accommodation and travel expenses will be covered.

Learning Objectives:
Students will be familiarized with methods of opportunity identification (including technology push opportunities), opportunity evaluation and business planning for a startup. In addition, they will work on a project in an international team and build the corresponding soft skills.
6.45 Course: Business Process Modelling [T-WIWI-102697]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Business Process Modelling</td>
<td>Lecture (V)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Exercise Business Process Modelling</td>
<td>Practice (Ü)</td>
<td>Oberweis, Schüler, Schreiber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Business Process Modelling</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites

None

Below you will find excerpts from events related to this course:

Business Process Modelling

2511210, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Notes

The proper modeling of relevant aspects of business processes is essential for an efficient and effective design and implementation of processes. This lecture presents different classes of modeling languages and discusses the respective advantages and disadvantages of using actual application scenarios. For that simulative and analytical methods for process analysis are introduced. In the accompanying exercise the use of process modeling tools is practiced.

Learning objectives:

Students

- describe goals of business process modeling and apply different modeling languages,
- choose the appropriate modeling language according to a given context,
- use suitable tools for modeling business processes,
- apply methods for analysing and assessing process models to evaluate specific quality characteristics of the process model.

Recommendations:

Knowledge of course Applied Informatics I - Modelling is expected.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
Course: Business Strategies of Banks [T-WIWI-102626]

Responsible: Prof. Dr. Wolfgang Müller
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530299</td>
<td>Business Strategies of Banks</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900064</td>
<td>Business Strategies of Banks</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Business Strategies of Banks
2530299, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Description
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank's success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Learning Content
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank's success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
Literature

Elective literature:

- A script is disseminated chapter by chapter during the course of the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 6th edition, Springer
6.47 Course: Case Studies in Sales and Pricing [T-WIWI-102834]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105312 - Marketing and Sales Management

Responsibility: Course: Case Studies in Sales and Pricing [T-WIWI-102834]

Examination of another type

Credits: 1.5

Recurrence: Each winter term

Version: 3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Block (B)</td>
<td>Klarmann, Assistenten</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisites
None

Recommendation
None

Annotation
Participation requires an application. The application period starts at the beginning of the semester. More information can be obtained on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu). Access to this course is restricted. Typically all students will be granted the attendance of one course with 1.5 ECTS. Nevertheless attendance can not be guaranteed. For further information please contact Marketing and Sales Research Group (marketing.iism.kit.edu). Please note that only one of the 1.5-ECTS courses can be attended in this module.

Below you will find excerpts from events related to this course:

Case Studies in Sales and Pricing
2572182, WS 19/20, 1 SWS, Language: German/English, Open in study portal

Notes
Students work in groups on case studies from the field of sales and pricing. The case studies contain quantitative calculations in the context of sales and pricing as well as tasks which are to be solved by logical reasoning. When solving the case studies, theoretical sales and pricing content is applied to practical problems. Finally, the results are presented by the group and discussed.

Students
- are able to work on a case study in the field of sales and pricing on their own
- are able to apply quantitative calculations on a case study in the field of sales and pricing
- are able to collect information and data beyond the case study description and make use of them for solving their tasks
- are able to apply theories from related lectures to a practical example
- are able to present their results in a structured and concise manner
- are able to organize their teamwork and collaborate in teams

Total work load for 1.5 ECTS: ca. 45 hours
- The final presentations can be held in German or English.
- In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in winter term. Detailed information on the application process is usually provided on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in winter term starts.
- Please note that only one of the 1.5-ECTS courses can be chosen in the module.
- Please note: The number of participants for this course is limited. The Marketing and Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.
6.48 Course: Case Studies Seminar: Innovation Management [T-WIWI-102852]

Responsible: Prof. Dr. Marion Weissenberger-Eibl
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101507 - Innovation Management
Type: Examination of another type
Credits: 3
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2545105</td>
<td>Case studies seminar: Innovation management</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900237</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>Prüfung (PR)</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessments (§4(2), 3 SPO).

Prerequisites
None

Recommendation
Prior attendance of the course Innovation Management is recommended.

Below you will find excerpts from events related to this course:

Case studies seminar: Innovation management
2545105, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
The objective of the seminar is to master selected concepts and methods of innovation management and then to apply these practically. Working in groups, the students apply the described concepts and methods of innovation management to a case study from the automotive industry to answer specific questions. Accordingly, the block seminar involves a switch from input to the application of this input. At the end, the results of the group work are presented in the form of a seminar paper and discussed by the whole course. A short introduction to presentation techniques is planned to help students prepare the seminar papers.

Learning Content
The objective of the seminar is to master selected concepts and methods of innovation management and then to apply these practically. Working in groups, the students apply the described concepts and methods of innovation management to a case study from the automotive industry to answer specific questions. Accordingly, the block seminar involves a switch from input to the application of this input. At the end, the results of the group work are presented in the form of a seminar paper and discussed by the whole course. A short introduction to presentation techniques is planned to help students prepare the seminar papers.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
6.49 Course: CATIA Advanced [T-MACH-105312]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123380</td>
<td>Advanced CATIA</td>
<td>3</td>
<td>Project (PRO)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2123380</td>
<td>CATIA advanced</td>
<td>3</td>
<td>Project (PRO)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment of another type. Design project and written documentation in team work and final presentation. Grading: Project work 3/5, documentation 1/5 and presentation 1/5.

Prerequisites

none

Below you will find excerpts from events related to this course:

CATIA advanced

2123380, SS 2020, 3 SWS, Language: German/English, [Open in study portal](#)

Learning Content

- Use of advanced CAD techniques and CATIA functionalities
- Management of data using the PLM system SmarTeam
- Design engineering with CAD
- Integration of partial solutions into the overall solution
- Ensuring the reusability of CAD models through parameterization and cataloging
- Validation, strength tests (FEM analysis)
- Kinematic simulation with the digital mockup (DMU Kinematics)
- Production with integrated CAM tool
- Animations
- Presentation of results at the end of the semester

Annotation

For the workshop compulsory attendance exists.

Workload

regular attendance: 21 hours, self-study: 35 hours
6.50 Course: CATIA CAD Training Course [T-MACH-102185]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (practical)</td>
<td>2</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123358</td>
<td>CATIA CAD training course</td>
<td>Practical course (P)</td>
<td>2 SWS</td>
<td>Each term</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2123358</td>
<td>CATIA CAD training course</td>
<td>Practical course (P)</td>
<td>3 SWS</td>
<td>Each term</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102185</td>
<td>CATIA CAD Training Course</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

Practical examination on CAD computer, duration: 60 min.

Prerequisites

None

Recommendation

Dealing with technical drawings is required.

Annotation

For the practical course attendance is compulsory.

Below you will find excerpts from events related to this course:

CATIA CAD training course

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2123358</td>
<td>CATIA CAD training course</td>
<td>Practical course (P)</td>
</tr>
</tbody>
</table>

Learning Content

The participant will learn the following knowledge:

- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Annotation

For the practical course attendance is compulsory.

Workload

Regular attendance: 35 hours,
self-study: 12 hours

Literature

practical course skript
CATIA CAD training course
2123358, SS 2020, 3 SWS, Language: German, Open in study portal

Practical course (P)

Learning Content
The participant will learn the following knowledge:

- Basics of CATIA such as user interface, handling etc.
- Production and processing of different model types
- Production of basic geometries and parts
- Generation of detailed drawings
- Integration of partial solutions in modules
- Working with constrains
- Strength analysis with FEM
- Kinematic simulation with DMU
- Dealing with CATIA Knowledgeware

Annotation
For the practical course attendance is compulsory.

Workload
Regular attendance: 35 hours,
self-study: 12 hours

Literature
practical course skript
6.51 Course: Challenges in Supply Chain Management [T-WIWI-102872]

Responsible: Esther Mohr
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102805 - Service Operations
M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Type</th>
<th>4,5</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>Credits</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events
SS 2020 2550494 Challenges in Supply Chain Management 3 SWS Lecture (V) Mohr

Competence Certificate
The assessment consists of a written paper and an oral exam of ca. 30-40 min.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation
The number of course participants is limited to 12 participants due to joint work in BASF project teams. Due to these capacity restrictions, registration before course start is required. For further information see the webpage of the course.
The course is offered irregularly. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Challenges in Supply Chain Management
2550494, SS 2020, 3 SWS, Language: English, Open in study portal

Notes
The course consists of case studies of BASF which cover future challenges of supply chain management. Thus, the course aims at a case-study based presentation, critical evaluation and exemplary discussion of recent questions in supply chain management. The focus lies on future challenges and trends, also with regard to their applicability in practical cases (especially in the chemical industry).
The main part of the course is working on a project together with BASF in Ludwigshafen. The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the project topic.
This course will include working on cutting edge supply chain topics like Industry 4.0 / "Internet of Everything in production", supply chain analytics, risk management, procurement and production in SCM. The team essays / project reports will be linked to industry-related challenges as well as to upcoming theoretical concepts. The topics of the seminar will be announced at the beginning of the term in a preliminary meeting.
Learning Content
The course consists of case studies of BASF which cover future challenges of supply chain management. Thus, the course aims at a case-study based presentation, critical evaluation and exemplary discussion of recent questions in supply chain management. The focus lies on future challenges and trends, also with regard to their applicability in practical cases (especially in the chemical industry).

The main part of the course is working on a project together with BASF in Ludwigshafen. The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the project topic.

This course will include working on cutting edge supply chain topics like Industry 4.0 / “Internet of Everything in production”, supply chain analytics, risk management, procurement and production in SCM. The team essays / project reports will be linked to industry-related challenges as well as to upcoming theoretical concepts. The topics of the seminar will be announced at the beginning of the term in a preliminary meeting.

Annotation
The number of course participants is limited to 12 participants due to joint work in BASF project teams. Due to these capacity restrictions, registration before course start is required. For further information see the webpage of the course.

The course is offered irregularly. The planned lectures and courses for the next three years are announced online.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
To be defined depending on the topic.
6.52 Course: Characteristics of Transportation Systems [T-BGU-106609]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101064 - Fundamentals of Transportation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture</th>
<th>Prüfung</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 6232806</td>
<td>2 SWS</td>
<td>Vortisch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 8240106609</td>
<td>Characteristics of Transportation Systems</td>
<td>Vortisch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.53 Course: Combustion Engines I [T-MACH-102194]

Responsible: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101275 - Combustion Engines I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2133113</td>
<td>Combustion Engines I</td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>Prüfung (PR)</td>
<td>Kubach, Koch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102194</td>
<td>Combustion Engines I</td>
<td>Prüfung (PR)</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Combustion Engines I
2133113, WS 19/20, 4 SWS, Language: German, Open in study portal

Notes
Introduction, History, Concepts
Working Principle and Applications
Characteristic Parameters
Engine Parts
Drive Train
Fuels
Gasoline Engines
Diesel Engines
Exhaust Gas Aftertreatment

Learning Content
Introduction, History, Concepts
Working Principle and Applications
Characteristic Parameters
Engine Parts
Drive Train
Fuels
Gasoline Engines
Diesel Engines
Exhaust Gas Aftertreatment
Workload
regular attendance: 32 hours
self-study: 88 hours
6.54 Course: Combustion Engines II [T-MACH-104609]

Responsible: Dr.-Ing. Rainer Koch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Combustion Engines II</td>
<td>3</td>
<td>Lecture / Practice (VÜ)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Combustion Engines II</td>
<td>Prüfung (PR)</td>
<td>Kubach, Koch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Combustion Engines II</td>
<td>Prüfung (PR)</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, duration: 25 minutes, no auxiliary means

Prerequisites
none

Recommendation
Fundamentals of Combustion Engines I helpful

Below you will find excerpts from events related to this course:

Combustion Engines II
2134151, SS 2020, 3 SWS, Language: German, [Open in study portal](#)

Learning Content
Emissions
Fuels
Drive Train Dynamics
Engine Parts
Boosting
Alternative Powertrain Concepts
Special Engine Concepts
Power Transmission

Workload
regular attendance: 31.5 hours
self-study: 90 hours
6.55 Course: Communication Systems and Protocols [T-ETIT-101938]

Responsible: Dr.-Ing. Jens Becker
Prof. Dr.-Ing. Jürgen Becker
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-101295 - Optoelectronics and Optical Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2311616</td>
<td>Communication Systems and Protocols</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Becker, Becker</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2311618</td>
<td>Tutorial for 2311616 Communication Systems and Protocols</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Nidhi</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7311616</td>
<td>Communication Systems and Protocols</td>
<td>Prüfung (PR)</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Prerequisites

none
6.56 Course: Competition in Networks [T-WIWI-100005]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101406 - Network Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Competition in Networks</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Mitusch</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übung zu Wettbewerb in Netzen</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Wisotzky, Mitusch, Corbo</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Competition in Networks</td>
<td></td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
None.

Recommendation
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Below you will find excerpts from events related to this course:

V Competition in Networks
2561204, WS 19/20, 2 SWS, Language: German, Open in study portal

Description
Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies - competition or cooperation or both - are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Will be announced in the lecture.
6.57 Course: Computational Economics [T-WIWI-102680]

Responsible: Dr. rer. nat. Pradyumn Kumar Shukla
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101472 - Informatics
M-WIWI-101628 - Emphasis in Informatics
M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2590458 Computational Economics 2 SWS Lecture (V) Shukla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 2590459 Excercises to Computational Economics 1 SWS Practice (Ü) Shukla</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900005 Computational Economics Prüfung (PR) Shukla</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4). The bonus only applies to the first and second exam of the semester in which it was obtained.

Prerequisites

None

Annotation

The credits have been changed to 5 starting summer term 2016.

Below you will find excerpts from events related to this course:

Computational Economics

2590458, WS 19/20, 2 SWS, Language: English, Open in study portal

Notes

Examining complex economic problems with classic analytical methods usually requires making numerous simplifying assumptions, for example that agents behave rationally or homogeneously. Recently, widespread availability of computing power gave rise to a new field in economic research that allows the modeling of heterogeneity and forms of bounded rationality: Computational Economics. Within this new discipline, computer based simulation models are used for analyzing complex economic systems. In short, an artificial world is created which captures all relevant aspects of the problem under consideration. Given all exogenous and endogenous factors, the modelled economy evolves over time and different scenarios can be analyzed. Thus, the model can serve as a virtual testbed for hypothesis verification and falsification.

Learning objectives:

The student

- understands the methods of Computational Economics and applies them on practical issues,
- evaluates agent models considering bounded rational behaviour and learning algorithms,
- analyses agent models based on mathematical basics,
- knows the benefits and disadvantages of the different models and how to use them,
- examines and argues the results of a simulation with adequate statistical methods,
- is able to support the chosen solutions with arguments and can explain them.
6.58 Course: Computational Risk and Asset Management [T-WIWI-102878]

Responsible: Prof. Dr Maxim Ulrich

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105032 - Data Science for Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>2500015</td>
</tr>
<tr>
<td>Computational Risk and Asset Management</td>
</tr>
<tr>
<td>4 SWS</td>
</tr>
<tr>
<td>Lecture (V)</td>
</tr>
<tr>
<td>Ulrich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>7900320</td>
</tr>
<tr>
<td>Computational Risk and Asset Management</td>
</tr>
<tr>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) according to §4(2) of the examination regulation.

Recommendation
Good knowledge of statistics and first programming experience with Python is recommended.

Below you will find excerpts from events related to this course:

Computational Risk and Asset Management
2500015, WS 19/20, 4 SWS, Language: English, [Open in study portal]

Description
The aim of this course is to master real-world challenges of computational risk and asset management and provide students with a skill set to incorporate different portfolio objectives into the investment process. It enables students to solve such challenges independently in Python.

Notes
The aim of this course is to master real-world challenges of computational risk and asset management and provide students with a skill set to incorporate different portfolio objectives into the investment process. It enables students to solve such challenges independently in Python.

The course covers several topics, among them:

- Quantitative Portfolio Strategies: Extensions to Mean-Variance Portfolio Optimization
- Return Densities: Forecasting with Traditional and Machine Learning Approaches, Monte Carlo Simulation
- Financial Economics: Rationalizing Risk Premiums via Stochastic Discount Factor
- Multi-Asset Valuation: DCF Approach, No-Arbitrage and Ito Calculus

The total workload for this course is approximately 180 hours. Students will build up on the statistics and finance knowledge from their Bachelors program to learn about to automatize modern quant portfolio strategies. Students learn about advanced topics which are relevant for a realistic, real-world asset and risk management process.
Learning Content
The course covers several topics, among them:

Quantitative Portfolio Strategies: Extensions to Mean-Variance Portfolio Optimization

Return Densities: Forecasting with Traditional and Machine Learning Approaches, Monte Carlo Simulation

Financial Economics: Rationalizing Risk Premiums via Stochastic Discount Factor

Multi-Asset Valuation: DCF Approach, No-Arbitrage and Ito Calculus

Workload
The total workload for this course is approximately 180 hours.
6.59 Course: Computer Aided Data Analysis [T-GEISTSOZ-104565]

Responsible: Prof. Dr. Gerd Nollmann
Organisation: KIT Department of Humanities and Social Sciences
Part of: M-GEISTSOZ-101169 - Sociology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>5011009</td>
<td>Data Science for AI</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7400353</td>
<td>Computer Aided Data Analysis</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>
Below you will find excerpts from events related to this course:

Computer Contract Law

Course: Computer Contract Law [T-INFO-102036]

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: M-INFO-101215 - Intellectual Property Law

Type: Written examination

Credits: 3

Recurrence: Each winter term

Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2</td>
<td>Computer Contract Law</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Bartsch</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Computer Contract Law</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td></td>
<td>Computer Contract Law</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
</tbody>
</table>

Notes

The course deals with contracts from the following areas:

- Contracts of programming, licencing and maintaining software
- Contracts in the field of IT employment law
- IT projects and IT Outsourcing
- Internet Contracts

From these areas single contracts will be chosen and discussed (e.g. software maintenance, employment contract with a software engineer). Concerning the respective contract the technical features, the economic background and the subsumption in the national law of obligation (BGB-Schuldsrecht) will be discussed. As a result different contractual clauses will be developed by the students. Afterwards typical contracts and conditions will be analysed with regard to their legitimacy as standard business terms (AGB). It is the aim to show the effects of the german law of standard business terms (AGB-Recht) and to point out that contracts are a means of drafting business concepts and market appearance.

It is the aim of this course to provide students with knowledge in the area of contract formation and formulation in practice that builds upon the knowledge the students have already acquired concerning the legal protection of computer programs. Students shall understand how the legal rules depend upon, and interact with, the economic background and the technical features of the subject. The contract drafts shall be prepared by the students and will be corporately completed during the lecture. It is the aim of the course that students will be able to formulate contracts by themselves.

Literature

- Langenfeld, Gerrit Vertragsgestaltung Verlag C.H.Beck, III. Aufl. 2004
- Heussen, Benno Handbuch Vertragsverhandlung und Vertragsmanagement Verlag C.H.Beck, II. Aufl. 2002
- Schneider, Jochen Handbuch des EDV-Rechts Verlag Dr. Otto Schmidt KG, III. Aufl. 2002

Elective Literature

tba in the transparencies
6.61 Course: Construction Equipment [T-BGU-101845]

Responsible: Prof. Dr.-Ing. Sascha Gentes

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101110 · Process Engineering in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6243701</td>
<td>Maschinentechnik</td>
<td>2</td>
<td>Gentes, Dörfler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240101845</td>
<td>Construction Equipment</td>
<td>Prüfung (PR)</td>
<td>Gentes</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.62 Course: Control of Linear Multivariable Systems [T-ETIT-100666]

Responsible: Prof. Dr.-Ing. Sören Hohmann
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101157 - Control Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Week Term</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2303177</td>
<td>3</td>
<td>Control of Linear Multivariable Systems</td>
<td>3 SWS</td>
<td>Kluwe</td>
</tr>
<tr>
<td>WS 19/20 2303179</td>
<td>1</td>
<td>Control of Linear Multivariable Systems (Tutorial to 2303177)</td>
<td>1 SWS</td>
<td>Köpf</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7303177</td>
<td></td>
<td>Control of Linear Multivariable Systems</td>
<td>Prüfung (PR)</td>
<td>Kluwe</td>
</tr>
</tbody>
</table>

Competence Certificate
Success is checked as part of a written overall test (120 minutes) of the course.

Prerequisites
none

Recommendation
For a deeper understanding, basic knowledge of system dynamics and control technology is absolutely necessary, as taught in the ETIT Bachelor module "System Dynamics and Control Technology" M-ETIT-102181.
6.63 Course: Control Technology [T-MACH-105185]

Responsible: Christoph Gönnheimer
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Gönnheimer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2</td>
<td>Prüfung (PR)</td>
<td>76-T-MACH-105185</td>
<td>Gönnheimer</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Control Technology

2150683, SS 2020, 2 SWS, Language: German, Open in study portal

Description

Media:

Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Notes
The lecture control technology gives an integral overview of available control components within the field of industrial production systems.
The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states.
The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems.
The lecture is very practice-oriented and illustrated with numerous examples from different branches.

The following topics will be covered:
- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Distributed control systems
- Field bus
- Trends in the area of control technology

Learning Outcomes:
The students ...
- are able to name the electrical controls which occur in the industrial environment and explain their function.
- can explain fundamental methods of signal processing. This involves in particular several coding methods, error protection methods and analog to digital conversion.
- are able to choose and to dimension control components, including sensors and actors, for an industrial application, particularly in the field of plant engineering and machine tools. Thereby, they can consider both, technical and economical issues.
- can describe the approach for projecting and writing software programs for a programmable logic control named Simatic S7 from Siemens. Thereby they can name several programming languages of the IEC 1131.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Learning Content
The lecture control technology gives an integral overview of available control components within the field of industrial production systems.
The first part of the lecture deals with the fundamentals of signal processing and with control peripherals in the form of sensors and actors which are used in production systems for the detection and manipulation of process states.
The second part handles with the function of electric control systems in the production environment. The main focus in this chapter is laid on programmable logic controls, computerized numerical controls and robot controls. Finally the course ends with the topic of cross-linking and decentralization with the help of bus systems.
The lecture is very practice-oriented and illustrated with numerous examples from different branches.

The following topics will be covered:
- Signal processing
- Control peripherals
- Programmable logic controls
- Numerical controls
- Controls for industrial robots
- Distributed control systems
- Field bus
- Trends in the area of control technology

Annotation
None

Workload
regular attendance: 21 hours
self-study: 99 hours
6.64 Course: Convex Analysis [T-WIWI-102856]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lecture</th>
<th>Type</th>
<th>Prüfung</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900009_WS1920_HK</td>
<td>Convex Analysis</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester.

Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
6.65 Course: Conveying Technology and Logistics [T-MACH-102135]

Responsible: Prof. Dr.-Ing. Kai Furmans
Paolo Pagani

Organisation: KIT Department of Mechanical Engineering

Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Description</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2119100</td>
<td>Fördertechnik und Logistiksysteme</td>
<td>Furmans, Pagani</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Description</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102135</td>
<td>Conveying Technology and Logistics</td>
<td>Furmans</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102135</td>
<td>Conveying Technology and Logistics</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Competence Certificate

alternative test achievement (graded):
- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Prerequisites

none
6.66 Course: Copyright [T-INFO-101308]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2</td>
<td>Copyright</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Dreiier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th>Copyright</th>
<th>Prüfung (PR)</th>
<th>Dreiier, Matz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500064</td>
<td>Copyright</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500064</td>
<td>Copyright</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.67 Course: Corporate Compliance [T-INFO-101288]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101242 - Governance, Risk & Compliance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2400087</td>
<td>2 SWS</td>
<td>Corporate Compliance</td>
<td>Lecture (V)</td>
<td>Herzig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Exam Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7500063</td>
<td>Prüfung (PR)</td>
<td>Corporate Compliance</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
<tr>
<td>SS 2020 7500063</td>
<td>Prüfung (PR)</td>
<td>Corporate Compliance</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
</tbody>
</table>
6.68 Course: Corporate Financial Policy [T-WIWI-102622]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2
- M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2530214 | Corporate Finance Policy | 2 SWS | Lecture (V) | Ruckes |
| SS 2020 | 2530215 | Übungen zu Corporate Finance Policy | 1 SWS | Practice (Ü) | Ruckes, Hoang |

Exams

| WS 19/20 | 7900058 | Corporate Finance Policy | Prüfung (PR) | Ruckes |

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Below you will find excerpts from events related to this course:

Corporate Finance Policy

2530214, SS 2020, 2 SWS, Language: English, [Open in study portal]

Description

The course deals with the theory of corporate finance. Students are told profound knowledge about appropriate financing of firms.

Learning Content

Topics:
- Corporate financing: Some stylized facts
- Financing capacity
- Determination of outside financing
- Liquidity management: Maturity choice
- Cash flows with hidden characteristics
- Cash flows and product markets: Strategic financial structure choice
- Investor activism
- Takeovers

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

6.69 Course: Corporate Risk Management [T-WIWI-109050]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2
- M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Written examination</td>
<td>4,5 SWS</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Lecture (V)</td>
<td>SWS</td>
<td>Practice (Ü)</td>
<td>Ruckes, Hoang</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Practice (Ü)</td>
<td>SWS</td>
<td>Practice (Ü)</td>
<td>Silbereis, Ruckes, Hoang</td>
</tr>
</tbody>
</table>

Exams

| WS 19/20 | Corporate Risk Management | Prüfung (PR) | Ruckes |
| SS 2020 | Corporate Risk Management | Prüfung (PR) | Ruckes |

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The exam is offered each semester. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Prerequisites

None

Recommendation

None

Annotation

The course will exceptionally be held in the winter semester 2019/2020. Usually, however, the event takes place as a block course in the summer semester.

Below you will find excerpts from events related to this course:

2530220, WS 19/20, SWS, Language: English, Open in study portal

Learning Content

- Stochastic basics
- Firm decisions under risk - expected utility theory
- The value motive for corporate risk management
- Common risk measures from practice (e.g. Cash-flow at Risk)
- Operational and financial risk management instruments
- The risk management organization (central vs. decentral)
- External risk reporting (e.g. obligations and incentives)

Workload

The total workload of this course is approximately 135.0 hours. For further information, see German version.
6 COURSES

Course: Corporate Risk Management [T-WIWI-109050]

Literature

Corporate Risk Management

2530218, SS 2020, SWS, Language: English, [Open in study portal](#)

Learning Content
- Stochastic basics
- Firm decisions under risk - expected utility theory
- The value motive for corporate risk management
- Common risk measures from practice (e.g. Cash-flow at Risk)
- Operational and financial risk management instruments
- The risk management organization (central vs. decentral)
- External risk reporting (e.g. obligations and incentives)

Workload
The total workload of this course is approximately 135.0 hours. For further information, see German version.

Literature

Übung zu Corporate Risk Management

2530219, SS 2020, SWS, Language: English, [Open in study portal](#)

Learning Content
- Stochastic basics
- Firm decisions under risk - expected utility theory
- The value motive for corporate risk management
- Common risk measures from practice (e.g. Cash-flow at Risk)
- Operational and financial risk management instruments
- The risk management organization (central vs. decentral)
- External risk reporting (e.g. obligations and incentives)

Workload
The total workload of this course is approximately 135.0 hours. For further information, see German version.

Literature

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020

246
6.70 Course: Credit Risk [T-WIWI-102645]

- **Responsible:** Prof. Dr. Marliese Uhrig-Homburg
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101480 - Finance 3
 - M-WIWI-101483 - Finance 2

Type:
- Written examination

Credits: 4.5

Recurrence: Each winter term

Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530565</td>
<td>Lecture / Practice (VÜ)</td>
<td>Uehrig-Homburg, Mitarbeiter</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (75 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The examination is offered every semester and can be repeated at every regular examination date. A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

Knowledge from the course "Derivatives" is very helpful.

Annotation

See German version.

Below you will find excerpts from events related to this course:

Credit Risk

2530565, WS 19/20, 3 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Notes

The lecture deals with the diverse issues arising in the context of measuring and controlling credit risk. At first, the theoretical and empirical relations between ratings, probabilities of default, and credit spreads are analysed. After that, the focus is on the valuation of credit risk. Finally, the management of credit risk, e.g., using credit derivatives and credit portfolio analysis, is examined, and the legal framework and its implications are discussed.

The objective of this course is to become familiar with the credit markets and the credit risk indicators like ratings, default probabilities and credit spreads. The students learn about the components of credit risk (e.g., default time and default rate) and quantify these in different theoretical models to price credit derivatives.

The total workload for this course is approximately 135.0 hours. For further information see German version.

The assessment consists of a written exam following §4, Abs. 2, 1.

Elective literature:

6.71 Course: Critical Information Infrastructures [T-WIWI-109248]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Details</th>
<th>SWs</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2511400</td>
<td>Critical Information Infrastructures</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Sunyaev, Dehling, Lins</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2511401</td>
<td>Exercises to Critical Information Infrastructures</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Sunyaev, Dehling, Lins</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Details</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900067</td>
<td>Critical Information Infrastructures</td>
<td>Prüfung (PR)</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Competence Certificate

The alternative exam assessment consists of

- the preparation of a written elaboration as well as
- an oral examination as part of a presentation of the work.

Details of the grades will be announced at the beginning of the course.

Prerequisites

None.

Annotation

Below you will find excerpts from events related to this course:

Critical Information Infrastructures

2511400, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)
Notes
The course critical information infrastructures introduces students to the world of these complex sociotechnical systems that permeate societies on a global scale. Students will learn to handle the complexities involved in the design, development, operation and evaluation of critical information infrastructures. In the beginning of the lecture, critical information infrastructures will be introduced on a general level.

The following sessions will focus on an in-depth exploration of selected cases that represent current challenges in research and practice. Students will work (in a group) on a selected case and have to write a seminar paper.

There will be a short introduction to the topics for the course paper on the following topic areas. In addition, it will be possible to propose your own topics as a group in the topic areas:

- Blockchain
- Cloud Computing
- Digital Health
- Fog Computing
- Information Privacy
- Certification of critical IT-Services

In addition to introductions to the topics, an online course is also offered to introduce students to scientific writing. This means to learn how to quote, how a scientific work is structured, and in which form the results of one’s research are presented. Since we offer topics in this course that also correspond to the research interests in our research group, there may also be the opportunity to work on the topics in more depth in the course of a final thesis. Students can choose a topic from a variety of topics of the topics presented, and write a course paper in a group of four students.

Learning objectives:
Students know concepts and technologies relevant for the design and reliable operation of critical information infrastructures and can leverage them to develop solutions for real-world challenges.

Notes:
Please note the changed course structure. The course will be held as a block course.

The number of participants is limited. Please register via the WiWi portal: https://portal.wiwi.kit.edu/ys/3073

Please make sure that your are available at the following dates if you would like to attend the course:

- Introduction: 4 dates on which you have to participate
 - 17.10.2019, 11.30 to 13.00: Foundations of Critical Information Infrastructures (Geb. 05.20, R1C-02)
 - 24.10.2019, 11.30 to 13.00: Introduction to topics (Geb. 05.20, R1C-02)
 - 31.10.2019: 11.30 - 13.00: Socio-Technical/Socio-Material Information Systems & Design Science Research (Geb. 05.20, R1C-02)
 - 07.11.2019, 11.30 to 13.00: The Critical Information Infrastructures Landscape (Geb. 05.20, R1C-02)
- Intermediate presentations with compulsory attendance: 13.12.2019, 10am to 4pm (Geb. 05.20, R1C-02). Exact times will be announced later.
- Final presentations with compulsory attendance: 07.02.2020, 10am to 4pm (Geb. 05.20, R1C-02). Exact times will be announced later.
- Submission of the course paper: Expected on 02.02.2019. Final date will be announced in the course.

Further information on the course structure will be announced in the first session. Depending on the number of participants the individual sessions can have a shorter duration.

The meetings will take place at the Institute AIFB, KIT Campus South, Kollegiengebäude am Kronenplatz (Geb. 05.20) in Kaiserstr. 89.

The number of participants is limited to 24 students. The registration period is from 31.08.2019 to 29.09.2019. Participation slots are expected to be allocated on 01.10.2019 and must be accepted by the student by 06.10.2019. If the slot is not accepted, the free places will be offered to the students in the waiting list.

If you have any questions regarding this registration, please contact sebastian.lins@kit.edu or dehling@kit.edu.
6.72 Course: Current Issues in Innovation Management [T-WIWI-102873]

Responsible: Prof. Dr. Marion Weissenberger-Eibl

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101507 - Innovation Management
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Non exam assessment (following §4(2) 3 of the examination regulation).

Prerequisites
None

Recommendation
None

Annotation
Please note that the seminars we offer vary from semester to semester. Information about the currently offered seminars can be found in the Wiwi-Portal and on the iTM Website.
6.73 Course: Current Topics on BioMEMS [T-MACH-102176]

Responsible: Prof. Dr. Andreas Guber
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101290 - BioMEMS

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Description</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Course Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2143873</td>
<td>Actual topics of BioMEMS</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Guber</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2143873</td>
<td>Actual topics of BioMEMS</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Guber</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Description</th>
<th>Credits</th>
<th>Course Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102176</td>
<td>Current Topics on BioMEMS</td>
<td>Prüfung (PR)</td>
<td>Guber</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Active participation and own presentation (30 Min.)

Prerequisites

None

Below you will find excerpts from events related to this course:

Actual topics of BioMEMS

2143873, WS 19/20, 2 SWS, Language: German, Open in study portal

Description

Media:

Written preparations from the participants.

Workload

Active participation on the seminar and preparation of an own presentation of a topic in BioMEMS.

Lecture time: 21 h
Preparation: 40 h
Preparation of own preparation: 60 h

Actual topics of BioMEMS

2143873, SS 2020, 2 SWS, Language: German, Open in study portal

Description

Media:

Written preparations from the participants.

Workload

Active participation on the seminar and preparation of an own presentation of a topic in BioMEMS.

Lecture time: 21 h
Preparation: 40 h
Preparation of own preparation: 60 h
6.74 Course: Data Mining and Applications [T-WIWI-103066]

Responsible: Rheza Nakhaeizadeh
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2/4 SWS</td>
<td>Lecture (V)</td>
<td>Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Competence Certificate

- Conduction of a larger empirical study in groups
- Reporting of milestones
- Final presentation (approx. 45 minutes)

Prerequisites

None

Notes

Learning objectives:

Students

- Know the definition of Data Mining
- Are familiar with the CRISP-DM
- Are familiar with the most important Data Mining Algorithms like Decision Tree, K-Means, Artificial Neural Networks, Association Rules, Regression Analysis
- Will be able to use a DM-Tool

Content:

Part one: Data Mining:

What is Data Mining?; History of Data Mining; Conferences and Journals on Data Mining; Potential Applications: Data Mining Process; Business Understanding; Data Understanding; Data Preparation; Modeling; Evaluation; Deployment; Interdisciplinary aspects of Data Mining; Data Mining tasks: Data Mining Algorithms (Decision Trees, Association Rules, Regression, Clustering, Neural Networks); Fuzzy Mining; OLAP and Data Warehouse; Data Mining Tools; Trends in Data Mining

Part two: Examples of application of Data Mining

Success parameters of Data Mining Projects; Application in industry; Application in Commerce

Workload:

Total workload for 4.5 CP: approx. 135 hours

Attendance: 30 hours

Preparation and follow-up: 65 hours

Exam preparation: 40 hours

Exam preparation: 40 hours
Learning Content
Part one: Data Mining
Why Data Mining?

- What is Data Mining?
- History of Data Mining
- Conferences and Journals on Data Mining
- Potential Applications
- Data Mining Process:
 - Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment
 - Interdisciplinary aspects of Data Mining
- Data Mining tasks
- Data Mining Algorithms (Decision Trees, Association Rules, Regression, Clustering, Neural Networks)
- Fuzzy Mining
- OLAP and Data Warehouse
- Data Mining Tools
- Trends in Data Mining

Part two: Examples of application of Data Mining

- Success parameters of Data Mining Projects
- Application in industry
- Application in Commerce

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature

- Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.
- David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT Press, Fall 2000
6.75 Course: Data Protection by Design [T-INFO-108405]

Responsible: PD Dr. Oliver Raabe
Organisation: KIT Department of Informatics
Part of: M-INFO-101242 - Governance, Risk & Compliance

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events					
WS 19/20	2400052	Data protection by design	2 SWS	Lecture (V)	Raabe, Werner

Exams				
WS 19/20	7500071	Data Protection by Design	Prüfung (PR)	Raabe

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
6.76 Course: Data Protection Law [T-INFO-101303]

Responsible: Prof. Dr. Nikolaus Marsch
Organisation: KIT Department of Informatics
Part of: M-INFO-101217 - Public Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24018</td>
<td>Datenschutzrecht</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7500162</td>
<td>Data Protection Law</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500083</td>
<td>Data Protection Law</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>
Course: Database Systems and XML [T-WIWI-102661]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2511202</td>
<td>Database Systems and XML</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2511203</td>
<td>Exercises Database Systems and XML</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Oberweis, Fritsch, Schüler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Event ID</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900007</td>
<td>Database Systems and XML</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
None

Below you will find excerpts from events related to this course:

Database Systems and XML

2511202, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Notes
Databases are a proven technology for managing large amounts of data. The oldest database model, the hierarchical model, was replaced by different models such as the relational or the object-oriented data model. The hierarchical model became particularly more important with the emergence of the extensible Markup Language XML. XML is a data format for structured, semi-structured, and unstructured data. In order to store XML documents consistently and reliably, databases or extensions of existing data base systems are required. Among other things, this lecture covers the data model of XML, concepts of XML query languages, aspects of storage of XML documents, and XML-oriented database systems.

Learning objectives:
Students
- know the basics of XML and generate XML documents,
- are able to use XML database systems and to formulate queries to XML documents,
- know to assess the use of XML in operational practice in different application contexts.

Workload:
- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
6.78 Course: Decentrally Controlled Intralogistic Systems [T-MACH-105230]

Responsible: Prof. Dr.-Ing. Kai Furmans
Maximilian Hochstein

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>4</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Title</th>
<th>Weeks</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2117084</td>
<td>Decentrally controlled intralogistic systems</td>
<td>2 SWS</td>
<td>Practical course (P)</td>
<td>Furmans, Hochstein</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2117084</td>
<td>Decentrally controlled intralogistic systems</td>
<td>2 SWS</td>
<td>Practical course (P)</td>
<td>Furmans, Hochstein, Markert</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam ID</th>
<th>Course Title</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105230</td>
<td>Decentrally Controlled Intralogistic Systems</td>
<td>Prüfung (PR)</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Competence Certificate
Certificate by colloquium with presentation

Prerequisites
None

Below you will find excerpts from events related to this course:

Decentrally controlled intralogistic systems
2117084, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Practical course (P)
Notes

Proof:
- Certificate by colloquium with presentation

Note:
- Number of participants limited
- Participants will be selected
- One course during summer semester in english
- Compulsory attendance

Media:
- Lego Mindstorms, PC

Teaching content:
- Introduction to material handling systems
- Construction of a model for decentralized logistic systems
- Object-oriented programming with LabView
- Implementation of the model with Mindstorms
- Presentation of the results

Learning objectives:
Students are able to:
- Model complex cinematic systems and use object-oriented programming for this purpose,
- Built experimental setups in a team for decentralized controlled intralogistic systems, choose appropriate system components and models and finally proof the function by using experiments.

Effort:
- Regular attendance: 10 hours
- Self-study: 80 hours (workplace is provided)

Dates and further information see homepage

Decentrally controlled intralogistic systems
2117084, SS 2020, 2 SWS, Language: German, Open in study portal

Description
Media:
Lego Mindstorms, PC

Learning Content
- Introduction to material handling systems
- Construction of a model for decentralized logistic systems
- object-oriented programming with LabView
- Implementation of the model with Mindstorms

Presentation of the results

Annotation
number of participants limited
participants will be selected
One course during summer semester in english

Workload
regular attendance: 10 hours
self-study: 80 hours (workplace is provided)

Literature
none
6.79 Course: Derivatives [T-WIWI-102643]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101480 - Finance 3
M-WIWI-101482 - Finance 1
M-WIWI-101483 - Finance 2

Events
SS 2020 | 2530550 | Derivatives | 2 SWS | Lecture (V) | Uhrig-Homburg, Thimme
SS 2020 | 2530551 | Übung zu Derivate | 1 SWS | Practice (Ü) | Uhrig-Homburg, Eska
Exams
WS 19/20 | 7900051 | Derivatives | | Prüfung (PR) | Uhrig-Homburg

Competence Certificate
The assessment takes place in the form of a written examination (75 minutes) according to §4(2), 1 SPO. The examination takes place during the semester break. The examination is offered every semester and can be repeated at any regular examination date. A bonus can be acquired through successful participation in the exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Derivatives
2530550, SS 2020, 2 SWS, Language: German, Open in study portal

Description
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Learning Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:
6.80 Course: Design Thinking [T-WIWI-102866]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2545008</td>
<td>Design Thinking (Track 1)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Jochem, Terzidis, Lau</td>
</tr>
<tr>
<td>SS 2020 2545008</td>
<td>Design Thinking (Track 1)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Terzidis, González</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900084</td>
<td>Design Thinking (Track 1)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessments (§4(2), 3 SPO).

Prerequisites
None

Recommendation
None

Annotation
The seminar content will be published on the website of the institute.

Below you will find excerpts from events related to this course:

Design Thinking (Track 1)
2545008, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Notes
Design Thinking is a user-centric innovation management method. The iterative process first analyzes the problem space and builds a sound understanding of the future users. Subsequently, ideas for the solution are generated, prototypes are created and tested by the user group. The result is a proven and validated product.

Learning goals:
During the seminar, the students learn basic procedures for achieving user-centric innovations. These are concrete methods that start with the potential user of certain products and services. The method is problem-oriented and emphasizes the specific customer situation. After attending the seminar, the students have a clear understanding of the need to explore end-user needs and are able to independently apply the methods of Design Thinking for developing market-driven innovations at a basic level.

Credentials:
Registration is via the Wiwi portal.

ATTENTION: Creditability in the seminar module: The seminar is NOT credited in the seminar module! Crediting is only possible in the EXPERT MODULE ENTREPRENEURSHIP.
6.81 Course: Designing Interactive Systems [T-WIWI-110851]

Responsible: Prof. Dr. Alexander Mädche
Dr. Stefan Morana

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-104068 - Information Systems in Organizations
M-WIWI-104080 - Designing Interactive Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Module</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2540558</td>
<td>Designing Interactive Systems</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Mädche, Gnewuch, Benke</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam of 1 hour and by submitting written papers as part of the exercise. Details will be announced at the beginning of the course.

Prerequisites
None

Annotation
This course replaces T-WIWI-108461 "Interactive Information Systems" starting summer term 2020. The course is held in English.

Below you will find excerpts from events related to this course:

Designing Interactive Systems
2540558, SS 2020, 3 SWS, Language: English, Open in study portal

Description
Advanced information and communication technologies make interactive systems ever-present in the users’ private and business life. They are an integral part of smartphones, devices in the smart home, mobility vehicles as well as at the working place in production and administration (e.g. in the form of dashboards).

With the continuous growing capabilities of computers, the design of the interaction between human and computer becomes even more important. The aim of this course is to introduce the foundations, theoretical grounding, key concepts and principles as well as current practice of interactive systems. The contents of the course abstract from the technical implementation details. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

Notes
The lecture is complemented with a capstone project assignment, where students analyze and review existing interactive systems and suggest areas of improvement / extensions.

Learning Content

· Basics
· Theoretical foundations
· Key concepts and design principles for specific interactive systems classes
· Capstone project

Literature

The lecture bases to a large extend on
Additional literature will be provided in the lecture.
6.82 Course: Developing Business Models for the Semantic Web [T-WIWI-102851]

Responsible: Prof. Dr. York Sure-Vetter
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

Type: Examination of another type
Credits: 3
Recurrence: Irregular
Version: 1

Competence Certificate
Alternative exam assessments.

Prerequisites
None

Recommendation
As a recommendation to attending the seminar, basic knowledge about semantic technologies and concepts should be available. This may be acquired by attending one of the following lectures – Wissensmanagement, Semantic Web Technologies 1, Semantic Web Technologies 2 or by studying related literature. Furthermore the topic entrepreneurship should be of interest.
6.83 Course: Digital Health [T-WIWI-109246]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2511402 Digital Health 2 SWS Lecture (V) Sunyaev, Thiebes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900068 Digital Health Prüfung (PR) Sunyaev</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (written elaboration, presentation, peer review, oral participation) according to §4(2),3 of the examination regulation. Details of the grading will be announced at the beginning of the course.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Digital Health
2511402, WS 19/20, 2 SWS, Language: German/English, [Open in study portal](#)
Lecture (V)
Notes
The course Digital Health offers students a possibility to gain insight into current developments in the digitalization of the health care system. Students will first be introduced to the basics and challenges of the digitalization of the health care system. After the introduction lecture, the course aims to give insights into current topics in the field of digital health and offers students an opportunity to prepare a scientific paper in a group of up to three students.

There will be a short introduction lecture on all topics with regard to the written assignments. It is possible for students to write their paper in one of the following topics. Furthermore, groups of students have the possibility to propose their own topics.

- Artificial Intelligence
- Blockchain
- Cloud Computing
- Gamification
- Genomics
- Information Privacy

In addition to introduction lectures on the topics, an online course is offered to introduce students to scientific writing. This includes learning how to quote, how a scientific paper is structured and in which form the results of one's research are presented. Since we offer topics that also correspond to the research interests of our research associates, there may also be the opportunity to investigate these topics more deeply in a master thesis. Students can give their preferences for the topics offered and are afterwards assigned to groups of up to three students based on their preferences.

Learning objectives:
Students are familiar with the current developments and challenges of digitization in the health care sector, can independently develop corresponding solutions, and discuss their developed solutions in groups.

Workload:
4.5 ECTS = approx. 135 hours.

Comments:
The number of participants is limited. Please register via the WiWi portal: https://portal.wiwi.kit.edu/ys/3107

Please keep the following dates available if you are planning to attend the course:

- **Introduction:** 3 dates you have to attend
 - 10.2019, 15.45 to 17.15: Foundations of Digital Health. (Geb. 05.20, R1C-03)
 - 10.2019, 15.45 to 17.15: Cloud Computing, Genomics, Information Privacy (Geb. 05.20, R1C-03)
 - 11.2019, 15.45 to 17.15: Blockchain, Artificial Intelligence, Gamification (Geb. 05.20, R1C-03)
- **Intermediate presentation to be attended:** 04.12.2019, 10:00 to 16:00 (Building 05.20, R1A-11). Exact times will be announced soon.
- **Final presentation to be attended:** 02.2020 and 27.02.2020, 09:00 to 19:00 (Building 05.20, R1C-03). Exact times will be announced soon.
- **Submission of the written assignment:** Estimated on 12.02.2019. Final date will be announced in the event.

Further information on the procedure will be announced in the first lecture. Depending on the number of participants, each session may have a shorter duration.

The meetings will take place at the Institute AIFB, KIT-Campus Süd, Kollegiengebäude am Kronenplatz (building 05.20), Kaiserstr. 89.

The number of participants is limited to 30 students. The registration period is from **31.08.2019** to **17.10.2019**. The places are expected to be allocated on **18.10.2019** and must be accepted by the students by **22.10.2019**. If the allocation is not accepted, the free places will be offered to the students in the waiting list.

If you have any questions regarding this registration, please contact scott.thiebes@kit.edu or manuel.schmidt-kraepelin@kit.edu.
6.84 Course: Digital Marketing and Sales in B2B [T-WIWI-106981]

Responsible: Anja Konhäuser

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101487 - Sales Management
- M-WIWI-105312 - Marketing and Sales Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>1.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Annotation
Participation requires an application. The application period starts at the beginning of the semester. More information can be obtained on the website of the research group Marketing and Sales (marketing.iism.kit.edu).
Access to this course is restricted. Typically all students will be granted the attendance of one course with 1.5 ECTS. Nevertheless attendance can not be guaranteed.
For further information please contact Marketing and Sales Research Group (marketing.iism.kit.edu).
Please note that only one of the 1.5-ECTS courses can be attended in this module.

Below you will find excerpts from events related to this course:

Digital Marketing and Sales in B2B
2572176, WS 19/20, 1 SWS, Language: English, Open in study portal

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation. (team presentation of a case study with subsequent discussion totalling 30 minutes).
Notes
Learning Sessions:
The class gives insights into digital marketing strategies as well as the effects and potential of different channels (e.g., SEO, SEA, Social Media). After an overview of possible activities and leverages in the digital marketing field, including their advantages and limits, the focus will turn to the B2B markets. There are certain requirements in digital strategy specific to the B2B market, particularly in relation to the value chain, sales management and customer support. Therefore, certain digital channels are more relevant for B2B marketing than for B2C marketing.
Once the digital marketing and tactics for the B2B markets are defined, further insights will be given regarding core elements of a digital strategy: device relevance (mobile, tablet), usability concepts, website appearance, app decision, market research and content management. A major advantage of digital marketing is the possibility of being able to track many aspects of user reactions and user behaviour. Therefore, an overview of key performance indicators (KPIs) will be discussed and relationships between these KPIs will be explained. To measure the effectiveness of digital activities, a digital report should be set up and connected to the performance numbers of the company (e.g. product sales) – within the course the setup of the KPI dashboard and combination of digital and non-digital measures will be shown to calculate the Return on Investment (RoI).

Presentation Sessions:
After the learning sessions, the students will form groups and work on digital strategies within a case study format. The presentation of the digital strategy will be in front of the class whereas the presentation will take 20 minutes followed by 10 minutes questions and answers.

- Understand digital marketing and sales approaches for the B2B sector
- Recognise important elements and understand how-to-setup of digital strategies
- Become familiar with the effectiveness and usage of different digital marketing channels
- Understand the effect of digital sales on sales management, customer support and value chain
- Be able to measure and interpret digital KPIs
- Calculate the Return on Investment (RoI) for digital marketing by combining online data with company performance data

time of presentness = 15 hrs.
private study = 30 hrs.
6.85 Course: Digital Service Design [T-WIWI-105773]

Responsible: Prof. Dr. Alexander Mädche
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102806 - Service Innovation, Design & Engineering
M-WIWI-104080 - Designing Interactive Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540420</td>
<td>Digital Service Design</td>
<td>3</td>
<td>Lecture (V)</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900210</td>
<td>Digital Service Design</td>
<td>Prüfung (PR)</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment consists of a written exam of 1 hour length and by submitting written papers as part of the exercise. Details are announced at the beginning of the course.

Prerequisites

None

Recommendation

None

Annotation

The course is held in English.

Below you will find excerpts from events related to this course:

Digital Service Design

2540420, WS 19/20, 3 SWS, Language: English, Open in study portal

Description

Designing services is different from designing products. In contrast to products being discrete and tangible objects, services are co-produced by people and only provide value when they are actually used. Digital services represent a specific category of services and specifically leverage and integrate information technology in the service delivery process.

The aim of this course is to introduce key concepts and theoretical foundations of digital service design. Furthermore, a management perspective looking at the entire service lifecycle, covering the organizational and team level as well as state-of-the-art digital service design processes (e.g. agile, lean, continuous delivery) is provided. Finally, an introduction of important digital service design practices and tools supporting user research, conceptualization & prototyping as well as evaluation is given.

The lecture is complemented with a Digital Service Design challenge, where students leverage practices and tools from the lecture to suggest improvements for an existing digital service. The challenge is carried out in cooperation with practice partners (e.g. Commerzbank).

Learning Content

- Definition and key concepts of digital service design and related terms
- Introduction to the business and design perspective of a service design project
- The digital service design process from strategy through planning and prototyping to launching the digital service.
- Practice-oriented capstone project focusing on the design of a real-world digital service
Literature

Course: Digital Services: Business Models and Transformation [T-WIWI-110280]

Responsible: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101448 - Service Management
- M-WIWI-102754 - Service Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2595484</td>
<td>Digital Services: Business Models and Transformation</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Satzger, Schüritz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2595485</td>
<td></td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Enders, Schüritz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900302</td>
<td>Digital Services: Business Models and Transformation</td>
<td>Prüfung (PR)</td>
<td>Satzger</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min.) (following §4(2), 1 SPOs) and by submitting written papers as part of the exercise.

Prerequisites

None

Recommendation

None

Annotation

former name until winter semester 2019/2020: "Business and IT Service Management" (T-WIWI-102881)

Below you will find excerpts from events related to this course:

Digital Services: Business Models and Transformation

2595484, WS 19/20, 2 SWS, Language: English, [Open in study portal]

Notes

Formerly "Business and IT Service Management"

Learning Content

While the digitalization creates new opportunities for organizations, it also comes with its challenges: formerly proven business models become obsolete and need to be refined, internal processes cannot keep up with the requirements of the market and need to reassessed in any way.

The shift towards a service-based economy enables and requires companies to leverage advances in information technology to create added value for their customers. In particular, the emergence of big data and analytics enables better decision-making. The lecture teaches approaches that enable organizations to adapt their business models to new market requirements and showcases how to plan and execute a successful transformation to the desired organizational setup.

The lecture links academic content with practical examples and exercises. Students are asked to actively engage in the discussion and contribute their knowledge. Invited guest speakers from industry and case studies emphasize the practical character of this lecture.

Workload

The total workload for this course is approximately 135 hours. For further information see German version.
Literature
Cardoso et al. (Hrsg.) (2015), Fundamentals on Service Systems
Hartmann/ Zaki/ Feldmann/ Neely (2016), Capturing value from big data - a taxonomy of data-driven business models used by start-up firms, IJPOR, 36 (10), 1382-1406.
6.87 Course: Digital Transformation and Business Models [T-WIWI-108875]

Responsible: Dr. Daniel Jeffrey Koch

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Digital Transformation and Business Models</td>
<td>Seminar (S)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Prüfung (PR)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td>Digital Transformation and Business Models</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Non exam assessment (following §4(2) 3 of the examination regulation). The final grade is composed 75% of the grade of the written paper and 25% of the presentation.

Prerequisites

None

Recommendation

Prior attendance of the course Innovation Management is recommended.

Below you will find excerpts from events related to this course:

Digital Transformation and Business Models

2545103, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Notes

The seminar "Digital Transformation and Business Models" aims at the development of thematic aspects of digital transformation with simultaneous application of different business model methodologies. Established companies face the challenge of digital transformation. The digital transformation is particularly relevant for the business models of industrial enterprises. As part of innovation management, the examination of business model changes against the background of digital transformation is one of the main challenges facing the German economy. At the beginning, seminar topics will be assigned. These will be presented and discussed at the end of the seminar. In the first seminar date impulses to business model methodologies and the digital transformation take place, which are to be discussed then, in order to provide an understanding for the topic complex and to ensure the purposeful development of the seminar topics.
Course: Digital Transformation of Organizations [T-WIWI-106201]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-101448 - Service Management
- M-WIWI-102754 - Service Economics and Management
- M-WIWI-102808 - Digital Service Systems in Industry
- M-WIWI-104068 - Information Systems in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2540556</th>
<th>Digital Transformation of Organizations</th>
<th>3 SWS</th>
<th>Lecture (V)</th>
<th>Mädche</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>7900230</th>
<th>Digital Transformation of Organizations</th>
<th>Prüfung (PR)</th>
<th>Mädche</th>
</tr>
</thead>
</table>

Competence Certificate
The assessment consists of a written exam of 1 hour length and by submitting written papers as part of the exercise. Details will be announced at the beginning of the course.

Prerequisites
None

Annotation
The course will be held in English.

Below you will find excerpts from events related to this course:

Digital Transformation of Organizations
2540556, SS 2020, 3 SWS, Language: English, Open in study portal

Description
During the last decades we witnessed a growing importance of Information Technology (IT) in the business world along with faster and faster innovation cycles. IT has become core for businesses from an operational company-internal and external customer perspective. Today, IT is considered as key enabler of operational excellence ranging from the enrichment of routine working tasks (e.g., enterprise resource planning systems) to e-enabled integration of entire business eco-systems (e.g., e-supply chains). Complementing this primarily company-internal perspective on IT, we have recently seen a massive growth of digital extensions of existing products and services across all industries. The disruptive potential of IT has already transformed selected key industries, e.g. media or retail, and its impact is continuously growing in all areas of business and society.

Large-scale information systems (IS) in organizations strongly interplay with work practices of individual employees as well as organizational structures shaping and being shaped by individuals’ behavior. Thus, successful implementation of IS requires dealing with transformation beyond technology. The ability to implement and use IS in a way supporting its overall value proposition has become a central success determinant. Accordingly, the course “Management of Information Systems” course is designed to provide a comprehensive insight into theoretical foundations, concepts, tools, and current practice of IS. The lecture is complemented with a case study. Students get the opportunity to analyze and propose solutions for a selected real-world IS implementation.
Learning Content

- Definition and key concepts of Information Systems
- Introduction of different types of application systems (organizational process & information-centric systems, customer-centric systems, supplier-centric systems and people-centric systems) and their characteristics
- The digital transformation process: The pre-implementation, implementation and post-implementation phase covering facets such as business/IT alignment, packaged software selection, IS implementation projects, as well as adoption & use of IS
- Practice-oriented case study focusing on real-world IS scenarios

Literature

Course: Digitalization from Production to the Customer in the Optical Industry [T-MACH-110176]

Responsible: Marc Wawerla
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101282 - Global Production and Logistics
- M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Lecture Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149701</td>
<td>Digitalization from Production to the Customer in the Optical Industry</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td></td>
<td>Wawerla</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Lecture Title</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-110176</td>
<td>Digitalization from Production to the Customer in the Optical Industry</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Wawerla</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative test achievement (graded):
- Processing and presentation (ca. 15 min) of a case study with weighting 20%
- Oral exam (ca. 20 min) with weighting 80%

Prerequisites

none

Below you will find excerpts from events related to this course:

Digitalization from Production to the Customer in the Optical Industry

2149701, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Description

The lecture deals with Digitalization along the entire value chain end-to-end, with a focus on production and supply chain. Within this context, concepts, tools, methods, technologies and concrete applications in the industry are presented. Furthermore, the students get the opportunity to get first-hand insights into the digitalization journey of a German technology company.

Main topics of the lecture:

- Concepts and methods such as disruptive innovation and agile project management
- Overview on technologies at disposal
- Practical approaches in innovation
- Applications in industry
- Field trip to ZEISS
Notes
The lecture deals with Digitalization along the entire value chain end-to-end, with a focus on production and supply chain. Within this context, concepts, tools, methods, technologies and concrete applications in the industry are presented. Furthermore, the students get the opportunity to get first-hand insights into the digitalization journey of a German technology company.

Main topics of the lecture:
- Concepts and methods such as disruptive innovation and agile project management
- Overview on technologies at disposal
- Practical approaches in innovation
- Applications in industry
- Field trip to ZEISS

Learning Outcomes:
The students ...
- are capable to comment on the content covered by the lecture.
- are able to analyze and evaluate the suitability of digitalization technologies in the optical industry.
- are able to assess the applicability of methods such as disruptive innovation and agile project management.
- are able to appreciate the practical challenges to digitalization in industry.

Workload:
regular attendance: 21 hours
self-study: 99 hours
6.90 Course: Digitalization of Products, Services & Production [T-MACH-108491]

Responsible: Dr.-Ing. Bernd Pätzold
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2122310</td>
<td>2 SWS Seminar (S)</td>
<td>Pätzold</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-108491</td>
<td>Prüfung (PR)</td>
<td>Pätzold</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment of another type. Two presentations in team work and two written compositions. Grading: each composition 1/6 and each presentation 2/3.

Prerequisites

none

Below you will find excerpts from events related to this course:

Digitalization of Products, Services & Production
2122310, WS 19/20, 2 SWS, Language: German, Open in study portal

Learning Content

- Digitalization of products, services and production in the context of Industry 4.0.
- Key drivers for ongoing digitalization and their impact on future product development and manufacturing.
- Methods and procedures to design the according transformation process.
- Intensive group discussions of use-case scenarios using practical examples from the industry.
6.91 Course: Disassembly Process Engineering [T-BGU-101850]

Responsible: Prof. Dr.-Ing. Sascha Gentes

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101110 - Process Engineering in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 6243803 | Verfahrenstechniken der Demontage | 2 SWS | Lecture / Practice (VÜ) | Gentes |

Exams

| WS 19/20 | 8240101850 | Disassembly Process Engineering | Prüfung (PR) | Gentes |

Prerequisites

None

Recommendation

None

Annotation

None
6.92 Course: Discrete-Event Simulation in Production and Logistics [T-WIWI-102718]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102805 - Service Operations
- M-WIWI-102832 - Operations Research in Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2550488</th>
<th>Ereignisdiskrete Simulation in Produktion und Logistik</th>
<th>3 SWS</th>
<th>Lecture (V)</th>
<th>Spieckermann</th>
</tr>
</thead>
</table>

Competence Certificate
The assessment consists of a written paper and an oral exam of about 30-40 min (alternative exam assessment).

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course.
The course is planned to be held every summer term.
The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Ereignisdiskrete Simulation in Produktion und Logistik
2550488, SS 2020, 3 SWS, Language: German, Open in study portal

Notes
Simulation of production and logistics systems is an interdisciplinary subject connecting expert knowledge from production management and operations research with mathematics/statistics as well as computer science and software engineering. With completion of this course, students know statistical foundations of discrete simulation, are able to classify and apply related software applications, and know the relation between simulation and optimization as well as a number of application examples. Furthermore, students are enabled to structure simulation studies and are aware of specific project scheduling issues.

Learning Content
Simulation of production and logistics systems is an interdisciplinary subject connecting expert knowledge from production management and operations research with mathematics/statistics as well as computer science and software engineering. With completion of this course, students know statistical foundations of discrete simulation, are able to classify and apply related software applications, and know the relation between simulation and optimization as well as a number of application examples. Furthermore, students are enabled to structure simulation studies and are aware of specific project scheduling issues.

Annotation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Besides knowledge of Operations Research students are assumed to be familiar with the following topics:

- Introduction in Statistics
- Programming basics (algorithms and data structures)
- Basic knowledge in production and logistics

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature

6 COURSES

6.93 Course: Dynamic Macroeconomics [T-WIWI-109194]

Type: Written examination
Credits: 4.5
Recurrence: Each winter term
Version: 1

Responsibilities:
- Prof. Dr. Johannes Brumm
- Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101478 - Innovation and Growth
- M-WIWI-101496 - Growth and Agglomeration
- M-WIWI-101497 - Agglomeration and Innovation

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2560402</td>
<td>Dynamic Macroeconomics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Scheffel</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2560403</td>
<td>Übung zu Dynamic Macroeconomics</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Krause</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900261</td>
<td>Dynamic Macroeconomics</td>
<td>Prüfung (PR)</td>
<td>Scheffel</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Dynamic Macroeconomics
2560402, WS 19/20, 2 SWS, Language: English, Open in study portal

Description
The course Dynamic Macroeconomics addresses macroeconomic questions on an advanced level. The main focus of this course is on dynamic programming and its fundamental role in modern macroeconomics. After starting with the necessary mathematical tools, several applications in labor economics, economic growth, and asset pricing are introduced. The course pursues a hands-on approach so that students not only gain theoretical insights but also learn numerical tools to solve dynamic economic models using the modern programming language Python.

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature
Literature and lecture notes are provided during the course.
Efficient Energy Systems and Electric Mobility [T-WIWI-102793]

Responsible: PD Dr. Patrick Jochem
Prof. Dr. Russell McKenna

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Efficient Energy Systems and Electric Mobility

2581006, SS 2020, 2 SWS, Language: English, Open in study portal

Lecture (V)

Notes
This lecture series combines two of the most central topics in the field of energy economics at present, namely energy efficiency and electric mobility. The objective of the lecture is to provide an introduction and overview to these two subject areas, including theoretical as well as practical aspects, such as the technologies, political framework conditions and broader implications of these for national and international energy systems.

- Understand the concept of energy efficiency as applied to specific systems
- Obtain an overview of the current trends in energy efficiency
- Be able to determine and evaluate alternative methods of energy efficiency improvement
- Overview of technical and economical stylized facts on electric mobility
- Judging economical, ecological and social impacts through electric mobility
Learning Content
This lecture series combines two of the most central topics in the field of energy economics at present, namely energy efficiency and electric mobility. The objective of the lecture is to provide an introduction and overview to these two subject areas, including theoretical as well as practical aspects, such as the technologies, political framework conditions and broader implications of these for national and international energy systems.

The energy efficiency part of the lecture provides an introduction to the concept of energy efficiency, the means of affecting it and the relevant framework conditions. Further insights into economy-wide measurements of energy efficiency, and associated difficulties, are given with recourse to several practical examples. The problems associated with market failures in this area are also highlighted, including the Rebound Effect. Finally and by way of an outlook, perspectives for energy efficiency in diverse economic sectors are examined.

The electric mobility part of the lecture examines all relevant issues associated with an increased penetration of electric vehicles including their technology, their impact on the electricity system (power plants and grid), their environmental impact as well as their optimal integration in the future private electricity demand (i.e. smart grids and V2G). Besides technical aspects the user acceptance and behavioral aspects are also discussed.

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature
Will be announced in the lecture.
6.95 Course: eFinance: Information Systems for Securities Trading [T-WIWI-110797]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101483 - Finance 2
- M-WIWI-101480 - Finance 3

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

- **WS 19/20**
 - 2540454
 - **eFinance: Information Systems for Securities Trading**
 - 2 SWS
 - Lecture (V)
 - Weinhardt, Notheisen
 - 2540455
 - **Übungen zu eFinance: Wirtschaftsinformatik für den Wertpapierhandel**
 - 1 SWS
 - Practice (Ü)
 - Jaquart, Soufi

Exams

- **WS 19/20**
 - 7900182
 - **eFinance: Information Engineering and Management for Securities Trading**
 - Prüfung (PR)
 - Weinhardt
 - 7900309
 - **eFinance: Information Systems for Securities Trading**
 - Prüfung (PR)
 - Weinhardt

Competence Certificate

Success is monitored by means of ongoing elaborations and presentations of tasks and an examination (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Prerequisites

see below

Below you will find excerpts from events related to this course:

eFinance: Information Systems for Securities Trading
2540454, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V)

Description

The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Learning Content

The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature

Elective literature:

6.96 Course: Electronics and EMC [T-ETIT-100723]

Responsible: Dr. Martin Sack
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101163 - High-Voltage Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2307378</td>
<td>Electronics and EMC</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Sack</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course</th>
<th>Type</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7307378</td>
<td>Electronics and EMC</td>
<td>Prüfung (PR)</td>
<td>Sack</td>
</tr>
</tbody>
</table>
6.97 Course: Elements and Systems of Technical Logistics [T-MACH-102159]

Responsible: Georg Fischer
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101263 - Introduction to Logistics
- M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture / Practice (VÜ)</td>
<td>3 SWS</td>
<td>Mittwollen, Rauscher</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Recommendation

Knowledge out of Basics of Technical Logistics (T-MACH-102163) preconditioned

Below you will find excerpts from events related to this course:

Elements and systems of Technical Logistics

Type: Lecture / Practice (VÜ)

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117096</td>
<td>Lecture / Practice (VÜ)</td>
<td>3 SWS</td>
<td>Mittwollen, Rauscher</td>
<td></td>
</tr>
</tbody>
</table>

Learning Content

- material flow systems and their (conveying) technical components
- mechanical behaviour of conveyors;
- structure and function of conveyor machines; elements of intralogistics (belt conveyor, racks, automatic guided vehicles, fan-in, bifurcation, and etc.)
- sample applications and calculations in addition to the lectures inside practical lectures

Annotation

Knowledge out of Basics of Technical Logistics preconditioned

Workload

presence: 36h
rework: 84h

Literature

recommendations during lectures
6.98 Course: Emerging Trends in Digital Health [T-WIWI-110144]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101472 - Informatics
 M-WIWI-101628 - Emphasis in Informatics
 M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The alternative exam assessment consists of a final thesis.

Prerequisites
None.

Annotation
The course is usually held as a block course.
6.99 Course: Emerging Trends in Internet Technologies [T-WIWI-110143]

Responsible: Prof. Dr. Ali Sunyaev

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The alternative exam assessment consists of a final thesis.

Prerequisites
None.

Annotation
The course is usually held as a block course.
6.100 Course: Emissions into the Environment [T-WIWI-102634]

Responsible: Ute Karl
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101412 - Industrial Production III
 M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2581962</td>
<td>Emissions into the Environment</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7981962</td>
<td>Emissions into the Environment</td>
<td>Prüfung (PR)</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Recommendation

None

Below you will find excerpts from events related to this course:

Emissions into the Environment

2581962, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Notes

Emission sources/emission monitoring/emission reduction: The lecture gives an overview of relevant emissions of air pollutants and greenhouse gases, emission monitoring and pollutant abatement options together with relevant legal regulations at national and international level. In addition, the fundamentals of circular economy, waste management and recycling are explained.

Structure:

Air pollution control

- Introduction, terms and definitions
- Sources of air pollutants
- Legal framework of air quality control
- Technical measures to reduce air pollutant emissions

Circular economy, recycling and waste management

- Waste collection and logistics
- Dual systems for packaging waste
- Recycling
- Thermal and biological waste treatment
- Final waste disposal
Learning Content
The course will provide an overview of sources of air pollution, waste and municipal waste; methods to monitor and to reduce/manage pollutant flows; regulatory framework on national and international level.

A Air pollution control
- Introduction and definitions
- Sources and pollutants
- Regulatory framework
- Emission monitoring
- Air pollution control measures

B Waste management and Recycling
- Introduction and regulatory framework
- Statistics and logistics
- Recycling and disposal
- Waste treatment

C Waste water treatment
- Municipal waste water treatment systems
- Sewage sludge disposal

Workload
The total workload for this course is approximately 105 hours. For further information see German version.

Literature
Will be announced in the course.
6.101 Course: Employment Law I [T-INFO-101329]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lectures (V)</th>
<th>Events</th>
<th>Lectures (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Hoff</td>
<td>SS 2020</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lectures (V)</th>
<th>Events</th>
<th>Lectures (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
<td>SS 2020</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>
6.102 Course: Employment Law II [T-INFO-101330]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>24668</td>
<td>Employment Law II</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500058</td>
<td>Employment Law II</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500098</td>
<td>Employment Law II</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>
Course: Energy and Environment [T-WIWI-102650]

Responsible: Ute Karl
Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101452 - Energy Economics and Technology
- M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2581003</td>
<td>Energy and Environment</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Karl</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2581004</td>
<td>Übungen zu Energie und Umwelt</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Keles, Weinand</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981003</td>
<td>Energy and Environment</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Energy and Environment

Lecture (V)

2581003, SS 2020, 2 SWS, Language: German, Open in study portal

Notes

The lecture focuses on the environmental impacts arising from fossil fuels use and on the methods for the evaluation of such impacts. The first part of the lecture describes the environmental impacts of air pollutants and greenhouse gases as well as technical measures for emission control. The second part covers methods of impact assessment and their use in environmental communication as well as methods for the scientific support of emission control strategies.

The topics include:

- Fundamentals of energy conversion
- Formation of air pollutants during combustion
- Technical measures to control emissions from fossil-fuel combustion processes
- External effects of energy supply (life cycle analyses of selected energy systems)
- Environmental communication on energy services (e.g. electricity labelling, carbon footprint)
- Integrated Assessment Modelling to support the European Clean Air Strategy
- Cost-effectiveness analyses and cost-benefit analyses for emission control strategies
- Monetary valuation of external effects (external costs)

Learning Content

The focus of the lecture is put on environmental impacts of fossil fuel conversion and related assessment methods. The list of topics is given below.

- Fundamentals of energy conversion
- Air pollutant formation from fossil fuel combustion
- Control of air pollutant emissions from fossil-fuelled power plants.
- Measures to improve conversion efficiency of fossil fuelled power plants.
- External effects of energy supply (Life Cycle Assessment of selected energy systems)
- Integrated Assessment models supporting the European Thematic Strategy on Air
- Cost-effectiveness analyses and cost-benefit analyses of air pollution control measures
- Monetary evaluation of external effects of energy supply (external costs)

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature
The references for further reading are included in the lecture documents (see ILIAS)
6.104 Course: Energy and Process Technology I [T-MACH-102211]

Responsible: Prof. Dr.-Ing. Hans-Jörg Bauer
Dr.-Ing. Corina Schwitzke
Dr. Amin Velji
Heiner Wirbser

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101296 - Energy and Process Technology I

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2157961</td>
<td>Written exam</td>
<td>9</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Lecture / Practice (VÜ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-102211</td>
<td>Energy and Process Technology I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauer, Wirbser, Schwitzke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 76-T-MACH-102211</td>
<td>Energy and Process Technology I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauer, Wirbser, Schwitzke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy and Process Technology I
2157961, WS 19/20, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Notes
The last third of the lecture deals with the topic Thermal Turbomachinery. The basic principles, the functionality and the scope of application of gas and steam turbines for the generation of electrical power and propulsion technology are addressed.

The students are able to:
- describe and calculate the basic physical-technical processes
- apply the mathematical and thermodynamical description
- reflect on and explain the diagrams and schematics
- comment on diagrams
- explain the functionality of gas and steam turbines and their components
- name the applications of thermal turbomachinery and their role in the field of electricity generation and propulsion technology
6.105 Course: Energy and Process Technology II [T-MACH-102212]

Responsible: Dr.-Ing. Corina Schwitzke
Heiner Wirbser

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101297 - Energy and Process Technology II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Exam</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2170832</td>
<td>Energy and Process Technology II</td>
<td>6 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schützke, Wirbser, Pritz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Exam</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102212</td>
<td>Energy and Process Technology II</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Schützke, Wirbser, Bauer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
none

Below you will find excerpts from events related to this course:

Energy and Process Technology II
2170832, SS 2020, 6 SWS, Language: German, Open in study portal

Lecture / Practice (VÜ)

Notes
Thermal Turbomachinery - In the first part of the lecture deals with energy systems. Questions regarding global energy resources and their use, especially for the generation and provision of electrical energy, are addressed. Common fossil and nuclear power plants for the centralized supply with electrical power as well as concepts of power-heat cogeneration for the decentralized electrical power supply by means of block-unit heat and power plants, etc. are discussed. Moreover, the characteristics and the potential of renewable energy conversion concepts, such as wind and hydro-power, photovoltaics, solar heat, geothermal energy and fuel cells are compared and evaluated. The focus is on the description of the potentials, the risks and the economic feasibility of the different strategies aimed to protect resources and reduce CO2 emissions.

The students are able to:

- discuss and evaluate energy resources and reserves and their utility
- review the use of energy carriers for electrical power generation
- explain the concepts and properties of power-heat cogeneration, renewable energy conversion and fuel cells and their fields of application
- comment on and compare centralized and decentralized supply concepts
- calculate the potentials, risks and economic feasibility of different strategies aiming at the protection of resources and the reduction of CO2 emissions
- name and judge on the options for solar energy utilization
- discuss the potential of geothermal energy and its utilization
6.106 Course: Energy Conversion and Increased Efficiency in Internal Combustion Engines [T-MACH-105564]

- **Responsible:** Prof. Dr. Thomas Koch
 Dr.-Ing. Heiko Kubach
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:** M-MACH-101275 - Combustion Engines I

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Koch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>Prüfung (PR)</td>
<td>2 SWS</td>
<td>Koch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, 25 minutes, no auxillary means

Prerequisites
none

Below you will find excerpts from events related to this course:

- **Energy Conversion and Increased Efficiency in Internal Combustion Engines**
 2133121, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes

1. Introduction
2. Thermodynamics of combustion engines
3. Fundamentals
4. gas exchange
5. Flow field
6. Wall heat losses
7. Combustion in gasoline engines
8. Pressure Trace Analysis
9. Combustion in Diesel engines
10. Waste heat recovery
Learning Content
1. Introduction
2. Thermodynamics of combustion engines
3. Fundamentals
4. gas exchange
5. Flow field
6. Wall heat losses
7. Combustion in gasoline engines
8. Pressure Trace Analysis
9. Combustion in Diesel engines
10. Waste heat recovery

Workload
regular attendance: 24 hours, self-study: 96 hours
6.107 Course: Energy Efficient Intralogistic Systems [T-MACH-105151]

Responsible: Dr.-Ing. Meike Braun
Dr. Frank Schönung

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101263 - Introduction to Logistics
- M-MACH-101278 - Material Flow in Networked Logistic Systems
- M-MACH-104888 - Advanced Module Logistics

Type
- Oral examination

Credits
- 4

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2117500</td>
<td>Energy efficient intralogistic systems</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Braun, Schönung</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105151</td>
<td>Energy Efficient Intralogistic Systems</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral, 30 min. examination dates after the end of each lesson period.

Prerequisites
none

Recommendation
The content of course "Basics of Technical Logistics" should be known.

Annotation
Visit the IFL homepage of the course for the course dates and/or possible limitations of course participation.

Below you will find excerpts from events related to this course:

Energy efficient intralogistic systems
2117500, WS 19/20, 2 SWS, Language: German, Open in study portal

Description

Media:
presentations, black board

Notes
The content of course "Basics of Technical Logistics" should be known.

Learning Content

The main focuses of the course are:

- green supply chain
- processes in Intralogistic systems
- evaluation of energy consumption of conveyors
- modeling of conveying systems
- methods for energy savings
- approaches for energy efficiency increasing of continuous and discontinuous conveyors
- dimensioning energy efficient drives
- new approaches for resource efficient conveying systems.

Annotation
Visit the IFL homepage of the course for the course dates and/or possible limitations of course participation.
Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
None.

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101411 - Information Engineering
M-WIWI-101446 - Market Engineering
M-WIWI-103720 - eEnergy: Markets, Services and Systems

Type
Written examination
Credits
4,5
Recurrence
Each summer term
Version
1

Events
SS 2020 2540464 Energy Market Engineering 2 SWS Lecture (V) Staudt, vom Scheidt
SS 2020 2540465 Übung zu Energy Market Engineering 1 SWS Practice (Ü) Staudt, Richter

Exams

Competence Certificate
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Recommendation
None

Annotation
Former course title until summer term 2017: T-WIWI-102794 "eEnergy: Markets, Services, Systems".
The lecture has also been added in the IIP Module Basics of Liberalised Energy Markets.

Below you will find excerpts from events related to this course:

Energy Market Engineering
2540464, SS 2020, 2 SWS, Language: German, Open in study portal Lecture (V)

Learning Content
This lecture discusses different design options for electricity markets. We will focus on different approaches of nodal and zonal pricing as well as single price mechanisms and capacity markets. After a short recap of German and European market designs, the different design options will be discussed scientifically and with the help of examples. Furthermore, we will evaluate alternative market design options like microgrids. Besides the fundamental functioning of those markets, we will introduce and discuss methodological knowledge to evaluate market design options.

Annotation
The lecture has also been added in the IIP Module Basics of Liberalised Energy Markets.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature

6.109 Course: Energy Networks and Regulation [T-WIWI-107503]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101446 - Market Engineering
M-WIWI-103720 - eEnergy: Markets, Services and Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540494</td>
<td>Energy Networks and Regulation</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Rogat</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540495</td>
<td>Übung zu Energy Networks and Regulation</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Rogat</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900198</td>
<td>Energy Networks and Regulation</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900236</td>
<td>Energy Networks and Regulation</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered on every ordinary examination date.

Prerequisites
None

Recommendation
None

Annotation
Former course title until summer term 2017: T-WIWI-103131 "Regulatory Management and Grid Management - Economic Efficiency of Network Operation"

Below you will find excerpts from events related to this course:

Energy Networks and Regulation
2540494, WS 19/20, 2 SWS, Open in study portal
Notes

Learning Goals
The student,

- understands the business model of a network operator and knows its central tasks in the energy supply system,
- has a holistic overview of the interrelationships in the network economy,
- understands the regulatory and business interactions,
- is in particular familiar with the current model of incentive regulation with its essential components and understands its implications for the decisions of a network operator
- is able to analyse and assess controversial issues from the perspective of different stakeholders.

Content of teaching
The lecture “Energy Networks and Regulation” provides insights into the regulatory framework of electricity and gas. It touches upon the way the grids are operated and how regulation affects almost all grid activities. The lecture also addresses approaches of grid companies to cope with regulation on a managerial level. We analyze how the system influences managerial decisions and strategies such as investment or maintenance. Furthermore, we discuss how the system affects the operator’s abilities to deal with the massive challenges lying ahead (“Energiewende”, redispatch, European grid integration, electric vehicles etc.). Finally, we look at current developments and major upcoming challenges, e.g., the smart meter rollout. Covered topics include:

- Grid operation as a heterogeneous landscape: big vs. small, urban vs. rural, TSO vs. DSO
- Objectives of regulation: Fair price calculation and high standard access conditions
- The functioning of incentive regulation
- First major amendment to the incentive regulation: its merits, its flaws
- The revenue cap and how it is adjusted according to certain exogenous factors
- Grid tariffs: How are they calculated, what is the underlying rationale, do we need a reform (and which)?
- Exogenous costs shifted (arbitrarily?) into the grid, e.g. feed-in tariffs for renewable energy or decentralized supply.

Learning Content
The lecture “Energy Networks and Regulation” provides insights into the regulatory framework of electricity and gas. It touches upon the way the grids are operated and how regulation affects almost all grid activities. The lecture also addresses approaches of grid companies to cope with regulation on a managerial level. We analyze how the system influences managerial decisions and strategies such as investment or maintenance. Furthermore, we discuss how the system affects the operator’s abilities to deal with the massive challenges lying ahead (“Energiewende”, redispatch, European grid integration, electric vehicles etc.). Finally, we look at current developments and major upcoming challenges, e.g., the smart meter rollout. Covered topics include:

- Grid operation as a heterogeneous landscape: big vs. small, urban vs. rural, TSO vs. DSO.
- Objectives of regulation: Fair price calculation and high standard access conditions.
- The functioning of incentive regulation
- Amendment to the incentive regulation: its merits, its flaws
- The revenue cap and how it is adjusted according to certain exogenous factors
- Grid tariffs: How are they calculated, what is the underlying rationale, do we need a reform (and which)?
- Exogenous costs shifted (arbitrarily) into the grid, e.g. feed-in tariffs for renewable energy or decentralized supply.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature

6.110 Course: Energy Policy [T-WIWI-102607]

Responsible: Prof. Dr. Martin Wietschel

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101451 - Energy Economics and Energy Markets

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3,5</td>
<td>Each summer term</td>
<td>3</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Energy Policy

- **Type:** Written examination
- **Credits:** 3,5
- **Recurrence:** Each summer term
- **Version:** 3
- **SS 2020:** 2581959, 2 SWS, Lecture (V)
- **WS 19/20:** 7981959, Prüfung (PR)

Description
The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Notes
The availability of cheap, environmentally friendly and secure energy is crucial for human welfare. However, the increasing scarcity of resources and increasing environmental pressures, with a particular focus on climate change, threaten human welfare through economic action. Energy contributes significantly to environmental pollution. The energy industry is characterised by high regulation and a significant influence of political decisions.

At the beginning of the lecture different perspectives on energy policy will be presented and the analysis of political decision-making processes will be discussed. Then the current energy policy challenges in the area of environmental pollution, regulation and the role of energy for households and industry will be discussed. Then the actors of energy policy and energy responsibilities in Europe will be discussed. The economic approaches from traditional environmental economics and sustainability as a new policy approach will then be discussed. Finally, energy policy instruments such as the promotion of renewable energies or energy efficiency are discussed in detail and how they can be evaluated.

The lecture emphasizes the relationship between theory and practice and presents some case studies.

Learning Content
The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.
Literature
Will be announced in the lecture.
6 COURSES

Responsible: Dr. Armin Ardone
 Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Ardone, Keles, Dengiz, Yilmaz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None

Recommendation
None

Annotation
Since 2011 the lecture is offered in winter term. Exams can still be taken in summer term.

Below you will find excerpts from events related to this course:

Energy Systems Analysis
2581002, WS 19/20, 2 SWS, Language: English, Open in study portal

Lecture (V)

Notes
1. Overview and classification of energy systems modelling approaches
2. Usage of scenario techniques for energy systems analysis
3. Unit commitment of power plants
4. Interdependencies in energy economics
5. Scenario-based decision making in the energy sector
6. Visualisation and GIS techniques for decision support in the energy sector

Learning goals:
The student

- has the ability to understand and critically reflect the methods of energy system analysis, the possibilities of its application in the energy industry and the limits and weaknesses of this approach
- can use select methods of the energy system analysis by her-/himself

Learning Content
1. Overview and classification of energy systems modelling approaches
2. Usage of scenario techniques for energy systems analysis
3. Unit commitment of power plants
4. Interdependencies in energy economics
5. Scenario-based decision making in the energy sector
6. Visualisation and GIS techniques for decision support in the energy sector

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
Annotation
Since 2011 the lecture is offered in winter term. Exams can still be taken in summer term.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
T

6.112 Course: Energy Trade and Risk Management [T-WIWI-102691]

Responsible:
Dr. Clemens Cremer
Dr. Dogan Keles

Organisation:
KIT Department of Economics and Management

Part of:

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Keles</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Trade and Risk Management</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Keles</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes).

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

V Energy Trade and Risk Management
2581020, SS 2020, 2 SWS, Language: German, Open in study portal

Notes

1. Introduction to Markets, Mechanisms and Interaction
2. Electricity Trading (platforms, products, mechanisms)
4. Coal Markets (reserves, supply, demand, and transport)
5. Investments and Capacity Markets
6. Oil and Gas Markets (supply, demand, trade, and players)
7. Trading Game
8. Risk Management in Energy Trading

Learning Content

1. Introduction to Markets, Mechanisms, Interactions
2. Basics of Risk Management
3. Oil Markets
4. Gas Markets
5. Coal Markets
6. Emission Markets
7. Simulation Game
8. Power Markets
9. Risk Management in Utilities

Annotation
The credits have been changed from 3.5 to 4.

Workload
The total workload for this course is approximately 120.0 hours. For further information see German version.
Literature

Elective literature:

www.riskglossary.com
6.113 Course: Engine Measurement Techniques [T-MACH-105169]

Responsible: Dr.-Ing. Sören Bernhardt
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 0.5 hours, no auxiliary means

Prerequisites
none

Recommendation
T-MACH-102194 Combustion Engines I

Below you will find excerpts from events related to this course:

Learning Content
Students get to know state-of-the-art measurement techniques for combustion engines. In particular basic techniques for measuring engine operating parameters such as torque, speed, power and temperature.

Possible measurement errors and aberrations are discussed.

Furthermore techniques for measuring exhaust emissions, air/fuel ratio, fuel consumption as well as pressure indication for thermodynamic analysis are covered.

Workload
regular attendance: 21 hours
self-study: 100 hours

Literature
1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
6.114 Course: Engineering FinTech Solutions [T-WIWI-106193]

Responsible: Prof. Dr Maxim Ulrich

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103247 - Intelligent Risk and Investment Advisory
M-WIWI-103261 - Disruptive FinTech Innovations
M-WIWI-105036 - FinTech Innovations

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Each term</td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2500020</td>
<td>Engineering FinTech Solutions</td>
<td>6 SWS</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2530357</td>
<td>Engineering FinTech Solutions</td>
<td>6 SWS</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7900287</td>
<td>Engineering FinTech Solutions</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out in form of a written thesis based on the course “Engineering FinTech Solutions”.

Prerequisites
In order to take the course "Engineering FinTech Solutions", students must have completed the module "Data Science for Finance".

Below you will find excerpts from events related to this course:

Engineering FinTech Solutions
2500020, WS 19/20, 6 SWS, Language: English, [Open in study portal](#)
Practical course (P)

Description
This project invites students to either pursue their own FinTech innovation project or to contribute to the Chair’s ongoing innovation projects.

Notes
The assessment is carried out in form of a written thesis based on the course “Engineering FinTech Solutions".

This project invites students to either pursue their own FinTech innovation project or to contribute to the Chair’s ongoing innovation projects.

The course is targeted to students with strong knowledge in the field of computational risk and asset management and strong programming skills. It offers students the opportunity to develop an algorithmic solution and hence amply their programming experience and their understanding of financial economics or asset and risk management.

In order to take the course "Engineering FinTech Solutions", students must have completed the module "Data Science for Finance" with a grade of 1.3 or better.

The total workload for this course is approximately 270 hours. This consists of regular meetings with members of the research group and time for independent work on the software project.

Students will learn to connect innovative financial research with modern information technology to build a prototype that solves some daunting tasks for professional end-users in the field of modern asset and risk management.

Learning Content
The course is targeted to students with strong knowledge in the field of computational risk and asset management and strong programming skills. It offers students the opportunity to develop an algorithmic solution and hence amply their programming experience and their understanding of financial economics or asset and risk management.

Workload
The total workload for this course is approximately 270 hours. This consists of regular meetings with members of the research group and time for independent work on the software project.
Notes
The assessment is carried out in form of a written thesis based on the course "Engineering FinTech Solutions".

This project invites students to either pursue their own FinTech innovation project or to contribute to the Chair's ongoing innovation projects.

The course is targeted to students with strong knowledge in the field of computational risk and asset management and strong programming skills. It offers students the opportunity to develop an algorithmic solution and hence ample their programming experience and their understanding of financial economics or asset and risk management.

In order to take the course "Engineering FinTech Solutions", students must have completed the module "Data Science for Finance" with a grade of 1.3 or better.

The total workload for this course is approximately 270 hours. This consists of regular meetings with members of the research group and time for independent work on the software project.

Students will learn to connect innovative financial research with modern information technology to build a prototype that solves some daunting tasks for professional end-users in the field of modern asset and risk management.

Learning Content
This project-oriented lecture invites students to work independently and yet, under close monitoring of researchers and the professor of the C-RAM research group, on a sub-problem of a larger FinTech research question. Students will in a personalized manner be introduced to the necessary concepts, tools and methods that are necessary to solve the question at hand. Students obtain the opportunity to connect newest research insights with modern information technology to move a step closer towards their own development of a prototype. Depending on the topic, students work alone or in groups. An essential part of the guided research mentoring is that students take part in weekly meetings to discuss open issues, to present their progress and to learn from their fellow students.

Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature
Literature will be distributed during the first lecture.
6.115 Course: Engineering Hydrology [T-BGU-108943]

Responsible: Dr.-Ing. Uwe Ehret

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-WIWI-101642 - Natural Hazards and Risk Management 1
- M-WIWI-101644 - Natural Hazards and Risk Management 2
- M-WIWI-104837 - Natural Hazards and Risk Management

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>6200617</th>
<th>Ingenieurhydrologie</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Ehret</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>8236108943</th>
<th>Engineering Hydrology</th>
<th>Prüfung (PR)</th>
<th>Ehret</th>
</tr>
</thead>
</table>

Competence Certificate
See German version.

Prerequisites
None
6.116 Course: Enterprise Architecture Management [T-WIWI-102668]

Responsible: Thomas Wolf
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101472 - Informatics
M-WIWI-101628 - Emphasis in Informatics
M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2511600</td>
<td>Enterprise Architecture Management</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Wolf</td>
</tr>
<tr>
<td></td>
<td>2511601</td>
<td>Exercises to Enterprise Architecture Management</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Wolf</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900010</td>
<td>Enterprise Architecture Management</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate
Please note that the exam for first writers will be offered for the last time in winter semester 2019/2020. A last examination possibility exists in the summer semester 2020 (only for repeaters).

The assessment of this course is a written (60 min.) or (if necessary) oral examination (30 min.) according to §4(2) of the examination regulation.

Prerequisites
None

Below you will find excerpts from events related to this course:

Enterprise Architecture Management
2511600, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
The following topics will be covered: components of enterprise architecture, enterprise strategy including methods to develop strategies, business process (re)engineering, methods to implement changes within enterprises (management of change).

Learning objectives:
Students understand the connection between enterprise strategy, business processes and business objects and IT architecture; they know methods to depict these connections and how they can be developed based on each other.
6.117 Course: Entrepreneurial Leadership & Innovation Management [T-WIWI-102833]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
Please note: The seminar cannot be offered in the winter semester 2019/2020 due to organizational reasons. Alternative exam assessment.

Prerequisites
None

Recommendation
None
6.18 Course: Entrepreneurship [T-WIWI-102864]

- **Responsible:** Prof. Dr. Orestis Terzidis
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101488 - Entrepreneurship (EnTechnon)
 - M-WIWI-101507 - Innovation Management
 - M-WIWI-105010 - Student Innovation Lab (SIL) 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Entrepreneurship
2545001, SS 2020, 2 SWS, Language: English, [Open in study portal]

Description
This lecture, as an obligatory part of the module "Entrepreneurship", introduces basic concepts of entrepreneurship. It approaches the individual steps of dynamic corporate development. The focus here is the introduction to methods for generating innovative business ideas, the translation of patents into business concepts and general principles of business planning. Other topics are the design and use of service-oriented information systems for founders, technology management, business model generation and lean startup methods for the implementation of business ideas in the way of controlled experiments in the market.

Learning Content
This lecture, as an obligatory part of the module "Entrepreneurship", introduces basic concepts of entrepreneurship. It approaches the individual steps of dynamic corporate development. The focus here is the introduction to methods for generating innovative business ideas, the translation of patents into business concepts and general principles of financial planning. Other topics are the design and use of service-oriented information systems for founders, technology management, business model generation and lean startup methods for the implementation of business ideas in the way of controlled experiments in the market.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.
6.119 Course: Entrepreneurship Research [T-WIWI-102894]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2545002</td>
<td>Entrepreneurship Research</td>
<td>Terzidis, Henn</td>
</tr>
</tbody>
</table>

Competence Certificate
The performance review is done via a so called other methods of performance review (term paper) (alternative exam assessment). The final grade is a result from both, the grade of the term paper and its presentation, as well as active participation during the seminar.

Prerequisites
None

Recommendation
None

Annotation
The topics will be prepared in groups. The presentation of the results is done during a a block period seminar at the end of the semester. Students have to be present all day long during the seminar.

Below you will find excerpts from events related to this course:

Entrepreneurship Research

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2545002 SS 2020</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td></td>
</tr>
</tbody>
</table>

Learning Content
Content of the seminar is most recently discussed topics in the field of entrepreneurship. Topics and dates will be communicated online via the seminar portal.

Annotation
The topics are prepared in small groups. The seminar consists of two attendance meetings (kick-off event and final presentation). Between the appointments, independent work is required. The results will be presented at the end of the semester. There is an obligation to attend all seminars.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced during/prior to the seminar as this varies from topic to topic.
6.120 Course: Environmental and Resource Policy [T-WIWI-102616]

Responsible: Rainer Walz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Environmental and Resource Policy</td>
<td>Walz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Environmental and Resource Policy</td>
<td>Walz</td>
</tr>
</tbody>
</table>

Competence Certificate

See German version

Recommendation

It is recommended to already have knowledge in the area of industrial organization and economic policy. This knowledge may be acquired in the courses *Introduction to Industrial Organization* [2520371] and *Economic Policy* [2560280].

Below you will find excerpts from events related to this course:

Environmental and Ressource Policy

2560548, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Lecture / Practice (VÜ)

Workload

The total workload for this course is approximately 120 hours. For further information see German version.

Literature

Elective literature:

Michaelis, P.: Ökonomische Instrumente in der Umweltpolitik. Eine anwendungsorientierte Einführung, Heidelberg
OECD: Environmental Performance Review Germany, Paris
6.121 Course: Environmental Communication [T-BGU-101676]

Responsible: Dr. Charlotte Kämpf

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-WIWI-101642 - Natural Hazards and Risk Management 1
- M-WIWI-101644 - Natural Hazards and Risk Management 2
- M-WIWI-104837 - Natural Hazards and Risk Management

Type
Examination of another type

Credits
4

Recurrence
Each term

Version
2

Events

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Event ID</th>
<th>Type</th>
<th>ECTS</th>
<th>Credit</th>
<th>Frequency</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6224905</td>
<td>Umweltkommunikation / Environmental Communication</td>
<td>2</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kämpf</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6224905</td>
<td>Environmental Communication</td>
<td>2</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kämpf</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Event ID</th>
<th>Type</th>
<th>ECTS</th>
<th>Credit</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8244101676</td>
<td>Environmental Communication</td>
<td>2</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
Non exam assessment (following §4(2), 3 of the examination regulation).

Prerequisites
Examination Prerequisite Environmental Communication must be passend.

Recommendation
None

Annotation
none
6.122 Course: Environmental Economics and Sustainability [T-WIWI-102615]

Responsible: Prof. Dr. Rainer Walz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title (German)</th>
<th>SWS</th>
<th>Type</th>
<th>Code</th>
<th>Title (English)</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2521547</td>
<td>Umweltökonomik und Nachhaltigkeit (mit Übung)</td>
<td>2</td>
<td>Lecture / Practice (VÜ)</td>
<td></td>
<td>Walz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900295</td>
<td>Environmental Economics and Sustainability</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Walz</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

See German version

Prerequisites

None

Recommendation

It is recommended to already have knowledge in the area of macro- and microeconomics. This knowledge may be acquired in the courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014].
6.123 Course: Environmental Law [T-INFO-101348]

Responsible: Dr. Tristan Barczak
Organisation: KIT Department of Informatics
Part of:
- M-INFO-101217 - Public Business Law
- M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24140</td>
<td>Umweltrecht</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Barczak</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Exam Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500050</td>
<td>Environmental Law</td>
<td>Prüfung (PR)</td>
<td>Barczak</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500082</td>
<td>Environmental Law</td>
<td>Prüfung (PR)</td>
<td>Barczak</td>
</tr>
</tbody>
</table>
6.124 Course: European and International Law [T-INFO-101312]

Responsible: Ulf Brühann
Organisation: KIT Department of Informatics
Part of: M-INFO-101217 - Public Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>24666</td>
<td>Europäisches und Internationales Recht</td>
<td>Brühann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 SWS Lecture (V)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500048</td>
<td>European and International Law</td>
<td>Barczak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500084</td>
<td>European and International Law</td>
<td>Barczak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>
T 6.125 Course: Examination Prerequisite Environmental Communication [T-BGU-106620]

Responsible: Dr. Charlotte Kämpf
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-WIWI-101642 - Natural Hazards and Risk Management 1
- M-WIWI-101644 - Natural Hazards and Risk Management 2
- M-WIWI-104837 - Natural Hazards and Risk Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6224905</td>
<td>Umweltkommunikation / Environmental Communication</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Kämpf</td>
</tr>
<tr>
<td>SS 2020</td>
<td>6224905</td>
<td>Environmental Communication</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Kämpf</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8244106620</td>
<td>Examination Prerequisite Environmental Communication</td>
<td>Prüfung (PR)</td>
<td>Kämpf</td>
</tr>
</tbody>
</table>

Competence Certificate

2 literature annotations, appr. 150 words each, and short presentation, appr. 10 min.

Prerequisites

none

Recommendation

none

Annotation

none
Course: Experimental Economics [T-WIWI-102614]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101505 - Experimental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2540489</td>
<td>2 SWS</td>
<td>Lecture (V) Peukert, Dorner</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20 2540493</td>
<td>1 SWS</td>
<td>Practice (Ü) Greif-Winzrieth, Pietruska</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900178</td>
<td></td>
<td>Prüfung (PR) Weinhardt</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20 7900194</td>
<td></td>
<td>Prüfung (PR) Weinhardt</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§ 4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Below you will find excerpts from events related to this course:

Experimental Economics

2540489, WS 19/20, 2 SWS, Language: German, Open in study portal

Learning Content

Experimental Economics have become a separate field in Economics. Nearly all fields of the economic discipline use economic experiments to verify theoretical results. Besides being used for empirical validation, this method is applied in political and strategic consulting. The lecture gives an introduction to experimental methods in economics and shows differences to experiments in natural sciences. Scientific studies are used to show exemplary applications.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2nd ed., 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.
6.127 Course: Extraordinary additional course in the module Cross-Functional Management Accounting [T-WIWI-108651]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Marcus Wouters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-101510 - Cross-Functional Management Accounting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4,5</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment depends on which extraordinary course becomes part of the module "Cross-Functional Management Accounting".

Prerequisites
None

Annotation
The purpose of this placeholder is to make it possible to include an extraordinary course in the module "Cross-Functional Management Accounting". Proposals for specific courses have to be approved in advance by the module coordinator.
6.128 Course: Fabrication Processes in Microsystem Technology [T-MACH-102166]

Responsible: Dr. Klaus Bade
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101291 - Microfabrication

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Oral examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Bade</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Bade</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Bade</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination, 20 minutes

Prerequisites
none

*Below you will find excerpts from events related to this course:

Fabrication Processes in Microsystem Technology
2143882, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)

Description
Media:
pdf files of presentation sheets

Learning Content
The lecture offers an advanced understanding of manufacturing processes in microsystem technology. Basic aspects of microtechnological processing will be introduced. With examples from semiconductor microfabrication and microsystem technology the base processing steps for conditioning and finishing, patterning, removal are imparted. Nano-patterning is covered also included and the micro-nano interface is discussed. By the help of typical processing steps elementary mechanisms, process execution, and equipment are explained. Additionally quality control, process control and environmental topics are included.

Literature
M. Madou
Fundamentals of Microfabrication
CRC Press, Boca Raton, 1997

W. Menz, J. Mohr, O. Paul
Mikrosystemtechnik für Ingenieure
Dritte Auflage, Wiley-VCH, Weinheim 2005

L.F. Thompson, C.G. Willson, A.J. Bowden
Introduction to Microlithography
Fabrication Processes in Microsystem Technology
2143882, SS 2020, 2 SWS, Language: German, Open in study portal

Description
Media:
pdf files of presentation sheets

Notes
The lecture offers an advanced understanding of manufacturing processes in microsystem technology. Basic aspects of microtechnological processing will be introduced. With examples from semiconductor microfabrication and microsystem technology the base processing steps for conditioning and finishing, patterning, removal are imparted. Nano-patterning is covered and also included and the micro-nano interface is discussed. By the help of typical processing steps elementary mechanisms, process execution, and equipment are explained. Additionally quality control, process control and environmental topics are included.

Learning Content
The lecture offers an advanced understanding of manufacturing processes in microsystem technology. Basic aspects of microtechnological processing will be introduced. With examples from semiconductor microfabrication and microsystem technology the base processing steps for conditioning and finishing, patterning, removal are imparted. Nano-patterning is covered and also included and the micro-nano interface is discussed. By the help of typical processing steps elementary mechanisms, process execution, and equipment are explained. Additionally quality control, process control and environmental topics are included.

Literature
M. Madou
Fundamentals of Microfabrication
CRC Press, Boca Raton, 1997
W. Menz, J. Mohr, O. Paul
Mikrosystemtechnik für Ingenieure
Dritte Auflage, Wiley-VCH, Weinheim 2005
L.F. Thompson, C.G. Willson, A.J. Bowden
Introduction to Microlithography

Responsible: Dr. Torsten Luedecke
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2530205</td>
<td>Financial Analysis</td>
<td>2</td>
<td>English</td>
<td>Luedecke</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2530206</td>
<td>Übungen zu Financial Analysis</td>
<td>2</td>
<td></td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900059</td>
<td>Financial Analysis</td>
<td>Luedecke, Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

See German version.

Prerequisites

None

Recommendation

Basic knowledge in corporate finance, accounting, and valuation is required.

Below you will find excerpts from events related to this course:

Lecture (V)

Financial Analysis
2530205, SS 2020, 2 SWS, Language: English, [Open in study portal]

Description

This lecture reviews the key financial statements according to international financial reporting standards and provides analytical tools to evaluate the income statement, the balance sheet, and the cash flow statement in order to measure a firm’s liquidity, operational efficiency, and profitability.

Learning Content

Topics:

- Introduction to Financial Analysis
- Financial Reporting Standards
- Major Financial Statements and Other Information
- Recognition and Measurement Issues
- Analysis of Financial Statements
- Financial Reporting Quality

Literature

Course: Financial Econometrics [T-WIWI-103064]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2520022</td>
<td>4,5</td>
<td>Irregular</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020 2520023</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics"[2520016]

Annotation
The course takes place each second summer term: 2018/2020....

Below you will find excerpts from events related to this course:

Financial Econometrics
2520022, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
Learning objectives:
The student
- shows a broad knowledge of financial econometric estimation and testing techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content:
ARMA, ARIMA, ARFIMA, (non)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer based exercises

Requirements:
It is recommended to attend the course *Economics III: Introduction to Econometrics* [2520016] prior to this course.

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours

Learning Content
ARMA, ARIMA, ARFIMA, (non)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer based exercises
Workload
The total workload for this course is approximately 135 hours (4.5 credits).
regular attendance: 30 hours
self-study: 65 hours
exam preparation: 40 hours
6.131 Course: Financial Intermediation [T-WIWI-102623]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2
- M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530232 Financial Intermediation</td>
<td>2 SWS</td>
<td>Lecture (V) Ruckes</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2530233 Übung zu Finanzintermediation</td>
<td>1 SWS</td>
<td>Practice (Ü) Ruckes, Hoang, Benz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900063 Financial Intermediation</td>
<td></td>
<td>Prüfung (PR) Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Financial Intermediation

2530232, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Description

- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Competition in the banking sector
- Stability of the financial system
- The macroeconomic role of financial intermediation

Learning Content

- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Stability of the financial system
- The macroeconomic role of financial intermediation
- Principles of the prudential regulation of banks

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:

6.132 Course: Firm creation in IT security [T-WIWI-110374]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>ID</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2545109</td>
<td>Basic concepts of Entrepreneurship in the area of IT security</td>
<td>S</td>
<td>2 SWS</td>
<td>Ntagiakou, Kienzle</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2545109</td>
<td>Basic concepts of Entrepreneurship in the area of IT security</td>
<td>S</td>
<td>2 SWS</td>
<td>Ntagiakou, Kienzle, Terzidis</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>ID</th>
<th>Title</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900155</td>
<td>Firm creation in IT security</td>
<td>Prüfung (PR)</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment. The grade consists of the presentation and the written elaboration.

Prerequisites
None

Below you will find excerpts from events related to this course:

Basic concepts of Entrepreneurship in the area of IT security
2545109, WS 19/20, 2 SWS, Language: German/English, Open in study portal
Notes
In order to identify opportunities, the participants should identify fields for entrepreneurial opportunities in a systematic web research. For this purpose, Systematic Mapping procedures will be adapted to the research of general web sources and applied to the research of interesting fields in the area of cyber security.

Information about the seminar:
In the seminar you will work in groups of max. 4 persons. Group applications are welcome but not a prerequisite for participation. Some of the seminars will be held in English.

The focus of the seminar is Opportunity Recognition in the field of IT-Security, followed by ideation sessions with the aim to find possible applications for technologies that are developed at the KIT. Prototyping and also Pitching are part of the seminar.

Target group:
Master Students

Information on the allocation of seminar places:
The registration for the seminar is possible in the Wiwi portal in the period from 11.09.2019 to 05.10.2019 at 23:55 clock. To apply for the seminar, please send us a letter of motivation (max. 5 sentences).

Seminar contents:
- To identify opportunities, the participants should identify fields for entrepreneurial opportunities in a systematic web research. For this purpose, Systematic Mapping procedures will be adapted to the research of general web sources and applied to the research of interesting fields in the area of cyber security.
- All information will be discussed with experts on the second seminar day. The aim of the first two sessions is to develop a systematic segmentation of market needs.
- After the teams have been formed, the workshop "Technology Application Selection (TAS)" follows. This is a framework developed by EnTechnon that will help the teams to develop concrete business ideas based on given technologies. The three steps of the TAS will be the content of the third and fourth seminar days. Participants will generate ideas and then - based on specific criteria that we will provide - choose an idea on which they will build their value proposition.
- The final session before the final day will deal with prototyping and validation. This will use rapid prototyping and validation methods from the design thinking environment.
- On the last day - before their final presentations - the participants learn how to present the idea in a short presentation (pitch) to an interested audience.
Notes
In order to identify opportunities, the participants should identify fields for entrepreneurial opportunities in a systematic web research. For this purpose, Systematic Mapping procedures will be adapted to the research of general web sources and applied to the research of interesting fields in the area of cyber security.

Information about the seminar:
In the seminar you will work in groups of max. 4 persons. Group applications are welcome but not a prerequisite for participation. Some of the seminars will be held in English.
The focus of the seminar is Opportunity Recognition in the field of IT-Security, followed by ideation sessions with the aim to find possible applications for technologies that are developed at the KIT. Prototyping and also Pitching are part of the seminar.

Target group:
Master Students

Information on the allocation of seminar places:
The registration for the seminar is possible in the Wiwi portal in the period from 11.09.2019 to 05.10.2019 at 23:55 clock. To apply for the seminar, please send us a letter of motivation (max. 5 sentences).

Seminar contents:
- To identify opportunities, the participants should identify fields for entrepreneurial opportunities in a systematic web research. For this purpose, Systematic Mapping procedures will be adapted to the research of general web sources and applied to the research of interesting fields in the area of cyber security.
- All information will be discussed with experts on the second seminar day. The aim of the first two sessions is to develop a systematic segmentation of market needs.
- After the teams have been formed, the workshop "Technology Application Selection (TAS)" follows. This is a framework developed by EnTechnon that will help the teams to develop concrete business ideas based on given technologies. The three steps of the TAS will be the content of the third and fourth seminar days. Participants will generate ideas and then - based on specific criteria that we will provide - choose an idea on which they will build their value proposition.
- The final session before the final day will deal with prototyping and validation. This will use rapid prototyping and validation methods from the design thinking environment.
- On the last day - before their final presentations - the participants learn how to present the idea in a short presentation (pitch) to an interested audience.
6.133 Course: Fixed Income Securities [T-WIWI-102644]

Responsible: Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530260</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Uhrig-Homburg, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900053</td>
<td>Fixed Income Securities</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment takes place in the form of a written examination (75 minutes) according to §4(2), 1 SPO. The examination takes place during the semester break. The examination is offered every semester and can be repeated at any regular examination date. A bonus can be acquired through successful participation in the exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites
None

Recommendation
Knowledge from the course "Derivatives" is very helpful.

Annotation
The course is offered as a block course.

Below you will find excerpts from events related to this course:

Fixed Income Securities

Notes
The lecture deals with both German and international bond markets, which are an important source of funding for both the corporate and the public sector. After an overview of the most important bond markets, various definitions of return are discussed. Based on that, the concept of the yield curve is presented. The modelling of the dynamics of the term structure of interest rates provides the theoretical foundation for the valuation of interest rate derivatives, which is discussed in the last part of the lecture.

The objective of this course is to become familiar with national and international bond markets. Therefore, we first have a look at financial instruments that are of particular importance. Thereafter, specific models and methods that allow the evaluation of interest rate derivatives are introduced and applied.

The total workload for this course is approximately 135.0 hours. For further information see German version.

The assessment consists of a written exam following §4, Abs. 2, 1.

Elective literature:
6.134 Course: Freight Transport [T-BGU-106611]

Responsible: Bastian Chlond
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
M-BGU-101064 - Fundamentals of Transportation
M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>Weeks</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6232809</td>
<td>Güterverkehr</td>
<td>2</td>
<td>Lecture / Practice (VÜ)</td>
<td>Chlond</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>8245106611</td>
<td>Freight Transport</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Chlond</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
Course: Fuels and Lubricants for Combustion Engines [T-MACH-105184]

Responsible:
Dr.-Ing. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-101303 - Combustion Engines II

Type
Oral examination

Credits
4

Recurrence
Each winter term

Version
1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SW</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2133108</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SW</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SW</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105184</td>
<td>Fuels and Lubricants for Combustion Engines</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination, Duration: ca. 25 min., no auxiliary means

Prerequisites

None

Below you will find excerpts from events related to this course:

Introduction and basics

- Fuels for Gasoline and Diesel engines
- Hydrogen
- Lubricants for Gasoline and Diesel engines
- Coolants for combustion engines

Learning Content

Introduction and basics

- Fuels for Gasoline and Diesel engines
- Hydrogen
- Lubricants for Gasoline and Diesel engines
- Coolants for combustion engines

Workload

Regular attendance: 24 hours
Self-study: 96 hours
Literature
Lecturer notes
6.136 Course: Fundamentals of Catalytic Exhaust Gas Aftertreatment [T-MACH-105044]

Responsible: Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Prof. Dr.-Ing. Egbert Lox

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2134138</td>
<td>Fundamentals of catalytic exhaust gas aftertreatment</td>
<td>2 SWS</td>
<td>Lectue (V)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>Prüfung (PR)</td>
<td>Lox</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105044</td>
<td>Fundamentals of Catalytic Exhaust Gas Aftertreatment</td>
<td>Prüfung (PR)</td>
<td>Lox</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination, Duration: 25 min., no auxiliary means

Prerequisites
none

Below you will find excerpts from events related to this course:

Fundamentals of catalytic exhaust gas aftertreatment
2134138, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Learning Content
1. kind and source of emissions
2. emission legislation
3. principal of catalytic exhaust gas aftertreatment (EGA)
4. EGA at stoichiometric gasoline engines
5. EGA at gasoline engines with lean mixtures
6. EGA at diesel engines
7. economical basic conditions for catalytic EGA

Workload
regular attendance: 36 hours
self-study: 84 hours
Literature
Lecture notes available in the lectures

6.137 Course: Gas Engines [T-MACH-102197]

Responsible: Dr.-Ing. Rainer Golloch
Dr.-Ing. Heiko Kubach

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>76-T-MACH-102197</th>
<th>Gas Engines</th>
<th>Prüfung (PR)</th>
<th>Koch</th>
</tr>
</thead>
</table>

Competence Certificate
Oral examination, duration 25 min., no auxiliary means

Prerequisites \nnone
6.138 Course: Gear Cutting Technology [T-MACH-102148]

Responsible: Dr.-Ing. Markus Klaiber

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149655</td>
<td>Gear Technology</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Gear Technology

2149655, WS 19/20, 2 SWS, Language: German, Open in study portal

Description

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)

Notes

Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

Learning Outcomes:

The students ...

- can describe the basic terms of gearings and are able to explain the imparted basics of the gearwheel and gearing theory.
- are able to specify the different manufacturing processes and machine technologies for producing gearings. Furthermore they are able to explain the functional principles and the dis-/advantages of these manufacturing processes.
- can apply the basics of the gearing theory and manufacturing processes on new problems.
- are able to read and interpret measuring records for gearings. are able to make an appropriate selection of a process based on a given application
- can describe the entire process chain for the production of toothed components and their respective influence on the resulting workpiece properties.

Workload:

regular attendance: 21 hours

self-study: 99 hours
Learning Content
Based on the gearing theory, manufacturing processes and machine technologies for producing gearings, the needs of modern gear manufacturing will be discussed in the lecture. For this purpose, various processes for various gear types are taught which represent the state of the art in practice today. A classification in soft and hard machining and furthermore in cutting and non-cutting technologies will be made. For comprehensive understanding the processes, machine technologies, tools and applications of the manufacturing of gearings will be introduced and the current developments presented. For assessment and classification of the applications and the performance of the technologies, the methods of mass production and manufacturing defects will be discussed. Sample parts, reports from current developments in the field of research and an excursion to a gear manufacturing company round out the lecture.

Workload
regular attendance: 21 hours
self-study: 99 hours
Course: Global Optimization I [T-WIWI-102726]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Exam Name</th>
<th>Type</th>
<th>Prüfung (PR)</th>
<th>Supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900005_WS1920_NK</td>
<td>Global Optimization I</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Success is in the form of a written examination (60 min.) (according to § 4(2), 1 SPO).

The exam is offered in the lecture of semester and the following semester.

The success check can be done also with the success control for "Global optimization II". In this case, the duration of the written exam is 120 min.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.
6.140 Course: Global Optimization I and II [T-WIWI-103638]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Oliver Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-WIWI-101473 - Mathematical Programming</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900007_WS1920_NK</td>
<td>Global Optimization I and II</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the lecture is a written examination (120 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester.

Prerequisites
None

Recommendation
None

Annotation
Part I and II of the lecture are held consecutively in the same semester.
6.141 Course: Global Optimization II [T-WIWI-102727]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>UID</th>
<th>Exam</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900006_WS1920_NK</td>
<td>Global Optimization II</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of "Global optimization I". In this case, the duration of the written examination takes 120 minutes.

Prerequisites
None

Annotation
Part I and II of the lecture are held consecutively in the same semester.
6.142 Course: Global Production and Logistics - Part 1: Global Production [T-MACH-105158]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101282 - Global Production and Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149610</td>
<td>Global Production and Logistics - Part 1: Global Production</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105158</td>
<td>Global Production and Logistics - Part 1: Global Production</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (60 min)

Prerequisites

"T-MACH-108848 - Globale Produktion und Logistik - Teil 1: Globale Produktion" must not be commenced.

Below you will find excerpts from events related to this course:

Global Production and Logistics - Part 1: Global Production
2149610, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Description

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
Notes
The lecture examines the management of global production networks of manufacturing companies. It gives an overview of the influencing factors and challenges of global production. In-depth knowledge of common methods and procedures for planning, designing and managing global production networks is imparted.

Therefore, the lecture first of all discusses the connections and interdependencies between the business strategy and the production strategy and illustrates necessary tasks for the definition of a production strategy. Methods for site selection, for the site-specific adaptation of product design and production technology as well as for the establishment of new production sites and for the adaptation of existing production networks to changing framework conditions are subsequently taught within the context of the design of the network footprint. With regard to the management of global production networks, the lecture addresses challenges associated with coordination, procurement and order management in global networks. The lecture is complemented by a discussion on the use of industry 4.0 applications in global production and current trends in planning, designing and managing global production networks.

The topics include:

- Basic conditions and influencing factors of global production (historical development, targets, chances and threats)
- Framework for planning, designing and managing global production networks
- Production strategies for global production networks
 - From business strategy to production strategy
 - Tasks of the production strategy (product portfolio management, circular economy, planning of production depth, production-related research and development)
- Design of global production networks
 - Basic types of network structures
 - Planning process for the design of the network footprint
 - Adaptation of the network footprint
 - Site selection
 - Location-specific adaptation of production technology and product design
- Management of global production networks
 - Network coordination
 - Procurement process
 - Order management
- Trends in planning, designing and managing global production networks

Learning Outcomes:
The students ...

- can explain the general conditions and influencing factors of global production
- are capable to apply defined procedures for site selection and to evaluate site decisions with the help of different methods
- are able to select the adequate scope of design for siteappropriate production and product construction casespecifically
- can state the central elements in the planning process of establishing a new production site.
- are capable to make use of the methods to design and scale global production networks for company-individual problems
- are able to show up the challenges and potentials of the departments sales, procurement as well as research and development on global basis.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Recommendations:
Combination with Global Production and Logistics – Part 2
Learning Content
The lecture examines the management of global production networks of manufacturing companies. It gives an overview of the influencing factors and challenges of global production. In-depth knowledge of common methods and procedures for planning, designing and managing global production networks is imparted.

Therefore, the lecture first of all discusses the connections and interdependencies between the business strategy and the production strategy and illustrates necessary tasks for the definition of a production strategy. Methods for site selection, for the site-specific adaptation of product design and production technology as well as for the establishment of new production sites and for the adaptation of existing production networks to changing framework conditions are subsequently taught within the context of the design of the network footprint. With regard to the management of global production networks, the lecture addresses challenges associated with coordination, procurement and order management in global networks. The lecture is complemented by a discussion on the use of industry 4.0 applications in global production and current trends in planning, designing and managing global production networks.

The topics include:

- Basic conditions and influencing factors of global production (historical development, targets, chances and threats)
- Framework for planning, designing and managing global production networks
- Production strategies for global production networks
 - From business strategy to production strategy
 - Tasks of the production strategy (product portfolio management, circular economy, planning of production depth, production-related research and development)
- Design of global production networks
 - Basic types of network structures
 - Planning process for the design of the network footprint
 - Adaptation of the network footprint
 - Site selection
 - Location-specific adaptation of production technology and product design
- Management of global production networks
 - Network coordination
 - Procurement process
 - Order management
- Trends in planning, designing and managing global production networks

Annotation
None

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
Lecture Notes
recommended secondary literature:
6.143 Course: Global Production and Logistics - Part 2: Global Logistics [T-MACH-105159]

Responsible: Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101278 - Material Flow in Networked Logistic Systems
- M-MACH-101282 - Global Production and Logistics
- M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2149600</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>2</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-105159</td>
<td>Global Production and Logistics - Part 2: Global Logistics</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

Prerequisites
none

Recommendation
We recommend attending the course "Logistics - organization, design and control of logistic systems " (2118078) beforehand.

Below you will find excerpts from events related to this course:

Global Production and Logistics - Part 2: Global Logistics
2149600, SS 2020, 2 SWS, Language: German, Open in study portal

Description

Media:
presentations, black board
Notes
Characteristics of global trade

- Incoterms
- Customs clearance, documents and export control

Global transport and shipping

- Maritime transport, esp. container handling
- Air transport

Modeling of supply chains

- SCOR model
- Value stream analysis

Location planning in cross-border-networks

- Application of the Warehouse Location Problem
- Transport Planning

Inventory Management in global supply chains

- Stock keeping policies
- Inventory management considering lead time and shipping costs

Students are able to:

- assign basic problems of planning and operation of global supply chains and plan them with appropriate methods,
- describe requirements and characteristics of global trade and transport, and
- evaluate characteristics of the design from logistic chains regarding their suitability.

Exam:
The exam consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).
The main exam is offered every summer semester. A second date for the exam is offered in winter semester only for students that did not pass the main exam.

Learning Content
Characteristics of global trade

- Incoterms
- Customs clearance, documents and export control

Global transport and shipping

- Maritime transport, esp. container handling
- Air transport

Modeling of supply chains

- SCOR model
- Value stream analysis

Location planning in cross-border-networks

- Application of the Warehouse Location Problem
- Transport Planning

Inventory Management in global supply chains

- Stock keeping policies

Inventory management considering lead time and shipping costs

Workload
regular attendance: 21 hours
self-study: 99 hours
6.144 Course: Graph Theory and Advanced Location Models [T-WIWI-102723]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Exam Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900287</td>
<td>Graph Theory and Advanced Location Models</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following lecture.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation
The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.
6.145 Course: Heat Economy [T-WIWI-102695]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981001</td>
<td>Heat Economy</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

None.

Recommendation

None

Annotation

See German version.
6.146 Course: High-Voltage Technology [T-ETIT-110266]

- **Responsible:** Dr.-Ing. Rainer Badent
- **Organisation:** KIT Department of Electrical Engineering and Information Technology
- **Part of:** M-ETIT-101163 - High-Voltage Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2307360</td>
<td>High-Voltage Technology</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2307362</td>
<td>Tutorial for 2307362 High-Voltage Technology</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>730360</td>
<td>High-Voltage Technology</td>
<td>Prüfung (PR)</td>
<td>Badent</td>
</tr>
</tbody>
</table>
6.147 Course: High-Voltage Test Technique [T-ETIT-101915]

Responsible: Dr.-Ing. Rainer Badent

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-101164 - Generation and Transmission of Renewable Power

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2307392</td>
<td>High-Voltage Test Technique</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Badent</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2307394</td>
<td>Tutorial for 2307392 High-Voltage Test Technique</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Görtz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7307392</td>
<td>High-Voltage Test Technique</td>
<td>Prüfung (PR)</td>
<td>Badent</td>
</tr>
</tbody>
</table>

Prerequisites

none

Responsible: Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

Type: Written examination

Credits: 4.5

Recurrence: Each winter term

Version: 2

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900113</td>
<td>Human Factors in Security and Privacy</td>
<td>Prüfung (PR)</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Competence Certificate

The lecture will not be offered in the winter semester 2019/2020.

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (30 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

Successful participation in the exercises.

Recommendation

The prior attendance of the lecture "Information Security" is strongly recommended.
6.149 Course: Incentives in Organizations [T-WIWI-105781]

Responsible: Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101500 - Microeconomic Theory
- M-WIWI-101505 - Experimental Economics
- M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2573003</td>
<td>Incentives in Organizations</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Nieken</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2573004</td>
<td>Übung zu Incentives in Organizations</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Nieken, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Title</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900201</td>
<td>Incentives in Organizations</td>
<td>Prüfung (PR)</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites

None

Recommendation

Knowledge of microeconomics, game theory, and statistics is assumed.

Below you will find excerpts from events related to this course:
Notes
The students acquire profound knowledge about the design and the impact of different incentive and compensation systems. Topics covered are, for instance, performance based compensation, team work, intrinsic motivation, multitasking, and subjective performance evaluations. We will use microeconomic or behavioral models as well as empirical data to analyze incentive systems. We will investigate several widely used compensation schemes and their relationship with corporate strategy. Students will learn to develop practical implications which are based on the acquired knowledge of this course.

Aim
The student

• develops a strategic understanding about incentives systems and how they work.
• analyzes models from personnel economics.
• understands how econometric methods can be used to analyze performance and compensation data.
• knows incentive schemes that are used in companies and is able to evaluate them critically.
• can develop practical implications which are based on theoretical models and empirical data from companies.
• understands the challenges of managing incentive and compensation systems and their relationship with corporate strategy.

Workload
The total workload for this course is: approximately 135 hours.
Lecture: 32h
Preparation of lecture: 52h
Exam preparation: 51h

Literature
Slides
Additional case studies and research papers will be announced in the lecture.
6.150 Course: Industrial Services [T-WIWI-102822]

Responsibilities:
Prof. Dr. Hansjörg Fromm

Organisation:
KIT Department of Economics and Management

Part of:
- M-WIWI-101448 - Service Management
- M-WIWI-101506 - Service Analytics
- M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Credits</td>
<td>Recurrence</td>
<td>Version</td>
<td></td>
</tr>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Events
- **WS 19/20**
 - 2595505 Industrial Services 2 SWS Lecture (V) Fromm
 - 2595506 Übungen zu Industrial Services 1 SWS Practice (Ü) Walk

Exams
- **WS 19/20**
 - 7900241 Industrial Services Prüfung (PR) Fromm

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None

Recommendation
None

*Below you will find excerpts from events related to this course:

Industrial Services

2595505, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Learning Content
Services are becoming ever more important in business. Today, the gross income share of services in Germany exceeds 70%. Following this trend, many companies that previously focused solely on the sale of goods, strive to an extension of their business model: In order to realize new competitive advantages in domestic and international markets, they enrich their material goods with customer-specific services. This transformation to a provider of integrated solutions is called "Servitization" (Neely 2009). For this reason, so-called industrial services to companies of increasing importance. They benefit from the increasingly detailed data collected (on "Big Data"), e.g. concerning user profiles, failure statistics, usage history, accrued expenses, etc. Only these data allow in principle to end products and spare parts are delivered faster, cheaper and more targeted and technicians can be used more efficiently with the correct skills. This requires, however, also suitable methods of optimization, prognosis or predictive modeling. When used properly, such methods can minimize logistics costs, increase availability, prevent potential failures and improve repair planning. This is also enabled by latest "Technology Enabled Services" along with corresponding data transfer and analysis ("Internet of Things", automatic error detection, remote diagnostics, centralized collection of consumption data, etc.). The change from goods manufacturer to a provider of integrated solutions requires new services, transformation of business models as well as intelligent new contract types, which are addressed in the course as well.

More specifically, the lessons of this lecture will include:

- Servitization – The Manufacturer's Transformation into Integrated Solution Provider
- Service Levels – Definitions, Agreements, Measurements and Service Level Engineering
- The "Services Supply Chain"
- Spare Parts Planning – Forecasting, Assortment Planning, Order Quantities and Safety Stocks
- Distribution Network Planning – Network Types, Models, Optimization
- Service Technician Planning
- Condition Monitoring, Predictive Maintenance, Diagnose Systems
- Call Center Services
- Full Service Contracts
- IT-enabled Value-Add Services – Industrial Service Innovation
Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

6.151 Course: Information Engineering [T-MACH-102209]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Type</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2122014</td>
<td>Information Engineering</td>
<td>2</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102209</td>
<td>Information Engineering</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (written composition and speech)

Prerequisites
None
6.152 Course: Information Management for Public Mobility Services [T-BGU-106608]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101064 - Fundamentals of Transportation
M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
lecture accompanying exercises, appr. 5 pieces

Prerequisites
none

Recommendation
none

Annotation
none
6.153 Course: Information Service Engineering [T-WIWI-106423]

Responsible: Prof. Dr. Harald Sack

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2511606</th>
<th>Information Service Engineering</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Sack</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2511607</td>
<td>Exercises to Information Service Engineering</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Sack</td>
</tr>
</tbody>
</table>

Exams

| WS 19/20 | 7900071 | Information Service Engineering | Prüfung (PR) | Sack |

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Information Service Engineering

2511606, SS 2020, 2 SWS, Language: English, [Open in study portal]
Notes
- Information, Natural Language and the Web
- Natural Language Processing
 - NLP and Basic Linguistic Knowledge
 - NLP Applications, Techniques & Challenges
 - Evaluation, Precision and Recall
 - Regular Expressions and Automata
 - Tokenization
 - Language Model and N-Grams
 - Part-of-Speech Tagging
- Linked Data Engineering
 - Knowledge Representations and Ontologies
 - What’s in an URI?
 - Resource Description Framework (RDF)
 - Creating new Models with RDFS
 - Querying RDF(S) with SPARQL
 - More Expressivity with Web Ontology Language (OWL)
 - The Web of Data
 - Vocabularies and Ontologies in the Web of Data
 - Wikipedia, DBpedia, and Wikidata
- Information Retrieval
 - Information Retrieval Models
 - Retrieval Evaluation
 - Web Information Retrieval
 - Document Crawling, Text Processing, and Indexing
 - Query Processing and Result Representation
 - Question Answering
- Knowledge Mining
 - From Data to Knowledge
 - Data Mining
 - Machine Learning Basics for Knowledge Mining
 - Mining Knowledge from Wikipedia
 - Named Entity Resolution
- Exploratory Search and Recommender Systems
 - Semantic Search and Entity Centric Search
 - Collaborative Filtering and Content Based Recommendations
 - From Search to Intelligent Browsing
 - Linked Data Based Exploratory Search
 - Fact Ranking

Learning objectives:
- The students know the fundamentals and measures of information theory and are able to apply those in the context of Information Service Engineering.
- The students have basic skills of natural language processing and are enabled to apply natural language processing technology to solve and evaluate simple text analysis tasks.
- The students have fundamental skills of knowledge representation with ontologies as well as basic knowledge of Semantic Web and Linked Data technologies. The students are able to apply these skills for simple representation and analysis tasks.
- The students have fundamental skills of information retrieval and are enabled to conduct and to evaluate simple information retrieval tasks.
- The students apply their skills of natural language processing, Linked Data engineering, and Information Retrieval to conduct and evaluate simple knowledge mining tasks.
- The students know the fundamentals of recommender systems as well as of semantic and exploratory search.
6.154 Course: Information Systems and Supply Chain Management [T-MACH-102128]

Responsible: Dr. Christoph Kilger
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101263 - Introduction to Logistics
- M-MACH-101278 - Material Flow in Networked Logistic Systems
- M-MACH-101280 - Logistics in Value Chain Networks
- M-MACH-101282 - Global Production and Logistics
- M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2118094</td>
<td>Information Systems in Logistics and Supply Chain Management</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Description</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102128</td>
<td>Information Systems and Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
one none

Below you will find excerpts from events related to this course:

Information Systems in Logistics and Supply Chain Management

2118094, SS 2020, 2 SWS, Language: German, Open in study portal

Description
Media: presentations

Learning Content
1) Overview of logistics systems and processes
2) Basic concepts of information systems and information technology
3) Introduction to IS in logistics: Overview and applications
4) Detailed discussion of selected SAP modules for logistics support

Annotation
one none

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
6.155 Course: Innovation Lab [T-ETIT-110291]

Responsible:
Prof. Dr.-Ing. Sören Hohmann
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork
Prof. Dr.-Ing. Thomas Zwick

Organisation:
KIT Department of Electrical Engineering and Information Technology

Part of:
M-WIWI-105011 - Student Innovation Lab (SIL) 2

Type
Examination of another type

Credits
9

Recurrence
Each winter term

Expansion
2 terms

Version
1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event</th>
<th>SWS</th>
<th>Type</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2303192</td>
<td>Innovation Lab</td>
<td>2 SWS</td>
<td>Project (PRO)</td>
<td>Hohmann, Zwick, Sax, Stork</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2303192</td>
<td>Innovation Lab</td>
<td>2 SWS</td>
<td>Project (PRO)</td>
<td>Hohmann, Zwick, Sax, Stork</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event</th>
<th>Type</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7303192</td>
<td>Innovation Lab</td>
<td>Prüfung (PR)</td>
<td>Hohmann, Zwick, Stork, Sax</td>
</tr>
</tbody>
</table>

Competence Certificate

see module description

Responsible: Prof. Dr. Marion Weissenberger-Eibl
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Credits</th>
<th>Course Title</th>
<th>Semester</th>
<th>Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2545100</td>
<td>2 SWS</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td>Lecture (V)</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Credits</th>
<th>Course Title</th>
<th>Exam Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900144</td>
<td>Prüfung (PR)</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
<tr>
<td>7900145</td>
<td>Prüfung (PR)</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Innovation Management: Concepts, Strategies and Methods
2545100, SS 2020, 2 SWS, Language: German, Open in study portal

Notes
The course ‘Innovation Management: Concepts, Strategies and Methods’ offers scientific concepts which facilitate the understanding of the different phases of the innovation process and resulting strategies and appropriate methodologies suitable for application. The concepts refer to the entire innovation process so that an integrated perspective is made possible. This is the basis for the teaching of strategies and methods which fulfill the diverse demands of the complex innovation process. The course focuses particularly on the creation of interfaces between departments and between various actors in a company’s environment and the organisation of a company’s internal procedures. In this context a basic understanding of knowledge and communication is taught in addition to the specific characteristics of the respective actors. Subsequently methods are shown which are suitable for the profitable and innovation-led implementation of integrated knowledge.

Aim:
Students develop a differentiated understanding of the different phases and concepts of the innovation process, different strategies and methods in innovation management.

Learning Content
The course ‘Innovation Management: Concepts, Strategies and Methods’ offers scientific concepts which facilitate the understanding of the different phases of the innovation process and resulting strategies and appropriate methodologies suitable for application.

The concepts refer to the entire innovation process so that an integrated perspective is made possible. This is the basis for the teaching of strategies and methods which fulfill the diverse demands of the complex innovation process. The course focuses particularly on the creation of interfaces between departments and between various actors in a company’s environment and the organisation of a company’s internal procedures. In this context a basic understanding of knowledge and communication is taught in addition to the specific characteristics of the respective actors. Subsequently methods are shown which are suitable for the profitable and innovation-led implementation of integrated knowledge.
Annotation
This course was formerly named "Innovation Management".

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
A detailed bibliography is provided with the lecture notes.
Course: Innovation Processes Live [T-WIWI-110234]

Responsible:	Dr. Daniela Beyer
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101507 - Innovation Management
Type:	Examination of another type
Credits:	3
Recurrence:	Irregular
Version:	1

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Exam Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900141</td>
<td>Innovation Processes Live</td>
<td>Prüfung (PR) [Weissenberger-Eibl]</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessments (§4(2), 3 SPO). The grade consists of an exposé (15%), a guideline interview or an analysis tool (25%), a group presentation of the results (20%) and a seminar paper (40%).

Prerequisites

None.

Recommendation

Prior attendance of the course Innovation Management [2545015] is recommended.
6 COURSES

Course: Innovation Theory and Policy [T-WIWI-102840]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101478 - Innovation and Growth
M-WIWI-101497 - Agglomeration and Innovation
M-WIWI-101514 - Innovation Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Lecture (V)</th>
<th>Practice (Ü)</th>
<th>Exams</th>
<th>Prüfung (PR)</th>
<th>Ott</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2560236</td>
<td>Innovationtheory and -policy</td>
<td>SWS</td>
<td>Lecture (V)</td>
<td>Ott</td>
<td>SS 2020</td>
<td>2560237</td>
<td>Practice (Ü)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2560237</td>
<td>Innovationtheory and policy</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Ott, Eraydin</td>
<td>WS 19/20</td>
<td>7900077</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) according to Section 4(2). 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A bonus can be earned through a short written homework and its presentation in the exercise. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by a maximum of one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Below you will find excerpts from events related to this course:

V Innovationtheory and -policy
2560236, SS 2020, SWS, Language: German/English, Open in study portal
Notes

Learning objectives:

Students shall be given the ability to

- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- understand the relationships between market structure and the development of innovation
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Course content:

The course covers the following topics:

- Incentives for the emergence of innovations
- Patents
- Diffusion
- Impact of technological progress
- Innovation Policy

Recommendations:

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Exam description:

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Learning Content

- Incentives for the emergence of innovations
- Patents
- Diffusion
- Impact of technological progress
- Innovation Policy

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Excerpt:

6.159 Course: Integrated Product Development [T-MACH-105401]

Responsible: Prof. Dr.-Ing. Albert Albers
Albers Assistenten

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-102626 - Major Field: Integrated Product Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>18</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Event Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2145156</td>
<td>Integrated Product Development</td>
<td>4</td>
<td>Lecture (V)</td>
<td>Albers</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2145157</td>
<td>Workshop Product Development</td>
<td>4</td>
<td>Practice (Ü)</td>
<td>Albers, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2145300</td>
<td>Project Work in Product Development</td>
<td>2</td>
<td>Others (sonst.)</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Event Description</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7600021</td>
<td>Integrated Product Development</td>
<td>Prüfung (PR)</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Competence Certificate
oral examination (60 minutes)

Prerequisites
none

Annotation
Due to organizational reasons, the number of participants is limited. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Below you will find excerpts from events related to this course:

Integrated Product Development
2145156, WS 19/20, 4 SWS, Language: German, Open in study portal

Lecture (V)
Notes
Registration required in the previous summer semester. The lecture starts in first week of October.

Prerequisites:
The participation in "Integrated Product Development" requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).

Due to organizational reasons, the number of participants is limited. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Recommendations:
none

Workload:
regular attendance: 84 h
self-study: 288 h

Examination:
oral examination (60 minutes)
combined examination of lectures, tutorials and project work

Course content:
organizational integration: integrated product engineering model, core team management and simultaneous engineering
informational integration: innovation management, cost management, quality management and knowledge management
personal integration: team coaching and leadership management
invited lectures

Learning objectives:
The Students are able to ...

- analyze and evaluate product development processes based on examples and their own experiences.
- plan, control and evaluate the working process systematically.
- choose and use suitable methods of product development, system analysis and innovation management under consideration of the particular situation.
- prove their results.
- develop complex technical solutions in a team and to present them to qualified persons as well as non-qualified persons
- to design overall product development processes under consideration of market-, customer- and company- aspects

Workshop Product Development
2145157, WS 19/20, 4 SWS, Language: German, Open in study portal
Notes

Prerequisites:
The participation in "Integrated Product Development" requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).

Due to organizational reasons, the number of participants is limited to 42 persons. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK homepage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Recommendations:
none

Workload:
regular attendance: 84 h
self-study: 288 h

Examination:
lectures: 21 h
preparation to exam: 99 h

Course content:
problem solving: analysis techniques, creativity techniques and evaluation methods
professional skills: presentation techniques, moderation and teamcoaching
development tools: MS Project, Szenario-Manager & Pro/Engineer Wildfire

Learning objectives:
The theoretical background taught in the lecture, is deepened through methodworkshops, business games and case studies. The reflexion of the onself procedure allows for an applicability and practicability of the contents in the accomplying development project as well as for the career entry.
Notes
Participation only possible in combination with the lecture 2145156 'Integrated Product Development'.

Prerequisites:
The participation in "Integrated Product Development" requires the concurrent participation in lectures (2145156), tutorials (2145157) and project work (2145300).

Due to organizational reasons, the number of participants is limited to 42 persons. Thus a selection has to be made. For registration to the selection process a standard form has to be used, that can be downloaded from IPEK hompage from april to july. The selection itself is made by Prof. Albers in personal interviews.

Recommendations:
none

Workload:
regular attendance: 21 h
self-study: 99 h

Examination:
oral examination (60 minutes)
combined examination of lectures, tutorials and project work

Course content:
The project work begins with the early stages of product development, i.e. the identification of market trends and needs. Based on this information the students develop scenarios for future markets and create product profiles, which describe the customers and their demands without anticipating possible product solutions. After having passed several following milestones for ideas, concepts and designs, virtual prototypes and function prototypes are presented to an audience.

The project work is supported by coaching through skilled faculty staff. Additionally weekly tutorials, respectively workshops are given. For doing the project the teams gain access to team workspaces featuring IT-infrastructure and relevant software, such as office, CAD or FEA. Further on the teams learn how team cooperation and knowledge management can be supported in design project by using a wiki systems.

Learning objectives:
The center of "Integrated Product Development" constitutes itself in the development of a technical product within independent working student teams on the basis of the market situation up to virtual and real prototypes. Thereby the integrate treatment of the product development process is of importance. The project teams hereby represent development departments of medium sized companies, in which the presented methods and tools are field - experienced applied and ideas are transformed into concrete product models.

For the preparation of this development project the basics of 3D-CAD-modelling (Pro/ENGINEER) as well as different tools and methods of creative designing, of sketching and solution finding are mediated in workshops. Special events impart an insight of presentation techniques and the meaning of technical design.
6.160 Course: Integrated Production Planning in the Age of Industry 4.0 [T-MACH-109054]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101272 - Integrated Production Planning

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>9</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150660</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td>6</td>
<td>Lecture / Practice (VÜ)</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-109054</td>
<td>Integrated Production Planning in the Age of Industry 4.0</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (120 min)

Prerequisites

"T-MACH-108849 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" as well as "T-MACH-102106 Integrierte Produktionsplanung" must not be commenced.

Below you will find excerpts from events related to this course:

Integrated Production Planning in the Age of Industry 4.0
2150660, SS 2020, 6 SWS, Language: German, Open in study portal

Description

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
Notes
Integrated production planning in the age of industry 4.0 will be taught in the context of this engineering science lecture. In addition to a comprehensive introduction to Industry 4.0, the following topics will be addressed at the beginning of the lecture:

- Basics, history and temporal development of production
- Integrated production planning and integrated digital engineering
- Principles of integrated production systems and further development with Industry 4.0

Building on this, the phases of integrated production planning are taught in accordance with VDI Guideline 5200, whereby special features of parts production and assembly are dealt with in the context of case studies:

- Factory planning system
- Definition of objectives
- Data collection and analysis
- Concept planning (structural development, structural dimensioning and rough layout)
- Detailed planning (production planning and control, fine layout, IT systems in an industry 4.0 factory)
- Preparation and monitoring of implementation
- Start-up and series support

The lecture contents are rounded off by numerous current practical examples with a strong industry 4.0 reference. Within the exercises the lecture contents are deepened and applied to specific problems and tasks.

Learning Outcomes:
The students ...

- can discuss basic questions of production technology.
- are able to apply the methods of integrated production planning they have learned about to new problems.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about for a specific problem.
- can apply the learned methods of integrated production planning to new problems.
- can use their knowledge targeted for efficient production technology.

Workload:

MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Learning Content
Integrated production planning in the age of industry 4.0 will be taught in the context of this engineering science lecture. In addition to a comprehensive introduction to Industry 4.0, the following topics will be addressed at the beginning of the lecture:

- Basics, history and temporal development of production
- Integrated production planning and integrated digital engineering
- Principles of integrated production systems and further development with Industry 4.0

Building on this, the phases of integrated production planning are taught in accordance with VDI Guideline 5200, whereby special features of parts production and assembly are dealt with in the context of case studies:

- Factory planning system
- Definition of objectives
- Data collection and analysis
- Concept planning (structural development, structural dimensioning and rough layout)
- Detailed planning (production planning and control, fine layout, IT systems in an industry 4.0 factory)
- Preparation and monitoring of implementation
- Start-up and series support

The lecture contents are rounded off by numerous current practical examples with a strong industry 4.0 reference. Within the exercises the lecture contents are deepened and applied to specific problems and tasks.
Workload
MACH:
regular attendance: 63 hours
self-study: 177 hours
WING:
regular attendance: 63 hours
self-study: 207 hours

Literature
Lecture Notes
Course: Integrative Strategies in Production and Development of High Performance Cars [T-MACH-105188]

Responsible: Dr. Karl-Hubert Schlichtenmayer
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101282 - Global Production and Logistics
- M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2150601 | Integrative Strategies in Production and Development of High Performance Cars | 2 SWS | Lecture (V) | Schlichtenmayer |

Exams

| WS 19/20 | 76-T-MACH-105188 | Integrative Strategies in Production and Development of High Performance Cars | Prüfung (PR) | Schlichtenmayer |

Competence Certificate
Written Exam (60 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

Integrative Strategies in Production and Development of High Performance Cars
2150601. SS 2020, 2 SWS, Language: German, [Open in study portal](https://ilias.studium.kit.edu/).

Description
Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Notes
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Learning Outcomes:
The students ...

- are capable to specify the current technological and social challenges in automotive industry.
- are qualified to identify interlinkages between development processes and production systems.
- are able to explain challenges and solutions of global markets and global production of premium products.
- are able to explain modern methods to identify key competences of producing companies.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Learning Content
The lecture deals with the technical and organizational aspects of integrated development and production of sports cars on the example of Porsche AG. The lecture begins with an introduction and discussion of social trends. The deepening of standardized development processes in the automotive practice and current development strategies follow. The management of complex development projects is a first focus of the lecture. The complex interlinkage between development, production and purchasing are a second focus. Methods of analysis of technological core competencies complement the lecture. The course is strongly oriented towards the practice and is provided with many current examples.

The main topics are:

- Introduction to social trends towards high performance cars
- Automotive Production Processes
- Integrative R&D strategies and holistic capacity management
- Management of complex projects
- Interlinkage between R&D, production and purchasing
- The modern role of manufacturing from a R&D perspective
- Global R&D and production
- Methods to identify core competencies

Workload
regular attendance: 21 hours
self-study: 99 hours

Literature
Lecture Slides
6.162 Course: Intelligent CRM Architectures [T-WIWI-103549]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101470 - Data Science: Advanced CRM

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540525</td>
<td>Intelligent CRM Architectures</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540526</td>
<td>Übung zu Intelligent CRM Architectures</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Nazemi</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>79011480</td>
<td>Intelligent CRM Architectures</td>
<td>Prüfung (PR)</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate

This lecture will be offered for the last time in winter semester 2019/20.

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

It is recommended to additionally review the Bachelor-level lecture "Customer Relationship Management" from the module "CRM and Servicemanagement".

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Title</th>
<th>Event Code</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligent CRM Architectures</td>
<td>2540525</td>
<td>2</td>
<td>Lecture (V)</td>
<td>English</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>
Notes

Course content:
The lecture is structured in three parts:
In the first part, the methods used for architecture design are introduced (system analysis, UML, formal specification of interfaces, software and analysis patterns, and the separation in conceptual and IT-architectures. The second part is dedicated to learning architectures and machine learning methods. The third part presents examples of learning CRM-Architectures.

Workload:
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance
- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study
- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Learning Goals:
Students have special knowledge of software architectures and of the methods which are used in their development (Systems analysis, formal methods for the specification of interfaces and algebraic semantic, UML, and, last but not least, the mapping of conceptual architectures to IT-architectures.

Students know important architectural patterns and they can – based on their CRM knowledge – combine these patterns for innovative CRM applications.

Assessment:
The assessment consists of a written exam of 1-hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added.

Grade: Minimum points
- 1.0: 95
- 1.3: 90
- 1.7: 85
- 2.0: 80
- 2.3: 75
- 2.7: 70
- 3.0: 65
- 3.3: 60
- 3.7: 55
- 4.0: 50
- 5.0: 0

The grade consists of approximately 91% of exam points and 9% of exercise points.
6.163 Course: International Finance [T-WIWI-102646]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Walter, Uhrig-Homburg</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Prerequisites
None

Recommendation
None

Annotation
See German version.

Below you will find excerpts from events related to this course:

International Finance
2530570, SS 2020, 2 SWS, Language: German, Open in study portal

Description
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First, the point of view of an international investor second, that of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore, current exchange rate theories are discussed.

Learning Content
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First, the point of view of an international investor second, that of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore, current exchange rate theories are discussed.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Elective literature:
6.164 Course: International Management in Engineering and Production [T-WIWI-102882]

Responsible: Dr. Henning Sasse
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

Type	Credits	Recurrence	Version
Written examination | 3.5 | Each winter term | 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581956</td>
<td>International Management in Engineering and Production 2 SWS Sasse</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981956</td>
<td>International Management in Engineering and Production Prüfung (PR) Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination will be in form of a written exam acc. to §4(2), 1 ER. Exams are offered in every semester and can be re-examined at every ordinary examination date.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

International Management in Engineering and Production

2581956, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V)

Notes

- Fundamentals of international business
- Forms of international cooperation and value creation
- Site selection
- Cost driven internationalization and site selection
- Sales and customer driven internationalization and site selection
- Challenges, risks and risk mitigation
- Management of international production sites
- Types and case studies of international production

Learning Content

- Fundamentals of international business
- Forms of international cooperation and value creation
- Site selection
- Cost driven internationalization and site selection
- Sales and customer driven internationalization and site selection
- Challenges, risks and risk mitigation
- Management of international production sites
- Types and case studies of international production

Workload

The total workload for this course is approximately 105 hours. For further information see German version.
Literature
Will be announced in the course.
6.165 Course: International Selling – EUCOR [T-WIWI-110381]

Responsible: Erice Casenave
Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101487 - Sales Management
M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101488 - Entrepreneurship (EnTechnon)

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Non exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation (presentation). The grade is based on the presentation and the subsequent discussion.

Prerequisites

The courses "Business Planning for Founders - EUCOR" and the course "International Selling - EUCOR" must be taken together.

Annotation

An application is required to participate in this course. The application phase usually takes place at the beginning of the lecture period. Further information on the application process can be found on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the start of the lecture period.

Please note that the courses "Business Planning for Founders - EUCOR" (3 ECTS) and "International Selling - EUCOR" (3 ECTS) can only be taken together (6 ECTS in total). In combination with the mandatory course "Sales Management and Retailing" (3 ECTS) the module is completed.

Below you will find excerpts from events related to this course:

International Selling – EUCOR

2572179, WS 19/20, 2 SWS, Language: English, Open in study portal

Notes

This course is offered as part of the EUCOR programme in cooperation with EM Strasbourg. Max. 10 students of KIT and max. 10 students of EM Strasbourg will develop a sales presentation in tandems (teams of 2). This is based on the value proposition of a business model developed in the LV "Business Planning for Founders - EUCOR".

- An application is required to participate in this event. The application phase usually takes place at the beginning of the lecture period. Further information on the application process can be found on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the start of the lecture period.

- Please note that the courses "Business Planning for Founders - EUCOR" (3 ECTS) and "International Selling - EUCOR" (3 ECTS) can only be taken together (6 ECTS in total). In combination with the mandatory course "Sales Management and Retailing" (3 ECTS) the module is completed.

Total workload for 3 ECTS: about 90 hours.
Course: Internet Law [T-INFO-101307]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type of Event</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24354</td>
<td>Internet Law</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Type of Event</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500060</td>
<td>Internet Law</td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500057</td>
<td>Internet Law</td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>
6.167 Course: Introduction to Data Science [T-WIWI-110863]

Responsible: Steffen Herbold

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2511608</th>
<th>Introduction to Data Science</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Herbold</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2511609</td>
<td>Exercises to Introduction to Data Science</td>
<td>SWS</td>
<td>Practice (Ü)</td>
<td>Herbold</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min).

Please note that lecture and exam will be offered once in the summer semester 2020. The repeat examination will take place in winter semester 2020/21 (only for repeaters).

Prerequisites

None

Below you will find excerpts from events related to this course:

Introduction to Data Science

2511608, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Notes

The main topic of this lecture is data science, i.e., methods to extract information from data with a scientific approach. We approach this topic from a practical side in this lecture. This means, that we concern ourselves directly with what algorithms do, and where they should be applied. The details of the algorithms and the theory behind them are not part of this lecture. Methods considered in this lecture include:

- Association rule mining with the APRIORI approach
- Clustering with k-means, EM for gaussian mixtures, DBSCAN, and single linkage clustering
- Classification with k-nearest neighbor, decision trees, random forests, logistic regression, naive Bayes, support vector machines, and neural networks
- Linear regression with ridge and lasso
- Time series analysis with ARMA
- Fundamentals of text mining

Additionally, we will consider the analysis of Big Data. In this context, we will consider the following topics:

- The MapReduce paradigm
- Apache Hadoop and Apache Spark
6.168 Course: Introduction to Hydrogeology [T-BGU-101499]

Responsible: Prof. Dr. Nico Goldscheider
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-WIWI-101642 - Natural Hazards and Risk Management 1
- M-WIWI-101644 - Natural Hazards and Risk Management 2
- M-WIWI-104837 - Natural Hazards and Risk Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Practice</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6339050</td>
<td>Grundlagen der Hydrogeologie (Studienplan 2009 G10-1, G10-2)</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Goldscheider</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type / Practice</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8210_101499</td>
<td>Introduction to Hydrogeology</td>
<td>Prüfung (PR)</td>
<td>Goldscheider</td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam with 90 minutes

Prerequisites
none
Course: Introduction to Microsystem Technology I [T-MACH-105182]

Responsible:
Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation:
KIT Department of Mechanical Engineering

Part of:
M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2141861</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Introduction to Microsystem Technology I</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-105182</td>
<td>Prüfung (PR)</td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written examination for implementation in a major field, 30 min oral exam for elective subject

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology I

2141861, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Learning Content

- Introduction in Nano- and Microtechnologies
- Silicon and processes for fabricating microelectronics circuits
- Basic physics background and crystal structure
- Materials for micromachining
- Processing technologies for microfabrication
- Silicon micromachining
- Examples

Workload

- Literature: 20 h
- Lessons: 21 h
- Preparation and Review: 50 h
- Exam preparation: 30 h

Literature

M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
6.170 Course: Introduction to Microsystem Technology II [T-MACH-105183]

Responsible: Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2142874</td>
<td>Introduction to Microsystem Technology II</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105183</td>
<td>Introduction to Microsystem Technology II</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Korvink, Badilita</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written examination for major field, oral exam (30 min) for elective field

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology II

2142874, SS 2020, 2 SWS, Language: English, Open in study portal

Lecture (V)

Notes
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Learning Content
- Introduction in Nano- and Microtechnologies
- Lithography
- LIGA-technique
- Mechanical microfabrication
- Patterning with lasers
- Assembly and packaging
- Microsystems

Workload
- Literature: 20 h
- Lessons: 21 h
- Preparation and Review: 50 h
- Exam preparation: 30 h

Literature
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
6.171 Course: Introduction to Stochastic Optimization [T-WIWI-106546]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Course Title</th>
<th>WS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2550470</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550471</td>
<td>Übung zur Einführung in die Stochastische Optimierung</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice (Ü)</td>
<td>Rebennack, Sinske</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550474</td>
<td>Rechnerübung zur Einführung in die Stochastische Optimierung</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice (Ü)</td>
<td>Rebennack, Sinske</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Course Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900242</td>
<td>Introduction to Stochastic Optimization</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites

None.
6.172 Course: IoT Platform for Engineering [T-MACH-106743]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123352</td>
<td>IoT platform for engineering</td>
<td>SWS</td>
<td></td>
<td>Ovtcharova, Maier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2123352</td>
<td>IoT platform for engineering</td>
<td>3 SWS</td>
<td>Project (PRO)</td>
<td>Ovtcharova, Maier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Prüfung (PR)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76T-MACH-106743</td>
<td>IoT platform for engineering</td>
<td></td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate
Assessment of another type (graded), procedure see webpage. Number of participants limited to 20 people. There is a participant selection process.

Below you will find excerpts from events related to this course:

IoT platform for engineering

2123352, WS 19/20, SWS, Language: German, [Open in study portal](#)

Learning Content

Industry 4.0, IT systems for fabrication and assembly, process modelling and execution, project work in teams, practice-relevant I4.0 problems, in automation, manufacturing industry and service.

Notes

Number of participants limited to 15 people. There is a participant selection process.
6.173 Course: IT- Security Law [T-INFO-109910]

Responsible: PD Dr. Oliver Raabe
Organisation: KIT Department of Informatics
Part of: M-INFO-101242 - Governance, Risk & Compliance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2400007</td>
<td>IT SECURITY LAW</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>7500228</td>
<td>IT- Security Law</td>
<td></td>
</tr>
</tbody>
</table>
6.174 Course: IT-Fundamentals of Logistics [T-MACH-105187]

Responsible: Prof. Dr.-Ing. Frank Thomas
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101263 - Introduction to Logistics
M-MACH-101278 - Material Flow in Networked Logistic Systems
M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2118184 | IT-Fundamentals of Logistics: Opportunities for Digital Transformation | 2 SWS | Lecture (V) | Thomas |

Exams

| WS 19/20 | 76-T-MACH-105187 | IT-Fundamentals of Logistics | Prüfung (PR) | Furmans, Mittwollen |

Competence Certificate
The assessment consists of an oral exam (30min) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
none

Annotation
1) Detailed script can be downloaded online (www.tup.com), updated and enhanced annually.
2) CD-ROM with chapters and exercises at the end of the semester available from the lecturer, also updated and enhanced annually.

Below you will find excerpts from events related to this course:

IT-Fundamentals of Logistics: Opportunities for Digital Transformation
2118184, SS 2020, 2 SWS, Language: German, Open in study portal
Learning Content
The rapid development of information technology influences business processes drastically. A strategic IT-orientation for an enterprise without a critical appreciation of worldwide IT-development (where the half-life value of IT for logistic systems knowledge is less than 3 years) is dangerous. The pressure of costs is always in focus. For this purpose the contents of this course, as well as the detailed script will be continuously revised, and the influences on business processes will be shown in practical examples.

Focuses:

- **System architecture in Material Flow Control Systems (MFCS)**
 A guiding principle for a new system architecture for MFC systems is the consideration of making new standardized, functional groups available for re-usability.

- **Design and application of innovative Material Flow Control Systems (MFCS)**
 The most important task of the MFCS is the commissioning of conveying systems with driving commands in a way that optimally utilizes the facility and serves the logistics processes on schedule.

- **Identification of goods – Application in Logistics**
 Along with business processes, coded information is the link between the flow of information and the flow of materials, and contributes to error prevention in the communication between people and machines.

- **Data communication in Intra-logistics**
 Information describes the content of a message that is of value to the recipient. The recipient can be both a human and a machine.

 - **Business processes for Intra-logistics – Software follows function!**
 If the business processes from Goods Incoming to Goods Outgoing are adapted with reusable building blocks then capabilities become visible. Against this background the consideration becomes apparent, how, through an innovative software architecture, a reusable building-block based framework can be made. Therefore applies: Software follows function. And only if all project requirements are documented in the planning phase, and supported together in an inter-disciplinary team - consisting of logistics planners, the customers (users) and the implementation leader (IL).

 - **Software development in accordance with industrial standards**
 Today's development of object-oriented software, and the increasing penetration of industrial software production with this technology, makes it possible to create system designs that already offer these opportunities in their facility - both for a high degree of reuse and for easier adaptability.
 In software development, object-oriented methods are used to improve the productivity, maintainability and software quality. An important aspect of object-orientation is: the objects used are primarily intended to depict the real world.

Annotation
1) Detailed script can be downloaded online (www.tup.com), updated and enhanced annually.
2) CD-ROM with chapters and exercises at the end of the semester available from the lecturer, also updated and enhanced annually.

Workload
regular attendance: 21 hours
self-study: 99 hours
6.175 Course: Joint Entrepreneurship Summer School [T-WIWI-109064]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2545021</th>
<th>Joint Entrepreneurship School</th>
<th>SWS</th>
<th>Seminar (S)</th>
<th>Terzidis, Ntagiakou</th>
</tr>
</thead>
</table>

Competence Certificate

The learning control of the program (Summer School) consists of two parts:

A) Investor Pitch:
Based on a presentation (investor pitch) in front of a jury, the insights gained and developed during the course of the event are presented and the business idea presented. Among other things, the presentation performance of the team, the structured content and the logical consistency of the business idea are evaluated. The exact evaluation criteria will be announced in the course.

B) Written elaboration:
The second part of the assessment is a written report. The iterative knowledge gain of the entire event is systematically logged and can be further supplemented by the contents of the presentation. The report documents key action steps, applied methods, findings, market analyzes and interviews and prepares them in writing. The exact structure and requirements will be announced in the course.

The grade consists of 50% presentation performance and 50% written preparation.

Prerequisites
The Summer School is aimed at master students of KIT. Prerequisite is the participation in the selection process.

Recommendation
We recommend basic business knowledge, the lecture Entrepreneurship as well as openness and interest in intercultural exchange. Solid knowledge of the English language is an advantage.

Annotation
The working language during the Summer School is English. A one-week stay in China is part of the Summer School.
Course: Knowledge Discovery [T-WIWI-102666]

Responsible: Prof. Dr. York Sure-Vetter

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

Type:
- Written examination

Credits:
- 4.5

Recurrence:
- Each winter term

Version:
- 2

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2511302</td>
<td>Knowledge Discovery</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Sure-Vetter, Färber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2511303</td>
<td>Exercises to Knowledge Discovery</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Sure-Vetter, Färber, Weller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900013</td>
<td>Knowledge Discovery</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation. Students can be awarded a bonus on their final grade if they successfully complete special assignments.

Prerequisites

None

Below you will find excerpts from events related to this course:

Knowledge Discovery

2511302, WS 19/20, 2 SWS, Language: English, [Open in study portal]

Notes

The lecture gives an overview of approaches of machine learning and data mining for knowledge acquisition from large data sets. These are examined especially with respect to algorithms, applicability to different data representations and the use in real application scenarios.

Knowledge Discovery is an established research area with a large community that investigates methods for discovering patterns and regularities in large amounts of data, including unstructured text. A variety of methods exist to extract patterns and provide previously unknown insights. This information can be predictive or descriptive.

The lecture gives an overview of Knowledge Discovery. Specific techniques and methods, challenges and current and future research topics in this research area will be taught.

Contents of the lecture cover the entire machine learning and data mining process with topics on supervised and unsupervised learning and empirical evaluation. Covered learning methods range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.

Learning objectives:

Students

- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery.
- are able to design, train and evaluate adaptive systems.
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours
Notes
The exercises are based on the lecture Knowledge Discovery. Several exercises are covered, which take up and discuss in detail the topics covered in the lecture Knowledge Discovery. Practical examples are demonstrated to the students to enable a knowledge transfer of the theoretical aspects learned into practical application.
Contents of the lecture cover the entire machine learning and data mining process with topics on monitored and unsupervised learning processes and empirical evaluation. The learning methods covered range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.

Learning objectives:
Students

- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery,
- are able to design, train and evaluate adaptive systems,
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.
6.177 Course: Laboratory Production Metrology [T-MACH-108878]

Responsible: Dr.-Ing. Benjamin Häfner
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2150550</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td></td>
</tr>
<tr>
<td>Laboratory Production Metrology</td>
<td>Häfner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 76-T-MACH-108878</td>
<td>Prüfung (PR)</td>
<td>Häfner</td>
<td></td>
</tr>
<tr>
<td>Laboratory Production Metrology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative Test Achievement: Group presentation of 15 min at the beginning of each experiment and evaluation of the participation during the experiments
and
Oral Exam (15 min)

Prerequisites
none

Annotation
For organizational reasons the number of participants for the course is limited. Hence a selection process will take place.
Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Below you will find excerpts from events related to this course:

Laboratory Production Metrology
2150550, SS 2020, 3 SWS, Language: German, Open in study portal

Description
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/). Additional reference to literature will be provided, as well.
Notes
During this course, students get to know measurement systems that are used in a production system. In the age of Industry 4.0, sensors are becoming more important. Therefore, the application of in-line measurement technology such as machine vision and non-destructive testing is focussed. Additionally, laboratory based measurement technologies such as computed tomography are addressed. The students learn the theoretical background as well as practical applications for industrial examples. The students use sensors by themselves during the course. Additionally, they are trained on how to integrate sensors in production processes and how to analyze measurement data with suitable software.

The following topics are addressed:

- Classification and examples for different measurement technologies in a production environment
- Machine vision with optical sensors
- Information fusion based on optical measurements
- Robot-based optical measurements
- Non-destructive testing by means of acoustic measurements
- Coordinate measurement technology
- Industrial computed tomography
- Measurement uncertainty evaluation
- Analysis of production data by means of data mining

Learning Outcomes:
The students ...

- are able to name, describe and mark out different measurement technologies that are relevant in a production environment.
- are able to conduct measurements with the presented in-line and laboratory based measurement systems.
- are able to analyze measurement results and assess the measurement uncertainty of these.
- are able to deduce whether a work piece fulfills quality relevant specifications by analysing measurement results.
- are able to use the presented measurement technologies for a new task.

Workload:
regular attendance: 31,5 hours
self-study: 88,5 hours

Learning Content
During this course, students get to know measurement systems that are used in a production system. In the age of Industry 4.0, sensors are becoming more important. Therefore, the application of in-line measurement technology such as machine vision and non-destructive testing is focussed. Additionally, laboratory based measurement technologies such as computed tomography are addressed. The student learn the theoretical background as well as practical applications for industrial examples. The students use sensors by themselves during the course. Additionally, they are trained on how to integrate sensors in production processes and how to analyze measurement data with suitable software. The following topics are addressed:

- Classification and examples for different measurement technologies in a production environment
- Machine vision with optical sensors
- Information fusion based on optical measurements
- Robot-based optical measurements
- Non-destructive testing by means of acoustic measurements
- Coordinate measurement technology
- Industrial computed tomography
- Measurement uncertainty evaluation
- Analysis of production data by means of data mining

Workload
regular attendance: 31,5 hours
self-study: 88,5 hours
6 COURSES

Course: Laboratory Work Water Chemistry [T-CIWVT-103351]

6.178 Course: Laboratory Work Water Chemistry [T-CIWVT-103351]

Responsible: Dr. Gudrun Abbt-Braun
Prof. Dr. Harald Horn

Organisation: KIT Department of Chemical and Process Engineering

Part of: M-CIWVT-101121 - Water Chemistry and Water Technology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WS 19/20 | 22664 | Practical course: Water quality and water assessment | 2 SWS | Practical course (P) | Horn, Abbt-Braun, und Mitarbeiter |

Exams

| WS 19/20 | 7232002 | Laboratory Work Water Chemistry | Prüfung (PR) | Horn, Abbt-Braun |

Prerequisites

none
Course: Large-scale Optimization [T-WIWI-106549]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900244</td>
<td>Large-scale Optimization</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites
None.
6.180 Course: Laser Physics [T-ETIT-100741]

Responsible: Prof. Dr.-Ing. Christian Koos
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-101292 - Microoptics
M-MACH-101295 - Optoelectronics and Optical Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2301480</td>
<td>Laserphysics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Eichhorn</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2301481</td>
<td>Tutorial for 2301480 Laserphysics</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Eichhorn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7301480</td>
<td>Laser Physics</td>
<td>Prüfung (PR)</td>
<td>Eichhorn</td>
</tr>
</tbody>
</table>

Prerequisites

none
6.181 Course: Law of Contracts [T-INFO-101316]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of:
- M-INFO-101216 - Private Business Law
- M-INFO-101242 - Governance, Risk & Compliance

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 24671</td>
<td>2 SWS</td>
<td>Law of Contracts</td>
<td>Lecture (V)</td>
<td>Hoff</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7500059</td>
<td></td>
<td>Law of Contracts</td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>SS 2020 7500055</td>
<td></td>
<td>Law of Contracts</td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>
6.182 Course: Lean Construction [T-BGU-108000]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101884 - Lean Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6241901</td>
<td>Lean Construction</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Haghsheno, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8246108000</td>
<td>Lean Construction</td>
<td>Prüfung (PR)</td>
<td>Haghsheno</td>
</tr>
</tbody>
</table>

Competence Certificate

written exam, 70 min.

Prerequisites

none

Recommendation

none

Annotation

none
6.183 Course: Learning Factory “Global Production” [T-MACH-105783]

Responsible: Prof. Dr.-Ing. Gisela Lanza
Organisation: KIT Department of Mechanical Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Part of:
M-MACH-101282 - Global Production and Logistics
M-MACH-101284 - Specialization in Production Engineering

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149612</td>
<td>Learning Factory “Global Production”</td>
<td>2</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105783</td>
<td>Learning Factory “Global Production”</td>
<td>Prüfung (PR)</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative test achievement (graded):

- Knowledge acquisition in the context of the seminar (3 achievements 20 min each) with weighting 40%.
- Interaction between participants with weighting 15%.
- Scientific colloquium (in groups of 3 students approx. 45 min each) with weighting 45%.

Prerequisites

none

Annotation

For organisational reasons, the number of participants for the course is limited to 20. As a result, a selection process will take place. Applications must be submitted via the wbk homepage (http://www.wbk.kit.edu/studium-und-lehre.php).

Due to the limited number of participants, advance registration is required.

Students should have previous knowledge in at least one of the following areas:

- Integrated Production Planning
- Global Production and Logistics
- Quality Management

Below you will find excerpts from events related to this course:

Description

Media:

E-learning platform ilias, powerpoint, photo protocol. The media are provided through ilias (https://ilias.studium.kit.edu/).
Notes
The learning factory "Global Production" serves as a modern teaching environment for the challenges of global production. To make these challenges come alive, students can run a production of electric motors under real production conditions. The course is divided into e-learning units and presence dates. The e-learning units help to learn essential basics and to immerse themselves in specific topics (e.g. selection of location, supplier selection and planning of production networks). The focus of the presence appointments is the case-specific application of relevant methods for planning and control of production systems that are suitable for the location. In addition to traditional methods and tools to organize lean production systems (e.g. Kanban and JIT/ JIS, Line Balancing) the lecture in particular deals with site-specific quality assurance and scalable automation. Essential methods for quality assurance in complex production systems are taught and brought to practical experience by a Six Sigma project. In the area of scalable automation, it is important to find solutions for the adaption of the level of automation of the production system to the local production conditions (e.g. automated workpiece transport, integration of lightweight robots for process linking) and to implement them physically. At the same time safety concepts should be developed and implemented as enablers for human-robot collaboration.

The course also includes an excursion to the production plant for the manufacturing of electric motors of an industrial partner.

Main focus of the lecture:
- site selection
- site-specific factory planning
- site-specific quality assurance
- scalable automation
- supplier selection

Learning Outcomes:
The students are able to ...
- evaluate and select alternative locations using appropriate methods.
- use methods and tools of lean management to plan and manage production systems that are suitable for the location.
- use the Six Sigma method and apply goal-oriented process management.
- select an appropriate level of automation of the production units based on quantitative variables.
- make use of well-established methods for the evaluation and selection of suppliers.
- apply methods for planning a global production network depending on company-specific circumstances to sketch a suitable network and classify and evaluating it according to specific criteria.
- apply the learned methods and approaches with regard to problem solving in a global production environment and able to reflect their effectiveness.

Workload:
e-Learning: ~ 24 h
regular attendance: ~ 36 h
self-study: ~ 60 h

Learning Content
The learning factory "Global Production" serves as a modern teaching environment for the challenges of global production. To make this challenges come alive, students can run a production of electric motors under real production conditions.

The course is divided into e-learning units and presence dates. The e-learning units help to learn essential basics and to immerse themselves in specific topics (e.g. selection of location, supplier selection and planning of production networks). The focus of the presence appointments is the case-specific application of relevant methods for planning and control of production systems that are suitable for the location. In addition to traditional methods and tools to organize lean production systems (e.g. Kanban and JIT/ JIS, Line Balancing) the lecture in particular deals with site-specific quality assurance and scalable automation. Essential methods for quality assurance in complex production systems are taught and brought to practical experience by a Six Sigma project. In the area of scalable automation, it is important to find solutions for the adaption of the level of automation of the production system to the local production conditions (e.g. automated workpiece transport, integration of lightweight robots for process linking) and to implement them physically. At the same time safety concepts should be developed and implemented as enablers for human-robot collaboration.

The course also includes an excursion to the production plant for the manufacturing of electric motors of an industrial partner.

Main focus of the lecture:
- site selection
- site-specific factory planning
- site-specific quality assurance
- scalable automation
- supplier selection
Annotation
For organisational reasons, the number of participants for the course is limited to 20. As a result, a selection process will take place. Applications must be submitted via the wbk homepage (http://www.wbk.kit.edu/studium-und-lehre.php).
Due to the limited number of participants, advance registration is required.
Students should have previous knowledge in at least one of the following areas:

- Integrated Production Planning
- Global Production and Logistics
- Quality Management

Workload
e-Learning: ~ 24 h
regular attendance: ~ 36 h
self-study: ~ 60 h
6.184 Course: Liberalised Power Markets [T-WIWI-107043]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101451 - Energy Economics and Energy Markets
M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>WS 19/20</th>
<th>2581998</th>
<th>Liberalised Power Markets</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Fichtner</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>WS 19/20</th>
<th>7900193</th>
<th>Liberalised Power Markets</th>
<th>Prüfung (PR)</th>
<th>Fichtner</th>
</tr>
</thead>
</table>

Competence Certificate
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Liberalised Power Markets
2581998, WS 19/20, 2 SWS, Language: English, Open in study portal
Notes
1. Power markets in the past, now and in future
2. Designing liberalised power markets
 2.1. Unbundling Dimensions of liberalised power markets
 2.2. Central dispatch versus markets without central dispatch
 2.3. The short-term market model
 2.4. The long-term market model
 2.5. Market flaws and market failure
 2.6. Regulation in liberalised markets
3. The power (sub)markets
 3.1 Day-ahead market
 3.2 Intraday market
 3.3 (Long-term) Forwards and futures markets
 3.4 Emission rights market
 3.5 Market for ancillary services
 3.6 The "market" for renewable energies
 3.7 Future market segments
4. Grid operation and congestion management
 4.1. Grid operation
 4.2. Congestion management
5. Market power
 5.1. Defining market power
 5.2. Indicators of market power
 5.3. Reducing market power
6. Future market structures in the electricity value chain
1. Power markets in the past, now and in future
2. Designing liberalised power markets
 2.2. Unbundling Dimensions of liberalised power markets
 2.3. Central dispatch versus markets without central dispatch
 2.4. The short-term market model
 2.5. The long-term market model
 2.6. Market flaws and market failure
 2.7. Regulation in liberalised markets
3. The power (sub)markets
 3.1 Day-ahead market
 3.2 Intraday market
 3.3 (Long-term) Forwards and futures markets
 3.4 Emission rights market
 3.5 Market for ancillary services
 3.6 The "market" for renewable energies
 3.7 Future market segments
4. Grid operation and congestion management
 4.1. Grid operation
 4.2. Congestion management
5. Market power
 5.1. Defining market power
 5.2. Indicators of market power
 5.3. Reducing market power
6. Future market structures in the electricity value chain
Learning Content
1. The European liberalisation process
 1.1 The concept of a competitive market
 1.2 The regulated market
 1.3 Deregulation in Europe
2. Pricing and investments in a liberalised power market
 2.1 Merit order
 2.2 Prices and investments
 2.3 Market flaws and market failure
 2.4 Regulation in liberalised markets
 2.5 Additional regulation mechanisms
3. The power market and the corresponding submarkets
 3.1 List of submarkets
 3.2 Types of submarkets
 3.3 Market rules
4. Risk management
 4.1 Uncertainties in a liberalised market
 4.2 Investment decisions under uncertainty
 4.3 Estimating future electricity prices
 4.4 Portfolio management
5. Market power
 5.1 Defining market power
 5.2 Indicators of market power
 5.3 Reducing market power
6. Market structures in the value chain of the power sector

Annotation
The course “Basics of Liberalised Energy Markets” [2581998] will be reduced to 3 credits in winter term 2015/2016 and the tutorial [2581999] is no longer offered.

Workload
The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature
Elective literature:
6.185 Course: Life Cycle Assessment [T-WIWI-110512]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581995</td>
<td>Life Cycle Assessment</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>3.5</td>
<td>Each winter term</td>
<td>Schultmann, Maier</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7981995</td>
<td>Life Cycle Assessment</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination takes place in the form of a written examination (according to §4(2), 1 SPO). The examination is offered every semester and can be repeated at any regular examination date.

Prerequisites
None.

Recommendation
None

Below you will find excerpts from events related to this course:

Life Cycle Assessment
2581995, WS 19/20, 2 SWS, Language: English, Open in study portal

Notes
Introduction to life cycle assessment. The lecture describes structure and individual steps of life cycle assessment in detail.

Learning Content
Our society has reached a historically unique material prosperity. At the same time, environmental burdens and resource consumption are continuously reaching new peaks - not only regarding greenhouse gas emissions and oil production rates. It is obvious that the material and energy intensity of products and services has to decrease if we want to keep our current level of material prosperity on the long run. Enormous efficiency gains, as they have been reached e.g. for labour productivity, however, require that environmental burdens and resource consumption per unit of product are in the first place known, transparent and can thus be optimised. This data and its calculation are increasingly requested and sooner or later will have to become as essential for management as e.g. unit labour costs.

Life cycle assessment is a methodology in sustainability assessment that provides this information and deduces optimisation potentials and decision support for companies, politics, consumers etc. To this end, material and energy flows are compiled along the whole life cycle of a product from extraction of raw materials, via production and use of a product until its disposal. Subsequently, environmental impacts of these flows are analysed.

This lecture describes structure and individual steps of life cycle assessments in detail. Furthermore, it explains its application in decision support. In interactive phases, participants recapitulate the theoretical basis by own calculations. As an outlook, further instruments in sustainability assessment are introduced that analyse other sustainability aspects.

Workload
Total effort required will account for approximately 105h (3.5 credits).

Literature
will be announced in the course
6.186 Course: Logistics and Supply Chain Management [T-MACH-110771]

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-105298 - Logistics and Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>9</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2118078 | Logistics and Supply Chain Management | 4 SWS | Lecture (V) | Furmans |

Competence Certificate
The assessment consists of a written examination (according to §4(2), 1 of the examination regulation).

Prerequisites
None

Below you will find excerpts from events related to this course:

Notes
Logistics and Supply Chain Management provides comprehensive and well-founded fundamentals for the crucial issues in logistics and supply chain management. Within the scope of the lectures, the interaction of different design elements of supply chains is emphasized. For this purpose, qualitative and quantitative description models are used. Methods for mapping and evaluating logistics systems and supply chains are also covered. The lecture contents are enriched by exercises and case studies and partially the comprehension of the contents is provided by case studies. The interacting of the elements will be shown, among other things, in the supply chain of the automotive industry.
6.187 Course: Long-Distance and Air Traffic [T-BGU-106301]

Responsible: Bastian Chlond
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-101064 - Fundamentals of Transportation
- M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>WSE</th>
<th>Lecture Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6232904</td>
<td>Fern- und Luftverkehr</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Chlond, Dozenten</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8245106301</td>
<td>Long-distance and Air Traffic</td>
<td>Prüfung (PR)</td>
<td>Chlond</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.188 Course: Machine Learning 1 - Basic Methods [T-WIWI-106340]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

Type: Written examination

Credits: 4.5

Recurrence: Each winter term

Version: 2

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2511500</td>
<td>Machine Learning 1 - Fundamental Methods</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2511501</td>
<td>Exercises to Machine Learning 1 - Fundamental Methods</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900076</td>
<td>Machine Learning 1 - Basic Methods</td>
<td>Prüfung (PR)</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Machine Learning 1 - Fundamental Methods

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Semester</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511500</td>
<td>WS 19/20</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Notes
The field of knowledge acquisition and machine learning is a rapidly expanding field of knowledge and the subject of numerous research and development projects. The acquisition of knowledge can take place in different ways. Thus a system can benefit from experiences already made, it can be trained, or it draws conclusions from extensive background knowledge.

The lecture covers symbolic learning methods such as inductive learning (learning from examples, learning by observation), deductive learning (explanation-based learning) and learning from analogies, as well as sub-symbolic techniques such as neural networks, support vector machines and genetic algorithms. The lecture introduces the basic principles and structures of learning systems and examines the algorithms developed so far. The structure and operation of learning systems is presented and explained with some examples, especially from the fields of robotics and image processing.

Learning objectives:
- Students acquire knowledge of the fundamental methods in the field of machine learning.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.
Course: Machine Learning 2 – Advanced Methods [T-WIWI-106341]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics
- M-WIWI-101637 - Analytics and Statistics

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2511502</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>SS 2020 2511503</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900050</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation. The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Machine Learning 2 - Advanced methods

Event Details

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511502</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Each summer term</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Notes

The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture “Machine Learning 2” deals with advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning), pulsed networks, hierarchical approaches, e.g. As well as dynamic, probabilistic relational methods. Another focus is the embedding and application of machine learning methods in real systems.

The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (robotics, neurorobotics, image processing, etc.).

Learning objectives:

- Students understand extended concepts of machine learning and their possible applications.
- Students can classify, formally describe and evaluate methods of machine learning.
- In detail, methods of machine learning can be embedded and applied in complex decision and inference systems.
- Students can use their knowledge to select suitable models and methods of machine learning for existing problems in the field of machine intelligence.

Recommendations:

Attending the lecture *Machine Learning 1* or a comparable lecture is very helpful in understanding this lecture.
Course: Machine Tools and Industrial Handling [T-MACH-102158]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101286 - Machine Tools and Industrial Handling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Module Description</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6 SWS</td>
<td>Machine Tools and Industrial Handling</td>
<td></td>
<td>Fleischer</td>
</tr>
<tr>
<td>Exams</td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>WS 19/20</td>
<td></td>
<td>76-T-MACH-102158-WING Machine Tools and Industrial Handling</td>
<td></td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam (120 minutes)

Prerequisites

“T-MACH-109055 - Werkzeugmaschinen und Handhabungstechnik” must not be commenced.

Below you will find excerpts from events related to this course:

Machine Tools and Industrial Handling

2149902, WS 19/20, 6 SWS, Language: German, Open in study portal

Description

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
Notes
The lecture gives an overview of the construction, use and application of machine tools and industrial handling equipment. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools is conveyed. First, the main components of the machine tools are systematically explained and their design principles as well as the integral machine tool design are discussed. Subsequently, the use and application of machine tools will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0.

The individual topics are:

- Frames and frame components
- Feed axes
- Spindles
- Peripheral equipment
- Control unit
- Metrological evaluation and machine testing
- Process monitoring
- Maintenance of machine tools
- Safety assessment of machine tools
- Machine examples

Learning Outcomes:
The students...

- are able to assess the use and application of machine tools and handling equipment and to differentiate between them in terms of their characteristics and design.
- can describe and discuss the essential elements of the machine tool (frame, main spindle, feed axes, peripheral equipment, control unit).
- are able to select and dimension the essential components of a machine tool.
- are capable of selecting and evaluating machine tools according to technical and economic criteria.

Workload:
MACH:
regular attendance: 63 hours
self-study: 177 hours

WING:
regular attendance: 63 hours
self-study: 207 hours

Learning Content
The lecture gives an overview of the construction, use and application of machine tools and industrial handling equipment. In the course of the lecture a well-founded and practice-oriented knowledge for the selection, design and evaluation of machine tools is conveyed. First, the main components of the machine tools are systematically explained and their design principles as well as the integral machine tool design are discussed. Subsequently, the use and application of machine tools will be demonstrated using typical machine examples. Based on examples from current research and industrial applications, the latest developments are discussed, especially concerning the implementation of Industry 4.0.

The individual topics are:

- Frames and frame components
- Feed axes
- Spindles
- Peripheral equipment
- Control unit
- Metrological evaluation and machine testing
- Process monitoring
- Maintenance of machine tools
- Safety assessment of machine tools
- Machine examples

Annotation
None
Workload
MACH:
regular attendance: 63 hours
self-study: 177 hours

WiIng:/TVWL
regular attendance: 63 hours
self-study: 207 hours
Course: Management Accounting 1 [T-WIWI-102800]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101498 - Management Accounting

Type, Credits, Recurrence, Version
- **Type:** Written examination
- **Credits:** 4.5
- **Recurrence:** Each summer term
- **Version:** 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2579900</td>
<td>Management Accounting 1</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Wouters</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2579901</td>
<td>Übung zu Management Accounting 1 (Bachelor)</td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Riar</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2579902</td>
<td></td>
<td>2</td>
<td>Practice (Ü)</td>
<td>Riar</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>79-2579900-B</td>
<td>Management Accounting 1 (Bachelor)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Wouters</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 minutes) (following §4(2), 1 of the examination regulation) at the end of each semester.

Prerequisites
None

Annotation
Students in the Bachelor’s program can only take the related tutorial and examination. Students in the Master’s program (and Bachelor’s students who are already completing examinations for their Master’s program) can only take the related tutorial and examination.

Below you will find excerpts from events related to this course:
Notes
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:
- Students have an understanding of theory and applications of management accounting topics.
- They can use financial information for various purposes in organizations.

Examination:
- The assessment consists of a written exam (120 minutes) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:
- The total workload for this course is approximately 135.0 hours. For further information see German version.

Learning Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- In addition, several papers that will be available on ILIAS.

Übung zu Management Accounting 1 (Bachelor)
2579901, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
see Module Handbook

Übung zu Management Accounting 1 (Bachelor)
2579902, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
see Module Handbook
6 COURSES

6.192 Course: Management Accounting 2 [T-WIWI-102801]

Responsibility: Prof. Dr. Marcus Wouters

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101498 - Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2579903</td>
<td>Management Accounting 2</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2579904</td>
<td>Practice (Ü)</td>
<td>2 SWS</td>
<td>Ebinger</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2579905</td>
<td>Practice (Ü)</td>
<td>2 SWS</td>
<td>Ebinger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>79-2579903-B</td>
<td>Management Accounting 2 (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Wouters</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>79-2579903-M</td>
<td>Management Accounting 2 (Mastervorzug und Master)</td>
<td>Prüfung (PR)</td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 minutes) at the end of each semester.

Prerequisites
None

Recommendation
It is recommended to take part in the course "Management Accounting 1" before this course.

Annotation
Students in the Bachelor program can only take the related tutorial and examination. Students in the Master’s program (and Bachelor’s students who are already completing examinations for their Master’s program) can only take the related tutorial and examination.

Below you will find excerpts from events related to this course:

Management Accounting 2

2579903, WS 19/20, 2 SWS, Language: English, Open in study portal
Notes
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems.
We will use international material written in English.
We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).
The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:
- Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Recommendations:
- It is recommended to take part in the course "Management Accounting 1" before this course.

Examination:
- The assessment consists of a written exam (120 min) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:
- The total workload for this course is approximately 135.0 hours. For further information see German version.

Learning Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems and customer value propositions.
We will use international material written in English.
We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).
The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- In addition, several papers that will be available on ILIAS.

Notes see ILIAS
6.193 Course: Management of IT-Projects [T-WIWI-102667]

| Responsible: | Dr. Roland Schätzle |
| Organisation: | KIT Department of Economics and Management |
| Part of: | M-WIWI-101472 - Informatics
M-WIWI-101628 - Emphasis in Informatics
M-WIWI-101630 - Electives in Informatics |
Type	Written examination
Credits	4.5
Recurrence	Each summer term
Version	3

Events	SS 2020	Management of IT-Projects	2 SWS	Lecture (V)	Schätzle
SS 2020	2511214				
SS 2020	2511215	Übungen zu Management von Informatik-Projekten	1 SWS	Practice (Ü)	Schätzle

| Exams | WS 19/20 | Management of IT-Projects | Prüfung (PR) | Oberweis |
| WS 19/20 | 7900014 |

Competence Certificate
The assessment takes place in the form of a written examination (exam) in the amount of 60 minutes. The examination is offered every semester and can be repeated at any regular examination date.

Prerequisite for the participation in the examination is the successful participation in the exercise, which takes place in the summer semester, starting from summer semester 2020. The number of participants in the exercise is limited.

The exact details will be announced in the lecture.

Prerequisites
Prerequisite for the participation in the examination is the successful participation in the exercise, which takes place in the summer semester, starting from summer semester 2020. The number of participants in the exercise is limited.

Below you will find excerpts from events related to this course:

Management of IT-Projects
2511214, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)
Notes
The lecture deals with the general framework, impact factors and methods for planning, handling, and controlling of IT projects. Especially following topics are addressed:

- project environment
- project organisation
- project planning including the following items:
 - plan of the project structure
 - flow chart
 - project schedule
 - plan of resources
- effort estimation
- project infrastructure
- project controlling
- risk management
- feasibility studies
- decision processes, conduct of negotiations, time management.

Learning objectives:
Students

- explain the terminology of IT project management and typical used methods for planning, handling and controlling,
- apply methods appropriate to current project phases and project contexts,
- consider organisational and social impact factors.

Recommendations:
Knowledge from the lecture Software Engineering is helpful.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Notes
The general conditions, influencing factors and methods in the planning, execution and control of IT projects are dealt with. In particular, the following topics will be dealt with: Project environment, project organization, project structure plan, effort estimation, project infrastructure, project control, decision-making processes, negotiation, time management. The lecture is accompanied by exercises in the form of tutorials. The date of the exercise will be announced later.
6.194 Course: Management of Water Resources and River Basins [T-BGU-106597]

Responsible: Dr.-Ing. Uwe Ehret

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-WIWI-101642 - Natural Hazards and Risk Management 1
- M-WIWI-101644 - Natural Hazards and Risk Management 2
- M-WIWI-104837 - Natural Hazards and Risk Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type / Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6224801</td>
<td>Management of Water Resources and River Basins</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Ehret</td>
</tr>
</tbody>
</table>

Competence Certificate

course associated assignments, short reports appr. 2 pages each, and final take home exam, report appr. 10 pages and colloquium

Prerequisites

none

Recommendation

none

Annotation

none

Responsible: Dr. Thomas Reiß
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lecture (V)</td>
<td>Dr. Reiß</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Prüfung (PR)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lecture (PR)</td>
<td>Dr. Reiß</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written exam 100% following §4, Abs. 2.

Prerequisites
None

Recommendation
None

Annotation
The credit points for T-WIWI-102612 "Management of New Technologies" were reduced to 3 credit points in the 2019 summer semester.

Below you will find excerpts from events related to this course:

Managing New Technologies
2545003, SS 2020, 2 SWS, Language: German, [Open in study portal]

Learning Content
The course provides an overview of the international development of a selected number of key technologies such as biotechnology, nanotechnology, neurotechnologies, converging technologies. Methods for monitoring new technologies including foresight approaches will be presented and the economic and social impacts of new technologies will be discussed.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
- Hausschildt/Salomo: Innovationsmanagement; Borchert et al.: Innovations- und Technologiemanagement;
- Specht/Möhrle; Gabler Lexikon Technologiemanagement
6.196 Course: Manufacturing Technology [T-MACH-102105]

Responsible: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101276 - Manufacturing Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Manufacturing Technology</td>
<td>6 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Schulze, Zanger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Manufacturing Technology</td>
<td>Prüfung (PR)</td>
<td>Schulze</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (180 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Manufacturing Technology

2149657, WS 19/20, 6 SWS, Language: German, Open in study portal

Description

Media:

Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
Notes
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:

- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing

This lecture provides an excursion to an industry company.

Learning Outcomes:
The students ...

- are capable to specify the different manufacturing processes and to explain their functions.
- are able to classify the manufacturing processes by their general structure and functionality according to the specific main groups.
- have the ability to perform a process selection based on their specific characteristics.
- are enabled to identify correlations between different processes and to select a process regarding possible applications.
- are qualified to evaluate different processes regarding specific applications based on technical and economic aspects.
- are experienced to classify manufacturing processes in a process chain and to evaluate their specific influence on surface integrity of workpieces regarding the entire process chain.

Workload:
regular attendance: 63 hours
self-study: 177 hours

Learning Content
The objective of the lecture is to look at manufacturing technology within the wider context of production engineering, to provide an overview of the different manufacturing processes and to impart detailed process knowledge of the common processes. The lecture covers the basic principles of manufacturing technology and deals with the manufacturing processes according to their classification into main groups regarding technical and economic aspects. The lecture is completed with topics such as process chains in manufacturing.

The following topics will be covered:

- Quality control
- Primary processing (casting, plastics engineering, sintering, additive manufacturing processes)
- Forming (sheet-metal forming, massive forming, plastics engineering)
- Cutting (machining with geometrically defined and geometrically undefined cutting edges, separating, abrading)
- Joining
- Coating
- Heat treatment and surface treatment
- Process chains in manufacturing

This lecture provides an excursion to an industry company.

Annotation
None

Workload
regular attendance: 63 hours
self-study: 177 hours

Literature
Lecture Notes

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101409 - Electronic Markets
- M-WIWI-101411 - Information Engineering
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-102754 - Service Economics and Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2540460</td>
<td>Written examination</td>
<td>Market Engineering: Information in Institutions</td>
<td>2 SWS</td>
</tr>
<tr>
<td>SS 2020 2540461</td>
<td>Practice (Ü)</td>
<td>Übungen zu Market Engineering: Information in Institutions</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900208</td>
<td>Written examination</td>
<td>Market Engineering: Information in Institutions (Nachklausur aus SS19)</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) up to 6 bonus points can be obtained. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by max. one grade level (0.3 or 0.4).

Prerequisites
None

Below you will find excerpts from events related to this course:

Market Engineering: Information in Institutions
2540460, SS 2020, 2 SWS, Language: English, Open in study portal

Description
The ongoing advancements in information technology have revolutionized traditional business processes and given rise to electronic marketplaces. In contrast to physical marketplaces, electronic markets do not just evolve, but must be carefully designed, implemented and monitored and evaluated. Moreover electronic markets demand open and flexible platforms as well as adequate standards and information services. Future Market Engineers must therefore be able to consider the economic, legal and technological dimension of markets simultaneously. The lecture focuses on the discussion of (1) Microstructure, (2) IT Infrastructure, and (3) Business Structure of electronic markets. Hence, students will be taught the economic incentives that a market can impose on market participants, development models for implementing markets, and business models for the application of markets.

Learning Content
The ongoing advancements in information technology have revolutionized traditional business processes and given rise to electronic marketplaces. In contrast to physical marketplaces, electronic markets do not just evolve, but must be carefully designed, implemented and monitored and evaluated. Moreover electronic markets demand open and flexible platforms as well as adequate standards and information services. Future Market Engineers must therefore be able to consider the economic, legal and technological dimension of markets simultaneously. The lecture focuses on the discussion of (1) Microstructure, (2) IT Infrastructure, and (3) Business Structure of electronic markets. Hence, students will be taught the economic incentives that a market can impose on market participants, development models for implementing markets, and business models for the application of markets.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature

6.198 Course: Market Research [T-WIWI-107720]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101487 - Sales Management
- M-WIWI-101490 - Marketing Management
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-101647 - Data Science: Evidence-based Marketing
- M-WIWI-105312 - Marketing and Sales Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2571150</td>
<td>Market Research</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2571151</td>
<td>Market Research Tutorial</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practice (Ü)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900217</td>
<td>Market Research</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
None

Annotation
Please note that this course has to be completed successfully by students interested in master thesis positions at the Marketing & Sales Research Group.

Below you will find excerpts from events related to this course:

Market Research
2571150, SS 2020, 2 SWS, Language: English, [Open in study portal](#)
Notes
Within the lecture, essential statistical methods for measuring customer attitudes (e.g. satisfaction measurement), understanding customer behavior and making strategic decisions will be discussed. The practical use as well as the correct handling of different survey methods will be taught, such as experiments and surveys. To analyze the collected data, various analysis methods are presented, including hypothesis tests, factor analyses, cluster analyses, variance and regression analyses. Building on this, the interpretation of the results will be discussed.

Topics addressed in this course are for example:

- Theoretical foundations of market research
- Statistical foundations of market research
- Measuring customer attitudes
- Understanding customer reactions
- Strategical decision making

The aim of this lecture is to give an overview of essential statistical methods. In the lecture students learn the practical use as well as the correct handling of different statistical survey methods and analysis procedures. In addition, emphasis is put on the interpretation of the results after the application of an empirical survey. The derivation of strategic options is an important competence that is required in many companies in order to react optimally to customer needs.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

The total workload for this course is approximately 135.0 hours.

Presence time: 30 hours
Preparation and wrap-up of the course: 45.0 hours
Exam and exam preparation: 60.0 hours

Please note that this course has to be completed successfully by students interested in seminar or master thesis positions at the chair of marketing.
Course: Marketing Analytics [T-WIWI-103139]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101647 - Data Science: Evidence-based Marketing

Competence Certificate

The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation)

Prerequisites

The prerequisite for taking the course is the successful completion of the course Market Research [2571150].

Recommendation

It is strongly recommended to complete the course Market Research prior to taking the Marketing Analytics course.

Annotation

For further information please contact the Marketing and Sales Research Group (marketing.iism.kit.edu).

Exchange students can bypass the requirement of passing Market Research if they can prove that they possess sufficient statistical knowledge based on courses attended at their home institution. This will be examined individually by the Marketing & Sales Research Group.

Below you will find excerpts from events related to this course:

Marketing Analytics

2572170, WS 19/20, 2 SWS, Language: English, Open in study portal

Lecture (V)

Notes

In this course various relevant market research questions are addressed, as for example measuring and understanding customer attitudes, preparing strategic decisions and sales forecasting. In order to analyze these questions, students learn to handle social media data, panel data, nested observations and experimental design. To analyze the data, advanced methods, as for example multilevel modeling, structural equation modeling and return on marketing models are taught. Also, problems of causality are addressed in-depth. The lecture is accompanied by a computer-based exercise, in the course of which the methods are applied practically.

Students

- receive based on the course market research an overview of advanced empirical methods
- learn in the course of the lecture to handle advanced data collection and data analysis methods
- are based on the acquired knowledge able to interpret results and derive strategic implications

Total workload for 4.5 ECTS: ca. 135 hours.

In order to attend Marketing Analytics, students are required to have passed the course Market Research.

Exchange students can bypass the requirement of passing Market Research if they can prove that they possess sufficient statistical knowledge based on courses attended at their home institution. This will be examined individually by the Marketing & Sales Research Group.

For further information please contact the Marketing and Sales Research Group (marketing.iism.kit.edu).
6.200 Course: Marketing Strategy Business Game [T-WIWI-102835]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101490 - Marketing Management
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-105312 - Marketing and Sales Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2571183 | Marketing Strategy Business Game | 1 SWS | Block (B) | Klarmann, Mitarbeiter |

Competence Certificate

The assessment (alternative exam assessment) consists of a group presentation and a subsequent round of questions totalling 20 minutes.

Prerequisites

None

Recommendation

None

Annotation

Please note that only one of the courses from the election block can be chosen in the module.

Please note: The number of participants for this course is limited. The Marketing and Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS points in the respective module to all students. Participation in a specific course cannot be guaranteed.

In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in summer term starts.

Below you will find excerpts from events related to this course:
Notes
Using Markstrat, a marketing strategy business game, students work in groups representing a company that competes on a simulated market against the other groups' companies.

Students
- are able to operate the strategic marketing simulation software "Markstrat"
- are able to take strategic marketing decisions in groups
- know how to apply strategic marketing concepts to practical contexts (e.g. for market segmentation, product launches, coordination of the marketing mix, market research, choice of the distribution channel or competitive behavior)
- are capable to collect and to select information usefully with the aim of decision-making
- are able to react appropriately to predetermined market conditions
- know how to present their strategies in a clear and consistent way
- are able to talk about the success, problems, critical incidents, external influences and strategy changes during the experimental game and to reflect and present their learning success

Non exam assessment (following §4(2), 3 of the examination regulation).

The total workload for this course is approximately 45.0 hours. For further information see German version.

- Please note that only one of the courses from the election block can be chosen in the module.
- Please note: The number of participants for this course is limited. The Marketing and Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.
- In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in summer term starts.
6.201 Course: Master Thesis [T-WIWI-103142]

Responsible:
Studiendekan der KIT-Fakultät für Informatik
Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101659 - Module Masterarbeit

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
see module description

Prerequisites
see module description

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 3 months
- **Correction period**: 8 weeks

Responsible: Prof. Dr.-Ing. Kai Furmans
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101263 - Introduction to Logistics
M-MACH-101277 - Material Flow in Logistic Systems

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Type</th>
<th>SWS</th>
<th>Examination Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2117051</td>
<td>Material flow in logistic systems</td>
<td>6</td>
<td>Others (sonst.)</td>
<td>Furmans</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102151</td>
<td>Material Flow in Logistic Systems</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade):
 - 40% assessment of the result of the case studies as group work,
 - 20% assessment of the oral examination during the case study colloquiums as individual performance.

A detailed description of the learning control can be found under Annotations.

Prerequisites

none

Recommendation

Recommended elective subject: Probability Theory and Statistics

Annotation

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. In the oral examination during the case study colloquiums, the understanding of the result of the group work and the models dealt with in the course is tested. The participation in the oral defenses is compulsory and will be controlled. For the written submission the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Below you will find excerpts from events related to this course:

Material flow in logistic systems

2117051, WS 19/20, 6 SWS, Language: German, Open in study portal

Description

Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. During the colloquiums, the result of the case study is presented and the understanding of the group work and the models dealt with in the course are tested in an oral defense. The participation in the colloquiums is compulsory and will be controlled. For the written submission and the presentation the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

Media: Presentations, black board, book, video recordings
Notes

Learning Content:

- Elements of material flow systems (conveyor elements, fork, join elements)
- Models of material flow networks using graph theory and matrices
- Queueing theory, calculation of waiting time, utilization
- Warehousing and order-picking
- Shuttle systems
- Sorting systems
- Simulation
- Calculation of availability and reliability
- Value stream analysis

After successful completion of the course, you are able (alone and in a team) to:

- Accurately describe a material handling system in a conversation with an expert.
- Model and parameterize the system load and the typical design elements of a material handling system.
- Design a material handling system for a task.
- Assess the performance of a material handling system in terms of the requirements.
- Change the main lever for influencing the performance.
- Expand the boundaries of today's methods and system components conceptually if necessary.

Literature:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009

Description:
Students are divided into groups for this course. Five case studies are carried out in these groups. The results of the group work during the lecture period are presented and evaluated in writing. During the colloquiums, the result of the case study is presented and the understanding of the group work and the models dealt with in the course are tested in an oral defense. The participation in the colloquiums is compulsory and will be controlled. For the written submission and the presentation the group receives a common grade, in the oral defense each group member is evaluated individually.

After the lecture period, there is the final case study. This case study contains the curriculum of the whole semester. The students work individually on this case study which takes place at a predefined place and time (duration: 4h).

We strongly recommend to attend the introductory session at 16.10.2019. In this session, the teaching concept of “Materialfluss in Logistiksystemen” is explained and outstanding issues are clarified.

Workload:

- Regular attendance: 35 h
- Self-study: 135 h
- Group work: 100 h

Competence Certificate:
The assessment (Prüfungsleistung anderer Art) consists of the following assignments:

- 40% assessment of the final case study as individual performance,
- 60% semester evaluation which includes working on 5 case studies and defending those (For both assessment types, the best 4 of 5 tries count for the final grade.):
 - 40% assessment of the result and the presentation of the case studies as group work,
 - 20% assessment of the oral examination during the colloquiums as individual performance.

Learning Content

- Elements of material flow systems (conveyor elements, fork, join elements)
- Models of material flow networks using graph theory and matrices
- Queueing theory, calculation of waiting time, utilization
- Warehousing and order-picking
- Shuttle systems
- Sorting systems
- Simulation
- Calculation of availability and reliability
- Value stream analysis

Annotation
none
Workload
Regular attendance: 35 h
Self-study: 135 h
Group work: 100 h

Literature
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009
Course: Mathematical Models and Methods for Production Systems [T-MACH-105189]

Responsible: Marion Baumann
Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101278 - Material Flow in Networked Logistic Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

WS 19/20 2117059 Mathematical models and methods for Production Systems 4 SWS Lecture (V) Baumann, Furmans

Exams

WS 19/20 76-T-MACH-105189 Mathematical models and methods for Production Systems Prüfung (PR) Furmans

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Mathematical models and methods for Production Systems
2117059, WS 19/20, 4 SWS, Language: English, Open in study portal

Lecture (V)

Notes

Media:
black board, lecture notes, presentations

Learning Content:

- single server systems: M/M/1, M/G/1: priority rules, model of failures
- networks: open and closed approximations, exact solutions and approximations
- application to flexible manufacturing systems, AGV (automated guided vehicles) - systems
- modeling of control approaches like constant work in process (ConWIP) or kanban
- discrete-time modeling of queuing systems

Learning Goals:

Students are able to:

- Describe queueing systems with analytical solvable stochastic models,
- Derive approaches for modeling and controlling material flow and production systems based on models of queueing theory,
- Use simulation and exact methods.

Recommendations:

- Basic knowledge of statistic
- recommended compulsory optional subject: Stochastics
- recommended lecture: Materials flow in logistic systems (also parallel)

Workload:

regular attendance: 42 hours
self-study: 198 hours
6.204 Course: Metal Forming [T-MACH-105177]

Responsible: Dr. Thomas Herlan

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2150681</td>
<td>Metal Forming</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Herlan</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105177</td>
<td>Metal Forming</td>
<td>Prüfung (PR)</td>
<td>Herlan</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-105177-Wdh</td>
<td>Metal Forming - re-examination</td>
<td>Prüfung (PR)</td>
<td>Herlan</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Metal Forming

2150681, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Description

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
Notes
At the beginning of the lecture the basics of metal forming are briefly introduced. The focus of the lecture is on massive forming (forging, extrusion, rolling) and sheet forming (car body forming, deep drawing, stretch drawing). This includes the systematic treatment of the appropriate metal forming Machines and the corresponding tool technology. Aspects of tribology, as well as basics in material science and aspects of production planning are also discussed briefly. The plastic theory is presented to the extent necessary in order to present the numerical simulation method and the FEM computation of forming processes or tool design. The lecture will be completed by product samples from the forming technology.

The topics are as follows:

- Introduction and basics
- Hot forming
- Metal forming machines
- Tools
- Metallographic fundamentals
- Plastic theory
- Tribology
- Sheet forming
- Extrusion
- Numerical simulation

Learning Outcomes:
The students ...

- are able to reflect the basics, forming processes, tools, Machines and equipment of metal forming in an integrated and systematic way.
- are capable to illustrate the differences between the forming processes, tools, machines and equipment with concrete examples and are qualified to analyze and assess them in terms of their suitability for the particular application.
- are also able to transfer and apply the acquired knowledge to other metal forming problems.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Learning Content
At the beginning of the lecture the basics of metal forming are briefly introduced. The focus of the lecture is on massive forming (forging, extrusion, rolling) and sheet forming (car body forming, deep drawing, stretch drawing). This includes the systematic treatment of the appropriate metal forming Machines and the corresponding tool technology. Aspects of tribology, as well as basics in material science and aspects of production planning are also discussed briefly. The plastic theory is presented to the extent necessary in order to present the numerical simulation method and the FEM computation of forming processes or tool design. The lecture will be completed by product samples from the forming technology.

The topics are as follows:

- Introduction and basics
- Hot forming
- Metal forming machines
- Tools
- Metallographic fundamentals
- Plastic theory
- Tribology
- Sheet forming
- Extrusion
- Numerical simulation

Annotation
None

Workload
regular attendance: 21 hours
self-study: 99 hours
6.205 Course: Methods and Models in Transportation Planning [T-BGU-101797]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6232701</td>
<td>Lecture / Practice (VÜ)</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>Vortisch, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240101797</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.206 Course: Methods in Economic Dynamics [T-WIWI-102906]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Ingrid Ott</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-101514 - Innovation Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1,5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>2560240</th>
<th>Methods in Economic Dynamics</th>
<th>SWS</th>
<th>Lecture (V)</th>
<th>Ott, Bälz</th>
</tr>
</thead>
</table>

Competence Certificate
Alternative exam assessment.

Prerequisites
None

Recommendation
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012] and Economics II [2600014]. Further, it is assumed that students have interest in using quantitative-mathematical methods.

Below you will find excerpts from events related to this course:

Methods in Economic Dynamics

2560240, SS 2020, SWS, Language: German/English, [Open in study portal](#)

Notes
The economic exploitation of inventions is an important part of innovation economics. Intellectual property rights such as patents or trademarks play a central role. Within this workshop, the recording, processing and analysis of such intellectual property rights will be deepened, e.g. considering specific technologies. Students will learn how to work with relational databases, the econometric evaluation of recorded data, and methods for visualising them.

Learning objectives:
The student
- learns to query data sources.
- is able to analyse data with statistical methods.
- visualises and interprets data evaluations (e.g. using dashboards or methods of network analysis).

Recommendations:
An interest in working with data, basic knowledge on databases as well as basic knowledge in economics and statistics are advantageous.

Workload:
The total workload for this course is approximately 45 hours.
- Classes: ca. 5 h
- Self-study: ca. 40 h

Assessment:
Non exam assessment according to § 4 paragraph 3 of the examination regulation (SPO 2015).

Learning Content
The workshop offers the possibility to deepen the understanding about different aspects of theoretical modelling of innovation-based growth and induced economic effects. This includes the implementation of formal models in computer algebra systems as well as recording, processing and econometric analysis of related data from relational databases (concerning for example patents or trademarks). Moreover, methods of network theory are discussed.
Annotation
The course has been added summer 2015.

Workload
The total workload for this course is approximately 45 hours.
Lecture: 15h
Preparation of lecture/exam: 30h
6.207 Course: Methods in Innovation Management [T-WIWI-110263]

Responsible: Dr. Daniel Jeffrey Koch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101507 - Innovation Management
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2545107</td>
<td>Methoden im Innovationsmanagement</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900143</td>
<td>Methods in Innovation Management</td>
<td>Prüfung (PR)</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessments (§4(2), 3 SPO). The final grade is composed 75% of the grade of the written paper and 25% of the grade of the presentation.

Prerequisites

None.

Recommendation

Prior attendance of the course "Innovation Management: Concepts, Strategies and Methods" is recommended.

Below you will find excerpts from events related to this course:

Methoden im Innovationsmanagement

2545107, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Notes

The seminar "Methods in Innovation Management" aims at the discussion and development of different methods for the structured generation of ideas in selected contexts. In a block seminar, methods and contexts are discussed, from which seminar topics are defined with the participants. These topics are to be worked on independently using methods and procedures. The results will be presented at a presentation date and then a written seminar paper will be prepared. This means that creativity methods and their combination will be presented and applied. The methods are worked on in a structured form and process-like sequence in order to clarify the advantages and disadvantages of different methods.
6.208 Course: Microactuators [T-MACH-101910]

Responsible: Prof. Dr. Manfred Kohl
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101290 - BioMEMS
M-MACH-101292 - Microoptics
M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Kohl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-101910</td>
<td>Prüfung (PR)</td>
<td>Kohl</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

Microactuators
2142881, SS 2020, 2 SWS, Language: German, Open in study portal

Description
Media:
Script of ppt-slides

Notes
- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications

The lecture includes amongst others the following topics:

- Microelectromechanical systems: linear actuators, microrelais, micromotors
- Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
- Microrobotics: Microgrippers, polymer actuators (smart muscle)
- Information technology: Optical switches, mirror systems, read/write heads
Learning Content
- Basic knowledge in the material science of the actuation principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications
The lecture includes amongst others the following topics:
 - Microelectromechanical systems: linear actuators, microrelais, micromotors
 - Medical technology and life sciences: Microvalves, micropumps, microfluidic systems
 - Microrobotics: Microgrippers, polymer actuators (smart muscle)
 - Information technology: Optical switches, mirror systems, read/write heads

Annotation
Details will be announced at the beginning of the lecture

Workload
lecture time 1.5 h/week
self preparation: 8.5 h/week

Literature
- Lecture notes
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
6.209 Course: Mixed Integer Programming I [T-WIWI-102719]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550138, Lecture (V)</td>
<td>2 SWS</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550139, Practice (Ü)</td>
<td>SWS</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900008_WS1920_HK, Mixed Integer Programming I</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation.

The examination is held in the semester of the lecture and in the following semester.

Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

The examination can also be combined with the examination of Mixed Integer Programming II [25140]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).

Below you will find excerpts from events related to this course:

Mixed-integer Programming I

2550138, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Lecture (V)
Notes
Many optimization problems from economics, engineering and natural sciences are modeled with continuous as well as with discrete variables. Examples are the energy minimal design of a chemical process in which several reactors may be switched on or off, portfolio optimization with limitations on the number of securities, the choice of locations to serve customers at minimum cost, and the optimal design of vote allocations in election procedures. For the algorithmic identification of optimal points of such problems an interaction of ideas from discrete as well as continuous optimization is necessary.

The lecture focuses on mixed-integer linear optimization problems and is structured as follows:

- Introduction, solvability, and basic concepts
- LP relaxation and error bounds for roundings
- Branch-and-bound method
- Gomory's cutting plane method
- Benders decomposition

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of mixed-integer nonlinear optimization problems forms the contents of the lecture "Mixed-integer Programming II".

Learning objectives:
The student

- knows and understands the fundamentals of linear mixed integer programming,
- is able to choose, design and apply modern techniques of linear mixed integer programming in practice.
Course: Mixed Integer Programming II [T-WIWI-102720]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation.

The examination is held in the semester of the lecture and in the following semester.

Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

The examination can also be combined with the examination of Mixed Integer Programming I [2550138]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites
None

Recommendation
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation
The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).
6.211 Course: Mobility Services and new Forms of Mobility [T-BGU-103425]

Responsible: Dr.-Ing. Martin Kagerbauer

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-101064 - Fundamentals of Transportation
- M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6232811</td>
<td>Mobilitätsservices und neue Formen der Mobilität</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>8240103425</td>
<td>Mobility Services and new Forms of Mobility</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.212 Course: Model Based Application Methods [T-MACH-102199]

Responsible: Dr. Frank Kirschbaum
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101303 - Combustion Engines II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Take-home exam, short presentation with oral examination

Prerequisites

None
6.213 Course: Modeling and Analyzing Consumer Behavior with R [T-WIWI-102899]

Responsible: Dr. Verena Dorner
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101448 - Service Management
M-WIWI-101489 - Strategy, Communication, and Data Analysis
M-WIWI-101506 - Service Analytics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Codes</th>
<th>Description</th>
<th>SWS</th>
<th>Lecture or Practice</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2540470</td>
<td>Modeling and Analyzing Consumer Behavior with R</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Dorner, Greif-Winzrieth, Knierim</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2540471</td>
<td>Übung zu Modeling and Analyzing Consumer Behaviour with R</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Knierim, Greif-Winzrieth, Dorner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900262</td>
<td>Modeling and Analyzing Consumer Behavior with R (Nachklausur aus dem SS19)</td>
<td>2</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Exams

Competence Certificate
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Recommendation
None

Annotation
Number of participants limited.

Below you will find excerpts from events related to this course:

Modeling and Analyzing Consumer Behavior with R

Lecture (V)
2540470, SS 2020, 2 SWS, Language: German, Open in study portal

Learning Content
Students learn the fundamental methods, algorithms and concepts for analysing consumer data. The students deepen their knowledge in working on a case study and computer exercises, especially in the areas of e-commerce and behavioural economics. In addition, students learn to write applications in R and to organize and execute larger data mining and general data analytics projects. Furthermore, students learn methods for evaluating and visualizing data. The event will focus on the following topics:
1. basic programming concepts in R
2. data mining with R using established process models such as CRISP-DM
3. text mining and analysis of online data with R
4. working on a case study from the area of Consumer and User Analytics
5. data visualization and evaluation with R

Annotation
The course has been added summer term 2015.
Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Wickham, Hadley, ggplot2: Elegant Graphics for Data Analysis (Use R!), Springer 2009 (2nd edition)
Course: Modeling and OR-Software: Advanced Topics [T-WIWI-106200]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102808 - Digital Service Systems in Industry
M-WIWI-102832 - Operations Research in Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Modellieren und OR-Software: Fortgeschrittene Themen</td>
<td>Practical course (P)</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Modeling and OR-Software: Advanced Topics</td>
<td>Nickell</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the software laboratory and the following term.

Prerequisites

None.

Recommendation

Basic knowledge as conveyed in the module Introduction to Operations Research is assumed.

Successful completion of the course Modeling and OR-Software: Introduction.

Annotation

Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The lecture is held in every term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Modellieren und OR-Software: Fortgeschrittene Themen

2550490, WS 19/20, 3 SWS, Language: German, Open in study portal

Practical course (P)

Notes

The advanced course is designated for Master students that already attended the introductory course or gained equivalent experience elsewhere, e.g. during a seminar or bachelor thesis. We will work on advanced topics and methods in OR, among others cutting planes, column generation and constraint programming. The Software used for the exercises is IBM ILOG CPLEX Optimization Studio. The associated modelling programming languages are OPL and ILOG Script.

Learning Content

The advanced course is designated for Master students that already attended the introductory course or gained equivalent experience elsewhere, e.g. during a seminar or bachelor thesis.

We will work on advanced topics and methods in OR, among others cutting planes, column generation and constraint programming. The Software used for the exercises is IBM ILOG CPLEX Optimization Studio. The associated modelling programming languages are OPL and ILOG Script.
Annotation
The lecture is for Master students who have already attended the introduction or have achieved comparable knowledge e.g. in a Bachelor thesis.
Interested students are requested to send an e-mail to Anika Pomes (anika.pomes@kit.edu) from now until 29.09.2019, including the Bachelor’s and the current Master’s grade transcripts. If the introduction has not been checked, please let us know how the necessary knowledge has been obtained.
For further information see the webpage of the course.
The lecture is offered in every winter term. The planned lectures and courses for the next three years are announced online.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.
6.215 Course: Morphodynamics [T-BGU-101859]

Responsible: Prof. Dr. Franz Nestmann

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-WIWI-101642 - Natural Hazards and Risk Management 1
- M-WIWI-101644 - Natural Hazards and Risk Management 2
- M-WIWI-104837 - Natural Hazards and Risk Management

Type: Oral examination
Credits: 3
Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>6222805</th>
<th>Morphodynamics</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Nestmann</th>
</tr>
</thead>
</table>

Competence Certificate
See German version.

Prerequisites
None
6.216 Course: Multivariate Statistical Methods [T-WIWI-103124]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-101637 - Analytics and Statistics
- M-WIWI-101639 - Econometrics and Statistics II
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>2550554</th>
<th>Multivariate Verfahren</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Grothe</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2550555</td>
<td>Übung zu Multivariate Verfahren</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Grothe, Kächele</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. A bonus program can improve the grade by one grade level (i.e. by 0.3 or 0.4).

The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites

None

Recommendation

The course covers highly advanced statistical methods with a quantitative focus. Hence, participants are necessarily expected to have advanced statistical knowledge, e.g. acquired in the course "Advanced Statistics". Without this, participation in the course is not advised.

Previous attendance of the course Analysis of Multivariate Data is recommended. Alternatively, the script can be provided to interested students.

Below you will find excerpts from events related to this course:

Multivariate Verfahren

2550554, SS 2020, 2 SWS, [Open in study portal]

Learning Content

Graphical methods for multivariate Data
Regression Analysis (incl. logistic regression, Ridge and Lasso)
Principal Component, and Correspondence Analysis
Local linear Embedding
Multidimensional Scaling
Hierarchical Classification

Literature

Comprehensive lecture notes
Course: Nanotechnology for Engineers and Natural Scientists [T-MACH-105180]

Responsible: Prof. Dr. Martin Dienwiebel
PD Dr. Hendrik Hölscher
Stefan Walheim

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101294 - Nanotechnology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Written examination</td>
<td>1</td>
</tr>
<tr>
<td>2142861</td>
<td></td>
<td></td>
<td>Nanotechnology for Engineers and Natural Scientists</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td>Hölscher, Dienwiebel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>Written examination</td>
<td>1</td>
</tr>
<tr>
<td>76-T-MACH-105180</td>
<td></td>
<td></td>
<td>Nanotechnology for Engineers and Natural Scientists</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
<td>Hölscher, Dienwiebel</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam 90 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Nanotechnology for Engineers and Natural Scientists
2142861, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Notes
1) Introduction into nanotechnology
2) History of scanning probe techniques
3) Scanning tunneling microscopy (STM)
4) Atomic force microscopy (AFM)
5) Dynamic Modes (DFM, ncAFM, MFM, KPFM, ...)
6) Friction force microscopy & nanotribology
7) Nanolithography
8) Other families of the SPM family

The student can

- explain the most common measurement principles of nanotechnology especially scanning probe methods and is able to use them for the characterisation of chemical and physical properties of surfaces
- describe interatomic forces and their influence on nanotechnology
- describe methods of micro- and nanofabrication and of -nanolithography
- explain simple models used in contact mechanics and nanotribology
- describe basic concepts used for nanoscale components

Preliminary knowledge in mathematics and physics

Lectures 30 h
Self study 30 h
Preparation for examination 30 h

The successful attendance of the lecture is controlled by a 30 minutes written examination, and a subsequent oral examination (20 min). Passing the written exam is mandatory for the participation of the oral examination. The grade result is the result of the oral exam.
Learning Content
1) Introduction into nanotechnology
2) History of scanning probe techniques
3) Scanning tunneling microscopy (STM)
4) Atomic force microscopy (AFM)
5) Dynamic Modes (DFM, ncAFM, MFM, KPFM, ...)
6) Friction force microscopy & nanotribology
7) Nanolithography
8) Other families of the SPM family

Workload
lectures 30 h
self study 30 h
preparation for examination 30 h

Literature
1. Lecture notes, slides, script
6.218 Course: Nanotechnology with Clusterbeams [T-MACH-102080]

Responsible: Dr. Jürgen Gspann

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101293 - Microsystem Technology
M-MACH-101294 - Nanotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
written examination
presence in more than 70% of the lectures
Duration: 1 h

aids: none

Prerequisites
none
6.219 Course: Nanotribology and -Mechanics [T-MACH-102167]

Responsible: Prof. Dr. Martin Dienwiebel
PD Dr. Hendrik Hölscher

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101291 - Microfabrication
M-MACH-101294 - Nanotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2182712</td>
<td>Nanotribology and -Mechanics</td>
<td>2 SWS</td>
<td>Block (B)</td>
<td>Dienwiebel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2182712</td>
<td>Nanotribology and -Mechanics</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Dienwiebel</td>
</tr>
</tbody>
</table>

Competence Certificate
presentation (40%) and colloquium (30 min, 60%)

no tools or reference materials

Prerequisites
none

Recommendation
preliminary knowledge in mathematics and physics

Below you will find excerpts from events related to this course:
Notes
In the summer semester the lecture is offered in German and in the winter semester in English!

Part 1: Fundamentals of nanotribology

- General tribology / nanotechnology
- Forces and dissipation on the nanometer scale
- Experimental methods (SFA, QCM, FFM)
- Prandtl-Tomlinson model
- Superlubricity
- Carbon-based tribosystems
- Electronic friction
- Nanotribology in liquids
- Atomic abrasion
- nanolubrication

Part 2: Topical papers

The student can

- explain the physical foundations and common models used in the field of nanotribology and nanomechanics
- describe the most important experimental methods in nanotribology
- critically evaluate scientific papers on nanotribological issues with respect to their substantial quality

preliminary knowledge in mathematics and physics recommended

regular attendance: 22.5 hours
preparation for presentation: 22.5 hours
self-study: 75 hours

presentation (40%) and oral examination (30 min, 60%)

no tools or reference materials

Learning Content

Part 1: Basics:

- Nanotechnology
- Forces at nanometer scale
- contact mechanics models (Hertz, JKR, DMT)
- Experimental methods (SFA, QCM, FFM)
- Prandtl-Tomlinson model
- Superlubricity
- Atomic-Scale Wear

Part 2: Topical papers

Workload

regular attendance: 22.5 hours
preparation for presentation: 22.5 hours
self-study: 75 hours

Literature

Lecture notes, slides and copies of articles

Nanotribology and -Mechanics
2182712, SS 2020, 2 SWS, Language: German, Open in study portal
Notes
In the summer semester the lecture is offered in German and in the winter semester in English!

Part 1: Fundamentals of nanotribology
- General tribology / nanotechnology
- Forces and dissipation on the nanometer scale
- Experimental methods (SFA, QCM, FFM)
- Prandtl-Tomlinson model
- Superlubricity
- Carbon-based tribosystems
- Electronic friction
- Nanotribology in liquids
- Atomic abrasion
- Nanolubrication

Part 2: Topical papers
The student can
- explain the physical foundations and common models used in the field of nanotribology and nanomechanics
- describe the most important experimental methods in nanotribology
- critically evaluate scientific papers on nanotribological issues with respect to their substantial quality

preliminary knowledge in mathematics and physics recommended

regular attendance: 22.5 hours
preparation for presentation: 22.5 hours
self-study: 75 hours

presentation (40%) and oral examination (30 min, 60%)
no tools or reference materials

Learning Content
Part 1: Fundamentals of nanotribology
- General tribology / nanotechnology
- Forces and dissipation on the nanometer scale
- Experimental methods (SFA, QCM, FFM)
- Prandtl-Tomlinson model
- Superlubricity
- Carbon-based tribosystems
- Electronic friction
- Nanotribology in liquids
- Atomic abrasion
- Nanolubrication

Part 2: Topical papers

Workload
regular attendance: 22.5 hours
preparation for presentation: 22.5 hours
self-study: 75 hours

Literature
Edward L. Wolf
Nanophysics and Nanotechnology, Wiley-VCH, 2006

C. Mathew Mate
Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear (Mesoscopic Physics and Nanotechnology)
1st Edition, Oxford University Press

Lecture notes, slides and copies of articles

Responsible: Dr. rer. nat. Pradyumn Kumar Shukla
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101472 - Informatics
M-WIWI-101628 - Emphasis in Informatics
M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2511106</td>
<td>Nature-Inspired Optimization Methods</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Shukla</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2511107</td>
<td>Übungen zu Nature-Inspired Optimization Methods</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Shukla</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900016</td>
<td>Nature-Inspired Optimisation Methods</td>
<td>Prüfung (PR)</td>
<td>Shukla</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination called “bonus exam”, 60 min (according Section 4(2), 3 of the examination regulation) or a selection of exercises. The bonus exam may be split into several shorter written tests.

The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Below you will find excerpts from events related to this course:

Notes
Many optimization problems are too complex to be solved to optimality. A promising alternative is to use stochastic heuristics, based on some fundamental principles observed in nature. Examples include evolutionary algorithms, ant algorithms, or simulated annealing. These methods are widely applicable and have proven very powerful in practice. During the course, such optimization methods based on natural principles are presented, analyzed and compared. Since the algorithms are usually quite computational intensive, possibilities for parallelization are also investigated.

Learning objectives:
Students learn:

- Different nature-inspired methods: local search, simulated annealing, tabu search, evolutionary algorithms, ant colony optimization, particle swarm optimization
- Different aspects and limitation of the methods
- Applications of such methods
- Multi-objective optimization methods
- Constraint handling methods
- Different aspects in parallelization and computing platforms
6.221 Course: Non- and Semiparametrics [T-WIWI-103126]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Course</th>
<th>Event ID</th>
<th>Type</th>
<th>SWS</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2521300</td>
<td>Lecture (V)</td>
<td>2</td>
<td>Schienle</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2521301</td>
<td>Practice (Ü)</td>
<td>2</td>
<td>Schienle, Görgen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Course</th>
<th>Event ID</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900223</td>
<td>Prüfung (PR)</td>
<td>Schienle</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900227</td>
<td>Prüfung (PR)</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course “Applied Econometrics” [2520020]

Annotation
The course takes place every second winter semester: 2018/19 then 2020/21

Below you will find excerpts from events related to this course:

Non- and Semiparametrics

2521300, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Notes

Learning objectives:

The student

- has profound knowledge of non- and semiparametric estimation methods
- is capable of implementing these methods using statistical software and using them to assess empirical problems

Content:

Kernel density estimation, local constant and local linear regression, bandwidth choice, series and sieve estimators, additive models, semiparametric models

Requirements:

It is recommended to attend the course Applied Econometrics prior to this course.

Workload:

Total workload for 4.5 CP: approx. 135 hours

Attendance: 30 hours

Preparation and follow-up: 65 hours

Exam preparation: 40 hours
6.222 Course: Nonlinear Optimization I [T-WIWI-102724]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>T</th>
<th>Dates</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>SWS</th>
<th>Lecture (V)</th>
<th>Practice (Ü)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550111</td>
<td>Nonlinear Optimization I</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Stein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550112</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>SWS</td>
<td>Practice (Ü)</td>
<td>Stein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>WS 19/20</td>
<td>7900002_WS1920_HK</td>
<td>Nonlinear Optimization I</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation.
The exam takes place in the semester of the lecture and in the following semester.
The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites
The module component exam T-WIWI-103637 "Nonlinear Optimization I and II" may not be selected.

Annotation
Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

<table>
<thead>
<tr>
<th>Code</th>
<th>Date</th>
<th>Language: German, Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550111</td>
<td>WS 19/20</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Notes
The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Course: Nonlinear Optimization I and II [T-WIWI-103637]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

Type
Written examination
Credits 9
Recurrence Each winter term
Version 6

Events
<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550111</td>
<td>Nonlinear Optimization I</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550112</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>Practice (Ü)</td>
<td>SWS</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550113</td>
<td>Nonlinear Optimization II</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Event</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900004_WS1920_HK</td>
<td>Nonlinear Optimization I and II</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.

The exam takes place in the semester of the lecture and in the following semester.

Prerequisites
None.

Annotation
Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I
2550111, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Nonlinear Optimization II
2550113, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands fundamentals of constrained nonlinear optimization.
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.
Course: Nonlinear Optimization II [T-WIWI-102725]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>SWS</td>
<td>Practice (Ü)</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Nonlinear Optimization II</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Stein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Nonlinear Optimization II</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation and possibly of a compulsory prerequisite.

The exam takes place in the semester of the lecture and in the following semester.

The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Prerequisites
None.

Annotation
Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization II

2550113, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.
6 COURSES

Course: Novel Actuators and Sensors [T-MACH-102152]

Responsible: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101293 - Microsystem Technology
M-MACH-101294 - Nanotechnology
M-MACH-101295 - Optoelectronics and Optical Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2141865</td>
<td>Novel actuators and sensors</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102152</td>
<td>Novel Actuators and Sensors</td>
<td>Prüfung (PR)</td>
<td>Kohl, Sommer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
written exam, 60 minutes

Prerequisites

none

Below you will find excerpts from events related to this course:

Novel actuators and sensors

2141865, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Description

Media:

Script / script of ppt foils (part 2)

Learning Content

Contents: - Basic knowledge in the material science of actuator and sensor principles
- Layout and design optimization
- Fabrication technologies
- Selected developments
- Applications

Index: The lecture includes amongst others the following topics:

- Piezo actuators
- Magnetostrictive actuators
- Shape memory actuators
- Electro-/magnetorheological actuators
- Sensors: Concepts, materials, fabrication
- Micromechanical sensors: Pressure, force, inertia sensors
- Temperature sensors
- Micro sensors for bio analytics
- Mechano-magnetic sensors

The lecture addresses students in the fields of mechanical engineering, mechatronics and information technology, materials science and engineering, electrical engineering and economic sciences. A comprehensive introduction is given in the basics and current developments on the macroscopic length scale.

The lecture is core subject of the major course "Actuators and Sensors" of the specialization "Mechatronics and Microsystems Technology" in Mechanical Engineering.
Workload

Work Lecture:

time of attendance: 21 hours
Self-study: 99 hours

Literature

- Lecture notes
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
6.226 Course: Operation Methods for Earthmoving [T-BGU-101801]

Responsible: Dr.-Ing. Heinrich Schlick
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101110 - Process Engineering in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1,5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Erdbau</td>
<td>Haghsheno, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td>Operation Methods for Earthmoving</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.227 Course: Operation Methods for Foundation and Marine Construction [T-BGU-101832]

Responsible: Dr.-Ing. Harald Schneider
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101110 - Process Engineering in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6241904</td>
<td>Tiefbau</td>
<td>1 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture (V) Haghsheno, Schneider</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240101832</td>
<td>Operation Methods for Foundation and Marine Construction</td>
<td>Prüfung (PR) Schneider</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6 COURSES

Course: Operations Research in Health Care Management [T-WIWI-102884]

6.228 Course: Operations Research in Health Care Management [T-WIWI-102884]

Responsible:	Prof. Dr. Stefan Nickel
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-102805 - Service Operations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2550495 Operations Research in Health Care Management</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>SS 2020 2550496 Übungen zu OR im Health Care Management</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Bakker</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation). The examination is held in the term of the lecture and the following lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation

The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.

Below you will find excerpts from events related to this course:

Operations Research in Health Care Management

2550495, SS 2020, 2 SWS, Language: English, Open in study portal

Learning Content

In the last years reforms of the German health system, e.g. the introduction of the G-DRG-system, have put an increasing cost pressure on hospitals. Therefore their target is to improve quality, transparency, and efficiency of hospital services, e.g. by reducing the length of stay of patients. To achieve this, processes have to be analyzed in order to optimize them if necessary. When looking at the targets of optimization not only efficiency but also quality of care and patient satisfaction (e.g. waiting times) have to be taken into account.

Besides hospitals also home health care services and their planning are discussed in this lecture. Because of the demographic development this is an emerging field in the health care sector. Here, e.g. nurse rosters have to be built which give details about which nurse visits which patient at what time. While doing so different targets have to be regarded, e.g. the continuity of nurse-patient relationship or the minimization of the distances the nurses have to travel.

Annotation

The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Elective literature:

- Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
- Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102805 - Service Operations
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4.5</td>
<td>Irregular</td>
<td>Version 2</td>
</tr>
</tbody>
</table>

Types of Examination:
- Written examination

Credits: 4.5

Recurrence: Irregular

Version: 2

Competence Certificate
The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the lecture and the following lecture.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module Introduction to Operations Research and in the lectures Facility Location and Strategic SCM, Tactical and operational SCMs assumed.

Annotation
The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.
6.230 Course: Optical Transmitters and Receivers [T-ETIT-100639]

Responsible: Prof. Dr. Wolfgang Freude
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-101295 - Optoelectronics and Optical Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2309460</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Freude</td>
</tr>
<tr>
<td>WS 19/20 2309461</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Freude</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7309460</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Freude</td>
</tr>
</tbody>
</table>

Prerequisites

none
Course: Optical Waveguides and Fibers [T-ETIT-101945]

Responsible: Prof. Dr.-Ing. Christian Koos

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- M-MACH-101292 - Microoptics
- M-MACH-101295 - Optoelectronics and Optical Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Course Title</th>
<th>WS</th>
<th>Lecture Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2309464</td>
<td>Optical Waveguides and Fibers</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Koos</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2309465</td>
<td>Tutorial for 2309464 Optical Waveguides and Fibers</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Koos</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Course Title</th>
<th>Prüfung Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7309464</td>
<td>Optical Waveguides and Fibers</td>
<td>Prüfung (PR)</td>
<td>Koos</td>
</tr>
</tbody>
</table>

Prerequisites
none
6.232 Course: Optimization Models and Applications [T-WIWI-110162]

Responsible: Dr. Nathan Sudermann-Merx

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Details</th>
<th>Course Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550140</td>
<td>Optimization Models and Application</td>
<td>Lecture (V)</td>
<td>Stein, Sudermann-Merx</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Details</th>
<th>Course Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900010_WS1920_HK</td>
<td>Optimization Models and Applications</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.
The prerequisite for participation in the exam is the achievement of a minimum number of points in delivery sheets. Details will be announced at the beginning of the course.

Prerequisites
None.
6.233 Course: Optimization under Uncertainty [T-WIWI-106545]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550464</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550465</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice (Ü)</td>
<td>Rebennack, Füllner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550466</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practice (Ü)</td>
<td>Rebennack, Füllner</td>
</tr>
<tr>
<td>Exams</td>
<td>WS 19/20</td>
<td>Optimization under Uncertainty</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td></td>
<td>7900240</td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites
None.
6.234 Course: Optoelectronic Components [T-ETIT-101907]

Responsible: Prof. Dr. Wolfgang Freude
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2309486</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>SS 2020 2309487</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7309486</td>
<td>Prüfung (PR)</td>
<td>Freude</td>
</tr>
<tr>
<td>WS 19/20 7309486-W</td>
<td>Prüfung (PR)</td>
<td>Freude</td>
</tr>
</tbody>
</table>

Prerequisites
none
Course: Panel Data [T-WIWI-103127]

Responsible: apl. Prof. Dr. Wolf-Dieter Heller

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

Type
Written examination

Credits
4.5

Recurrence
Each summer term

Version
1

Events
<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2520320</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 2520321</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
None

Below you will find excerpts from events related to this course:

Panel Data
2520320, SS 2020, 2 SWS, Language: German, Open in study portal

Notes

Content:
Fixed-Effects-Models, Random-Effects-Models, Time-Demeaning

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours
Exam preparation: 40 hours
6.236 Course: Parametric Optimization [T-WIWI-102855]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Oliver Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-101473 - Mathematical Programming</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4,5</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester.

Prerequisite for admission to the written examination is attaining at least 30% of the exercise points. Therefore the online-registration for the written examination is subject to fulfilling the prerequisite.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>24656</td>
<td>Patent Law</td>
<td>Koch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lecture</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500001</td>
<td>Patent Law</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500062</td>
<td>Patent Law</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
6.238 Course: Personalization and Services [T-WIWI-102848]

Responsible: Dr.-Ing. Andreas Sonnenbichler
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101410 - Business & Service Engineering
M-WIWI-101470 - Data Science: Advanced CRM

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540533</td>
<td>Personalization & Services</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>Sonnenbichler, Geyer-Schulz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540534</td>
<td>Exercise Personalization & Services</td>
<td>Practice (Ü)</td>
<td>1 SWS</td>
<td>Sonnenbichler, Geyer-Schulz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7979702</td>
<td>Personalization and Services</td>
<td>Prüfung (PR)</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Personalization & Services

2540533, WS 19/20, 2 SWS, Language: German, Open in study portal

Learning Content

- Personalization of Services and Applications
- User Modeling
- User Profiles
- Authentication
- Authorization
- Applications in e-Commerce and for internet-based Services
- Personalized Web Search
- Privacy
Workload
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance
- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study
- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Literature
The course follows latest scientific papers. References to these papers are listed at the end of each course unit.
6.239 Course: PH APL-ING-TL01 [T-WIWI-106291]

Organisation: University
Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: PH APL-ING-TL02 [T-WIWI-106292]

6.240 Course: PH APL-ING-TL02 [T-WIWI-106292]

Organisation: University
Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
6.241 Course: PH APL-ING-TL03 [T-WWI-106293]

- **Organisation:** University
- **Part of:** M-WWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
6.242 Course: PH APL-ING-TL04 ub [T-WIWI-106294]

Organisation: University
Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Completed coursework</td>
<td>0</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
6.243 Course: PH APL-ING-TL05 ub [T-WIWI-106295]

Organisation: University
Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
6.244 Course: PH APL-ING-TL06 ub [T-WIWI-106296]

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisation: University

Part of: M-WIWI-101404 - Extracurricular Module in Engineering
6.245 Course: PH APL-ING-TL07 [T-WIWI-108384]

Organisation: University
Part of: M-WIWI-101404 - Extracurricular Module in Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>
6.246 Course: Photovoltaic System Design [T-ETIT-100724]

Responsible: Robin Grab
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101164 - Generation and Transmission of Renewable Power

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2307380</td>
<td>Photovoltaische Systemtechnik</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Grab</td>
</tr>
</tbody>
</table>

Prerequisites
none
6.247 Course: Physics for Engineers [T-MACH-100530]

Responsible: Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101291 - Microfabrication
- M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2142890</td>
<td>Physics for Engineers</td>
<td>2 SWS, Lecture (V)</td>
<td>Weygand, Dienwiebel, Nesterov-Müller, Gumbsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-100530</td>
<td>Physics for Engineers</td>
<td>Prüfung (PR)</td>
<td>Gumbsch, Dienwiebel, Nesterov-Müller, Weygand</td>
</tr>
</tbody>
</table>

Competence Certificate
written exam 90 min

Prerequisites
none

Below you will find excerpts from events related to this course:

Physics for Engineers
2142890, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Notes

1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom

2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode

3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Exercises (2142891, 2 SWS) are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.

The student

- has the basic understanding of the physical foundations to explain the relationship between the quantum mechanical principles and the optical as well as electrical properties of materials
- can describe the fundamental experiments, which allow the illustration of these principles

regular attendance: 22,5 hours (lecture) and 22,5 hours (excerises 2142891)
self-study: 97,5 hours and 49 hours (excerises 2142891)
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Learning Content

1) Foundations of solid state physics
 - Wave particle dualism
 - Tunnelling
 - Schrödinger equation
 - H-atom

2) Electrical conductivity of solids
 - solid state: periodic potentials
 - Pauli Principle
 - band structure
 - metals, semiconductors and isolators
 - p-n junction / diode

3) Optics
 - quantum mechanical principles of the laser
 - linear optics
 - non-linear optics

Exercises (2142891, 2 SWS) are used for complementing and deepening the contents of the lecture as well as for answering more extensive questions raised by the students and for testing progress in learning of the topics.

Workload

regular attendance: 22,5 hours (lecture) and 22,5 hours (excerises 2142891)
self-study: 97,5 hours and 49 hours (excerises 2142891)

Literature

- Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
- Harris, Moderne Physik, Pearson Verlag, 2013
Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Lecture (V) Planning and Management of Industrial Plants
2581952, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
Industrial plant management incorporates a complex set of tasks along the entire life cycle of an industrial plant, starting with the initiation and erection up to operating and dismantling. During this course students will get to know special characteristics of industrial plant management. Students will learn important methods to plan, realize and supervise the supply, start-up, maintenance, optimisation and shut-down of industrial plants. Alongside, students will have to handle the inherent question of choosing between technologies and evaluating each of them. This course pays special attention to the specific characteristics of plant engineering, commissioning and investment.

Learning Content
Industrial plant management incorporates a complex set of tasks along the entire life cycle of an industrial plant, starting with the initiation and erection up to operating and dismantling. During this course students will get to know special characteristics of industrial plant management. Students will learn important methods to plan, realize and supervise the supply, start-up, maintenance, optimisation and shut-down of industrial plants. Alongside, students will have to handle the inherent question of choosing between technologies and evaluating each of them. This course pays special attention to the specific characteristics of plant engineering, commissioning and investment.

Workload
Total effort required will account for approximately 165h (5.5 credits).

Literature
will be announced in the course
Course: PLM for Product Development in Mechatronics [T-MACH-102181]

Responsible: Prof. Dr.-Ing. Martin Eigner
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101281 - Virtual Engineering B
 M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2122376</td>
<td>PLM for product development in mechatronics</td>
<td>Lecture (V)</td>
<td>Eigner</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2122376</td>
<td>PLM for product development in mechatronics</td>
<td>Lecture (V)</td>
<td>Eigner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102181</td>
<td>PLM for Product Development in Mechatronics</td>
<td>Prüfung (PR)</td>
<td>Eigner</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination 20 min.

Prerequisites
none

Below you will find excerpts from events related to this course:

PLM for product development in mechatronics
2122376, WS 19/20, SWS, Language: German, Open in study portal

Workload
The total workload for this course is approximately 120 hours. For further information see German version.

PLM for product development in mechatronics
2122376, SS 2020, SWS, Language: German, Open in study portal

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
6.250 Course: PLM-CAD Workshop [T-MACH-102153]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4</td>
<td>PLM-CAD Workshop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>4</td>
<td>PLM-CAD Workshop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Exams</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td>76-T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (graded)

Prerequisites
None

Annotation
Number of participants is limited, compulsory attendance
6.251 Course: Plug-and-play Material Handling [T-MACH-106693]

Responsible: Jonathan Dziedzitz
Prof. Dr.-Ing. Kai Furmans

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Plug-and-play material handling</td>
<td>2 SWS</td>
<td>Practical course (P)</td>
<td>Furmans, Dziedzitz</td>
</tr>
</tbody>
</table>

Competence Certificate

Presentation of the four steps of the course content (design, implementation, test concept and evaluation)

Prerequisites

None
6.252 Course: Polymers in MEMS A: Chemistry, Synthesis and Applications [T-MACH-102192]

Responsible: Dr.-Ing. Bastian Rapp
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-101291 - Microfabrication
M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2141853</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-T-MACH-102192</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral examination

Prerequisites
none

Below you will find excerpts from events related to this course:

Polymers in MEMS A: Chemistry, Synthesis and Applications
2141853, WS 19/20, 2 SWS, Language: German, Open in study portal

Description
Media:
The lecture slides will be given out as scriptum during each lecture course.
Learning Content
We all come in contact with numerous polymeric products in everyday life. From water bottles to packaging to the cover of the iPad, many things are made of polymers. Polymers are also important materials for modern microelectromechanical systems (MEMS) allowing cost effective mass market compatible products, e.g., in the life sciences or diagnostics. But polymers are not just cost-effective replacements for more expensive classical materials in MEMS (such as, e.g., silicon) – some polymers have intrinsic properties that make them ideal materials for sensors, actuators or templates for biology and chemistry in MEMS.

This lecture will introduce the basics of organic chemistry required for understanding what polymers are, how they are manufactured and which mechanisms are responsible for their unique properties. The lecture will highlight (in the context of MEMS but also in a wider scope) where and why polymers are applied with a strong focus on their chemical and physical properties (and on their synthesis).

Some of the topics covered are:

- What is the basic chemistry of polymers? What are monomers, what are macromolecules and how are they formed?
- How are polymers produced on industrial scale – but also on the laboratory scale? Numerous examples of how to make (commonly and lesser known) polymers will be discussed including materials such as Plexiglas.
- Why are polymers so important for biochemistry and tissue engineering?
- How do photoresists work and why do some polymers contract when exposed to light?
- What are high-performance polymers and why do they have such a wide application range, e.g., in implants?
- What polymers fuel the household 3D printing community and what materials do 3D printers such as, e.g., the RepRap work with?
- How does 3D printing and rapid prototyping work and which polymers can be employed for which techniques?
- Why does silicone always smell like vinegar and why is this material so important for modern day microfluidics? How do you built fluid-logic devices using silicone?
- How do shape memory polymers remember their shape?
- What are polymer foams and why are they not only important for heat insulation but also for organic chemistry?
- How do glues work? Why are there two-component glues, what is superglue and how can you make glue from potatoes?

The lecture will be given in German language unless non-German speaking students attend. In this case, the lecture will be given in English (with some German translations of technical vocabulary). The lecture slides are in English language and will be handed out for taking notes. Additional literature is not required.

For further details, please contact the lecturer, Dr. Ing. Bastian E. Rapp (bastian.rapp@kit.edu). Preregistration is not necessary.

The examination will be held in oral form at the end of the lecture. The lecture can be chosen as "Nebenfach" or part of a "Hauptfach". The second lecture of the lecture series "Polymers in MEMS B – Physics, manufacturing and applications" (which is also held in winter semester) can be combined with this lecture as part of a "Hauptfach". In summer semester, the third part of the lecture series "Polymers in MEMS C – Biopolymers, Biopolymers and applications" will be given which may be combined with lectures A and B to form a complete "Hauptfach".

Annotation
For further details, please contact the lecturer, Dr. Ing. Bastian E. Rapp (bastian.rapp@kit.edu). Preregistration is not necessary.

Workload

- lecture: 15 * 1.5 h (22 h)
- lecture preparation (before and after lecture): 15 * 2 h (30 h)
- preparation of final exam: 70 h
6.253 Course: Polymers in MEMS B: Physics, Microstructuring and Applications [T-MACH-102191]

Responsible: Dr.Ing. Matthias Worgull

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101291 - Microfabrication
- M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Ref.</th>
<th>Lecture</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2141854</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
<td>Each winter term</td>
<td>Worgull</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Ref.</th>
<th>Lecture</th>
<th>Type</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-102191</td>
<td>Prüfung (PR)</td>
<td>Polymers in MEMS B: Physics, Microstructuring and Applications</td>
<td>Worgull</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral examination

Prerequisites

none

Below you will find excerpts from events related to this course:

Polymers in MEMS B: Physics, Microstructuring and Applications

2141854, WS 19/20, 2 SWS, Language: German, Open in study portal

Description

Media:
The lecture slides will be given out as scriptum during each lecture course.
Learning Content
We all come in contact with numerous polymeric products in everyday life. From water bottles to packaging to the cover of the iPad, many things are made of polymers. Polymers are also important materials for modern microelectromechanical systems (MEMS) allowing cost effective mass market compatible products, e.g., in the life sciences or diagnostics. But polymers are not just cost-effective replacements for more expensive classical materials in MEMS (such as, e.g., silicon) – some polymers have intrinsic properties that make them ideal materials for sensors, actuators or templates for biology and chemistry in MEMS. This lecture will introduce the basics of physics and material science required for the understanding of the mechanical behavior seen from the engineer's view. Micro and nanostructuring of polymers allows the fabrication of micro parts fulfilling their tasks in mostly invisible different applications. But also the fabrication of polymer parts with functional surfaces inspired from Bionics will be presented in this lesson. The lesson will further give an overview over the polymer based structuring processes and will underline the importance by a number of applications e.g. photonic structures or Lotus-like structures.

Some of the topics covered are:

- How can polymers described from the view of engineers?
- What are the differences between polymers and metals?
- Rheology of polymer melts – How does polymer melts flow?
- How can polymers be formed and demolded?
- Which structuring processes (replication) processes are available?
- How does stress influence molded parts (e.g. the deformation of a CD in a hot car)
- Shrinkage of polymers – which precision is achievable
- Gluing or welding – How can polymers be assembled?
- Simulation of replication processes
- Characterization of polymers – which properties can be measured?

The lecture will be given in German language unless non-German speaking students attend. In this case, the lecture will be given in English (with some German translations of technical vocabulary). The lecture slides are in English language and will be handed out for taking notes. Additional literature is not required.

For further details, please contact the lecturer, PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is not necessary.

The examination will be held in oral form at the end of the lecture. The lecture can be chosen as "Nebenfach" or part of a "Hauptfach". The second lecture of the lecture series "Polymers in MEMS A – Chemistry, synthesis and applications" (which is also held in winter semester) can be combined with this lecture as part of a "Hauptfach". In summer semester, the third part of the lecture series "Polymers in MEMS C – Biopolymers, Biopolymers and applications" will be given which may be combined with lectures A and B to form a complete "Hauptfach".

Annotation
For further details, please contact the lecturer, PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is not necessary.

Workload

- lecture: 15 * 1.5 h (22 h)
- lecture preparation (before and after lecture): 15 * 2 h (30 h)
- preparation of final exam: 70 h
Below you will find excerpts from events related to this course:

Polymers in MEMS C - Biopolymers and Bioplastics

2142855, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Notes
Polymers are ubiquitous in everyday life: from packaging materials all the way to specialty products in medicine and medical engineering. Today it is difficult to find a product which does not (at least in parts) consist of polymeric materials. The question of how these materials can be improved with respect to their disposal and consumption of (natural) resources during manufacturing is often raised. Today polymers must be fully recycled in Germany and many other countries due to the fact that they do not (or only very slowly) decompose in nature. Furthermore significant reductions of crude oil consumption during synthesis are of increasing importance in order to improve the sustainability of this class of materials. With respect to disposal polymers which do not have to be disposed by combustion but rather allow natural decomposition (composting) are of increasing interest. Polymers from renewable sources are also of interest for modern microelectromechanical systems (MEMS) especially if the systems designed are intended as single-use products.

This lecture will introduce the most important classes of these so-called biopolymers and bioplastics. It will also discuss and highlight polymers which are created from naturally created analogues (e.g. via fermentation) to petrochemical polymer precursors and describe their technical processing. Numerous examples from MEMS as well as everyday life will be given.

Some of the topics covered are:

- What are biopolyurethanes and how can you produce them from castor oil?
- What are “natural glues” and how are they different from chemical glues?
- How do you make tires from natural rubbers?
- What are the two most important polymers for life on earth?
- How can you make polymers from potatoes?
- Can wood be formed by injection molding?
- How do you make buttons from milk?
- Can you play music on biopolymers?
- Where and how do you use polymers for tissue engineering?
- How can you build LEGO with DNA?

The lecture will be given in German language unless non-German speaking students attend. In this case, the lecture will be given in English (with some German translations of technical vocabulary). The lecture slides are in English language and will be handed out for taking notes. Additional literature is not required.

For further details, please contact the lecturer, Dr. Ing. Bastian E. Rapp (bastian.rapp@kit.edu) and PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is not necessary.
Learning Content

Polymers are ubiquitous in everyday life: from packaging materials all the way to specialty products in medicine and medical engineering. Today it is difficult to find a product which does not (at least in parts) consist of polymeric materials. The question of how these materials can be improved with respect to their disposal and consumption of (natural) resources during manufacturing is often raised. Today polymers must be fully recycled in Germany and many other countries due to the fact that they do not (or only very slowly) decompose in nature. Furthermore significant reductions of crude oil consumption during synthesis are of increasing importance in order to improve the sustainability of this class of materials. With respect to disposal polymers which do not have to be disposed by combustion but rather allow natural decomposition (composting) are of increasing interest. Polymers from renewable sources are also of interest for modern microelectromechanical systems (MEMS) especially if the systems designed are intended as single-use products.

This lecture will introduce the most important classes of these so-called biopolymers and bioplastics. It will also discuss and highlight polymers which are created from naturally created analogues (e.g. via fermentation) to petrochemical polymer precursors and describe their technical processing. Numerous examples from MEMS as well as everyday life will be given.

Some of the topics covered are:

- What are biopolyurethanes and how can you produce them from castor oil?
- What are "natural glues" and how are they different from chemical glues?
- How do you make tires from natural rubbers?
- What are the two most important polymers for life on earth?
- How can you make polymers from potatoes?
- Can wood be formed by injection molding?
- How do you make buttons from milk?
- Can you play music on biopolymers?
- Where and how do you use polymers for tissue engineering?
- How can you built LEGO with DNA?

The lecture will be given in German language unless non-German speaking students attend. In this case, the lecture will be given in English (with some German translations of technical vocabulary). The lecture slides are in English language and will be handed out for taking notes. Additional literature is not required.

For further details, please contact the lecturer, Dr. Ing. Bastian E. Rapp (bastian.rapp@kit.edu) and PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is not necessary.

Annotation

For further details, please contact the lecturer, Dr. Ing. Bastian E. Rapp (bastian.rapp@kit.edu) and PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is not necessary.

Workload

- lecture: 15 * 1.5 h (22 h)
- lecture preparation (before and after lecture): 15 * 2 h (30 h)

preparation of final exam: 70 h

Literature

Additional literature is not required.
6.255 Course: Portfolio and Asset Liability Management [T-WIWI-103128]

Responsible: Dr. Mher Safarian

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101639 - Econometrics and Statistics II

Type: Written examination **Credits:** 4.5 **Recurrence:** Each summer term **Version:** 1

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>2520357</th>
<th>Portfolio and Asset Liability Management</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Safarian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS 2020</td>
<td>2520358</td>
<td>Übungen zu Portfolio and Asset Liability Management</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Safarian</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course consists of a written examination (following §4(2), 1 SPOs, 180 min.).

Prerequisites
None

Below you will find excerpts from events related to this course:

Portfolio and Asset Liability Management
2520357, SS 2020, 2 SWS, Language: English, Open in study portal **Lecture (V)**

Description
Portfolio theory: principles of investment, Markowitz-portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitrage pricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment

Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

Notes
Learning objectives:
Knowledge of various portfolio management techniques in the financial industry.

Content:
Portfolio theory: principles of investment, Markowitz-portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitrage pricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment

Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours
Exam preparation: 40 hours
Learning Content
Portfolio theory: principles of investment, Markowitz-portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitragepricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment
Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

Workload
The total workload for this course is approximately 150 hours. For further information see German version.

Literature
To be announced in lecture.

Elective literature:
To be announced in lecture.
6.256 Course: Power Network [T-ETIT-100830]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101164 - Generation and Transmission of Renewable Power

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

| Events | | | | | | |
|--------|---|---|---|---|---|
| WS 19/20 | 2307371 | Power Network | 2 SWS | Lecture (V) | Leibfried |
| WS 19/20 | 2307373 | Tutorial for 2307371 Power Network | 2 SWS | Practice (Ü) | Hirsching, Leibfried |

| Exams | | | | | | |
|-------|---|---|---|---|---|
| WS 19/20 | 7307371 | Power Network | Prüfung (PR) | Leibfried |
6.257 Course: Power Transmission and Power Network Control [T-ETIT-101941]

Responsible: Prof. Dr.-Ing. Thomas Leibfried
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-101164 - Generation and Transmission of Renewable Power

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Weekly Sessions (SWS)</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2307372</td>
<td>Power Transmission and Power Network Control</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Leibfried</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2307374</td>
<td>Übungen zu 2307372 Energieübertragung und Netzregelung</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Nowak</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7307372</td>
<td>Power Transmission and Power Network Control</td>
<td>Prüfung (PR)</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Prerequisites
none
6.258 Course: Practical Course Polymers in MEMS [T-MACH-105556]

Responsible: Dr.-Ing. Bastian Rapp
Dr. Ing. Matthias Worgull

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101291 - Microfabrication

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>2142856</th>
<th>Practical Course Polymers in MEMS</th>
<th>2 SWS</th>
<th>Block (B)</th>
<th>Worgull, Rapp</th>
</tr>
</thead>
</table>

Competence Certificate
The practical course will close with an oral examination. There will be only passed and failed results, no grades.

Prerequisites
one

Below you will find excerpts from events related to this course:

Practical Course Polymers in MEMS
2142856, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Description
Media:
descriptions of the experiments

Notes
This practical course complements the lectures "Polymers in MEMS A", "Polymers in MEMS B" and "Polymers in MEMS C" and will allow students to gain a deeper understanding of polymers and their processing. During the course of this practical course, various polymers will be synthesized and molded into components suitable for microelectromechanical systems (MEMS) applications. The aim of the course is to bring a polymer all the way from synthesis to application.

The practical course will be given in German language unless non-German speaking students attend. In this case, the course will be given in English (with some German translations of technical vocabulary). Lecture notes for the experiments are in English language and will be handed out to the students. The practical course will be held "en block" at the end of the semester (presumably beginning of October)

For further details, please contact the lecturer, Dr. Ing. Bastian E. Rapp (bastian.rapp@kit.edu) and PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is mandatory. The number of participants is limited to 5 students.

Learning Content
This practical course complements the lectures "Polymers in MEMS A", "Polymers in MEMS B" and "Polymers in MEMS C" and will allow students to gain a deeper understanding of polymers and their processing. During the course of this practical course, various polymers will be synthesized and molded into components suitable for microelectromechanical systems (MEMS) applications. The aim of the course is to bring a polymer all the way from synthesis to application.

The practical course will be given in German language unless non-German speaking students attend. In this case, the course will be given in English (with some German translations of technical vocabulary). Lecture notes for the experiments are in English language and will be handed out to the students. The practical course will be held "en block" at the end of the semester (presumably beginning of October)

For further details, please contact the lecturer, Dr. Ing. Bastian E. Rapp (bastian.rapp@kit.edu) and PD Dr.-Ing. Matthias Worgull (matthias.worgull@kit.edu). Preregistration is mandatory. The number of participants is limited to 5 students.
Workload

- practical course: 3 * 8 h (24 h)
- experiment preparation (before and after lecture): 30 h

preparation of final exam: 66 h

Literature

Scripts of the corresponding lectures, further literature as named there.
6.259 Course: Practical Seminar Digital Service Systems [T-WIWI-106563]

Responsible: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites
None

Recommendation
None

Annotation
New course title starting summer term 2017: "Practical Seminar Digital Service Systems". The current range of seminar topics is announced on the KSRI website www.ksri.kit.edu.

Below you will find excerpts from events related to this course:

Practical Seminar: Information Systems & Service Design
2540554, WS 19/20, 2 SWS, Language: English, Open in study portal

Description
Contemporary trends of every increasing digitalization in businesses lead to new challenges and fusion of technologies blurring the lines between the digital, physical and biological spheres, thereby calling for a new approaches for corporate management. Recently, physician Michio Kaku put it like the following: "The destiny of computers – like other mass technologies like electricity, paper, and running water- is to become invisible, that is, to disappear into the fabric of our lives, to be everywhere and nowhere, silently and seamlessly carrying out our wishes." Michio Kaku (2016)

In the Practical Seminar Digital Service Design students address a real-world challenge in businesses and apply digital service design practices and tools. Furthermore, during the time of the seminar the students prototypical implement a running digital service.

Real-world challenges will vary over time. This time, the challenges are from the domain of Future Corporate Management. The practical seminar is carried out in close cooperation with SAP SE and leverages state-of-the-art digital platforms for prototyping.

Learning Content
- Foundations
- Digital Service Design Challenges in Future Corporate Management
- Basics of Digital Service Design practices and tools
- Prototyping and development Digital Services
- Delivering digital service prototypes
Description
Contemporary trends of every increasing digitalization in businesses lead to new challenges and fusion of technologies blurring the lines between the digital, physical and biological spheres, thereby calling for a new approaches for corporate management. Recently, physician Michio Kaku put it like the following: “The destiny of computers – like other mass technologies like electricity, paper, and running water- is to become invisible, that is, to disappear into the fabric of our lives, to be everywhere and nowhere, silently and seamlessly carrying out our wishes.” Michio Kaku (2016)

In the Practical Seminar Digital Service Design students address a real-world challenge in businesses and apply digital service design practices and tools. Furthermore, during the time of the seminar the students prototypical implement a running digital service.

Real-world challenges will vary over time. This time, the challenges are from the domain of Future Corporate Management. The practical seminar is carried out in close cooperation with SAP SE and leverages state-of-the-art digital platforms for prototyping.

Learning Content
- Foundations
- Digital Service Design Challenges in Future Corporate Management
- Basics of Digital Service Design practices and tools
- Prototyping and development Digital Services
- Delivering digital service prototypes
6.260 Course: Practical Seminar Service Innovation [T-WIWI-102799]

Responsible: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-102806 - Service Innovation, Design & Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.
Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.
The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites
None

Recommendation
Knowledge of Service Innovation Methods is assumed. Therefore it is recommended to attend the course Service Innovation [2540468] beforehand.

Annotation
Due to the project work, the number of participants is limited and participation requires knowledge about models, concepts and approaches that are taught in the Service Innovation lecture. Having taken the Service Innovation lecture or demonstrating equivalent knowledge is a prerequisite for participating in this Practical Seminar. Details for registration will be announced on the web pages for this course.
The seminar is not offered regularly.
6.261 Course: Practical Seminar: Data-Driven Information Systems [T-WIWI-106207]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Thomas Setzer
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites
None

Recommendation
At least one module offered by the institute should have been chosen before attending this seminar.

Annotation
The course is held in english. The course is not offered regularly.
6.262 Course: Practical Seminar: Health Care Management (with Case Studies) [T-WIWI-102716]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102805 - Service Operations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2550498 | Practical seminar: Health Care Management | 3 SWS | Nickel, Mitarbeiter |

Competence Certificate

Due to a research semester of Professor Nickel in WS 19/20, the courses Location Planning and Strategic SCM and Practice Seminar: Health Care Management do NOT take place in WS 19/20. Please also refer to the information at https://doi.ior.kit.edu/Lehrveranstaltungen.php for further details.

The assessment consists in a case study, the writing of a corresponding paper, and an oral exam (according to §4(2), 2 of the examination regulation).

Prerequisites

None.

Recommendation

Basic knowledge as conveyed in the module Introduction to Operations Research is assumed.

Annotation

The credits have been reduced to 4.5 starting summer term 2016.
The lecture is offered every term.
The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Practical seminar: Health Care Management

2550498, SS 2020, 3 SWS, Language: German, [Open in study portal](https://dol.ior.kit.edu/)

Notes

Processes in a hospital are often grown historically ("We have always done it this way"), so that there has not been the need to analyze processes until reforms of the health system have put increasing pressure on hospitals. Consequently, nowadays hospitals look for possibilities to improve their processes. The students are confronted with case studies and are asked to develop a solution. Therefore they have to collect and analyze relevant data, processes and structures. When developing the solution the students have to bear in mind that besides the economic efficiency also the quality of care and patient satisfaction (e.g. measured in waiting time) may not be neglected in the health care sector.

Learning Content

Processes in a hospital are often grown historically ("We have always done it this way"), so that there has not been the need to analyze processes until reforms of the health system have put increasing pressure on hospitals. Consequently, nowadays hospitals look for possibilities to improve their processes. The students are confronted with case studies and are asked to develop a solution. Therefore they have to collect and analyze relevant data, processes and structures. When developing the solution the students have to bear in mind that besides the economic efficiency also the quality of care and patient satisfaction (e.g. measured in waiting time) may not be neglected in the health care sector.

Annotation

The lecture is offered every term.
The planned lectures and courses for the next three years are announced online.
Workload
The total workload for this course is approximately 135 hours. For further information see German version.

Literature
Elective literature:

- Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
- Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008
Course: Practical Seminar: Information Systems and Service Design [T-WIWI-108437]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102806 - Service Innovation, Design & Engineering
- M-WIWI-104068 - Information Systems in Organizations
- M-WIWI-104080 - Designing Interactive Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Lecture Type</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2540554</td>
<td>Practical Seminar: Information Systems & Service Design (Master)</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class). In the winter terms, the course is only offered as a seminar.

Prerequisites

None.

Recommendation

Attending the course „Digital Service Design” is recommended, but not mandatory.

Annotation

The course is held in English.

Below you will find excerpts from events related to this course:

Practical Seminar: Information Systems & Service Design (Master)

2540554, SS 2020, 3 SWS, [Open in study portal](#)

Description

Contemporary trends of every increasing digitalization in businesses lead to new challenges and fusion of technologies blurring the lines between the digital, physical and biological spheres, thereby calling for a new approaches for corporate management. Recently, physician Michio Kaku put it like the following: “The destiny of computers – like other mass technologies like electricity, paper, and running water- is to become invisible, that is, to disappear into the fabric of our lives, to be everywhere and nowhere, silently and seamlessly carrying out our wishes.” Michio Kaku (2016)

In the Practical Seminar Digital Service Design students address a real-world challenge in businesses and apply digital service design practices and tools. Furthermore, during the time of the seminar the students prototypical implement a running digital service.

Real-world challenges will vary over time. This time, the challenges are from the domain of **Future Corporate Management**. The practical seminar is carried out in close cooperation with SAP SE and leverages state-of-the-art digital platforms for prototyping.

Learning Content

- Foundations
- Digital Service Design Challenges in Future Corporate Management
- Basics of Digital Service Design practices and tools
- Prototyping and development Digital Services
- Delivering digital service prototypes
T 6.264 Course: Practical Training in Basics of Microsystem Technology [T-MACH-102164]

Responsible: Dr. Arndt Last
Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101290 - BioMEMS
- M-MACH-101291 - Microfabrication
- M-MACH-101292 - Microoptics
- M-MACH-101293 - Microsystem Technology
- M-MACH-101294 - Nanotechnology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2143875</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2143877</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2143875</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2143877</td>
<td>Introduction to Microsystem Technology - Practical Course</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Last</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam

Prerequisites
none

Below you will find excerpts from events related to this course:

Introduction to Microsystem Technology - Practical Course
2143875, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Learning Content
In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
3. Mikro optics: "LIGA-micro spectrometer"
4. UV-lithography
5. Optical waveguides
6. Capillary electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy
Each student takes part in only five experiments.
The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Workload
Time of attendance: 21 h + 2 h exam
Privat studies: 5 h preparing experiments + 10 h preparing the exam
Learning Content
In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
3. Mikro optics: "LIGA-micro spectrometer"
4. UV-lithography
5. Optical waveguides
6. Capillary electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy
Each student takes part in only five experiments.
The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Workload
Time of attendance: 21 h + 2 h exam
Privat studies: 5 h preparing experiments + 10 h preparing the exam
Notes
In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
3. Mikro optics: "LIGA-micro spectrometer"
4. UV-lithography
5. Optical waveguides
6. Capillary electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy
Each student takes part in only five experiments.
The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Learning Content
In the practical training includes nine experiments:
1. Hot embossing of plastics micro structures
2. Micro electroforming
3. Mikro optics: "LIGA-micro spectrometer"
4. UV-lithography
5. Optical waveguides
6. Capillary electrophoresis on a chip
7. SAW gas sensor
8. Metrology
9. Atomic force microscopy
Each student takes part in only five experiments.
The experiments are carried out at real workstations at the IMT and coached by IMT-staff.

Workload
Time of attendance: 21 h + 2 h exam
Privat studies: 5 h preparing experiments + 10 h preparing the exam
6.265 Course: Predictive Mechanism and Market Design [T-WIWI-102862]

Responsible: Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101505 - Experimental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2520402</td>
<td>Predictive Mechanism and Market Design</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Irregular</td>
<td>Reiß</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2520403</td>
<td></td>
<td>SWS</td>
<td></td>
<td></td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900318</td>
<td>Predictive Mechanism and Market Design</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Annotation
The course is given every second fall term, e.g., WS2017/18, WS2019/20, ...
The retake exam is given in the summer term subsequent to the fall term where the course (lecture and final exam) is given.
6.266 Course: Price Management [T-WIWI-105946]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Dr Paul Glenn

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101409 - Electronic Markets

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Lecture (V)</td>
<td></td>
<td>Glenn</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Practice (Ü)</td>
<td></td>
<td>Glenn</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Lecture and exam will not be offered in summer semester 2019. The next examination is in the summer semester 2020.

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

None

Annotation

The lecture is offered for the first time in summer term 2016.

Below you will find excerpts from events related to this course:

Price Management

2540529, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Learning Content

1. Introduction to Price Management
2. Pricing Strategies
3. Information Base for Pricing in Price Management
4. Price-Sales Function, Price Elasticity and Survey Methods
5. Procedure of the Price Formation and innovative Pricing-Models
6. Willingness of Payment, Value, Methods of Measuring Value and Value-Based Pricing
7. Behavioural Science and Psychology of Prices
8. Multidimensional Pricing and Price Differentiation
9. Product-Spanning Price Optimisation and Bundling
11. Price Management for Services and Solutions
12. Excursion: Pricing-Tools, Professional Software for Pricing
13. Enforcing Prices, Discounting and Systems of Terms and Conditions
14. Communication of Prices, Price Adjustments and Controlling
15. International Pricing and Global Price Management
16. Pricing and Competition Law
17. Organisational Forms of Pricing, Processes, Development Paths, and Change Management in Enterprises
Annotation
The course is generally held as block course.

Workload
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance

- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study

- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Literature

Course: Price Negotiation and Sales Presentations [T-WIWI-102891]

Responsible: Prof. Dr. Martin Klarmann
Mark Schröder

Organisation:
- KIT Department of Economics and Management

Part of:
- M-WIWI-101487 - Sales Management
- M-WIWI-105312 - Marketing and Sales Management

Type
Examination of another type

Credits
1.5

Recurrence
Each winter term

Version
3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Block (B)</td>
<td>Klarmann, Schröder</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Klarmann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

This alternative exam assessment consists of a presentation with a subsequent discussion totalling 25 minutes. Moreover learning contents are checked by realistic 30-minute price negotiations.

Prerequisites
None

Recommendation
None

Annotation

Participation requires an application. The application period starts at the beginning of the semester. More information can be obtained on the website of the research group Marketing & Sales (marketing.iism.kit.edu).

Access to this course is restricted. Typically all students will be granted the attendance of one course with 1.5 ECTS. Nevertheless attendance can not be guaranteed.

For further information please contact Marketing and Sales Research Group (marketing.iism.kit.edu). Please note that only one of the courses from the election block can be attended in the module.

Below you will find excerpts from events related to this course:

Price Negotiation and Sales Presentations

2572198, WS 19/20, 1 SWS, Language: German, [Open in study portal](#)

Block (B)

Notes

At first, theoretical knowledge about the behavior in selling contexts is discussed. Then, in a practical part, students will apply this knowledge in their own price negotiations.

Students

- gain a clear impression of the theoretical knowledge about price negotiations and sales presentations
- improve their own negotiation abilities

Non exam assessment (following §4(2), 3 of the examination regulation).

The total workload for this course is approximately 45.0 hours. For further information see German version.

- In order to participate in this course, you need to apply. Applications usually start with the lecture period in the winter term. Detailed information on the application process is provided on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in winter term starts.
- Please note that only one of the 1.5 ECTS courses can be chosen in the module.
- Please note: The number of participants for this course is limited. The Marketing and Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS in the respective module to all students. Participation in a specific course cannot be guaranteed.
6.268 Course: Pricing [T-WIWI-102883]

Responsible: Dr. Sven Feurer
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101487 - Sales Management
- M-WIWI-101489 - Strategy, Communication, and Data Analysis
- M-WIWI-101490 - Marketing Management
- M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2572157</td>
<td>Pricing</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Klarmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2572169</td>
<td>Übung zu Pricing</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Moosbrugger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900138</td>
<td>Prüfung (PR)</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Pricing
2572157, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Notes

This course addresses central elements and peculiarities of pricing goods and services. The topics are below others:

- Price demand functions
- Concept of the price elasticity of demand
- Key concepts of behavioral pricing
- Decision-making areas in pricing

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

The total workload for this course is approximately 135.0 hours. For further information see German version.

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).
6.269 Course: Principles of Food Process Engineering [T-CIWVT-101874]

Responsible: Dr. Volker Gaukel
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101120 - Principles of Food Process Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Oral examination</td>
<td>1</td>
</tr>
<tr>
<td>22207</td>
<td>9</td>
<td>Lecture (V)</td>
<td>Watzl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Gaukel</td>
</tr>
<tr>
<td>22213</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Gaukel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td>22214</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Gaukel</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7220008</td>
<td>Principles of Food Process Engineering</td>
<td>Gaukel</td>
</tr>
</tbody>
</table>

Prerequisites

None
6.270 Course: Process Engineering [T-BGU-101844]

Responsible: Dr.-Ing. Harald Schneider
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101110 - Process Engineering in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6241703 Verfahrenstechnik</td>
<td>2 SWS</td>
<td>Lecture (V) Schneider, Schlick</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 8240101844 Process Engineering</td>
<td>Prüfung (PR) Schneider</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.271 Course: Process Mining [T-WIWI-109799]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2511204</th>
<th>Process Mining</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Oberweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2511205</td>
<td>Exercise Process Mining</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Oberweis, Schreiber</td>
</tr>
</tbody>
</table>

Exams

| WS 19/20 | 7900033 | Process Mining | Prüfung (PR) | Oberweis |

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites

None

Annotation

Former name (up to winter semester 2018/2019) "Workflow Management".

Below you will find excerpts from events related to this course:

Process Mining

2511204, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Notes
The area of process mining covers approaches which aim at deducting new knowledge on the basis of logfiles generated by information systems. Such information systems are e.g., workflow-management-systems which are used for an efficient control of processes in enterprises and organisations. The lecture introduces the foundations of processes and respective modeling and analysis techniques. In the following, the foundations of process mining and the three classical types of approaches - discovery, conformance and enhancement - will be taught. In addition to the theoretical basics, tools, application scenarios in practice and open research questions are covered as well.

Learning objectives:
Students
- understand the concepts and approaches of process mining and know how they are applied,
- create and evaluate business process models,
- analyze static and dynamic properties of workflows,
- apply approaches and tools of process mining.

Recommendations:
Knowledge of course Applied Informatics - Modelling is expected.

Workload:
- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
6.272 Course: Product and Innovation Management [T-WIWI-109864]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101490 - Marketing Management
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-101514 - Innovation Economics
- M-WIWI-105312 - Marketing and Sales Management

Type
- Written examination

Credits
- 3

Recurrence
- Each summer term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2571154</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Feurer</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Annotation
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

Notes
This course addresses topics around the management of new as well as existing products. After the foundations of product management, especially the product choice behavior of customers, students get to know in detail different steps of the innovation process. Another section regards the management of the existing product portfolio.

Students
- know the most important terms of the product and innovation concept
- understand the models of product choice behavior (e.g., the Markov model, the Luce model)
- are familiar with the basics of network theory (e.g. the Triadic Closure concept)
- know the central strategic concepts of innovation management (especially the market driving approach, pioneer and successor, Miles/Snow typology, blockbuster strategy)
- master the most important methods and sources of idea generation (e.g. open innovation, lead user method, crowdsourcing, creativity techniques, voice of the customer, innovation games, conjoint analysis, quality function deployment, online toolkits)
- are capable of defining and evaluating new product concepts and know the associated instruments like focus groups, product testing, speculative sales, test market simulation Assessor, electronic micro test market
- have advanced knowledge about market introduction (e.g. adoption and diffusion models Bass, Fourt/Woodlock, Mansfield)
- understand important connections of the innovation process (cluster formation, innovation culture, teams, stage-gate process)

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Total effort for 3 credit points: approx. 90 hours

Presence time: 30 hours
Preparation and wrap-up of LV: 45.0 hours
Exam and exam preparation: 15.0 hours

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Responsible: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149670</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Steegmüller, Kienzle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-110318</td>
<td>Product- and Production-Concepts for modern Automobiles</td>
<td>Prüfung (PR)</td>
<td>Steegmüller, Kienzle</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam (20 min)

Prerequisites

T-MACH-105166 - Materials and Processes for Body Lightweight Construction in the Automotive Industry must not have been started.

Below you will find excerpts from events related to this course:

Product- and Production-Concepts for modern Automobiles

2149670, WS 19/20, 2 SWS, Language: German, [Open in study portal](https://ilias.studium.kit.edu/)

Description

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
Notes
The lecture illuminates the practical challenges of modern automotive engineering. As former leaders of the automotive industry, the lecturers refer to current aspects of automotive product development and production.

The aim is to provide students with an overview of technological trends in the automotive industry. In this context, the course also focuses on changes in requirements due to new vehicle concepts, which may be caused by increased demands for individualisation, digitisation and sustainability. The challenges that arise in this context will be examined from both a production technology and product development perspective and will be illustrated with practical examples thanks to the many years of industrial experience of both lecturers.

The topics covered are:

- General conditions for vehicle and body development
- Integration of new drive technologies
- Functional requirements (crash safety etc.), also for electric vehicles
- Development Process at the Interface Product & Production, CAE/Simulation
- Energy storage and supply infrastructure
- Aluminium and lightweight steel construction
- FRP and hybrid parts
- Battery, fuel cell and electric motor production
- Joining technology in modern car bodies
- Modern factories and production processes, Industry 4.0.

Learning Outcomes:
The students ...

- are able to name the presented general conditions of vehicle development and are able to discuss their influences on the final product using practical examples.
- are able to name the various lightweight approaches and identify possible areas of application.
- are able to identify the different production processes for manufacturing lightweight structures and explain their functions.
- are able to perform a process selection based on the methods and their characteristics.

Workload:
regular attendance: 25 hours
self-study: 95 hours

Learning Content
The lecture illuminates the practical challenges of modern automotive engineering. As former leaders of the automotive industry, the lecturers refer to current aspects of automotive product development and production.

The aim is to provide students with an overview of technological trends in the automotive industry. In this context, the course also focuses on changes in requirements due to new vehicle concepts, which may be caused by increased demands for individualisation, digitisation and sustainability. The challenges that arise in this context will be examined from both a production technology and product development perspective and will be illustrated with practical examples thanks to the many years of industrial experience of both lecturers.

The topics covered are:

- General conditions for vehicle and body development
- Integration of new drive technologies
- Functional requirements (crash safety etc.), also for electric vehicles
- Development Process at the Interface Product & Production, CAE/Simulation
- Energy storage and supply infrastructure
- Aluminium and lightweight steel construction
- FRP and hybrid parts
- Battery, fuel cell and electric motor production
- Joining technology in modern car bodies
- Modern factories and production processes, Industry 4.0.

Workload
regular attendance: 25 hours
self-study: 95 hours
6.274 Course: Production and Logistics Controlling [T-WIWI-103091]

Responsible: Alexander Rausch

Organisation: KIT Department of Economics and Management

Part of:
- M-MACH-101263 - Introduction to Logistics
- M-MACH-101278 - Material Flow in Networked Logistic Systems
- M-MACH-101280 - Logistics in Value Chain Networks
- M-MACH-101282 - Global Production and Logistics
- M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Exam Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>79-T-WIWI-103091</td>
<td>Production and Logistics Controlling</td>
<td>Prüfung (PR)</td>
<td>Furmans</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) following §4(2), 1 of the examination regulation.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None
Course: Production and Logistics Management [T-WIWI-102632]

Responsible: Dr.-Ing. Simon Glöser-Chahoud
Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101412 - Industrial Production III

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Week</th>
<th>Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2581954</td>
<td>Production and Logistics Management</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Schultmann, Glöser-Chahoud</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2581955</td>
<td>Übung zu Produktions- und Logistikmanagement</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td>Zimmer, Huster</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Week</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981954</td>
<td>Production and Logistics Management</td>
<td>Prüfung (PR)</td>
<td>5,5 credits</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 minutes) (following § 4(2), 1 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Production and Logistics Management

Type: Lecture (V)
Code: 2581954, SS 2020
Language: German
[Open in study portal]

Description

This course covers central tasks and challenges of an operative production and logistics management. Students get to know the set-up and mode of operation of planning systems such as PPS-, ERP- and Advanced Planning Systems to cope with the accompanying planning tasks. Methods to solve these tasks will be explored with respect to manufacturing program planning, material and time. Alongside MRP II, students will be introduced to integrated supply chain management approaches in PPS. Finally, commercially available PPS-, ERP- and Advanced Planning Systems will be presented and discussed.

Notes

This course covers central tasks and challenges of operative production and logistics management. Students get to know the set-up and mode of planning systems such as production planning and control systems, enterprise resource planning systems and advanced planning systems to cope with the accompanying planning tasks in supply chain management. Methods to solve these tasks from the field of operational research will be explored with respect to manufacturing program planning, material requirement planning, lot size problems and scheduling. Alongside MRP II (Manufacturing Resources Planning), students will be introduced to integrated supply chain management approaches. Finally, commercially available planning systems will be presented and discussed.

Learning Content

This course covers central tasks and challenges of operational production and logistics management. Systems are analytically, central planning tasks are discussed. Exemplary solution approaches for these tasks are presented. Further practical approaches are explained. Students get to know the set-up and mode of operation of planning systems such as PPS-, ERP- and Advanced Planning Systems to cope with the accompanying planning tasks. Alongside MRP II, students will be introduced to integrated supply chain management approaches in Supply Chain Management.

Workload

Total effort required will account for approximately 165h (5.5 credits).
Literature
will be announced in the course
6.276 Course: Project Lab Cognitive Automobiles and Robots [T-WIWI-109985]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Event</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2512501</td>
<td>Project lab Cognitive automobiles and robots</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Exam</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900107</td>
<td>Advanced Lab Cognitive Automobile and Robots</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Details of the grade formation will be announced at the beginning of the course.

Prerequisites

None

Below you will find excerpts from events related to this course:

Project lab Cognitive automobiles and robots

2512501, WS 19/20, 3 SWS, Language: German/English, Open in study portal

Practical course (P)

Notes

The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:

Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:

The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.
6.277 Course: Project Lab Machine Learning [T-WIWI-109983]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2512500</td>
<td>3 SWS</td>
<td>Project Lab Machine Learning</td>
<td>3 SWS</td>
<td>Practical course (P)</td>
</tr>
</tbody>
</table>

Competence Certificate
The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Details of the grade formation will be announced at the beginning of the course.

Prerequisites
None

Below you will find excerpts from events related to this course:

Project Lab Machine Learning
2512500, SS 2020, 3 SWS, Language: German/English, Open in study portal

Notes
The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:
The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.
Course: Project Management [T-WIWI-103134]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581963</td>
<td>Project Management</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Schultmann, Volk, Wiens, Schumacher, Rosenberg, Wehrle</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581964</td>
<td>Übung zu Project Management</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Volk, Wiens, Schumacher, Rosenberg, Wehrle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981963</td>
<td>Project Management</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination will be in form of a written exam acc. to §4(2), 1 ER. Exams are offered in every semester and can be re-examined at every ordinary examination date.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Project Management

2581963, WS 19/20, 2 SWS, Language: English, Open in study portal

Notes

1. Introduction
2. Principles of Project Management
3. Project Scope Management
4. Time Management and Resource Scheduling
5. Cost Management
6. Quality Management
7. Risk Management
8. Stakeholder
9. Communication, Negotiation and Leadership
10. Project Controlling
11. Agile Project Management
Learning Content

1. Introduction
2. Principles of Project Management
3. Project Scope Management
4. Time Management and Resource Scheduling
5. Cost Management
6. Quality Management
7. Risk Management
8. Stakeholder
9. Communication, Negotiation and Leadership
10. Project Controlling

Workload
The total workload for this course is approximately 105 hours. For further information see German version.

Literature
will be announced in the course
6.279 Course: Project Management in Construction and Real Estate Industry I [T-BGU-103432]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101884 - Lean Management in Construction
M-BGU-101888 - Project Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Lecture / Practice (VÜ)</th>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6241701</td>
<td>Lecture / Practice (VÜ)</td>
<td>Haghsheno, Hirschberger, Sittinger, Münzl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Examination</th>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240103432</td>
<td>Prüfung (PR)</td>
<td>Haghsheno</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.280 Course: Project Management in Construction and Real Estate Industry II [T-BGU-103433]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-101884 - Lean Management in Construction
- M-BGU-101888 - Project Management in Construction

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6241701</td>
<td>Projektmanagement in der Bau- und Immobilienwirtschaft</td>
<td>4 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Haghsheno, Hirschberger, Sittinger, Münzl</td>
</tr>
<tr>
<td>Exams</td>
<td>8240103433</td>
<td>Project Management in Construction and Real Estate Industry II</td>
<td>Prüfung (PR)</td>
<td>Haghsheno</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.281 Course: Project Paper Lean Construction [T-BGU-101007]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101884 - Lean Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6241901</td>
<td>Lean Construction</td>
<td>4</td>
<td>Lecture / Practice (VÜ)</td>
<td>Haghsheno, Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8246101007</td>
<td>Project paper Lean Construction</td>
<td>Prüfung (PR)</td>
<td>Haghsheno</td>
</tr>
</tbody>
</table>

Competence Certificate
project: report, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.282 Course: Project Studies [T-BGU-101847]

Responsible: Prof. Dr.-Ing. Sascha Gentes
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101110 - Process Engineering in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>6243801</th>
<th>Projektstudien</th>
<th>2 SWS</th>
<th>Lecture / Practice (VÜ)</th>
<th>Haupenthal, Gentes</th>
</tr>
</thead>
</table>

| Exams | 8240101847 | Project Studies | Prüfung (PR) | Gentes |

Prerequisites

None

Recommendation

None

Annotation

None
Course: Public Management [T-WIWI-102740]

负责: Prof. Dr. Berthold Wigger

组织: KIT Department of Economics and Management

部分: M-WIWI-101504 - Collective Decision Making

M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>写作考试</td>
<td>4.5</td>
<td>每个冬季学期</td>
<td>1</td>
</tr>
</tbody>
</table>

事件

<table>
<thead>
<tr>
<th>事件</th>
<th>WS 19/20</th>
<th>公共管理</th>
<th>3 SWS</th>
<th>写作/实作 (VÜ)</th>
<th>Wigger</th>
</tr>
</thead>
</table>

考试

<table>
<thead>
<tr>
<th>事件</th>
<th>WS 19/20</th>
<th>公共管理</th>
<th></th>
<th>证明 (PR)</th>
<th>Wigger</th>
</tr>
</thead>
</table>

能力证书

评估由第4条，第2款，第1款的考试规定下的1小时书面考试组成。本课程的成绩等同于书面考试的成绩。

先修条件

无

建议

基本的公共财政知识是必需的。

以下是与本课程相关的事件的摘录:

公共管理

WS 19/20, 2561127, 3 SWS, 语言: 德语, [打开学习门户]

讲座/实作 (VÜ)

学习内容

该课程“公共管理”探讨了公共事务行政的经济理论。它分为四部分。第一部分提供了一个关于德国联邦共和国政府行政的法律框架的概述，以及古典行政理论的介绍，它对公共行政运作产生了重大影响，其中有一章侧重于集体决策的一致性问题。第三章探讨了传统组织的公共行政和公司中出现的效率问题。X-效率、信息和控制问题，收入支出关系以及寻求收入问题也将考虑。第四部分介绍了“新公共管理”的概念，这是主要基于合同理论对公共事务行政的一种新方法，它的基础在机构经济学中发展，重点在于自我管理的行政机构的具体激励结构。最后，新公共管理方法的成就将被讨论。

工作量

本课程的总工作量约为135.0小时。更多信息请参阅德文版。

文献

选修文献:

6.284 Course: Public Media Law [T-INFO-101311]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101217 - Public Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24082</td>
<td>Public Media Law</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500062</td>
<td>Public Media Law</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500058</td>
<td>Public Media Law</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>
6.285 Course: Public Revenues [T-WIWI-102739]

Responsible:
Prof. Dr. Berthold Wigger

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2560120</td>
<td>4.5</td>
<td>Written examination</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 2560121</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Lecture (V)</td>
<td>Wigger</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Public Revenues</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an 1h written exam following Art. 4, para. 2, clause 1 of the examination regulation. The grade for this course equals the grade of the written exam.

Prerequisites
None

Recommendation
Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

Public Revenues
2560120, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Description
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Notes
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Learning goals:
See German version.

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.
Learning Content
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Elective literature:

6.286 Course: Python for Computational Risk and Asset Management [T-WIWI-110213]

Responsible: Prof. Dr. Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105032 - Data Science for Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2500016</td>
<td>2 SWS</td>
<td>Practical course (P)</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900220</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out in form of twelve weekly Python programming tasks and offered each winter term. The grade of this course is determined by the points achieved in the programming tasks.

Prerequisites
None.

Recommendation
Good knowledge of statistics and first programming experience with Python is recommended.

Below you will find excerpts from events related to this course:

Description
The aim of this course is to provide students with strong knowledge in Python to independently solve real-world data problems related to automated robo investment advisory.

Notes
The aim of this course is to provide students with strong knowledge in Python to independently solve real-world data problems related to automated robo investment advisory.
The course covers several topics from a programming perspective, among them:

- Quantitative Portfolio Strategies: Extensions to Mean-Variance Portfolio Optimization
- Return Densities: Forecasting with Traditional and Machine Learning Approaches, Monte Carlo Simulation
- Financial Economics: Rationalizing Risk Premiums via Stochastic Discount Factor
- Multi-Asset Valuation: DCF Approach, No-Arbitrage and Ito Calculus

The total workload for this course is approximately 90 hours. Prior knowledge of AIFB programming and KIT statistics classes is recommended.

The course introduces students to Python. Students will solve problems related to the agenda of the lecture 'Computational Risk and Asset Management'. This enables them to work with financial data, perform various statistical analysis and estimate their own time series models.
Learning Content
The course covers several topics from a programming perspective, among them:

- Quantitative Portfolio Strategies: Extensions to Mean-Variance Portfolio Optimization
- Return Densities: Forecasting with Traditional and Machine Learning Approaches, Monte Carlo Simulation
- Financial Economics: Rationalizing Risk Premiums via Stochastic Discount Factor
- Multi-Asset Valuation: DCF Approach, No-Arbitrage and Ito Calculus

Workload
The total workload for this course is approximately 90 hours.
Course: Quality Management [T-MACH-102107]

Responsible: Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101282 - Global Production and Logistics
M-MACH-101284 - Specialization in Production Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Module</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2149667</td>
<td>Quality Management</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Lanza</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Quality Management</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Competence Certificate

Written Exam (60 min)

Prerequisites

none

Below you will find excerpts from events related to this course:

Quality Management

2149667, WS 19/20, 2 SWS, Language: German, [Open in study portal](https://ilias.studium.kit.edu/)

Description

Media:

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
Notes
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

- The term "Quality"
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product definition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Learning Outcomes:
The students ...

- are capable to comment on the content covered by the lecture.
- are capable of substantially quality philosophies.
- are able to apply the QM tools and methods they have learned about in the lecture to new problems from the context of the lecture.
- are able to analyze and evaluate the suitability of the methods, procedures and techniques they have learned about in the lecture for a specific problem.

Workload:
regular attendance: 21 hours
self-study: 99 hours

Learning Content
Based on the quality philosophies Total Quality Management (TQM) and Six Sigma, the lecture deals with the requirements of modern quality management. Within this context, the process concept of a modern enterprise and the process-specific fields of application of quality assurance methods are presented. The lecture covers the current state of the art in preventive and non-preventive quality management methods in addition to manufacturing metrology, statistical methods and service related quality management. The content is completed with the presentation of certification possibilities and legal quality aspects.

Main topics of the lecture:

- The term "Quality"
- Total Quality Management (TQM) and Six Sigma
- Universal methods and tools
- QM during early product stages – product definition
- QM during product development and in procurement
- QM in production – manufacturing metrology
- QM in production – statistical methods
- QM in service
- Quality management systems
- Legal aspects of QM

Annotation
None

Workload
regular attendance: 21 hours
self-study: 99 hours
6 COURSES

Course: Quantitative Methods in Energy Economics [T-WIWI-107446]

Responsible: Dr. Dogan Keles
Patrick Plötz

Organisation: KIT Department of Economics and Management

Type: Written examination
Credits: 3
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581007</td>
<td>Quantitative Methods in Energy Economics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Plötz, Keles</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581008</td>
<td>Übung zu Quantitative Methods in Energy Economics</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Plötz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981007</td>
<td>Quantitative Methods in Energy Economics</td>
<td>Prüfung (PR)</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Quantitative Methods in Energy Economics
2581007, WS 19/20, 2 SWS, Language: English, Open in study portal

Notes
Energy economics makes use of many quantitative methods in exploration and analysis of data as well as in simulations and modelling. This lecture course aims at introducing students of energy economics into the application of quantitative methods and techniques as taught in elementary courses to real problems in energy economics. The focus is mainly on regression, simulation, time series analysis and related statistical methods as applied in energy economics.

Learning Goals:
The student
- knows and understands selected quantitative methods of energy economics
- is able to use selected quantitative methods of energy economics
- understands they range of usage, limits and is autonomously able to address new problems by them.

Learning Content
Energy economics makes use of many quantitative methods in exploration and analysis of data as well as in simulations and modelling. This lecture course aims at introducing students of energy economics into the application of quantitative methods and techniques as taught in elementary courses to real problems in energy economics. The focus is mainly on regression, simulation, time series analysis and related statistical methods as applied in energy economics.

Workload
The total workload for this course is approximately 120 hours. For further information see German version.
Course: Quantum Functional Devices and Semiconductor Technology [T-ETIT-100740]

Responsible: Prof. Dr.-Ing. Christian Koos
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of:
- M-MACH-101294 - Nanotechnology
- M-MACH-101295 - Optoelectronics and Optical Communication

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
6.290 Course: Rail System Technology [T-MACH-102143]

Responsible: Prof. Dr.-Ing. Peter Gratzfeld

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101274 - Rail System Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20: 2115919</td>
<td>Oral examination</td>
<td>9</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>SS 2020: 2115996</td>
<td>Oral examination</td>
<td>9</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20: 76-T-MACH-102143</td>
<td>Oral examination</td>
<td>9</td>
<td>Each term</td>
<td>3</td>
</tr>
<tr>
<td>SS 2020: 76-T-MACH-102143</td>
<td>Oral examination</td>
<td>9</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

- Oral examination
- Duration: ca. 45 minutes
- No tools or reference materials may be used during the exam.

Prerequisites

- none

Below you will find excerpts from events related to this course:

Rail System Technology

2115919, WS 19/20, 2 SWS, Language: German, Open in study portal

Description

- Media:
 - All slides are available for download (Ilias-platform).

Notes

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)
Learning Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signalling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)

Workload
Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours

Literature
A bibliography is available for download (Ilias-platform).

Rail Vehicle Technology
2115996, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, interfaces
3. Bogies: forces, running gears, axle configuration
4. Drives: vehicle with/without contact wire, dual-mode vehicle
5. Brakes: tasks, basics, principles, blending, brake control
6. Train control management system: definitions, networks, bus systems, components, examples
7. Vehicle concepts: trams, metros, regional trains, intercity trains, high speed trains, double deck coaches, locomotives, freight wagons

Learning Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, interfaces
3. Bogies: forces, running gears, axle configuration
4. Drives: vehicle with/without contact wire, dual-mode vehicle
5. Brakes: tasks, basics, principles, blending, brake control
6. Train control management system: definitions, networks, bus systems, components, examples
7. Vehicle concepts: trams, metros, regional trains, intercity trains, high speed trains, double deck coaches, locomotives, freight wagons

Workload
Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours

Literature
A bibliography is available for download (Ilias-platform).

Rail System Technology
2115919, SS 2020, 2 SWS, Language: German, Open in study portal

Description
Media:
All slides are available for download (Ilias-platform).
Notes

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)

Learning Content

1. Railway System: railway as system, subsystems and interdependencies, definitions, laws, rules, railway and environment, economic impact
2. Operation: Transportation, public transport, regional transport, long-distance transport, freight service, scheduling
3. Infrastructure: rail facilities, track alignment, railway stations, clearance diagram
4. Wheel-rail-contact: carrying of vehicle mass, adhesion, wheel guidance, current return
5. Vehicle dynamics: tractive and brake effort, driving resistance, inertial force, load cycles
6. Signaling and Control: operating procedure, succession of trains, European Train Control System, blocking period, automatic train control
7. Traction power supply: power supply of rail vehicles, power networks, filling stations
8. History (optional)

Workload
Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours

Literature
A bibliography is available for download (Ilias-platform).

Rail Vehicle Technology
2115996, SS 2020, 2 SWS, Language: German, Open in study portal

Description
Media:
All slides are available for download (Ilias-platform).

Notes

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, interfaces
3. Bogies: forces, running gears, axle configuration
4. Drives: vehicle with/without contact wire, dual-mode vehicle
5. Brakes: tasks, basics, principles, blending, brake control
6. Train control management system: definitions, networks, bus systems, components, examples
7. Vehicle concepts: trams, metros, regional trains, intercity trains, high speed trains, double deck coaches, locomotives, freight wagons

Learning Content

1. Vehicle system technology: structure and main systems of rail vehicles
2. Car body: functions, requirements, design principles, crash elements, interfaces
3. Bogies: forces, running gears, axle configuration
4. Drives: vehicle with/without contact wire, dual-mode vehicle
5. Brakes: tasks, basics, principles, blending, brake control
6. Train control management system: definitions, networks, bus systems, components, examples
7. Vehicle concepts: trams, metros, regional trains, intercity trains, high speed trains, double deck coaches, locomotives, freight wagons
Workload
Regular attendance: 21 hours
Self-study: 21 hours
Exam and preparation: 78 hours

Literature
A bibliography is available for download (Ilias-platform).
Course: Recommender Systems [T-WIWI-102847]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-101470 - Data Science: Advanced CRM

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2540506</td>
<td>Recommender Systems</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2540507</td>
<td>Exercise Recommender Systems</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Nazemi</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900149</td>
<td>Recommender Systems</td>
<td>Prüfung (PR)</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Recommender Systems

2540506, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Notes
At first, an overview of general aspects and concepts of recommender systems and its relevance for service providers and customers is given. Next, different categories of recommender systems are discussed. This includes explicit recommendations like customer reviews as well as implicit services based on behavioral data. Furthermore, the course gives a detailed view of the current research on recommender systems at the Chair of Information Services and Electronic Markets.

Learning objectives:
The student

- is proficient in different statistical, data-mining, and game theory methods of computing implicit and explicit recommendations
- evaluates recommender systems and compares these with related services

Workload:
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance

- Attending the lecture: $15 \times 90\text{min} = 22h\ 30m$
- Attending the exercise classes: $7 \times 90\text{min} = 10h\ 30m$
- Examination: $1h\ 00m$

Self-study

- Preparation and wrap-up of the lecture: $15 \times 180\text{min} = 45h\ 00m$
- Preparing the exercises: $25h\ 00m$
- Preparation of the examination: $31h\ 00m$

Sum: $135h\ 00m$

Exam:
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from excersise work will be added.

Grade: Minimum points

- 1.0: 95
- 1.3: 90
- 1.7: 85
- 2.0: 80
- 2.3: 75
- 2.7: 70
- 3.0: 65
- 3.3: 60
- 3.7: 55
- 4.0: 50
- 5.0: 0
6.292 Course: Regulation Theory and Practice [T-WIWI-102712]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101406 - Network Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4.5</td>
<td>see Annotations</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The lecture is not offered for an indefinite period of time.
Result of success is made by a 20-30 minutes oral examination. Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
None

Recommendation
Basic knowledge and skills of microeconomics from undergraduate studies (bachelor’s degree) are expected.
Particularly helpful but not necessary: Industrial Economics and Principal-Agent- or Contract theories. Prior attendance of the lecture Competition in Networks [26240] is helpful in any case but not considered a formal precondition.

Annotation
The lecture is not offered for an indefinite period of time.
Course: Risk Management in Industrial Supply Networks [T-WIWI-102826]

Responsible: Prof. Dr. Frank Schultmann
Dr. Marcus Wiens

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Sem/Year</th>
<th>Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581992</td>
<td>Risk Management in Industrial Supply Networks</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Wiens</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581993</td>
<td>Übung zu Risk Management in Industrial Supply Networks</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Klein, Wiens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Sem/Year</th>
<th>Code</th>
<th>Course Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981992</td>
<td>Risk Management in Industrial Supply Networks</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following § 4(2), 1 of the examination regulation). The exam takes place in every semester. Reexaminations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Risk Management in Industrial Supply Networks

2581992, WS 19/20, 2 SWS, Language: English, Open in study portal

Lecture (V)

Notes

Students learn methods and tools to manage risks in complex and dynamically evolving supply chain networks. Students learn the key terms and concepts of risk management and decision theory, in particular expected utility theory. Based on the theoretic prerequisites, students are able to determine and analyze risk diversification, risk pooling, insurance mechanisms and get an overview on statistical risk measures and real options. These approaches are adapted to analyze supply chain risks in a network context. In this manner, students gain knowledge in basic notions of network theory, network metrics and network-strategies for supply chain decisions.

- Introduction
- Risks in decisions under uncertainty: Expected Utility Theory & risk preferences
- The newsvendor model: multivariate risks and insurance
- Risk measures & evaluation techniques: Value-at-Risk, Conditional Value at Risk, Monte Carlo and Real Options
- Transparency in complex supply chains
- Network risk: network basics and criticality
- Risk in supply networks: empirical approaches and insights
Learning Content

- supply chain management: introduction, aims and trends
- industrial risk management
- definition and characterization of risks: sourcing and procurement, demand, production and infrastructure
- identification of risks
- risk controlling
- risk assessment and decision support tools
- risk prevention and mitigation strategies
- robust design of supply chain networks
- supplier selection
- capacity management
- business continuity management

Workload
The total workload for this course is approximately 105 hours. For further information see German version.

Literature
will be announced in the course
6.294 Course: Roadmapping [T-WIWI-102853]

- **Responsible:** Dr. Daniel Jeffrey Koch
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101488 - Entrepreneurship (EnTechnon)
 - M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Events**
 - SS 2020: 2545102 Technology Assessment, 2 SWS, Seminar (S), Koch

- **Competence Certificate**

- **Prerequisites**
 - None

- **Recommendation**
 - Prior attendance of the course Innovation Management is recommended.

- **Annotation**
 - See German version.

Below you will find excerpts from events related to this course:

- **Technology Assessment**
 - 2545102, SS 2020, 2 SWS, Language: German, Open in study portal

Notes

Technology Assessment can play a role at different points in the innovation process and can be considered as decision support for or against certain technological options. The seminar Technology Assessment will focus on the early phase “fuzzy front end” in innovation management. The technology assessment will take place here under a high degree of uncertainty regarding future technological developments. The evaluation of technologies can be done with methods such as Technology Readiness, Technology Lifecycle Analysis, Portfolio Analysis, etc. The early evaluation of technologies is particularly important against the background of limited resources in companies and uncertainty about future developments.

Learning Content

Roadmapping is a method used to support innovation decisions in the early phase of innovation management. The roadmapping process addresses the procedure of constructing roadmaps which can then be assessed. Roadmapping provides structured and graphical visualizations of preferably future-oriented topics which have innovation potentials. The benefits of the roadmapping method lie in the structured bundling of both technology- and market-driven individual topics and the joint setting of priorities and processes to achieve predetermined corporate targets. As a rule, roadmaps represent a consensus reached by the people involved in their compilation. For this reason, roadmaps are suited to the designation and initial prioritization of emerging technologies and corresponding development projects.

Workload

The total workload for this course is approximately 90 hours. For further information see German version.
6.295 Course: Safety Engineering [T-MACH-105171]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Hans-Peter Kany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Mechanical Engineering</td>
</tr>
</tbody>
</table>
| Part of: | M-MACH-101263 - Introduction to Logistics
 M-MACH-101278 - Material Flow in Networked Logistic Systems
 M-MACH-104888 - Advanced Module Logistics |

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2117061</td>
<td>Safety Engineering</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7600004</td>
<td>Safety Engineering</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites

none

Below you will find excerpts from events related to this course:

Lecture (V)

Safety Engineering
2117061, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Description

Media:

presentations
Notes
Media
Presentations

Learning content
The course provides basic knowledge of safety engineering. In particular the basics of health at the working place, job safety in Germany, national and European safety rules and the basics of safe machine design are covered. The implementation of these aspects will be illustrated by examples of material handling and storage technology. This course focuses on: basics of safety at work, safety regulations, basic safety principles of machine design, protection devices, system security with risk analysis, electronics in safety engineering, safety engineering for storage and material handling technique, electrical dangers and ergonomics. So, mainly, the technical measures of risk reduction in specific technical circumstances are covered.

Learning goals
The students are able to:

- Name and describe relevant safety concepts of safety engineering,
- Discuss basics of health at work and labour protection in Germany,
- Evaluate the basics for the safe methods of design of machinery with the national and European safety regulations and
- Realize these objectives by using examples in the field of storage and material handling systems.

Recommendations
None

Workload
Regular attendance: 21 hours
Self-study: 99 hours

Note
Dates: See IFL-Homepage

Learning Content
The course provides basic knowledge of safety engineering. In particular the basics of health at the working place, job safety in Germany, national and European safety rules and the basics of safe machine design are covered. The implementation of these aspects will be illustrated by examples of material handling and storage technology. This course focuses on: basics of safety at work, safety regulations, basic safety principles of machine design, protection devices, system security with risk analysis, electronics in safety engineering, safety engineering for storage and material handling technique, electrical dangers and ergonomics. So, mainly, the technical measures of risk reduction in specific technical circumstances are covered.

Annotation
none

Workload
 regular attendance: 21 hours
self-study: 99 hours

Literature
Course: Selected Applications of Technical Logistics [T-MACH-102160]

Responsible: Viktor Milushev
Dr.-Ing. Martin Mittwollen

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-104888 - Advanced Module Logistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mittwollen, Milushev</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
none

Recommendation
Knowledge out of Basics of Technical Logistics (T-MACH-102163) / Elements and Systems of Technical Logistics (T-MACH-102159) preconditioned

Below you will find excerpts from events related to this course:

Selected Applications of Technical Logistics
2118087, SS 2020, 3 SWS, Language: German, Open in study portal

Description

Media:
supplementary sheets, projector, blackboard

Notes
Details according schedule will be published

Learning Content

- design and dimension of machines from intralogistics
- static and dynamic behaviour
- operation properties and specifics
- Inside practical lectures: sample applications and calculations in addition to the lectures

Annotation
Knowledge out of Basics of Technical Logistics preconditioned

Workload

- presence: 36h
- rework: 84h

Literature
Recommendations during lessons
6.297 Course: Selected Issues in Critical Information Infrastructures [T-WIWI-109251]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101472 - Informatics
M-WIWI-101628 - Emphasis in Informatics
M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Praktikum Blockchain (Master)</th>
<th>SWS</th>
<th>Practical course (P)</th>
<th>Sunyaev, Beyene, Kannengießer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2512403</td>
<td>SWS</td>
<td>Practical course (P)</td>
<td>Sunyaev, Beyene, Kannengießer</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO). Details will be announced in the respective course.

Prerequisites
None.

Annotation
T-WIWI-109251 "Selected Issues in Critical Information Infrastructures" serves to credit an extracurricular course in the module "Critical Digital Infrastructures".
6.298 Course: Selected Legal Issues of Internet Law [T/INFO-108462]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M/INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 24821</td>
<td>2 SWS</td>
<td>Colloquium (KOL)</td>
<td>Dreier</td>
</tr>
</tbody>
</table>
6.299 Course: Selected Topics on Optics and Microoptics for Mechanical Engineers [T-MACH-102165]

Responsible: Mathias Heckele
Dr.-Ing. Timo Mappes

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101290 - BioMEMS
- M-MACH-101292 - Microoptics
- M-MACH-101293 - Microsystem Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competition Certificate
Oral examination

Prerequisites
none
6.300 Course: Semantic Web Technologies [T-WIWI-110848]

Responsible: Prof. Dr. York Sure-Vetter

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

Type
- Written examination

Credits
- 4,5

Recurrence
- Each summer term

Version
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2511310</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Sure-Vetter, Acosta Deibe, Käfer</td>
<td></td>
</tr>
<tr>
<td>SS 2020 2511311</td>
<td>1 SWS</td>
<td>Practice (Ü)</td>
<td>Sure-Vetter, Acosta Deibe, Käfer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
None

Recommendation
Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required.

Below you will find excerpts from events related to this course:

Semantic Web Technologies
2511310, SS 2020, 2 SWS, Language: English, Open in study portal
Notes
The aim of the Semantic Web is to make the meaning (semantics) of data on the web usable in intelligent systems, e.g. in e-commerce and internet portals.

Central concepts are the representation of knowledge in form of RDF and ontologies, the access via Linked Data, as well as querying the data by using SPARQL. This lecture provides the foundations of knowledge representation and processing for the corresponding technologies and presents example applications.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:
The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:
Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Notes
The exercises are related to the lecture Semantic Web Technologies.

Multiple exercises are held that capture the topics, held in the lecture Semantic Web Technologies, and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:
The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:
Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.
6.301 Course: Seminar Data-Mining in Production [T-MACH-108737]

Responsible: Prof. Dr.-Ing. Gisela Lanza

Organisation: KIT Department of Mechanical Engineering

Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Seminar Data Mining in Production</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Lanza</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Seminar Data Mining in Production</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Lanza</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Exam</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Seminar Data-Mining in Production</td>
<td>Prüfung (PR)</td>
<td>76-T-MACH-108737</td>
<td>Lanza</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

alternative test achievement (graded):

- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Prerequisites

none

Annotation

The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Below you will find excerpts from events related to this course:

Seminar Data Mining in Production

2151643, WS 19/20, 2 SWS, Language: German, Open in study portal

Description

Media:

- KNIME Analytics Platform
Notes
In the age of Industry 4.0, large amounts of production data are generated by the global production networks and value chains. Their analysis enables valuable conclusions about production and lead to an increasing process efficiency. The aim of the seminar is to get to know production data analysis as an important component of future industrial projects. The students get to know the data mining tool KNIME and use it for analyses. A specific industrial use case with real production data enables practical work and offers direct references to industrial applications. The participants learn selected methods of data mining and apply them to the production data. The work within the seminar takes place in small groups on the computer. Subsequently, presentations on specific data mining methods have to be prepared.

Learning Outcomes:
The students ...

- can name, describe and distinguish between different methods, procedures and techniques of production data analysis.
- can perform basic data analyses with the data mining tool KNIME.
- can analyze and evaluate the results of data analyses in the production environment.
- are able to derive suitable recommendations for action.
- are able to explain and apply the CRISP-DM model.

Workload:
regular attendance: 10 hours
self-study: 80 hours

Learning Content
In the age of Industry 4.0, large amounts of production data are generated by the global production networks and value chains. Their analysis enables valuable conclusions about production and lead to an increasing process efficiency. The aim of the seminar is to get to know production data analysis as an important component of future industrial projects. The students get to know the data mining tool KNIME and use it for analyses. A specific industrial use case with real production data enables practical work and offers direct references to industrial applications. The participants learn selected methods of data mining and apply them to the production data. The work within the seminar takes place in small groups on the computer. Subsequently, presentations on specific data mining methods have to be prepared.

Annotation
The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Workload
regular attendance: 10 hours
self-study: 80 hours

Seminar Data Mining in Production
2151643, SS 2020, 2 SWS, Language: German, Open in study portal

Description
Media:
KNIME Analytics Platform
Notes
In the age of Industry 4.0, large amounts of production data are generated by the global production networks and value chains. Their analysis enables valuable conclusions about production and lead to an increasing process efficiency. The aim of the seminar is to get to know production data analysis as an important component of future industrial projects. The students get to know the data mining tool KNIME and use it for analyses. A specific industrial use case with real production data enables practical work and offers direct references to industrial applications. The participants learn selected methods of data mining and apply them to the production data. The work within the seminar takes place in small groups on the computer. Subsequently, presentations on specific data mining methods have to be prepared.

Learning Outcomes:
The students ...
- can name, describe and distinguish between different methods, procedures and techniques of production data analysis.
- can perform basic data analyses with the data mining tool KNIME.
- can analyze and evaluate the results of data analyses in the production environment.
- are able to derive suitable recommendations for action.
- are able to explain and apply the CRISP-DM model.

Workload:
regular attendance: 10 hours
self-study: 80 hours

Learning Content
In the age of Industry 4.0, large amounts of production data are generated by the global production networks and value chains. Their analysis enables valuable conclusions about production and lead to an increasing process efficiency. The aim of the seminar is to get to know production data analysis as an important component of future industrial projects. The students get to know the data mining tool KNIME and use it for analyses. A specific industrial use case with real production data enables practical work and offers direct references to industrial applications. The participants learn selected methods of data mining and apply them to the production data. The work within the seminar takes place in small groups on the computer. Subsequently, presentations on specific data mining methods have to be prepared.

Annotation
The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Workload
regular attendance: 10 hours
self-study: 80 hours
<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2500006</td>
<td>Seminar Human Resource Management (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20 2500007</td>
<td>Seminar Human Resources and Organizations (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20 2500029</td>
<td>Seminar in Data Science for Finance</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Ulrich</td>
</tr>
<tr>
<td>WS 19/20 2530293</td>
<td>Data Science in Service Management</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Ruckes, Hoang, Benz, Strych, Luedecke, Silbereis, Stengel, Schubert</td>
</tr>
<tr>
<td>WS 19/20 2540473</td>
<td>Electronic Markets & User behavior</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Dorner, Knierim, Dann, Jaquart</td>
</tr>
<tr>
<td>WS 19/20 2540475</td>
<td>Digital Experience and Participation</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Straub, Peukert, Hoffmann, Kloker, Pusmaz, Willrich, Kloepper, Fegert, Greif-Winzrieth</td>
</tr>
<tr>
<td>WS 19/20 2540478</td>
<td>Smart Grids and Energy Markets</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Dinther, Staudt, Richter, Huber, vom Scheidt, Golla, Schmidt</td>
</tr>
<tr>
<td>WS 19/20 2540557</td>
<td>Masterseminar in Data Science and Machine Learning</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Geyer-Schulz, Schweiger, Schweizer, Nazemi</td>
</tr>
<tr>
<td>WS 19/20 2545107</td>
<td>Literature Review Seminar: Information Systems and Service Design</td>
<td>3 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 19/20 2545109</td>
<td>Digital Service Design Seminar</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 19/20 2545107</td>
<td>Methoden im Innovationsmanagement</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Koch</td>
</tr>
<tr>
<td>WS 19/20 2572181</td>
<td>Strategische Unternehmensführung</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Klarmann</td>
</tr>
<tr>
<td>WS 19/20 2579919</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Riar</td>
</tr>
<tr>
<td>WS 19/20 2581976</td>
<td>Seminar in Production and Operations Management I</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Glöser-Chahoud, Schultmann</td>
</tr>
<tr>
<td>WS 19/20 2581977</td>
<td>Seminar in Production and Operations Management II</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Volk, Schultmann</td>
</tr>
<tr>
<td>WS 19/20 2581978</td>
<td>Seminar in Production and Operations Management III</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Wiens, Schultmann</td>
</tr>
<tr>
<td>WS 19/20 2581980</td>
<td></td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Keles, Fett, Yilmaz</td>
</tr>
<tr>
<td>WS 19/20 2581981</td>
<td></td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>1</td>
<td>Ardone, Ruppert, Sandmeier, Slednev</td>
</tr>
</tbody>
</table>
6 COURSES

Course: Seminar in Business Administration A (Master) [T-WIWI-103474]

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581990</td>
<td>Economics Engineering M.Sc.</td>
<td>2</td>
<td>SWS</td>
<td>Schultmann, Schumacher</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2400121</td>
<td>Interactive Analytics Seminar</td>
<td>2</td>
<td>SWS</td>
<td>Beigl, Mädche, Pescara</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2500006</td>
<td>Seminar Human Resource Management (Master)</td>
<td>2</td>
<td>SWS</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2500007</td>
<td>Seminar Human Resources and Organizations (Master)</td>
<td>2</td>
<td>SWS</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2530372</td>
<td>Advances in Financial Machine Learning</td>
<td>2</td>
<td>SWS</td>
<td>Ulrich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2530374</td>
<td>Data-Driven Investments</td>
<td>2</td>
<td>SWS</td>
<td>Ulrich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2540510</td>
<td>Masterseminar in Data Science and Machine Learning</td>
<td>2</td>
<td>SWS</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2540559</td>
<td>Digital Service Design Seminar</td>
<td>3</td>
<td>SWS</td>
<td>Mädche, Feine</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550493</td>
<td>Hospital Management</td>
<td>2</td>
<td>SWS</td>
<td>Hansis</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2571180</td>
<td>Seminar in Marketing und Vertrieb (Bachelor)</td>
<td>2</td>
<td>SWS</td>
<td>Klarmann, Mitarbeiter, Feurer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2571181</td>
<td>Seminar in Marketing und Vertrieb (Master)</td>
<td>2</td>
<td>SWS</td>
<td>Klarmann, Mitarbeiter, Feurer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2579909</td>
<td>Seminar Management Accounting</td>
<td>2</td>
<td>SWS</td>
<td>Wouters, Hammann, Disch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2579919</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2</td>
<td>SWS</td>
<td>Wouters, Ebinger</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2581977</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>2</td>
<td>SWS</td>
<td>Volk, Schultmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II</td>
<td>2</td>
<td>SWS</td>
<td>Keles</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2581990</td>
<td>Seminar in Business Administration A (Master)</td>
<td>2</td>
<td>SWS</td>
<td>Schultmann, Schumacher, Baagrtnard</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900017</td>
<td>Seminar Smart Grid and Energy Markets</td>
<td>Prüfung(PR)</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900106</td>
<td>Hospital Management</td>
<td>Prüfung(PR)</td>
<td>Nickel</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900133</td>
<td>Digital Service Design Seminar</td>
<td>Prüfung(PR)</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900141</td>
<td>Innovation Processes Live</td>
<td>Prüfung(PR)</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900143</td>
<td>Methods in Innovation Management</td>
<td>Prüfung(PR)</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900151</td>
<td>Master Seminar in Data Science and Machine Learning</td>
<td>Prüfung(PR)</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900159</td>
<td>Seminar in Marketing and Sales</td>
<td>Prüfung(PR)</td>
<td>Klarmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900163</td>
<td>Seminar Human Resource Management (Master)</td>
<td>Prüfung(PR)</td>
<td>Nieken</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900164</td>
<td>Seminar Human Resources and Organizations (Master)</td>
<td>Prüfung(PR)</td>
<td>Nieken</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900165</td>
<td>Seminar Digital Experience and Participation</td>
<td>Prüfung(PR)</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900184</td>
<td>Seminar in Finance (Master)</td>
<td>Prüfung(PR)</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900203</td>
<td>Seminar in Finance</td>
<td>Prüfung(PR)</td>
<td>Uhbrig-Homburg</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900222</td>
<td>Seminar Strategic Management (Master)</td>
<td>Prüfung(PR)</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900233</td>
<td>Literature Review Seminar: Information Systems and Service Design (Seminar)</td>
<td>Prüfung(PR)</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900237</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>Prüfung(PR)</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900239</td>
<td>Technologies for Innovation Management</td>
<td>Prüfung(PR)</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900312</td>
<td>Seminar Business Data Analytics (Master)</td>
<td>Prüfung(PR)</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900324</td>
<td>Seminar in Business Administration A (Master)</td>
<td>Prüfung(PR)</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Seminar Title</th>
<th>Prüfung (PR)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>79-2579919-M</td>
<td>Seminar Management Accounting - Special Topics (Master)</td>
<td>Prüfung (PR)</td>
<td>Wouters</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7981976</td>
<td>Seminar in Production and Operations Management I</td>
<td>Prüfung (PR)</td>
<td>Schultmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7981977</td>
<td>Seminar in Production and Operations Management II</td>
<td>Prüfung (PR)</td>
<td>Schultmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7981978</td>
<td>Seminar in Production and Operations Management III</td>
<td>Prüfung (PR)</td>
<td>Schultmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7981979</td>
<td>Seminar in Business Administration A (Master)</td>
<td>Prüfung (PR)</td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7981980</td>
<td>Seminar in Business Administration A (Master)</td>
<td>Prüfung (PR)</td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7981981</td>
<td>Seminar in Business Administration (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Fichtner</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7900093</td>
<td>Seminar in Business Administration A</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7900238</td>
<td>Technology Assessment</td>
<td>Prüfung (PR)</td>
<td>Weissenerberger-Eibl</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7900242</td>
<td>Applied Risk and Asset Management</td>
<td>Prüfung (PR)</td>
<td>Ulrich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7900284</td>
<td>Digital Transformation and Business Models</td>
<td>Prüfung (PR)</td>
<td>Weissenerberger-Eibl</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7981980</td>
<td>Seminar Energy Economics II</td>
<td>Prüfung (PR)</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>
Notes
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Seminar Human Resources and Organizations (Master)
2500007, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Seminar in Data Science for Finance
2500029, WS 19/20, 2 SWS, Language: English, Open in study portal

Description
The aim of this seminar is to master real-world challenges of computational risk and asset management. The CRAM team offers a wide range of topics across different asset classes and different stages of the investment process.
Notes
The aim of this seminar is to master real-world challenges of computational risk and asset management. The CRAM team offers a wide range of topics across different asset classes and different stages of the investment process.

Students will work on a quantitative problem related to risk and asset management. This seminar is ideally suited for students who want to deepen and apply their statistics / programming skills and knowledge about financial markets. Industry-relevant problems will be solved with financial data and modern statistical tools in close collaboration with a supervisor. Topics which students solved in the past include the option-based pricing of dividends during the Euro crisis, the estimation of risk neutral moments with high-frequency data and the application of a particle filter to estimate stochastic volatility. The current topics will be presented during the first meeting.

Learning Content
Students will work on a quantitative problem related to risk and asset management. This seminar is ideally suited for students who want to deepen and apply their statistics / programming skills and knowledge about financial markets. Industry-relevant problems will be solved with financial data and modern statistical tools in close collaboration with a supervisor. Topics which students solved in the past include the option-based pricing of dividends during the Euro crisis, the estimation of risk neutral moments with high-frequency data and the application of a particle filter to estimate stochastic volatility. The current topics will be presented during the first meeting.

Data Science in Service Management
2540473, WS 19/20, 2 SWS, Language: German/English, [Open in study portal](#)

- **Notes**
 - wird auf deutsch und englisch gehalten

Masterseminar in Data Science and Machine Learning
2540510, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)

Workload
The total workload for this course is approximately 90 hours (3 ECTS). Depending on the realization of the work, the times may vary. The main focus is always on working independently.

Digital Service Design Seminar
2540559, WS 19/20, 2 SWS, [Open in study portal](#)

Description
Contemporary trends of every increasing digitalization in businesses lead to new challenges and fusion of technologies blurring the lines between the digital, physical and biological spheres, thereby calling for a new approaches for corporate management. Recently, physicist Michio Kaku put it like the following: “The destiny of computers – like other mass technologies like electricity, paper, and running water- is to become invisible, that is, to disappear into the fabric of our lives, to be everywhere and nowhere, silently and seamlessly carrying out our wishes.” Michio Kaku (2016)

In the Practical Seminar Digital Service Design students address a real-world challenge in businesses and apply digital service design practices and tools. Furthermore, during the seminar the students prototypical implement a running digital service.

Real-world challenges will vary over time. This time, the challenges are from the domain of Future Corporate Management. The practical seminar is carried out in close cooperation with SAP SE and leverages state-of-the-art digital platforms for prototyping.

Learning Content

- Foundations
- Digital Service Design Challenges in Future Corporate Management
- Basics of Digital Service Design practices and tools
- Prototyping and development Digital Services
- Delivering digital service prototypes

Methoden im Innovationsmanagement
2540107, WS 19/20, 2 SWS, Language: German, [Open in study portal](#)
Notes
The seminar "Methods in Innovation Management" aims at the discussion and development of different methods for the structured generation of ideas in selected contexts. In a block seminar, methods and contexts are discussed, from which seminar topics are defined with the participants. These topics are to be worked on independently using methods and procedures. The results will be presented at a presentation date and then a written seminar paper will be prepared. This means that creativity methods and their combination will be presented and applied. The methods are worked on in a structured form and process-like sequence in order to clarify the advantages and disadvantages of different methods.

Notes
The seminar teaches students to gain a systematic overview of a field of literature in Marketing - an important prerequisite for a successful master thesis. Central aspects are identification of relevant literature sources, systematization of the field, working out central insights, writing comprehensively, and identification of research gaps.

Students
- can exploit a literature field systematically
- are able to write an academic paper in a formally correct way
- can assess the relevance and quality of sources
- are able to get an overview of sources very quickly
- know how to find relevant sources for a literature field
- are capable to write a convincing outline
- know how to categorize a subject under a research field
- understand how to systematize literature fields theoretically and empirically with the help of literature tables
- can identify the most important findings in a huge number of sources
- are able to present a research field
- can discuss the theoretical and practical implications of a topic
- are capable to identify interesting research gaps

The total workload for this course is approximately 90 hours. For further information see German version.

Students interested in master thesis positions at the chair of marketing should participate in the marketing seminar. For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu)
Notes
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Note:
- Maximum of 16 students.

Learning Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in four to five meetings that are spread throughout the semester.

Annotation
Maximum of 24 students.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.
Notes
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.
Learning Content
At the beginning of the semester, a selection of seminar topics will be discussed with each student of the seminar.

Workload
The total workload for this course is approximately 90 hours.

Literature
Literature will be distributed during the first lecture.

Data-Driven Investments
- **Seminar (S)**
 - 2530374, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
The digitalization is not only changing today’s society but also companies’ business models, in particular of the financial industry. In general, the large variety of digitalized processes and connected devices (Industry 4.0) generates a huge amount of data which can be used to extract valuable (investment) insights. For this task data science skills are essential.

In this seminar we will use modern data science techniques to analyze all kinds of financial and economic data, ranging from big data intra-day option prices to alternative datasets, like textual statements. For this empirical analysis we will use the state of the art Python programming language.

In a bi-weekly schedule you and your supervisor will first learn and discuss important data science concepts and then apply it in a practical FinTech-type analysis using real-world data. As a prerequisite students should already have basic finance knowledge.

Seminar in Finance
- **Seminar (S)**
 - 2530580, SS 2020, 2 SWS, Language: German, Open in study portal

Learning Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures.

The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the end of the foregoing semester.

Masterseminar in Data Science and Machine Learning
- **Seminar (S)**
 - 2540510, SS 2020, 2 SWS, Language: German/English, Open in study portal

Notes

Hospital Management
- **Block (B)**
 - 2550493, SS 2020, 2 SWS, Language: German, Open in study portal

Description
The seminar 'Hospital Management' presents internal organization structures, work conditions and work environments at the example of hospitals and relates this to common and expected conditions of other service industries.

Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. The course consists of two full-day sessions.
Learning Content
The seminar 'Hospital Management' presents internal organization structures, work conditions and work environments at the example of hospitals and relates this to common and expected conditions of other service industries. Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. The course consists of two full-day sessions.

Annotation
It is planned to offer the course every semester.

Workload
The total workload for this course is approximately 90 hours.

Notes
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduce fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Note:
- Maximum of 16 students.

Learning Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.

Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.

Meeting 4: In the third week we are going to present and discuss the final papers.

Annotation
Maximum of 24 students.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.
Seminar in Management Accounting - Special Topics
2579919, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a “Prüfungsleistung anderer Art” (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV “Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen” (2600026) must have been completed before starting this seminar.

Note:
- Maximum of 16 students.

Learning Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in four meetings that are spread throughout the semester.

Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.

Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.

Meeting 4: In the third week we are going to present and discuss the final papers.

Annotation
Maximum of 24 students.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.
<p>| Events | Type | Credits | Recurrence |
|----------------------|---|---------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|----------|------------|
| WS 19/20 2500006 | Seminar Human Resource Management (Master)| 2 SWS | Seminar (S)| Nieken | Mitarbeiter| | | | | | | | | | | | | | |
| WS 19/20 2500007 | Seminar Human Resources and Organizations (Master) | 2 SWS | Seminar (S)| Nieken | Mitarbeiter| | | | | | | | | | | | | | |
| WS 19/20 2500029 | Seminar in Data Science for Finance | 2 SWS | Seminar (S)| | Ulrich | | | | | | | | | | | | | | |
| WS 19/20 2530293 | | 2 SWS | Seminar (S)| | Ruckes, Hoang, Benz, Strych, Luedecke, Silbereis, Stengel, Schubert| | | | | | | | | | | | |
| WS 19/20 2540473 | Data Science in Service Management | 2 SWS | Seminar (S)| | Haubner, Frankenhauser, Gröschel| | | | | | | | | | | | | | |
| WS 19/20 2540475 | Electronic Markets & User behavior | 2 SWS | Seminar (S)| | Dorner, Knierim, Dann, Jaquart| | | | | | | | | | | | | | |
| WS 19/20 2540477 | Digital Experience and Participation | 2 SWS | Seminar (S)| | Straub, Peukert, Hoffmann, Kloker, Pusmaz, Willrich, Kloepfer, Fegert, Greif-Winzrieth| | | | | | | | | | | | |
| WS 19/20 2540478 | Smart Grids and Energy Markets | 2 SWS | Seminar (S)| | Dinther, Staudt, Richter, Huber, vom Scheidt, Golla, Schmidt| | | | | | | | | | | | |
| WS 19/20 2540510 | Masterseminar in Data Science and Machine Learning | 2 SWS | Seminar (S)| | Geyer-Schulz, Schweigert, Schweizer, Nazemi| | | | | | | | | | | | |
| WS 19/20 2540557 | Literature Review Seminar: Information Systems and Service Design | 3 SWS | Seminar (S)| | Mädche| | | | | | | | | | | | | | |
| WS 19/20 2540559 | Digital Service Design Seminar | 2 SWS | Seminar (S)| | Mädche| | | | | | | | | | | | | | |
| WS 19/20 2545107 | Methoden im Innovationsmanagement | 2 SWS | Seminar (S)| | Koch| | | | | | | | | | | | | | |
| WS 19/20 2572181 | | 2 SWS | Seminar (S)| | Klarmann| | | | | | | | | | | | | | |
| WS 19/20 2577915 | Strategische Unternehmensführung | 2 SWS | Seminar (S)| | Klopfer| | | | | | | | | | | | | | |
| WS 19/20 2579919 | Seminar Management Accounting - Special Topics | 2 SWS | Seminar (S)| | Riar| | | | | | | | | | | | | | |
| WS 19/20 2581976 | Seminar in Production and Operations Management I | 2 SWS | Seminar (S)| | Glöser-Chahoud, Schultmann| | | | | | | | | | | | | | |
| WS 19/20 2581977 | Seminar in Production and Operations Management II | 2 SWS | Seminar (S)| | Volk, Schultmann| | | | | | | | | | | | | | |
| WS 19/20 2581978 | Seminar in Production and Operations Management III | 2 SWS | Seminar (S)| | Wiens, Schultmann| | | | | | | | | | | | | | |
| WS 19/20 2581980 | | 2 SWS | Seminar (S)| | Keles, Fett, Yilmaz| | | | | | | | | | | | | | |
| WS 19/20 2581981 | | 2 SWS | Seminar (S)| | Ardone, Ruppert, Sandmeier, Sleznev| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Lecture Type</th>
<th>Module Leader(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900017</td>
<td>Seminar Smart Grid and Energy Markets</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900106</td>
<td>Hospital Management</td>
<td>Prüfung (PR)</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900133</td>
<td>Digital Service Design Seminar</td>
<td>Prüfung (PR)</td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900141</td>
<td>Innovation Processes Live</td>
<td>Prüfung (PR)</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900143</td>
<td>Methods in Innovation Management</td>
<td>Prüfung (PR)</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900151</td>
<td>Master Seminar in Data Science and Machine Learning</td>
<td>Prüfung (PR)</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900159</td>
<td>Seminar in Marketing and Sales</td>
<td>Prüfung (PR)</td>
<td>Klarmann</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900163</td>
<td>Seminar Human Resource Management (Master)</td>
<td>Prüfung (PR)</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900164</td>
<td>Seminar Human Resources and Organizations (Master)</td>
<td>Prüfung (PR)</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900165</td>
<td>Seminar Digital Experience and Participation</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900184</td>
<td>Seminar in Finance (Master)</td>
<td>Prüfung (PR)</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900203</td>
<td>Seminar in Finance</td>
<td>Prüfung (PR)</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900222</td>
<td>Seminar Strategic Management (Master)</td>
<td>Prüfung (PR)</td>
<td>Lindstädt</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900233</td>
<td>Literature Review Seminar: Information Systems and Service Design (Seminar)</td>
<td>Prüfung (PR)</td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900237</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>Prüfung (PR)</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900239</td>
<td>Technologies for Innovation Management</td>
<td>Prüfung (PR)</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900312</td>
<td>Seminar Business Data Analytics (Master)</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900324</td>
<td>Seminar in Business Administration A (Master)</td>
<td>Prüfung (PR)</td>
<td>Ulrich</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>79-2579919-M</td>
<td>Seminar Management Accounting - Special Topics (Master)</td>
<td>Prüfung (PR)</td>
<td>Wouters</td>
<td></td>
</tr>
</tbody>
</table>
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Seminar Human Resource Management (Master)
2500006, WS 19/20, 2 SWS, Language: German, Open in study portal

Seminar in Business Administration A (Master)
Prüfung (PR) Fichtner

Seminar in Business Administration A (Master)
Prüfung (PR) Fichtner

Seminar in Business Administration (Bachelor)
Prüfung (PR) Fichtner

Seminar in Business Administration A
Prüfung (PR) Weinhardt

Technology Assessment
Prüfung (PR) Weissenberger-Eibl

Applied Risk and Asset Management
Prüfung (PR) Ulrich

Digital Transformation and Business Models
Prüfung (PR) Weissenberger-Eibl

Seminar Energy Economics II
Prüfung (PR) Fichtner
Notes
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Seminar Human Resources and Organizations (Master)
2500007, WS 19/20, 2 SWS, Language: German, Open in study portal

Notes
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Seminar in Data Science for Finance
2500029, WS 19/20, 2 SWS, Language: English, Open in study portal

Description
The aim of this seminar is to master real-world challenges of computational risk and asset management. The CRAM team offers a wide range of topics across different asset classes and different stages of the investment process.
Notes
The aim of this seminar is to master real-world challenges of computational risk and asset management. The CRAM team offers a wide range of topics across different asset classes and different stages of the investment process.

Students will work on a quantitative problem related to risk and asset management. This seminar is ideally suited for students who want to deepen and apply their statistics/programming skills and knowledge about financial markets. Industry-relevant problems will be solved with financial data and modern statistical tools in close collaboration with a supervisor. Topics which students solved in the past include the option-based pricing of dividends during the Euro crisis, the estimation of risk neutral moments with high-frequency data and the application of a particle filter to estimate stochastic volatility. The current topics will be presented during the first meeting.

Learning Content
Students will work on a quantitative problem related to risk and asset management. This seminar is ideally suited for students who want to deepen and apply their statistics/programming skills and knowledge about financial markets. Industry-relevant problems will be solved with financial data and modern statistical tools in close collaboration with a supervisor. Topics which students solved in the past include the option-based pricing of dividends during the Euro crisis, the estimation of risk neutral moments with high-frequency data and the application of a particle filter to estimate stochastic volatility. The current topics will be presented during the first meeting.

Data Science in Service Management
2540473, WS 19/20, 2 SWS, Language: German/English, Open in study portal

Notes
wird auf deutsch und englisch gehalten

Masterseminar in Data Science and Machine Learning
2540510, WS 19/20, 2 SWS, Language: German, Open in study portal

Workload
The total workload for this course is approximately 90 hours (3 ECTS). Depending on the realization of the work, the times may vary. The main focus is always on working independently.

Digital Service Design Seminar
2540559, WS 19/20, 2 SWS, Open in study portal

Description
Contemporary trends of every increasing digitalization in businesses lead to new challenges and fusion of technologies blurring the lines between the digital, physical and biological spheres, thereby calling for a new approaches for corporate management. Recently, physician Michio Kaku put it like the following: “The destiny of computers – like other mass technologies like electricity, paper, and running water- is to become invisible, that is, to disappear into the fabric of our lives, to be everywhere and nowhere, silently and seamlessly carrying out our wishes.” Michio Kaku (2016)

In the Practical Seminar Digital Service Design students address a real-world challenge in businesses and apply digital service design practices and tools. Furthermore, during the seminar the students prototypical implement a running digital service.

Real-world challenges will vary over time. This time, the challenges are from the domain of Future Corporate Management. The practical seminar is carried out in close cooperation with SAP SE and leverages state-of-the-art digital platforms for prototyping.

Learning Content
- Foundations
- Digital Service Design Challenges in Future Corporate Management
- Basics of Digital Service Design practices and tools
- Prototyping and development Digital Services
- Delivering digital service prototypes

Methoden im Innovationsmanagement
2545107, WS 19/20, 2 SWS, Language: German, Open in study portal
Notes
The seminar "Methods in Innovation Management" aims at the discussion and development of different methods for the structured generation of ideas in selected contexts. In a block seminar, methods and contexts are discussed, from which seminar topics are defined with the participants. These topics are to be worked on independently using methods and procedures. The results will be presented at a presentation date and then a written seminar paper will be prepared. This means that creativity methods and their combination will be presented and applied. The methods are worked on in a structured form and process-like sequence in order to clarify the advantages and disadvantages of different methods.

Notes
The seminar teaches students to gain a systematic overview of a field of literature in Marketing - an important prerequisite for a successful master thesis. Central aspects are identification of relevant literature sources, systematization of the field, working out central insights, writing comprehensively, and identification of research gaps.

Students
- can exploit a literature field systematically
- are able to write an academic paper in a formally correct way
- can assess the relevance and quality of sources
- are able to get an overview of sources very quickly
- know how to find relevant sources for a literature field
- are capable to write a convincing outline
- know how to categorize a subject under a research field
- understand how to systematize literature fields theoretically and empirically with the help of literature tables
- can identify the most important findings in a huge number of sources
- are able to present a research field
- can discuss the theoretical and practical implications of a topic
- are capable to identify interesting research gaps

The total workload for this course is approximately 90 hours. For further information see German version.

Students interested in master thesis positions at the chair of marketing should participate in the marketing seminar. For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu)
Notes
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Note:
- Maximum of 16 students.

Learning Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in four to five meetings that are spread throughout the semester.

Annotation
Maximum of 24 students.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.
Notes
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Notes
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Notes
Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations.

In this seminar we will apply modern machine learning techniques hands on to important computational risk and asset management problems. In particular we will use the state of the art Python programming language to implement investment related applications and / or Finance 4.0 risk management solutions.

In a bi-weekly schedule you and your supervisor will first learn and discuss important machine learning concepts and then apply it within a practical FinTech project to real-world data. As a prerequisite students should already have some basic Python and data science skills.
Learning Content
At the beginning of the semester, a selection of seminar topics will be discussed with each student of the seminar.

Workload
The total workload for this course is approximately 90 hours.

Literature
Literature will be distributed during the first lecture.

Data-Driven Investments
2530374, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
The digitalization is not only changing today's society but also companies' business models, in particular of the financial industry. In general, the large variety of digitalized processes and connected devices (Industry 4.0) generates a huge amount of data which can be used to extract valuable (investment) insights. For this task data science skills are essential.

In this seminar we will use modern data science techniques to analyze all kinds of financial and economic data, ranging from big data intra-day option prices to alternative datasets, like textual statements. For this empirical analysis we will use the state of the art Python programming language.

In a bi-weekly schedule you and your supervisor will first learn and discuss important data science concepts and then apply it in a practical FinTech-type analysis using real-world data. As a prerequisite students should already have basic finance knowledge.

Seminar in Finance
2530580, SS 2020, 2 SWS, Language: German, Open in study portal

Learning Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures.

The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced at the end of the foregoing semester.

Masterseminar in Data Science and Machine Learning
2540510, SS 2020, 2 SWS, Language: German/English, Open in study portal

Literature
Literature:

Hospital Management
2550493, SS 2020, 2 SWS, Language: German, Open in study portal

Description
The seminar 'Hospital Management' presents internal organization structures, work conditions and work environments at the example of hospitals and relates this to common and expected conditions of other service industries.

Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. The course consists of two full-day sessions.
Learning Content
The seminar 'Hospital Management' presents internal organization structures, work conditions and work environments at the example of hospitals and relates this to common and expected conditions of other service industries. Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. The course consists of two full-day sessions.

Annotation
It is planned to offer the course every semester.

Workload
The total workload for this course is approximately 90 hours.

Notes
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Note:
- Maximum of 16 students.

Learning Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.

Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.

Meeting 4: In the third week we are going to present and discuss the final papers.

Annotation
Maximum of 24 students.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.
Seminar in Management Accounting - Special Topics
2579919, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting.
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Note:
- Maximum of 16 students.

Learning Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in four meetings that are spread throughout the semester.

Meeting 1: Introductory lecture. You need to conduct a first literature search and at the end of the first week you should identify (provisionally) the topic for your paper.

Meeting 2 and 3: The purpose of the second week is to define the topics and research questions in much more detail. Different types of papers may be selected: literature review, research paper, descriptive case study, or teaching case. Students will present their ideas and all participants should ask questions, help each other focus, offer ideas, etc.

Meeting 4: In the third week we are going to present and discuss the final papers.

Annotation
Maximum of 24 students.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Will be announced in the course.
6.304 Course: Seminar in Economic Policy [T-WIWI-102789]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101514 - Innovation Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Title</th>
<th>Exam Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900103</td>
<td>Data-driven innovation and science communication (Master)</td>
<td>Prüfung (PR)</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out through a term paper within the range of 12 to 15 pages, a presentation of the results of the work in a seminar meeting, and active participation in the discussions of the seminar meeting (§ 4 (2), 3 SPO).

The final grade is composed of the weighted scored examinations (Essay 50%, 40% oral presentation, active participation 10%).

Prerequisites

None

Recommendation

At least one of the lectures “Theory of Endogenous Growth” or “Innovation Theory and Policy” should be attended in advance, if possible.
6.305 Course: Seminar in Economics A (Master) [T-WIWI-103478]

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Topics in Political Economy (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ehrlich, Huber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Morals & Social Behavior (Bachelor & Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Huber, Ehrlich</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Topics in Political Economy (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ehrlich, Huber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Ausgewählte Aspekte der europäischen Verkehrsplanung und -modellierung</td>
<td>1 SWS</td>
<td>Seminar (S)</td>
<td>Szimba</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Advanced Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Schienle, Krüger, Buse, Görgen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Wirtschaftspolitisches Seminar</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ott, Assistenten</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Fighting Climate Change, Seminar on Morals and Social Behavior (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Zhao</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Designing the Digital Economy, Topics on Political Economy (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Huber</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Designing the Digital Economy, Topics on Political Economy (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Huber</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Data-driven innovation and science communication (Master)</td>
<td>Prüfung (PR)</td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar in Economics A (Master)</td>
<td>Prüfung (PR)</td>
<td>Fuchs-Seliger</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar in Economics (Bachelor/Master)</td>
<td>Prüfung (PR)</td>
<td>Mitusch</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar in Economics A (Master)</td>
<td>Prüfung (PR)</td>
<td>Szech, Puppe</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar Debt, Money and Markets: Economic Narrative and Anthropological Evidence</td>
<td>Prüfung (PR)</td>
<td>Puppe</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar in Macroeconomics I</td>
<td>Prüfung (PR)</td>
<td>Scheffel</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Topics in Experimental Economics</td>
<td>Prüfung (PR)</td>
<td>Reiß</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar in Macroeconomics II</td>
<td>Prüfung (PR)</td>
<td>Scheffel</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar on Morals and Social Behavior</td>
<td>Prüfung (PR)</td>
<td>Szech, Puppe</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar in Economics A (Master)</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.
Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.
The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Political Economy (Bachelor)
2560140, WS 19/20, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu)

Notes
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

For bachelor students grades will be based on the quality of presentations in the seminar (50%) and the seminar paper (50%). Students can improve their grades by 0.3 for good and constructive discussion contributions or by 0.7 for excellent and constructive discussion contributions.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Morals & Social Behavior (Bachelor & Master)
2560141, WS 19/20, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu)

Notes
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

For bachelor students grades will be based on the quality of presentations in the seminar (50%) and the seminar paper (50%).

For Master students, grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally Master students will have to hand in two abstracts with their paper - one with a maximum length of 100 words and one with a maximum length of 150 words. The quality of abstracts will reflect with 20% in the final grade.

Students can improve their grades by 0.3 for good and constructive discussion contributions or by 0.7 for excellent and constructive discussion contributions.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Topics in Political Economy (Master)
2560142, WS 19/20, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu)
Notes
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare
Seminar Papers of 8–10 pages are to be handed in.

For Master students, grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with their paper – one with a maximum length of 100 words and one with a maximum length of 150 words. The quality of abstracts will reflect with 20% in the final grade. Students can improve their grades by 0.3 for good and constructive discussion contributions or by 0.7 for excellent and constructive discussion contributions.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Workload
About 90 hours.

Advanced Topics in Econometrics
2521310, SS 2020, 2 SWS, Language: English, Open in study portal

Annotation
The course will be offered in English.

Fighting Climate Change, Seminar on Morals and Social Behavior (Bachelor)
2560554, SS 2020, 2 SWS, Language: English, Open in study portal

Description
For a long time, economists studied given markets and mechanisms to predict outcomes, future developments or generally the participants’ behavior. In contrast, Market Design uses theory, empirical and experimental work to design markets which incentivize their participants in a way that leads to a “desirable” outcome. In this, the designer can have different objectives, for example: Maximizing efficiency, welfare or minimizing negative externalities.

Prominent applications of Market Design include, quite topical, Germany’s auction of 5G mobile licenses and matching markets, where there are two large populations that need to be matched to one another (think of hospitals and interns, students and dorm rooms or kidney donors and receivers). In this seminar, we think about ways to either design new markets or how we could alter existing ones in a socially beneficial way. Alternatively, research ideas could focus on finding failures or shortcomings of ineffectively designed markets.

Notes
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare
The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.
Seminar Papers of 8–10 pages are to be handed in.

Students’ grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with different lengths (20%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Annotation
For further questions, please contact David Huber (david.huber@kit.edu).

Workload
About 90 hours.

Designing the Digital Economy, Topics on Political Economy (Bachelor)
2560556, SS 2020, 2 SWS, Language: English, Open in study portal
<table>
<thead>
<tr>
<th>Course</th>
<th>Details</th>
</tr>
</thead>
</table>
| Seminar in Economics A (Master) | Workload
About 90 hours. |
| Designing the Digital Economy, Topics on Political Economy (Master) | Workload
About 90 hours. |

2560557, SS 2020, 2 SWS, Language: English, [Open in study portal](#)
Course: Seminar in Economics B (Master) [T-WIWI-103477]

- **Responsible:** Professorenschaft des Fachbereichs Volkswirtschaftslehre
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2560140</td>
<td>Topics in Political Economy (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ehrlich, Huber</td>
</tr>
<tr>
<td>WS 19/20 2560141</td>
<td>Morals & Social Behavior (Bachelor & Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Huber, Ehrlich</td>
</tr>
<tr>
<td>WS 19/20 2560142</td>
<td>Topics in Political Economy (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ehrlich, Huber</td>
</tr>
<tr>
<td>WS 19/20 2561208</td>
<td>Ausgewählte Aspekte der europäischen Verkehrsplanung und -modellierung</td>
<td>1 SWS</td>
<td>Seminar (S)</td>
<td>Szimba</td>
</tr>
<tr>
<td>SS 2020 2521310</td>
<td>Advanced Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Schienle, Krüger, Buse, Görgen</td>
</tr>
<tr>
<td>SS 2020 2560282</td>
<td>Wirtschaftspolitisches Seminar</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ott, Assistenten</td>
</tr>
<tr>
<td>SS 2020 2560554</td>
<td>Fighting Climate Change, Seminar on Morals and Social Behavior (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Zhao</td>
</tr>
<tr>
<td>SS 2020 2560556</td>
<td>Designing the Digital Economy, Topics on Political Economy (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Huber</td>
</tr>
<tr>
<td>SS 2020 2560557</td>
<td>Designing the Digital Economy, Topics on Political Economy (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Huber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7900103</td>
<td>Data-driven innovation and science communication (Master)</td>
<td>Prüfung (PR)</td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900132</td>
<td>Seminar in Economics A (Master)</td>
<td>Prüfung (PR)</td>
<td>Fuchs-Seliger</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900140</td>
<td>Seminar in Economics A (Master)</td>
<td>Prüfung (PR)</td>
<td>Szech, Puppe</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900186</td>
<td>Seminar Debt, Money and Markets: Economic Narrative and Anthropological Evidence</td>
<td>Prüfung (PR)</td>
<td>Puppe</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900207</td>
<td>Seminar in Macroeconomics I</td>
<td>Prüfung (PR)</td>
<td>Scheffel</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900221</td>
<td>Topics in Experimental Economics</td>
<td>Prüfung (PR)</td>
<td>Reiß</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900259</td>
<td>Seminar in Macroeconomics II</td>
<td>Prüfung (PR)</td>
<td>Scheffel</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900278</td>
<td>Seminar on Morals and Social Behavior</td>
<td>Prüfung (PR)</td>
<td>Szech, Puppe</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900281</td>
<td>Seminar in Economics B (Master), Seminar in Economics A (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Mitusch</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 79sefi3</td>
<td>Seminar in Economics B (Master)</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.
Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.
The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Political Economy (Bachelor)
2560140, WS 19/20, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/

Notes
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.
Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://politecon.kit.edu or https://portal.wiwi.kit.edu/Seminare
Seminar Papers of 8-10 pages are to be handed in.
For bachelor students grades will be based on the quality of presentations in the seminar (50%) and the seminar paper (50%).
Students can improve their grades by 0.3 for good and constructive discussion contributions or by 0.7 for excellent and constructive discussion contributions.
Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Morals & Social Behavior (Bachelor & Master)
2560141, WS 19/20, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/)

Notes
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.
The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://politecon.kit.edu or https://portal.wiwi.kit.edu/Seminare
Seminar Papers of 8-10 pages are to be handed in.
For bachelor students grades will be based on the quality of presentations in the seminar (50%) and the seminar paper (50%).
For Master students, grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally Master students will have to hand in two abstracts with their paper - one with a maximum length of 100 words and one with a maximum length of 150 words. The quality of abstracts will reflect with 20% in the final grade.
Students can improve their grades by 0.3 for good and constructive discussion contributions or by 0.7 for excellent and constructive discussion contributions.
Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Topics in Political Economy (Master)
2560142, WS 19/20, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/)
Notes
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

For Master students, grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with their paper – one with a maximum length of 100 words and one with a maximum length of 150 words. The quality of abstracts will reflect with 20% in the final grade. Students can improve their grades by 0.3 for good and constructive discussion contributions or by 0.7 for excellent and constructive discussion contributions.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Workload
About 90 hours.

Advanced Topics in Econometrics
2521310, SS 2020, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/Seminare)

Annotation
The course will be offered in English.

Fighting Climate Change, Seminar on Morals and Social Behavior (Bachelor)
2560554, SS 2020, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/Seminare)

Description
For a long time, economists studied given markets and mechanisms to predict outcomes, future developments or generally the participants’ behavior. In contrast, Market Design uses theory, empirical and experimental work to design markets which incentivize their participants in a way that leads to a "desirable" outcome. In this, the designer can have different objectives, for example: Maximizing efficiency, welfare or minimizing negative externalities.

Prominent applications of Market Design include, quite topical, Germany's auction of 5G mobile licenses and matching markets, where there are two large populations that need to be matched to one another (think of hospitals and interns, students and dorm rooms or kidney donors and receivers). In this seminar, we think about ways to either design new markets or how we could alter existing ones in a socially beneficial way. Alternatively, research ideas could focus on finding failures or shortcomings of ineffectively designed markets.

Notes
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Students’ grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with different lengths (20%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Annotation
For further questions, please contact David Huber (david.huber@kit.edu).

Workload
About 90 hours.

Designing the Digital Economy, Topics on Political Economy (Bachelor)
2560556, SS 2020, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/Seminare)
Workload
About 90 hours.

Designing the Digital Economy, Topics on Political Economy (Master)
2560557, SS 2020, 2 SWS, Language: English, Open in study portal

Workload
About 90 hours.
6.307 Course: Seminar in Engineering Science Master (approval) [T-WIWI-108763]

Responsible: Fachvertreter ingenieurwissenschaftlicher Fakultäten
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lectures</th>
<th>Exam Type</th>
<th>Exam Dates</th>
<th>Exam Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2119100</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Furmans, Pagani</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lectures</th>
<th>Exam Type</th>
<th>Exam Dates</th>
<th>Exam Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8245100014</td>
<td>Seminar in Transportation</td>
<td>Prüfung (PR)</td>
<td>Vortisch, Chlond</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-00002</td>
<td>Seminar for Rail System Technology</td>
<td>Prüfung (PR)</td>
<td>Gratzfeld</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>76-T-MACH-102135</td>
<td>Conveying Technology and Logistics</td>
<td>Prüfung (PR)</td>
<td>Furmans</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Prerequisites
See module description.

Recommendation
None
Course: Seminar in Informatics A (Master) [T-WIWI-103479]

Responsible: Professorenschaft des Fachbereichs Informatik
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101808 - Seminar Module

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Title</th>
<th>Semester</th>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400125</td>
<td>Security and Privacy Awareness</td>
<td>WS 19/20</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Boehm, Seidel-Saul, Volkamer, Aldag, Gerber, Gottschalk</td>
</tr>
<tr>
<td>2512301</td>
<td>Linked Data and the Semantic Web</td>
<td>WS 19/20</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td>Sure-Vetter, Acosta, Deibe, Käfer, Heling</td>
</tr>
<tr>
<td>2512311</td>
<td>Real-World Challenges in Data Science and Analytics</td>
<td>WS 19/20</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td>Sure-Vetter, Nickel, Weinhardt, Zehnder, Brandt</td>
</tr>
<tr>
<td>2513500</td>
<td>Cognitive Automobiles and Robots</td>
<td>WS 19/20</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Zöllner</td>
</tr>
<tr>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>WS 19/20</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td>Weinhardt, Satzger, Nickel, Fromm, Fichtner, Sure-Vetter</td>
</tr>
<tr>
<td>2513211</td>
<td>Seminar Business Information Systems (Master)</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Oberweis, Fritsch, Hartmann, Schreiber, Schüler, Ullrich</td>
</tr>
<tr>
<td>2513309</td>
<td>Seminar Knowledge Discovery and Data Mining (Master)</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td>Sure-Vetter, Färber, Nguyen, Noullet, Saier</td>
</tr>
<tr>
<td>2513311</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Master)</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Sure-Vetter, Riemer, Zehnder</td>
</tr>
<tr>
<td>2513403</td>
<td>Emerging Trends in Internet Technologies (Master)</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Lins, Sunyaev, Thiebes</td>
</tr>
<tr>
<td>2513405</td>
<td>Emerging Trends in Digital Health (Master)</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Lins, Sunyaev, Thiebes</td>
</tr>
<tr>
<td>2513500</td>
<td>Cognitive Automobiles and Robots</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Zöllner</td>
</tr>
<tr>
<td>2513553</td>
<td>E-Voting Seminar (Master)</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Beckert, Müller-Quade, Volkamer, Dörre, Kirsten, Schwerdt</td>
</tr>
<tr>
<td>2513555</td>
<td>Seminar Security, Usability and Society (Master)</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Volkamer, Aldag</td>
</tr>
<tr>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>SS 2020</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td>Weinhardt, Nickel, Fichtner, Satzger, Sure-Vetter, Fromm</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Title</th>
<th>Semester</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900038</td>
<td>Linked Data and the Semantic Web</td>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>7900044</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>7900119</td>
<td>Cognitive automobiles and robots</td>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>7900129</td>
<td>Security and Privacy Awareness</td>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>7900187</td>
<td>Real-World Challenges in Data Science and Analytics</td>
<td>WS 19/20</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
</tbody>
</table>
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
Placeholder for seminars offered by the Institute AIFB.

Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Security and Privacy Awareness
2400125, WS 19/20, 2 SWS, Open in study portal

Notes
Within the framework of this interdisciplinary seminar, the topics security awareness and privacy awareness are to be considered from different perspectives. It deals with legal, information technology, psychological, social as well as philosophical aspects.

Dates:
- Kick-Off (with topic placing): 25.10.19, 11:30-13:00 Building 5.20 Room 1C-01
- Final version: 10.03.20
- Presentation: 25.03.20

Topics will be assigned at the Kick-Off.

Topics:
- Mass surveillance of communication nodes and chilling effects - a legal and ethical debate (Supervisor: Prof. Seidel, Prof. Boehm, Gottschalk)
- Ethical analysis of so-called attack studies in the context of the survey of security awareness (Supervisor: Prof. Seidel, Prof. Volkamer)
- Privacy awareness in the context of Alexa and Co. (Supervisor: Prof. Boehm, Gottschalk, Prof. Volkamer, Aldag)
- Security awareness in the context of 2 factor authentication when paying with credit cards on the Internet (Supervisor: Prof. Volkamer, Aldag)
- What is the worth of privacy? (Supervisor: Prof. Seidel)
- Processing Social Media Content for Law Enforcement (Supervisor: Prof. Boehm, Gottschalk)

ATTENTION: The seminar is only for MASTER students!

Linked Data and the Semantic Web
2512301, WS 19/20, 3 SWS, Language: German/English, Open in study portal
Notes
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this practical seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this practical seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as ‘Block-Seminar’.

Topics of interest include, but are not limited to:
- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Real-World Challenges in Data Science and Analytics
2512311, WS 19/20, 3 SWS, Language: German/English, [Open in study portal](#)

Notes
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar “Real-World Challenges in Data Science and Analytics” is aimed at students in master’s programs.

The exact dates and information for registration will be announced at the course page.

Cognitive Automobiles and Robots
2513500, WS 19/20, 2 SWS, Language: German/English, [Open in study portal](#)

Notes
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.
Seminar Service Science, Management & Engineering
2595470, WS 19/20, 3 SWS, Language: German, Open in study portal

Notes
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.

See the KSRI website for more information about this seminar: www.ksri.kit.edu

The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis (15-20 pages), a presentation and active participation in class.

The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Learning objectives:
The student

- illustrates and evaluates classic and current research questions in service science, management and engineering,
- applies models and techniques in service science, also with regard to their applicability in practical cases,
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Recommendations:
Lecture eServices [2595466] is recommended.

Workload:
The total workload for this course is approximately 90 hours. For further information see German version.

Seminar Knowledge Discovery and Data Mining (Master)
2513309, SS 2020, 3 SWS, Language: English, Open in study portal

Notes
In this seminar different machine learning and data mining methods are implemented.

The seminar includes different methods of machine learning and data mining. Participants of the seminar should have basic knowledge of machine learning and programming skills.

Domains of interest include, but are not limited to:

- Medicine
- Social Media
- Finance Market

The exact dates and information for registration will be announced at the event page.

Seminar Data Science & Real-time Big Data Analytics (Master)
2513311, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
In this practical seminar, students will design applications in teams that use meaningful and creative Event Processing methods. Thereby, students have access to an existing record.

Event processing and real-time data are everywhere: financial market data, sensors, business intelligence, social media analytics, logistics. Many applications collect large volumes of data in real time and are increasingly faced with the challenge of being able to process them quickly and react promptly. The challenges of this real-time processing are currently also receiving a great deal of attention under the term “Big Data”. The complex processing of real-time data requires both knowledge of methods for data analysis (data science) and their processing (real-time analytics). Seminar papers are offered on both of these areas as well as on interface topics, the input of own ideas is explicitly desired.

Further information to the practical seminar is given under the following Link:
http://seminar-cep.fzi.de

Questions are answered via the e-mail address sem-ep@fzi.de.
Cognitive Automobiles and Robots
2513500, SS 2020, 2 SWS, Language: German/English, Open in study portal

Notes
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Seminar Service Science, Management & Engineering
2595470, SS 2020, 2 SWS, Language: German, Open in study portal

Notes
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.

See the KSRI website for more information about this seminar: www.ksri.kit.edu

Learning objectives:
The student
- illustrates and evaluates classic and current research questions in service science, management and engineering,
- applies models and techniques in service science, also with regard to their applicability in practical cases,
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Recommendations:
Lecture eServices [2595466] is recommended.

Workload:
The total workload for this course is approximately 90 hours.
6.309 Course: Seminar in Informatics B (Master) [T-WIWI-103480]

Responsible: Professorenschaft des Fachbereichs Informatik
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2400125 Security and Privacy Awareness</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 2512301 Linked Data and the Semantic Web</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 2512311 Real-World Challenges in Data Science and Analytics</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 2513500 Cognitive Automobiles and Robots</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 2595470 Seminar Service Science, Management & Engineering</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513211 Seminar Business Information Systems (Master)</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513309 Seminar Knowledge Discovery and Data Mining (Master)</td>
<td>Seminar (S)</td>
<td>3 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513311 Seminar Data Science & Real-time Big Data Analytics (Master)</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513403 Emerging Trends in Internet Technologies (Master)</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513405 Emerging Trends in Digital Health (Master)</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513500 Cognitive Automobiles and Robots</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513553 E-Voting Seminar (Master)</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2513555 Seminar Security, Usability and Society (Master)</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020 2595470 Seminar Service Science, Management & Engineering</td>
<td>Seminar (S)</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7500175 Seminar: Energy Informatics</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7500220 Seminar Ubiquitous Computing</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900038 Linked Data and the Semantic Web</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900044 Seminar Service Science, Management & Engineering</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900119 Cognitive automobiles and robots</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900129 Security and Privacy Awareness</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20 7900187 Real-World Challenges in Data Science and Analytics</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:
- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
Placeholder for seminars offered by the Institute AIFB.
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.
The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Security and Privacy Awareness
2400125, WS 19/20, 2 SWS, Open in study portal

Notes
Within the framework of this interdisciplinary seminar, the topics security awareness and privacy awareness are to be considered from different perspectives. It deals with legal, information technology, psychological, social as well as philosophical aspects.

Dates:
- Kick-Off (with topic placing): 25.10.19, 11:30-13:00 Building 5.20 Room 1C-01
- Final version: 10.03.20
- Presentation: 25.03.20

Topics will be assigned at the Kick-Off.

Topics:
- Mass surveillance of communication nodes and chilling effects - a legal and ethical debate (Supervisor: Prof. Seidel, Prof. Boehm, Gottschalk)
- Ethical analysis of so-called attack studies in the context of the survey of security awareness (Supervisor: Prof. Seidel, Prof. Volkamer)
- Privacy awareness in the context of Alexa and Co. (Supervisor: Prof. Boehm, Gottschalk, Prof. Volkamer, Aldag)
- Security awareness in the context of 2 factor authentication when paying with credit cards on the Internet (Supervisor: Prof. Volkamer, Aldag)
- What is the worth of privacy? (Supervisor: Prof. Seidel)
- Processing Social Media Content for Law Enforcement (Supervisor: Prof. Boehm, Gottschalk)

ATTENTION: The seminar is only for MASTER students!

Linked Data and the Semantic Web
2512301, WS 19/20, 3 SWS, Language: German/English, Open in study portal
Notes
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this practical seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this practical seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Real-World Challenges in Data Science and Analytics
2512311, WS 19/20, 3 SWS, Language: German/English, Open in study portal

Notes
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master's programs.

The exact dates and information for registration will be announced at the course page.

Cognitive Automobiles and Robots
2513500, WS 19/20, 2 SWS, Language: German/English, Open in study portal

Notes
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:

- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.
Seminar Service Science, Management & Engineering
2595470, WS 19/20, 3 SWS, Language: German, Open in study portal

Notes
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.
See the KSRI website for more information about this seminar: www.ksri.kit.edu
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis (15-20 pages), a presentation and active participation in class.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Learning objectives:
The student
- illustrates and evaluates classic and current research questions in service science, management and engineering,
- applies models and techniques in service science, also with regard to their applicability in practical cases,
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Recommendations:
Lecture eServices [2595466] is recommended.

Workload:
The total workload for this course is approximately 90 hours. For further information see German version.

Seminar Knowledge Discovery and Data Mining (Master)
2513309, SS 2020, 3 SWS, Language: English, Open in study portal

Notes
In this seminar different machine learning and data mining methods are implemented.
The seminar includes different methods of machine learning and data mining. Participants of the seminar should have basic knowledge of machine learning and programming skills.

Domains of interest include, but are not limited to:
- Medicine
- Social Media
- Finance Market

The exact dates and information for registration will be announced at the event page.

Seminar Data Science & Real-time Big Data Analytics (Master)
2513311, SS 2020, 2 SWS, Language: English, Open in study portal

Notes
In this practical seminar, students will design applications in teams that use meaningful and creative Event Processing methods. Thereby, students have access to an existing record.
Event processing and real-time data are everywhere: financial market data, sensors, business intelligence, social media analytics, logistics. Many applications collect large volumes of data in real time and are increasingly faced with the challenge of being able to process them quickly and react promptly. The challenges of this real-time processing are currently also receiving a great deal of attention under the term “Big Data”. The complex processing of real-time data requires both knowledge of methods for data analysis (data science) and their processing (real-time analytics). Seminar papers are offered on both of these areas as well as on interface topics, the input of own ideas is explicitly desired.

Further information to the practical seminar is given under the following Link:
http://seminar-cep.fzi.de
Questions are answered via the e-mail address sem-ep@fzi.de.
Cognitive Automobiles and Robots
2513500, SS 2020, 2 SWS, Language: German/English, Open in study portal

V

Notes
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Seminar Service Science, Management & Engineering
2595470, SS 2020, 2 SWS, Language: German, Open in study portal

V

Notes
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.

See the KSRI website for more information about this seminar: www.ksri.kit.edu

Learning objectives:
The student
- illustrates and evaluates classic and current research questions in service science, management and engineering,
- applies models and techniques in service science, also with regard to their applicability in practical cases,
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Recommendations:
Lecture eServices [2595466] is recommended.

Workload:
The total workload for this course is approximately 90 hours.
6.310 Course: Seminar in Operations Research A (Master) [T-WIWI-103481]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550473</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550473</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550491</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900012_WS1920</td>
<td>Prüfung (PR)</td>
<td>Seminar in Operations Research A (Master)</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900156</td>
<td>Prüfung (PR)</td>
<td>Modern OR and Innovative Logistics</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900212</td>
<td>Prüfung (PR)</td>
<td>Real-World Challenges in Data Science und Analytics</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900314</td>
<td>Prüfung (PR)</td>
<td>Seminar in Operations Research A (Master)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:
Notes
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Learning Content
The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Dates will be announced on the internet.

Annotation
The seminar is offered in each term.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Literature and relevant sources will be announced at the beginning of the seminar.

Notes
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Learning Content
The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Dates will be announced on the internet.

Annotation
The seminar is offered in each term.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Literature and relevant sources will be announced at the beginning of the seminar.
6.311 Course: Seminar in Operations Research B (Master) [T-WIWI-103482]

Responsible:
Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550473</td>
<td>Seminar on Power Systems Optimization (Master)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Rebennack, Sinske</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550491</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nickel, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550473</td>
<td>Seminar on Power Systems Optimization (Master)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550491</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nickel, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900158</td>
<td>Modern OR and Innovative Logistics</td>
<td>Prüfung (PR)</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Seminar: Modern OR and Innovative Logistics

2550491, WS 19/20, 2 SWS, Language: German, [Open in study portal]

Notes

The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.
Learning Content
The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Dates will be announced on the internet.

Annotation
The seminar is offered in each term.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Literature and relevant sources will be announced at the beginning of the seminar.

Notes
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Learning Content
The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Dates will be announced on the internet.

Annotation
The seminar is offered in each term.

Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Literature and relevant sources will be announced at the beginning of the seminar.
6.312 Course: Seminar in Statistics A (Master) [T-WIWI-103483]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2521310 | Advanced Topics in Econometrics | 2 SWS | Seminar (S) | Schienle, Krüger, Buse, Görgen |

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Advanced Topics in Econometrics

2521310, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Annotation

The course will be offered in English.
6.313 Course: Seminar in Statistics B (Master) [T-WIWI-103484]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| SS 2020 | 2521310 | Advanced Topics in Econometrics | 2 SWS | Seminar (S) | Schienle, Krüger, Buse, Görgen |

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Advanced Topics in Econometrics

2521310, SS 2020, 2 SWS, Language: English, Open in study portal

Annotation

The course will be offered in English.
6.314 Course: Seminar in Transportation [T-BGU-100014]

Responsible: Bastian Chlond
Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-101064 - Fundamentals of Transportation
- M-BGU-101065 - Transportation Modelling and Traffic Management
- M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 6232903 Seminar Verkehrswesen 2 SWS Seminar (S) Vortisch, KIT</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020 6232903 Seminar Verkehrswesen 2 SWS Seminar (S) Vortisch, Kagerbauer</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 8245100014 Seminar in Transportation Prüfung (PR) Vortisch, Chlond</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
seminar paper, appr. 10 pages, and presentation, appr. 10 min.

Prerequisites
The seminar is subject to approval. The approval must be applied for at the examination secretariat of the Department of Economics and Management. The application for admission is made via the corresponding engineering seminar form on the department's download page.

Recommendation
none

Annotation
none
6.315 Course: Seminar Mobility Services (Master) [T-WIWI-103174]

Responsible: Prof. Dr. Gerhard Satzger
Carola Stryja

Organisation: KIT Department of Economics and Management

Part of:
M-BGU-101064 - Fundamentals of Transportation
M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
A final written exam will be conducted.

Prerequisites
None

Annotation
The course is not offered regularly.
6.316 Course: Seminar Production Technology [T-MACH-109062]

Responsible: Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Gisela Lanza
Prof. Dr.-Ing. Volker Schulze

Organisation: KIT Department of Mechanical Engineering

Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Exam Code</th>
<th>Exam Name</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2149665</td>
<td>Seminar Production Technology</td>
<td>1</td>
<td>Seminar (S)</td>
<td>76-T-MACH-109062</td>
<td>Seminar Production Technology</td>
<td>Fleischer, Lanza, Schulze, Zanger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Exam Code</th>
<th>Exam Name</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-109062</td>
<td>Seminar Production Technology</td>
<td>Prüfung (PR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

alternative test achievement (graded):

- written elaboration (workload of at least 80 h)
- oral presentation (approx. 30 min)

Prerequisites

none

Annotation

The specific topics are published on the homepage of the wbk Institute of Production Science.

Below you will find excerpts from events related to this course:

Seminar Production Technology

2149665, SS 2020, 1 SWS, Language: German, [Open in study portal]

Description

The specific topics are published on the homepage of the wbk Institute of Production Science.
Notes
In course of the seminar Production Technology current issues of the wbk main fields of research "Manufacturing and Materials Technology", "Machines, Equipment and Process Automation" as well as "Production Systems" are discussed. The specific topics are published on the homepage of the wbk Institute of Production Science.

Learning Outcomes:
The students ...

- are in a position to independently handle current, research-based tasks according to scientific criteria.
- are able to research, analyze, abstract and critically review the information.
- can draw own conclusions using their interdisciplinary knowledge from the less structured information and selectively develop current research results.
- can logically and systematically present the obtained results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Workload:

regular attendance: 10 hours
self-study: 80 hours

Learning Content
In course of the seminar Production Technology current issues of the wbk main fields of research "Manufacturing and Materials Technology", "Machines, Equipment and Process Automation" as well as "Production Systems" are discussed.

Workload

regular attendance: 10 hours
self-study: 80 hours
6.317 Course: Seminar: Governance, Risk & Compliance [T-INFO-102047]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101242 - Governance, Risk & Compliance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2400041</td>
<td>Governance, Risk & Compliance</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Herzig</td>
</tr>
</tbody>
</table>

Economics Engineering M.Sc.
Module Handbook as of 18.02.2020
6.318 Course: Seminar: Legal Studies I [T-INFO-101997]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 24389</td>
<td>2 SWS</td>
<td>IT-Sicherheit und Recht</td>
<td></td>
<td>Seminar (S)</td>
<td>Schallbruch</td>
</tr>
<tr>
<td>SS 2020 2400041</td>
<td>2 SWS</td>
<td>Governance, Risk & Compliance</td>
<td></td>
<td>Seminar (S)</td>
<td>Herzig</td>
</tr>
<tr>
<td>SS 2020 2400061</td>
<td>2 SWS</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td></td>
<td>Seminar (S)</td>
<td>Bless, Boehm, Hartenstein, Mädche, Sunyaev, Zitterbart</td>
</tr>
<tr>
<td>SS 2020 24820</td>
<td>2 SWS</td>
<td>Current Issues in Patent Law</td>
<td></td>
<td>Seminar (S)</td>
<td>Melullis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7500035</td>
<td></td>
<td>Seminar: Legal Studies II</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Barczak</td>
</tr>
<tr>
<td>WS 19/20 7500182</td>
<td></td>
<td>Seminar: Legal Studies II</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Dreier, Boehm, Raabe</td>
</tr>
</tbody>
</table>

*Below you will find excerpts from events related to this course:

Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung

2400061, SS 2020, 2 SWS, [Open in study portal](#)

Notes
Registration via https://portal.wiwi.kit.edu/ys/2708
Course: Seminar: Legal Studies II [T-INFO-105945]

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2400014</td>
<td>Current Issues in Patent Law</td>
<td>3</td>
</tr>
<tr>
<td>WS 19/20 2400125</td>
<td>Security and Privacy Awareness</td>
<td>3</td>
</tr>
<tr>
<td>WS 19/20 24186</td>
<td>Patents at the point of intersection between technology, economy and law</td>
<td>3</td>
</tr>
<tr>
<td>WS 19/20 24389</td>
<td>IT-Sicherheit und Recht</td>
<td>3</td>
</tr>
<tr>
<td>SS 2020 2400061</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 7500035</td>
<td>Seminar: Legal Studies II</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20 7500182</td>
<td>Seminar: Legal Studies II</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes

Within the framework of this interdisciplinary seminar, the topics security awareness and privacy awareness are to be considered from different perspectives. It deals with legal, information technology, psychological, social as well as philosophical aspects.

Dates:
- Kick-Off (with topic placing): 25.10.19, 11:30-13:00 Building 5.20 Room 1C-01
- Final version: 10.03.20
- Presentation: 25.03.20

Topics will be assigned at the Kick-Off.

Topics:
- Mass surveillance of communication nodes and chilling effects - a legal and ethical debate (Supervisor: Prof. Seidel, Prof. Boehm, Gottschalk)
- Ethical analysis of so-called attack studies in the context of the survey of security awareness (Supervisor: Prof. Seidel, Prof. Volkamer)
- Privacy awareness in the context of Alexa and Co. (Supervisor: Prof. Boehm, Gottschalk, Prof. Volkamer, Aldag)
- Security awareness in the context of 2 factor authentication when paying with credit cards on the Internet (Supervisor: Prof. Volkamer, Aldag)
- What is the worth of privacy? (Supervisor: Prof. Seidel)
- Processing Social Media Content for Law Enforcement (Supervisor: Prof. Boehm, Gottschalk)

ATTENTION: The seminar is only for MASTER students!
Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung
2400061, SS 2020, 2 SWS, Open in study portal

Notes
Registration via https://portal.wiwi.kit.edu/ys/2708
Course: Service Analytics A [T-WIWI-105778]

Responsible: Prof. Dr. Hansjörg Fromm
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101448 - Service Management
- M-WIWI-101470 - Data Science: Advanced CRM
- M-WIWI-101506 - Service Analytics
- M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture Code</th>
<th>Lecture</th>
<th>Practice Code</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2 SWS</td>
<td>Service Analytics A</td>
<td>2595501</td>
<td>Schmitz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>1 SWS</td>
<td>Übung zu Service Analytics A</td>
<td>2595502</td>
<td>Baier,</td>
<td>Schmitz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture Code</th>
<th>Prüfung Code</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Service Analytics A</td>
<td>7900086</td>
<td>Prüfung (PR)</td>
<td>Fromm</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation.

Prerequisites
None

Recommendation
The lecture is addressed to students with interests and basic knowledge in the topics of Operations Research, descriptive and inductive statistics.

Annotation
This course is admission restricted.

Below you will find excerpts from events related to this course:

Service Analytics A

2595501, SS 2020, 2 SWS, Language: German, Open in study portal

Lecture (V)

Learning Content
Today's service-oriented companies are starting to optimize the way services are planned, operated, and personalized by analyzing vast amounts of data from customers, IT-systems, or sensors. As the statistical learning and business optimization world continues to progress, skills and expertise in advanced data analytics and data and fact-based optimization become vital for companies to be competitive. In this lecture, relevant methods and tools will be considered as a package, with a strong focus on their inter-relations. Students will learn to analyze and structure large amounts of potentially incomplete and unreliable data, to apply multivariate statistics to filter data and to extract key features, to predict future behavior and system dynamics, and finally to formulate data and fact-based service planning and decision models.

More specifically, the lessons of this lecture will include:

- Co-Creation of Value Across Enterprises
- Instrumentation, Measurement, Monitoring of Service Systems
- Descriptive, predictive, and prescriptive Analytics
- Usage Characteristics and Customer Dynamics
- Big Data, Dimensionality Reduction, and Real-Time Analytics
- System Models and What-If-Analysis
- Robust Mechanisms for Service Management
- Industry Applications of Service Analytics

Tutorials
Students will conduct lecture accompanying, guided exercises throughout the semester.
Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- An Introduction to Statistical Learning with Applications in R, James, G. et al., Springer, 2013.

Paper:
- Business Intelligence and Analytics: from Big Data to Big Impact, Chen, H. et al., MIS quarterly, 2012.

Further readings will be provided in the lecture.
6.321 Course: Service Design Thinking [T-WIWI-102849]

Responsible	Prof. Dr. Gerhard Satzger
Organisation	KIT Department of Economics and Management
Part of	M-WIWI-101503 - Service Design Thinking

Type
Examination of another type

Credits
12

Recurrence
Irregular

Version
4

Competence Certificate
Alternative exam assessment.

Prerequisites
None

Recommendation
This course is held in English – proficiency in writing and communication is required.
Our past students recommend to take this course at the beginning of the masters program.

Annotation
Due to practical project work as a component of the program, access is limited.
The module (as well as the module component) spans two semesters. It starts in September every year and runs until end of June in the subsequent year. Entering the program is only possible at its beginning - after prior application in May/June.
For more information on the application process and the program itself are provided in the module component description and the program’s website (http://sdt-karlsruhe.de).
Furthermore, the KSRI conducts an information event for applicants every year in May.
This module is part of the KSRI Teaching Program „Digital Service Systems“. For more information see the KSRI Teaching website: www.ksri.kit.edu/teaching.
6.322 Course: Service Innovation [T-WIWI-102641]

Responsible: Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-101448 - Service Management
- M-WIWI-102806 - Service Innovation, Design & Engineering

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

SS 2020
- **Course:** Service Innovation
- **Type:** Lecture (V)
- **Credits:** 2 SWS
- **Instructor:** Satzger
- **Code:** 2595468

WS 19/20
- **Course:** Service Innovation
- **Type:** Prüfung (PR)
- **Instructor:** Satzger
- **Code:** 7900252

Competence Certificate

The assessment consists of a written exam (60 min.). A bonus can be acquired through successful participation in the exercise. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by one grade (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Service Innovation
- **Code:** 2595468, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Description

While innovation in manufacturing or agriculture can leverage a considerable body of research, experience and best practice, innovation in services has not reached the same level of maturity. In practice - while many organizations have a well-understood process for innovating in the product business - innovating in services is often still a fuzzy and complex undertaking.

In this lecture we will

- discuss the state of research
- compare product and service innovation
- understand how innovation diffusion works
- examine case studies of service innovation
- compare open vs. closed innovation
- learn how to leverage user communities to drive innovation and
- understand obstacles, and enablers and how to manage, incentivize and foster service innovation

Learning Content

While innovation in manufacturing can leverage a considerable body of research, experience and best practice, innovation in services has not reached the same level of maturity. In practice, while many organizations have a well-understood process for innovating in the product business, innovating in services is often still a fuzzy and complex undertaking. In this lecture we will discuss the state of research, compare product and service innovation and understand how innovation diffusion works. We examine case studies on service innovation, compare open vs. closed innovation and learn how to apply different innovation tools, methods and strategies (e.g. service design thinking as a human-centered approach to innovation or technology and strategic foresight, as methods supporting the generation of assumptions on the impact of technology).
Workload
Total workload: approximately 136 hours
Attendance time: 30 hours
Self-study: 105 hours

Literature

6.323 Course: SIL Entrepreneurship Emphasis [T-WIWI-110287]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105010 - Student Innovation Lab (SIL) 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (§4(2), 3 SPO). The final grade is a result from both, the grade of the term paper and its presentation, as well as active participation during the seminar. In addition, smaller, ungraded tasks are provided in the course to monitor progress.

Prerequisites
None

Recommendation
None
Course: SIL Entrepreneurship Project [T-WIWI-110166]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105010 - Student Innovation Lab (SIL) 1

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2545082</td>
<td>SIL Entrepreneurship Project</td>
<td>2-4</td>
<td>Seminar (S)</td>
<td>Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2545082</td>
<td>SIL Entrepreneurship Project</td>
<td>2-4</td>
<td>Seminar (S)</td>
<td>Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900037</td>
<td>SIL Entrepreneurship Project</td>
<td>Prüfung (PR)</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§4(2), 3 SPO). The final grade is a result from both, the grade of the term paper and its presentation, as well as active participation during the seminar. In addition, smaller, ungraded tasks are provided in the course to monitor progress.

Prerequisites

None

Recommendation

None
6.325 Course: Simulation Game in Energy Economics [T-WIWI-108016]

Responsible: Dr. Massimo Genoese
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101451 - Energy Economics and Energy Markets

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>3 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Genoese, Zimmermann</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination as written assignment and oral presentation (§4 (2), 1 SPO).

Prerequisites
None

Recommendation
Visiting the course "Introduction to Energy Economics"

Annotation
See German version.

Below you will find excerpts from events related to this course:

Notes

- Introduction
- Agents and market places in the electricity industry
- Selected planning tasks of energy service companies
- Methods of modelling in the energy sector
- Agent-based simulation: The PowerACE model
- Simulation game: Simulation in energy economics (electricity and emission trading, investment decisions)

The lecture is structured in a theoretical and a practical part. In the theoretical part, the students are taught the basics to carry out simulations themselves in the practical part which comprises amongst others the simulation of the power exchange. The participants of the simulation game take a role as a power trader in the power market. Based on various sources of information (e.g. prognosis of power prices, available power plants, fuel prices), they can launch bids in the power exchange.

Assessment: presentation and written summary
Prerequisites: Basics in Energy economics ad markets are advantageous.

Learning Content

- Introduction
- Agents and market places in the electricity industry
- Selected planning tasks of energy service companies
- Methods of modelling in the energy sector
- Agent-based simulation: The PowerACE model
- Simulation game: Simulation in energy economics (electricity and emission trading, investment decisions)

The lecture is structured in a theoretical and a practical part. In the theoretical part, the students are taught the basics to carry out simulations themselves in the practical part which comprises amongst others the simulation of the power exchange. The participants of the simulation game take a role as a power trader in the power market. Based on various sources of information (e.g. prognosis of power prices, available power plants, fuel prices), they can launch bids in the power exchange.
Workload
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Elective literature:
6.326 Course: Site Management [T-BGU-103427]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101884 - Lean Management in Construction
M-BGU-101888 - Project Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>6241807</th>
<th>Bauleitung</th>
<th>1 SWS</th>
<th>Lecture (V)</th>
<th>Steffek</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>WS 19/20</th>
<th>8240103427</th>
<th>Site Management</th>
<th>Prüfung (PR)</th>
<th>Haghsheno</th>
</tr>
</thead>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.327 Course: Smart Energy Infrastructure [T-WIWI-107464]

Responsible: Dr. Armin Ardone
Dr. Dr. Andrej Marko Pustisek

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Written examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>(Smart) Energy Infrastructure</td>
<td>2 SWS</td>
<td>Lecture (V) Ardone, Pustisek, Jochem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smart Energy Infrastructure</td>
<td></td>
<td>Prüfung (PR) Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None.

Annotation

Below you will find excerpts from events related to this course:
6.328 Course: Smart Grid Applications [T-WIWI-107504]

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540452</td>
<td>Smart Grid Applications</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540453</td>
<td>Übung zu Smart Grid Applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900235</td>
<td>Smart Grid Applications</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>7900308</td>
<td>Smart Grid Applications</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Recommendation
None

Annotation
The lecture will be read for the first time in winter term 2018/19.
Course: Social Choice Theory [T-WIWI-102859]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Clemens Puppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Economics and Management</td>
</tr>
</tbody>
</table>
| Part of: | M-WIWI-101500 - Microeconomic Theory
 M-WIWI-101504 - Collective Decision Making |

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2520537</td>
<td>4.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Social Choice Theory
2520537, SS 2020, 2 SWS, Language: English, [Open in study portal](#)

Learning Content
The course provides a comprehensive treatment of preference and judgement aggregation, including proofs of general results that have Arrow's famous impossibility theorem and Gibbard's oligarchy theorem as corollaries. The second part of the course is devoted to voting theory. Among other things, we prove the Gibbard-Satterthwaite theorem.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Main texts:

Secondary texts:

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Practical course</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2512400</td>
<td>Sociotechnical Information Systems Development</td>
<td>3 SWS</td>
<td>(P)</td>
<td>Sunyaev, Sturm</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900115</td>
<td>Development of Sociotechnical Information Systems</td>
<td>3 SWS</td>
<td>(PR)</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Competence Certificate

The alternative exam assessment consists of an implementation and a final thesis documenting the development and use of the application.

Prerequisites

None.

Below you will find excerpts from events related to this course:

Sociotechnical Information Systems Development

2512400, WS 19/20, 3 SWS, Language: German/English, [Open in study portal](#)

Practical course (P)

Notes

The aim of this course is to provide a practical introduction into developing socio-technical information systems, such as web platforms, mobile apps, or desktop applications. Course participants will create (individually or in groups) software solutions for specific problems from various practical domains. The course tasks comprise requirements assessment, system design, and software implementation. Furthermore, course participants will gain insights into software quality assurance methods and software documentation.

Learning objectives:

- Independent and self-organized realization of a software development project
- Evaluation and selection of suitable development tools and methods
- Application of modern software development methods
- Planning and execution of different development tasks: requirements assessment, system design, implementation, and quality assurance
- Project documentation
- Presentation of project results in a comprehensible and structured form
6.331 Course: Software Quality Management [T-WIWI-102895]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Course Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2511208</td>
<td>Software Quality Management</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Oberweis</td>
</tr>
<tr>
<td></td>
<td>2511209</td>
<td>Übungen zu Software-Qualitätsmanagement</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Oberweis, Hartmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7900027</td>
<td>Software Quality Management</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites

None

Below you will find excerpts from events related to this course:

Software Quality Management

Code: 2511208, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

Notes

This lecture imparts fundamentals of active software quality management (quality planning, quality testing, quality control, quality assurance) and illustrates them with concrete examples, as currently applied in industrial software development. Keywords of the lecture content are: software and software quality, process models, software process quality, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, software tests.

Learning objectives:

Students

- explain the relevant quality models,
- apply methods to evaluate the software quality and evaluate the results,
- know the main models of software certification, compare and evaluate these models,
- write scientific theses in the area of software quality management and find own solutions for given problems.

Recommendations:

Programming knowledge in Java and basic knowledge of computer science are expected.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
6.332 Course: Spatial Economics [T-WIWI-103107]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101485 - Transport Infrastructure Policy and Regional Development
M-WIWI-101496 - Growth and Agglomeration
M-WIWI-101497 - Agglomeration and Innovation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2561260</td>
<td>Spatial Economics, 2 SWS, Lecture (V), Ott</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2561261</td>
<td>1 SWS, Practice (Ü), Ott, Bälz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900075</td>
<td>Spatial Economics, Prüfung (PR), Ott</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses “Economics I” [2600012], and “Economics II” [2600014]. In addition, an interest in quantitative-mathematical modeling is required. The attendance of the course “Introduction to economic policy” [2560280] is recommended.

Annotation
Due to the research semester of Prof. Dr. Ingrid Ott, the course is not offered in the winter term 2018/19.

Below you will find excerpts from events related to this course:

Spatial Economics
2561260, WS 19/20, 2 SWS, Language: English, Open in study portal
Notes
The course covers the following topics:

- Geography, trade and development
- Geography and economic theory
- Core models of economic geography and empirical evidence
- Agglomeration, home market effect, and spatial wages
- Applications and extensions

Learning objectives:
The student

- analyses how spatial distribution of economic activity is determined.
- uses quantitative methods within the context of economic models.
- has basic knowledge of formal-analytic methods.
- understands the link between economic theory and its empirical applications.
- understands to what extent concentration processes result from agglomeration and dispersion forces.
- is able to determine theory-based policy recommendations.

Recommendations:
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. An interest in mathematical modeling is advantageous.

Workload:
The total workload for this course is approximately 135 hours.

- Classes: ca. 30 h
- Self-study: ca. 45 h
- Exam and exam preparation: ca. 60 h

Assessment:
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).
6.333 Course: Special Topics in Information Systems [T-WIWI-109940]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101410 - Business & Service Engineering
 M-WIWI-101411 - Information Engineering
 M-WIWI-101506 - Service Analytics

Exams
<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

| 7900263 | Special Topics in Information Systems | Prüfung (PR) | Weinhardt |

Competence Certificate
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites
see below

Recommendation
None

Annotation
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Systems course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre

The Special Topics Information Systems is equivalent to the practical seminar, as it was only offered for the major in “Information Management and Engineering” so far. With this course students majoring in “Industrial Engineering and Management” and “Economics Engineering” also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Systems can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.
6.334 Course: Specialization in Food Process Engineering [T-CIWVT-101875]

- **Responsible:** Dr. Volker Gaukel
- **Organisation:** KIT Department of Chemical and Process Engineering
- **Part of:** M-CIWVT-101119 - Specialization in Food Process Engineering

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Oral examination</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Watzl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>1 SWS</td>
<td>van der Schaaf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Lecture (V)</td>
<td>1 SWS</td>
<td>Emin</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Schwartz</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Bunzel</td>
</tr>
</tbody>
</table>

Prerequisites
The Module "Principles of Food Process Engineering" must be passed.
6 COURSES

Course: Statistical Modeling of Generalized Regression Models [T-WIWI-103065]

 Responsible: apl. Prof. Dr. Wolf-Dieter Heller
 Organisation: KIT Department of Economics and Management
 Part of: M-WIWI-101638 - Econometrics and Statistics I
 M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Written examination</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Heller</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Statistical Modeling of generalized regression models</td>
<td>Prüfung (PR)</td>
<td>Heller</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Below you will find excerpts from events related to this course:

Statistical Modeling of Generalized Regression Models
2521350, WS 19/20, 2 SWS, Open in study portal

Notes
Learning objectives:
The student has profound knowledge of generalized regression models.

Requirements:
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016].

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours

Annotation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Workload
The total workload for this course is approximately 135 hours (4.5 credits).
regular attendance: 30 hours
self-study: 65 hours
exam preparation: 40 hours
Course: Stochastic Calculus and Finance [T-WIWI-103129]

Responsible: Dr. Mher Safarian
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>4.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Stochastic Calculus and Finance</td>
<td>2</td>
<td>Lecture (V)</td>
<td>4.5</td>
<td>Safarian</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Stochastic Calculus and Finance</td>
<td>Prüfung (PR)</td>
<td>Safarian</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course consists of a written examination (§4(2), 1 SPOs, 180 min.).

Prerequisites

None

Annotation

For more information see http://statistik.econ.kit.edu/

Below you will find excerpts from events related to this course:

Stochastic Calculus and Finance

2521331, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Description

The course will provide rigorous yet focused training in stochastic calculus and finance. The program will cover modern approaches in stochastic calculus and mathematical finance. Topics to be covered:

Notes

Learning objectives:

After successful completion of the course students will be familiar with many common methods of pricing and portfolio models in finance. Emphasis we be put on both finance and the theory behind it.

Content:
The course will provide rigorous yet focused training in stochastic calculus and mathematical finance. Topics to be covered:

Workload:
The total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours

Learning Content

The course will provide rigorous yet focused training in stochastic calculus and finance. The program will cover modern approaches in stochastic calculus and mathematical finance. Topics to be covered:

Stochastic processes (Poisson-process, Brownian motion, martingales), stochastic Integral (Integral, quadratic und co-variation, Ito-formula), stochastic differential equation for price-processes, trading strategies, option pricing(Feynman-Kac), neutral risk rating(equivalent martingale measure, Girsanov theorem), term structure models

Workload

The total workload for this course is approximately 150 hours. For further information see German version.

Literature

To be announced in lecture.

Elective literature:
- An Introduction to Stochastic Integration (Probability and its Applications) by Kai L. Chung, Ruth J. Williams, Birkhaueser, 1990
- Methods of Mathematical Finance by Ioannis Karatzas, Steven E. Shreve, Springer 1998
6.337 Course: Strategic Finance and Technology Change [T-WIWI-110511]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>1.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Weeks</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530214</td>
<td>Strategic Finance and Technology Change</td>
<td></td>
<td>Lecture (V)</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900219</td>
<td>Strategic Finance and Technology Change</td>
<td>Prüfung (PR)</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The exam is offered each semester. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Prerequisites

None

Recommendation

Attending the lecture “Financial Management” is strongly recommended.
6.338 Course: Strategic Management of Information Technology [T-WIWI-102669]

Responsible: Thomas Wolf

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Prüfung (PR)</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900030</td>
<td>Strategic Management of Information Technology</td>
<td>Prüfung (PR)</td>
<td>Wolf</td>
</tr>
</tbody>
</table>

Competence Certificate

Please note that the exam for first writers will be offered for the last time in winter semester 2019/2020. A last examination possibility exists in the summer semester 2020 (only for repeaters).

The assessment of this course is a written (60 min.) or (if necessary) oral examination according (30 min.) to §4(2) of the examination regulation.

Prerequisites

None
6.339 Course: Strategic Transport Planning [T-BGU-103426]

Responsible: Volker Waßmuth

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of:
- M-BGU-101064 - Fundamentals of Transportation
- M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>6232808</th>
<th>Strategische Verkehrsplanung</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Waßmuth</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>8240103426</th>
<th>Strategic Transport Planning</th>
<th>Prüfung (PR)</th>
<th>Vortisch</th>
</tr>
</thead>
</table>

Prerequisites
None

Recommendation
None

Annotation
None

Responsible:
Prof. Dr. Hagen Lindstädt

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-103119 - Advanced Topics in Strategy and Management

Type
Examination of another type

Credits
3

Recurrence
Irregular

Version
1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2577921</td>
<td>Strategy and Management Theory: Developments and "Classics" (Master)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2577921</td>
<td>Strategy and Management Theory: Developments and "Classics" (Master)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900120</td>
<td>Strategy and Management Theory: Developments and "Classics"</td>
<td>Prüfung (PR)</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Competence Certificate
The control of success according to § 4(2), 3 SPO takes place by writing a scientific work and a presentation of the results of the work in the context of a conclusion meeting. Details on the design of the performance review will be announced during the lecture.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the bachelor module „Strategy and Organization” is recommended.

Annotation
This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed.

The course is planned to be held for the first time in the winter term 2017/18.

Below you will find excerpts from events related to this course:
Notes
In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Learning Objectives:
Students
- are able to explain and evaluate theoretical approaches and models in the field of strategic management and can illustrate them by tangible examples
- learn to express their position in structured discussions

Recommendations:
Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Workload:
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a

Assessment:
The control of success according to § 4(2), 3 SPO takes place by writing a scientific work and a presentation of the results of the work in the context of a final meeting. Details on the design of the success control will be announced during the lecture.

Note:
This course is admission restricted. If you were already admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.
The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Learning Content
In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Workload
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a
Notes
In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Learning Objectives:
Students
- are able to explain and evaluate theoretical approaches and models in the field of strategic management and can illustrate them by tangible examples
- learn to express their position in structured discussions

Recommendations:
Basic knowledge as conveyed in the bachelor module “Strategy and Organization” is recommended.

Workload:
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a

Assessment:
The control of success according to § 4(2), 3 SPO takes place by writing a scientific work and a presentation of the results of the work in the context of a final meeting. Details on the design of the success control will be announced during the lecture.

Note:
This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.
The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Learning Content
In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Workload
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a
6.341 Course: Supplement Enterprise Information Systems [T-WIWI-110346]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101472 - Informatics
 M-WIWI-101628 - Emphasis in Informatics
 M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min.) or (if necessary) oral examination (30 min.) according to §4(2) of the examination regulation.

Prerequisites
None
6.342 Course: Supplement Software- and Systemsengineering [T-WIWI-110372]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an 1h written exam in the first week after lecture period.

Prerequisites
None

Annotation
This course can be used in particular for the acceptance of external courses whose content is in the broader area of software and systems engineering, but cannot assigned to another course of this topic.
6.343 Course: Supplementary Claim Management [T-BGU-103428]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101888 - Project Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>6241811</th>
<th>Nachtragsmanagement</th>
<th>1 SWS</th>
<th>Lecture (V)</th>
<th>Haghsheno, Pietsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>WS 19/20</th>
<th>8240103428</th>
<th>Supplementary Claim Management</th>
<th>Prüfung (PR)</th>
<th>Haghsheno</th>
</tr>
</thead>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
T 6.344 Course: Supply Chain Management in the Automotive Industry [T-WIWI-102828]

Responsible: Tilman Heupel
Hendrik Lang

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581957</td>
<td>Supply Chain Management in the automotive industry</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Each winter term</td>
<td>Lang, Heupel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Type</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981957</td>
<td>Supply Chain Management in the Automotive Industry</td>
<td>Prüfung (PR)</td>
<td>Each winter term</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination will be in form of a written exam acc. to §4(2), 1 ER. Exams are offered in every semester and can be re-examined at every ordinary examination date.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Supply Chain Management in the automotive industry
2581957, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Notes

- Automotive industry significance
- The automotive supply chain
- Adding value structures of the automotive supply chain and mastering of the production systems as factors of success in the SCM
- Strategic procurement logistics
- Risk management
- Quality engineering and management in the automotive supply chain
- Cost engineering and management in the automotive supply chain
- Purchasing (Supplier selection, contract management)
- Performance measurement of the supply chain
- Organization
Learning Content

- Automotive industry significance
- The automotive supply chain
- Adding value structures of the automotive supply chain and mastering of the production systems as factors of success in the SCM
- Strategic procurement logistics
- Risk management
- Quality engineering and management in the automotive supply chain
- Cost engineering and management in the automotive supply chain
- Purchasing (Supplier selection, contract management)
- Performance measurement of the supply chain / organization

Annotation

None.

Workload

The total workload for this course is approximately 105.0 hours. For further information see German version.

Literature

Will be announced in the course.
6.345 Course: Supply Chain Management with Advanced Planning Systems [T-WIWI-102763]

Responsible: Claus J. Bosch
Dr. Mathias Göbelt

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Course</th>
<th>Type</th>
<th>SWS</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2581961</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>Lecture (V)</td>
<td>2 SWS</td>
<td>Göbelt, Bosch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Course</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7981961</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral (30 minutes) or a written (60 minutes) exam (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Supply Chain Management with Advanced Planning Systems

2581961, SS 2020, 2 SWS, Language: English, [Open in study portal]
Notes
This lecture deals with supply chain management from a practitioner’s perspective with a special emphasis Advanced Planning Systems (APS) and the planning domain. The software solution SAP SCM, one of the most widely used Advanced Planning Systems, is used as an example to show functionality and application of an APS in practice.

First, the term supply chain management is defined and its scope is determined. Methods to analyze supply chains as well as indicators to measure supply chains are derived. Second, the structure of an APS (advanced planning system) is discussed in a generic way. Later in the lecture, the software solution SAP SCM is mapped to this generic structure. The individual planning tasks and software modules (demand planning, supply network planning / sales & operations planning, production planning / detailed scheduling, deployment, transportation planning, global available-to-promise) are presented by discussing the relevant business processes, providing academic background, describing typical planning processes and showing the user interface and user-related processes in the software solution. At the end of the lecture, implementation methodologies and project management approaches for SAP SCM are covered.

Contents

1. Introduction to Supply Chain Management
 1.1. Supply Chain Management Fundamentals
 1.2. Supply Chain Management Analytics

2. Structure of Advanced Planning Systems

3. SAP SCM
 3.1. Introduction / SCM Solution Map
 3.2. Demand Planning
 3.4. Production Planning and Detailed Scheduling
 3.5. Deployment
 3.6. Transportation Planning / Global Available to Promise
 3.7. Cloud-based Supply Chain Planning

4. SAP SCM in Practice
 4.1. Project Management and Implementation
 4.2. SAP Implementation Methodology

Learning Content

1. Introduction to Supply Chain Management
 1.1. Supply Chain Management Fundamentals
 1.2. Supply Chain Management Analytics

2. Structure of Advanced Planning Systems

3. SAP SCM
 3.1. Introduction / SCM Solution Map
 3.2. Demand Planning
 3.3. Supply Network Planning
 3.4. Production Planning and Detailed Scheduling
 3.5. Deployment
 3.6. Transportation Planning and Vehicle Scheduling
 3.7. [Optional] Global Available to Promise

4. SAP SCM in Practice
 4.1. Success Stories
 4.2. SAP Implementation Methodology

Annotation
This lecture has 3.5 Credits since summer term 2014.

Workload
The total workload for this course is approximately 105 hours. For further information see German version.

Literature
will be announced in the course
6.346 Course: Tax Law I [T-INFO-101315]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Lecture(SWS)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24168</td>
<td>Tax Law I</td>
<td>2 SWS</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Prüfung(PR)</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500066</td>
<td>Tax Law I</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500052</td>
<td>Tax Law I</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
</tbody>
</table>
6.347 Course: Tax Law II [T-INFO-101314]

Responsible: Detlef Dietrich
Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: M/INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

| Events | | | | | |
|----------------------|---------|---------|---------|---------|
| SS 2020 | 24646 | Tax Law II | 2 SWS | Dietrich |
| Exams | | | | | |
| WS 19/20 | 7500067 | Tax Law II | Prüfung (PR) | Dreier, Matz |
| SS 2020 | 7500053 | Tax Law II | Prüfung (PR) | Dreier, Matz |
Course: Technologies for Innovation Management [T-WIWI-102854]

Responsible: Dr. Daniel Jeffrey Koch

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Block (B)</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2545106</td>
<td>Technologies for Innovation Management</td>
<td>2 SWS</td>
<td>Block (B)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900239</td>
<td>Technologies for Innovation Management</td>
<td>Prüfung (PR)</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Competence Certificate

Presentation and individual paper (ca. 15 pages) as alternative exam assessment.

Prerequisites

None

Recommendation

Prior attendance of the course Innovationsmanagement: Konzepte, Strategien und Methoden is recommended.

Below you will find excerpts from events related to this course:

Notes

The seminar “Technologies for Innovation Management” will focus on the early phase or fuzzy front end in innovation management. Technologies can be of great importance here, above all in the supply of information. In globally distributed R & D organizations, it is necessary to collect as much information as possible on new technological developments in the early phase of the innovation process. Information and communication technologies can be supported.

Learning Content

The seminar “Technologies for Innovation Management” will focus on the early phase or fuzzy front end in innovation management. Technologies can be of great importance here, above all in the supply of information. In globally distributed R & D organizations, it is necessary to collect as much information as possible on new technological developments in the early phase of the innovation process. Information and communication technologies can be supported.

Literature

Will be announced in the first session.
6.349 Course: Technology Assessment [T-WIWI-102858]

- **Responsible:** Dr. Daniel Jeffrey Koch
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101507 - Innovation Management

 M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| SS 2020 | 7900238 | Technology Assessment | Prüfung (PR) | Weissenberger-Eibl |

Competence Certificate

Alternative exam assessment.

Prerequisites

None

Recommendation

Prior attendance of the course Innovation Management is recommended.

Annotation

See German version.
6.350 Course: Telecommunication and Internet Economics [T-WIWI-102713]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101406 - Network Economics
M-WIWI-101409 - Electronic Markets

Type: Written examination
Credits: 4.5
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2561232</td>
<td>Telecommunication and Internet Economics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Mitusch</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2561233</td>
<td>Übung zu Telekommunikations- und Internetökonomie</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Mitusch, Wisotzky</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900296</td>
<td>Telecommunication and Internet Economics</td>
<td>Prüfung (PR)</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Competence Certificate
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
None

Recommendation
Basic knowledge and skills of microeconomics from undergraduate studies (bachelor’s degree) are expected.
Particularly helpful but not necessary: Industrial Economics. Prior attendance of the lecture „Competition in Networks“ [26240] or "Industrial Organisation" is helpful in any case but not considered a formal precondition. The english taught course "Communications Economics" is complementary and recommendet for anyone interested in the sector.

Below you will find excerpts from events related to this course:

Learning Content
Among the network sectors the telecommunication and internet sector is the most dynamic one and the one with and highest variety of phenomena. Problems of natural monopoly still exist in some parts. But there is also competition, not only at the service level but also at the infrastructural level. Both levels are characterized by (vertical) quality differentiations and by high technology dynamics. What should the regulation of this sector look like? How should the mutual network access prices of two telecommunication providers be regulated and how can regulators set incentives for infrastructure investments?
The internet is a free market par excellence, because everybody can open internet businesses without high entry costs. Why then can a company like ebay dominate the market for internet-auction platforms so strongly? The causes of market concentration on the internet will be analyzed. So will be the economic implications of the Next Generations Networks.

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Further literature will be provided during the lecture.
6.351 Course: Telecommunications Law [T-INFO-101309]

Responsible: Prof. Dr. Nikolaus Marsch
Organisation: KIT Department of Informatics
Part of: M-INFO-101217 - Public Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>24632</td>
<td>Telekommunikationsrecht</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Hermstrüwer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500049</td>
<td>Telecommunications Law</td>
<td>Prüfung (PR)</td>
<td>Barczak</td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500085</td>
<td>Telecommunications Law</td>
<td>Prüfung (PR)</td>
<td>Marsch</td>
</tr>
</tbody>
</table>
6.352 Course: Tendering, Planning and Financing in Public Transport [T-BGU-101005]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-101064 - Fundamentals of Transportation
- M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6232807</td>
<td>2 SWS</td>
<td>Pischon</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam, appr. 20 min.

Prerequisites
none

Recommendation
none

Annotation
none
6.353 Course: The negotiation of open innovation [T-WIWI-110867]

Responsible: Dr. Daniela Beyer

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101507 - Innovation Management
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Examination of another type</td>
<td>3</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Non exam assessment.

The following aspects are included in the evaluation:

- Exposé of the seminar paper (15%)
- Preparation of the methodology (15%) (interview guide, quantitative survey, etc.)
- Informed participation and preparation of the simulation game (20%)
- Written elaboration (50%).

Prerequisites
None

Recommendation
Prior attendance of the course Innovation Management [2545015] is recommended.

Below you will find excerpts from events related to this course:

Negotiating Open Innovation
2545105, SS 2020, 2 SWS, Language: German, Open in study portal

Notes
In times of great challenges, it is no longer sufficient for individual experts to be responsible for innovation success. This is precisely why there is currently so much hype surrounding the topic of Open Innovation. The exchange of knowledge within and between organizations is crucial, but requires the right attitudes and decisions. This seminar examines how this can be achieved in the best possible way, depending on the objectives. By visiting two practitioners from science-economics cooperations and the company's own Startup Accelerator Programme, theory and practice are linked. Furthermore, a simulation game will take place in the last session, in which the learned will be applied. The grading is based on a group seminar work, which requires an empirical analysis and the preparation of this in the course of the semester (expose, preparation of the methodology) as well as well-informed participation.
6.354 Course: Theory of Endogenous Growth [T-WIWI-102785]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101478 - Innovation and Growth
- M-WIWI-101496 - Growth and Agglomeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Theory of endogenous growth</td>
<td>2 SWS</td>
<td>Lecture (V) Ott</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Theory of endogenous growth</td>
<td>1 SWS</td>
<td>Practice (Ü) Ott, Eraydin</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Theory of Endogenous Growth</td>
<td></td>
<td>Prüfung (PR) Ott</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but it is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Annotation

Due to the research semester of Prof. Dr. Ingrid Ott, the course is not offered in the winter term 2018/19.

Below you will find excerpts from events related to this course:
Notes
This course is intended as an introduction to the field of advanced macroeconomics with a special focus on economic growth. Lectures aim to deal with the theoretical foundations of exogenous and endogenous growth models. The importance of growth for nations and discussion of some (well-known) growth theories together with the role of innovation, human capital and environment will therefore be primary focuses of this course.

Learning objective:
Students shall be given the ability to understand, analyze and evaluate selected models of endogenous growth theory.

Course content:
- Intertemporal consumption decision
- Growth models with exogenous saving rates: Solow
- Growth models with endogenous saving rates: Ramsey
- Growth and environmental resources
- Basic models of endogenous growth
- Human capital and economic growth
- Modelling of technological progress
- Diversity Models
- Schumpeterian growth
- Directional technological progress
- Diffusion of technologies

Recommendations:
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.

Exam description:
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.
Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Learning Content
- Basic models of endogenous growth
- Human capital and economic growth
- Modelling of technological progress
- Diversity Models
- Schumpeterian growth
- Directional technological progress
- Diffusion of technologies

Workload
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
Excerpt:
Course: Topics in Experimental Economics [T-WIWI-102863]

Responsible: Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101505 - Experimental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2560232</td>
<td>Topics in Experimental Economics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Reiß</td>
</tr>
<tr>
<td>SS 2020</td>
<td>25602333</td>
<td>Übungen zu Topics in Experimental Economics</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900221</td>
<td>Topics in Experimental Economics</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

Basic knowledge of Experimental Economics is assumed. Therefore, it is strongly recommended to attend the course Experimental Economics beforehand.

Annotation

The course is offered in summer 2020 for the next time, not in summer 2018.
6.356 Course: Trademark and Unfair Competition Law [T-INFO-101313]

Responsible: Dr. Yvonne Matz
Organisation: KIT Department of Informatics
Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>WS</th>
<th>Lecture (V)</th>
<th>Matz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24136</td>
<td>Trademark and Unfair Competition Law</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Prüfung (PR)</th>
<th>Dreier, Matz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7500061</td>
<td>Trademark and Unfair Competition Law</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>7500051</td>
<td>Trademark and Unfair Competition Law</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
</tbody>
</table>

Credits: 3
Recurrence: Each term
Version: 1
6.357 Course: Traffic Engineering [T-BGU-101798]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6232703</td>
<td>Straßenverkehrstechnik</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240101798</td>
<td>Traffic Engineering</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.358 Course: Traffic Flow Simulation [T-BGU-101800]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6232804</td>
<td>Simulation von Verkehr</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th>Traffic Flow Simulation</th>
<th>Prüfung (PR)</th>
<th>Vortisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240101800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.359 Course: Traffic Management and Transport Telematics [T-BGU-101799]

Responsible: Prof. Dr.-Ing. Peter Vortisch

Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences

Part of: M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6232802</td>
<td>Verkehrsmanagement und Telematik</td>
<td>2</td>
<td>Lecture / Practice (VÜ)</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240101799</td>
<td>Traffic Management and Transport Telematics</td>
<td>Prüfung (PR)</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.360 Course: Transport Economics [T-WIWI-100007]

Responsible: Prof. Dr. Kay Mitusch
Dr. Eckhard Szimba

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101406 - Network Economics
M-WIWI-101468 - Environmental Economics
M-WIWI-101485 - Transport Infrastructure Policy and Regional Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Transport Economics</td>
<td>SWS Lecture (V)</td>
<td>Mitusch, Szimba</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>Übung zu Transportökonomie</td>
<td>SWS Practice (Ü)</td>
<td>Mitusch, Szimba, Wisotzky</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Transport Economics</td>
<td>Prüfung (PR)</td>
<td>Mitusch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Below you will find excerpts from events related to this course:

Transport Economics

2560230, SS 2020, SWS, Language: German, Open in study portal

Learning Content

The course shall provide an overview of transport economics. It will be demonstrated, using new microeconomic models, which impacts regulation and pricing in transport have on the economic actions of individuals and logisticans and which benefits and costs apply. The following topics will be discussed:

- demand and supply in transport
- empirical analysis of transport demand
- assessment of transport infrastructure projects
- external effects in transport
- transport policy
- cost structures of transport infrastructure
- Project evaluation from the perspective of the public sector

Workload

The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature
Will be announced in the lecture.
(for literature to prepare the lecture - see additional literature)

Literature:
Course: Transportation Data Analysis [T-BGU-100010]

Responsible: Dr.-Ing. Martin Kagerbauer
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101065 - Transportation Modelling and Traffic Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6232901</td>
<td>Empirische Daten im</td>
<td>Kagerbauer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verkehrswesen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>8245100010</td>
<td>Transportation Data Analysis</td>
<td>Kagerbauer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
6.362 Course: Transportation Systems [T-BGU-106610]

Responsible: Prof. Dr.-Ing. Peter Vortisch
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of: M-BGU-101064 - Fundamentals of Transportation

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SS 2020</th>
<th>6200406</th>
<th>Transportation Systems</th>
<th>2 SWS</th>
<th>Lecture (V)</th>
<th>Vortisch</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>WS 19/20</th>
<th>8230106610</th>
<th>Transportation Systems</th>
<th>Prüfung (PR)</th>
<th>Vortisch</th>
</tr>
</thead>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
6.363 Course: Tunnel Construction and Blasting Engineering [T-BGU-101846]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr.-Ing. Shervin Haghsheno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Civil Engineering, Geo- and Environmental Sciences</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-BGU-101110 - Process Engineering in Construction</td>
</tr>
</tbody>
</table>

Type
- Oral examination

Credits
- 3

Recurrence
- Each winter term

Version
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>ORAL EXAMINATION</th>
<th>CREDITS</th>
<th>RECURRENCE</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>6241903</td>
<td>Tunnelbau und Sprengtechnik</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>EXAMINATION</th>
<th>CREDITS</th>
<th>RECURRENCE</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240101846</td>
<td>Tunnel Construction and Blasting Engineering</td>
<td>Prüfung (PR)</td>
<td>Haghsheno</td>
</tr>
</tbody>
</table>

Prerequisites
- None

Recommendation
- None

Annotation
- None
6.364 Course: Turnkey Construction I - Processes and Methods [T-BGU-103430]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-101884 - Lean Management in Construction
- M-BGU-101888 - Project Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1.5</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events					
SS 2020	6241808	Schlüsselfertiges Bauen I	1 SWS	Lecture (V)	Teizer
Exams					
WS 19/20	8240103430	Turnkey Construction I - Processes and Methods	Prüfung (PR)	Haghsheno	

Prerequisites
None

Recommendation
None

Annotation
None
6.365 Course: Turnkey Construction II - Trades and Technology [T-BGU-103431]

Responsible: Prof. Dr.-Ing. Shervin Haghsheno
Organisation: KIT Department of Civil Engineering, Geo- and Environmental Sciences
Part of:
- M-BGU-101884 - Lean Management in Construction
- M-BGU-101888 - Project Management in Construction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Title</th>
<th>Weeks</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>6241809</td>
<td>Schlüsselfertiges Bauen II (Gewerke und Technik)</td>
<td>2 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>Teizer, Denzer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>8240103431</td>
<td>Turnkey Construction II - Trades and Technology</td>
<td>Prüfung (PR)</td>
<td>Haghsheno</td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None
Course: Valuation [T-WIWI-102621]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management

Prerequisites
None

Recommendation
None

Description
Firms prosper when they create value for their shareholders and stakeholders. This is achieved by investing in projects that yield higher returns than their according cost of capital. Students are told the basic tools for firm and project valuation as well as ways to implement these tools in order to enhance a firm’s value and improve its investment decisions. Among other things, the course will deal with the valuation of firms and individual projects using discounted cash flow and relative valuation approaches and the valuation of flexibility deploying real options.

Learning Content
Topics:
- Projections of cash flows
- Estimation of the cost of capital
- Valuation of the firm
- Mergers and acquisitions
- Real options

Literature
Elective Literature
6.367 Course: Virtual Engineering I [T-MACH-102123]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Virtual Engineering I</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Exercises Virtual Engineering I</td>
<td>2 SWS</td>
<td>Practice (Ü)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Virtual Engineering I</td>
<td></td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination 90 min.

Prerequisites
None

Below you will find excerpts from events related to this course:

Virtual Engineering I
2121352, WS 19/20, 2 SWS, Language: German, Open in study portal

Description
Media:
Lecture notes

Learning Content
The lecture communicates IT aspects required for understanding virtual product development processes. For this purpose, the focus is set on systems used in industry supporting the process chain of Virtual Engineering:

- Product Lifecycle Management is an approach for managing product related data across the entire lifecycle of the product, beginning with the concept phase until disassembling and recycling.
- CAx-systems for virtual product development allow modeling digital products regarding design, construction, manufacturing and maintenance.
- Validation systems enable the analysis of products regarding statics, dynamics, safety and manufacturing feasibility.

The objective of the lecture is to clarify the relationship between construction and validation operations by applying virtual prototypes and VR/AR/MR visualization techniques in combination with PDM/PLM-systems. This is taught by introducing each particular system in applied exercises.

Exercises Virtual Engineering I
2121353, WS 19/20, 2 SWS, Language: German/English, Open in study portal

Learning Content
In this module, the practical application of different CAx software systems is exemplarily conducted in small groups, the main focus being the CAD systems CATIA V5 (DASSAULT SYSTEMES) and NX 5 (Siemens PLM Software).

Workload
Regular attendance: 31,5 hours, self-study: 10,5 hours
Literature
Exercise notes
6.368 Course: Virtual Engineering II [T-MACH-102124]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101281 - Virtual Engineering B

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Virtual Engineering II</td>
<td>2/1 SWS</td>
<td>Lecture / Practice (VÜ)</td>
<td>2</td>
</tr>
<tr>
<td>Exams</td>
<td>Virtual Engineering II</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination 90 min.

Prerequisites

None

Below you will find excerpts from events related to this course:

Virtual Engineering II

2122378, SS 2020, 2/1 SWS, Language: German/English, Open in study portal

Description

Media:

- Lecture notes

Learning Content

The lecture presents the IT aspects required for understanding virtual product development processes:

- Corresponding models can be visualized in Virtual Reality Systems, from individual parts to complete assemblies.
- Virtual Prototypes combine CAD-data and information about properties of components and assemblies for immersive visualization, functionality tests and functional validation in VR/AR/MR environments.
- Integrated Virtual Product Development explains product development processes from the point of view of Virtual Engineering.

The objective of this lecture is to clarify the relationship between construction and validation operations by using virtual prototypes and VR/AR/MR visualization techniques in combination with PDM/PLM-systems. This will be achieved by introducing each particular IT-system with practical-oriented exercises.
6.369 Course: Virtual Engineering Lab [T-MACH-106740]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova
Organisation: KIT Department of Mechanical Engineering

Part of:
M-MACH-101281 - Virtual Engineering B
M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Project (PRO)</th>
<th>Ovtcharova, Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123350</td>
<td>Virtual Engineering Lab</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2123350</td>
<td>Virtual Engineering Lab</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Prüfung (PR)</th>
<th>Ovtcharova</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-106740</td>
<td>Virtual Engineering Lab</td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment of another type (graded), procedure see webpage.
6.370 Course: Virtual Training Factory 4.X [T-MACH-106741]

Responsible: Prof. Dr.-Ing. Jivka Ovtcharova

Organisation: KIT Department of Mechanical Engineering

Part of:
- M-MACH-101281 - Virtual Engineering B
- M-MACH-101283 - Virtual Engineering A

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Type</th>
<th>Recurrence</th>
<th>Module Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123351</td>
<td>Virtual training factory 4.X</td>
<td>SWS</td>
<td></td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2123351</td>
<td>Virtual training factory 4.X</td>
<td>SWS</td>
<td>Project (PRO)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>Type</th>
<th>Module Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>76-T-MACH-106741</td>
<td>Virtual training factory 4.X</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Competence Certificate

Assessment of another type (graded), procedure see webpage.
6.371 Course: Warehousing and Distribution Systems [T-MACH-105174]

- **Responsible:** Prof. Dr.-Ing. K. Furmans
- **Organisation:** KIT Department of Mechanical Engineering
- **Part of:**
 - M-MACH-101263 - Introduction to Logistics
 - M-MACH-101278 - Material Flow in Networked Logistic Systems
 - M-MACH-101280 - Logistics in Value Chain Networks
 - M-MACH-104888 - Advanced Module Logistics

Events

| SS 2020 | 2118097 | Warehousing and distribution systems | 2 SWS | Lecture (V) | Furmans |

Competence Certificate
The assessment consists of a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

Prerequisites
none

Below you will find excerpts from events related to this course:

Warehousing and distribution systems
2118097, SS 2020, 2 SWS, Language: German, [Open in study portal](#)

Description
Media:
presentations, black board

Learning Content
- Introduction
- Yard management
- Receiving
- Storage and picking
- Workshop on cycle times
- Consolidation and packing
- Shipping
- Added Value
- Overhead
- Case Study: DCRM
- Planning of warehouses
- Case study: Planning of warehouses
- Distribution networks
- Lean Warehousing

Annotation
none

Workload
regular attendance: 21 hours
self-study: 99 hours
Literature

ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISER, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

A comprehensive overview of scientific papers can be found at:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
6.372 Course: Water Chemistry and Water Technology I [T-CIWVT-101900]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101121 - Water Chemistry and Water Technology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>22621</td>
<td>Water Technology</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Horn</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>22622</td>
<td>Excercises to Water Technology</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Horn, und Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>22664</td>
<td>Practical course: Water quality and water assessment</td>
<td>2</td>
<td>Practical course (P)</td>
<td>Horn, Abbt-Braun, und Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Title</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7232001</td>
<td>Water Chemistry and Water Technology I</td>
<td>Prüfung (PR)</td>
<td>Horn, Abbt-Braun</td>
</tr>
</tbody>
</table>

Prerequisites

T-CIWVT-103351 - Wasserchemisches Praktikum must be passed.
6.373 Course: Water Chemistry and Water Technology II [T-CIWVT-101901]

Responsible: Prof. Dr. Harald Horn
Organisation: KIT Department of Chemical and Process Engineering
Part of: M-CIWVT-101122 - Water Chemistry and Water Technology II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>22603</td>
<td>Scientific principles for water quality assessment</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Abbt-Braun</td>
</tr>
<tr>
<td>SS 2020</td>
<td>22605</td>
<td>Membrane Technologies in Water Treatment</td>
<td>2 SWS</td>
<td>Lecture (V)</td>
<td>Horn, Saravia</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7232003</td>
<td>Water Chemistry and Water Technology II</td>
<td>Prüfung (PR)</td>
<td>Horn, Abbt-Braun</td>
</tr>
</tbody>
</table>

Prerequisites

The module "Water Chemistry and Water Technology I" must be passed.
6.374 Course: Web Science [T-WIWI-103112]

Responsible: Prof. Dr. York Sure-Vetter
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101472 - Informatics
- M-WIWI-101628 - Emphasis in Informatics
- M-WIWI-101630 - Electives in Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2511312</td>
<td>Web Science</td>
<td>2</td>
<td>Lecture (V)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2511313</td>
<td>Exercises to Web Science</td>
<td>1</td>
<td>Practice (Ü)</td>
<td>Sure-Vetter, Heling</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900031</td>
<td>Web Science</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Web Science

2511312, WS 19/20, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V)
Notes
The lecture provides insights into the analysis of social networks and the used metrics. Thereby, in particular, web phenomena and the available technologies are considered.

Web Science is the emergent study of the people and technologies, applications, processes and practices that shape and are shaped by the World Wide Web. Web Science aims to draw together theories, methods and findings from across academic disciplines, and to collaborate with industry, business, government and civil society, to develop our knowledge and understanding of the Web: the largest socio-technical infrastructure in human history.

The lecture provides an introduction to basic concepts of Web Science. Essential theoretical foundations, phenomena and approaches are presented and explained.

This course aims to provide students with a basic knowledge and understanding about the structure and analysis of selected web phenomena and technologies. Topics include the small world problem, network theory, social network analysis, graph search and technologies/standards/architectures.

Learning objectives:
The students

- look critically into current research topics in the field of Web Science and learns in particular about the topics small-world-problem, network theory, social network analysis, bibliometrics, as well as link analysis and search.
- apply interdisciplinary thinking.
- train the application of technological approaches to social science problems.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Exercises to Web Science
2511313, WS 19/20, 1 SWS, Language: English, Open in study portal

Notes
The exercises are related to the lecture Web Science.

Multiple exercises are held that capture the topics, held in the lecture Web Science and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

This course aims to provide students with a basic knowledge and understanding about the structure and analysis of selected web phenomena and technologies. Topics include the small world problem, network theory, social network analysis, graph search and technologies/standards/architectures.

Learning objectives:
The students

- look critically into current research topics in the field of Web Science and learns in particular about the topics small-world-problem, network theory, social network analysis, bibliometrics, as well as link analysis and search.
- apply interdisciplinary thinking.
- train the application of technological approaches to social science problems.
6.375 Course: Wildcard Key Competences Seminar 1 [T-WIWI-104680]

Organisation: University
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
6.376 Course: Wildcard Key Competences Seminar 2 [T-WIWI-104681]

Organisation: University
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Type</td>
<td>Credits</td>
<td>Version</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisation: University
Part of: M-WIWI-101808 - Seminar Module
6.378 Course: Wildcard Key Competences Seminar 4 [T-WIWI-104683]

Organisation: University
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
6.379 Course: Wildcard Key Competences Seminar 5 [T-WIWI-104684]

Organisation: University
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
6.380 Course: Wildcard Key Competences Seminar 6 [T-WIWI-104685]

Organisation: University
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
6.381 Course: Wildcard Key Competences Seminar 8 [T-WIWI-105956]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-WIWI-101808 - Seminar Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
6.382 Course: Wildcard Seminar Module Master [T-WIWI-110215]

Organisation: University
Part of: M-WIWI-101808 - Seminar Module

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>
6.383 Course: Workshop Business Wargaming – Analyzing Strategic Interactions [T-WIWI-106189]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2577922</td>
<td>Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>7900172</td>
<td>Workshop Business Wargaming – Analyzing Strategic Interactions</td>
<td>Prüfung (PR)</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Competence Certificate

In this course, real conflict situations are simulated and analyzed using various methods from business wargaming. Details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the bachelor module „Strategy and Organization“ is recommended.

Annotation

This course is admission restricted. If you were already admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed.

The course is planned to be held for the first time in the summer term 2018.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)</th>
<th>Seminar (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code: 2577922, WS 19/20, 2 SWS, Language: German, Open in study portal</td>
<td></td>
</tr>
</tbody>
</table>
Notes
In this lecture, current economic trends will be discussed from a perspective of competition analysis and corporate strategies. Using appropriate frameworks, the students will be able to analyze collectively selected case studies and derive business strategies.

Learning Objectives:
Students
- are able to analyze business strategies and derive recommendations for the management
- learn to express their position through compelling reasoning in structured discussions

Recommendations:
Basic knowledge as conveyed in the bachelor module “Strategy and Organization” is recommended.

Workload:
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a

Assessment:
In this course, real conflict situations are simulated and analyzed using various methods from business wargaming. Details on the design of the success control will be announced during the lecture.

Note:
This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.
The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Learning Content
In this lecture, current economic trends will be discussed from a perspective of competition analysis and corporate strategies. Using appropriate frameworks, the students will be able to analyze collectively selected case studies and derive business strategies.

Annotation
This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed.

Workload
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a
6.384 Course: Workshop Current Topics in Strategy and Management [T-WIWI-106188]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2577923</th>
<th>Workshop aktuelle Themen Strategie und Management (Master)</th>
<th>2 SWS</th>
<th>Seminar (S)</th>
<th>Lindstädt</th>
</tr>
</thead>
</table>

Competence Certificate

The evaluation of the performance takes place through the active participation in the discussion rounds; an appropriate preparation is expressed here and a clear understanding of the topic and framework becomes recognizable. Further details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the bachelor module „Strategy and Organization“ is recommended.

Annotation

This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed.

The course is planned to be held for the first time in the winter term 2017/18.

Below you will find excerpts from events related to this course:

Workshop aktuelle Themen Strategie und Management (Master)

2577923, SS 2020, 2 SWS, Language: German, [Open in study portal](#)
Notes
In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Learning Objectives:
Students
- are able to explain and evaluate theoretical approaches and models in the field of strategic management and can illustrate them by tangible examples
- learn to express their position in structured discussions

Recommendations:
Basic knowledge as conveyed in the bachelor module "Strategy and Organization" is recommended.

Workload:
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a

Assessment:
The assessment of performance is made through active participation in the discussion rounds; adequate preparation is expressed here and a clear understanding of the topic and framework becomes evident. Further details on the design of the success control will be announced during the lecture.

Note:
This course is admission restricted. If you were already admitted to another course in the module "Advanced Topics in Strategy and Management" the participation at this course will be guaranteed. Further information on the application process can be found on the IBU website.

The examinations are offered at least every second semester, so that the entire module can be completed in two semesters.

Learning Content
In this lecture, students discuss and evaluate models in the field of strategic management with a focus on applicability and theory based limitations. Critical examination of current research results will be a substantial part of this course.

Workload
The total workload for this course is approximately 90 hours.
Lecture: 15 hours
Preparation of lecture: 75 hours
Exam preparation: n/a
6.385 Course: X-ray Optics [T-MACH-109122]

Responsible: Dr. Arndt Last
Organisation: KIT Department of Mechanical Engineering

Part of: M-MACH-101291 - Microfabrication
M-MACH-101292 - Microoptics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2141007</td>
<td>X-ray Optics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2141007</td>
<td>X-ray optics</td>
<td>2</td>
<td>Lecture (V)</td>
<td>4</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
oral exam (about 20 min)

Prerequisites
none

Below you will find excerpts from events related to this course:

X-ray Optics
2141007, WS 19/20, 2 SWS, Language: German, Open in study portal

Lecture (V)

Learning Content
The lecture covers general principles of optics as well as basics, functioning and application of reflective, refractive and diffractive X-ray optical elements and systems. Selected X-ray analytical imaging methods and the necessary optical elements are discussed including their potentials and limitations.

Annotation
Lecture dates will be fixed in agreement with the students, see institutes website.
A visit at synchrotron ANKA is possible if requested.

Workload
lecture times plus assignment to review

Literature
M. Born und E. Wolf
Principles of Optics, 7th (expanded) edition
Cambridge University Press, 2010
A. Erko, M. Idir, T. Krist und A. G. Michette
Modern Developments in X-Ray and Neutron Optics
Springer Series in Optical Sciences, Vol. 137
Springer-Verlag Berlin Heidelberg, 2008
D. Attwood
Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications
Cambridge University Press, 1999

X-ray optics
2141007, SS 2020, 2 SWS, Language: English, Open in study portal

Lecture (V)
Notes
see Institute homepage
If you are interested, please contact arndt.last@kit.edu by 24.4.2020 to make an appointment.