Modulhandbuch
Informationswirtschaft M.Sc.
SPO 2015
Wintersemester 2023/24
Stand 04.10.2023

KIT-FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFTEN / KIT-FAKULTÄT FÜR INFORMATIK
Inhaltsverzeichnis

1. **Allgemeine Informationen** .. 10
 1.1. Curriculare Elemente ... 10
 1.2. Beginn und Abschluss eines Moduls ... 10
 1.3. Modul- und Teilleistungsversionen ... 10
 1.4. Erstverwendung ... 10
 1.5. Gesamt- oder Teillprüfungen .. 10
 1.6. Arten von Prüfungen .. 11
 1.7. Wiederholung von Prüfungen .. 11
 1.8. Prüfende .. 11
 1.9. Zusatzleistungen ... 11
 1.10. Weitere Informationen .. 11
 1.11. Ansprechpartner .. 11

2. **Der Studiengang** ... 12
 2.1. Qualifikationsziele ... 12
 2.2. Aufbau nach SPO 2015 .. 12

3. **Aufbau des Studiengangs** ... 14
 3.1. Masterarbeit ... 14
 3.2. Informatik .. 15
 3.3. Wirtschaftswissenschaften .. 18
 3.4. Recht .. 20
 3.5. Forschungsfach ... 21

4. **Module** ... 22
 4.1. Advanced Algorithms: Design and Analysis - M-INFO-101199 ... 22
 4.3. Advanced Machine Learning and Data Science - M-WIWI-105659 .. 24
 4.4. Algorithm Engineering - M-INFO-100795 ... 25
 4.5. Algorithmen für Routenplanung - M-INFO-100031 ... 27
 4.6. Algorithmen II - M-INFO-101173 .. 28
 4.7. Algorithmen zur Visualisierung von Graphen - M-INFO-102094 ... 29
 4.8. Algorithmische Geometrie - M-INFO-102110 ... 30
 4.9. Algorithmische Methoden für schwere Optimierungsprobleme - M-INFO-101237 31
 4.10. Algorithmische Methoden zur Netzwerkanalyse - M-INFO-102400 .. 32
 4.11. Analysetechniken für große Datenbestände in Theorie und Praxis - M-INFO-101256 33
 4.12. Analytics und Statistik - M-WIWI-101637 .. 34
 4.15. Artificial Intelligence - M-WIWI-105366 .. 38
 4.16. Automated Planning and Scheduling - M-INFO-104447 ... 40
 4.17. Automatische Sichtprüfung und Bildverarbeitung - M-INFO-100826 .. 41
 4.20. Collective Decision Making - M-WIWI-101504 ... 45
 4.21. Controlling (Management Accounting) - M-WIWI-101498 ... 46
 4.22. Critical Digital Infrastructures - M-WIWI-104403 ... 47
 4.23. Cross-Functional Management Accounting - M-WIWI-101510 .. 49
 4.24. Data Science - M-INFO-106505 .. 50
 4.25. Data Science: Data-Driven Information Systems - M-WIWI-103117 .. 51
 4.27. Data Science: Evidence-based Marketing - M-WIWI-101647 .. 54
 4.28. Data Science: Intelligente, adaptive und lernende Informationsdienste - M-WIWI-105661 55
 4.29. Datenbankeinsatz - M-INFO-100780 .. 57
 4.30. Datenbankfunktionalität in der Cloud - M-INFO-105724 .. 58
 4.31. Datenbank-Praktikum - M-INFO-101662 ... 59
 4.32. Datenschutz von Anonymisierung bis Zugriffskontrolle - M-INFO-104045 ... 60
 4.34. Designing Interactive Information Systems - M-WIWI-104080 .. 62
 4.35. Digital Marketing - M-WIWI-106258 .. 63
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101409</td>
<td>Electronic Markets</td>
</tr>
<tr>
<td>M-WIWI-101451</td>
<td>Energiewirtschaft und Energiemärkte</td>
</tr>
<tr>
<td>M-WIWI-101452</td>
<td>Energiewirtschaft und Technologie</td>
</tr>
<tr>
<td>M-WIWI-101488</td>
<td>Entrepreneurship (EnTechnon)</td>
</tr>
<tr>
<td>M-WIWI-101471</td>
<td>Industrieelle Produktion II</td>
</tr>
<tr>
<td>M-WIWI-101411</td>
<td>Industrieelle Produktion III</td>
</tr>
<tr>
<td>M-WIWI-104068</td>
<td>Information Systems in Organizations</td>
</tr>
<tr>
<td>M-WIWI-101443</td>
<td>Informationswirtschaft</td>
</tr>
<tr>
<td>M-WIWI-101478</td>
<td>Innovation und Wachstum</td>
</tr>
<tr>
<td>M-WIWI-101507</td>
<td>Innovationsmanagement</td>
</tr>
<tr>
<td>M-WIWI-101514</td>
<td>Innovationsökonomik</td>
</tr>
<tr>
<td>M-WIWI-101208</td>
<td>Innovative Konzepte des Daten- und Informationsmanagements</td>
</tr>
<tr>
<td>M-WIWI-101456</td>
<td>Intelligente Systeme und Services</td>
</tr>
<tr>
<td>M-WIWI-106315</td>
<td>IT-Sicherheit</td>
</tr>
<tr>
<td>M-WIWI-101178</td>
<td>Kommunikation und Datenhaltung</td>
</tr>
<tr>
<td>M-WIWI-101575</td>
<td>Komplexitätstheorie, mit Anwendungen in der Kryptographie</td>
</tr>
<tr>
<td>M-WIWI-100728</td>
<td>Kontextsensitive Systeme</td>
</tr>
<tr>
<td>M-WIWI-101446</td>
<td>Market Engineering</td>
</tr>
<tr>
<td>M-WIWI-105312</td>
<td>Marketing and Sales Management</td>
</tr>
<tr>
<td>M-WIWI-101239</td>
<td>Maschinelle Visuelle Wahrnehmung</td>
</tr>
<tr>
<td>M-WIWI-103356</td>
<td>Maschinelles Lernen</td>
</tr>
<tr>
<td>M-WIWI-105778</td>
<td>Maschinelles Lernen - Grundlagen und Algorithmen</td>
</tr>
<tr>
<td>M-WIWI-101473</td>
<td>Mathematische Optimierung</td>
</tr>
<tr>
<td>M-WIWI-101500</td>
<td>Mensch-Maschine-Interaktion</td>
</tr>
<tr>
<td>M-WIWI-104061</td>
<td>Microservice-basierte Web-Anwendungen</td>
</tr>
<tr>
<td>M-WIWI-100785</td>
<td>Mobilkommunikation</td>
</tr>
<tr>
<td>M-WIWI-101656</td>
<td>Modul Masterarbeit</td>
</tr>
<tr>
<td>M-WIWI-100825</td>
<td>Mustererkennung</td>
</tr>
<tr>
<td>M-WIWI-101206</td>
<td>Networking</td>
</tr>
<tr>
<td>M-WIWI-101204</td>
<td>Networking Labs</td>
</tr>
<tr>
<td>M-WIWI-100812</td>
<td>Netze und Punktwolken</td>
</tr>
<tr>
<td>M-WIWI-101207</td>
<td>Netzsecurity - Theorie und Praxis</td>
</tr>
<tr>
<td>M-WIWI-100782</td>
<td>Netzsecurity: Architekturen und Protokolle</td>
</tr>
<tr>
<td>M-WIWI-101406</td>
<td>Netzwerkkökonomie</td>
</tr>
<tr>
<td>M-WIWI-101217</td>
<td>Öffentliches Wirtschaftsrecht</td>
</tr>
<tr>
<td>M-WIWI-101638</td>
<td>Ökonometrie und Statistik I</td>
</tr>
<tr>
<td>M-WIWI-101639</td>
<td>Ökonometrie und Statistik II</td>
</tr>
<tr>
<td>M-WIWI-101502</td>
<td>Ökonomische Theorie und ihre Anwendung in Finance</td>
</tr>
</tbody>
</table>
4.95. Operations Research im Supply Chain Management - M-WIWI-102832 .. 143
4.96. Optimierung unter Unsicherheit in der Informationswirtschaft - M-WIWI-103243 ... 145
4.97. Parallele Algorithmen - M-INFO-100796 .. 146
4.98. Praktikum Algorithmentechnik - M-INFO-102072 .. 148
4.99. Praktikum: Data Science - M-INFO-105632 .. 149
4.100. Praktikum: Data Science für die Wissenschaften - M-INFO-106329 .. 150
4.101. Praktikum: Geometrisches Modellieren - M-INFO-101666 .. 151
4.102. Praktikum: Graphenvisualisierung in der Praxis - M-INFO-103302 .. 152
4.103. Praktikum: Smart Data Analytics - M-INFO-103235 .. 153
4.104. Projektpraktikum Angewandtes Maschinelles Lernen - M-WIWI-106491 .. 155
4.105. Recht der Wirtschaftsunternehmen - M-INFO-101216 .. 156
4.106. Recht des geistigen Eigentums - M-INFO-101215 .. 157
4.107. Robotik I - Einführung in die Robotik - M-INFO-100893 .. 158
4.108. Seminar: Informatik TECO - M-INFO-105328 .. 159
4.110. Seminarmodul Recht - M-INFO-101218 .. 161
4.111. Seminarmodul Wirtschaftswissenschaften - M-WIWI-102736 .. 162
4.112. Service Analytics - M-WIWI-101506 .. 163
4.113. Service Design Thinking - M-WIWI-101503 .. 165
4.115. Service Innovation, Design & Engineering - M-WIWI-102806 .. 168
4.117. Service Operations - M-WIWI-102805 .. 171
4.118. Software-Methodik - M-INFO-101202 .. 173
4.119. Software-Systeme - M-INFO-101201 .. 174
4.120. Stochastische Optimierung - M-WIWI-103289 .. 175
4.121. Strategie und Management: Fortgeschrittene Themen - M-WIWI-103119 .. 177
4.122. Telematik - M-INFO-100801 .. 178
4.123. Ubiquitäre Informationstechnologien - M-INFO-100789 .. 180
4.124. Ubiquitous Computing - M-WIWI-101458 .. 182
4.125. Umwelt- und Ressourcenökonomie - M-WIWI-101468 .. 183
4.126. Verkehrinfrastrukturökonomie und regionale Entwicklung - M-WIWI-101485 .. 184
4.127. Vertiefung Finanzwissenschaft - M-WIWI-101511 .. 185
4.128. Wachstum und Agglomeration - M-WIWI-101496 .. 187
4.129. Web and Data Science - M-WIWI-105368 .. 188
4.130. Web Data Management - M-WIWI-101455 .. 190
4.131. Wireless Networking - M-INFO-101203 .. 191

5. Teilleistungen .. 192
5.1. Advanced Empirical Asset Pricing - T-WIWI-110513 .. 192
5.2. Advanced Game Theory - T-WIWI-102861 .. 194
5.3. Advanced Information Systems - T-WIWI-110373 .. 195
5.4. Advanced Machine Learning - T-WIWI-109921 .. 196
5.5. Advanced Machine Learning and Data Science - T-WIWI-111305 .. 197
5.6. Advanced Management Accounting - T-WIWI-102885 .. 198
5.7. Advanced Topics in Digital Management - T-WIWI-111912 .. 200
5.8. Advanced Topics in Economic Theory - T-WIWI-102609 .. 202
5.9. Advanced Topics in Human Resource Management - T-WIWI-111913 .. 203
5.10. Algorithm Engineering - T-INFO-101332 .. 205
5.11. Algorithm Engineering Übung - T-INFO-111856 .. 206
5.12. Algorithmen für Routenplanung - T-INFO-100002 .. 207
5.13. Algorithmen II - T-INFO-102020 .. 209
5.15. Algorithmen zur Visualisierung von Graphen - T-INFO-104390 .. 213
5.16. Algorithmische Geometrie - T-INFO-104429 .. 215
5.17. Algorithmische Methoden für schwere Optimierungsprobleme - T-INFO-103334 .. 217
5.18. Algorithmische Methoden zur Netzwerkanalyse - T-INFO-104759 .. 218
5.19. Angewandte Materialflussimulation - T-MACH-112213 .. 220
5.20. Anlagenwirtschaft - T-WIWI-102631 .. 222
5.21. Anziehbare Robotertechnologien - T-INFO-106557 .. 223
5.22. Applied Econometrics - T-WIWI-111388 .. 224
Inhaltsverzeichnis

5.23. Arbeitsrecht - T/INFO-111436 ... 225
5.25. Artificial Intelligence in Service Systems - Applications in Computer Vision - T/WIWI-111219 228
5.27. Asymmetrische Verschlüsselungsverfahren - T/INFO-101260 232
5.28. Auktionstheorie - T/WIWI-102613 .. 233
5.29. Ausgewählte Kapitel der Kryptographie - T/INFO-101373 234
5.30. Ausgewählte Rechtsfragen des Internetrechts - T/INFO-108462 235
5.31. Außerplanmäßige Ergänzungsveranstaltung im Modul Cross-Functional Management Accounting - T/WIWI-108651
5.32. Automated Planning and Scheduling - T/INFO-109085 237
5.33. Automatische Sichtprüfung und Bildverarbeitung - T/INFO-101363 238
5.34. Behavioral Lab Exercise - T/WIWI-111806 .. 240
5.35. Beweisbare Sicherheit in der Kryptographie - T/INFO-101259 241
5.36. Biologisch Motivierte Robotersysteme - T/INFO-101351 242
5.37. Biometric Systems for Person Identification - T/INFO-101297 244
5.38. Blockchains & Cryptoﬁnance - T/WIWI-108880 245
5.39. Bond Markets - T/WIWI-110995 .. 246
5.40. Bond Markets - Models & Derivatives - T/WIWI-110997 247
5.41. Bond Markets - Tools & Applications - T/WIWI-110996 248
5.42. Business Data Analytics: Application and Tools - T/WIWI-109863 249
5.43. Business Data Strategy - T/WIWI-106187 ... 250
5.44. Business Dynamics - T/WIWI-102762 .. 251
5.45. Business Intelligence Systems - T/WIWI-105777 252
5.46. BWL der Informationsunternehmen - T/WIWI-102886 254
5.47. Challenges in Supply Chain Management - T/WIWI-102872 255
5.48. Cooperative Autonomous Vehicles - T/WIWI-112690 257
5.49. Corporate Financial Policy - T/WIWI-102622 .. 258
5.50. Corporate Risk Management - T/WIWI-109050 259
5.51. Critical Information Infrastructures - T/WIWI-109248 260
5.52. Data and Storage Management - T/INFO-101276 261
5.53. Data Science - T/INFO-113124 ... 262
5.54. Datenbankensatz - T/INFO-101317 ... 264
5.55. Datenbankfunktionalität in der Cloud - T/INFO-111400 266
5.56. Datenbank-Praktikum - T/INFO-103201 .. 267
5.57. Datenbanksysteme - T/INFO-101497 ... 268
5.58. Datenbanksysteme und XML - T/WIWI-102661 270
5.59. Datenschutz von Anonymisierung bis Zugriffskontrolle - T/INFO-108377 272
5.60. Deep Learning für Computer Vision I: Grundlagen - T/INFO-111491 273
5.61. Deep Learning und Neuronale Netze - T/INFO-109124 274
5.62. Demand-Driven Supply Chain Planning - T/WIWI-110971 275
5.63. Derivate - T/WIWI-102643 .. 276
5.64. Design Thinking - T/WIWI-102866 .. 277
5.65. Designing Interactive Systems - T/WIWI-110851 279
5.66. Digital Democracy - T/WIWI-113160 ... 281
5.67. Digital Health - T/WIWI-109246 ... 282
5.68. Digital Marketing - T/WIWI-112693 ... 283
5.69. Digital Marketing and Sales in B2B - T/WIWI-106981 284
5.70. Digital Services: Innovation & Business Models - T/WIWI-112757 285
5.71. Digitale Signaturen - T/INFO-101280 ... 287
5.72. Digitale Transformation und Geschäftsmodelle - T/WIWI-108875 288
5.73. Digitale Technik und Entwurfsmethoden - T/INFO-103469 289
5.74. Dynamic Macroeconomics - T/WIWI-109194 .. 290
5.75. Economics of Innovation - T/WIWI-112822 ... 291
5.76. Efficient Energy Systems and Electric Mobility - T/WIWI-102793 293
5.77. eFinance: Informationssysteme für den Wertpapierhandel - T/WIWI-110797 294
5.78. Einführung in die Bildfolgenanalyse - T/INFO-101273 295
5.79. Einführung in die Stochastische Optimierung - T/WIWI-106546 296
5.80. Einführung in Rechnernetze - T/INFO-102015 ... 297
5.81. Emerging Trends in Digital Health - T/WIWI-110144 299
<table>
<thead>
<tr>
<th>Seite</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.82</td>
<td>Emerging Trends in Internet Technologies - T-WIWI-110143</td>
</tr>
<tr>
<td>5.83</td>
<td>Emissionen in die Umwelt - T-WIWI-102634</td>
</tr>
<tr>
<td>5.84</td>
<td>Energie und Umwelt - T-WIWI-102650</td>
</tr>
<tr>
<td>5.85</td>
<td>Energy Market Engineering - T-WIWI-107501</td>
</tr>
<tr>
<td>5.86</td>
<td>Energy Networks and Regulation - T-WIWI-107503</td>
</tr>
<tr>
<td>5.87</td>
<td>Energy Trading and Risk Management - T-WIWI-112151</td>
</tr>
<tr>
<td>5.88</td>
<td>Engineering Interactive Systems - T-WIWI-110877</td>
</tr>
<tr>
<td>5.89</td>
<td>Entrepreneurial Leadership & Innovation Management - T-WIWI-102833</td>
</tr>
<tr>
<td>5.90</td>
<td>Entrepreneurship - T-WIWI-102864</td>
</tr>
<tr>
<td>5.91</td>
<td>Entrepreneurship Seasonal School - T-WIWI-113151</td>
</tr>
<tr>
<td>5.92</td>
<td>Entrepreneurship-Forschung - T-WIWI-102894</td>
</tr>
<tr>
<td>5.93</td>
<td>Entwicklung Soziotechnischer Informationssysteme - T-WIWI-109249</td>
</tr>
<tr>
<td>5.94</td>
<td>Entwicklung von Nachhaltigen Geschäftsmodellen - T-WIWI-112143</td>
</tr>
<tr>
<td>5.95</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik - T-WIWI-102718</td>
</tr>
<tr>
<td>5.96</td>
<td>Erfolgreiche Transformation durch Innovation - T-WIWI-111823</td>
</tr>
<tr>
<td>5.97</td>
<td>Ergänzung Betriebliche Informationssysteme - T-WIWI-110346</td>
</tr>
<tr>
<td>5.98</td>
<td>Europäisches und Internationales Recht - T/INFO-101312</td>
</tr>
<tr>
<td>5.99</td>
<td>Experimentelle Wirtschaftsforschung - T-WIWI-102614</td>
</tr>
<tr>
<td>5.100</td>
<td>Fallstudienseminar Innovationsmanagement - T-WIWI-102852</td>
</tr>
<tr>
<td>5.101</td>
<td>Financial Analysis - T-WIWI-102900</td>
</tr>
<tr>
<td>5.102</td>
<td>Financial Econometrics - T-WIWI-103064</td>
</tr>
<tr>
<td>5.103</td>
<td>Financial Econometrics II - T-WIWI-110939</td>
</tr>
<tr>
<td>5.104</td>
<td>Finanzintermediation - T-WIWI-102623</td>
</tr>
<tr>
<td>5.105</td>
<td>Formale Systeme - T/INFO-101336</td>
</tr>
<tr>
<td>5.106</td>
<td>Formale Systeme II: Anwendung - T/INFO-101281</td>
</tr>
<tr>
<td>5.107</td>
<td>Formale Systeme II: Theorie - T/INFO-101378</td>
</tr>
<tr>
<td>5.108</td>
<td>Fortgeschrittene Stochastische Optimierung - T-WIWI-106548</td>
</tr>
<tr>
<td>5.110</td>
<td>Gehirn und Zentrales Nervensystem: Struktur, Informationstransfer, Reizverarbeitung, Neurophysiologie und Therapie - T/INFO-101262</td>
</tr>
<tr>
<td>5.111</td>
<td>Gemisch-ganzzahlige Optimierung I - T-WIWI-102719</td>
</tr>
<tr>
<td>5.112</td>
<td>Gemisch-ganzzahlige Optimierung II - T-WIWI-102720</td>
</tr>
<tr>
<td>5.113</td>
<td>Geometrische Optimierung - T/INFO-101267</td>
</tr>
<tr>
<td>5.114</td>
<td>Geschäftsmodelle im Internet: Planung und Umsetzung - T-WIWI-102639</td>
</tr>
<tr>
<td>5.115</td>
<td>Geschäftsplanung für Gründer - T-WIWI-102865</td>
</tr>
<tr>
<td>5.116</td>
<td>Geschäftspolitik der Kreditinstitute - T-WIWI-102626</td>
</tr>
<tr>
<td>5.117</td>
<td>Global Manufacturing - T-WIWI-112103</td>
</tr>
<tr>
<td>5.118</td>
<td>Globale Optimierung I - T-WIWI-102726</td>
</tr>
<tr>
<td>5.119</td>
<td>Globale Optimierung I und II - T-WIWI-103638</td>
</tr>
<tr>
<td>5.120</td>
<td>Globale Optimierung II - T-WIWI-102727</td>
</tr>
<tr>
<td>5.121</td>
<td>Graph Theory and Advanced Location Models - T-WIWI-102723</td>
</tr>
<tr>
<td>5.122</td>
<td>Growth and Development - T-WIWI-112816</td>
</tr>
<tr>
<td>5.123</td>
<td>Gründen im Umfeld IT-Sicherheit - T-WIWI-110374</td>
</tr>
<tr>
<td>5.124</td>
<td>Grundlagen der nationalen und internationalen Konzernebene - T-WIWI-111304</td>
</tr>
<tr>
<td>5.125</td>
<td>Grundlagen der Unternehmensbene - T-WIWI-108711</td>
</tr>
<tr>
<td>5.126</td>
<td>Human Factors in Security and Privacy - T-WIWI-109270</td>
</tr>
<tr>
<td>5.127</td>
<td>Incentives in Organisations - T-WIWI-105781</td>
</tr>
<tr>
<td>5.128</td>
<td>Information Service Engineering - T-WIWI-106423</td>
</tr>
<tr>
<td>5.129</td>
<td>Innovationsmanagement: Konzepte, Strategien und Methoden - T-WIWI-102893</td>
</tr>
<tr>
<td>5.130</td>
<td>Integriertes Netz- und Systemmanagement - T/INFO-101284</td>
</tr>
<tr>
<td>5.131</td>
<td>Intelligent Agent Architectures - T-WIWI-111267</td>
</tr>
<tr>
<td>5.132</td>
<td>Intelligent Agents and Decision Theory - T-WIWI-110915</td>
</tr>
<tr>
<td>5.133</td>
<td>International Business Development and Sales - T-WIWI-110985</td>
</tr>
<tr>
<td>5.134</td>
<td>Internationale Finanzierung - T-WIWI-102646</td>
</tr>
<tr>
<td>5.135</td>
<td>Internet of Everything - T/INFO-101337</td>
</tr>
<tr>
<td>5.136</td>
<td>Internetrecht - T/INFO-101307</td>
</tr>
<tr>
<td>5.137</td>
<td>Introduction to Bayesian Statistics for Analyzing Data - T-WIWI-110918</td>
</tr>
<tr>
<td>5.138</td>
<td>IT-Sicherheit - T/INFO-112818</td>
</tr>
<tr>
<td>5.139</td>
<td>IT-Sicherheitsmanagement für vernetzte Systeme - T/INFO-101323</td>
</tr>
<tr>
<td>5.140</td>
<td>Joint Entrepreneurship Summer School - T-WIWI-109064</td>
</tr>
<tr>
<td>Inhaltserkennung</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>5.141. Judgement and Decision Making - T-WIWI-111099</td>
<td>387</td>
</tr>
<tr>
<td>5.142. KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics - T-WIWI-111109</td>
<td>388</td>
</tr>
<tr>
<td>5.143. Knowledge Discovery - T-WIWI-102666</td>
<td>389</td>
</tr>
<tr>
<td>5.144. Komplexitätstheorie, mit Anwendungen in der Kryptographie - T-INFO-103014</td>
<td>392</td>
</tr>
<tr>
<td>5.145. Kontextsensitive Systeme - T-INFO-107499</td>
<td>393</td>
</tr>
<tr>
<td>5.146. Konvexe Analysis - T-WIWI-102856</td>
<td>396</td>
</tr>
<tr>
<td>5.147. Kryptographische Wahlverfahren - T-INFO-101279</td>
<td>398</td>
</tr>
<tr>
<td>5.148. Large-scale Optimierung - T-WIWI-106549</td>
<td>399</td>
</tr>
<tr>
<td>5.149. Liberalised Power Markets - T-WIWI-107043</td>
<td>400</td>
</tr>
<tr>
<td>5.150. Life Cycle Assessment - Grundlagen und Anwendungsmöglichkeiten im industriellen Kontext - T-WIWI-113107</td>
<td>402</td>
</tr>
<tr>
<td>5.151. Machine Learning and Optimization in Energy Systems - T-WIWI-113073</td>
<td>403</td>
</tr>
<tr>
<td>5.152. Management Accounting 1 - T-WIWI-102800</td>
<td>404</td>
</tr>
<tr>
<td>5.153. Management Accounting 2 - T-WIWI-102801</td>
<td>406</td>
</tr>
<tr>
<td>5.154. Management neuer Technologien - T-WIWI-102612</td>
<td>408</td>
</tr>
<tr>
<td>5.155. Management von IT-Projekten - T-WIWI-112599</td>
<td>409</td>
</tr>
<tr>
<td>5.156. Markenrecht - T-INFO-101313</td>
<td>411</td>
</tr>
<tr>
<td>5.157. Market Research - T-WIWI-107720</td>
<td>413</td>
</tr>
<tr>
<td>5.158. Marketing Analytics - T-WIWI-103139</td>
<td>415</td>
</tr>
<tr>
<td>5.159. Marketing Strategy Planspiel - T-WIWI-102835</td>
<td>417</td>
</tr>
<tr>
<td>5.160. Maschinelles Lernen - Grundlagen und Algorithmen - T-INFO-111558</td>
<td>418</td>
</tr>
<tr>
<td>5.161. Maschinelles Lernen 1 - Grundverfahren - T-WIWI-106340</td>
<td>420</td>
</tr>
<tr>
<td>5.162. Maschinelles Lernen 2 - Fortgeschrittene Verfahren - T-WIWI-106341</td>
<td>422</td>
</tr>
<tr>
<td>5.163. Masterarbeit - T-WIWI-103142</td>
<td>424</td>
</tr>
<tr>
<td>5.164. Matching Theory - T-WIWI-113264</td>
<td>425</td>
</tr>
<tr>
<td>5.165. Mathematische Grundlagen hochdimensionaler Statistik - T-WIWI-111247</td>
<td>426</td>
</tr>
<tr>
<td>5.166. Media Management - T-WIWI-112711</td>
<td>427</td>
</tr>
<tr>
<td>5.167. Mensch-Maschine-Interaktion - T-INFO-101266</td>
<td>429</td>
</tr>
<tr>
<td>5.168. Methoden im Innovationsmanagement - T-WIWI-110263</td>
<td>432</td>
</tr>
<tr>
<td>5.170. Mobilkommunikation - T-INFO-101322</td>
<td>435</td>
</tr>
<tr>
<td>5.171. Modeling and Simulation - T-WIWI-112685</td>
<td>437</td>
</tr>
<tr>
<td>5.172. Modellgetriebene Software-Entwicklung - T-INFO-101278</td>
<td>439</td>
</tr>
<tr>
<td>5.173. Modellieren und OR-Software: Fortgeschrittene Themen - T-WIWI-106200</td>
<td>440</td>
</tr>
<tr>
<td>5.174. Multikriterielle Optimierung - T-WIWI-111587</td>
<td>441</td>
</tr>
<tr>
<td>5.175. Multivariate Verfahren - T-WIWI-103124</td>
<td>442</td>
</tr>
<tr>
<td>5.176. Mustererkennung - T-INFO-101362</td>
<td>443</td>
</tr>
<tr>
<td>5.177. Netze und Punktwolken - T-INFO-101349</td>
<td>444</td>
</tr>
<tr>
<td>5.178. Netz sicherheit: Architekturen und Protokolle - T-INFO-101319</td>
<td>445</td>
</tr>
<tr>
<td>5.179. Next Generation Internet - T-INFO-101321</td>
<td>447</td>
</tr>
<tr>
<td>5.180. Nicht- und Semiparametrik - T-WIWI-103126</td>
<td>448</td>
</tr>
<tr>
<td>5.181. Nichtrlineare Optimierung I - T-WIWI-102724</td>
<td>449</td>
</tr>
<tr>
<td>5.182. Nichtrlineare Optimierung I und II - T-WIWI-103637</td>
<td>451</td>
</tr>
<tr>
<td>5.183. Nichtrlineare Optimierung II - T-WIWI-102725</td>
<td>454</td>
</tr>
<tr>
<td>5.184. Öffentliche Einnahmen - T-WIWI-102739</td>
<td>456</td>
</tr>
<tr>
<td>5.185. Online-Konzepte für Karlsruher Innenstadthändler - T-WIWI-111848</td>
<td>458</td>
</tr>
<tr>
<td>5.188. Optimierungsansätze unter Unsicherheit - T-WIWI-106545</td>
<td>463</td>
</tr>
<tr>
<td>5.189. Optimierungsmodule in der Praxis - T-WIWI-110162</td>
<td>464</td>
</tr>
<tr>
<td>5.190. Panel daten - T-WIWI-103127</td>
<td>465</td>
</tr>
<tr>
<td>5.191. Parallele Algorithmen - T-INFO-101333</td>
<td>466</td>
</tr>
<tr>
<td>5.192. Parallele Algorithmen Übung - T-INFO-111857</td>
<td>467</td>
</tr>
<tr>
<td>5.193. Paralleldrechner und Parallelprogrammierung - T-INFO-101345</td>
<td>468</td>
</tr>
<tr>
<td>5.194. Parametrische Optimierung - T-WIWI-102855</td>
<td>470</td>
</tr>
<tr>
<td>5.195. Patentrecht - T-INFO-101310</td>
<td>471</td>
</tr>
<tr>
<td>5.196. Planspiel Energiewirtschaft - T-WIWI-108016</td>
<td>473</td>
</tr>
<tr>
<td>5.198. Portfolio and Asset Liability Management - T-WIWI-103128</td>
<td>475</td>
</tr>
<tr>
<td>5.199. Practical Seminar: Artificial Intelligence in Service Systems - T-WIWI-112152</td>
<td>476</td>
</tr>
<tr>
<td>5.200. Practical Seminar: Service Innovation - T-WIWI-110887</td>
<td>477</td>
</tr>
</tbody>
</table>
5.201. Praktikum Algorithmentechnik - T-INFO-104374 ... 478
5.202. Praktikum Blockchain Hackathon (Master) - T-WIWI-111126 ... 479
5.203. Praktikum Informatik (Master) - T-WIWI-110548 ... 480
5.204. Praktikum Protocol Engineering - T-INFO-104386 .. 486
5.205. Praktikum Realisierung innovativer Dienste (Master) - T-WIWI-112914 487
5.207. Praktikum Ubiquitous Computing - T-WIWI-102761 .. 493
5.208. Praktikum: Data Science - T-INFO-111262 .. 494
5.209. Praktikum: Data Science für die Wissenschaften - T-INFO-112844 495
5.211. Praktikum: Graphenvisualisierung in der Praxis - T-INFO-106580 498
5.212. Praktikum: Smart Data Analytics - T-INFO-106426 ... 500
5.213. Praktikum: Web-Anwendungen und Serviceorientierte Architekturen (II) - T-INFO-103121 503
5.214. Praxis der Unternehmensberatung - T-INFO-101975 ... 504
5.215. Praxis des Lösungsvertriebs - T-INFO-101977 ... 506
5.216. Praxis-Seminar: Health Care Management (mit Fallstudien) - T-WIWI-102716 507
5.217. Predictive Mechanism and Market Design - T-WIWI-102862 .. 509
5.218. Predictive Modeling - T-WIWI-110868 .. 510
5.219. Preismanagement - T-WIWI-105946 .. 511
5.220. Pricing - T-WIWI-102883 .. 512
5.221. Probabilistic Time Series Forecasting Challenge - T-WIWI-111387 514
5.222. Product and Innovation Management - T-WIWI-109864 ... 515
5.223. Produktions- und Logistikmanagement - T-WIWI-102632 .. 517
5.224. Project Management - T-WIWI-103134 ... 518
5.225. Projektmanagement aus der Praxis - T-INFO-101976 ... 519
5.226. Projektpraktikum Computer Vision für Mensch-Maschine-Interaktion - T-INFO-105943 520
5.227. Projektpraktikum Kognitive Automobile und Roboter - T-WIWI-109985 522
5.228. Projektpraktikum Maschinelles Lernen - T-WIWI-109983 .. 523
5.229. Public Management - T-WIWI-102740 .. 524
5.231. Randomisierte Algorithmen - T-INFO-101331 .. 526
5.232. Recommendersysteme - T-WIWI-102847 ... 527
5.233. Regelkonformes Verhalten im Unternehmensbereich - T-INFO-101288 531
5.234. Regulierungstheorie und -praxis - T-WIWI-102712 .. 532
5.235. Responsible Artificial Intelligence - T-WIWI-111385 .. 533
5.236. Risk Management in Industrial Supply Networks - T-WIWI-102826 534
5.237. Roadmapping - T-WIWI-102853 .. 535
5.238. Robotik I - Einführung in die Robotik - T-INFO-108014 ... 536
5.239. Robotik II - Humanoides Roboter - T-INFO-105723 .. 538
5.240. Robotik III - Sensoren und Perzeption in der Robotik - T-INFO-109931 540
5.241. Semantic Web Technologies - T-WIWI-110848 ... 542
5.242. Seminar aus Rechtswissenschaften I - T-INFO-101997 .. 545
5.243. Seminar Betriebswirtschaftslehre A (Master) - T-WIWI-103474 .. 549
5.244. Seminar in Wirtschaftspolitik - T-WIWI-102789 ... 563
5.245. Seminar Informatik A - T-INFO-104336 ... 564
5.246. Seminar Informatik B (Master) - T-WIWI-103480 .. 572
5.247. Seminar Informatik Master - T-INFO-111205 ... 579
5.248. Seminar Operations Research A (Master) - T-WIWI-103481 ... 590
5.249. Seminar Statistik A (Master) - T-WIWI-103483 ... 594
5.250. Seminar Volkswirtschaftslehre A (Master) - T-WIWI-103478 .. 596
5.251. Seminar: Handels- und Gesellschaftsrecht in der IT-Branche - T-INFO-111405 602
5.252. Seminar: Informatik TECO - T-INFO-110808 ... 603
5.253. Seminar: IT-Sicherheitsrecht - T-INFO-111404 ... 604
5.254. Seminarpraktikum Digital Service Systems - T-WIWI-106563 ... 606
5.255. Seminarpraktikum: Advanced Analytics - T-WIWI-108765 .. 608
5.256. Seminarpraktikum: Data-Driven Information Systems - T-WIWI-106207 609
5.258. Service Design Thinking - T-WIWI-102849 ... 611
5.259. Service Innovation - T-WIWI-102641 .. 614
5.260. Sicherheit - T-INFO-101371 ... 616
Inhaltsverzeichnis

5.261. Signale und Codes - T-INFO-101360 ... 617
5.262. Smart Energy Infrastructure - T-WIWI-107464 ... 618
5.263. Smart Grid Applications - T-WIWI-107504 ... 619
5.264. Social Choice Theory - T-WIWI-102859 ... 620
5.265. Software-Architektur und -Qualität - T-INFO-101381 621
5.266. Software-Evolution - T-INFO-101256 .. 622
5.267. Software-Qualitätsmanagement - T-WIWI-102895 .. 623
5.268. Spatial Economics - T-WIWI-103107 ... 625
5.269. Spezialveranstaltung Wirtschaftsinformatik - T-WIWI-109940 627
5.270. Startup Experience - T-WIWI-111561 ... 628
5.271. Statistik für Fortgeschrittene - T-WIWI-103123 .. 632
5.272. Statistische Modellierung von allgemeinen Regressionsmodellen - T-WIWI-103065 633
5.273. Steuerrecht - T-INFO-111437 .. 634
5.274. Stochastic Calculus and Finance - T-WIWI-103129 .. 635
5.275. Strategic Finance and Technology Change - T-WIWI-110511 637
5.276. Strategie- und Managementtheorie: Entwicklungen und Klassiker - T-WIWI-106190 638
5.277. Strategisches Management der betrieblichen Informationsverarbeitung - T-WIWI-102669 640
5.278. Supply Chain Management in der Automobilindustrie - T-WIWI-102828 641
5.279. Supply Chain Management with Advanced Planning Systems - T-WIWI-102763 642
5.280. Symmetrische Verschlüsselungsverfahren - T-INFO-101390 644
5.281. Technologiebewertung - T-WIWI-102858 ... 645
5.282. Technologien für das Innovationsmanagement - T-WIWI-102854 646
5.284. Telekommunikationsrecht - T-INFO-101309 ... 649
5.285. Telematik - T-INFO-101338 .. 651
5.286. Topics in Experimental Economics - T-WIWI-102863 653
5.287. Topics in Stochastic Optimization - T-WIWI-112109 ... 654
5.288. Transportökonomie - T-WIWI-100007 ... 655
5.289. Trustworthy Emerging Technologies - T-WIWI-113026 657
5.290. Ubiquitäre Informationstechnologien - T-INFO-101326 658
5.291. Übungsscheine Mensch-Maschine-Interaktion - T-INFO-106257 661
5.292. Umwelt- und Ressourcenpolitik - T-WIWI-102616 .. 664
5.293. Umweltökonomik und Nachhaltigkeit - T-WIWI-102615 665
5.294. Umweltrecht - T-BGU-111102 .. 666
5.295. Urheberrecht - T-INFO-101308 ... 667
5.296. Valuation - T-WIWI-102621 .. 669
5.297. Verteiltes Rechnen - T-INFO-101298 .. 670
5.298. Vertragsgestaltung im IT-Bereich - T-INFO-102036 ... 672
5.299. Wärmewirtschaft - T-WIWI-102695 ... 674
5.300. Web App Programming for Finance - T-WIWI-110933 675
5.301. Web-Anwendungen und Serviceorientierte Architekturen (II) - T-INFO-101271 676
5.302. Wettbewerb in Netzen - T-WIWI-100005 .. 678
5.303. Workshop aktuelle Themen Strategie und Management - T-WIWI-106188 679
5.304. Workshop Business Wargaming – Analyse strategischer Interaktionen - T-WIWI-106189 681

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
1 Allgemeine Informationen

Willkommen im neuen Modulhandbuch Ihres Studiengangs! Wir freuen uns, dass Sie sich für ein Studium an unserer KIT-Fakultät für Wirtschaftswissenschaften entschieden haben und wünschen Ihnen einen guten Start ins neue Semester! Im Folgenden möchten wir Ihnen eine kurze Einführung geben in die wichtigsten Begriffe und Regeln, die im Zusammenhang mit der Wahl von Modulen, Teilleistungen und Prüfungen von Bedeutung sind.

1.1 Curriculare Elemente

- die Zusammensetzung der Module,
- die Größe der Module (in LP),
- die Abhängigkeiten der Module untereinander,
- die Qualifikationsziele der Module,
- die Art der Erfolgskontrolle und
- die Bildung der Note eines Moduls.

Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) informiert.

1.2 Beginn und Abschluss eines Moduls

1.3 Modul- und Teilleistungsversionen

1.4 Erstverwendung

1.5 Gesamt- oder Teilprüfungen

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
1.6 Arten von Prüfungen

1.7 Wiederholung von Prüfungen

1.8 Prüfende

Der Prüfungsausschuss bzw. der/die Vorsitzende hat die im Modulhandbuch bei den Modulen und deren Lehrveranstaltungen aufgeführten KIT-Prüfer und Lehrbeauftragte als Prüfende für die von ihnen angebotenen Lehrveranstaltungen bestellt.

1.9 Zusatzleistungen

1.10 Weitere Informationen

1.11 Ansprechpartner

für Bachelorstudierende

Persönliche Beratung: KIT-Fakultät für Informatik, Informatik Studiengangservice
Informatikgebäude Geb. 50.34, EG, Räume 001.2/3
bachelor@wirtschaftsinformatik.kit.edu

für Masterstudierende

Persönliche Beratung: KIT-Fakultät für Wirtschaftswissenschaften, Prüfungssekretariat
Kollegiengebäude am Kronenplatz Geb. 05.00, 3. OG, Raum 3C-05
master@wirtschaftsinformatik.kit.edu

Redaktionelle Verantwortung:

Dr. André Wiesner, KIT-Fakultät für Wirtschaftswissenschaften
Telefon: +49 721 608-44061
modul@wiwi.kit.edu
2 Der Studiengang

2.1 Qualifikationsziele

Die Absolventen/innen des interdisziplinären, viersemestrigen Masterstudiengangs Informationswirtschaft verfügen über ein erweitertes und vertieftes forschungsorientiertes Fachwissen in den Bereichen Informatik, Wirtschaftswissenschaften und Recht sowie über fachunabhängige, über mehrere Disziplinen hinweg anwendbare Kompetenzen.

Durch die Verknüpfung ihrer Kenntnisse und Kompetenzen sind sie in der Lage, wirtschaftliche und informationstechnologische Gegebenheiten und Entwicklungspotentiale zur innovativen Veränderung von Strukturen und Prozesse selbstständig zu erkennen und innerhalb der rechtlichen Rahmenbedingungen umzusetzen.

Sie können komplexe fachrelevante Probleme und Anforderungen analysieren, strukturieren und beschreiben.

Vor- und Nachteile von bestehenden Verfahren, Modellen, Technologien und Ansätzen wissen sie zu identifizieren, mit Alternativen zu vergleichen, kritisch zu bewerten und auf neue Anwendungsbereiche zu übertragen.

Entsprechend des Bedarfs können sie diese auch kombinieren, anpassen bzw. eigenständig neue, innovative Lösungsmöglichkeiten entwickeln und umsetzen.

Die gewonnenen Ergebnisse wissen sie kritisch zu interpretieren, zu validieren und zu illustrieren.

Ihre Entscheidungen können sie wissenschaftlich fundiert unter Berücksichtigung von gesellschaftlichen und ethischen Aspekten selbstverantwortlich treffen und begründen.

Die Absolventen/innen können mit Fachvertretern/innen auf wissenschaftlichem Niveau kommunizieren und herausgehobene Verantwortung auch in einem Team übernehmen.

Karlsruher Informationswirte/innen zeichnen sich durch ihre interdisziplinäre Methodenkompetenz und ihre Innovationsfähigkeit aus.

Ihre Qualifikationen eignen sich insbesondere für fachübergreifende Tätigkeiten in den Bereichen Informations- und Kommunikationstechnologie (IKT), Controlling, Consulting, Management und Organisation, für die Gründung und Leitung von Unternehmen sowie für eine weitere wissenschaftliche Laufbahn (Promotion).

2.2 Aufbau nach SPO 2015

Gültig für Studierende ab dem Erstsemesterjahrgang WS 2015/16

Der Masterstudiengang Informationswirtschaft hat eine Regelstudienzeit von vier Semestern und umfasst 120 Leistungspunkte. Je nach persönlichen Interessen und Zielen kann das im Bachelorstudiengang erworbbene Fachwissen innerhalb des studienplanmäßigen Angebots erweitert und vertieft werden.

Abbildung 2 zeigt die Fach- und Modulstruktur mit der Zuordnung der Leistungspunkte (LP) und exemplarisch eine mögliche Verteilung der Module auf die Semester.
Im Rahmen des Masterstudiums sind Module aus den Fächern Informatik, Wirtschaftswissenschaften, Recht und dem Forschungsfach zu absolvieren sowie eine Masterarbeit zu schreiben.

Im Forschungsfach sind 6 LP zu erwerben über die Belegung von 2 der 3 zur Auswahl stehenden Seminar-Module M-INFO-101218 Seminarmodul Recht, M-INFO-102822 Seminarmodul Informatik sowie M-WIWI-102736 Seminarmodul Wirtschaftswissenschaften. Die Masterarbeit umfasst 30 LP.

Es bleibt der individuellen Studienplanung (unter Berücksichtigung diesbezüglicher Vorgaben in der Studien- und Prüfungsordnung sowie etwaiger Modulregelungen) überlassen, in welchem der Fachsemester die gewählten Modulprüfungen begonnen bzw. abgeschlossen werden. Allerdings wird empfohlen, noch vor Beginn der Masterarbeit alle übrigen Studienleistungen der Masterprüfung nachzuweisen.

Alle Module inklusive Wahlmöglichkeiten innerhalb der Module finden Sie im Modulhandbuch beschrieben. WiWi-Seminare, die im Rahmen des Forschungsfachs belegt werden können, werden im Wiwi-Portal unter https://portal.wiwi.kit.edu/Seminare veröffentlicht.
3 Aufbau des Studiengangs

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masterarbeit</td>
<td>30 LP</td>
</tr>
<tr>
<td>Informatik</td>
<td>33 LP</td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
<td>33 LP</td>
</tr>
<tr>
<td>Recht</td>
<td>18 LP</td>
</tr>
<tr>
<td>Forschungsfach</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.1 Masterarbeit

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101656 Modul Masterarbeit</td>
<td>30 LP</td>
</tr>
<tr>
<td>3.2 Informatik</td>
<td>Leistungspunkte</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>Modulname</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>M-INFO-101199</td>
<td>Advanced Algorithms: Design and Analysis</td>
</tr>
<tr>
<td>M-INFO-101200</td>
<td>Advanced Algorithms: Engineering and Applications</td>
</tr>
<tr>
<td>M-INFO-100795</td>
<td>Algorithm Engineering</td>
</tr>
<tr>
<td>M-INFO-100031</td>
<td>Algorithmen für Routenplanung</td>
</tr>
<tr>
<td>M-INFO-102094</td>
<td>Algorithmen zur Visualisierung von Graphen</td>
</tr>
<tr>
<td>M-INFO-101173</td>
<td>Algorithmen II</td>
</tr>
<tr>
<td>M-INFO-102110</td>
<td>Algorithmische Geometrie</td>
</tr>
<tr>
<td>M-INFO-101237</td>
<td>Algorithmische Methoden für schwere Optimierungsprobleme</td>
</tr>
<tr>
<td>M-INFO-102400</td>
<td>Algorithmische Methoden zur Netzwerkanalyse</td>
</tr>
<tr>
<td>M-INFO-101256</td>
<td>Analysetechniken für große Datenbestände in Theorie und Praxis</td>
</tr>
<tr>
<td>M-INFO-103294</td>
<td>Analysetechniken für große Datenbestände in Theorie und Praxis</td>
</tr>
<tr>
<td>M-WIWI-105366</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>M-INFO-104447</td>
<td>Automated Planning and Scheduling</td>
</tr>
<tr>
<td>M-INFO-100826</td>
<td>Automatische Sichtprüfung und Bildverarbeitung</td>
</tr>
<tr>
<td>M-INFO-101251</td>
<td>Autonome Robotik</td>
</tr>
<tr>
<td>M-WIWI-104403</td>
<td>Critical Digital Infrastructures</td>
</tr>
<tr>
<td>M-INFO-106505</td>
<td>Data Science</td>
</tr>
<tr>
<td>M-INFO-100780</td>
<td>Datenbankeinsatz</td>
</tr>
<tr>
<td>M-INFO-105724</td>
<td>Datenbankfunktionalität in der Cloud</td>
</tr>
<tr>
<td>M-INFO-101662</td>
<td>Datenbank-Praktikum</td>
</tr>
<tr>
<td>M-INFO-104045</td>
<td>Datenschutz von Anonymisierung bis Zugriffskontrolle</td>
</tr>
<tr>
<td>M-INFO-104460</td>
<td>Deep Learning und Neuronale Netze</td>
</tr>
<tr>
<td>M-INFO-102978</td>
<td>Digitaltechnik und Entwurfverfahren</td>
</tr>
<tr>
<td>M-INFO-101210</td>
<td>Dynamische IT-Infrastrukture</td>
</tr>
<tr>
<td>M-INFO-100736</td>
<td>Einführung in die Bildfolgenanalyse</td>
</tr>
<tr>
<td>M-WIWI-101477</td>
<td>Entwicklung betrieblicher Informationssystemen</td>
</tr>
<tr>
<td>M-INFO-100799</td>
<td>Formale Systeme</td>
</tr>
<tr>
<td>M-INFO-100744</td>
<td>Formale Systeme II: Anwendung</td>
</tr>
<tr>
<td>M-INFO-100841</td>
<td>Formale Systeme II: Theorie</td>
</tr>
<tr>
<td>M-INFO-101198</td>
<td>Fortgeschrittene Themen der Kryptographie</td>
</tr>
<tr>
<td>M-INFO-101205</td>
<td>Future Networking</td>
</tr>
<tr>
<td>M-INFO-100725</td>
<td>Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neuropathologie und Therapie</td>
</tr>
<tr>
<td>M-INFO-100730</td>
<td>Geometrische Optimierung</td>
</tr>
<tr>
<td>M-WIWI-104520</td>
<td>Human Factors in Security and Privacy</td>
</tr>
<tr>
<td>M-INFO-101208</td>
<td>Innovative Konzepte des Daten- und Informationsmanagements</td>
</tr>
<tr>
<td>M-WIWI-101456</td>
<td>Intelligente Systeme und Services</td>
</tr>
<tr>
<td>M-INFO-106315</td>
<td>IT-Sicherheit</td>
</tr>
<tr>
<td>M-INFO-101178</td>
<td>Kommunikation und Datenhaltung</td>
</tr>
<tr>
<td>M-INFO-101575</td>
<td>Komplexitätstheorie, mit Anwendungen in der Kryptographie</td>
</tr>
<tr>
<td>M-INFO-100728</td>
<td>Kontextsensitive Systeme</td>
</tr>
<tr>
<td>M-INFO-101239</td>
<td>Maschinelle Visuelle Wahrnehmung</td>
</tr>
<tr>
<td>M-WIWI-103356</td>
<td>Maschinelles Lernen</td>
</tr>
<tr>
<td>M-INFO-105778</td>
<td>Maschinelles Lernen - Grundlagen und Algorithmen</td>
</tr>
<tr>
<td>M-INFO-100729</td>
<td>Mensch-Maschine-Interaktion</td>
</tr>
<tr>
<td>M-INFO-104061</td>
<td>Microservice-basierte Web-Anwendungen</td>
</tr>
<tr>
<td>M-INFO-100785</td>
<td>Mobilkommunikation</td>
</tr>
<tr>
<td>M-INFO-100825</td>
<td>Mustererkennung</td>
</tr>
<tr>
<td>M-INFO-101206</td>
<td>Networking</td>
</tr>
<tr>
<td>M-INFO-101204</td>
<td>Networking Labs</td>
</tr>
</tbody>
</table>

Informatik (Wahl: mind. 33 LP)
M-INFO-10801	Parallele Algorithmen	5 LP
M-INFO-100796	Praktikum Algorithmentechnik	6 LP
M-INFO-101207	Netzsecurity - Theorie und Praxis	9 LP
M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-INFO-105632	Praktikum: Data Science	6 LP
M-INFO-106329	Praktikum: Data Science für die Wissenschaften	6 LP
M-INFO-101666	Praktikum: Geometrisches Modellieren	3 LP
M-INFO-101202	Software-Methodik	9 LP
M-INFO-101201	Software-Systeme	9 LP
M-INFO-100801	Telematik	6 LP
M-INFO-100789	Ubiquitäre Informationstechnologien	5 LP
M-WIWI-10458	Ubiquitous Computing	9 LP
M-WIWI-105368	Web and Data Science	9 LP
M-WIWI-101455	Web Data Management	9 LP
M-INFO-101203	Wireless Networking	8 LP
M-WIWI-106491	Projektpraktikum Angewandtes Maschinelles Lernen	5 LP
3.3 Wirtschaftswissenschaften

<p>| Leistungspunkte | 33 |</p>
<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101443 Informationswirtschaft</td>
<td>10</td>
</tr>
<tr>
<td>M-WIWI-103243 Optimierung unter Unsicherheit in der Informationswirtschaft</td>
<td>5</td>
</tr>
<tr>
<td>Wahlmodule WIWI (Wahl: 9 LP)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-105659 Advanced Machine Learning and Data Science</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101637 Analytics und Statistik</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101453 Angewandte strategische Entscheidungen</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101410 Business & Service Engineering</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101504 Collective Decision Making</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101498 Controlling (Management Accounting)</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101510 Cross-Functional Management Accounting</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-103117 Data Science: Data-Driven Information Systems</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-103118 Data Science: Data-Driven User Modeling</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101647 Data Science: Evidence-based Marketing</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-105661 Data Science: Intelligente, adaptive und lernende Informationsdienste</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-104080 Designing Interactive Information Systems</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-106258 Digital Marketing</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-102808 Digital Service Systems in Industry</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-103720 eEnergy: Markets, Services and Systems</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101409 Electronic Markets</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101451 Energiewirtschaft und Energimärkte</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101452 Energiewirtschaft und Technologie</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101488 Entrepreneurship (EnTechnon)</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101505 Experimentelle Wirtschaftsforschung</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101482 Finance 1</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101483 Finance 2</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101480 Finance 3</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-105923 Incentives, Interactivity & Decisions in Organizations</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101471 Industrielle Produktion II</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101412 Industrielle Produktion III</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-104068 Information Systems in Organizations</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101478 Innovation und Wachstum</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101507 Innovationsmanagement</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101514 Innovationsökonomik</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101446 Market Engineering</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-105312 Marketing and Sales Management</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101473 Mathematische Optimierung</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101500 Microeconomic Theory</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101406 Netzwerköonomie</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101638 Ökonometrie und Statistik I</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101639 Ökonometrie und Statistik II</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101502 Ökonomische Theorie und ihre Anwendung in Finance</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-102832 Operations Research im Supply Chain Management</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101506 Service Analytics</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101503 Service Design Thinking</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101448 Service Management</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-102754 Service Economics and Management</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-102805 Service Operations</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-102806 Service Innovation, Design & Engineering</td>
<td>9</td>
</tr>
</tbody>
</table>
3.4 Recht

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-103289</td>
<td>Stochastische Optimierung</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-103119</td>
<td>Strategie und Management: Fortgeschrittene Themen</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101468</td>
<td>Umwelt- und Ressourcenökonomie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101485</td>
<td>Verkehrsinfrastrukturpolitik und regionale Entwicklung</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101511</td>
<td>Vertiefung Finanzwissenschaft</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101496</td>
<td>Wachstum und Agglomeration</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

Wahlmodule BWL (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105659</td>
<td>Advanced Machine Learning and Data Science</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101410</td>
<td>Business & Service Engineering</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Controlling (Management Accounting)</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101510</td>
<td>Cross-Functional Management Accounting</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-103117</td>
<td>Data Science: Data-Driven Information Systems</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-103118</td>
<td>Data Science: Data-Driven User Modeling</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101647</td>
<td>Data Science: Evidence-based Marketing</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104080</td>
<td>Designing Interactive Information Systems</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-106258</td>
<td>Digital Marketing</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-102808</td>
<td>Digital Service Systems in Industry</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-103720</td>
<td>eEnergy: Markets, Services and Systems</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101409</td>
<td>Electronic Markets</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101451</td>
<td>Energiewirtschaft und Energiemärkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101452</td>
<td>Energiewirtschaft und Technologie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101488</td>
<td>Entrepreneurship (EnTechnon)</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101482</td>
<td>Finance 1</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101483</td>
<td>Finance 2</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101480</td>
<td>Finance 3</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-105923</td>
<td>Incentives, Interactivity & Decisions in Organizations</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101471</td>
<td>Industrielle Produktion II</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101412</td>
<td>Industrielle Produktion III</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104068</td>
<td>Information Systems in Organizations</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101507</td>
<td>Innovationsmanagement</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101446</td>
<td>Market Engineering</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-105312</td>
<td>Marketing and Sales Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101506</td>
<td>Service Analytics</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101503</td>
<td>Service Design Thinking</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-102754</td>
<td>Service Economics and Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-102806</td>
<td>Service Innovation, Design & Engineering</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101448</td>
<td>Service Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-103119</td>
<td>Strategie und Management: Fortgeschrittene Themen</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

3.4 Recht (Wahl: 18 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101215</td>
<td>Recht des geistigen Eigentums</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-INFO-101216</td>
<td>Recht der Wirtschaftsunternehmen</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-INFO-101217</td>
<td>Öffentliches Wirtschaftsrecht</td>
<td>9 LP</td>
</tr>
</tbody>
</table>
3.5 Forschungsfach

<table>
<thead>
<tr>
<th>Forschungsfach Wahl (2 aus 3 Modulen) (Wahl: 2 Bestandteile)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101218 Seminarmodul Recht</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-INFO-102822 Seminarmodul Informatik</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-WIWI-102736 Seminarmodul Wirtschaftswissenschaften</td>
<td>3 LP</td>
</tr>
</tbody>
</table>
4 Module

4.1 Modul: Advanced Algorithms: Design and Analysis [M-INFO-101199]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Design and Analysis / Engineering and Applications (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101334</td>
<td>Algorithmen in Zellularautomaten</td>
<td>5</td>
<td>Worsch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101331</td>
<td>Randomisierte Algorithmen</td>
<td>5</td>
<td>Worsch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101333</td>
<td>Parallele Algorithmen</td>
<td>4</td>
<td>Sanders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-103334</td>
<td>Algorithmische Methoden für schwere Optimierungsprobleme</td>
<td>5</td>
<td>Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-104390</td>
<td>Algorithmen zur Visualisierung von Graphen</td>
<td>5</td>
<td>Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-104374</td>
<td>Praktikum Algorithmentechnik</td>
<td>6</td>
<td>Sanders, Ueckerdt, Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101332</td>
<td>Algorithm Engineering</td>
<td>4</td>
<td>Sanders, Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-100002</td>
<td>Algorithmen für Routenplanung</td>
<td>5</td>
<td>Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-111856</td>
<td>Algorithm Engineering Übung</td>
<td>1</td>
<td>Sanders, Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-111857</td>
<td>Parallele Algorithmen Übung</td>
<td>1</td>
<td>Sanders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
siehe Teilleistung

Voraussetzungen
siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- kennt weiterführende methodische Ansätze für den Entwurf und die Analyse von Algorithmen,
- kann sich qualifiziert und in strukturierter Form zu theoretischen Aspekten der Algorithmik äußern,
- identifiziert algorithmische Probleme aus unterschiedlichen Bereichen und kann diese entsprechend formal formulieren,
- kann die Berechnungskomplexität algorithmischer Probleme aus unterschiedlichen Bereichen analysieren und einschätzen,
- kann geeignete algorithmische Lösungstechniken erkennen und neu entwerfen.

Inhalt

Arbeitsaufwand
c. 270h
4.2 Modul: Advanced Algorithms: Engineering and Applications [M-INFO-101200]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering and Applications / Design and Analysis (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

T-INFO-100002	Algorithmen für Routenplanung	5 LP	Wagner
T-INFO-101332	Algorithm Engineering	4 LP	Sanders, Wagner
T-INFO-101333	Parallele Algorithmen	4 LP	Sanders
T-INFO-103334	Algorithmische Methoden für schwere Optimierungsprobleme	5 LP	Wagner
T-INFO-104374	Praktikum Algorithmentechnik	6 LP	Sanders, Ueckerdt, Wagner
T-INFO-104390	Algorithmen zur Visualisierung von Graphen	5 LP	Wagner
T-INFO-101331	Randomisierte Algorithmen	5 LP	Worsch
T-INFO-111856	Algorithm Engineering Übung	1 LP	Sanders, Wagner
T-INFO-111857	Parallele Algorithmen Übung	1 LP	Sanders

Erfolgskontrolle(n)
siehe Teilleistung

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

- kennt weiterführende methodische Ansätze für den Entwurf von Algorithmen und deren Anwendung,
- kann sich qualifiziert und in strukturierter Form zu praktischen Aspekten der Algorithmik äußern,
- identifiziert algorithmische Probleme aus der Anwendung und kann diese entsprechend formal formulieren,
- kann die Berechnungskomplexität algorithmischer Probleme einschätzen,
- kann geeignete algorithmische Lösungstechniken erkennen, übertragen und neu entwerfen,
- kann algorithmische Lösungstechniken für konkrete Probleme implementieren und praktisch evaluieren.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h, für Lehrveranstaltungen mit 5 Credits ca. 150h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.3 Modul: Advanced Machine Learning and Data Science [M-WIWI-105659]

Verantwortung: Prof. Dr. Maxim Ulrich
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-WIWI-111305 Advanced Machine Learning and Data Science 9 LP Ulrich

Erfolgskontrolle(n)
Due to the professor’s research sabbatical, the BSc module “Financial Data Science” and MSc module “Foundations for Advanced Financial -Quant and -Machine Learning Research” and the MSc module “Advanced Machine Learning and Data Science” along with the respective examinations will not be offered in SS2023. Bachelor and Master thesis projects are not affected and will be supervised.

Voraussetzungen
siehe T-WIWI-106193 "Advanced Machine Learning and Data Science".

Qualifikationsziele
Nach einem erfolgreichen Projekt können die Studierenden:

- moderne Methoden des maschinellen Lernens zur Lösung eines datenwissenschaftlichen Problems auswählen und anwenden;
- sich in einem Team zielorientiert organisieren und ein umfangreiches Softwareprojekt im Bereich Data Science und Machine Learning zum Erfolg führen;
- ihre Data-Science- und Machine-Learning-Kenntnisse vertiefen
- ein finanzwirtschaftliches Problem mittels Data-Science und Machine-Learning-Algorithmen lösen.

Inhalt

Arbeitsaufwand
Gesamtaufwand für 9 Leistungspunkte: ca. 270 Stunden, die sich auf folgende Teile aufteilen: Kommunikation: Austausch während des Projekts: 30 h, Abschlusspräsentation: 10 h; Durchführung und Abschlussarbeit: Vorbereitung vor der Entwicklung (Problemanalyse und Lösungsentwurf): 70 h, Umsetzung der Lösung: 110 h, Tests und Qualitätssicherung: 50 h.

Empfehlungen
Keine
4.4 Modul: Algorithm Engineering [M-INFO-100795]

Verantwortung: Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101332</td>
<td>Algorithm Engineering</td>
<td>4</td>
<td>Sanders, Wagner</td>
</tr>
<tr>
<td>T-INFO-111856</td>
<td>Algorithm Engineering Übung</td>
<td>1</td>
<td>Sanders, Wagner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Die Studierenden erwerben ein systematisches Verständnis algorithmischer Fragestellungen und Lösungsansätze im Bereich Algorithm Engineering, das auf dem bestehenden Wissen im Themenbereich Algorithmik aufbaut. Außerdem kann er/sie erlerte Techniken auf verwandte Fragestellungen anwenden und aktuelle Forschungsthemen im Bereich Algorithm Engineering interpretieren und nachvollziehen.

Nach erfolgreicher Teilnahme an der Lehrveranstaltung können die Studierenden

- Begriffe, Strukturen, grundlegende Problemdefinitionen und Algorithmen aus der Vorlesung erklären;
- auswählen, welche Algorithmen und Datenstrukturen zur Lösung einer algorithmischen Fragestellung geeignet sind und diese ggf. den Anforderungen einer konkreten Problemstellung anpassen;
- Algorithmen und Datenstrukturen ausführen, mathematisch präzise analysieren und die algorithmischen Eigenschaften beweisen;
- Maschinenmodelle aus der Vorlesung erklären sowie Algorithmen und Datenstrukturen in diesen analysieren
- neue Probleme aus Anwendungen analysieren, auf den algorithmischen Kern reduzieren und daraus ein abstraktes Modell erstellen; auf Basis der in der Vorlesung erlernten Konzepte und Techniken eigene Lösungen in diesem Modell entwerfen, analysieren und die algorithmischen Eigenschaften beweisen.

Inhalt

- Was ist Algorithm Engineering, Motivation etc.
- Realistische Modellierung von Maschinen und Anwendungen
- praxisorientierter Algorithmenentwurf
- Implementierungstechniken
- Experimentiertechniken
- Auswertung von Messungen

Die oben angegebenen Fertigkeiten werden vor allem anhand von konkreten Beispielen gelehrt. In der Vergangenheit waren das zum Beispiel die folgenden Themen aus dem Bereich grundlegender Algorithmen und Datenstrukturen:

- linked lists ohne Sonderfälle
- Sortieren: parallel, extern, superskalar,...
- Prioritätslisten (cache effizient,...)
- Suchbäume für ganzzahlige Schlüssel
- Volltextindizes
- Graphenalgorithmen: minimale Spannbäume (extern,...), Routenplanung

dabei geht es jeweils um die besten bekannten praktischen und theoretischen Verfahren. Diese weichen meist erheblich von den in Anfängervorlesungen gelehrteten Verfahren ab.
Arbeitsaufwand
Vorlesung und Übung mit 3 SWS, 5 LP
5 LP entspricht ca. 150 Arbeitsstunden, davon
ca. 45 Std. Besuch der Vorlesung und Übung bzw. Blockseminar,
ca. 25 Std. Vor- und Nachbereitung,
da ca. 40 Std. Bearbeitung der Übungsblätter / Vorbereitung Miniseminar
ca. 40 Std. Prüfungsvorbereitung
4.5 Modul: Algorithmen für Routenplanung [M-INFO-100031]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 | Zehntelnoten | Jedes Sommersemester | 1 Semester | Deutsch | 4 | 1 |

Pflichtbestandteile

| T-INFO-100002 | Algorithmen für Routenplanung | 5 LP | Wagner |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele

Inhalt

Diese Vorlesung gibt einen Überblick über aktuelle Algorithmen zur effizienten Routenplanung und vertieft einige von den Algorithmen.

Arbeitsaufwand
Vorlesung mit 3 SWS, 5 LP

5 LP entspricht ca. 150 Arbeitsstunden, davon ca. 45 Std. Vorlesungsbesuch, ca. 60 Std. Nachbereitung und Bearbeitung der Übungsaufgaben, ca. 45 Std. Prüfungsvorbereitung

Empfehlungen
Siehe Teilleistung
4.6 Modul: Algorithmen II [M-INFO-101173]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 1

Pflichtbestandteile

| T-INFO-102020 | Algorithmen II | 6 LP | Sanders |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt

Arbeitsaufwand
Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbesuch,
ca. 15 Std. Übungsbesuch,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
ca. 30 Std. Prüfungsvorbereitung
Verantwortung: Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte: 5
Notenskala: Zehntelnoten
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-INFO-104390 | Algorithmen zur Visualisierung von Graphen | 5 LP | Wagner |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
Die Studierenden erwerben ein systematisches Verständnis algorithmischer Fragestellungen und Lösungsansätze im Bereich der Visualisierung von Graphen, das auf dem bestehenden Wissen in den Themenbereichen Graphentheorie und Algorithmik aufbaut. Nach erfolgreicher Teilnahme an der Lehrveranstaltung können die Studierenden
- Begriffe, Strukturen und grundlegende Problemdarstellungen aus der Vorlesung erklären;
- Layoutalgorithmen für verschiedene Graphklassen exemplarisch ausführen, mathematisch präzise analysieren und die algorithmischen Eigenschaften beweisen;
- Komplexitätsresultate aus der Vorlesung erklären und eigenständig ähnliche Reduktionsbeweise für neue Layoutprobleme führen;
- auswählen, welche Algorithmen zur Lösung eines gegebenen Layoutproblems geeignet sind und diese ggf. den Anforderungen einer konkreten Problemstellung anpassen;
- unbekannte Visualisierungsprobleme aus Anwendungen des Graphenzeichnens analysieren, auf den algorithmischen Kern reduzieren und daraus ein abstraktes Modell erstellen; auf Basis der in der Vorlesung erlernten Konzepte und Techniken eigene Lösungen in diesem Modell entwerfen, analysieren und die algorithmischen Eigenschaften beweisen.

Inhalt

Mathematisch lassen sich Netzwerke als Graphen modellieren und das Visualisierungsproblem lässt sich auf das algorithmische Kernproblem reduzieren, ein Layout des Graphen, d.h. geeignete Knoten- und Kantenpositionen in der Ebene, zu bestimmen. Dabei werden je nach Anwendung und Graphenklasse unterschiedliche Anforderungen an die Art der Zeichnung und die zu optimierenden Gütekriterien gestellt. Das Forschungsgebiet des Graphenzeichnens greift dabei auf Ansätze aus der klassischen Algorithmik, der Graphentheorie und der algorithmischen Geometrie zurück.

Im Laufe der Veranstaltung wird eine repräsentative Auswahl an Visualisierungsalgorithmen vorgestellt und vertieft.

Arbeitsaufwand
Vorlesung und Übung mit 3 SWS, 5 LP
5 LP entspricht ca. 150 Arbeitsstunden, davon
ca. 45 Std. Besuch der Vorlesung und Übung,
ca. 25 Std. Vor- und Nachbereitung,
ca. 40 Std. Bearbeitung der Übungsblätter
ca. 40 Std. Prüfungsvorbereitung
4.8 Modul: Algorithmische Geometrie [M-INFO-102110]

Verantwortung: TT-Prof. Dr. Thomas Bläsius
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte: 6
Notenskala: Zehntelnoten

Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 2

Pflichtbestandteile			
T-INFO-104429	Algorithmische Geometrie	6 LP	Wagner

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
Die Studierenden erwerben ein systematisches Verständnis von Fragestellungen und Lösungsansätzen im Bereich der algorithmischen Geometrie, das auf dem bestehenden Wissen in der Theoretischen Informatik und Algorithmik aufbaut. Nach erfolgreicher Teilnahme an der Lehrveranstaltung können die Studierenden

- Begriffe, Strukturen und grundlegende Problemdefinitionen aus der Vorlesung erklären
- geometrische Algorithmen exemplarisch ausführen, mathematisch präzise analysieren und ihre Eigenschaften beweisen
- auswählen, welche Algorithmen und Datenstrukturen zur Lösung eines gegebenen geometrischen Problems geeignet sind und diese ggf. einer konkreten Problemstellung anpassen
- unbekannte geometrische Probleme analysieren, auf den algorithmischen Kern reduzieren und daraus ein abstraktes Modell erstellen; auf Basis der in der Vorlesung erlernten Konzepte und Techniken eigene Lösungen in diesem Modell entwerfen, analysieren und die Eigenschaften beweisen.

Inhalt

Arbeitsaufwand
Vorlesung mit Übung mit 4 SWS, 6 LP
6 LP entspricht ca. 180 Arbeitsstunden, davon
ca. 60 Std. Besuch der Vorlesung und Übung
ca. 30 Std. Vor- und Nachbereitung
ca. 60 Std. Bearbeitung der Übungsblätter
ca. 30 Std. Prüfungsvorbereitung

Empfehlungen
Grundkenntnisse über Algorithmen und Datenstrukturen (z.B. aus den Vorlesungen Algorithmen 1 + 2) werden erwartet.
Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 5
Notenskala: Zehntelnoten
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-INFO-103334 Algorithmische Methoden für schwere Optimierungsprobleme

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
Der/die Studierende
- identifiziert algorithmische Optimierungsprobleme aus unterschiedlichen Bereichen und kann diese entsprechend formal beschreiben,
- kann sich qualifiziert und in strukturierter Form zu verschiedenen Aspekten der Optimierung äußern,
- kann einfache Algorithmen exemplarisch ausführen und ihre Eigenschaften erklären,
- kennt methodische Ansätze für den Entwurf und die Beurteilung von Optimierungs-Algorithmen und weiß diese geeignet anzuwenden,
- kann die Berechnungskomplexität algorithmischer Probleme aus unterschiedlichen Bereichen herleiten und einschätzen,
- kann geeignete algorithmische Lösungstechniken erkennen und auf verwandte unbekannte Probleme anwenden.

Inhalt
Es gibt viele praktische Probleme, die nicht perfekt gelöst werden können oder bei denen es sehr lange dauern würde, eine optimale Lösung zu finden. Ein Beispiel dafür ist Bin-Packing, wo Objekte in Behältern ("bins") einzupacken sind, wobei man möglichst wenige Behälter benutzen will. Manchmal gibt es auch Probleme, bei denen man Entscheidungen treffen muss, ohne vollständige Kenntnis über die Zukunft oder die Gegenwart zu haben (Online-Probleme). Man möchte etwa beim Bin-Packing irgendwann auch Bins abschließen und wegschicken, während vielleicht noch neue Objekte ankommen. Für verschiedene NP-schwere Problemstellungen behandelt die Vorlesung neben Approximationsalgorithmen und Online-Verfahren auch Lösungstechniken, die der menschlichen Intuition oder natürlichen Vorgängen nachempfunden sind (Heuristiken und Metaheuristiken).

Anmerkungen
Dieses Modul wird in unregelmäßigen Abständen angeboten.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Empfehlungen
Siehe Teilleistungen.
4.10 Modul: Algorithmische Methoden zur Netzwerkanalyse [M-INFO-102400]

Verantwortung: Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte 5
Notenskala Zehntelnoten
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-104759</td>
<td>Algorithmische Methoden zur Netzwerkanalyse</td>
<td>5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Inhalt

In dieser Veranstaltung sollen einige der eingesetzten Methoden und deren Grundlagen systematisch behandelt werden. Fragestellungen werden exemplarisch an Anwendungsbeispielen motiviert, der Schwerpunkt wird auf den zur beweisbar effizienten Lösung verwendeten algorithmischen Vorgehensweisen sowie deren Voraussetzungen und Eigenschaften liegen. Insbesondere werden folgende Themen behandelt:

- Komplexe und nicht-komplexe Netzwerke
- Maße zur Charakterisierung von Netzwerken
- Zentralitätsmaße
- Netzwerkmodelle
- Clusteranalyse in Netzwerken
- Epidemien auf Netzwerken

Arbeitsaufwand

150 h

Empfehlungen

Grundlegende Kenntnisse zur algorithmischen Graphentheorie sind hilfreich.
4.11 Modul: Analysetechniken für große Datenbestände in Theorie und Praxis [M-INFO-101256]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Praktikum (Wahl: höchstens 1 Bestandteil sowie max. 4 LP)

<table>
<thead>
<tr>
<th>Bestandteil ID</th>
<th>Bestandteilname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103201</td>
<td>Datenbank-Praktikum</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-INFO-111262</td>
<td>Praktikum: Data Science</td>
<td>6 LP</td>
</tr>
<tr>
<td>T-INFO-112844</td>
<td>Praktikum: Data Science für die Wissenschaften</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

Vorlesung (Wahl: max. 5 LP)

<table>
<thead>
<tr>
<th>Bestandteil ID</th>
<th>Bestandteilname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101317</td>
<td>Datenbankeinsatz</td>
<td>5 LP</td>
</tr>
<tr>
<td>T-INFO-108377</td>
<td>Datenschutz von Anonymisierung bis Zugriffskontrolle</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-INFO-111400</td>
<td>Datenbankfunktionalität in der Cloud</td>
<td>5 LP</td>
</tr>
<tr>
<td>T-INFO-113124</td>
<td>Data Science</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sollen

- zum wissenschaftlichen Arbeiten im Bereich Informationssysteme befähigt werden und das Gebiet der Informationssysteme als Forschungsgebiet in ausgewählten unterschiedlichen Facetten kennen,
- komplizierte Aspekte aus dem Themenbereich dieses Moduls sowohl anderen Experten als auch Außenstehenden erklären und darüber diskutieren können,
- die Konzepte, Algorithmen, Techniken und ausgewählte Werkzeuge aus den Bereichen Data Warehousing und Data Mining kennen,
- mit den Herausforderungen in der Praxis der Datenanalyse vertraut sein und in der Lage sein, selbst Lösungen zu entwickeln.

Inhalt
Dieses Modul soll Studierende mit modernen Informationssystemen ausführlich vertraut machen, in Breite und Tiefe. 'Breite' erreichen wir durch die ausführliche Betrachtung und die Gegenüberstellung unterschiedlicher Systeme und ihrer jeweiligen Zielsetzungen, 'Tiefe' durch die ausführliche Betrachtung der jeweils zugrundeliegenden Konzepte und wichtiger Entwurfsalternativen, ihre Beurteilung und die Auseinandersetzung mit Anwendungen. Insbesondere sollen hier Data Warehousing Technologien und Data Mining Techniken nicht nur theoretisch betrachtet - sondern im Rahmen eines Praktikums in der Praxis ein- und umgesetzt werden.

Anmerkungen
Die Lehrveranstaltung *Analysetechniken für große Datenbestände* wurde bis zum WS 2013/14 unter dem Titel *Data Warehousing und Mining* geführt.
4.12 Modul: Analytics und Statistik [M-WIWI-101637]

Verantwortung: Prof. Dr. Oliver Grothe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Credits</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106341</td>
<td>Maschinelles Lernen 2 - Fortgeschrittene Verfahren</td>
<td>4,5</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-111247</td>
<td>Mathematische Grundlagen hochdimensionaler Statistik</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103123</td>
<td>Statistik für Fortgeschrittene</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-112109</td>
<td>Topics in Stochastic Optimization</td>
<td>4,5</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- Vertiefte Grundlagen der schließenden Statistik.
- Lernt mit Simulationsmethoden umzugehen und diese sinnvoll einzusetzen.
- Lernt grundlegende und erweiterte Methoden der statistischen Auswertung mehr- und hochdimensionaler Daten kennen.

Inhalt

- Schätzen und Testen
- Stochastische Prozesse
- Multivariate Statistik, Copulas
- Abhängigkeitsmessung
- Dimensionsreduktion
- Hochdimensionale Methoden
- Vorhersagen

Anmerkungen

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand

4.13 Modul: Angewandte strategische Entscheidungen [M-WIWI-101453]

Verantwortung: Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

- T-WIWI-102861 Advanced Game Theory 4,5 LP Ehrhart, Puppe, Reiß

Ergänzungsangebot (Wahl: zwischen 4,5 und 5 LP)

- T-WIWI-102613 Auktionstheorie 4,5 LP Ehrhart
- T-WIWI-102614 Experimentelle Wirtschaftsforschung 4,5 LP Weinhardt
- T-WIWI-102622 Corporate Financial Policy 4,5 LP Ruckes
- T-WIWI-102623 Finanzintermediation 4,5 LP Ruckes
- T-WIWI-112823 Platform & Market Engineering: Commerce, Media, and Digital Democracy 4,5 LP Weinhardt
- T-WIWI-102862 Predictive Mechanism and Market Design 4,5 LP Reiß
- T-WIWI-105781 Incentives in Organizations 4,5 LP Nieken

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Der/die Studierende

- kennt und analysiert komplexe Entscheidungssituationen, kennt fortgeschrittene formale Lösungsmethoden für diese Problemstellungen und wendet sie an;
- kennt die grundlegenden Lösungskonzepte für strategische Entscheidungssituationen und kann sie auf konkrete (wirtschaftspolitische) Problemstellungen anwenden;
- kennt die experimentelle Methode vom Design des ökonomischen Experiments bis zur Datenauswertung und wendet diese an.

Inhalt

Anmerkungen

Die Veranstaltung Predictive Mechanism und Market Design wird in jedem zweiten Wintersemester angeboten, z.B. WS 2013/14, WS 2015/16, ...
Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Grundlagen der Spieltheorie sollten vorhanden sein.
Modul: Anziehbare Robotertechnologien [M-INFO-103294]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 4
Notenskala: Zehntelnoten
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile
T-INFO-106557 Anziehbare Robotertechnologien 4 LP Asfour, Beigl

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt

Arbeitsaufwand
Vorlesung mit 2 SWS, 4 LP.
4 LP entspricht ca. 120 Stunden, davon
ca. 15 * 2h = 30 Std. Präsenzzeit Vorlesung
ca. 15 * 3h = 45 Std. Vor- und Nachbereitungszeit Vorlesung
ca. 45 Std. Prüfungsvorbereitung und Präsenz in selbiger

Empfehlungen
Der Besuch der Vorlesung Mechano-Informatik in der Robotik wird vorausgesetzt
Modul: Artificial Intelligence [M-WIWI-105366]

Verantwortung: Dr.-Ing. Michael Färber
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Wahlpflichtangebot (Wahl: mindestens 2 Bestandteile)

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Praktikum Informatik (Master)</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.
Die Erfolgskontrolle zu den Vorlesungen erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten.
Die Erfolgskontrolle zum Praktikum erfolgt benotet als Prüfungsleistung anderer Art.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

- versteht die Konzepte zur Realisierung von Semantic Web Technologien, inklusive Linked Data
- entwickelt Ontologien für den Einsatz in semantischen webbasierten Applikationen und wählt dazu geeignete Repräsentationssprachen aus,
- ist vertraut mit Verfahren zur Repräsentation und Modellierung von Wissen,
- ist in der Lage die Methoden und Technologien semantischer Webtechnologien auf andere Anwendungsgebiete zu übertragen,
- bewertet das Potential semantischer Webtechnologien für neue Anwendungsbereiche,
- versteht die Herausforderungen in den Bereichen der Daten- und Systemintegration im Web und kann selbstständig Lösungen erarbeiten,
- kennen die Grundlagen des Maschinellen Lernens, Data Minings und Knowledge Discovery, können lernfähige Systeme, konzipieren, trainieren und evaluieren,
- führen Knowledge Discovery Projekte unter Berücksichtigung von Algorithmen, Repräsentationen und Anwendungen durch.
Inhalt
Im Fokus des Moduls stehen Semantische Web Technologien sowie Verfahren des Maschinellen Lernens und Data Mining zur Wissensgewinnung aus großen Datenbeständen.

Das Ziel des Semantic Web ist die Bedeutung (Semantik) von Daten im Web für intelligente Systeme z.B. im E-Commerce und in Internetportalen nutzbar zu machen. Eine zentrale Rolle spielen dabei die Repräsentation von Wissen in Form von RDF und Ontologien, die Bereitstellung der Daten als Linked Data, sowie die Anfrage von Daten mittels SPARQL. In dieser Vorlesung werden die Grundlagen der Wissensrepräsentation und -verarbeitung für die entsprechenden Technologien vermittelt sowie Anwendungsbeispiele vorgestellt.

Die Vorlesung "Knowledge Discovery" gibt einen Überblick über Ansätze des maschinellen Lernens und Data-Mining zur Wissensgewinnung aus großen Datenbeständen. Diese werden besonders in Hinsicht auf Algorithmen, Anwendbarkeit auf verschiedene Datenrepräsentationen und den Einsatz in realen Anwendungsszenarien hin untersucht.

Die Vorlesung gibt einen Überblick über Knowledge Discovery. Es werden spezifische Techniken und Methoden, Herausforderungen und aktuelle und zukünftige Forschungsthemen in diesem Forschungsgebiet vermittelt.

Arbeitsaufwand
4.16 Modul: Automated Planning and Scheduling [M-INFO-104447]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 | Zehntelnoten | Jedes Wintersemester | 1 Semester | Englisch | 4 | 1

Pflichtbestandteile

| T-INFO-109085 | Automated Planning and Scheduling | 5 LP | Sanders |

Erfolgskontrolle(n)
Siehe Teilleistungen.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

- The students will be able to model various planning tasks in the PDDL language and solve them using off-the-shelf planners.
- The students will understand the approaches used in automated planning and scheduling algorithms, which will allow them to efficiently model and solve real world planning and scheduling problems by selecting the proper algorithms for the given task.

Inhalt
The course offers an introduction to the methods and techniques used in automated planning and scheduling. The course is focused on classical deterministic planning, i.e., planning in a fully observable deterministic environment. The students will learn how to use automated planners and schedulers and also how they work. The topics covered in the lecture include:

- applications of automated planning in artificial intelligence
- formalization of planning problems and the PDDL language
- computational complexity of planning and scheduling
- basic state space search algorithms (forwards/backwards search)
- heuristic search algorithms and planning heuristics
- plan space planning
- planning graph and the graph plan algorithm
- satisfiability based planning
- hierarchical task network planning
- classical scheduling approaches
- constraint-based scheduling
- planning for virtual agents in computer games

Arbeitsaufwand
2 SWS Vorlesung + 1 SWS Übungen
(Vor- und Nachbereitungszeiten: 4h/Woche für Vorlesung plus 2h/Woche für Übungen; Prüfungsvorbereitung: 15h)

Gesamtaufwand: (2 SWS + 1 SWS + 4 SWS + 2 SWS) x 15h + 15h Prüfungsvorbereitung = 9x15h + 15h = 150h = 5 ECTS
Modul: Automatische Sichtprüfung und Bildverarbeitung [M-INFO-100826]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6 | Zehntelnoten | Jedes Wintersemester | 1 Semester | Deutsch | 4 | 1

Pflichtbestandteile

| T-INFO-101363 | Automatische Sichtprüfung und Bildverarbeitung | 6 LP | Beyerer |

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Studierende haben fundierte Kenntnisse in den grundlegenden Methoden der Bildverarbeitung (Vorverarbeitung und Bildverbesserung, Bildrestauration, Segmentierung, Morphologische Bildverarbeitung, Texturanalyse, Detektion, Bildpyramiden, Multiskalenanalyse und Wavelet-Transformation).
- Studierende sind in der Lage, Lösungskonzepte für Aufgaben der automatischen Sichtprüfung zu erarbeiten und zu bewerten.
- Studierende haben fundiertes Wissen über verschiedene Sensoren und Verfahren zur Aufnahme bildhafter Daten sowie über die hierfür relevanten optischen Gesetzmäßigkeiten.
- Studierende kennen unterschiedliche Konzepte, um bildhafte Daten zu beschreiben und kennen die hierzu notwendigen systemtheoretischen Methoden und Zusammenhänge.

Inhalt

- Sensoren und Verfahren zur Bildgewinnung
- Licht und Farbe
- Bildsignale
- Wellenoptik
- Vorverarbeitung und Bildverbesserung
- Bildrestauration
- Segmentierung
- Morphologische Bildverarbeitung
- Texturanalyse
- Detektion
- Bildpyramiden, Multiskalenanalyse und Wavelet-Transformation

Arbeitsaufwand

Gesamt: ca. 180h, davon
1. Präsenzzeit in Vorlesungen: 46h
2. Vor-/Nachbereitung derselbigen: 44h
3. Klausurvorbereitung und Präsenz in selbiger: 90h

Empfehlungen

Siehe Teilleistung.
4.18 Modul: Autonome Robotik [M-INFO-101251]

Verantwortung: Prof. Dr.-Ing. Rüdiger Dillmann
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Einmalig</td>
<td>2 Semester</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Autonome Robotik (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101351</td>
<td>Biologisch Motivierte Robotersysteme</td>
<td>3 LP</td>
<td>Rönnau</td>
</tr>
<tr>
<td>T-INFO-109931</td>
<td>Robotik III - Sensoren und Perzeption in der Robotik</td>
<td>3 LP</td>
<td>Asfour</td>
</tr>
<tr>
<td>T-INFO-105723</td>
<td>Robotik II - Humanoide Robotik</td>
<td>3 LP</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Dieses Modul kann zusammen mit seinem kleineren Ko-Modul "Ausgewählte Kapitel der autonomen Robotik" zu einer umfangreichen Vertiefung in autonomen Roboter erweitert werden.

Arbeitsaufwand
Der Arbeitsaufwand liegt pro 2 SWS Veranstaltung bei ca. 80 h. Eine genauere Aufschlüsselung ist bei den LV-Beschreibungen gegeben.

Empfehlungen
Der Besuch eines Praktikums ist empfehlenswert, da er erste praktische Erfahrungen in den vielen unterschiedlichen Bereichen der Robotik vermittelt und dadurch hilft, die theoretischen Kenntnisse besser zu verankern bzw. zu vertiefen.

Zusammen mit dem kleineren Ko-Modul "Ausgewählte Kapitel der autonomen Robotik" können insgesamt bis zu 15 LP aus der gegebenen Veranstaltungsmenge geprüft werden.
4.19 Modul: Business & Service Engineering [M-WIWI-101410]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus Jedes Semester</th>
<th>Dauer 1 Semester</th>
<th>Sprache Deutsch/Englisch</th>
<th>Level 4</th>
<th>Version 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-112757</td>
<td>Digital Services: Innovation & Business Models</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-110887</td>
<td>Practical Seminar: Service Innovation</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-102847</td>
<td>Recommendersysteme</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Spezialveranstaltung Wirtschaftsinformatik</td>
<td>4,5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- kann neue Produkte, Dienstleistungen unter Berücksichtigung der technologischen Fortschritte der Informations- und Kommunikationstechnik sowie der zunehmenden wirtschaftlichen Vernetzung entwickeln und umsetzen,
- kann Geschäftsprozesse unter diesen Rahmenbedingungen restructurieren,
- versteht Service Wettbewerb als Unternehmensstrategie und realisiert die Auswirkungen von Service Wettbewerb auf die Gestaltung von Märkten, Produkten, Prozessen und Dienstleistungen,
- vertieft die Methoden der Statistik und erarbeitet Lösungen für Anwendungsfälle,
- erarbeitet Lösungen in Teams.

Inhalt

Anmerkungen

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 150h, für Lehrveranstaltungen mit 5 Credits ca. 150h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Empfehlungen
Keine
4.20 Modul: Collective Decision Making [M-WIWI-101504]

Verantwortung: Prof. Dr. Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl:)

<table>
<thead>
<tr>
<th>Wahlveranstaltung</th>
<th>Lehrveranstaltung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management</td>
<td>4,5 LP Wigger</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory</td>
<td>4,5 LP Puppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- sind in der Lage, praktische Problemstellungen der Ökonomie des öffentlichen Sektors zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen,
- sind vertraut mit der Funktionsweise und Ausgestaltung demokratischer Wahlverfahren und können diese im Hinblick auf ihre Anreizwirkung analysieren.

Inhalt

Der Schwerpunkt des Moduls liegt auf Mechanismen der öffentlichen Entscheidungsfindung, einschließlich Wahlen und der Aggregation von Präferenzen und Urteilen.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Controlling (Management Accounting) [M-WIWI-101498]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-WIWI-102800 | Management Accounting 1 | 4,5 LP | Wouters |
| T-WIWI-102801 | Management Accounting 2 | 4,5 LP | Wouters |

Erfolgskontrolle(n)

Qualifikationsziele

Die Studierenden
- sind vertraut mit verschiedenen Methoden des "Management Accounting",
- können diese Methoden zur Kostenschätzung, Profitabilitätsanalyse und Kostenrechnung anwenden,
- sind fähig mit diesen Methoden kurz- und langfristige Entscheidungsfragen zu analysieren,
- sind imstande organisatorische Steuerungsinstrumente zu gestalten.

Inhalt

Das Modul besteht aus zwei Vorlesungen "Management Accounting 1" und "Management Accounting 2". Der Schwerpunkt des Moduls wird auf das strukturierte Lernen von Methoden des "Management Accounting" gelegt.

Anmerkungen

Folgende Lehrveranstaltungen werden für das Modul angeboten:
- Die Vorlesung "Management Accounting 1" wird turnusmäßig im Sommersemester angeboten.
- Die Vorlesung "Management Accounting 2" wird turnusmäßig im Wintersemester angeboten.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.22 Modul: Critical Digital Infrastructures [M-WIWI-104403]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109248 Critical Information Infrastructures</td>
<td>4,5 LP</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: max. 4,5 LP)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112690 Cooperative Autonomous Vehicles</td>
<td>4,5 LP</td>
<td>Vinel</td>
</tr>
<tr>
<td>T-WIWI-109246 Digital Health</td>
<td>4,5 LP</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110144 Emerging Trends in Digital Health</td>
<td>4,5 LP</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110143 Emerging Trends in Internet Technologies</td>
<td>4,5 LP</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109249 Entwicklung Soziotechnischer Informationssysteme</td>
<td>4,5 LP</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-111126 Praktikum Blockchain Hackathon (Master)</td>
<td>4,5 LP</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-113026 Trustworthy Emerging Technologies</td>
<td>4,5 LP</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen nach § 4 Abs. 2 Nr. 1 – Nr. 3 SPO über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP.

Die Erfolgskontrolle wird bei jeder Teilleistung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden...

- weisen grundlegendes Wissen über das Design, die Entwicklung und den Betrieb von kritischen digitalen Infrastrukturen auf
- besitzen tiefgreifendes Verständnis über Methodiken des Design Science Research und verwandten Forschungsdomenen
- können zwischen Herausforderungen und Chancen von kritischen digitalen Infrastrukturen in verschiedenen Anwendungsdomenen unterscheiden
- können sozio-technische Systemen bewerten und verbessern
- können sowohl theoretisches als auch praktisches Wissen der verschiedenen Veranstaltungen kombinieren, um Lösungen für Probleme von kritischen digitalen Infrastrukturen zu entwickeln.

Inhalt

Arbeitsaufwand

Empfehlungen
Die Veranstaltungen des Moduls können in englischer Sprache stattfinden – Teilnehmer sollten daher sicher in Wort und Schrift sein.
Die Lehrveranstaltungen sind so konzipiert, dass sie unabhängig voneinander gehört werden können. Daher kann sowohl im Winter- als auch im Sommersemester mit dem Modul begonnen werden.
Programmierkenntnisse können in einigen Veranstaltungen erforderlich sein.
Erfahrungen mit der Verfassung von Wissenschaftlichen Ausarbeitungen sind hilfreich aber nicht vorausgesetzt.
Modul: Cross-Functional Management Accounting [M-WIWI-101510]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 11

Pflichtbestandteile
T-WIWI-102885 Advanced Management Accounting 4,5 LP Wouters

Ergänzungsangebot (Wahl: 4,5 LP)
T-WIWI-105777 Business Intelligence Systems 4,5 LP Mädche, Nadj, Toreini
T-WIWI-105781 Incentives in Organizations 4,5 LP Nieken
T-WIWI-102835 Marketing Strategy Planspiel 1,5 LP Klarmann
T-WIWI-107720 Market Research 4,5 LP Klarmann
T-WIWI-111848 Online-Konzepte für Karlsruher Innenstadthändler 3 LP Klarmann
T-WIWI-109864 Product and Innovation Management 3 LP Klarmann
T-WIWI-102621 Valuation 4,5 LP Ruckes
T-WIWI-108651 Außerplanmäßige Ergänzungsveranstaltung im Modul Cross-Functional Management Accounting 4,5 LP Wouters

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Die LV "Advanced Management Accounting" ist Pflicht im Modul.
Das Ergänzungsangebot darf erst dann gewählt werden, wenn die Pflichtveranstaltung "Advanced Management Accounting" erfolgreich absolviert wurde.

Qualifikationsziele
Die Studierenden sind fähig, fortgeschrittene Management Accounting Methoden auf Entscheidungsprobleme aus einer Managementperspektive in Marketing, Finanzwesen, Organisation und Strategie anzuwenden.

Inhalt
Das Modul beinhaltet eine Lehrveranstaltung über mehrere / verschiedene fortgeschrittene Management Accounting Methoden, die für verschiedene Entscheidungen im Operationsmanagement und im Innovationsmanagement Anwendung finden. Durch die Wahl eines weiteren Kurses im Modul kann der Studierende eine Schnittstelle zwischen Controlling und Management in einem bestimmten Gebiet, wie z. B. Marketing, Finanzen, oder Organisation und Strategie, weiter vertiefen.

Anmerkungen

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Keine
4.24 Modul: Data Science [M-INFO-106505]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 8
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 2 Semester
Sprache Deutsch
Level 4
Version 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-113124 Data Science</td>
<td>8 LP Böhm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt
Data Science 1

Data Science 2
Die Vorlesung "Data Science 2" setzt die folgenden Schwerpunkte: Hochdimensionale Daten und ihre Eigenheiten und Verfahren für ihre Analyse, Datenströme und entsprechende Ansätze, Datenvorverarbeitung in Form von beispielsweise Data Cleaning.

Anmerkungen
Dieses Modul ersetzt Data Science I und Data Science II und fasst diese zusammen.

Arbeitsaufwand
240h

Empfehlungen
Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme

Literatur
Literatur wird in der Vorlesung bekanntgegeben. Es gibt diverse gut lesbare einschlägige Bücher, zum Beispiel:

- Data Mining: Concepts and Techniques (3rd edition): Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann Publishers 2011
- Introduction to Data Mining: Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison-Wesley 2006
- https://www.amazon.de/DATA-MINING-FRANK-CHRISTOPHER-WITTEN/dp/9351073890
4.25 Modul: Data Science: Data-Driven Information Systems [M-WIWI-103117]

Verantwortung: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl:)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Thema</th>
<th>Leistungspunkte</th>
<th>Lehrer/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108715</td>
<td>Artificial Intelligence in Service Systems</td>
<td>4,5 LP</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-111219</td>
<td>Artificial Intelligence in Service Systems - Applications in Computer Vision</td>
<td>4,5 LP</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-109863</td>
<td>Business Data Analytics: Application and Tools</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-106187</td>
<td>Business Data Strategy</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4,5 LP</td>
<td>Mädche, Nadj. Toreini</td>
</tr>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td>4,5 LP</td>
<td>Fegert</td>
</tr>
<tr>
<td>T-WIWI-110918</td>
<td>Introduction to Bayesian Statistics for Analyzing Data</td>
<td>4,5 LP</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-111385</td>
<td>Responsible Artificial Intelligence</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-106207</td>
<td>Seminarpraktikum: Data-Driven Information Systems</td>
<td>4,5 LP</td>
<td>Mädche, Satzger, Setzer, Weinhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Keine.

Qualifikationsziele

Der/die Studierende

- versteht die zielführende Integration, Transformation, und Analyse großer, komplexer Datenmengen als zentrale strategische Aufgabe moderner betrieblicher Informationssysteme,
- versteht den Steuerungszweck von Kennzahlen im Kontext der jeweiligen Fragestellung und modelliert entsprechend Verrechnungssystematiken zur Generierung der Kennzahlen unter Berücksichtigung der Datenverfügbarkeit,
- kennt die wichtigsten Eigenschaften und Funktionalitäten aktueller Business Intelligence (BI) Systeme und erwerbt grundlegende Kenntnisse für die Einführung und den Betrieb von BI Systemen in Unternehmen
- kennt strategischen Entscheidungsalternativen zur Verwaltung und dem Einsatz von Geschäftsdaten, sowie Kennzahlensysteme von Real-Time-Enterprises
- beherrscht analytische Techniken zur problemspezifischen Vorverarbeitung, Reduktion und Projektion von Unternehmensdaten und kann damit Produkte, Dienstleistungen und Prozesse gezielt nach strategischen Vorgaben und/oder Kunden- und Marktbedürfnissen ausrichten.
Inhalt
In modernen betrieblichen Informationssystemen spielt der gewinnbringende Einsatz großer Datenmengen eine immer zentralere Rolle. Die Erfassung, Integration, Analyse, und Operationalisierung der Daten zur Planung und Entscheidung erfordert jedoch ein strategisches Vorgehen im Umgang mit den vielschichtigen, heterogenen und oftmals unzuverlässigen Unternehmensdaten.

Es werden grundlegende Strategien zur Integration, Transformation, Verwaltung und Analyse großer, komplexer Datenmengen im Unternehmen als zentrale strategische Aufgabe verstanden, grundlegende strategisch Alternativen aufgezeigt, und Kennzahlensysteme zum Controlling und Aggregation von Daten und Datenanalyse sowie Datentransformationsprozesse betrachtet und diskutiert.

Anmerkungen

Arbeitsaufwand

Empfehlungen
4.26 Modul: Data Science: Data-Driven User Modeling [M-WIWI-103118]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Titel</th>
<th>Leistungspunkt(e)</th>
<th>Sprache</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109863</td>
<td>Business Data Analytics: Application and Tools</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td>4,5 LP</td>
<td>Fegert</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111109</td>
<td>KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111385</td>
<td>Responsible Artificial Intelligence</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108765</td>
<td>Seminarpraktikum: Advanced Analytics</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Der/ die Studierende
- erlernt Methoden zur Planung empirischer Studien, insbesondere zur Konzeption von Laborexperimenten,
- gewinnt theoretische Kenntnisse und praktische Fähigkeiten zur Analyse der so erhebten empirischen Daten,
- lernt verschiedene Möglichkeiten zur Modellierung von Nutzerverhalten kennen, kann diese kritisch abwägen, implementieren und evaluieren

Inhalt

Arbeitsaufwand

Empfehlungen
4.27 Modul: Data Science: Evidence-based Marketing [M-WIWI-101647]

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI) Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte 9 Notenskala Zehntelnoten
Turnus Jedes Semester Dauer 2 Semester Sprache Deutsch Level 4 Version 5

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LE</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103139</td>
<td>Marketing Analytics</td>
<td>4,5 LP</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td>4,5 LP</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine.

Qualifikationsziele
Der/ die Studierende

- verfügt über fortgeschrittene Kenntnisse zentraler Marktforschungsinhalte
- kennt eine Vielzahl von qualitativen und quantitativen Verfahren zum Messen von Kundenverhalten, Vorbereiten von strategischen Entscheidungen, Treffen von kausal belastbaren Schlüssen, zur Nutzung von Social Media Daten und Erstellen von Absatzprognosen
- verfügt über die nötigen statistischen Kenntnisse für eine Tätigkeit in der Marketingforschung

Inhalt
Ziel dieses Moduls ist es, zentrale quantitative und qualitative Methoden, die im Rahmen der Marktforschung zum Einsatz kommen, im Rahmen des Masterstudiums zu vertiefen. Während im Bachelorstudium der Fokus auf Grundlagen liegt, gibt das Masterprogramm einen tieferen Einblick in wichtige statistische Verfahren der Marketingforschung und -praxis zur Untersuchung relevanter Fragestellungen und Vorbereitung von strategischen Entscheidungen im Marketing.

Studierende können im Rahmen dieses Moduls folgende Kurse belegen:

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.

Empfehlungen
Keine
4.28 Modul: Data Science: Intelligente, adaptive und lernende Informationsdienste [M-WIWI-105661]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 9 LP)

- T-WIWI-109921 Advanced Machine Learning 4,5 LP Geyer-Schulz, Nazemi
- T-WIWI-111219 Artificial Intelligence in Service Systems - Applications in Computer Vision 4,5 LP Geyer-Schulz, Glenn
- T-WIWI-102762 Business Dynamics 4,5 LP Satzger
- T-WIWI-111267 Intelligent Agent Architectures 4,5 LP Geyer-Schulz
- T-WIWI-110915 Intelligent Agents and Decision Theory 4,5 LP Geyer-Schulz
- T-WIWI-102847 Recommendersysteme 4,5 LP Geyer-Schulz

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele

Der/die Studierende

- modelliert, analysiert und optimiert die Struktur und Dynamik von komplexen wirtschaftlichen Veränderungen.
- entwirft und entwickelt intelligente, adaptive bzw. lernende Agenten als wesentliche Elemente von Informationsdiensten.
- kennt die dafür wesentlichen Lernverfahren und kann sie (auch auf modernen Architekturen) gezielt einsetzen.
- entwickelt und realisiert personalisierte Services, im Besonderen im Bereich von Recommendersystemen.
- erarbeitet Lösungen in Teams.

Inhalt

Anmerkungen

Das Modul ersetzt ab Sommersemester 2021 M-WIWI-101470 "Data Science: Advanced CRM"
Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Keine
4.29 Modul: Datenbankeinsatz [M-INFO-100780]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101317 Datenbankeinsatz | 5 LP | Böhm |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt

Anmerkungen
Diese Vorlesung wird im WS21/22 nicht angeboten.

Arbeitsaufwand
157 h 45 min

Empfehlungen
Siehe Teilleistung.
Am Ende der Lehrveranstaltung sollen die Teilnehmer erklären können, was Datenbankfunktionalität in der Cloud ausmacht, und wo die Vor- und Nachteile liegen. Sie sollen verstanden haben, wie sich für den Cloud-Betrieb entwickelte Datenbanktechnologie von herkömmlicher derartiger Technologie unterscheidet, und was für Gemeinsamkeiten es gibt. Die Teilnehmer sollen die wesentlichen Ansätze, die Cloud-gerechte Datenbanktechnologie ausmachen, erläutern und voneinander abgrenzen können.

Inhalt
Wir erleben derzeit, dass "Eigentümer" großer Datenbestände, seien es große Organisationen, seien es Startups, in großem Umfang Datenbankfunktionalität mieten, anstatt sie selbst bereitzustellen. Die "total costs of ownership" sind in vielen Fällen einfach erheblich günstiger. In dieser Vorlesung geht es um Datenbanktechnologie, die genau das ermöglicht. Das ist zum einen für Sie von Bedeutung, wenn Sie solche Dienste irgendwann nutzen wollen, es wird aber selbst dann interessant sein, wenn Sie mit Datenbanktechnologie "in herkömmlicher Form" zu tun haben werden.

Aus meiner Sicht sind insbesondere die folgenden Leistungsmerkmale von "Cloud-fähiger Datenbanktechnologie", auf die ich dann in der Vorlesung auch ausführlich eingehen werde, zentral:

- Vollautomatisches Tuning der einzelnen Datenbanken - die Möglichkeit, sich mit einem Datenbankadministrator auszutauschen, gibt es nicht mehr!
- Ungefähre Anfrageergebnisse sind plötzlich attraktiv. Die Ausführung jeder Anfrage wird einzeln nach Arbeitsaufwand abgerechnet - hohe Fixkosten, die beim Eigenbetrieb einer Datenbank auftreten, fallen hingegen weitgehend weg.
- Multi-Tenancy. D. h. wie stellt man sicher, dass voneinander komplett unabhängige Mieter ("Tenants") ein DBMS für ihre jeweilige Anwendung nutzen können, nicht nur ohne sich in die Quere zu kommen, sondern auch derart, dass man jedem Mieter für sich Laufzeitgarantien geben kann?

Wichtig in dem Zusammenhang sind aber auch klassische Konzepte wie verteilte Transaktionen und Datenhaltung und Anfrageverarbeitung im verteilten Fall, die ebenfalls Thema dieser Vorlesung sein werden.

Arbeitsaufwand
157 h 45 min

Literatur
Wird in der Vorlesung bekanntgegeben, Grundlagen/Einlassungen zu einzelnen Vorlesungskapiteln finden sich in den folgenden Büchern:

- Database Systems Implementation, by Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom.
- Concurrency Control and Recovery in Database Systems, by Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.
- Principles of Distributed Database Systems M. Tamer Özsu, Patrick Valduriez
4.31 Modul: Datenbank-Praktikum [M-INFO-101662]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103201</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Im Praktikum soll das aus Vorlesungen wie "Datenbanksysteme" und "Datenbankeinsatz" erlernte Wissen in die Praxis umgesetzt werden. Dabei geht es vor allem um Entwurf und Realisierung von Datenbankanwendungen, Benutzung deklarativer Anfragesprachen sowie um Datenbankentwurf. Darüber hinaus soll gelernt werden, im Team zusammenzuarbeiten.

Inhalt
Das Datenbankpraktikum bietet Studierenden die Möglichkeit, den praktischen Einsatz von Datenbanksystemen in Ergänzung zu den unterschiedlichen Vorlesungen kennenzulernen. Die Teilnehmer werden in ausgewählten Versuchen mit kommerzieller relationaler sowie nichtkonventioneller Datenbanktechnologie vertraut gemacht. Darüber hinaus können sie Datenbankentwurf an praktischen Beispielen erproben. Im Einzelnen stehen folgende Versuche auf dem Programm:
- Zugriff auf Datenbanken, auch aus Anwendungsprogrammen heraus,
- Verwaltung von Datenbeständen mit nichtkonventioneller Datenbanktechnologie,
- Performanceoptimierungen bei der Anfragebearbeitung,
- Datenbankentwurf.
Arbeiten im Team ist ein weiterer wichtiger Aspekt bei allen Versuchen.

Arbeitsaufwand
Jeder Leistungspunkt (Credit) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)
1. Präsenzzeit in Vorlesungen, Übungen
2. Vor-/Nachbereitung derselben
Modul: Datenschutz von Anonymisierung bis Zugriffskontrolle [M-INFO-104045]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 3
Notenskala Zehntelnoten
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-INFO-108377 | Datenschutz von Anonymisierung bis Zugriffskontrolle | 3 LP | Böhm |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Grundkenntnisse zu Datenbanken, verteilten Informationssystemen, Systemarchitekturen und Kommunikationsinfrastrukturen, z.B. aus der Vorlesung Datenbanksysteme

Qualifikationsziele
Die Teilnehmer werden in die Ziele und Grundbegriffe der Informationellen Selbstbestimmung eingeführt.
Sie sind in der Lage die grundlegenden Herausforderungen des Datenschutzes und ihre vielfältigen Auswirkungen auf Gesellschaft und Individuen zu benennen.
Außerdem beherrschen sie aktuelle Technologien zum Datenschutz und können diese anwenden. Z.B. Methoden des Spatial & Temporal Cloaking.
Die Studenten sollen damit in die Lage versetzt werden, die Risiken unbekannter Technologien für die Privatheit zu analysieren, geeignete Maßnahmen zum Umgang mit diesen Risiken vorschlagen und die Effektivität dieser Maßnahmen abschätzen.

Inhalt

Arbeitsaufwand
22 h Präsenzzeit
+ Vor- und Nachbereitungszeiten (1,5 x 2) x 15 = 45 h
+ 17 h Klausurvorbereitung
= 84 h = 3 ECTS
4.33 Modul: Deep Learning und Neuronale Netze [M-INFO-104460]

Verantwortung: Prof. Dr. Alexander Waibel
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-109124 | Deep Learning und Neuronale Netze | 6 LP | Waibel |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden sollen den Aufbau und die Funktion verschiedener Typen von neuronalen Netzen lernen.
- Die Studierenden sollen die Methoden zum Training der verschiedenen Netze lernen, sowie ihre Anwendung auf Probleme.
- Die Studierenden sollen die Anwendungsgebiete der verschiedenen Netztypen erlernen.
- Gegeben ein konkretes Szenario sollen die Studierenden in die Lage versetzt werden, den geeigneten Typ eines neuronalen Netzes auszuwählen zu können.

Inhalt

Arbeitsaufwand
180h.

Empfehlungen

4.34 Modul: Designing Interactive Information Systems [M-WIWI-104080]

Verantwortung: Prof. Dr. Alexander Mädche

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4,5</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: mindestens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>Creditpunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110851</td>
<td>Designing Interactive Systems</td>
<td>4,5 LP</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-110877</td>
<td>Engineering Interactive Systems</td>
<td>4,5 LP</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrveranstaltung</th>
<th>Creditpunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111109</td>
<td>KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-108437</td>
<td>Seminarpraktikum: Information Systems und Service Design</td>
<td>4,5 LP</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

In diesem Modul müssen die Teilleistungen "Designing Interactive Systems" oder "Engineering Interactive Systems" verpflichtend belegt werden.

Qualifikationsziele

Der/die Studierende

- hat ein umfassendes Verständnis der konzeptuellen und theoretischen Grundlagen interaktiver Systeme,
- kennt den Gestaltungsprozess für interaktive Systeme,
- kennt die wichtigsten Techniken und Werkzeuge zur Gestaltung interaktiver Systeme und versteht diese auf reale Fragestellungen anzuwenden,
- kann Gestaltungsprinzipien für die Gestaltung wichtiger Klassen interaktiver Systeme anwenden,
- erarbeitet konkrete Lösungen für neue interaktive Systeme in Teams.

Inhalt

Anmerkungen

Weitere Informationen finden sie unter: http://issd.iism.kit.edu/305.php

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden. Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. 120-135h für die Lehrveranstaltungen mit 4,5 Credits.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.35 Modul: Digital Marketing [M-WIWI-106258]

Verantwortung: Prof. Dr. Ann-Kristin Kupfer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-WIWI-112693 | Digital Marketing | 4,5 LP | Kupfer |

Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)

T-WIWI-106981	Digital Marketing and Sales in B2B	1,5 LP	Klarmann, Konhäuser
T-WIWI-111099	Judgement and Decision Making	4,5 LP	Scheibehenne
T-WIWI-107720	Market Research	4,5 LP	Klarmann
T-WIWI-112711	Media Management	4,5 LP	Kupfer
T-WIWI-111848	Online-Konzepte für Karlsruher Innenstadthändler	3 LP	Klarmann

Erfolgskontrolle(n)

The assessment is carried out as partial exams of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course, weighted by the credits and truncated after the first decimal.

Voraussetzungen

None

Qualifikationsziele

Students

- have an advanced knowledge about central marketing contents
- have a fundamental understanding of the marketing instruments
- know current fundamental principles and latest trends in the field of digital marketing
- know and understand several strategic concepts and how to implement them
- are able to implement their extensive marketing knowledge in a practical context
- are able to critically discuss and question theoretical concepts and current practices in marketing
- have theoretical knowledge that is fundamental for writing a master thesis in the field of marketing
- have gained insight into scientific research that prepares them to independently write a master’s thesis
- have the theoretical knowledge and skills necessary to work in or collaborate with the marketing department of a company

Inhalt

The aim of this module is to deepen central marketing contents in different areas.

Arbeitsaufwand

Total effort for 9 credit points: approx. 270 hours.

The exact distribution is done according to the credit points of the courses of the module.
4.36 Modul: Digital Service Systems in Industry [M-WIWI-102808]

Verantwortung: Prof. Dr. Wolf Fichtner
Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Das Modul kann nur im Wahlpflichtbereich belegt werden.

Qualifikationsziele
Der/die Studierende

- versteht die Grundlagen des Managements digitaler Dienstleistungen im angewandten Industriekontext,
- erhält einen industriespezifischen Einblick in die Bedeutung und wichtigsten Eigenschaften von Informationssystemen als zentralem Baustein für die Digitalisierung von Geschäftsprozessen, Produkten und Dienstleistungen,
- kann vorgestellte Modelle und vermittelte Methoden auf praxisnahe Szenarien übertragen und anwenden,
- versteht die Steuerungs- und Optimierungsmethoden im Bereich des Dienstleistungsmanagements und kann sie entsprechend anwenden.

Inhalt
In diesem Modul werden die Grundlagen für das Management digitaler Dienstleistungssysteme im Industriekontext vertieft. Anhand praxisnaher Anwendungsfälle, werden Methoden und Mechanismen diskutiert und demonstriert, um vernetzte digitale Dienstleistungssysteme in unterschiedlichen Industrien gestalten und steuern zu können.

Anmerkungen

Arbeitsaufwand

Empfehlungen
Keine
M 4.37 Modul: Digitaltechnik und Entwurfsverfahren [M-INFO-102978]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-103469 | Digitaltechnik und Entwurfsverfahren | 6 LP | Karl |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Die Studierenden sollen in die Lage versetzt werden,

- grundlegendes Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen zu erwerben,
- den Zusammenhang zwischen Hardware-Konzepten und den Auswirkungen auf die Software zu verstehen, um effiziente Programme erstellen zu können,
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können
- einen Rechner aus Grundkomponenten aufbauen zu können.

Inhalt
Der Inhalt der Lehrveranstaltung umfasst die Grundlagen des Aufbaus und der Organisation von Rechnern; die Befehlssatzarchitektur verbunden mit der Diskussion RISC – CISC; Pipelining des Maschinenbefehlszyklus, Pipeline-Hemmnisse und Methoden zur Auflösung von Pipeline-Konflikten; Speicherkomponenten, Speicherorganisation, Cache-Speicher, Ein-/ Ausgabe-System und Schnittstellenbausteine; Interrupt-Verarbeitung; Bus-Systeme; Unterstützung von Betriebssystemfunktionen; virtuelle Speicherverwaltung, Schutzfunktionen.

Arbeitsaufwand
Präsenzzeit in Vorlesungen, Übungen: 120 h
Vor-/Nachbereitung derselben: 30 h
Klausurvorbereitung und Präsenz in selbiger: 30 h

Der Gesamtarbeitsaufwand für dieser Lehrveranstaltung beträgt ca. 180 Stunden (6 Credits).

Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.38 Modul: Dynamische IT-Infrastrukturen [M-INFO-101210]

Verantwortung: Prof. Dr. Hannes Hartenstein
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Dynamische IT-Infrastrukturen (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Tutor/-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101323</td>
<td>IT-Sicherheitsmanagement für vernetzte Systeme</td>
<td>5 LP</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>T-INFO-101326</td>
<td>Ubiquitäre Informationstechnologien</td>
<td>5 LP</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-101276</td>
<td>Data and Storage Management</td>
<td>4 LP</td>
<td>Neumair</td>
</tr>
<tr>
<td>T-INFO-101284</td>
<td>Integriertes Netz- und Systemmanagement</td>
<td>4 LP</td>
<td>Neumair</td>
</tr>
<tr>
<td>T-INFO-101298</td>
<td>Verteiltes Rechnen</td>
<td>4 LP</td>
<td>Streit</td>
</tr>
<tr>
<td>T-INFO-101345</td>
<td>Parallelrechner und Parallelprogrammierung</td>
<td>4 LP</td>
<td>Streit</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden sollen sowohl bewährte als auch neuartige Konzepte zur Umsetzung von IT-Infrastrukturen kennenlernen. Dabei wird der hohen Dynamik, die bei modernen IT Dienstleistern vermehrt anzutreffen ist, besonders Rechnung getragen.

Im Einzelnen sind dies:

- Kennenlernen bewährter und neuartiger Konzepte von IT-Infrastrukturen
- Anwendung von Methoden zur Bewertung und Analyse dynamischer IT-Infrastrukturen
- Bewerten von Werkzeugen, Protokollen und Vorgehensweisen beim Betrieb und Management dynamischer IT-Infrastrukturen
- Beurteilen von Stärken und Schwächen von IT-Infrastrukturen
- Einblick in den praktischen Betrieb dynamischer IT-Infrastrukturen anhand der Umsetzung im Rahmen des Steinbuch Centre for Computing (SCC)

Inhalt
In diesem Modul werden verschiedene Aspekte dynamischer IT-Infrastrukturen wie Auslegung, Planung, Konzeption, Entwicklung, Betrieb, Leistungsbewertung sowie Optimierung behandelt. Die Thematik wird sowohl einer theoretisch-fundierte Betrachtung unterzogen, als auch aus dem Blickwinkel praktischer Erfahrungen des alltäglichen Einsatzes betrachtet. Das Steinbuch Centre for Computing (SCC), dem die Lehrenden angehören, bildet als moderner IT-Dienstleister ein ideales Lernobjekt, das diese Betrachtungsweisen in lebender Form vereint.

Empfehlungen
Der Stoff der Vorlesung Einführung in Rechnernetze wird als Grundlage empfohlen.

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte 9 Notenskala Zehntelnoten Turnus Jedes Semester Dauer 1 Semester Sprache Deutsch Level 4 Version 2

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107503</td>
<td>Energy Networks and Regulation</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107504</td>
<td>Smart Grid Applications</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Spezialveranstaltung Wirtschaftsinformatik</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine.

Qualifikationsziele
Die/der Studierende

- kennt Designoptionen von Energie- und im speziellen Elektrizitätsmärkten und kann Implikationen aus dem Marktdesign für das Marktergebnis abschätzen,
- kennt die aktuellen Trends im Smart Grid und versteht zughörige wissenschaftliche Modellierungsansätze
- kann Geschäftsmodelle von Elektrizitätsnetzen gemäß ihrem Regulierungsregime bewerten
- ist für das wissenschaftliche Arbeiten im Bereich der energiewirtschaftlichen Analyse vorbereitet.

Inhalt

Anmerkungen
Die Vorlesung Smart Grid Applications wird ab dem Wintersemester 2018/19 angeboten.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 LP). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 LP ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Qualifikationsziele des Moduls für einen durchschnittlichen Studierenden für eine durchschnittliche Leistung erforderlich ist.
4.40 Modul: Einführung in die Bildfolgenauswertung [M-INFO-100736]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3 | Zehntelnoten | Jedes Sommersemester | 1 Semester | Deutsch | 4 | 1

Pflichtbestandteile

| T-INFO-101273 | Einführung in die Bildfolgenauswertung | 3 LP | Beyerer |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Studierende analysieren an sie gestellte Probleme aus dem Bereich der Bildfolgenauswertung und bewerten bekannte Verfahren und Verfahrensgruppen auf ihre Eignung zur Lösung der Probleme und wählen somit geeignete Verfahren und Verfahrensweisen aus.

Inhalt

Arbeitsaufwand
Gesamt: ca. 90h, davon
1. Präsenzzeit in Vorlesungen: 23h
2. Vor-/Nachbereitung derselbigen: 23h
3. Prüfungsvorbereitung und Präsenz in selbiger: 44h

Empfehlungen
Siehe Teilleistung.
Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 4
Version: 8

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrer/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4,5</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102762</td>
<td>Business Dynamics</td>
<td>4,5</td>
<td>Geyer-Schulz, Glenn</td>
</tr>
<tr>
<td>T-WIWI-112823</td>
<td>Platform & Market Engineering: Commerce, Media, and Digital Democracy</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105946</td>
<td>Preismanagement</td>
<td>4,5</td>
<td>Geyer-Schulz, Glenn</td>
</tr>
<tr>
<td>T-WIWI-113147</td>
<td>Telecommunications and Internet – Economics and Policy</td>
<td>4,5</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

• kennt Koordinations- und Motivationsmöglichkeiten und untersucht sie auf ihre Effizienz hin,
• klassifiziert Märkte und beschreibt diese sowie die Rollen der beteiligten Parteien, formal,
• kennt die Bedingungen für Marktvorgangs- und kennt und entwickelt Gegenmaßnahmen,
• kennt Institutionen und Marktmechanismen, die zugrunde liegenden Theorien und empirische Forschungsergebnisse,
• kennt die Designkriterien von Marktmechanismen und die systematische Herangehensweise bei der Erstellung von neuen Märkten,
• modelliert, analysiert und optimiert die Struktur und Dynamik von komplexen wirtschaftlichen Zusammenhängen.

Inhalt
Unter welchen Bedingungen entwickeln sich Elektronische Märkte und wie kann man diese analysieren und optimieren?

Konkrete Themen sind:

• Klassifikationen, Analyse und Design von Märkten
• Simulation von Märkten
• Auktionsformen und Auktionstheorie
• Automated Negotiations
• Nonlinear Pricing
• Continuous Double Auctions
• Market-Maker, Regulierung, Aufsicht
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen
Keine
Modul: Energiewirtschaft und Energiemärkte [M-WIWI-101451]

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 8

Pflichtbestandteile
T-WIWI-107043 Liberalised Power Markets 5,5 LP Fichtner

Ergänzungsangebot (Wahl: mind. 6 LP)
T-WIWI-107501 Energy Market Engineering 4,5 LP Weinhardt
T-WIWI-112151 Energy Trading and Risk Management 3,5 LP N.N.
T-WIWI-108016 Planspiel Energiewirtschaft 3,5 LP Genoese
T-WIWI-107446 Quantitative Methods in Energy Economics 3,5 LP Plötz
T-WIWI-102712 Regulierungstheorie und -praxis 4,5 LP Mitusch

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Die Lehrveranstaltung Liberalised Power Markets muss geprüft werden.

Qualifikationsziele
Der/die Studierende

• besitzt weitgehende Kenntnisse im Bereich der neuen Anforderungen liberalisierter Energiemärkte,
• beschreibt die Planungsaufgaben auf den verschiedenen Energiemärkten,
• kennt Ansätze zur Lösung der jeweiligen Planungsaufgaben.

Inhalt

• Liberalised Power Markets: Der europäische Liberalisierungsprozess, Energiemärkte, Preisbildung, Marktversagen, Investitionsanreize, Marktmacht
• Energiehandel und Risikomanagement: Handelsplätze, Handelsprodukte, Marktteilmechanismen, Positions- und Risikomanagement
• Planspiel Energiewirtschaft: Simulation des deutschen Elektrizitätssystems

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h, für Lehrveranstaltungen mit 3,5 Credits ca. 105h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen
Die Lehrveranstaltungen sind so konzipiert, dass sie unabhängig voneinander gehört werden können. Daher kann sowohl im Winter- als auch im Sommersemester mit dem Modul begonnen werden.
4.43 Modul: Energiewirtschaft und Technologie [M-WIWI-101452]

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 5

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Credit-Stunden</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102793</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>3,5 LP</td>
<td>Jochem</td>
</tr>
<tr>
<td>T-WIWI-102650</td>
<td>Energie und Umwelt</td>
<td>4,5 LP</td>
<td>Karl</td>
</tr>
<tr>
<td>T-WIWI-113073</td>
<td>Machine Learning and Optimization in Energy Systems</td>
<td>3,5 LP</td>
<td>Fichtner</td>
</tr>
<tr>
<td>T-WIWI-107464</td>
<td>Smart Energy Infrastructure</td>
<td>5,5 LP</td>
<td>Ardone, Pustisek</td>
</tr>
<tr>
<td>T-WIWI-102695</td>
<td>Wärmewirtschaft</td>
<td>3,5 LP</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende
- besitzt detaillierte Kenntnisse zu heutigen und zukünftigen Energieversorgungstechnologien (Fokus auf die Endenergie träger Elektrizität und Wärme),
- kennt die techno-ökonomischen Charakteristika von Anlagen zur Energiebereitstellung, zum Energietransport sowie der Energieverteilung und Energienachfrage,
- kann die wesentlichen Umweltauswirkungen dieser Technologien einordnen.

Inhalt
- Wärmewirtschaft: Fernwärme, Heizungsanlagen, Wärmebedarfsreduktion, gesetzliche Vorgaben
- Energy Systems Analysis: Interdependenzen in der Energiewirtschaft, Modelle der Energiewirtschaft
- Energie und Umwelt: Emissionsfaktoren, Emissionsminderungsmaßnahmen, Umweltauswirkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h, für Lehrveranstaltungen mit 3,5 Credits ca. 105h und für Lehrveranstaltungen mit 5 Credits ca. 150h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.44 Modul: Entrepreneurship (EnTechnon) [M-WIWI-101488]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 4
Version 12

Pflichtbestandteil (Wahl: 1 Bestandteil)
T-WIWI-102864 Entrepreneurship 3 LP Terzidis

Wahlpflichtangebot (Wahl: zwischen 1 und 2 Bestandteilen)
T-WIWI-102866 Design Thinking 3 LP Terzidis
T-WIWI-102833 Entrepreneurial Leadership & Innovation Management 3 LP Terzidis
T-WIWI-113151 Entrepreneurship Seasonal School 3 LP Terzidis
T-WIWI-102865 Geschäftplanung für Gründer 3 LP Terzidis
T-WIWI-110374 Gründer im Umfeld IT-Sicherheit 3 LP Terzidis
T-WIWI-110985 International Business Development and Sales 6 LP Casenave, Klarmann, Terzidis
T-WIWI-109064 Joint Entrepreneurship Summer School 6 LP Terzidis
T-WIWI-111561 Startup Experience 6 LP Terzidis

Ergänzungsangebot (Wahl: zwischen 0 und 1 Bestandteilen)
T-WIWI-102894 Entrepreneurship-Forschung 3 LP Terzidis
T-WIWI-102852 Fallstudienseminar Innovationsmanagement 3 LP Weissenberger-Eibl
T-WIWI-102893 Innovationsmanagement: Konzepte, Strategien und Methoden 3 LP Weissenberger-Eibl
T-WIWI-102612 Management neuer Technologien 3 LP Reiß
T-WIWI-102853 Roadmapping 3 LP Koch

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4, 1-3 SPO) über

1. die Entrepreneurship-Vorlesung (3 LP),
2. einem der Seminare des Lehrstuhls Entrepreneurship und Technologiemanagement (3 LP bzw. 6 LP) und ggf.
3. einer weiteren im Modul aufgeführten Lehrveranstaltung.

Die Seminare des Lehrstuhls sind:
- Startup Experience
- Design Thinking
- Geschäftplanung für Gründer
- Entrepreneurship-Forschung (dieses ist v.a. im Seminarmodul anrechenbar, aber auch im Entrepreneurship-Modul)
- Joint Entrepreneurship School
- Entrepreneurship Seasonal School
- International Business Development and Sales
- Gründer im Umfeld IT-Sicherheit
- Entrepreneurial Leadership & Innovation Management

Die letztgenannten fünf Seminare finden unregelmäßig statt, da sie im Rahmen von Projekten angeboten werden.

Voraussetzungen
Keine
Qualifikationsziele

Inhalt

Anmerkungen
Bitte beachten Sie: Seminare, die von Herrn Prof. Terzidis (oder den Mitarbeitenden seiner Forschungsgruppe) angeboten werden, sind nicht für die Anrechnung in einem Seminarmodul der WiWi-Studienhänge zugelassen. Ausnahme: Seminar „Entrepreneurship-Forschung“.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Keine
Verantwortung: Prof. Dr. Andreas Oberweis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>7,5-4,0</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: zwischen 1 und 2 Bestandteilen)

- T-WIWI-102661 Datenbanksysteme und XML [4,5 LP Oberweis]
- T-WIWI-102895 Software-Qualitätsmanagement [4,5 LP Oberweis]

Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)

- T-WIWI-110346 Ergänzung Betriebliche Informationssysteme [4,5 LP Oberweis]
- T-WIWI-112599 Management von IT-Projekten [4,5 LP Schätzle]
- T-WIWI-110548 Praktikum Informatik (Master) [4,5 LP Professorenschaft des Instituts AIFB]
- T-WIWI-112914 Praktikum Realisierung innovativer Dienste (Master) [4,5 LP Oberweis]
- T-WIWI-102669 Strategisches Management der betrieblichen Informationsverarbeitung [4,5 LP Wolf]

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen die Mindestanforderung an LP erfüllt wird.
Die Erfolgskontrolle zu den Vorlesungen erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen

Eine der beiden Kernvorlesungen Datenbanksysteme und XML oder Software Qualitätsmanagement muss geprüft werden.

Qualifikationsziele

Die Studierenden

- beschreiben den Aufbau und die Komponenten eines Betrieblichen Informationssystems,
- erklären die Funktionalitäten sowie die Architektur der Komponenten eines betrieblichen Informationssystems,
- wählen die relevanten Komponenten für konkrete Anwendungsprobleme aus, wenden die Komponenten selbständig an und lösen die gegebenen Probleme systematisch,
- beschreiben die beteiligten Rollen, Aktivitäten und Produkte beim Management komplexer Softwareentwicklungsprojekte,
- vergleichen Prozess- und Qualitätsmodelle und empfehlen die Auswahl eines Modells in einer konkreten Anwendungssituation,
- formulieren selbständig wissenschaftliche Arbeiten zu Komponenten Betrieblicher Informationssysteme und zum Qualitäts- und Projektmanagement in der Softwareentwicklung, entwickeln selbständig innovative Lösungen für Anwendungsprobleme und wissenschaftliche Fragestellungen und beziehen sich dabei auf aktuelle Forschungsansätze.

Inhalt

Das Informationssystem eines Unternehmens umfasst die gesamte Infrastruktur der Informationsspeicherung und -verarbeitung. In diesen Bereich fallen insbesondere der Entwurf und das Management von Datenbanken, die informationstechnische Unterstützung von Geschäftsprozessen sowie die strategische Informatikplanung und -organisation.
Durch die weltweite Vernetzung und die fortschreitende geographische Verteilung von Unternehmen sowie die zunehmende Bedeutung von eCommerce-Anwendungen hat der Einsatz verteilter Informationssysteme deutlich an Bedeutung gewonnen. In diesem Modul werden Konzepte und Methoden zum Entwurf und Einsatz dieser Informationssysteme gelehrt.

Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h, für Lehrveranstaltungen mit 4,5Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Experimentelle Wirtschaftsforschung [M-WIWI-101505]

Verantwortung: Prof. Dr. Johannes Philipp Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 2 Bestandteile)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5 LP</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design</td>
<td>4,5 LP</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-102863</td>
<td>Topics in Experimental Economics</td>
<td>4,5 LP</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine.

Qualifikationsziele

Der/die Studierende

- beherrscht die Methoden der Experimentellen Wirtschaftsforschung und lernt ihre Stärken und Schwächen einzuschätzen;
- lernt wie sich die theoriegeleitete experimentelle Wirtschaftsforschung und Theoriebildung gegenseitig befruchten;
- kann ein ökonomisches Experiment entwerfen;
- statistische Grundlagen der Datenauswertung kennen und anwenden.

Inhalt

Anmerkungen

Die Veranstaltung “Predictive Mechanism and Market Design” wird in jedem zweiten Wintersemester angeboten, z.B. WS2013/14, WS2015/16, ...

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen

Es werden grundlegende Kenntnisse in Mathematik, Statistik und Spieltheorie vorausgesetzt.
4.47 Modul: Finance 1 [M-WIWI-101482]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Credits</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5 LP</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4,5 LP</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5 LP</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- besitzt zentrale ökonomische und methodische Kenntnisse in moderner Finanzwirtschaft,
- beurteilt unternehmerische Investitionsprojekte aus finanzwirtschaftlicher Sicht,
- ist in der Lage, zweckgerechte Investitionsentscheidungen auf Finanzmärkten durchzuführen.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.48 Modul: Finance 2 [M-WIWI-101483]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- Wirtschaftswissenschaften (Wahlmodule WIWI)
- Wirtschaftswissenschaften (Wahlmodule BWL)

Wahlinformationen

Dieses Modul wird erst dann für den Abschluss gewertet, wenn auch das Modul **Finance 1** erfolgreich absolviert wurde. Wird das Modul **Finance 1** in den Zusatzleistungsbereich ausgebucht, verliert das Modul **Finance 2** seine curriculare Gültigkeit/Wertung für den Studienabschluss.

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110513</td>
<td>Advanced Empirical Asset Pricing</td>
<td>4,5</td>
<td>Thimme</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4,5</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110995</td>
<td>Bond Markets</td>
<td>4,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110997</td>
<td>Bond Markets - Models & Derivatives</td>
<td>3</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110996</td>
<td>Bond Markets - Tools & Applications</td>
<td>1,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis</td>
<td>4,5</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute</td>
<td>3</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung</td>
<td>3</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul **Finance 1** zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Qualifikationsziele

Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.

Inhalt

Das Modul **Finance 2** baut inhaltlich auf dem Modul **Finance 1** auf. In den Modulveranstaltungen werden den Studierenden weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.49 Modul: Finance 3 [M-WIWI-101480]

Verantwortung: Prof. Dr. Martin Ruckes
 Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
 Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 8

Wahlinformationen

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Unterrichtsbezeichnung</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110513</td>
<td>Advanced Empirical Asset Pricing</td>
<td>4,5</td>
<td>Thimme</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4,5</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110995</td>
<td>Bond Markets</td>
<td>4,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110997</td>
<td>Bond Markets - Models & Derivatives</td>
<td>3</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110996</td>
<td>Bond Markets - Tools & Applications</td>
<td>1,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis</td>
<td>4,5</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute</td>
<td>3</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung</td>
<td>3</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102633</td>
<td>Web App Programming for Finance</td>
<td>4,5</td>
<td>Thimme</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich die Module *Finance 1* und *Finance 2* zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurden.

Qualifikationsziele

Der/die Studierende ist in der Lage, fortgeschrittene ökonomische und methodische Fragestellungen der Finanzwirtschaft zu erläutern, zu analysieren und Antworten darauf abzuleiten.
Inhalt
In den Modulveranstaltungen werden den Studierenden weiterführende ökonomische und methodische Kenntnisse der modernen Finanzwirtschaft auf breiter Basis vermittelt.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 1,5 Credits ca. 45h, für Lehrveranstaltungen mit 3 Credits ca. 90h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.50 Modul: Formale Systeme [M-INFO-100799]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101336 | Formale Systeme | 6 LP | Beckert |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationen
Nach Abschluss des Moduls verfügen Studierende über folgende Kompetenzen. Sie ...

- kennen und verstehen die vorgestellten logischen Grundkonzepte und Begriffe, insbesondere den Modellbegriff und die Unterscheidung von Syntax und Semantik,
- können natürlichsprachlich gegebene Sachverhalte in verschiedenen Logiken formalisieren sowie logische Formeln verstehen und ihre Bedeutung in natürliche Sprache übersetzen,
- können die vorgestellten Kalküle und Analyseverfahren auf gegebene Fragestellungen bzw. Probleme sowohl manuell als auch mittels interaktiver und automatischer Werkzeugunterstützung anwenden,
- kennen die grundlegenden Konzepte und Methoden der formalen Modellierung und Verifikation,
- können Programmeigenschaften in formalen Spezifikationssprachen formulieren, und kleine Beispiele mit Unterstützung von Softwarewerkzeugen verifizieren,
- können beurteilen, welcher logische Formalismus und welcher Kalkül sich zur Formalisierung und zum Beweis eines Sachverhalts eignet

Inhalt
Logikbasierte Methoden spielen in der Informatik in zwei Bereichen eine wesentliche Rolle: (1) zur Entwicklung, Beschreibung und Analyse von IT-Systemen und (2) als Komponente von IT-Systemen, die diesen die Fähigkeit verleiht, die umgebende Welt zu analysieren und Wissen darüber abzuleiten.

Dieses Modul
- führt in die Grundlagen formaler Logik ein und
- behandelt die Anwendung logikbasierter Methoden
 - zur Modellierung und Formalisierung
 - zur Ableitung (Deduktion),
 - zum Beweisen und Analysieren

von Systemen und Strukturen bzw. deren Eigenschaften.

Mehrere verschiedene Logiken werden vorgestellt, ihre Syntax und Semantik besprochen sowie dazugehörige Kalküle und andere Analyseverfahren eingeführt. Zu den behandelten Logiken zählen insbesondere die klassische Aussagen- und Prädikatenlogik sowie Temporallogiken wie LTL oder CTL.

Die Frage der praktischen Anwendbarkeit der vorgestellten Logiken und Kalküle auf Probleme der Informatik spielt in dieser Vorlesung eine wichtige Rolle. Der Praxisbezug wird insbesondere auch durch praktische Übungen (Praxisaufgaben) hergestellt, im Rahmen derer Studierende die Anwendung aktueller Werkzeuge (z.B. des interaktiven Beweisers KeY) auf praxisrelevante Problemstellungen (z.B. den Nachweis von Programmeigenschaften) erproben können.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt 180h.
Der Aufwand setzt sich zusammen aus:
34,5h = 23 * 1,5h Vorlesung (Präsenz)
10,5h = 7 * 1,5h Übungen (Präsenz)
60h Vor- und Nachbereitung, insbes. Bearbeitung der Übungsblätter
40h Bearbeitung der Praxisaufgaben
35h Klausurvorbereitung

Empfehlungen
Siehe Teilleistungen.
Modul: Formale Systeme II: Anwendung [M-INFO-100744]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101281 | Formale Systeme II: Anwendung | 5 LP | Beckert |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele

Nach Abschluss des Moduls verfügen Studierende über folgende Kompetenzen. Sie ...

- haben einen Überblick über typische in der formalen Programmentwicklung eingesetzte Spezifikations- und Verifikationsmethoden und -werkzeuge.
- beherrschen Theorien und Praxis der formalen Methoden und Werkzeuge, die repräsentativ in der Veranstaltung vorgestellt werden,
- können die vorgestellten Methoden und Werkzeuge erfolgreich zur Lösung praktischer Aufgaben einsetzen,
- verstehen die charakteristischen Eigenschaften der vorgestellten Methoden und Werkzeuge, können deren Vor- und Nachteile gegeneinander abwägen und können ein passendes Verifikationswerkzeug für ein gegebenes Anwendungsszenario auswählen.

Inhalt

Beispiele für Methoden und Werkzeuge, die vorgestellt werden können, sind:

- Verifikation funktionaler Eigenschaften imperativer und objekt-orientierter Programme (KeY-System),
- Nachweis temporallogische Eigenschaften endlicher Strukturen (Model Checker SPIN),
- deduktive Verifikation nebelüfiger Programme (Rely-Guarantee, Isabelle/HOL),
- Systemmodellierung durch Verfeinerung (Event-B mit Rodin),
- Verifikation Hybrider Systeme (HieroMate),
- Verifikation von Echtzeiteigenschaften (UPPAAL),
- Verifikation der Eigenschaften von Datenstrukturen (TVLA),
- Programm-/Protokollverifikation durch Rewriting (Maude),
- Spezifikation und Verifikation von Sicherheitseigenschaften (KeY, JIF).
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt 150 Stunden.
Der Aufwand setzt sich zusammen aus:
- 22,5h = 15 * 1,5 - Vorlesung (Präsenz)
- 12h = 8 * 1,5h - Übungen (Präsenz)
- 35h Vor- und Nachbereitung der Vorlesung
- 12h Installation der verwendeten formalen Systeme und Einarbeitung
- 30h Lösen von praktischen Aufgaben
- 38,5h Vorbereitung auf die Prüfung

Empfehlungen
Siehe Teilleistung.
4.52 Modul: Formale Systeme II: Theorie [M-INFO-100841]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101378 | Formale Systeme II: Theorie | 5 LP | Beckert |

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Nach Abschluss des Moduls verfügen Studierende über folgende Kompetenzen. Sie ...

- kennen und verstehen die vorgestellten Konzepte
- können die vorgestellten Methoden und Kalküle anwenden,
- kennen die Relevanz der vorgestellten Konzepte und Methoden für Anwendungen der Informatik und können einen Bezug zu praktischen Fragestellungen herstellen,
- können aus den theoretischen Grenzen der Entscheidbarkeit bzw. Axiomatisierbarkeit Schlüsse auch für praktische Fragestellungen ziehen.

Inhalt

Thema sind theoretische Konzepte und Methoden (bspw.Kalküle) aus Teilbereichen der Formalen Logik, wie beispielsweise:

- Dynamische Logik (Entscheidbarkeit der Propositional Dynamic Logic, relative Vollständigkeit der First-order Dynamic Logic),
- Separation Logic
- Theorieschließen
- Hybride Modelle
- Mengenlehre (Zermelo-Fraenkel-Mengenlehre und ihre Grenzen)
- Drei- und mehrwertige Logik
- Nicht-Axiomatisierbarkeit der Arithmetik, Gödelscher Unvollständigkeitssatz

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt 150 Stunden.

Der Aufwand setzt sich zusammen aus:

22,5h = 15 * 1,5h Vorlesung (Präsenz)
12h = 8 * 1,5h Übungen (Präsenz)
70h Vor- und Nachbereitung der Vorlesung

Empfehlungen

Siehe Teilleistung
Modul: Fortgeschrittene Themen der Kryptographie [M-INFO-101198]

Verantwortung: Prof. Dr. Jörn Müller-Quade

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte 9

Notenskala Zehntelnoten

Turnus Jedes Semester

Dauer 1 Semester

Level 4

Version 1

Fortgeschrittene Themen der Kryptographie (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>LP</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101373</td>
<td>Ausgewählte Kapitel der Kryptographie</td>
<td>3 LP</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101260</td>
<td>Asymmetrische Verschlüsselungsverfahren</td>
<td>3 LP</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101259</td>
<td>Beweisbare Sicherheit in der Kryptographie</td>
<td>3 LP</td>
<td>Hofheinz</td>
</tr>
<tr>
<td>T-INFO-101280</td>
<td>Digitale Signaturen</td>
<td>3 LP</td>
<td>Hofheinz</td>
</tr>
<tr>
<td>T-INFO-101279</td>
<td>Kryptographische Wahlverfahren</td>
<td>3 LP</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101360</td>
<td>Signale und Codes</td>
<td>3 LP</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101390</td>
<td>Symmetrische Verschlüsselungsverfahren</td>
<td>3 LP</td>
<td>Müller-Quade</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende soll

- die theoretischen Grundlagen sowie grundlegende Sicherheitsmechanismen aus der Computersicherheit und der Kryptographie abrufen können,
- die Verfahren der Computersicherheit und der Kryptographie verstehen und erklären können,
- in die Lage versetzt werden aktuelle wissenschaftliche Papiere lesen und verstehen zu können,
- die Sicherheit gegebener Lösungen kritisch beurteilen können und Angriffspunkte/Gefahren erkennen,
- eigene Sicherheitslösungen konzipieren können, etwa später im Rahmen einer Masterarbeit.

Inhalt

Das Modul soll vertiefte theoretische und praktische Aspekte der IT-Sicherheit und Kryptographie vermitteln.

- Erarbeitung von Schutzzielen und Klassifikation von Bedrohungen.
- Formale Beschreibung von Authentifikationssystemen.
- Vorstellung typischer Schwachstellen in Programmen und Web-Applikationen sowie Erarbeitung geeigneter Schutzmaßnahmen/Vermeidungsstrategien.
- Überblick über Möglichkeiten zu Seitenkanalangriffen.
- Einführung in Schlüsselmanagement und Public-Key-Infrastrukturen.
- Vorstellung und Vergleich gängiger Sicherheitszertifizierungen.
- Es werden aktuelle Forschungsfragen aus einigen der folgenden Gebieten behandelt:
 - Blockchiffren, Hashfunktionen,
 - Public-Key-Verschlüsselung, digitale Signatur, Schlüssellaustausch.
 - Grundlegende Sicherheitsprotokolle wie Fairer Münzwurf über Telefon, Byzantine Agreement, Holländische Blumenauctionen, Zero Knowledge.
 - Bedrohungsmodelle und Sicherheitsdefinitionen.
 - Modularer Entwurf und Protokollkomposition.
 - Sicherheitsdefinitionen über Simulierbarkeit.
 - Universelle Komponierbarkeit.
 - Abstreitbarkeit als zusätzliche Sicherheitseigenschaft.
 - Elektronische Wahlen.

Arbeitsaufwand

beträgt je nach Wahl der TL mind 270 h.
Erfolgskontrolle(n)
Due to the professor's research sabbatical, the BSc module "Financial Data Science" and MSc module "Foundations for Advanced Financial -Quant and -Machine Learning Research" and the MSc module "Advanced Machine Learning and Data Science" along with the respective examinations will not be offered in SS2023. Bachelor and Master thesis projects are not affected and will be supervised.

The module examination is an alternative exam assessment with a maximum score of 100 points to be achieved. These points are distributed over 4 worksheets to be submitted during the semester. The worksheets cover the respective material of the module and are handed out, worked on and assessed in lecture weeks 3 (10 points), 6 (20 points), 9 (30 points) and 12 (40 points).

The module-wide exam (all 4 worksheets) must be taken in the same semester.

The worksheets are a mixture of analytical tasks and programming tasks with financial data.

Qualifikationsziele
This MSc module teaches students fundamental stats and analytics concepts, as well necessary financial economic intuition, necessary to identify, design and execute interesting research questions in quant finance and financial machine learning.
Topics include: Maximum Likelihood learning of arma-garch models, expectation maximization learning applied to stochastic volatility and valuation models, Kalman filter techniques to learn latent states, estimation of affine jump diffusion models with options and higher-order moments, stochastic calculus, dynamic modeling of asset markets (bond, equity, options), equilibrium determination of risk premiums, risk premiums for higher moment risk, risk decomposition (fundamental vs idiosyncratic), option-implied return distributions, mixture-density-networks and neural nets.

Inhalt
Learning Objectives: Skills and understanding of how to successfully set-up, execute and interpret financial data driven research with the following methods: MLE, Kalman Filter, Expectation Maximization, Option Pricing, dynamic asset pricing theory, backward-looking historical return densities, forward-looking option-implied return densities, mixture-density-network, neural networks. Programming is not taught in this course, yet, some graded and non-graded exercises might make heavy use of software based data analysis. See the course's pre-requisites and comments in the module handbook.

Anmerkungen
- Strongly recommended to have good knowledge in financial econometrics (MLE, OLS, GLS, ARMA-GARCH), mathematics (differential equations, difference equations and optimization), investments (CAPM, factor models), asset pricing (SDF, SDF pricing), derivatives (Black-Scholes, risk-neutral pricing), and programming of statistical concepts (Java or R or Python or Matlab or C or ...)
- Strongly recommended to have a strong interest for interdisciplinary research work in statistics, programming, applied math and financial economics.
- Students lacking the prior knowledge might find the resources of the Chair helpful: www.youtube.com/c/cram-kit.

Arbeitsaufwand
The total workload for this course is approximately 270 hours. This is for a student with the appropriate prior knowledge in financial econometrics, finance, mathematics and programming. Students without programming experience of statistical concepts will need to invest extra time. Students who have struggled in math- or programming- or finance- oriented classes, will find this course very challenging. Please check the pre-requisites and comments in the module handbook.
Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 8 Notenskala Zehntelnoten Turnus Jedes Semester Dauer 1 Semester Level 4 Version 3

Future Networking (Wahl: mindestens 1 Bestandteil sowie mind. 8 LP)
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101321</td>
<td>Next Generation Internet</td>
<td>4 LP</td>
<td>Bless, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101322</td>
<td>Mobilkommunikation</td>
<td>4 LP</td>
<td>Waldhorst, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101337</td>
<td>Internet of Everything</td>
<td>4 LP</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101338</td>
<td>Telematik</td>
<td>6 LP</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine.

Qualifikationsziele
Die Studierenden sollen
- die Gründe der Schwächen heutiger Netze verstehen können,
- innovative Lösungsansätze kennenlernen,
- eine Vielfalt neuer, zukünftiger Netztechnologien kennenlernen und deren Bedarf erklären können,
- mögliche Migrationsansätze verstehen können.

Inhalt
Neue Prinzipien wie Internet der Dinge und selbstorganisierende Netze sind in diesem Modul ebenso Thema wie die Identifikation der Probleme in bisherigen Netzen und neuartige Lösungsansätze für diese Probleme. Dabei werden innovative Techniken vorgestellt, die sich insbesondere durch ihre Diversität auszeichnen, die von Multimediaübertragung, über Mobilitätsunterstützung, bis hin zu kleinsten, drahtlosen Netzen eingebetteter Systeme reicht.

Empfehlungen

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

T-INFO-101262 Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie 3 LP Asfour, Spetzger

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele

Inhalt
Die Lehrveranstaltung vermittelt einen Überblick über die Neuromedizin und bewirkt ein grundsätzliches Verständnis für die Sinnes- und Neurophysiologie, was eine wichtige Schnittstelle zu den innovativen Forschungsgebieten der Neuroprothetik (optische, akustische Prothesen) darstellt. Zudem besteht hier ebenso eine enge Anbindung zu den motorischen Systemen in der Robotik. Weitere Verknüpfungen bestehen zu den Bereichen der Bildgebung und Bildverarbeitung, der intraoperativen Unterstützungssysteme. Es wird ein Praxisbezug hergestellt sowie konkrete Anwendungsbeispiele in der medizinischen Diagnostik und Therapie dargestellt.

Arbeitsaufwand
c.a. 40 h

Empfehlungen
Siehe Teilleistung
4.57 Modul: Geometrische Optimierung [M-INFO-100730]

- **Verantwortung:** Prof. Dr. Hartmut Prautzsch
- **Einrichtung:** KIT-Fakultät für Informatik
- **Bestandteil von:** Informatik

Leistungspunkte	3
Notenskala | Zehntelnoten
Turnus | Unregelmäßig
Dauer | 1 Semester
Sprache | Deutsch
Level | 4
Version | 1

Pflichtbestandteile

| T-INFO-101267 | Geometrische Optimierung | 3 LP | Prautzsch |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt
Grundlegende Methoden zur Optimierung wie die Methode der kleinsten Quadrate, Levenber-Marquardt-Algorithmus, Berechnung von Ausgleichsebenen, iterative Ist- und Sollwertanpassung von Punktwolken (iterated closest point), finite Elementen.
Fragen zur numerischen Stabilität und Algorithmen zur exakten Berechnung einfacher geometrischer Operationen.
Verfahren der algorithmischen Geometrie etwa zur Bestimmung kleinster umhüllender Kugeln (Welzl-Algorithmus)

Arbeitsaufwand
90h davon etwa:
- 30h für den Vorlesungsbesuch
- 30h für die Nachbearbeitung
- 30h für die Prüfungsvorbereitung Englische Version:
- 90h
Verantwortung: Prof. Dr. Melanie Volkamer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kursbezeichnung</th>
<th>Punktstest</th>
<th>Semester</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109270</td>
<td>Human Factors in Security and Privacy</td>
<td>4,5 LP</td>
<td>Volkamer</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>T-WIWI-108439</td>
<td>Praktikum Security, Usability and Society</td>
<td>4,5 LP</td>
<td>Volkamer</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Teilleistungen des Moduls, mit denen die Mindestanforderung an Leistungspunkten erfüllt wird. Die Erfolgskontrolle wird bei jeder Teilleistung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Studierende...

- wissen, warum viele existierende Sicherheits- und Privatsphäre-Mechanismen nicht benutzerfreundlich und viele Ansätze zur Sensibilisierung bzw. Schulungs- und Trainingslösungen nicht effektiv sind
- können in Bezug auf konkrete Beispiele erklären, wieso diese nicht benutzerfreundlich / nicht effektiv sind und wieso Nutzer entsprechend eine hohe Wahrscheinlichkeit haben, bei ihrer Verwendung auf Probleme zu stoßen
- können erklären was mentale Modelle sind, warum diese wichtig sind und wie sie identifiziert werden können
- wissen, wie ein „Cognitive Walkthrough“ durchgeführt wird um Probleme von existierenden Mechanismen und Ansätzen festzustellen
- wissen, wie semi-strukturierte Interviews geführt werden
- wissen, wie sich Nutzerstudien im Kontext Informationssicherheit von Nutzerstudien in anderen Bereichen unterscheiden
- können den Prozess des „Human centered security/privacy by design“-Ansatzes erklären
- kennen die Vor- und Nachteile verschiedener grafischer Passwortlösungen
- kennen Konzepte wie die „just in time and place“ Sicherheitsinterventionen
Inhalt

Human Factors umfassen im Forschungsbereich Sicherheit und Privatsphäre:

- Die Identifikation mentaler Modelle, wobei verschiedene Techniken wie (semi-)strukturierte Interviews oder Fokusgruppen zum Einsatz kommen
- Die Evaluation existierender Ansätze bezüglich ihrer Effektivität bei der Unterstützung von Nutzern beim Treffen sicherer/informierter Entscheidungen im Privatsphärekontext, wobei Techniken wie der „Cognitive Walkthrough“, Laborstudien mit Nutzern oder Feldstudien zum Einsatz kommen
- Die konzeptionelle Entwicklung besserer/neuer Ansätze sowie die Evaluation dieser in Hinblick auf ihre Effektivität unter Verwendung des sogenannten „Human centered security/privacy by design“-Ansatzes.

Die Übung beinhaltet hauptsächlich die Replikation einer Interviewstudie. Das Hauptaugenmerk des Praktikums liegt auf der Nachbildung einer quantitativ basierten Anwenderstudie.

Anmerkungen

Arbeitsaufwand
Verantwortung: Prof. Dr. Petra Nieken
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 4
Version 1

Wahlpflichtangebot (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5 LP</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-111912</td>
<td>Advanced Topics in Digital Management</td>
<td>3 LP</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-111913</td>
<td>Advanced Topics in Human Resource Management</td>
<td>3 LP</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-111806</td>
<td>Behavioral Lab Exercise</td>
<td>4,5 LP</td>
<td>Nieken, Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-110851</td>
<td>Designing Interactive Systems</td>
<td>4,5 LP</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-111099</td>
<td>Judgement and Decision Making</td>
<td>4,5 LP</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-111385</td>
<td>Responsible Artificial Intelligence</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-111109</td>
<td>KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen über die einzelnen Lehrveranstaltungen des Moduls. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Bitte informieren Sie sich über etwaige Voraussetzungen und Empfehlungen bei den einzelnen Veranstaltungen.

Qualifikationsziele
Der/ die Studierende
- versteht und analysiert Problemstellungen in Unternehmen
- wendet ökonomische Modelle und empirische Methoden zur Modellierung und Analyse von Fragestellungen aus den Bereichen Arbeitswelt und Future of Work an
- besitzt Kenntnisse zur Anwendbarkeit und Problematik unterschiedlicher wissenschaftlicher Untersuchungsmethoden
- versteht den Einfluss von Digitalisierung sowie neuen Informations- und Kommunikationstechniken auf den Arbeitsalltag und Managemententscheidungen

Inhalt

Arbeitsaufwand

Empfehlungen
Es werden Kenntnisse in HRM, Mikroökonomie, Spieltheorie sowie Statistik empfohlen.
4 MODULE

4.60 Modul: Industrielle Produktion II [M-WIWI-101471]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 5

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>LP</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102631</td>
<td>Anlagenwirtschaft</td>
<td>5,5</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Ergänzungsangebot aus dem Modul Industrielle Produktion III (Wahl: höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>LP</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102763</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>3,5</td>
<td>Bosch, Göbelt</td>
</tr>
<tr>
<td>T-WIWI-102826</td>
<td>Risk Management in Industrial Supply Networks</td>
<td>3,5</td>
<td>Schultmann</td>
</tr>
<tr>
<td>T-WIWI-102828</td>
<td>Supply Chain Management in der Automobilindustrie</td>
<td>3,5</td>
<td>Heupel, Lang</td>
</tr>
<tr>
<td>T-WIWI-103134</td>
<td>Project Management</td>
<td>3,5</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>LP</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102634</td>
<td>Emissionen in die Umwelt</td>
<td>3,5</td>
<td>Karl</td>
</tr>
<tr>
<td>T-WIWI-112103</td>
<td>Global Manufacturing</td>
<td>3,5</td>
<td>Sasse</td>
</tr>
<tr>
<td>T-WIWI-113107</td>
<td>Life Cycle Assessment – Grundlagen und Anwendungsmöglichkeiten im industriellen Kontext</td>
<td>3,5</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

- Die Studierenden beschreiben das Aufgabenfeld des taktischen Produktionsmanagements, insb. der Anlagenwirtschaft.
- Die Studierenden beschreiben die wesentlichen Problemstellungen der Anlagenwirtschaft, d.h. der Projektierung, Realisierung und Überwachung aller Maßnahmen oder Tätigkeiten, die sich auf industrielle Anlagen beziehen.
- Die Studierenden erläutern die Notwendigkeit einer techno-ökonomischen Herangehensweise für Problemstellungen des taktischen Produktionsmanagements.
- Die Studierenden kennen ausgewählte techno-ökonomische Methoden aus den Bereichen der Investitions- und Kostenschätzung, Anlagenauslegung, Kapazitätsplanung, technisch-wirtschaftlichen Bewertung von Produktionstechniken (-systemen) sowie zur Gestaltung und Optimierung von (technischen) Produktionssystemen exemplarisch anwenden.
- Die Studierenden beurteilen techno-ökonomische Planungsansätze zum taktischen Produktionsmanagement hinsichtlich der damit erreichbaren Ergebnisse und ihrer Praxisrelevanz.

Inhalt

- Anlagenwirtschaft: Grundlagen, Kreislauf der Anlagenwirtschaft von der Planung/Projektierung, über techno-ökonomische Bewertungen, Bau und Betrieb bis hin zum Rückbau von Anlagen.

Anmerkungen
Die Ergänzungsveranstaltungen stellen Kombinationsempfehlungen dar und können alternativ durch Ergänzungsveranstaltungen aus dem Mastermodul Industrielle Produktion III ersetzt werden.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 LP). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 LP ca. 105h, für Lehrveranstaltungen mit 5,5 LP ca. 165h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.61 Modul: Industrielle Produktion III [M-WIWI-101412]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 | Zehntelnoten | Jedes Sommersemester | 1 Semester | Deutsch/Englisch | 4 | 5

Pflichtbestandteile
T-WIWI-102632 Produktions- und Logistikmanagement 5,5 LP Schultmann

Ergänzungsangebot aus dem Modul Industrielle Produktion II (Wahl: höchstens 1 Bestandteil)
T-WIWI-102634 Emissionen in die Umwelt 3,5 LP Karl
T-WIWI-112103 Global Manufacturing 3,5 LP Sasse
T-WIWI-113107 Life Cycle Assessment – Grundlagen und Anwendungsmöglichkeiten im industriellen Kontext 3,5 LP Schultmann

Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)
T-WIWI-102763 Supply Chain Management with Advanced Planning Systems 3,5 LP Bosch, Göbelt
T-WIWI-102826 Risk Management in Industrial Supply Networks 3,5 LP Schultmann
T-WIWI-102828 Supply Chain Management in der Automobilindustrie 3,5 LP Heupel, Lang
T-WIWI-103134 Project Management 3,5 LP Schultmann

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Qualifikationsziele
- Die Studierenden beschreiben das Aufgabenfeld des operativen Produktions- und Logistikmanagements.
- Die Studierenden beschreiben die Planungsaufgaben des Supply Chain Managements.
- Die Studierenden wenden die Ansätze zur Lösung dieser Planungsaufgaben exemplarisch an.
- Die Studierenden berücksichtigen die Interdependenzen der Planungsaufgaben und Methoden.
- Die Studierenden diskutieren den Leistungsumfang und die Defizite dieser Systeme.

Inhalt
- Planungsaufgaben und exemplarische Methoden der Produktionsplanung und -steuerung des Supply Chain Management
- Softwaresysteme zur Unterstützung des Produktions- und Logistikmanagements (APS, PPS-, ERP-Systeme)
- Projektmanagement sowie Gestaltungsfragen des Produktionsumfeldes

Anmerkungen
Die Ergänzungsveranstaltungen stellen Kombinationsempfehlungen dar und können alternativ durch Ergänzungsveranstaltungen aus dem Mastermodul Industrielle Produktion II ersetzt werden.
Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Verantwortung: Prof. Dr. Alexander Mädche
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 4
Version: 4

Wahlpflichtangebot (Wahl: mind. 9 LP)
- T-WIWI-105777 Business Intelligence Systems 4,5 LP Mädche, Nadj, Toreini
- T-WIWI-110851 Designing Interactive Systems 4,5 LP Mädche
- T-WIWI-108437 Seminarpraktikum: Information Systems und Service Design 4,5 LP Mädche

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
The student
- has a comprehensive understanding of conceptual and theoretical foundations of informations systems in organizations
- is aware of the most important classes of information systems used in organizations: process-centric, information-centric and people-centric information systems.
- knows the most important activities required to execute in the pre-implementation, implementation and post-implementation phase of information systems in organizations in order to create business value
- has a deep understanding of key capabilities of business intelligence systems and/or interactive information systems used in organizations

Inhalt
During the last decades we witnessed a growing importance of Information Technology (IT) in the business world along with faster and faster innovation cycles. IT has become core for businesses from an operational company-internal and external customer perspective. Today, companies have to rethink their way of doing business, from an internal as well as an external digitalization perspective.

This module focuses on the internal digitalization perspective. The contents of the module abstract from the technical implementation details and focus on foundational concepts, theories, practices and methods for information systems in organizations. The students get the necessary knowledge to guide the successful digitalization of organizations. Each lecture in the module is accompanied with a capstone project that is carried out in cooperation with an industry partner.

Anmerkungen
Neues Modul ab Sommersemester 2018.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.
Präsenzzeit: 90 Stunden
Vor-/Nachbereitung: 100 Stunden
Prüfung und Prüfungsvorbereitung: 80 Stunden
4.63 Modul: Informationswirtschaft [M-WIWI-101443]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110373</td>
<td>Advanced Information Systems</td>
<td>5 LP</td>
<td>Mädche, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102886</td>
<td>BWL der Informationsunternehmen</td>
<td>5 LP</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4 (2), 1-3 SPO), mit denen in Summe die Mindestanforderung an LP erfüllt wird. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- versteht die zentrale Rolle von Information als Wirtschaftsgut, Produktionsfaktor und Wettbewerbsfaktor,
- analysiert Information mit geeigneten Methoden und Konzepten,
- evaluiert die Informationsflüsse und den Wert von Informationen im interdisziplinären Kontext,
- erarbeitet Lösungen in Teams,
- überträgt betriebswirtschaftliche Zusammenhänge auf die durch den Einsatz von Informations- und Kommunikationstechnik geänderten Randbedingungen in Unternehmen,
- wendet Methoden der Betriebswirtschaft (Entscheidungstheorie, Spieltheorie, OR, etc.) in informationswirtschaftlichen Fragestellungen an,
- analysiert die Automatisierbarkeit von betrieblicher Entscheidungsunterstützung aus Datenbanken,
- versteht die Gewinnung entscheidungsrelevanter Daten aus betrieblichen Rechnungswesensystemen.

Inhalt

Das Modul Informationswirtschaft besteht aus den Veranstaltungen Advanced Information Systems und BWL der Informationsunternehmen.

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 300 Stunden (10 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Innovation und Wachstum [M-WIWI-101478]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte:
<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 04.10.2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
</tr>
<tr>
<td>Notenskala</td>
</tr>
<tr>
<td>Turnus</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Version</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: zwischen 9 und 10 LP)

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 04.10.2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtangebot (Wahl: zwischen 9 und 10 LP)</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>T-WIWI-109194</td>
</tr>
<tr>
<td>T-WIWI-112822</td>
</tr>
<tr>
<td>T-WIWI-112816</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §42, 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/ die Studierende

- kennt die wesentlichen Techniken zur Analyse statischer und dynamischer Optimierungsmodelle, die im Rahmen von mikro- und makroökonomischen Theorien angewendet werden
- lernt, die herausragende Rolle von Innovationen für das gesamtwirtschaftliche Wachstum sowie die Wohlfahrt zu verstehen
- ist in der Lage, die Bedeutung alternativer Anreizmechanismen für die Entstehung und Verbreitung von Innovationen zu identifizieren
- kann begründen, in welchen Fällen Markteingriffe durch den Staat, bspw. in Form von Steuern und Subventionen legitimiert werden können und sie vor dem Hintergrund wohlfahrtsökonomischer Maßstäbe bewerten

Inhalt

Das Modul umfasst Veranstaltungen, die sich im Rahmen mikro- und makroökonomischer Theorien mit Fragestellungen zu Innovation und Wachstum auseinandersetzen. Die dynamische Analyse ermöglicht es, die Konsequenzen individueller Entscheidungen im Zeitablauf zu analysieren und so insbesondere das Spannungsverhältnis zwischen statischer und dynamischer Effizienz zu verstehen. In diesem Kontext wird auch analysiert, welche Politik bei Vorliegen von Marktversagen geeignet ist, um korrigierend in das Marktescheinen einzugreifen und so die Wohlfahrt zu erhöhen.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Präsenzzeit pro gewählter Veranstaltung: 3x14h
Vor-/Nachbereitung pro gewählter Veranstaltung: 3x14h
Rest: Prüfungsvorbereitung

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen

4.65 Modul: Innovationsmanagement [M-WIWI-101507]

Verantwortung: Prof. Dr. Marion Weissenberger-Eibl
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 10

Pflichtbestandteile
T-WIWI-102893 Innovationsmanagement: Konzepte, Strategien und Methoden 3 LP Weissenberger-Eibl

Wahlpflichtangebot (Wahl: 1 Bestandteil)
T-WIWI-108875 Digitale Transformation und Geschäftsmodelle 3 LP Koch
T-WIWI-112143 Entwicklung von Nachhaltigen Geschäftsmodellen 3 LP Weissenberger-Eibl
T-WIWI-111823 Erfolgreiche Transformation durch Innovation 3 LP Busch
T-WIWI-102852 Fallstudienseminar Innovationsmanagement 3 LP Weissenberger-Eibl
T-WIWI-110263 Methoden im Innovationsmanagement 3 LP Koch
T-WIWI-102853 Roadmapping 3 LP Koch
T-WIWI-102858 Technologiebewertung 3 LP Koch
T-WIWI-102854 Technologien für das Innovationsmanagement 3 LP Koch

Ergänzungsangebot (Wahl: 1 Bestandteil)
T-WIWI-102866 Design Thinking 3 LP Terzidis
T-WIWI-108875 Digitale Transformation und Geschäftsmodelle 3 LP Koch
T-WIWI-102833 Entrepreneurial Leadership & Innovation Management 3 LP Terzidis
T-WIWI-102864 Entrepreneurship 3 LP Terzidis
T-WIWI-111823 Erfolgreiche Transformation durch Innovation 3 LP Busch
T-WIWI-102852 Fallstudienseminar Innovationsmanagement 3 LP Weissenberger-Eibl
T-WIWI-110263 Methoden im Innovationsmanagement 3 LP Koch
T-WIWI-102853 Roadmapping 3 LP Koch
T-WIWI-102854 Technologien für das Innovationsmanagement 3 LP Koch
T-WIWI-102858 Technologiebewertung 3 LP Koch

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung des Moduls besprochen.

Voraussetzungen

Qualifikationsziele
Der/ Die Studierende soll ein umfassendes Verständnis für den Innovationsprozess und seine Bedingtheit entwickeln. Weiterhin wird auf Konzepte und Prozesse, die im Hinblick auf die Gestaltung des Gesamtprozesses von besonderer Bedeutung sind, fokussiert. Davon ausgehend werden verschiedene Strategien und Methoden vermittelt.

Nach Abschluss des Moduls sollten die Studierenden ein systemisches Verständnis des Innovationsprozesses entwickelt haben und diesen durch Anwendung und Entwicklung geeigneter Methoden gestalten können.
Inhalt
In der Vorlesung Innovationsmanagement: Konzepte, Strategien und Methoden werden ein systemisches Verständnis des Innovationsprozesses und für das Gestalten des Prozesses geeignete Konzepte, Strategien und Methoden vermittelt. Ausgehend von diesem ganzheitlichen Verständnis stellen die Seminare Vertiefungen dar, in denen sich dezidiert mit spezifischen, für das Innovationsmanagement zentralen, Prozessen und Methoden auseinandergesetzt wird.

Anmerkungen
Seminare, die von Herrn Prof. Terzidis (oder den Mitarbeitenden seiner Forschungsgruppe) angeboten werden, sind nicht für die Anrechnung in einem Seminarmodul der WiWi-Studiengänge zugelassen. Ausnahme: Seminar „Entrepreneurship-Forschung“.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Keine
4.66 Modul: Innovationsökonomik [M-WIWI-101514]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: zwischen 9 und 10 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
<th>Sprache</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112822</td>
<td>Economics of Innovation</td>
<td>4,5</td>
<td>Ott</td>
<td>9</td>
</tr>
<tr>
<td>T-WIWI-102906</td>
<td>Methods in Economic Dynamics</td>
<td>1,5</td>
<td>Ott</td>
<td>9</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>3</td>
<td>Klarmann</td>
<td>9</td>
</tr>
<tr>
<td>T-WIWI-102789</td>
<td>Seminar in Wirtschaftspolitik</td>
<td>3</td>
<td>Ott</td>
<td>9</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/ die Studierende

- lernt, die herausragende Rolle von Innovationen für das gesamtwirtschaftliche Wachstum sowie die Wohlfahrt zu verstehen,
- ist in der Lage, die Bedeutung alternativer Anreizmechanismen für die Entstehung und Verbreitung von Innovationen zu identifizieren,
- kennt die wichtigsten Begriffe des Produkt- und Innovationskonzeptes,
- kennt die zentralen strategischen Konzepte des Innovationsmanagements,
- kennt zentrale formale Innovationsmodelle und beherrscht deren Implementierung in geeigneten Computeralgebrasystemen,
- kann geeignete Datenquellen abfragen und ist in der Lage, diese mit statistischen Verfahren auszuwerten sowie abzubilden.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Empfehlungen
4.67 Modul: Innovative Konzepte des Daten- und Informationsmanagements [M-INFO-101208]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 8 Notenskala Zehntelnoten Turnus Jedes Semester Dauer 1 Semester Level 4 Version 6

<table>
<thead>
<tr>
<th>Innovative Konzepte des Daten- und Informationsmanagements (Wahl: mindestens 1 Bestandteil sowie mind. 8 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101317 Datenbankeinsatz 5 LP Böhm</td>
</tr>
<tr>
<td>T-INFO-101975 Praxis der Unternehmensberatung 1.5 LP Böhm</td>
</tr>
<tr>
<td>T-INFO-101976 Projektmanagement aus der Praxis 1.5 LP Böhm</td>
</tr>
<tr>
<td>T-INFO-101977 Praxis des Lösungsvertriebs 1.5 LP Böhm</td>
</tr>
<tr>
<td>T-INFO-108377 Datenschutz von Anonymisierung bis Zugriffskontrolle 3 LP Böhm</td>
</tr>
<tr>
<td>T-INFO-111400 Datenbankfunktionalität in der Cloud 5 LP Böhm</td>
</tr>
<tr>
<td>T-INFO-113124 Data Science 8 LP Böhm</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

- kennt das Gebiet der Informationssysteme als Forschungsgebiet in seinen unterschiedlichen Facetten und kann in diesem Bereich wissenschaftlichen arbeiten,
- entwickelt selbstständig Informationssysteme mit komplexer Struktur,
- strukturiert und führt Projekte mit nicht vorhersehbarer Schwierigkeit im Bereich der Informationssysteme,
- erklärt komplizierte Aspekte aus dem Themenbereich dieses Moduls sowohl anderen Experten als auch Außenstehenden und diskutiert fachbezogen und versiert.

Inhalt
Dieses Modul soll Studierende mit modernen Informationssystemen ausführlich vertraut machen, in Breite und Tiefe. 'Breite' erreichen wir durch die ausführliche Betrachtung und die Gegenüberstellung unterschiedlicher Systeme und ihrer jeweiligen Zielsetzungen, 'Tiefe' durch die ausführliche Betrachtung der jeweils zugrundeliegenden Konzepte und wichtiger Entwurfsalternativen, ihre Beurteilung und die Auseinandersetzung mit Anwendungen.

Anmerkungen
Die Lehrveranstaltungen in diesem Modul werden unregelmäßig angeboten, die Prüfbarkeit ist aber immer gewährleistet.

Arbeitsaufwand
beträgt je nach Wahl der TL zwischen 210 und 240 h.

Empfehlungen
Falls keine Datenbankkenntnisse vorhanden sind, sollte vorab das Modul Kommunikation und Datenhaltung belegt werden.
4.68 Modul: Intelligente Systeme und Services [M-WIWI-101456]

Verantwortung: Dr.-Ing. Michael Färber
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: zwischen 9 und 10 LP)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Moduleinstieg</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-101261</td>
<td></td>
<td>4,5 LP</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106423</td>
<td></td>
<td>4,5 LP</td>
<td>Sack</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112685</td>
<td></td>
<td>4,5 LP</td>
<td>Lazarova-Molnar</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td></td>
<td>4,5 LP</td>
<td>Professorenschaft des Instituts AIFB</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td></td>
<td>4,5 LP</td>
<td>Färber</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110848</td>
<td></td>
<td>4,5 LP</td>
<td>Käfer</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle zu den Vorlesungen erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Die Bewertung des Praktikums erfolgt benotet als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden müssen

- kennen verschiedene maschinelle Verfahren zum überwachten als auch zum unüberwachten Erlernen von Wissen,
- identifizieren die Vor- und Nachteile der verschiedenen Lernverfahren,
- wenden die erlernten maschinellen Lernverfahren in spezifische Szenarien an,
- vergleichen die praktische Einsetzbarkeit der Methoden und Algorithmen mit alternativen Ansätzen.

Inhalt

Als lernende Systeme versteht man im weiteren Sinne biologische Organismen und künstliche Systeme, die durch die Verarbeitung äußerer Einflüsse ihr Verhalten verändern können. In der Informatik stehen hierbei maschinelle Lernverfahren im Zentrum der Betrachtung, die auf symbolischen, statistischen und neuronalen Ansätzen beruhen.

In diesem Modul werden die wichtigsten maschinellen Lernverfahren eingeführt und ihr Einsatz im Bezug auf verschiedene Informationsquellen wie Daten, Texte und Bilder aufgezeigt. Dabei wird insbesondere auf Verfahren zur Wissensgewinnung mittels Data und Text Mining, naturanaloge Lernverfahren sowie die Anwendung maschineller Lernverfahren im Bereich Finance eingegangen.

Anmerkungen

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4 Credits ca. 120h, für die Lehrveranstaltungen mit 4,5 Credits ca. 135h und für Lehrveranstaltungen mit 5 Credits ca. 150h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.69 Modul: IT-Sicherheit [M-INFO-106315]

Verantwortung: Prof. Dr. Hannes Hartenstein
 Prof. Dr. Jörn Müller-Quade
 Prof. Dr. Thorsten Strufe
 TT-Prof. Dr. Christian Wressnegger

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 2

Pflichtbestandteile

| T-INFO-112818 | IT-Sicherheit | 6 LP | Hartenstein, Müller-Quade, Strufe, Wressnegger |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
Der / die Studierende
• hat vertiefte Kenntnisse von Kryptographie und IT-Sicherheit
• kennt und versteht anspruchsvollen Techniken und Sicherheitsprimitive zur Erfüllung der Schutzziele
• kennt und versteht wissenschaftliche Bewertungs- und Analysemethodik von IT-Sicherheit (spielbasierte Formalisierung von Vertraulichkeit und Integrität, Security und Anonymity Notions)
• hat ein gutes Verständnis von Daten-Arten, Personenbezug, rechtlichen und technischen Grundlagen des Datenschutzes
• kennt und versteht die Grundlagen der Systemicherheit (Buffer Overflow, Return-oriented Programming, ...)
• kennt verschiedene Mechanismen für anonyme Kommunikation (TOR, Nym, ANON) und kann ihre Wirksamkeit beurteilen
• kennt und versteht Blockchains und deren Konsens-Mechanismen und kann ihre Stärken und Schwächen beurteilen

Inhalt
Aufbauend auf den Inhalten der Pflichtvorlesung “Informationssicherheit” vertieft dieses Stamm-Modul unterschiedliche Themenfelder der IT-Sicherheit. Hierzu gehören insbesondere:
• Kryptographie mit elliptischen Kurven
• Threshold-Kryptographie
• Zero-Knowledge Beweise
• Secret-Sharing
• Sichere Mehrparteienberechnung und homomorphe Verschlüsselung
• Methoden der IT-Sicherheit (spielbasierte Analysen und das UC Modell)
• Krypto-Währungen und Konsens durch Proof-of-Work/Stake
• Anonymität im Internet, Anonymität bei Online-Payments
• Privatsphären-konformes maschinelles Lernen
• Sicherheit des maschinellen Lernens
• System sicherheit und Exploits
• Bedrohungsmodellierung und Quantifizierung von IT-Sicherheit

Arbeitenaufwand

Präsenzzeit in der Vorlesung und Übung: 56 h
Vor-/Nachbereitung derselben: 56 h
Prüfungsvorbereitung und Präsenz in selbiger: 68 h

Empfehlungen
Der Stoff der Pflichtvorlesung Informationssicherheit wird vorausgesetzt
Literatur

- Katz/Lindell: Introduction to Modern Cryptography (Chapman & Hall)
- Schäfer/Roßberg: Netzsicherheit (dpunkt)
- Anderson: Security Engineering (Wiley, auch online)
- Stallings/Brown: Computer Security (Pearson)
- Pfleeger, Pfleeger, Margulies: Security in Computing (Prentice Hall)
4.70 Modul: Kommunikation und Datenhaltung [M-INFO-101178]

Verantwortung:
Prof. Dr.-Ing. Klemens Böhm
Prof. Dr. Martina Zitterbart

Einrichtung:
KIT-Fakultät für Informatik

Bestandteil von:
Informatik

Leistungspunkte
8

Notenskala
Zehntelnoten

Turnus
Jedes Sommersemester

Dauer
1 Semester

Sprache
Deutsch

Level
4

Version
1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Inhaltsangabe</th>
<th>Credits</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101497</td>
<td>Datenbanksysteme</td>
<td>4 LP</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-102015</td>
<td>Einführung in Rechnernetze</td>
<td>4 LP</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende
- kennt die Grundlagen der Datenübertragung sowie den Aufbau von Kommunikationssystemen,
- ist mit der Zusammensetzung von Protokollen aus einzelnen Protokollmechanismen vertraut und konzipiert einfache Protokolle eigenständig,
- kennt und versteht das Zusammenspiel einzelner Kommunikationsschichten und Anwendungen,
- stellt den Nutzen von Datenbank-Technologie dar,
- deiniert die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen, legt selbstständig einfache Datenbanken an und tätigt Zugriffe auf diese,
- kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie.

Inhalt
Verteilte Informationssysteme sind nichts anderes als zu jeder Zeit von jedem Ort durch jedermann zugängliche, weltweite Informationsbestände. Den räumlich verteilten Zugang regelt die Telekommunikation, die Bestandsführung über beliebige Zeiträume und das koordinierte Zusammenführen besorgt die Datenhaltung. Wer global ablaufende Prozesse verstehen will, muss also sowohl die Datenübertragungstechnik als auch die Datenbanktechnik beherrschen, und dies sowohl einzeln als auch in ihrem Zusammenspiel.

Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 240 Stunden (8 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen
Kenntnisse aus der Vorlesung Softwaretechnik I werden empfohlen.
Modul: Komplexitätstheorie, mit Anwendungen in der Kryptographie [M-INFO-101575]

Verantwortung: Prof. Dr. Jörn Müller-Quade
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Komplexitätstheorie, mit Anwendungen in der Kryptographie</th>
<th>6 LP</th>
<th>Hofheinz, Müller-Quade</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Der / die Studierende

- kennt die theoretischen Grundlagen der Komplexitätsanalyse eines Problems oder Algorithmus,
- versteht und erklärt die Struktur gängiger Komplexitätsklassen wie P, NP, oder BPP,
- kann die asymptotische Komplexität eines gegebenen Problems einschätzen.

Inhalt

- Maschinenmodell, Laufzeit- und Speicherkomplexität, Separationen,
- Nichtdeterminismus, Reduktionen, Vollständigkeit,
- die polynomiale Hierarchie,
- Probabilismus, Einwegfunktionen,
- Alternierung, interaktive Beweise, Zero-Knowledge.

Arbeitsaufwand

1. Präsenzzeit in Vorlesungen: 48 h
2. Vor-/Nachbereitung derselben: 48 h
3. Prüfungsvorbereitung und Präsenz in selbiger: 84 h

Empfehlungen
Siehe Teilleistung
4.72 Modul: Kontextsensitive Systeme [M-INFO-100728]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5 | Zehntelnoten | Jedes Sommersemester | 1 Semester | Deutsch | 4 | 2

Pflichtbestandteile

| T-INFO-107499 | Kontextsensitive Systeme | 5 LP | Beigl |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
Ziel der Vorlesung ist es, Kenntnisse über Grundlagen und weitergehende Methoden und Techniken zu kontextsensitiven Systemen in vertiefender Weise zu vermitteln.

Nach Abschluss der Vorlesung können die Studierenden

- das Konzept von Kontext erörtern und verschiedene für die Informationsverarbeitung durch Menschen und Computersysteme relevante Kontexte aufzählen
- verschiedene Arten von kontextsensitiven Systemen anhand verschiedener Kriterien kategorisieren und unterscheiden
- aus einem allgemeinen Rahmen konkrete technische Implementierungen durch existierende Komponenten ableiten
- die Leistungsfähigkeit konkreter kontextsensitiver Systeme anhand von experimentell ermittelter Metriken bewerten und vergleichen

Inhalt

Arbeitsaufwand
Der Gesamtaufwand für diese Lerneinheit beträgt **150 Stunden (5.0 Credits)**

Aktivität

Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min

Vor-/Nachbereitung der Vorlesung
15 x 90 min
22 h 30 min

Literatur erarbeiten
14 x 45 min
10 h 30 min

Präsenzzeit: Besuch der Übung
7 x 90 min
10 h 30 min

Vor-/Nachbereitung der Übung
7 x 240 min
28 h 00 min

Foliensatz 2x durchgehen
2 x 12 h
24 h 00 min

Prüfung vorbereiten
32 h 00 min

SUMME
150 h 00 min
4.73 Modul: Market Engineering [M-WIWI-101446]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul #</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112823</td>
<td>Platform & Market Engineering: Commerce, Media, and Digital Democracy</td>
<td>4,5 LP</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107503</td>
<td>Energy Networks and Regulation</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111109</td>
<td>KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107504</td>
<td>Smart Grid Applications</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl: 4,5 LP)

<table>
<thead>
<tr>
<th>Modul #</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107503</td>
<td>Energy Networks and Regulation</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimentelle Wirtschaftsforschung</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111109</td>
<td>KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107504</td>
<td>Smart Grid Applications</td>
<td>4,5 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- kennt die Designkriterien von Marktmechanismen und die systematische Herangehensweise bei der Erstellung von neuen Märkten,
- versteht die theoretischen Grundlagen der Markt- und Auktionstheorie,
- analysiert und bewertet bestehende Märkte hinsichtlich der fehlenden Anreize bzw. des optimalen Marktergebnisses bei einem gegebenen Mechanismus,
- erarbeitet Lösungen in Teams.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h für Lehrveranstaltungen mit 5 Credits ca. 150h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Empfehlungen
Keine
4.74 Modul: Marketing and Sales Management [M-WIWI-105312]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl:)

<table>
<thead>
<tr>
<th>Wahl</th>
<th>Kurs</th>
<th>Credits</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112693</td>
<td>Digital Marketing</td>
<td>4,5</td>
<td>Kupfer</td>
</tr>
<tr>
<td>T-WIWI-106981</td>
<td>Digital Marketing and Sales in B2B</td>
<td>1,5</td>
<td>Klarmann, Konhäuser</td>
</tr>
<tr>
<td>T-WIWI-110985</td>
<td>International Business Development and Sales</td>
<td>6</td>
<td>Casenave, Klarmann, Terzidis</td>
</tr>
<tr>
<td>T-WIWI-111099</td>
<td>Judgement and Decision Making</td>
<td>4,5</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td>4,5</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-111848</td>
<td>Online-Konzepte für Karlsruher Innenstadthändler</td>
<td>3</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102883</td>
<td>Pricing</td>
<td>4,5</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>3</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Studierende

- verfügen über fortgeschrittene Kenntnisse zentraler Marketinginhalte
- verfügen über einen vertieften Einblick in wichtige Instrumente des Marketing
- kennen und verstehen eine große Zahl an strategischen Konzepten und können diese einsetzen
- sind fähig, ihr vertieftes Marketingwissen sinnvoll in einem praktischen Kontext anzuwenden
- kennen eine Vielzahl von qualitativen und quantitativen Verfahren zur Vorbereitung von strategischen Entscheidungen im Marketing
- haben die nötigen theoretischen Kenntnisse, die für das Verfassen einer Masterarbeit im Bereich Marketing grundlegend sind
- haben die theoretischen Kenntnisse und Fertigkeiten, die vonnöten sind, um in der Marketingabteilung eines Unternehmens zu arbeiten oder mit dieser zusammenzuarbeiten

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits).
Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Level: 4
Version: 7

M 4.75 Modul: Maschinelle Visuelle Wahrnehmung [M-INFO-101239]

<table>
<thead>
<tr>
<th>MVW Pflichtblock (Wahl: mindestens 1 Bestandteil sowie mind. 3 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101273</td>
</tr>
<tr>
<td>T-INFO-101363</td>
</tr>
<tr>
<td>T-INFO-111491</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MVW - Wahlpflicht (Wahl: mindestens 1 Bestandteil sowie mind. 6 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101362</td>
</tr>
<tr>
<td>T-INFO-101297</td>
</tr>
<tr>
<td>T-INFO-105943</td>
</tr>
<tr>
<td>T-INFO-111491</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
Studierende haben fundiertes Wissen darüber,
- auf welche Weise sich optische und geometrische Eigenschaften von Objekten (Menschen und Gegenständen) und Szenen bei unterschiedlichen Aufnahmeverfahren in Bild- und Videodaten manifestieren,
- wie solche Daten aufbereitet werden,
- wie schrittweise die interessierenden Informationen herausgearbeitet werden, und
- wie diese Daten schließlich in geeigneter Form für die weitere Nutzung durch Maschinen oder den Menschen bereitgestellt werden.

Inhalt

In diesem Modul wird vermittelt, auf welche Weise sich die optischen und geometrischen Eigenschaften von Objekten (Menschen und Gegenstände) und Szenen bei unterschiedlichen Aufnahmeverfahren in Bild- und Videodaten manifestieren. Es wird gezeigt, wie solche Daten aufbereitet werden, schrittweise die interessierenden Informationen herausgearbeitet werden und wie diese schließlich in geeigneter Form für die weitere Nutzung durch Maschinen oder den Menschen bereitgestellt werden können.

Arbeitsaufwand
Je nach gewählten Lehrveranstaltungen, insgesamt ca. 270 h.

Empfehlungen
Kenntnisse der Grundlagen der Stochastik, Signal- und Bildverarbeitung sind hilfreich.
Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 3

Wahlpflichtangebot (Wahl):
T-WIWI-106340 Maschinelles Lernen 1 - Grundverfahren 4,5 LP Zöllner
T-WIWI-106341 Maschinelles Lernen 2 - Fortgeschrittene Verfahren 4,5 LP Zöllner
T-WIWI-109985 Projektpraktikum Kognitive Automobile und Roboter 5 LP Zöllner
T-WIWI-109983 Projektpraktikum Maschinelles Lernen 5 LP Zöllner

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Teilleistungen des Moduls, mit denen die Mindestanforderung an Leistungspunkten erfüllt wird. Die Erfolgskontrolle wird bei jeder Teilleistung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Studierende
- erlangen Kenntnis der grundlegenden Methoden im Bereich des Maschinellen Lernens.
- Verstehen erweiterte Konzepte des Maschinellen Lernens sowie ihre Anwendungsmöglichkeit.
- Können Methoden des Maschinellen Lernens einordnen, formal beschreiben und bewerten.
- Können ihr Wissen für die Auswahl geeigneter Modelle und Methoden für ausgewählte Probleme im Bereich des Maschinellen Lernens einsetzen.

Inhalt
Das Themenfeld des Maschinellen Lernens unter Berücksichtigung realer Herausforderungen komplexer Anwendungsdomänen ist ein stark expandierendes Wissensgebiet und Gegenstand zahlreicher Forschungs- und Entwicklungsvorhaben. Große Teile moderner KI-Verfahren basieren auf maschinell gelernten Modellen.

Die Vorlesung "Maschinelles Lernen 1" führt die Studierenden in den sich schnell entwickelnden Bereich des maschinellen Lernens ein, indem sie eine solide Grundlage vermittelt, welche die wichtigsten Konzepte und Techniken in diesem Gebiet umfasst. Die Studierenden werden sich mit verschiedenen Methoden des Supervised, Unsupervised und Reinforcement Learning befassen, sowie mit den dazugehörigen Modellyphen, die von einfachen linearen Klassifikatoren bis hin zu komplexeren Modellen, wie Deep Neural Networks reichen.

Die Vorlesung "Maschinelles Lernen 2" behandelt fortgeschrittene und moderne Methoden des Maschinellen Lernens. Moderne Lernverfahren wie Self-Supervised-Learning und Contrastive Learning sowie Modellarchitekturen wie Diffusion Models, Transformer, Graph Neural Networks, werden vorgestellt.

In den Praktika werden wissenschaftliche Aufgaben im Bereich des autonomen Fahrens oder der Robotik mit modernen maschinellen Lernverfahren gelöst. Dort werden praxisorientiert die Techniken des Maschinellen Lernens

Arbeitsaufwand
4.77 Modul: Maschinelles Lernen - Grundlagen und Algorithmen [M-INFO-105778]

Verantwortung: Prof. Dr. Gerhard Neumann
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 5
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

| T-INFO-111558 | Maschinelles Lernen - Grundlagen und Algorithmen | 5 LP Neumann |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
- Studierende erlangen Kenntnis der grundlegenden Methoden des Maschinellen Lernens
- Studierende erlangen die mathematischen Grundkenntnisse um die theoretischen Grundlagen des Maschinellen Lernens verstehen zu können
- Studierende können Methoden des Maschinellen Lernens einordnen, formal beschreiben und bewerten
- Studierende können ihr Wissen für eine Auswahl geeigneter Modelle und Methoden für ausgewählte Probleme im Bereich des Maschinellen Lernens einsetzen

Inhalt

Beispielhafte Auflistung der Themen:
- Linear Regression and Classification
- Model Selection, Overfitting, and Regularization
- Bayesian Learning and Gaussian Processes
- Neural Networks, Backpropagation and Optimization
- Graphical Models and Sampling
- Expectation Maximization
- Variational Inference
- Variational Auto-Encoders and Diffusion Models
- Bayesian Neural Networks
- Transfer and Meta Learning
- Hyperparameter Tuning and Auto-ML

Arbeitsaufwand
150h
• ca 30h Vorlesungsbesuch
• ca 15h Übungsbesuch
• ca 75h Nachbearbeitung und Bearbeitung der Übungsblätter
• ca 30h Prüfungsvorbereitung

Empfehlungen
Siehe Teilleistung.
4.78 Modul: Mathematische Optimierung [M-WIWI-101473]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 7

Wahlpflichtangebot (Wahl: höchstens 2 Bestandteile)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Leistungsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102719</td>
<td>Gemischt-ganzzahlige Optimierung I</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II</td>
<td>9</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102856</td>
<td>Konvexe Analysis</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-111587</td>
<td>Multikriterielle Optimierung</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II</td>
<td>9</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102855</td>
<td>Parametrische Optimierung</td>
<td>4,5</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl: höchstens 2 Bestandteile)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Leistungsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106548</td>
<td>Fortgeschrittene Stochastische Optimierung</td>
<td>4,5</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Gemischt-ganzzahlige Optimierung II</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models</td>
<td>4,5</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimierung</td>
<td>4,5</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-111247</td>
<td>Mathematische Grundlagen hochdimensionaler Statistik</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II</td>
<td>4,5</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management</td>
<td>4,5</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-110162</td>
<td>Optimierungsmodelle in der Praxis</td>
<td>4,5</td>
<td>Sudermann-Merx</td>
</tr>
<tr>
<td>T-WIWI-112109</td>
<td>Topics in Stochastic Optimization</td>
<td>4,5</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Im Studiengang Informationswirtschaft M.Sc. können zwei beliebige Teilleistungen im Modul gewählt werden.

Qualifikationsziele
Der/die Studierende

- benennt und beschreibt die Grundbegriffe von fortgeschrittenen Optimierungsverfahren, insbesondere aus der kontinuierlichen und gemischt-ganzzahligen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen,
- erkennt Nachteile der Lösungsmethoden und ist gegebenenfalls in der Lage, Vorschläge für Ihre Anpassung an Praxisprobleme zu machen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen und gemischt-ganzzahligen Entscheidungsvariablen.
Anmerkungen
Die Lehrveranstaltungen werden zum Teil unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
Bei den Vorlesungen von Professor Stein ist jeweils eine Prüfungsvorleistung (30% der Übungspunkte) zu erbringen. Die jeweiligen Lehrveranstaltungsbeschreibungen enthalten weitere Einzelheiten.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Mensch-Maschine-Interaktion

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 6
Notenskala: Zehntelnoten
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101266 Mensch-Maschine-Interaktion</td>
<td>6 LP</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-106257 Übungsschein Mensch-Maschine-Interaktion</td>
<td>0 LP</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Nach Abschluss der Veranstaltung können die Studierenden
- grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
- grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
- grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
- existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Inhalt
Themenbereiche sind:
1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
2. Designgrundlagen und Designmethoden, Ein- und Ausgabeeinheiten für Computer, eingebettete Systeme und mobile Geräte,
3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsysteme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
6. Evaluierung von Systemen zur Mensch-Maschine-Interaktion (Werkzeuge, Bewertungsmethoden, Leistungsmessung, Checklisten),
7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).
Präsenzzeit: Besuch der Vorlesung 15 x 90 min = 22 h 30 min
Präsenzzeit: Besuch der Übung 8 x 90 min = 12 h 00 min
Vor-/Nachbereitung der Vorlesung 15 x 150 min = 37 h 30 min
Vor-/Nachbereitung der Übung 8 x 360 min = 48 h 00 min
Foliensatz/Skriptum 2x durchgehen 2 x 12 h = 24 h 00 min
Prüfung vorbereiten = 36 h 00 min
SUMME = 180 h 00 min

Empfehlungen
Siehe Teilleistung
4.80 Modul: Microeconomic Theory [M-WIWI-101500]

Verantwortung: Prof. Dr. Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9 | Zehntelnoten | Jedes Semester | 1 Semester | Deutsch/Englisch | 4 | 4

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5 LP</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4,5 LP</td>
<td>Ehrhart, Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102613</td>
<td>Auktionstheorie</td>
<td>4,5 LP</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5 LP</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-113264</td>
<td>Matching Theory</td>
<td>4,5 LP</td>
<td>Puppe</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory</td>
<td>4,5 LP</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- sind in der Lage, praktische Problemstellungen der Mikroökonomik mathematisch zu modellieren und im Hinblick auf positive und normative Fragestellungen zu analysieren,
- verstehen die individuellen Anreize und gesellschaftlichen Auswirkungen verschiedener institutioneller ökonomischer Rahmenbedingungen.

Inhalt
Das Modul vermittelt Konzepte und Inhalte der fortgeschrittenen mikroökonomischen Theorie. Thematische Schwerpunkte sind die mathematisch fundierte Modellierung spieltheoretischer Probleme und ihrer Anwendung, beispielsweise auf strategische Markteraktion, kooperative und nichtkooperative Verhandlungen usw. („Advanced Game Theory“), sowie die besondere Betrachtung von Auktionen („Auktionstheorie“) und Anreizmechanismen in Unternehmen und Organisationen („Incentives in Organizations“). Es besteht außerdem die Möglichkeit, sich mit der wissenschaftlichen Theorie zu Wahlen und gesellschaftlichen Entscheidungsverfahren, also der Aggregation von Präferenzen und Meinungen, zu beschäftigen („Social Choice Theory“).

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

4.81 Modul: Microservice-basierte Web-Anwendungen [M-INFO-104061]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenskala</td>
<td>Zehntelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101271 | Web-Anwendungen und Serviceorientierte Architekturen (II) | 4 LP | Abeck |
| T-INFO-103121 | Praktikum: Web-Anwendungen und Serviceorientierte Architekturen (II) | 5 LP | Abeck |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden können die Inhalte der wichtigsten Konzepte und Technologien, die zur Entwicklung von serviceorientierten Web-Anwendungen erforderlich sind, wiedergeben. (Wissen und Verstehen).
- Die Studierenden können die Softwarearchitektur einer serviceorientierten Web-Anwendung modellieren (Anwenden).
- Die Studierenden können die vermittelten Web-Technologien an einem ausgewählten Ausschnitt einer serviceorientierten Web-Anwendung anwenden (Anwenden).
- Die Studierenden können die Qualität gewisser Service-Eigenschaften einer Web-Anwendung durch den Einsatz von Metriken bestimmen (Beurteilen).
- Die Studierenden können Analyse-Werkzeuge einsetzen, durch die sie die Qualität gewisser Service-Eigenschaften einer Web-Anwendung auf der Grundlage von Metriken bestimmen können (Anwenden, Beurteilen).

Inhalt
Fortgeschrittene Webanwendungen folgen dem Paradigma der Serviceorientierung, indem diese Funktionalität in Form von Webservices über das Internet bereitstellen. Die Webservice-Technologie und die dazu bestehenden wichtigsten Standards werden eingeführt und deren Einsatz wird anhand des Beispiels aufgezeigt.

Im Praktikum wird eine individuelle Projektaufgabe gestellt, die vom Studierenden unter Nutzung der in der Vorlesung "Web-Anwendungen und Serviceorientierte Architekturen (I und II)" behandelten Konzepte in einem Projektteam zu lösen ist.

Arbeitsaufwand
270h

Web-Anwendungen und Serviceorientierte Architekturen (II)
120h
Präsenzzeit Vorlesung 22,5 (15 x 1,5h)
Vor- und Nachbereitung Vorlesung: 60 (15 x 4)
Vorbereitung Prüfung: 37,5

Praktikum Web-Anwendungen und Serviceorientierte Architekturen (II)
150h
Präsenzzeit (Projekteamtreffen) 22,5 (15 x 1,5)
Nacharbeit der Projektteamtreffen 22,5 (15 x 1,5)
Enterwicklungsarbeiten, praktische Experimente 45 (15 x 3)
Ausarbeitung 60 (15 x 4)
4.82 Modul: Mobilkommunikation [M-INFO-100785]

Verantwortung: Prof. Dr. Oliver Waldhorst
 Prof. Dr. Martina Zitterbart

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte: 4
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-INFO-101322 Mobilkommunikation 4 LP Waldhorst, Zitterbart

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Studierende
• kennen die Grundbegriffe der Mobilkommunikation und können grundlegende Methoden sowie Einflussfaktoren der drahtlosen Kommunikation bewerten
• beherrschen Struktur und Funktionsweise prominenter, praktisch relevanter Mobilkommunikationssysteme (z.B. GSM, UMTS, WLAN)
• kennen typische Problemstellungen in Mobilkommunikationssystemen und können zur Lösung geeignete Methoden bewerten, auswählen und anwenden

Die Studierenden kennen ein Portfolio von Methoden zur Modulation digitaler Daten, zum Multiplexen, zur Koordination konkurrierender Medienzugriffe und zum Mobilitätsmanagement. Sie können diese in eigenen Worten erläutern, können sie bewerten und geeignete Kandidaten beim Entwurf von Systemen zur Mobilkommunikation auswählen.

Die Studierenden beherrschen die grundsätzlichen Konzepte drahtloser lokaler Netze nach IEEE 802.11 sowie drahtloser persönlicher Netze mit Bluetooth. Sie können diese erläutern und die jeweiligen Varianten miteinander vergleichen. Weiterhin können sie insbesondere den Medienzugriff detailliert analysieren und bewerten.

Die Studierenden kennen grundlegende Verfahren im Bereich des Routings in selbstorganisierenden drahtlosen Ad-hoc Netzen und können diese umfassend analysieren sowie ihren Einsatz abhängig vom Anwendungsszenario bewerten. Weiterhin beherrschen sie die grundlegenden Konzepte zur Mobilitätsunterstützung im Internet (Mobile IP und Mobile IPv6).

Inhalt
Arbeitsaufwand
Vorlesung mit 2 SWS plus Nachbereitung/Prüfungsvorbereitung, 4 LP.
4 LP entsprechen ca. 120 Arbeitsstunden, davon
ca. 30 Std. Vorlesungsbesuch
ca. 60 Std. Vor-/Nachbereitung
ca. 30 Std. Prüfungsvorbereitung

Empfehlungen
Siehe Teilleistung
4.83 Modul: Modul Masterarbeit [M-WIWI-101656]

Verantwortung: Studiendekan der KIT-Fakultät für Informatik
Studiendekan des KIT-Studienganges

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Masterarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenskala</td>
<td>Zehntelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-WIWI-103142</th>
<th>Masterarbeit</th>
<th>30 LP</th>
<th>Studiendekan der KIT-Fakultät für Informatik, Studiendekan des KIT-Studienganges</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Masterarbeit wird durch je einen Prüfer der beiden Fakultäten für Informatik und Wirtschaftswissenschaften begutachtet. Für Details vgl. SPO. Der Prüfer muss am Studiengang beteiligt sein. Am Studiengang beteiligt sind die Personen, die für den Studiengang Module koordinieren und/oder Lehrveranstaltungen verantworten.

Diese Regelung gilt auch sinngemäß nach einem offiziellen Rücktritt von einem angemeldeten Thema.

Voraussetzungen

Die Bedingungen zur Masterarbeit sind in §14 SPO geregelt.

Die Anforderungen an den Prüfer sind in §14 (2) SPO geregelt.

Qualifikationsziele

Der/die Studierende kann selbstständig ein komplexes und wenig vertrautes Thema nach wissenschaftlichen Kriterien und auf dem aktuellen Stand der Forschung bearbeiten.

Er/sie ist in der Lage, die recherchierten Informationen kritisch zu analysieren, zu strukturieren und Prinzipien und Zusammenhänge abzuleiten. Die gewonnenen Ergebnisse kann er/sie zur Lösung der Fragestellung verwenden. Unter Einbeziehung dieses Wissens sowie seiner interdisziplinären Kenntnisse weiß er/sie, eigene Schlüsse zu ziehen, Verbesserungspotentiale abzuleiten, umzusetzen sowie wissenschaftlich begründete Lösungen vorzuschlagen.

Dies erfolgt grundsätzlich auch unter Berücksichtigung von gesellschaftlichen und ethischen Aspekten.

Die gewonnenen Ergebnisse kann er/sie interpretieren, evaluieren, anschaulich darstellen sowie in akademisch angemessener Form schriftlich und mündlich kommunizieren. Er/Sie ist außerdem in der Lage darüber in akademisch angemessener Form schriftlich und mündlich mit Fachvertreter zu kommunizieren.

Er/sie ist in der Lage, eine wissenschaftliche Arbeit sinnvoll zu strukturieren und die Ergebnisse nach der üblichen fachspezifischen Anforderungen in einer Ausarbeitung zu verfassen.
Inhalt

- Die Masterarbeit soll zeigen, dass der Kandidat in der Lage ist, ein Problem aus seinem Fach selbstständig und in der vorgegebenen Zeit nach wissenschaftlichen Methoden, die dem Stand der Forschung entsprechen, zu bearbeiten.
- Die Masterarbeit kann auch in englischer Sprache geschrieben werden.
- Die Masterarbeit kann von jedem Prüfer (i.S.d. SPO) vergeben werden. Soll die Masterarbeit außerhalb der beiden beteiligten Fakultäten (Informatik bzw. Wirtschaftswissenschaften) angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses. Dem Kandidaten ist Gelegenheit zu geben, für das Thema Vorschläge zu machen.
- Die Masterarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Kandidaten aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und jeweils die Anforderung an eine Masterarbeit erfüllt.
- Thema, Aufgabenstellung und Umfang der Masterarbeit sind vom Betreuer so zu begrenzen, dass die Masterarbeit mit dem festgelegten Arbeitsaufwand von 30 LPs bearbeitet werden kann.
- „Bei der Abgabe der Masterarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die von ihm angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend“ (5.0) bewertet.“
- Der Bewertungszeitraum soll 8 Wochen nicht überschreiten.

Arbeitsaufwand
4.84 Modul: Mustererkennung [M-INFO-100825]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 2

Pflichtbestandteile
T-INFO-101362 Mustererkennung 6 LP Beyerer, Zander

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt
Merkmale:
- Merkmalstypen
- Sichtung des Merkmalsraumes
- Transformation der Merkmale
- Abstandsmessung im Merkmalsraum
- Normalisierung der Merkmale
- Auswahl und Konstruktion von Merkmalen
- Reduktion der Dimension des Merkmalsraumes

Klassifikatoren:
- Bayes'sche Entscheidungstheorie
- Parameterschätzung
- Parameterfreie Methoden
- Lineare Diskriminanzfunktionen
- Support Vektor Maschine
- Matched Filter, Templatematching
- Klassifikation bei nominalen Merkmalen

Allgemeine Prinzipien:
- Vapnik-Chervonenkis Theorie
- Leistungsbestimmung von Klassifikatoren
- Boosting
Arbeitsaufwand
Gesamt: ca. 180h, davon
Präsenzzeit Vorlesung 31h
Vor-Nachbereitung 40h
Präsenzzeit Übung 10h
Vorbereitung, Lösung der Übungsaufgaben, Nachbereitung 40h
Klausurvorbereitung und Präsenz 59h

Empfehlungen
Siehe Teilleistung.
4.85 Modul: Networking [M-INFO-101206]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Networking (Wahl: mindestens 1 Bestandteil sowie mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrer/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101321</td>
<td>Next Generation Internet</td>
<td>4</td>
<td>Bless, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101319</td>
<td>Netz sicherheit: Architekturen und Protokolle</td>
<td>4</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-104386</td>
<td>Praktikum Protocol Engineering</td>
<td>4</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101338</td>
<td>Telematik</td>
<td>6</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine.

Qualifikationsziele
Der/die Studierende

- lernt Entwurfsprinzipien von drahtgebundenen Kommunikationssystemen kennen und wendet diese in neuen Kontexten an,
- identifiziert Probleme und Schwachstellen von Kommunikationssystemen,
- bewertet die Leistungsfähigkeit von Protokollen, Netzen und Architekturen kritisch,
- beherrscht fortgeschrittene Protokolle, Architekturen und Algorithmen von drahtgebundenen Kommunikationsnetzen und Kommunikationssystemen.

Inhalt

Anmerkungen
Die LV Modellierung und Simulation von Netzen und verteilten Systemen wird im SS 2016 voraussichtlich nicht angeboten.

Empfehlungen

Verantwortung: Prof. Dr. Hannes Hartenstein
Prof. Dr. Martina Zitterbart

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Level: 4
Version: 3

Networking Labs (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>LP</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101323</td>
<td>IT-Sicherheitsmanagement für vernetzte Systeme</td>
<td>5</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>T-INFO-101319</td>
<td>Netzsicherheit: Architekturen und Protokolle</td>
<td>4</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Voraussetzungen
siehe Teilleistung

Qualifikationsziele
Die Studierenden sollen

- Prinzipien zum Entwurf drahtloser Kommunikationssysteme erlernen und diese in verschiedenen Kontext anwenden können.
- Stärken und Schwachstellen von Kommunikationssystemen identifizieren können,
- die Leistungsfähigkeit von Protokollen in drahtlosen Netzen, sowie Netzen und Architekturen bewerten können,
- fortgeschrittene Protokolle, Architekturen und Algorithmen von drahtlosen Kommunikationsnetzen und Kommunikationssystemen beherrschen.

Inhalt
Modul: Netze und Punktwolken [M-INFO-100812]

Verantwortung: Prof. Dr. Hartmut Prautzsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101349 | Netze und Punktwolken | 3 LP | Prautzsch |

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Students of this course will have a basic understanding about discrete surface representations and are able to handle basic geometry processing problems for shape design.

Inhalt

Thanks to various imaging techniques, discrete, i.e. piecewise constant or linear, representations of surfaces and solids are commonly used to represent surfaces and solids alongside established representations of higher degree and smoothness.

In this course, methods are presented (1) to represent surfaces by point clouds, octrees, hierarchical sphere clouds, triangle fans, Delaunay meshes, and meshes of planar quadrilaterals, (2) methods to obtain triangle meshes from point clouds and distance functions, (3) to simplify or compress meshes, (4) to smooth meshes and remove noise, (5) to segment meshes according to different criteria, (6) to subdivide and refine meshes, (7) to complete shape by neuronal nets, (8) to animate and deform meshes, and others.

Arbeitsaufwand

90h of which about

30h for attending the lecture

30h for post-processing

30h for exam preparation
Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Level: 4
Version: 2

Netzsicherheit - Theorie und Praxis (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Punkte</th>
<th>Verantwortliche</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101319</td>
<td>Netzsicherheit: Architekturen und Protokolle</td>
<td>4 LP</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101323</td>
<td>IT-Sicherheitsmanagement für vernetzte Systeme</td>
<td>5 LP</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>T-INFO-101371</td>
<td>Sicherheit</td>
<td>6 LP</td>
<td>Hofheinz, Müller-Quade</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Qualifikationsziele
Der/Die Studierende soll

- die theoretischen Grundlagen sowie grundlegende Sicherheitsmechanismen aus der Netzwerksicherheit und der Kryptographie abrufen können.
- die Verfahren der Netzwerksicherheit und der Kryptographie verstehen und erklären können.
- in die Lage versetzt werden aktuelle wissenschaftliche Papiere lesen und verstehen zu können.
- die Sicherheit gegebener Lösungen kritisch beurteilen können und Angriffspunkte/Gefahren erkennen.
- eigene Sicherheitslösungen konzipieren können, etwa später im Rahmen einer Masterarbeit.

Inhalt
Das Modul soll vertiefte theoretische und praktische Aspekte der Netzwerksicherheit und Kryptographie vermitteln.

- Erarbeitung von Schutzzieilen und Klassifikation von Bedrohungen
- Formale Beschreibung von Authentifikationssystemen
- Überblick über Möglichkeiten zu Seitenkanalangriffen
- Einführung in Schlüsselmanagement und Public-Key-Infrastrukturen
- Es werden aktuelle Forschungsfragen aus einigen der folgenden Gebieten behandelt:
 - Blockchiffren, Hashfunktionen
 - Public-Key-Verschlüsselung, digitale Signatur, Schlüsselaustausch
 - Bedrohungsmodelle und Sicherheitsdefinitionen
 - Modularer Entwurf und Protokollkomposition
 - Sicherheitsdefinitionen über Simulierbarkeit

Empfehlungen
Die Vorlesung Sicherheit ist Grundlage dieses Moduls.
4.89 Modul: Netzsicherheit: Architekturen und Protokolle [M-INFO-100782]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101319 | Netzsicherheit: Architekturen und Protokolle | 4 LP | Zitterbart |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele

Studierende

- kennen grundlegende Herausforderungen, Schutzziele und kryptographische Bausteine, die für den Entwurf sicherer Kommunikationssysteme relevant sind
- beherrschen sicherheitsrelevante Kommunikationsprotokolle (z.B. Kerberos, TLS, IPSec) und können grundlegende Sicherheitsmechanismen identifizieren und erläutern
- besitzen die Fähigkeit, Kommunikationsprotokolle unter Sicherheitsaspekten zu analysieren und zu bewerten
- besitzen die Fähigkeit, die Qualität von Sicherheitsmechanismen im Bezug zu geforderten Schutzzielen zu beurteilen und zu bewerten

Studierende kennen den verteilten Authentifizierungsdienst Kerberos und können den Protokollablauf in eigenen Worten erläutern und grundlegende Konzepte (z.B. Tickets) benennen. Zudem beherrschen Studierende relevante Kommunikationsprotokolle zum Schutz der Kommunikation im Internet (u.a. IPsec, TLS) und können diese erklären sowie deren Sicherheits eigenschaften analysieren und bewerten.

Studierende beherrschen unterschiedliche Vertrauensmodelle und können grundlegende technische Konzepte (z.B. digitale Zertifikate, PKI) in eigenen Worten erklären und anwenden. Zudem entwickeln die Studierenden ein Verständnis für Datenschutzaspekte in Kommunikationsnetzen und können technische Verfahren zum Schutz der Privatsphäre erläutern und anwenden.

Inhalt

Arbeitsaufwand

Vorlesung mit 2 SWS plus Nachbereitung/Prüfungsvorbereitung, 4 LP.
4 LP entspricht ca. 120 Arbeitsstunden, davon
c. 30 Std. Vorlesungsbesuch
c. 60 Std. Vor-/Nachbereitung
c. 30 Std. Prüfungsvorbereitung

Empfehlungen

Siehe Teilleistung
4.90 Modul: Netzwerkökonomie [M-WIWI-101406]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 3

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Kurscode</th>
<th>Kursname</th>
<th>Leistungspunkte</th>
<th>Erstelle durch</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100005</td>
<td>Wettbewerb in Netzen</td>
<td>4,5 LP</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transportökonomie</td>
<td>4,5 LP</td>
<td>Mitusch, Szimba</td>
</tr>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5 LP</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102712</td>
<td>Regulierungstheorie und -praxis</td>
<td>4,5 LP</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-113147</td>
<td>Telecommunications and Internet – Economics and Policy</td>
<td>4,5 LP</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- verfügen über das Grundwissen für eine spätere Tätigkeit in einem Infrastrukturunternehmen oder bei einer Regulierungsbehörde, Ministerium usw.
- erkennen die Besonderheiten von Netzsektoren, beherrschen die grundlegenden Methoden zur ökonomischen Analyse von Netzsektoren und erkennen die Schnittstellen für eine interdisziplinäre Zusammenarbeit von Ökonomen, Ingenieuren und Juristen
- verstehen das Zusammenspiel von Infrastrukturen, Steuerungssystemen und Nutzern, insbesondere hinsichtlich Investitions-, Preis- und Wettbewerbsverhalten, und können Beispielanwendungen modellieren oder simulieren
- können die Notwendigkeit von Regulierungen in natürlichen Monopolen erkennen und die für ein Netz wichtigen Regulierungsmaßnahmen identifizieren und beurteilen.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Grundkenntnisse und Fertigkeiten der Mikroökonomie aus einem Bachelorstudium der Ökonomie (VWL1) werden vorausgesetzt.
4.91 Modul: Öffentliches Wirtschaftsrecht [M-INFO-101217]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Recht

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Öffentliches Wirtschaftsrecht (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101309</td>
<td>Telekommunikationsrecht</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-INFO-101312</td>
<td>Europäisches und Internationales Recht</td>
<td>3 LP Brühann</td>
</tr>
<tr>
<td>T-INFO-111404</td>
<td>Seminar: IT-Sicherheitsrecht</td>
<td>3 LP Schallbruch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- ordnet Probleme im besonderen Verwaltungsrecht ein, löst einfache Fälle mit Bezug zu diesen Spezialmaterien und hat einen Überblick über gängige Probleme,
- kann einen aktuellen Fall aus diesem Bereich inhaltlich und aufbautechnisch sauber bearbeiten,
- kann Vergleiche im Öffentlichen Recht zwischen verschiedenen Rechtsproblemen aus verschiedenen Bereichen ziehen,
- kennt die Rechtsschutzmöglichkeiten mit Blick auf das spezifische behördliche Handeln,
- kann das besondere Verwaltungsrecht unter dem besonderen Blickwinkel des Umgangs mit Informationen auch unter ökonomischen und technischen Aspekten analysieren.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen
Siehe Teilleistung.
4.92 Modul: Ökonometrie und Statistik I [M-WIWI-101638]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte 9 Notenskala Zehntelnoten Turnus Jedes Semester Dauer 1 Semester Sprache Deutsch Level 4 Version 5

Pflichtbestandteile
T-WIWI-111388 Applied Econometrics 4,5 LP Schienle

Ergänzungsangebot (Wahl: zwischen 4,5 und 5 LP)
T-WIWI-103064 Financial Econometrics 4,5 LP Schienle
T-WIWI-103126 Nicht- und Semiparametrik 4,5 LP Schienle
T-WIWI-103127 Paneldaten 4,5 LP Heller
T-WIWI-110868 Predictive Modeling 4,5 LP Krüger
T-WIWI-111387 Probabilistic Time Series Forecasting Challenge 4,5 LP Krüger
T-WIWI-103065 Statistische Modellierung von allgemeinen Regressionsmodellen 4,5 LP Heller
T-WIWI-110939 Financial Econometrics II 4,5 LP Schienle

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele
Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnisreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evalieren.

Inhalt
In den Modulveranstaltungen wird den Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Arbeitsaufwand
4.93 Modul: Ökonometrie und Statistik II [M-WIWI-101639]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 4

Wahlinformationen

Wahlpflichtangebot (Wahl: zwischen 9 und 10 LP)

| Modulnummer | Modulbeschreibung | LP | Verantwortlich
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4,5</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Nicht- und Semiparametrik</td>
<td>4,5</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Paneldaten</td>
<td>4,5</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-103128</td>
<td>Portfolio and Asset Liability Management</td>
<td>4,5</td>
<td>Safarian</td>
</tr>
<tr>
<td>T-WIWI-110868</td>
<td>Predictive Modeling</td>
<td>4,5</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-111387</td>
<td>Probabilistic Time Series Forecasting Challenge</td>
<td>4,5</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistische Modellierung von allgemeinen Regressionsmodellen</td>
<td>4,5</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-103129</td>
<td>Stochastic Calculus and Finance</td>
<td>4,5</td>
<td>Safarian</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4,5</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Das Modul ist erst dann bestanden, wenn zusätzlich das Modul "Ökonometrie und Statistik I" zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Qualifikationsziele
Der/die Studierende besitzt umfassende Kenntnisse fortgeschrittener ökonometrischer Methoden für unterschiedliche Datentypen. Er/Sie ist in der Lage diese kenntnisreich anzuwenden, sie mit Hilfe von statistischer Software umzusetzen und kritisch zu evaluieren.

Inhalt
Dieses Modul baut inhaltlich auf dem Modul "Ökonometrie und Statistik I" auf. In den Lehrveranstaltungen wird den Studierenden ein umfassendes Portfolio an weiterführenden ökonometrischen Methoden für unterschiedliche Datentypen vermittelt.

Arbeitsaufwand
4.94 Modul: Ökonomische Theorie und ihre Anwendung in Finance [M-WIWI-101502]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5 LP Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4,5 LP Ehrhart, Puppe, Reiß</td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5 LP Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5 LP Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4,5 LP Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation</td>
<td>4,5 LP Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Qualifikationsziele

Die Studierenden

- beherrschen anhand der Allgemeinen Gleichgewichtstheorie und der Vertragstheorie die Methoden des formalen ökonomischen Modellierens
- können diese Methoden auf finanzwirtschaftliche Fragestellungen anwenden
- erhalten viele nützliche Einsichten in das Verhältnis von Unternehmen und Investoren und das Funktionieren von Finanzmärkten

Inhalt

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.95 Modul: Operations Research im Supply Chain Management [M-WIWI-102832]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Wahlinformationen

In den Studiengängen Informationswirtschaft/Wirtschaftsinformatik M.Sc. können zwei beliebige Teilleistungen im Modul gewählt werden.

Wahlpflichtangebot (Wahl: zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Lehrveranstaltungsname</th>
<th>Leistungspunkte</th>
<th>Leistungspunkte</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models</td>
<td>4,5 LP</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106200</td>
<td>Modellieren und OR-Software: Fortgeschrittene Themen</td>
<td>4,5 LP</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
<td></td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Lehrveranstaltungsname</th>
<th>Leistungspunkte</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112213</td>
<td>Angewandte Materialflußsimulation</td>
<td>4,5 LP</td>
<td>Baumann</td>
</tr>
<tr>
<td>T-WIWI-106546</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>4,5 LP</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-102718</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik</td>
<td>4,5 LP</td>
<td>Speckermann</td>
</tr>
<tr>
<td>T-WIWI-102719</td>
<td>Gemischt-ganzzahlige Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Gemischt-ganzzahlige Optimierung II</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-110162</td>
<td>Optimierungsmodelle in der Praxis</td>
<td>4,5 LP</td>
<td>Sudermann-Merx</td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimierung</td>
<td>4,5 LP</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-111587</td>
<td>Multikriterielle Optimierung</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-112109</td>
<td>Topics in Stochastic Optimization</td>
<td>4,5 LP</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen(nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Im Studiengang Informationswirtschaft M.Sc. können zwei beliebige Teilleistungen im Modul gewählt werden.

Qualifikationsziele

Der/ die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagements vertraut
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.
Inhalt
Supply Chain Management befasst sich mit der Planung und Optimierung des gesamten, unternehmensübergreifenden Beschaffungs-, Herstellungs- und Distributionsprozesses mehrerer Produkte zwischen allen beteiligten Geschäftspartnern (Lieferanten, Logistikdienstleistern, Händlern). Ziel ist, unter Berücksichtigung verschiedenster Rahmenbedingungen die Befriedigung der (Kunden-) Bedarfe, so dass die Gesamtkosten minimiert werden.

Anmerkungen
Einige Veranstaltungen werden unregelmäßig angeboten.
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

- Präsenzzeit: 84 Stunden
- Vor-/Nachbereitung: 112 Stunden
- Prüfung und Prüfungsvorbereitung: 74 Stunden

Empfehlungen
4.96 Modul: Optimierung unter Unsicherheit in der Informationswirtschaft [M-WIWI-103243]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-WIWI-106545 | Optimierungsansätze unter Unsicherheit | 5 LP | Rebennack |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden erwerben die Kenntnis moderner Methoden der stochastischen Modellbildung und werden dadurch in die Lage versetzt, einfache stochastische Systeme adäquat zu beschreiben und zu analysieren.

Inhalt
In der zu Grunde liegenden Lehrveranstaltung wird die Theorie der Markov-Ketten vermittelt und anhand zahlreicher Anwendungen die Bedeutung der Markov-Kette als Analyseinstrument herausgearbeitet.

Anmerkungen
Neues Modul ab Sommersemester 2017.
Das für zwei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu/ nachgelesen werden.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 150 Stunden (5 Credits).
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Parallele Algorithmen [M-INFO-100796]

Verantwortung: Prof. Dr. Peter Sanders

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus Jedes Wintersemester</th>
<th>Dauer 1 Semester</th>
<th>Sprache Englisch</th>
<th>Level 4</th>
<th>Version 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-INFO-101333</th>
<th>Parallele Algorithmen</th>
<th>4 LP</th>
<th>Sanders</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-111857</td>
<td>Parallele Algorithmen Übung</td>
<td>1 LP</td>
<td>Sanders</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Die Studierenden erwerben ein systematisches Verständnis algorithmischer Fragestellungen und Lösungsansätze im Bereich der parallelen Algorithmen, das auf dem bestehenden Wissen im Themenbereich Algorithmik aufbaut. Außerdem kann er/sie erlernte Techniken auf verwandte Fragestellungen anwenden und aktuelle Forschungsstehmen im Bereich paralleler Algorithmen interpretieren und nachvollziehen.

Nach erfolgreicher Teilnahme an der Lehrveranstaltung können die Studierenden

- Begriffe, Strukturen, grundlegende Problemdefinitionen und Algorithmen aus der Vorlesung erklären;
- auswählen, welche Algorithmen und Datenstrukturen zur Lösung einer Fragestellung geeignet sind und diese ggf. den Anforderungen einer konkreten Problemstellung anpassen;
- Algorithmen und Datenstrukturen ausführen, mathematisch präzise analysieren und die algorithmischen Eigenschaften beweisen;
- Maschinennmodelle aus der Vorlesung erklären sowie Algorithmen und Datenstrukturen in diesen analysieren
- neue Probleme aus Anwendungen analysieren, auf den algorithmischen Kern reduzieren und daraus ein abstraktes Modell erstellen; auf Basis der in der Vorlesung erlernten Konzepte und Techniken eigene Lösungen in diesem Modell entwerfen, analysieren und die algorithmischen Eigenschaften beweisen.

Inhalt

Modelle und ihr Bezug zu realen Maschinen:

- shared memory - PRAM
- Message Passing, BSP
- Schaltkreise

Analyse: Speedup, Effizienz, Skalierbarkeit

Grundlegende Techniken:

- SPMD
- paralleles Teilen-und-Herrschen
- kollektive Kommunikation
- Lastverteilung

Konkrete Algorithmen (Beispiele)

- Kollektive Kommunikation (auch für große Datenmengen): Broadcast, Reduce, Präfixsummen, all-to-all exchange
- Matrizenrechnung
- sortieren
- list ranking
- minimale Spannbäume
- Lastverteilung: Master Worker mit adaptiver Problemgröße, random polling, zufällige Verteilung
Arbeitsaufwand
Vorlesung und Übung mit 3 SWS, 5 LP entsprechen ca. 150 Arbeitsstunden, davon
ca. 30 Std. Besuch der Vorlesung und Übung bzw. Blockseminar
c. 60 Std. Vor- und Nachbereitung
c. 30 Std. Bearbeitung der Übungsblätter/Vorbereitung Miniseminar
c. 30 Std. Prüfungsvorbereitung

Empfehlungen
Siehe Teilleistung
4.98 Modul: Praktikum Algorithmentechnik [M-INFO-102072]

Verantwortung: Prof. Dr. Peter Sanders
 Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 6
Notenskala: Zehntelnoten
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-INFO-104374 Praktikum Algorithmentechnik 6 LP Sanders, Ueckerdt, Wagner

Erfolgskontrolle(n)
siehe Teilleistung

Voraussetzungen
siehe Teilleistung

Qualifikationsziele
Die Studierenden
• können das in den Grundlagenmodulen zur Algorithmentechnik erlernte Wissen praktisch anwenden,
• sind in der Lage, Probleme anhand von vorgegebenen Themen der Algorithmik (z.B. Flussalgorithmen, Kürzeste-Wege Probleme, oder Clusterungstechniken) zu analysieren und anschließend eigenständig und in effizienter Weise zu implementieren,
• beherrschen die Schritte von der Modellierung bis hin zur Implementierung und Auswertung bei der praktischen Umsetzung algorithmischer Verfahren,
• besitzen die Fähigkeit, in einem Team ergebnisorientiert zu agieren, das eigene Handeln selbstkritisch zu bewerten und verfügen über hohe eigene Kommunikationskompetenz.

Die Teilnehmer sind außerdem in der Lage, auftretende Problemstellungen mit den Methoden des Algorithm Engineering zu analysieren, Algorithmen zu entwerfen und unter Berücksichtigung moderner Rechnerarchitektur zu implementieren, sowie aussagekräftige experimentelle Evaluationen zu planen und durchzuführen. Die Teilnehmer können zudem die vorgestellten Methoden und Techniken autonom auf verwandte Fragestellungen anwenden.

Inhalt

Arbeitsaufwand
Praktikum mit 4 SWS, 6 LP

6 LP entspricht ca. 180 Arbeitsstunden, davon
ca. 10 Std. Präsenzzeit,
ca. 12 Std. Bearbeitung der Übungsaufgaben,
ca. 128 Std. Implementierungsphase,
ca. 30 Std. Ausarbeitung und Vorbereitung der Präsentation.
Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte 6
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-INFO-111262 | Praktikum: Data Science | 6 LP | Böhm |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele

Die Studierenden werden mit der Vorverarbeitung von Rohdaten sowie mit den Analyseschritten im Data Science-Prozess vertraut gemacht. Sie sollen lernen, wie man sowohl mit handelsüblichen als auch sehr modernen Werkzeugen die bestmöglichen Ergebnisse in einer gegebenen Anwendung erzielen kann.

Darüber hinaus sollen die Studierenden lernen, im Team zusammenzuarbeiten, um die gestellten Aufgaben erfolgreich zu lösen. Das Praktikum soll sie dazu befähigen, verständlich Ergebnisse und Vorgehensweisen sowohl innerhalb als auch außerhalb ihres Teams zu kommunizieren.

Inhalt
Im Rahmen des Praktikums „Data Science“ wird das theoretische Wissen aus der gleichnamigen Vorlesung mit Hilfe gängiger Softwaretools praktisch vertieft.

Die Veranstaltung teilt sich in mehrere Blöcke, in denen die Teilnehmer jeweils einen Data Science-Prozess, d. h. die Wissensextraktion und Datenexploration in einem konkreten Anwendungsfall, durchgehen. Dabei werden verschiedene Verfahren näher beleuchtet.

Arbeitsaufwand
Präsenzzeit (15 x 2) = 30 h
Einarbeitung 25h
Eigenverantwortliches Arbeiten 105 h
Präsentationsvorbereitung 20h

Summe: 180h
4.100 Modul: Praktikum: Data Science für die Wissenschaften [M-INFO-106329]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 6
Notenskala: best./nicht best.
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

T-INFO-112844 Praktikum: Data Science für die Wissenschaften 6 LP Böhm

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt

Arbeitsaufwand
Präsenzzeit (15 x 2) = 30 h
Einarbeitung 25 h
Eigenverantwortliches Arbeiten 105 h
Präsentationsvorbereitung 20 h
Summe: 180 h
Modul: Praktikum: Geometrisches Modellieren [M-INFO-101666]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-103207 | Praktikum: Geometrisches Modellieren | 3 LP | Prautzsch |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
The students of this course understand selected geometry modelling problems and are able to develop and implement algorithms for their solutions.

Inhalt
Current CAD-techniques to design, represent, modify and analyze shapes given as solids or by their boundary surfaces.

Arbeitsaufwand
90 h
Modul: Praktikum: Graphenvisualisierung in der Praxis [M-INFO-103302]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Leistungspunkte: 5
Notenskala: Zehntelnoten
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-INFO-106580 Praktikum: Graphenvisualisierung in der Praxis
5 LP Wagner

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele
Nach erfolgreichem Abschluss des Moduls sollen die Studierenden
- auswählen können, welche Algorithmen und Modelle zur Lösung eines gegebenen Graphenvisualisierungsproblems geeignet sind und diese ggf. an eine konkrete Problemvariante anpassen;
- sich eigenständig in Fachliteratur einarbeiten können;
- im Team basierend auf den Techniken aus der Literatur neue Lösungsideen für die aktuelle Fragestellung des Graph Drawing Contests entwickeln, diskutieren und bewerten können;
- im Team die eigenen Lösungsideen implementieren und ein Programm für die Wettbewerbsteilnahme entwickeln können;
- die Arbeitsergebnisse in einem wissenschaftlichen Vortrag präsentieren können.

Inhalt

Mathematisch lassen sich Netzwerke als Graphen modellieren und das Visualisierungsproblem lässt sich auf das algorithmische Kernproblem reduzieren, ein Layout des Graphen, d.h. geeignete Knoten- und Kantenpositionen in der Ebene, zu bestimmen. Dabei werden je nach Anwendung und Graphenklasse unterschiedliche Anforderungen an die Art der Zeichnung und die zu optimierenden Gütekriterien gestellt. Das Forschungsgebiet des Graphenzeichnens greift dabei auf Ansätze aus der klassischen Algorithmik, der Graphentheorie und der algorithmischen Geometrie zurück.

In diesem Modul wird die Graphenvisualisierung in ihrer praktischen Umsetzung behandelt. Dazu erarbeiten sich die Studierenden zunächst die relevante Literatur zum Thema, entwerfen dann im Team neue Lösungsansätze durch Modifikation bestehender Algorithmen und Entwicklung neuer Heuristiken, und implementieren und evaluieren schließlich ihren eigenen Lösungsansatz.

Arbeitsaufwand
150 h
- ~15h Präsenzzeit
- ~30h Einarbeitung
- ~90h Implementieren und Evaluieren
- ~15h Vorbereitung des Abschlussvortrags
4.103 Modul: Praktikum: Smart Data Analytics [M-INFO-103235]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

Pflichtbestandteile

| T-INFO-106426 | Praktikum: Smart Data Analytics | 6 LP | Beigl |

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Nach Abschluss des Praktikums können die Studierenden

- neue kontextsensitive Systeme unter Einsatz existierender "IoT", "Machine Learning" und "Big Data"-Komponenten implementieren
- existierende Komponenten und Algorithmen im Bereich Maschine Learning, Data Mining und Big Data auswählen und anpassen
- Datensätze aufbereiten und hierzu geeignete Verfahren identifizieren
- durch Experimente verschiedene Verfahren und Parametrisierungen bewerten und vergleichen
- durch Analyse der experimentellen Ergebnissen Verfahren und Verarbeitungsketten anwendungsspezifisch verbessern
- explorative Konzepte der Smart Data Innovation als "Data Analyst" bzw. "Data Scientist" selbständig anwenden

Inhalt

Im Praktikum werden Techniken, Methoden und Software der Kontexterfassung und -verarbeitung als Basis von Smart Data Analytics vertieft. Im Fokus steht vor allem die im Smart Data Innovation Lab verwendete Hardware und Software (industriell genutzte Systeme wie z.B. SAP HANA und IBM Watson aber auch insbesondere Open Source Software zur Datenanalyse wie Spark, scikit-learn und Jupyter/iPython Notebooks) sowie Nutzung von Sensordaten und Zeitserien in wirtschaftlich-relevanten Anwendungen.

Bewertet wird die praktische Lösung von Aufgaben die als Übungsaufgaben verteilt werden. Des Weiteren wird ein beispielhaftes Anwendungsproblem aus dem Analyticsbereich während des Praktikums mit Teilnahme an Wettbewerben (z.B. Kaggle o.A.) gelöst. In dieser Phase wird an das CRISP-DM Vorgehensweise angelehnt, was während des Praktikums erläutert wird. Vorwissen im Bereich Data-Mining/ Machine-Learning ist vorausgesetzt.

Die Teilnehmerinnen und Teilnehmer werden bei der Durchführung von den wissenschaftlichen Mitarbeiterinnen und Mitarbeitern unterstützt und erhalten Zugang zu den notwendigen Datenquellen und Großrechnern.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Präsenzzeit: Präsentation/Diskussion
15 x 45 min
11 h 15 min

Persönliche Nachbereitung der Folien/Aufgaben
15 x 30 min
7 h 30 min

Individuelle Präsentation eines für die Implementierung relevanten wiss. Artikels
30 h 0 min

Praktische Bearbeitung der Aufgaben in Gruppe und individuell
15 x 8 h
120 h 0 min

Ergebnisse dokumentieren und für Präsentation aufbereiten
15 x 45 min
11 h 15 min

SUMME
180 h 00 min

Empfehlungen
Siehe Teilleistung.
4.104 Modul: Projektpraktikum Angewandtes Maschinelles Lernen [M-WIWI-106491]

Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Besonderheiten zur Wahl

Wahlpflichtangebot (Wahl:)

<table>
<thead>
<tr>
<th>Wahlpflichtangebot (Wahl:)</th>
<th>Notwendigkeit</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109985 Projektpraktikum Kognitive Automobile und Roboter</td>
<td>5 LP</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-109983 Projektpraktikum Maschinelles Lernen</td>
<td>5 LP</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Erfolgskontrollen
Die Modulprüfung erfolgt in Form einer Prüfung über die gewählte Teilleistung des Moduls. Die Erfolgskontrolle wird bei jeder Teilleistung beschrieben.

Qualifikationsziele
Studierende

- können reale wissenschaftliche Probleme mit modernen maschinellen Lernansätze lösen.
- Sind in der Lage lernbasierte Modelle an Probleme zu spezifizieren, anzupassen und implementieren.
- Können Vorteile lernbasierten Algorithmen gegenüber herkömmlichen Lösungsstrategien.

Inhalt

Studierende analysieren die Aufgabenstellung, recherchieren den aktuellen Forschungsstand, spezifizieren, implementieren und evaluieren eigene lernbasierten Verfahren und präsentieren ihre Ergebnisse in Vortrag und Abschlussbericht.

Anmerkungen

Der Hauptunterschied der Praktika innerhalb des Moduls unterscheiden sich durch den Turnus in dem sie abgehalten werden.

- Praktikum Kognitive Automobile jedes Wintersemester.
- Praktikum Maschinelles Lernen jedes Sommersemester.

Arbeitsaufwand

Der Arbeitsaufwand von 5 Leistungspunkten setzt sich zusammen aus Präsenzzeit am Versuchs-ort zur praktischen Umsetzung der gewählten Lösung, sowie der Zeit für Literaturrecherchen und Planung/Selektion der selektierten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Empfehlungen

4.105 Modul: Recht der Wirtschaftsunternehmen [M-INFO-101216]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Recht

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Recht der Wirtschaftsunternehmen (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Codename</th>
<th>Titel</th>
<th>Credits</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-111405</td>
<td>Seminar: Handels- und Gesellschaftsrecht in der IT-Branche</td>
<td>3 LP</td>
<td>Nolte</td>
</tr>
<tr>
<td>T-INFO-101288</td>
<td>Regelkonformes Verhalten im Unternehmensbereich</td>
<td>3 LP</td>
<td>Herzig</td>
</tr>
<tr>
<td>T-INFO-102036</td>
<td>Vertragsgestaltung im IT-Bereich</td>
<td>3 LP</td>
<td>Menk</td>
</tr>
<tr>
<td>T-INFO-111436</td>
<td>Arbeitsrecht</td>
<td>3 LP</td>
<td>Hoff</td>
</tr>
<tr>
<td>T-INFO-111437</td>
<td>Steuerrecht</td>
<td>3 LP</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Qualifikationsziele
Der/die Studierende

- besitzt vertiefte Kenntnisse insbesondere im deutschen Gesellschaftsrecht, im Handelsrecht sowie im Bürgerlichen Recht,
- analysiert, bewertet und löst komplexere rechtliche und wirtschaftliche Zusammenhänge und Probleme,
- verfügt über solide Kenntnisse im Individualarbeitsrecht, im Kollektivarbeitsrecht und im Betriebsverfassungsrecht,
- ordnetet arbeitsvertragliche Regelungen ein und bewertet diese kritisch,
- erkennt die Bedeutung der Tarifparteien innerhalb der Wirtschaftsordnung und verfügt über differenzierte Kenntnisse des Arbeitskampfrechts und des Arbeitnehmerüberlassungsrecht sowie des Sozialrechts,
- besitzt detaillierte Kenntnisse im nationalen Ertrags- und Unternehmenssteuerrecht und ist in der Lage, sich wissenschaftlich mit den steuerrechtlichen Vorschriften auseinanderzusetzen und schätzt die Wirkung dieser Vorschriften auf unternehmerische Entscheidung ein.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits).
Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h.
4.106 Modul: Recht des geistigen Eigentums [M-INFO-101215]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Recht

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Recht des Geistigen Eigentums (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Thema</th>
<th>Leistungspunkte</th>
<th>Voraussetzungen</th>
<th>Erfolgskontrolle(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101308</td>
<td>Urheberrecht</td>
<td>3 LP</td>
<td>N.N.</td>
<td>Siehe Teilleistung</td>
</tr>
<tr>
<td>T-INFO-101313</td>
<td>Markenrecht</td>
<td>3 LP</td>
<td>Matz</td>
<td>Siehe Teilleistung</td>
</tr>
<tr>
<td>T-INFO-101307</td>
<td>Internetrecht</td>
<td>3 LP</td>
<td>N.N.</td>
<td>Siehe Teilleistung</td>
</tr>
<tr>
<td>T-INFO-108462</td>
<td>Ausgewählte Rechtsfragen des Internetrechts</td>
<td>3 LP</td>
<td>N.N.</td>
<td>Siehe Teilleistung</td>
</tr>
<tr>
<td>T-INFO-101310</td>
<td>Patentrecht</td>
<td>3 LP</td>
<td>Werner</td>
<td>Siehe Teilleistung</td>
</tr>
</tbody>
</table>

Voraussetzungen
Siehe Teilleistung

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- besitzt detaillierte Kenntnisse in den hauptsächlichen Rechten des geistigen Eigentums,
- analysiert und bewertet komplexe Sachverhalte und führt sie einer rechtlichen Lösung zu,
- setzt die rechtlichen Grundlagen in Verträge über die Nutzung geistigen Eigentums um und löst komplexere Verletzungsfälle,
- kennt und versteht die Grundzüge der registerrechtlichen Anmeldeverfahren und hat einen weitreichenden Überblick über die durch das Internet aufgeworfenen Rechtsfragen
- analysiert, bewertet und evaluiert entsprechende Rechtsfragen unter einem rechtlichen, einem informationstechnischen, wirtschaftswissenschaftlichen und rechtspolitischen Blickwinkel.

Inhalt
Das Modul vermittelt Kenntnisse in den Kerngebieten des Immaterialgüterrechts und Kernthemen des Internetrechts. Es werden die Voraussetzungen und das erforderliche Procedere erklärt, um Erfindungen und gewerbliche Kennzeichen national und international zu schützen. Zudem wird das nötige Know How vermittelt, um Schutzrechte zu verwenden und Schutzrechte gegen Angriffe Dritter zu verteidigen.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.107 Modul: Robotik I - Einführung in die Robotik [M-INFO-100893]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-108014 | Robotik I - Einführung in die Robotik | 6 LP | Asfour |

Erfolgskontrolle(n)
Siehe Teilleistung.

Voraussetzungen
Siehe Teilleistung.

Qualifikationsziele

Inhalt

Anmerkungen
Dieses Modul darf nicht geprüft werden, wenn im Bachelor-Studiengang Informatik SPO 2008 die Lehrveranstaltung Robotik I mit 3 LP im Rahmen des Moduls Grundlagen der Robotik geprüft wurde.

Arbeitsaufwand
Vorlesung mit 3 SWS + 1 SWS Übung, 6 LP.
6 LP entspricht ca. 180 Stunden, davon
ca. 45 Std. Vorlesungsbesuch
cia. 15 Std. Übungsbereich
cia. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
cia. 30 Std. Prüfungsvorbereitung
MODUL

Verantwortung: Prof. Dr.-Ing. Michael Beigl

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus Unregelmäßig</th>
<th>Dauer 1 Semester</th>
<th>Sprache Deutsch/Englisch</th>
<th>Level 4</th>
<th>Version 1</th>
</tr>
</thead>
</table>

Pflichtbestandteile

| T-INFO-110808 | Seminar: Informatik TECO | 3 LP | Beigl |

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Aktuelle Forschungsergebnisse aus dem Bereich ubiquitärer Systeme sollen erarbeitet und kritisch diskutiert werden. Nach Abschluss des Seminars können die Studierenden

- selbständig eine strukturierte Literaturrecherche zu einem gegebenen Thema durchführen und geeignete Literatur selbständig suchen, identifizieren, analysieren und bewerten
- den Stand der Technik bzw. Wissenschaft zu einem Themenbereich darstellen, differenziert bewerten und Schlüsse draus ziehen
- wissenschaftliche Ergebnisse zu einem Thema strukturiert darstellen und einem Fachpublikum im Rahmen eines Vortrags präsentieren
- Techniken des wissenschaftlichen Schreibens dazu anwenden, einen wissenschaftlichen Übersichtsartikel zu einem Thema zu verfassen
- Wissenschaftliche Texte anderer kritisch bewerten und einordnen

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits).

Präsenzzeit: Kickoff, Präsentation und Diskussion und Treffen mit Betreuer

10 h 00 min

Literaturrecherche, Studienplanung, Durchführung, Analyse und Dokumentation

76 h 00 min

Vorbereiten der Präsentation

4 h 00 min

SUMME

90 h 00 min
Seminar Informatik (Wahl: 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Seminar Informatik A</th>
<th>3 LP</th>
<th>Abecck</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-104336</td>
<td>Seminar Informatik B (Master)</td>
<td>3 LP</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
<tr>
<td>T-WIWI-103480</td>
<td>Seminar Informatik Master</td>
<td>3 LP</td>
<td></td>
</tr>
<tr>
<td>T-INFO-111205</td>
<td></td>
<td>3 LP</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen

siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- setzt sich mit einem abgegrenzten Problem im Bereich der Informatik auseinander,
- analysiert und diskutiert Problemstellungen im Rahmen der Veranstaltungen und in den abschließenden Seminararbeiten,
- erörtert, präsentiert und verteidigt fachspezifische Argumente innerhalb einer vorgegebenen Aufgabenstellung,
- organisiert die Erarbeitung der abschließenden Seminararbeiten weitestgehend selbstständig.
- Die Studierenden sind mit dem DFG-Kodex "Leitlinien zur Sicherung guter wissenschaftlicher Praxis" vertraut und wenden diese Leitlinien aktiv bei der Erstellung ihrer wissenschaftlichen Arbeit an.

Die im Rahmen des Seminarmoduls erworben Kompetenzen dienen im Besonderen der Vorbereitung auf die Bachelorarbeit. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.

Inhalt

Das Seminarmodul behandelt in den angebotenen Seminaren spezifische Themen, die teilweise in entsprechenden Vorlesungen angesprochen wurden und vertieft diese.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) für Präsenzzeit, Vor- und Nachbearbeitung sowie die Prüfungsleistung der Veranstaltung.

Der konkrete Arbeitsaufwand variiert je nach dem konkret gewählten Seminar und wird bei der einzelnen Veranstaltung beschrieben.
4.110 Modul: Seminarmodul Recht [M-INFO-101218]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Forschungsfach

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-INFO-101997</th>
<th>Seminar aus Rechtswissenschaften I</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 LP</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- setzt sich mit einem abgegrenzten Problem im Bereich der Rechtswissenschaften auseinander,
- analysiert und diskutiert Problemstellungen im Rahmen der Veranstaltungen und in den abschließenden Seminararbeiten,
- erörtert, präsentiert und verteidigt fachspezifische Argumente innerhalb einer vorgegebenen Aufgabenstellung,
- organisiert die Erarbeitung der abschließenden Seminararbeiten weitestgehend selbstständig.

Die im Rahmen des Seminarmoduls erworben Kompetenzen dienen im Besonderen der Vorbereitung auf die Bachelorarbeit. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.

Inhalt
Das Modul besteht aus einem Seminar, das thematisch den Rechtswissenschaften zuzuordnen ist. Eine Liste der zugelassenen Lehrveranstaltungen wird im Internet bekannt gegeben.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) für Präsenzzeit, Vor- und Nachbearbeitung sowie die Prüfungsleistung der Veranstaltung.
Der konkrete Arbeitsaufwand variiert je nach dem konkret gewählten Seminar und wird bei der einzelnen Veranstaltung beschrieben.
4.111 Modul: Seminarmodul Wirtschaftswissenschaften [M-WIWI-102736]

Verantwortung: Studiendekan des KIT-Studienganges
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Forschungsfach

Leistungspunkte: 3
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Wahlpflichtangebot (Wahl: 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Seminar Betriebswirtschaftslehre A (Master)</th>
<th>3 LP</th>
<th>Professorenschaft des Fachbereichs Betriebswirtschaftslehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103474</td>
<td>Seminar Volkswirtschaftslehre A (Master)</td>
<td>3 LP</td>
<td>Professorenschaft des Fachbereichs Volkswirtschaftslehre</td>
</tr>
<tr>
<td>T-WIWI-103478</td>
<td>Seminar Operations Research A (Master)</td>
<td>3 LP</td>
<td>Nickel, Rebennack, Stein</td>
</tr>
<tr>
<td>T-WIWI-103481</td>
<td>Seminar Statistik A (Master)</td>
<td>3 LP</td>
<td>Grothe, Schienle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt durch den Nachweis von einem Seminar mit min. 3 LP.
Die einzelnen Erfolgskontrollen (nach §4(2), 3 SPO) werden bei jeder Veranstaltung dieses Moduls beschrieben.

Voraussetzungen
Keine.

Qualifikationsziele
- Die Studierenden können sich weitgehend selbständig mit einem abgegrenzten Problem in einem speziellen Fachgebiet nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen.
- Die Probleme können sie strukturiert und unter Einbeziehung ihres interdisziplinären Wissens lösen.
- Die daraus abgeleiteten Ergebnisse wissen sie zu validieren.
- Anschließend können sie diese unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion verteidigen.
- Die Studierenden sind mit dem DFG-Kodex "Leitlinien zur Sicherung guter wissenschaftlicher Praxis" vertraut und wenden diese Leitlinien aktiv bei der Erstellung ihrer wissenschaftlichen Arbeit an.

Inhalt
Das Modul besteht aus einem Seminar, das thematisch den Wirtschaftswissenschaften zuzuordnen ist. Eine Liste der zugelassenen Lehrveranstaltungen wird im Internet bekannt gegeben.

Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) für Präsenzzeit, Vor- und Nachbearbeitung sowie die Prüfungsleistung der Veranstaltung.
Der konkrete Arbeitsaufwand variiert je nach dem konkret gewählten Seminar und wird bei der einzelnen Veranstaltung beschrieben.

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
4 MODULE

M 4.112 Modul: Service Analytics [M-WIWI-101506]

Verantwortung: Prof. Dr. Gerhard Satzger
 Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Wirtschaftswissenschaften (Wahlmodule BWL)

Leistungspunkte Notenskala Turnus Dauer Sprache Level Version
9 Zehntelnoten Jedes Semester 2 Semester Deutsch 4 9

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108715</td>
<td>Artificial Intelligence in Service Systems</td>
<td>4,5 LP</td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111219</td>
<td>Artificial Intelligence in Service Systems - Applications in Computer Vision</td>
<td>4,5 LP</td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4,5 LP</td>
<td>Mädche, Nadj, Toreini</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112152</td>
<td>Practical Seminar: Artificial Intelligence in Service Systems</td>
<td>4,5 LP</td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Spezialveranstaltung Wirtschaftsinformatik</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele

Der/ die Studierende
• kennt die theoretischen Grundlagen und die wichtigsten Bausteine von Business Intelligence Systemen,
• erwerbt die grundlegenden Fähigkeiten, Business Intelligence- und Analytics-Software im Service-Kontext anzuwenden,
• lernt unterschiedliche Anwendungsszenarien von Analytics im Service-Kontext kennen,
• ist in der Lage verschiedene Analytics Methoden zu unterscheiden und diese kontextbezogen anzuwenden,
• lernt Analytics-Software im Service-Kontext anzuwenden,
• trainiert die strukturierte Erfassung und Lösung von praxisbezogenen Problemstellungen mit Hilfe kommerzieller Business Intelligence Softwarepaketen sowie Analytics-Methoden und -Werkzeugen.

Inhalt

Anmerkungen
Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.
Präsenzzeit: 90 Stunden
Vor- /Nachbereitung: 100 Stunden
Prüfung und Prüfungsvorbereitung: 80 Stunden

Empfehlungen
4.113 Modul: Service Design Thinking [M-WIWI-101503]

Verantwortung: Prof. Dr. Gerhard Satzger
Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-WIWI-102849 | Service Design Thinking | 12 LP |

Erfolgskontrolle(n)

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende lernt

- ein umfassendes Verständnis der an der Stanford University entwickelten, weltweit anerkannten Innovationsmethodik "Design Thinking"
- neue, kreative Lösungen durch umfassendes Beobachten seiner/ihrer Umwelt und insbesondere von Service-Endnutzern zu entwickeln
- frühzeitig und eigenständig Prototypen der gesammelten Ideen zu entwickeln, diese zu testen und iterativ zu verbessern
- die erlernte Methodik im Rahmen eines echten Innovationsprojekts anzuwenden, das von einem Praxispartner gestellt wird.

Inhalt

- Design Space Exploration: Erkundung des Problemraums durch Beobachtung von Kunden / Menschen die mit dem Problem in Zusammenhang stehen. In dieser Phase bilden sich die Studierenden zu Experten aus.
- Funky Prototype: Integration der einzelnen erfolgreich getesteten Funktionen aus der Critical Function und Dark Horse Phase zu Lösungskonzepten. Diese werden ebenso getestet und weiterentwickelt.
- Functional Prototype: Selektion erfolgreicher Funky Prototypen und Entwicklung dieser in Richtung hoch aufgelöster Prototypen. Der endgültige Lösungsansatz für das Projekt wird detailliert niedergelegt und Feedback dazu eingeholt.
- Final Prototype: Umsetzung des erfolgreichsten Functional Prototypen für die Abschlusspräsentation.

Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Der Arbeitsaufwand für dieses praxisnahe Modul ist vergleichsweise hoch, da die Teilnehmer in internationalen Teams mit Teilnehmern anderer Universitäten sowie Partnerunternehmen zusammenarbeiten. Hieraus entsteht ein entsprechender Koordinationsaufwand.

Empfehlungen
Diese Veranstaltung findet in englischer Sprache statt – Teilnehmer sollten sicher in Schrift und Sprache sein. Unsere bisherigen Teilnehmer fanden es empfehlenswert, das Modul zu Beginn des Master-Programms zu belegen.
4.114 Modul: Service Economics and Management [M-WIWI-102754]

Verantwortung: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112757</td>
<td>Digital Services: Innovation & Business Models</td>
<td>4,5 LP</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-112823</td>
<td>Platform & Market Engineering: Commerce, Media, and Digital Democracy</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- versteht die Grundlagen des Managements digitaler Dienstleistungen und zugehöriger Systeme,
- erhält einen umfassenden Einblick in die Bedeutung und wichtigsten Eigenschaften von Informationssystemen als zentralem Baustein für die Digitalisierung von Geschäftsprozessen, Produkten und Dienstleistungen,
- kennt die wichtigsten Konzepte und Theorien, um den digitalen Transformationsprozess von Dienstleistungssystemen erfolgreich zu gestalten,
- versteht die OR-Methoden im Bereich des Dienstleistungsmanagements und kann sie entsprechend anwenden,
- ist in der Lage, große Mengen verfügbarer Daten systematisch zur Planung, zum Betrieb und zur Verbesserung komplexer Serviceangeboten einzusetzen und Informationssysteme zu gestalten und zu steuern,
- kann gezielt marktorientierte Koordinationsmechanismen entwickeln und in Dienstleistungssystemen einsetzen

Inhalt

Anmerkungen

Arbeitsaufwand

Empfehlungen

Keine
4.115 Modul: Service Innovation, Design & Engineering [M-WIWI-102806]

Verantwortung: Prof. Dr. Alexander Mädche
 Prof. Dr. Gerhard Satzger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
 Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Inhaltsangabe</th>
<th>Leistungspunkte</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112757</td>
<td>Digital Services: Innovation & Business Models</td>
<td></td>
<td>4,5 LP</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-110877</td>
<td>Engineering Interactive Systems</td>
<td></td>
<td>4,5 LP</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-102639</td>
<td>Geschäftsmodelle im Internet: Planung und Umsetzung</td>
<td></td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-110887</td>
<td>Practical Seminar: Service Innovation</td>
<td></td>
<td>4,5 LP</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-108437</td>
<td>Seminarpraktikum: Information Systems and Service Design</td>
<td></td>
<td>4,5 LP</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommatelle abgeschnitten.

Voraussetzungen

Abhängigkeiten zwischen Kursen:

Die Veranstaltung Practical Seminar Service Innovation kann nur gewählt werden, wenn die Veranstaltung Practical Seminar Digital Service Design nicht gewählt wird.

Qualifikationssziele

Der/ die Studierende

- kennt Herausforderungen, Konzepte, Methoden und Werkzeuge des Innovationsmanagements für Dienstleistungen und kann diese erfolgreich anwenden.
- hat ein umfassendes Verständnis der Entwicklung und des Designs innovativer Dienstleistungen, und kann geeignete Methoden und Werkzeuge auf reale Fragestellungen anwenden,
- hat die Fähigkeit, die Konzepte des Innovationsmanagements, der Entwicklung und des Designs von Dienstleistungen in Organisationen einzubetten,
- versteht die strategische Bedeutung von Dienstleistungen, kann Wertschöpfung im Kontext von Dienstleistungssystemen darstellen, und die Möglichkeiten deren digitaler Transformation zielgerichtet nutzen
- erarbeitet konkrete Lösungen für praxisrelevante Aufgabenstellungen in Teams.

Inhalt

In diesem Modul werden die Grundlagen gelegt, erfolgreiche Innovationen durch IKT-unterstützte Dienstleistungen zu schaffen. Dies beinhaltet Methoden und Werkzeuge für das Innovationsmanagement, für das Design und die Entwicklung digitaler Dienstleistungen wie auch für die Umsetzung neuer Geschäftsmodelle.f+

Anhand aktueller Beispiele aus Forschung und Praxis wird die Relevanz der bearbeiteten Themen verdeutlicht. Die Practical Seminars werden i.d.R. in Kooperation mit Praxispartnern durchgeführt.

Anmerkungen

Arbeitsaufwand

Empfehlungen

Verantwortung: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)
Wirtschaftswissenschaften (Wahlmodule BWL)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 9 LP)
T-WIWI-108715
Artificial Intelligence in Service Systems
4,5 LP
Satzger

T-WIWI-111219
Artificial Intelligence in Service Systems - Applications in Computer Vision
4,5 LP
Satzger

T-WIWI-112757
Digital Services: Innovation & Business Models
4,5 LP
Satzger

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von Teilprüfungen im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls besprochen.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- versteht die Grundlagen der Entwicklung und des Managements IT-basierter Dienstleistungen,
- versteht die OR-Methoden im Bereich des Dienstleistungsmanagement und kann sie entsprechend anwenden,
- ist in der Lage große Mengen verfügbarer Daten systematisch zur Planung, Betrieb und Verbesserung von komplexen Serviceangeboten einzusetzen und
- ist in der Lage, Innovationsprozesse in Unternehmen zu verstehen und zu analysieren.

Inhalt
In diesem Modul werden die Grundlagen für die Entwicklung und das Management IT-basierter Dienstleistungen gelegt. Die Veranstaltungen des Moduls vermitteln den Einsatz von OR-Methoden im Bereich des Dienstleistungsmanagements, Fähigkeiten zur Analyse von großen Datennengen im IT-Service Bereich und deren Einsatz für die Entscheidungsunterstützung, insbesondere mit Blick auf die im Unternehmen stattfindenden Innovationsprozesse. Anhand aktueller Beispiele aus Forschung und Praxis wird die Relevanz der bearbeiteten Themen verdeutlicht.

Anmerkungen

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden. Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. 120-135h für die Lehrveranstaltungen mit 4,5 Credits, 135-150h für die Lehrveranstaltungen mit 5 Credits und 150-180h für die Lehrveranstaltungen mit 6 Credits.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen
Keine
4.117 Modul: Service Operations [M-WIWI-102805]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlinformationen

In den Studiengängen Informationswirtschaft/Wirtschaftsinformatik M.Sc. können zwei beliebige Teilleistungen gewählt werden.

<table>
<thead>
<tr>
<th>Wahlpflichtangebot (Wahl: höchstens 2 Bestandteile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102718 Ereignisdiskrete Simulation in Produktion und Logistik</td>
</tr>
<tr>
<td>T-WIWI-102884 Operations Research in Health Care Management</td>
</tr>
<tr>
<td>T-WIWI-102715 Operations Research in Supply Chain Management</td>
</tr>
<tr>
<td>T-WIWI-102716 Praxis-Seminar: Health Care Management (mit Fallstudien)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112213 Angewandte Materialflusssimulation</td>
</tr>
<tr>
<td>T-WIWI-102872 Challenges in Supply Chain Management</td>
</tr>
<tr>
<td>T-WIWI-110971 Demand-Driven Supply Chain Planning</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Im Studiengang Informationswirtschaft M.Sc. können zwei beliebige Teilleistungen im Modul gewählt werden.

Qualifikationsziele
Der/die Studierende
- ist in der Lage service-spezifische Problemstellungen zu analysieren, mathematisch zu modellieren und zu erläutern,
- benennt und beschreibt die Grundbegriffe von fortgeschrittenen Optimierungsverfahren, insbesondere aus der diskreten Optimierung,
- modelliert und klasifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme aus den Bereichen Supply Chain Management und Health Care selbstständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt

Anmerkungen
Entfall der Teilleistung T-WIWI-102860 "Supply Chain Management in der Prozessindustrie" zum Sommersemester 2019.
Arbeitsaufwand

Empfehlungen
Die Veranstaltung Practical Seminar Health Care sollte mit der Veranstaltung OR in Health Care Management kombiniert werden.
4.118 Modul: Software-Methodik [M-INFO-101202]

Verantwortung: Prof. Dr. Ralf Reussner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Software-Methodik (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101381</td>
<td>Software-Architektur und -Qualität</td>
<td>3</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101256</td>
<td>Software-Evolution</td>
<td>3</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101278</td>
<td>Modellgetriebene Software-Entwicklung</td>
<td>3</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
siehe Teilleistung

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Der Inhalt wird in den Lehrveranstaltungsbeschreibungen erläutert.
4.119 Modul: Software-Systeme [M-INFO-101201]

Verantwortung: Prof. Dr. Ralf Reussner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Software-Systeme (Wahl: mindestens 1 Bestandteil sowie mind. 9 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101381</td>
<td>Software-Architektur und -Qualität</td>
<td>3</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101256</td>
<td>Software-Evolution</td>
<td>3</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101278</td>
<td>Modellgetriebene Software-Entwicklung</td>
<td>3</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101281</td>
<td>Formale Systeme II: Anwendung</td>
<td>5</td>
<td>Beckert</td>
</tr>
<tr>
<td>T-INFO-101378</td>
<td>Formale Systeme II: Theorie</td>
<td>5</td>
<td>Beckert</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine

Qualifikationsziele
In den einzelnen Lehrveranstaltungen in diesem Modul erlernen die Studenten verschiedene Techniken und Verfahren für die systematische Entwicklung qualitativ hochwertiger Software-Systeme. Dazu kann gehören systematische Anforderungserstellung, die Modellierung, die Programmierung von Komponenten und Diensten, Ausnutzung der parallelen Verarbeitung in modernen Systemen und die Verifikation der entstandenen Programme.

Inhalt
Der Inhalt wird in den einzelnen Lehrveranstaltungsbeschreibungen erläutert.
4.120 Modul: Stochastische Optimierung [M-WIWI-103289]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-106548</td>
<td>Fortgeschrittene Stochastische Optimierung</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimierung</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl: höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102719</td>
<td>Gemisch-ganzzahlige Optimierung I</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Gemisch-ganzzahlige Optimierung II</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-111247</td>
<td>Mathematische Grundlagen hochdimensionaler Statistik</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-111587</td>
<td>Multikriterielle Optimierung</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Verfahren</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-110162</td>
<td>Optimierungsmodelle in der Praxis</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Sudermann-Merx</td>
</tr>
<tr>
<td>T-WIWI-112109</td>
<td>Topics in Stochastic Optimization</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Im Studiengang Informationswirtschaft M.Sc. können zwei beliebige Teilleistungen im Modul gewählt werden.

Qualifikationsziele
Der/die Studierende

- benennt und beschreibt die Grundbegriffe von weiterführenden stochastischen Optimierungsmethoden, insbesondere das algorithmische ausnutzen von speziellen Problemstrukturen,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle der stochastische Optimierung
- modelliert und klassifiziert stochastische Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle stochastische Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen,
- identifiziert Nachteile von Lösungsverfahren und ist gegebenenfalls in der Lage Vorschläge zu machen, um diese an praktische Probleme anzupassen.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Modellierung sowie das Vermitteln von theoretischen Grundlagen und Lösungsverfahren für Optimierungsprobleme mit spezielle Struktur, welche zum Beispiel bei der stochastischen Optimierung auftreten.

Anmerkungen
Arbeitsaufwand

Empfehlungen
Es wird empfohlen, die Vorlesung "Einführung in die Stochastische Optimierung" zu hören, bevor die Vorlesung "Fortgeschrittene Stochastische Optimierung" besucht wird.

4.121 Modul: Strategie und Management: Fortgeschrittene Themen [M-WIWI-103119]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 9 LP)

T-WIWI-106188	Workshop aktuelle Themen Strategie und Management	3 LP	Lindstädt
T-WIWI-106189	Workshop Business Wargaming – Analyse strategischer Interaktionen	3 LP	Lindstädt
T-WIWI-106190	Strategie- und Managementtheorie: Entwicklungen und Klassiker	3 LP	Lindstädt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele

Der/ die Studierende

- Können selbstständig anhand geeigneter Modelle und Bezugsrahmen der Managementlehre strukturiert strategische Fragestellungen analysieren und Empfehlungen ableiten
- Können Ihre Position durch eine durchdachte Argumentationsweise in strukturierten Diskussionen überzeugend darlegen
- Können sich selbstständig mit einer aktuellen, forschungsorientierten Fragestellung aus dem strategischen Management auseinandersetzen
- Aus den wenig strukturierten Informationen können sie eigene Schlüsse unter Einbeziehung ihres interdisziplinären Wissens ziehen und die aktuellen Forschungsergebnisse punktuell weiterentwickeln

Inhalt

Anmerkungen

Das Modul ist zulassungsbeschränkt. Nach erfolgter Zulassung für eine Lehrveranstaltung wird die Möglichkeit zum Abschluss des Moduls garantiert.

Die Prüfungen werden mindestens jedes zweite Semester angeboten, sodass das gesamte Modul in zwei Semestern abgeschlossen werden kann.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3 Credits ca. 90h.

Empfehlungen
Keine
4.122 Modul: Telematik [M-INFO-100801]

Verantwortung: Prof. Dr. Martina Zitterbart

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101338 | Telematik | | | | 6 LP | Zitterbart |

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Studierende

- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Weggewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschied
Inhalt

- Einführung
- Ende-zu-Ende Datentransport
- Routingprotokolle und -architekturen
- Medienzuteilung
- Brücken
- Datenübertragung
- ISDN
- Weitere ausgewählte Beispiele
- Netzmanagement

Arbeitsaufwand
Vorlesung mit 3 SWS plus Nachbereitung/Prüfungsvorbereitung, 6 LP.
6 LP entspricht ca. 180 Arbeitsstunden, davon
ca. 60 Std. Vorlesungsbesuch
ca. 60 Std. Vor-/Nachbereitung
ca. 60 Std. Prüfungsvorbereitung

Empfehlungen
Siehe Teilleistung
4.123 Modul: Ubiquitäre Informationstechnologien [M-INFO-100789]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101326 | Ubiquitäre Informationstechnologien | 5 LP | Beigl |

Erfolgskontrolle(n)
Siehe Teilleistung

Voraussetzungen
Siehe Teilleistung

Qualifikationsziele
Ziel der Vorlesung ist es, Kenntnisse über Grundlagen und weitergehende Methoden und Techniken des Ubiquitous Computing zu vermitteln. Nach Abschluss der Vorlesung können die Studierenden

- das erlernte Wissen über existierende Ubiquitous Computing Systeme wiedergeben und erörtern.
- die allgemeinen Kenntnisse zu Ubiquitären Systemen bewerten und Aussagen und Gesetzmäßigkeiten auf Sonderfälle übertragen.
- unterschiedliche Methoden zu Design-Prozessen und Nutzerstudien bewerten und beurteilen sowie geeignete Methoden für die Entwicklung neuer Lösungen auswählen.
- selbst neue ubiquitäre Systeme für den Einsatz in Alltags- oder industriellen Prozessumgebungen erfinden, planen, entwerfen und bewerten sowie Aufwände und technische Implikationen bemessen.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Aktivität

Arbeitsaufwand

Präsenzzeit: Besuch der Vorlesung
- 15 x 90 min
- 22 h 30 min

Präsenzzeit: Besuch der Übung
- 15 x 45 min
- 11 h 15 min

Vor- / Nachbereitung der Vorlesung und Übung
- 15 x 90 min
- 22 h 30 min

Selbstentwickeltes Konzept für eine Information Appliance entwickeln
- 33 h 45 min

Foliensatz 2x durchgehen
- 2 x 12 h
- 24 h 00 min

Prüfung vorbereiten
- 36 h 00 min

SUMME
- **150 h 00 min**

Arbeitsaufwand für die Lerneinheit „Ubiquitäre Informationstechnologien“

Empfehlungen

Siehe Teilleistung
4.124 Modul: Ubiquitous Computing [M-WIWI-101458]

Verantwortung: N.N.
Prof. Dr. Hartmut Schmeck
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 3

Pflichtbestandteile
T-INFO-101326 Ubiquitäre Informationstechnologien 5 LP Beigl

Ergänzungsangebot (Wahl: zwischen 4 und 5 LP)
T-WIWI-102761 Praktikum Ubiquitous Computing 4 LP Beigl, Schmeck
T-INFO-101323 IT-Sicherheitsmanagement für vernetzte Systeme 5 LP Hartenstein

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen die Mindestanforderung an LP erfüllt wird. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen
Die Lehrveranstaltung Ubiquitäre Informationstechnologien [24146] muss geprüft werden.

Qualifikationsziele
Der/die Studierende

- erlangt umfassendes Wissen über Themen im Bereich des Ubiquitous Computing,
- kann ubiquitäre Systeme evaluieren und selbstständig entwickeln,
- erlernt Kenntnisse, um sich mit spezialisierten Aspekten im Themenfeld Ubiquitous Computing auseinander setzen zu können.

Inhalt

Arbeitsaufwand
4.125 Modul: Umwelt- und Ressourcenökonomie [M-WIWI-101468]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 2

Wahlpflichtangebot (Wahl: mind. 9 LP)

<table>
<thead>
<tr>
<th>Wahl</th>
<th>Lehrveranstaltung</th>
<th>LP</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102650</td>
<td>Energie und Umwelt</td>
<td>4,5</td>
<td>Karl</td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transportökonomie</td>
<td>4,5</td>
<td>Mitusch, Szimba</td>
</tr>
<tr>
<td>T-WIWI-102615</td>
<td>Umweltökonomik und Nachhaltigkeit</td>
<td>3</td>
<td>Walz</td>
</tr>
<tr>
<td>T-WIWI-102616</td>
<td>Umwelt- und Ressourcenpolitik</td>
<td>4</td>
<td>Walz</td>
</tr>
<tr>
<td>T-BGU-111102</td>
<td>Umweltrecht</td>
<td>3</td>
<td>Smeddinck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden

- verstehen die Behandlung von nicht marktmäßig gehandelten Ressourcen sowie künftiger Knappheiten
- können die Märkte für Energie- und Umweltgüter oder ihrer Surrogate, wie etwa Emissionszertifikate, modellhaft aufbauen und die Ergebnisse staatlicher Maßnahmen abschätzen
- kennen die rechtlichen Grundlagen und können Konflikte im Hinblick auf die Rechtslage einordnen

Inhalt
Umweltbelastungen und Ressourcenverbrauch stellen zentrale Global Challenges dar, denen sich die Gesellschaften weltweit stellen müssen. Im Modul werden die Studierenden umfassend an diese Herausforderungen aus wirtschaftswissenschaftlicher Sicht herangeführt und zentrale Grundlagen der Umwelt- und Nachhaltigkeitsökonomik sowie Fragen der Umwelt- und Ressourcenpolitik behandelt. Des Weiteren adressieren die Lehrveranstaltungen umweltrechtliche Fragen, die Quellen der Umweltbelastungen sowie sektorspezifische Vertiefungen im Transportbereich.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Kenntnisse im Bereich Mikroökonomik werden vorausgesetzt, dh. die Lehrveranstaltung Volkswirtschaftslehre I (Mikroökonomie) [2600012] oder eine vergleichbare LV muss erfolgreich absolviert sein.
4.126 Modul: Verkehrsinfrastrukturpolitik und regionale Entwicklung [M-WIWI-101485]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 2

Wahlpflichtangebot (Wahl: 2 Bestandteile)

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Prüfungstermin</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics</td>
<td>4,5 LP</td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transportökonomie</td>
<td>4,5 LP</td>
<td>Mitusch, Szimba</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- verstehen die grundlegenden ökonomischen Zusammenhänge des Transportsektors und der Regionalökonomie, insbesondere die wirtschaftspolitischen Probleme an den Schnittpunkten von Transport- bzw. Regionalwirtschaft und Politik
- können die unterschiedlichen Entscheidungskalküle von Politik, Regulierung und privatem Sektor vergleichen und die jeweils auftretenden Probleme sowohl qualitativ als auch mit Hilfe geeigneter ökonomischer Methoden analysieren und bewerten
- sind mit Abschluss dieses Moduls insbesondere auf einen späteren Berufseinstieg im öffentlichen Sektor, im nahestehenden Unternehmen, der Politik, einer Regulierungsbehörde, Beratungsunternehmen, großen Baufirmen oder Verkehrsinfrastruktur-Projektgesellschaften vorbereitet

Inhalt

Durch die Kombination der Lehrveranstaltungen wird dieses Modul den komplexen Wechselwirkungen zwischen Infrastrukturpolitik, Verkehrswirtschaft und Regionalpolitik gerecht und vermittelt Teilnehmern so ein umfassendes Verständnis der Funktionsweise eines der wichtigsten Wirtschaftssektoren und dessen wirtschaftspolitischer Bedeutung.

Anmerkungen
Die Veranstaltungen Bewertung öffentlicher Projekte und Politiken 1 (WS) und Bewertung öffentlicher Projekte und Politiken 2 (SS) sind ab dem Wintersemester 14/15 nicht mehr in diesem Modul enthalten. Für Studenten, die bereits diese Veranstaltungen belegt haben, ist weiterhin eine Anrechnung dieser Veranstaltungen in diesem Modul möglich.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.127 Modul: Vertiefung Finanzwissenschaft [M-WIWI-101511]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Wahlpflichtangebot (Wahl: zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108711</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>4,5 LP</td>
<td>Zehntelnoten</td>
</tr>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management</td>
<td>4,5 LP</td>
<td>Gutekunst, Wigger</td>
</tr>
</tbody>
</table>

Ergänzungsangebot (Wahl: zwischen 0 und 1 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111304</td>
<td>Grundlagen der nationalen und internationalen Konzernbesteuerung</td>
<td>4,5 LP</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Öffentliche Einnahmen</td>
<td>4,5 LP</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Mindestens eine der Teilleistungen "Public Management" oder "Grundlagen der Unternehmensbesteuerung" ist Pflicht im Modul und muss erfolgreich geprüft werden.

Qualifikationsziele
Der/die Studierende

- besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung.
- ist in der Lage, Effizienzprobleme von öffentlichen Organisationen zu erkennen und zu differenzieren.
- besitzt weiterführende Kenntnisse im Bereich der Staatsverschuldung.
- ist in der Lage, fiskalpolitische Fragestellungen zu interpretieren und zu motivieren.
- kennt die Grundzüge des deutschen und internationalen Steuerrechts.
- kann finanz- und geldpolitische Entscheidungen bewerten und deren Folgen abschätzen.
- versteht Umfang, Struktur und Formen der staatlichen Kreditaufnahme.

Inhalt

Im Rahmen der Lehrveranstaltungen des Moduls erwerben die Studierenden Kenntnisse der öffentlichen Einnahmen (Theorie der Besteuerung und staatliche Kreditaufnahme), des nationalen und internationalen Steuerrechts sowie der Theorie der Administration des öffentlichen Sektors.

Anmerkungen

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.
Präsenzzeit: ca. 90 Stunden
Vor-/Nachbereitung: ca. 135 Stunden
Prüfung und Prüfungsvorbereitung: ca. 45 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Kenntnisse der Grundlagen der Finanzwissenschaft werden vorausgesetzt.
4.128 Modul: Wachstum und Agglomeration [M-WIWI-101496]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wirtschaftswissenschaften (Wahlmodule WIWI)

Leistungspunkte 9
Notenskala Zehntelnoten
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 5

Wahlpflichtangebot (Wahl: 9 LP)

<table>
<thead>
<tr>
<th>Wahlveranstaltung</th>
<th>Lehrveranstaltung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109194</td>
<td>Dynamic Macroeconomics</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-112816</td>
<td>Growth and Development</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Brumm Ott Ott

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von schriftlichen Teilprüfungen (siehe Lehrveranstaltungsbeschreibungen).

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Note der Teilprüfungen gebildet.

Voraussetzungen
Keine

Qualifikationsziele
Der/ die Studierende

- erzielt vertiefende Kenntnisse mikrobasierter allgemeiner Gleichgewichtsmodelle
- versteht, wie auf Grundlage individueller Optimierungsentscheidungen aggregierte Phänomene wie gesamtwirtschaftliches Wachstum oder Agglomerationen (Städte/Metropolen) resultieren
- kann den Beitrag dieser Phänomene zur Entstehung ökonomischer Trends einordnen und bewerten
- kann theoriebasierte Politikempfehlungen ableiten

Inhalt
Das Modul setzt sich aus den Inhalten der Vorlesungen Endogene Wachstumstheorie, Spatial Economics und Dynamic Macroeconomics zusammen. Während sich die erste Vorlesung auf die dynamische Programmierung in der modernen Makroökonomik fokussiert, sind die anderen beiden Vorlesungen stärker formal-analytisch ausgerichtet.

Die gemeinsame Klammer der Vorlesungen in diesem Modul ist, dass in allen Veranstaltungen, basierend auf verschiedenen theoretischen Modellen, wirtschaftspolitische Empfehlungen abgeleitet werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen
Der Besuch der Veranstaltung Einführung in die Wirtschaftspolitik [2560280] wird empfohlen.

Der Besuch der Veranstaltungen VWL1: Mikroökonomie und VWL2: Makroökonomie wird vorausgesetzt.
4.129 Modul: Web and Data Science [M-WIWI-105368]

Verantwortung: Dr.-Ing. Michael Färber
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: mindestens 2 Bestandteile)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Angebotsname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Praktikum Informatik (Master)</td>
<td>4,5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrollen
Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.
Die Erfolgskontrollen zu den Vorlesungen erfolgen in Form einer schriftlichen Prüfung im Umfang von 60 Minuten.
Die Erfolgskontrollen zum Praktikum erfolgen benotet als Prüfungsleistung anderer Art.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele
Der Studierende

- kennen die Grundlagen des Maschinellen Lernens, Data Minings und Knowledge Discovery.
- können lernfähige Systeme, konzipieren, trainieren und evaluieren.
- führen Knowledge Discovery Projekte unter Berücksichtigung von Algorithmen, Repräsentationen and Anwendungen durch.
- betrachten aktuelle Forschungsthemen auf dem Gebiet der Web Science und lernen insbesondere die Themen Kleine-Welt-Problem, Netzwerktheorie, soziale Netzwerkanalyse, Bibliometrie sowie Link-Analyse und Suche kennen.
- wenden interdisziplinäres Denken an und
- wenden technologische Ansätze auf sozialwissenschaftlichen Probleme an.
Inhalt

Im Fokus des Moduls stehen Verfahren des Maschinelles Lernens und Data Mining zur Wissensgewinnung aus großen Datenbeständen sowie Web-Phänomene und die zur Verfügung stehenden Technologien.

Die Vorlesung "Knowledge" gibt einen Überblick über Ansätze des maschinellen Lernens und Data-Mining zur Wissensgewinnung aus großen Datenbeständen. Diese werden besonders in Hinsicht auf Algorithmen, Anwendbarkeit auf verschiedene Datenrepräsentationen und den Einsatz in realen Anwendungsszenarien hin untersucht.

Die Vorlesung "Knowledge" gibt einen Überblick über Knowledge Discovery. Es werden spezifische Techniken und Methoden, Herausforderungen und aktuelle und zukünftige Forschungsthemen in diesem Forschungsgebiet vorgestellt.

Arbeitsaufwand

4.130 Modul: Web Data Management [M-WIWI-101455]

Verantwortung: Dr.-Ing. Michael Färber

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtangebot (Wahl: 2 Bestandteile)

<table>
<thead>
<tr>
<th>T-WIWI-110848</th>
<th>Semantic Web Technologies</th>
<th>4,5 LP</th>
<th>Käfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110548</td>
<td>Praktikum Informatik (Master)</td>
<td>4,5 LP</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle zu den Vorlesungen erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Teilnoten gebildet und nach der ersten Kommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- entwickelt Ontologien für Semantische Webtechnologien und wählt dazu geeignete Repräsentationssprachen aus,
- kann Daten und Anwendungen mittels einer Cloud-basierten Infrastruktur bereitstellen,
- transferiert die Methoden und Technologien semantischer Webtechnologien und des Cloud Computing auf neue Anwendungsgebiete,
- bewertet das Potential semantischer Webtechnologien und der Cloud Computing Ansätze für neue Anwendungsbereiche.

Inhalt

Des Weiteren wird die Anwendung moderner Cloud Technologien zur Nutzung von Software und Hardware als Service über das Internet eingeführt. Cloud Technologien erlauben die effiziente Ausführung von Anwendungen auf verteilten Rechnercluster und ermöglichen hohe Skalierbarkeit sowie neuartige Geschäftsmodelle im Internet.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.131 Modul: Wireless Networking [M-INFO-101203]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Wireless Networking (Wahl: mindestens 1 Bestandteil sowie mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101337</td>
<td>Internet of Everything</td>
<td>4 LP</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101322</td>
<td>Mobilkommunikation</td>
<td>4 LP</td>
<td>Waldhorst, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101326</td>
<td>Ubiquitäre Informationstechnologien</td>
<td>5 LP</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-101319</td>
<td>Netzsicherheit: Architekturen und Protokolle</td>
<td>4 LP</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
siehe Teilleistung

Voraussetzungen
siehe Teilleistung

Qualifikationsziele

Die Studierenden sollen

- Prinzipien zum Entwurf drahtloser Kommunikationssysteme erlernen und diese in verschiedenem Kontext anwenden können,
- Stärken und Schwachstellen von Kommunikationssystemen identifizieren können,
- die Leistungsfähigkeit von Protokollen in drahtlosen Netzen, sowie Netzen und Architekturen bewerten können,
- fortgeschrittene Protokolle, Architekturen und Algorithmen von drahtlosen Kommunikationsnetzen und Kommunikationssystemen beherrschen.

Inhalt

Anmerkungen

Die LV **Modellierung und Simulation von Netzen und verteilten Systemen** wird im SS 2016 voraussichtlich nicht angeboten.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 240 Stunden (8 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4 Cediss (120h).

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Der Stoff der Vorlesung **Einführung in Rechnernetze** [24519] oder der Vorlesung **Vernetzte IT-Infrastrukturen** [24074] wird als Grundlage empfohlen.
5 Teilleistungen

5.1 Teilleistung: Advanced Empirical Asset Pricing [T-WIWI-110513]

Verantwortung: TT-Prof. Dr. Julian Thimme
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>Semesterwochenstunden</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2530569</td>
<td>Advanced Empirical Asset Pricing</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Raum 209 am Campus B (Geb. 09.21)</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2530570</td>
<td>Übung zu Advanced Empirical Asset Pricing</td>
<td>1 SWS</td>
<td>Übung (Ü) / Präsenz/Online gemischt</td>
<td>Raum 209 am Campus B (Geb. 09.21)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900321</td>
<td>Advanced Empirical Asset Pricing</td>
<td>Raum 209 am Campus B (Geb. 09.21)</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900319</td>
<td>Advanced Empirical Asset Pricing</td>
<td>Raum 209 am Campus B (Geb. 09.21)</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Abgesagt

Erfolgskontrolle(n)

Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe von Lösungsversuchen zu 80% der gestellten Übungsaufgaben kann ein Notenbonus erworben werden.

Lieg die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Empfehlungen

Die Inhalte der Bachelor-Veranstaltung Investments werden als bekannt vorausgesetzt und sind notwendig, um dem Kurs folgen zu können. Zudem wird eine vorherige Teilnahme an der Master-Veranstaltung Asset Pricing dringend empfohlen.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Empirical Asset Pricing

2530569, WS 23/24, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Organisatorisches

Die Veranstaltung findet montags um 9:45-11:15 im Raum 209 am Campus B (Geb. 09.21) statt und endet nach ersten Semesterhälfte.

Literaturhinweise

Basisliteratur

zur Vertiefung/ Wiederholung

Übung zu Advanced Empirical Asset Pricing
2530570, WS 23/24, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches
Die Veranstaltung findet dienstags um 9:45-11:15 im Raum 209 am Campus B (Geb. 09.21) statt und endet nach ersten Semesterhälfte.

Literaturhinweise
5.2 Teilleistung: Advanced Game Theory [T-WIWI-102861]

Verantwortung: Prof. Dr. Karl-Martin Ehrhart
Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101453 - Angewandte strategische Entscheidungen
M-WIWI-101500 - Microeconomic Theory
M-WIWI-101502 - Ökonomische Theorie und ihre Anwendung in Finance

Teilleistungsart Prüfungsleistung schriftlich
Leistungspunkte 4,5
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Erfolgskontrolle

Voraussetzungen
Keine

Empfehlungen
Es werden Grundkenntnisse in Mathematik und Statistik vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Game Theory
2521533, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz
5.3 Teilleistung: Advanced Information Systems [T-WIWI-110373]

Verantwortung: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101443 - Informationswirtschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>5</th>
<th>Notenskala</th>
<th>Drittelnoten</th>
<th>Turnus</th>
<th>Jedes Wintersemester</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPO).

Empfehlungen

Keine

Anmerkungen

Zu Beginn der Vorlesung werden die Inhalte von Wirtschaftsinformatik I und II kurz zusammengefasst. Die Vorlesung wird auf Englisch gehalten.
5.4 Teilleistung: Advanced Machine Learning [T-WIWI-109921]

Verantwortung:
Prof. Dr. Andreas Geyer-Schulz
Dr. Abdolreza Nazemi

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-105661 - Data Science: Intelligente, adaptive und lernende Informationsdienste

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 | 2540535 | Advanced Machine Learning | 2 SWS | Vorlesung (V) | Nazemi
SS 2023 | 2540536 | Übung zu Advanced Machine Learning | 1 SWS | Übung (Ü) | Nazemi

Prüfungsveranstaltungen
SS 2023 | 7900227 | Advanced Machine Learning (SoSe 2023) | Geyer-Schulz
WS 23/24 | 7900253 | Advanced Machine Learning (Nachklausur SoSe 2023) | Geyer-Schulz

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben. Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)) und wird zur erreichten Punktzahl der bestandenen Klausur hinzugerechnet. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Machine Learning
2540535, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Literaturhinweise
5.5 Teilleistung: Advanced Machine Learning and Data Science [T-WIWI-111305]

Verantwortung: Prof. Dr. Maxim Ulrich
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-105659 - Advanced Machine Learning and Data Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>9</td>
<td>Drittenoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Prüfung erfolgt in Form einer Prüfungsleistung anderer Art (nach §4, 3 SPO). Es handelt sich hierbei um eine schriftliche Ausarbeitung, die sich an der Veranstaltung "Advanced Machine Learning and Data Science" orientiert.

Anmerkungen

Ein Online-Treffen wird am Dienstag der ersten Woche des Sommersemesters 2022 (d.h. am 19.04.2022) um 14:00 Uhr angeboten.
5.6 Teilleistung: Advanced Management Accounting [T-WIWI-102885]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nr.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung / Vorlesung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2579907</td>
<td>Advanced Management Accounting</td>
<td>4</td>
<td>Vorlesung (V) / ◆</td>
<td>Wouters, Dickemann, Letmathe</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nr.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung / Vorlesung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>79-2579907-M</td>
<td>Advanced Management Accounting</td>
<td></td>
<td></td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30min.) (nach §4(2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine.

Empfehlungen

Der Kurs erfordert umfangreiche Vorkenntnisse im Management Accounting, vergleichbar dem Inhalt der Kurse MA 1 und MA 2. Der Abschluss dieser Kurse ist aber keine formale Voraussetzung für eine Teilnahme.

Anmerkungen

Die Lehrveranstaltung wird in englischer Sprache gehalten. Vorlesung und Übung sind kombiniert.

Die Lehrveranstaltung ist Pflicht im Modul "Cross-functional Management Accounting".

Studierende, die Interesse haben, an dieser Lehrveranstaltung teilzunehmen, sollten bitte vorher eine E-Mail an Professor Wouters senden (marc.wouters@kit.edu).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Management Accounting
2579907, WS 23/24, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Legende: ◆ Online, ◼ Präsenz/Online gemischt, ◼ Präsenz, ◼ Abgesagt
Inhalt
Die LV wird in englischer Sprache gehalten. Studierende, die Interesse haben, an dieser Lehrveranstaltung teilzunehmen, sollten bitte vorher eine E-Mail an Professor Wouters senden (marc.wouters@kit.edu).

Inhalt:
- Die Lehrveranstaltung behandelt mehrere Themen, bei denen Management Accounting eng mit Marketing, Finanzen, Organisation und Strategie verbunden ist, wie beispielsweise customer value propositions (Kundenwertversprechen), finanzielle Performanz Kennzahlen, das Management der Entwicklung neuer Produkte, und technologiebezogene Investitionsentcheidungen.

Lernziele:
- Die Studierenden sind fähig, fortgeschrittene Management Accounting Methoden interdisziplinär zu betrachten und auf Entscheidungsprobleme aus einer Managementperspektive im operativen Geschäft und im Innovationbereich anzuwenden.
- Darüber hinaus lernen sie, auch relevante Forschungsergebnisse über solche Methoden zu identifizieren.

Nachweis:
- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung: mündliche Prüfung (30 min) in der vorlesungsfreien Zeit des Semesters (nach § 4 Abs. 2 Nr. 2 SPO).
- Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen:
- Die LV ist Pflicht im Modul "Cross-functional Management Accounting".

Empfehlungen:
- Der Kurs erfordert umfangreiche Vorkenntnisse im Management Accounting, vergleichbar dem Inhalt der Kurse MA 1 und MA 2. Der Abschluss dieser Kurse ist aber keine formale Voraussetzung für eine Teilnahme.

Arbeitsaufwand:
- Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
- Präsenzzeit: 56 Stunden [4 SWS]
- Vor – und Nachbereitung der LV: 64 Stunden
- Prüfung und Prüfungsvorbereitung: 15 Stunden

Literaturhinweise
Literature is mostly made available via ILIAS.
5.7 Teilleistung: Advanced Topics in Digital Management [T-WIWI-111912]

Verantwortung: Prof. Dr. Petra Nieken
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsaufgaben anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2573016</th>
<th>Advanced Topics in Digital Management</th>
<th>2 SWS</th>
<th>Kolloquium (KOL) / Präsenz</th>
<th>Nieken, Mitarbeiter</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsaufgaben anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige und aktive Teilnahme an den Kursterminen
- Präsentation eines vorgegebenen Forschungsthemas

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Empfehlungen

Der Besuch der Veranstaltung Incentives in Organizations wird empfohlen. Der Kurs wird besonders für Studierende empfohlen, die ihre Kenntnisse in empirischer Wirtschaftsforschung auf den Gebieten digital HRM, Personalökonomik und Leadership vertiefen möchten und Interesse an einer wissenschaftlichen Laufbahn haben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Advanced Topics in Digital Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>2573016, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Im Kurs werden ausgewählte Forschungspapiere aus den Bereichen digital Human Resource Management, Personalökonomik und Leadership diskutiert und analysiert. Die Studierenden stellen im Kurs Forschungspapiere vor und diskutieren sowohl die Forschungsmethode als auch die Forschungsinhalte. Sie entwerfen ein eigenes Forschungsdesign für eine vorgegebene Fragestellung.

Lernziele
Der / die Studierende

- Analysiert Forschungspapiere im Detail und beurteilt daraus gewonnene Erkenntnisse.
- Erlernt und vertieft den kritischen Umgang mit Forschungsmethoden und übt die fachliche Diskussion von Forschungspapieren ein.
- Trainiert seine / ihre Präsentations- und Diskussionsfähigkeiten
- Übt den wissenschaftlichen Diskurs.
- Besitzt tiefe Kenntnisse auf dem Fachgebiet Digital Management.
- Lernt Forschungsansätze kritisch zu hinterfragen und ethische Aspekte der Forschung zu berücksichtigen.
- Lernt ein eigenes Forschungsdesign zu entwerfen.

Anmerkungen
Aufgrund des interaktiven Charakters ist die Anzahl der Teilnehmenden begrenzt. Bitte kontaktieren Sie Prof. Nieken bei Interesse per Email.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
- Präsenzzeit: 30 Stunden
- Vor-/Nachbereitung: 45 Stunden
- Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Forschungspapiere

Organisatorisches
Geb. 05:20, Raum 2A-25, Termine werden bekannt gegeben
5.8 Teilleistung: Advanced Topics in Economic Theory [T-WIWI-102609]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101406 - Netzwerkökonomie
- M-WIWI-101500 - Microeconomic Theory
- M-WIWI-101502 - Ökonomische Theorie und ihre Anwendung in Finance

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Unregelmäßig
Version: 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Erfolgskontrolle erfolgt an zwei Terminen am Ende der Vorlesungszeit bzw. zu Beginn des Folgesemesters.

Voraussetzungen
Keine

Empfehlungen
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.
5.9 Teilleistung: Advanced Topics in Human Resource Management [T-WIWI-111913]

Verantwortung: Prof. Dr. Petra Nieken
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 2573014 Advanced Topics in Human Resource Management 2 SWS Kolloquium (KOL) / Präsenz Nieken, Mitarbeiter

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige und aktive Teilnahme an den Kursterminen
- Präsentation eines vorgegebenen Forschungsthemas

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Empfehlungen
Der Besuch der Veranstaltung Incentives in Organizations wird empfohlen. Der Kurs wird besonders für Studierende empfohlen, die ihre Kenntnisse in empirischer Wirtschaftsforschung auf den Gebieten HRM, Personalökonomik und Leadership vertiefen möchten und Interesse an einer wissenschaftlichen Laufbahn haben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Topics in Human Resource Management
2573014, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Kolloquium (KOL) Präsenz
Inhalt
Im Kurs werden ausgewählte Forschungspapiere aus den Bereichen Human Resource Management, Personalökonomik und Leadership diskutiert und analysiert. Die Studierenden stellen im Kurs Forschungspapiere vor und diskutieren sowohl die Forschungsmethode als auch die Forschungsinhalte. Sie entwerfen ein eigenes Forschungsdesign für eine vorgegebene Fragestellung.

Lernziele
Der / die Studierende

- Setzt sich mit aktueller Forschung aus dem Bereich Human Resource Management, Personalökonomie und Leadership auseinander.
- Analysiert Forschungspapiere im Detail und beurteilt daraus gewonnene Erkenntnisse.
- Erlernt und vertieft den kritischen Umgang mit Forschungsmethoden und übt die fachliche Diskussion von Forschungspapieren ein.
- Trainiert seine / ihre Präsentations- und Diskussionsfähigkeiten.
- Übt den wissenschaftlichen Diskurs.
- Lernt Forschungsansätze kritisch zu hinterfragen und ethische Aspekte der Forschung zu berücksichtigen.
- Lernt ein eigenes Forschungsdesign zu entwerfen.

Anmerkungen
Aufgrund des interaktiven Charakters ist die Anzahl der Teilnehmenden begrenzt. Bitte kontaktieren Sie Prof. Nieken bei Interesse per Email.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Forschungspapiere

Organisatorisches
Geb. 05:20, Raum 2A-25, Termine werden bekannt gegeben
5.10 Teilleistung: Algorithm Engineering [T-INFO-101332]

Verantwortung: Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von:
M-INFO-100795 - Algorithm Engineering
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2400021 | Algorithm Engineering | 2/1 SWS | Vorlesung (V) / 🗣 | Sanders, Seemaier |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO.

Gewichtung: 80 % mündliche Prüfung, 20 % Übung.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Algorithm Engineering
2400021, WS 23/24, 2/1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
5.11 Teilleistung: Algorithm Engineering Übung [T-INFO-111856]

Verantwortung: Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von:
M-INFO-100795 - Algorithm Engineering
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 2 Abs. 2 Nr. 3.

Gewichtung: 80 % mündliche Prüfung, 20 % Übung.

Voraussetzungen
Keine
5.12 Teilleistung: Algorithmen für Routenplanung [T-INFO-100002]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100031 - Algorithmen für Routenplanung
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2023 2424638 Algorithmen für Routenplanung (mit Übungen) 3 SWS Vorlesung / Übung (VÜ) / Sprache: Deutsch, Sauer, Feilhauer, Wagner, Zündorf

Prüfungsveranstaltungen
SS 2023 7500019 Algorithmen für Routenplanung Ueckerdt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Empfehlungen
Kenntnisse zu Grundlagen der Graphentheorie und Algorithmentechnik sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Algorithmen für Routenplanung (mit Übungen)
2424638, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz
Inhalt
Dieses Modul gibt einen Überblick über aktuelle Algorithmen zur effizienten Routenplanung und vertieft einige von den Algorithmen.

Lernziele:

Empfehlungen:
Kenntnisse zu Grundlagen der Graphentheorie und Algorithmentechnik sind hilfreich.

Arbeitsaufwand: Vorlesung mit 3 SWS, 5 LP
5 LP entspricht ca. 150 Arbeitsstunden, davon ca. 45 Std. Vorlesungsbesuch,
ca. 60 Std. Nachbereitung und Bearbeitung der Übungsaufgaben,
ca. 45 Std. Prüfungsvorbereitung.

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Literaturhinweise
Weiterführende Literatur
5.13 Teilleistung: Algorithmen II [T-INFO-102020]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101173 - Algorithmen II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Prüfungsblock</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24079</td>
<td>Algorithmen II</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Sanders, Laupichler, Maas</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Prüfungsblock</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500464</td>
<td>Algorithmen II</td>
<td></td>
<td></td>
<td>Sanders</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Algorithmen II
24079, WS 23/24, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V) Präsenz

Inhalt
Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.
Arbeitsaufwand
Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
c.a. 45 Std. Vorlesungsbesuch,
c.a. 15 Std. Übungsbesuch,
c.a. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
c.a. 30 Std. Prüfungsvorbereitung
Voraussetzungen
Siehe Modubeschreibung.

Literaturhinweise
K. Mehlhorn, P. Sanders: Algorithms and Data Structures - The Basic Toolbox
Ahuja, Magnanti, Orlin: Network Flows
de Berg, Cheong, van Kreveld, Overmars: Computational Geometry: Algorithms and Applications
5.14 Teilleistung: Algorithmen in Zellularautomaten [T-INFO-101334]

Verantwortung: Thomas Worsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101199 - Advanced Algorithms: Design and Analysis

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 5
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2023 24622 Algorithmen in Zellularautomaten 3 SWS Vorlesung (V) / 🗣️ Worsch, Vollmar

Prüfungsveranstaltungen
SS 2023 75400001 Algorithmen in Zellularautomaten Worsch

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse über Turingmaschinen und Komplexitätstheorie sind hilfreich.

Anmerkungen
LV findet letztmalig im SS23 statt - Prüfbar bis Ende SS23.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Algorithmen in Zellularautomaten
24622, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Themen:
- Berechnungsmächtigkeit
- Mustererkennung
- Selbstreproduktion
- Sortieren
- Synchronisation
- Anführerauswahl
- Diskretisierung kontinuierlicher Systeme
- Sandhaufenmodell

Organisatorisches
Iliauskurs

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023 211
Literaturhinweise
Weiterführende Literatur

5.15 Teilleistung: Algorithmen zur Visualisierung von Graphen [T-INFO-104390]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von:
- M-INFO-101199 - Advanced Algorithms: Design and Analysis
- M-INFO-101200 - Advanced Algorithms: Engineering and Applications
- M-INFO-102094 - Algorithmen zur Visualisierung von Graphen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Übungsgruppe</th>
<th>Veranstaltung</th>
<th>Vorlesung / Übung (VÜ) / 👤</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2424118</td>
<td></td>
<td>Algorithmen zur Visualisierung von Graphen</td>
<td>Vorlesung / Übung (VÜ) / 👤</td>
<td>Wagner, Ueckerdt, Merker</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500222</td>
<td></td>
<td>Algorithmen zur Visualisierung von Graphen</td>
<td></td>
<td>Ueckerdt</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 👤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Empfehlungen
Kenntnisse zu Grundlagen der Graphentheorie und Algorithmentechnik sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Algorithmen zur Visualisierung von Graphen

<table>
<thead>
<tr>
<th>Code</th>
<th>Semester</th>
<th>SWS</th>
<th>Sprache</th>
<th>Vorlesung / Übung (VÜ) / Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2424118</td>
<td>WS 23/24</td>
<td>2+1</td>
<td>Deutsch</td>
<td></td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen
Inhalt

Mathematisch lassen sich Netzwerke als Graphen modellieren und das Visualisierungsproblem lässt sich auf das algorithmische Kernproblem reduzieren, ein Layout des Graphen, d.h. geeignete Knoten- und Kantenpositionen in der Ebene, zu bestimmen. Dabei werden je nach Anwendung und Graphenklasse unterschiedliche Anforderungen an die Art der Zeichnung und die zu optimierenden Gütekriterien gestellt. Das Forschungsgebiet des Graphenzeichnens greift dabei auf Ansätze aus der klassischen Algorithmik, der Graphentheorie und der algorithmischen Geometrie zurück.

Im Laufe der Veranstaltung wird eine repräsentative Auswahl an Visualisierungsalgorithmen vorgestellt und vertieft.

Lernziele:
Die Studierenden erwerben ein systematisches Verständnis algorithmischer Fragestellungen und Lösungsansätze im Bereich der Visualisierung von Graphen, das auf dem bestehenden Wissen in den Themenbereichen Graphentheorie und Algorithmik aufbaut. Nach erfolgreicher Teilnahme an der Lehrveranstaltung können die Studierenden
• Begriffe, Strukturen und grundlegende Problemdefinitionen aus der Vorlesung erklären;
• Layoutalgorithmen für verschiedene Graphklassen exemplarisch ausführen, mathematisch präzise analysieren und die algorithmischen Eigenschaften beweisen;
• Komplexitätsresultate aus der Vorlesung erklären und eigenständig ähnliche Reduktionsbeweise für neue Layoutprobleme führen;
• auswählen, welche Algorithmen zur Lösung eines gegebenen Layoutproblems geeignet sind und diese ggf. den Anforderungen einer konkreten Problemstellung anpassen;
• unbekannte Visualisierungsprobleme aus Anwendungen des Graphenzeichnens analysieren, auf den algorithmischen Kern reduzieren und daraus ein abstraktes Modell erstellen; auf Basis der in der Vorlesung erlernten Konzepte und Techniken eigene Lösungen in diesem Modell entwerfen, analysieren und die algorithmischen Eigenschaften beweisen.

Empfehlungen:
Kenntnisse zu Grundlagen aus der Graphentheorie und Algorithmenteknik sind hilfreich.

Arbeitsaufwand: Vorlesung und Übung mit 3 SWS, 5 LP
5 LP entspricht ca. 150 Arbeitsstunden, davon ca. 45 Std. Besuch der Vorlesung und Übung, ca. 25 Std. Vor- und Nachbereitung, ca. 40 Std. Bearbeitung der Übungsblätter, ca. 40 Std. Prüfungsvorbereitung

Organisatorisches
Die Lehrveranstaltung wird unregelmäßig angeboten, Auskünfte erteilt das Institut für Theoretische Informatik, Algorithmik I, Prof. Wagner.
5.16 Teilleistung: Algorithmische Geometrie [T-INFO-104429]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-102110 - Algorithmische Geometrie

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Bläsius, Yi</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2400083</td>
<td></td>
<td>Algorithmische Geometrie (mit Übungen)</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 📘 Online, 🗓 Präsenz/Online gemischt, ☑ Präsenz, ⌚ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Empfehlungen
Grundkenntnisse über Algorithmen und Datenstrukturen (z.B. aus den Vorlesungen Algorithmen 1 + 2) werden erwartet.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Algorithmische Geometrie (mit Übungen)
2400083, WS 23/24, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lernziele:
Die Studierenden erwerben ein systematisches Verständnis von Fragestellungen und Lösungsansätzen im Bereich der algorithmischen Geometrie, das auf dem bestehenden Wissen in der Theoretischen Informatik und Algorithmik aufbaut. Nach erfolgreicher Teilnahme an der Lehrveranstaltung können die Studierenden

- Begriffe, Strukturen und grundlegende Problemdefinitionen aus der Vorlesung erklären
- geometrische Algorithmen exemplarisch ausführen, mathematisch präzise analysieren und ihre Eigenschaften beweisen
- auswählen, welche Algorithmen und Datenstrukturen zur Lösung eines gegebenen geometrischen Problems geeignet sind und diese ggf. einer konkreten Problemstellung anpassen
- unbekannte geometrische Probleme analysieren, auf den algorithmischen Kern reduzieren und daraus ein abstraktes Modell erstellen; auf Basis der in der Vorlesung erlernten Konzepte und Techniken eigene Lösungen in diesem Modell entwerfen, analysieren und die Eigenschaften beweisen.

Erfolgskontrolle: Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Empfehlungen: Grundkenntnisse über Algorithmen und Datenstrukturen (z.B. aus den Vorlesungen Algorithmen 1 + 2) werden erwartet.

Arbeitsaufwand: Vorlesung mit Übung mit 4 SWS, 6 LP
6 LP entspricht ca. 180 Arbeitsstunden, davon ca. 60 Std. Besuch der Vorlesung und Übung, ca. 30 Std. Vor- und Nachbereitung, ca. 60 Std. Bearbeitung der Übungslösungen, ca. 30 Std. Prüfungsvorbereitung.
5 TEILLEISTUNGEN

Organisatorisches
nur Masterstudiengang Informatik
5.17 Teilleistung: Algorithmische Methoden für schwere Optimierungsprobleme [T-INFO-103334]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications
M-INFO-101237 - Algorithmische Methoden für schwere Optimierungsprobleme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse aus der Vorlesung Algorithmen II werden empfohlen.
5.18 Teilleistung: Algorithmische Methoden zur Netzwerkanalyse [T-INFO-104759]

Verantwortung: Dr. rer. nat. Torsten Ueckerdt
 Prof. Dr. Dorothea Wagner
 Einrichtung: KIT-Fakultät für Informatik
 Bestandteil von: M-INFO-102400 - Algorithmische Methoden zur Netzwerkanalyse

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung / Übung (VÜ)</th>
<th>Instructeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2400007</td>
<td>Algorithmische Methoden zur Netzwerkanalyse</td>
<td>2+1 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO und einer Übung als Prüfungsleistung anderer Art nach § 2 Abs. 2 Nr. 3 SPO.

Gewichtung: 80 % mündliche Prüfung, 20 % Übung.

Voraussetzungen

Keine.

Empfehlungen

Grundlegende Kenntnisse zur algorithmischen Graphentheorie sind hilfreich

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Algorithmische Methoden zur Netzwerkanalyse
2400007, WS 23/24, 2+1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz
Inhalt

Lernziele:

Voraussetzungen:
Kenntnisse zur Grundlage der Graphentheorie sind hilfreich.

Arbeitsaufwand: 150 h

Die Lehrveranstaltung wird unregelmäßig angeboten.

Literaturhinweise
5.19 Teilleistung: Angewandte Materialflusssimulation [T-MACH-112213]

Verantwortung:
Dr.-Ing. Marion Baumann

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
- M-WIWI-102805 - Service Operations
- M-WIWI-102832 - Operations Research im Supply Chain Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Notendauer</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2117054</td>
<td>Angewandte Materialflusssimulation</td>
<td>3 SWS</td>
<td>Deutsch</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Baumann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>Notendauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>76-T-MACH-112213</td>
<td>Angewandte Materialflusssimulation</td>
<td>Baumann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Empfehlungen
- Statistische Grundkenntnisse und –verständnisse
- Kenntnisse in einer gängigen Programmiersprache (Java, Python, …)
- Empfohlene Veranstaltung: T-WIWI-102718 – Ereignisdiskrete Simulation in Produktion und Logistik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Angewandte Materialflusssimulation

2117054, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz
Inhalt
Lehrinhalte:

- Methoden der Simulationsmodellierung wie z.B.:
 - Ereignisdiskrete Simulation
 - Agentenbasierte Simulation
- Aufbau eines Simulationsmodells eines Materialflusssystems
- Datenaustausch in Simulationsmodellen
- Verifikation und Validierung von Simulationsmodellen
- Durchführung von Simulationsstudien
- Statistische Auswertung und Parameterstudie

Es handelt sich um eine anwendungsnahe Lehrveranstaltung, in der die Lehrinhalte anhand der Software Anylogic angewendet und vertieft werden.

Lernziele:
Die Studierenden können:

- abhängig von einem Modellierungsziel die passende Methode der Simulationsmodellierung auswählen und ein passendes Simulationsmodell für Materialflusssysteme aufbauen,
- ein Simulationsmodell sinnvoll mit Datenimport und -export erweitern,
- ein Simulationsmodell verifizieren und validieren,
- eine Simulationsstudie effizient und mit aussagekräftigen Ergebnissen durchführen und
- eine Parameterstudie konzipieren, durchführen und die Ergebnisse statistisch analysieren und bewerten.

Empfehlungen:

- Statistische Grundkenntnisse
- Vorkenntnisse in einer gängigen Programmiersprache (Java, Python, ...)
- Empfohlene Veranstaltung: T-WIWI-102718 – Ereignisdiskrete Simulation in Produktion und Logistik

Arbeitsaufwand für 4,5 ECTS (135 h):

- Präsenzzeit: 21 Stunden
- Selbststudium: 114 Stunden

Organisatorisches

- Im Wintersemester 2023/2024 ist die Veranstaltung auf maximal 30 Teilnehmer beschränkt.
- Die Anmeldung ist durch Beitritt zum ILIAS-Kurs und Ausfüllen des Anmeldungsformulars (erforderliche Felder beim Beitritt zum ILIAS-Kurs) möglich.
- Die Anmeldung ist vom 01.09.2023 bis zum 30.09.2023 möglich.

Literaturhinweise
5.20 Teilleistung: Anlagenwirtschaft [T-WIWI-102631]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101471 - Industrielle Produktion II

Teilleistungsart Prüfungsleistung schriftlich
Leistungspunkte 5,5
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2581952</td>
<td>Anlagenwirtschaft</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581953</td>
<td>Übungen Anlagenwirtschaft</td>
<td>2 SWS</td>
<td>Übung (Ü) / Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981952</td>
<td>Anlagenwirtschaft</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Anlagenwirtschaft
2581952, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)
Präsenz

Inhalt
Die Anlagenwirtschaft umfasst ein komplexes Aufgabenspektrum über alle Phasen des Anlagenlebenszyklus, von der Projektinitierung, über die Erstellung, den Betrieb bis zur Außerbetriebnahme.

Literaturhinweise
Wird in der Veranstaltung bekannt gegeben.

Übungen Anlagenwirtschaft
2581953, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Übung (Ü)
Präsenz

Organisatorisches
Siehe Termine der Vorlesung Anlagenwirtschaft
5.21 Teilleistung: Anziehbare Robotertechnologien [T-INFO-106557]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-103294 - Anziehbare Robotertechnologien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V)</td>
<td></td>
<td></td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2400062</th>
<th>Anziehbare Robotertechnologien</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Asfour, Beigl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500219</td>
<td>Anziehbare Robotertechnologien</td>
<td></td>
<td></td>
<td>Asfour</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500073</td>
<td>Anziehbare Robotertechnologien</td>
<td></td>
<td></td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legende: 🤖 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Der Besuch der Vorlesung *Mechano-Informatik in der Robotik* wird vorausgesetzt.

Empfehlungen

Der Besuch der Vorlesung *Mechano-Informatik in der Robotik* wird vorausgesetzt.

Inhalt

Qualifikations-/Lernziele:

Organisatorisches

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Literaturhinweise

5.22 Teilleistung: Applied Econometrics [T-WIWI-111388]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101638 - Ökonometrie und Statistik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulsemester</th>
<th>Modulcode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2520020</td>
<td>Applied Econometrics</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Krüger, Eberl</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2520021</td>
<td>Tutorial in Applied Econometrics</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Eberl, Koster</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 90 Minuten nach § 4, Abs. 2, 1 SPO. Durch erfolgreiche Bearbeitung einer Zusatzaufgabe (schriftliche Ausarbeitung + Kurzvortrag) während des Semesters kann ein Notenbonus erreicht werden. Liegt die Klausurnote zwischen 4,0 und 1,3, so verbessert der Bonus diese um eine Notenstufe (0,3 oder 0,4).

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| V | Applied Econometrics | 2520020, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen |

Inhalt

Inhalt:
Der Kurs behandelt zwei ökonometrische Themengebiete: (1) Konditionaler Erwartungswert und Regression, und (2) Kausale Inferenz. Teil (1) beinhaltet Grundlagen wie die besten lineare Vorhersage, kleinste Quadrate-Schätzung und robuste Kovarianzschätzung. Teil (2) stellt den “potential outcomes”-Ansatz sowie Forschungsansätze wie randomisierte Versuche, Instrumentvariablen und Regression Discontinuity vor.

Für beide Themengebiete werden ökonometrische Methoden, empirische Beispiele (inklusive aktueller Forschungspapiere) sowie die Implementierung in R besprochen.

Lernziel:
Studierende sind in der Lage, die Eigenschaften verschiedener ökonometrischer Schätzer und Forschungsdesigns einzuschätzen, und die Schätzer in R zu implementieren.

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literaturhinweise
5.23 Teilleistung: Arbeitsrecht [T-INFO-111436]

Verantwortung: Dr. Alexander Hoff
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101216 - Recht der Wirtschaftsunternehmen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsart</th>
<th>ECTS</th>
<th>Lehrveranstaltungsposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24668</td>
<td>Vorlesung (V)</td>
<td>2 SWS</td>
<td>Hoff</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsart</th>
<th>ECTS</th>
<th>Prüfungsveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500082</td>
<td>Arbeitsrecht</td>
<td></td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500001</td>
<td>Arbeitsrecht</td>
<td></td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legende: 🌐 Online, 🕰 Präsenz/Online gemischt, 🎤 Präsenz; ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (i.d.R. 60min Klausur) nach §4, Abs. 2, 1 SPO.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>V Arbeitsrecht</th>
<th>Vorlesung (V) Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>24668, SS 2023</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Inhalt

Lernziele: Aufbauend auf den in Arbeitsrecht I erworbenen Kenntnissen sollen die Studenten einen vertiefen Einblick in das Arbeitsrecht erhalten.

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt bei 3 Leistungspunkten 90 h, davon 22,5 Präsenz.

Literaturhinweise

Literaturempfehlung wird in der Vorlesung bekanntgegeben.
5.24 Teilleistung: Artificial Intelligence in Service Systems [T-WIWI-108715]

Verantwortung: Prof. Dr. Gerhard Satzger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101448 - Service Management
- M-WIWI-101506 - Service Analytics
- M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kw.</th>
<th>Leistungspunkt</th>
<th>Leistung</th>
<th>SWS</th>
<th>Format</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2595650</td>
<td>Artificial Intelligence in Service Systems</td>
<td>1,5 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Kühl, Spitzer, Vössing</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2595651</td>
<td>Übung zu Artificial Intelligence in Service Systems</td>
<td>1,5 SWS</td>
<td>Übung (Ü) / ⚫</td>
<td>Kühl, Spitzer, Schemmer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kw.</th>
<th>Leistungspunkt</th>
<th>Leistung</th>
<th>Format</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900104</td>
<td>Artificial Intelligence in Service Systems (NK - 14.06.2023)</td>
<td></td>
<td></td>
<td>Satzger</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900118</td>
<td>Artificial Intelligence in Service Systems - Hauptklausur</td>
<td></td>
<td></td>
<td>Satzger</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, ⚫ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min). Die erfolgreiche Teilnahme am Übungsbetrieb ist Voraussetzung für die Zulassung zur schriftlichen Prüfung.

Voraussetzungen

Keine

Anmerkungen

Die Veranstaltung wird ab dem Wintersemester 2022/2023 in Form eines Flipped Classroom Konzeptes angeboten. Die Vorlesung wird im Voraus aufgezeichnet und zur Verfügung gestellt. Im Rahmen der Übungen werden die Inhalte der Vorlesung diskutiert und in Programmierübungen angewendet.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Artificial Intelligence in Service Systems

2595650, WS 23/24, 1,5 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Artificial Intelligence (AI) and the application of machine learning is becoming more and more popular to solve relevant business challenges — both within isolated entities but also within co-creating systems (like value chains). However, it is not only essential to be familiar with precise algorithms but rather a general understanding of the necessary steps with a holistic view—from real-world challenges to the successful deployment of an AI-based solution. As part of this course, we teach the complete lifecycle of an AI project focusing on supervised machine learning challenges. We do so by also introducing the use of Python and the required packages like scikit-learn with exemplary data and use cases. We then take this knowledge to the more complex case of service systems with different entities (e.g., companies) who interact with each other and show possibilities on how to derive holistic insights. Apart from the technical aspects necessary when developing AI within service systems, we also shed light on the collaboration of humans and AI in such systems (e.g., with the support of XAI), topics of ethics and bias in AI, as well as AI’s capabilities on being creative.

Students of this course will be able to understand and implement the complete lifecycle of a typical Artificial Intelligence use case with supervised machine learning. Furthermore, they understand the importance and the means of applying AI and Machine Learning within service systems, which allows multiple, independent entities to collaborate and derive insights. Besides technical aspects, they will gain an understanding of the broader challenges and aspects when dealing with AI. Students will be proficient with typical Python code for AI challenges.
Organisatorisches
The course will be offered in the form of a flipped classroom concept starting in winter semester 2022/2023. The lecture will be recorded in advance and made available online. During the exercise classes, the contents of the lecture will be discussed and applied as part of programming exercises.

Literaturhinweise

5.25 Teilleistung: Artificial Intelligence in Service Systems - Applications in Computer Vision [T-WIWI-111219]

Verantwortung: Prof. Dr. Gerhard Satzger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101448 - Service Management
- M-WIWI-101506 - Service Analytics
- M-WIWI-103117 - Data Science: Data-Driven Information Systems
- M-WIWI-105661 - Data Science: Intelligente, adaptive und lernende Informationsdienste

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2595501 | Artificial Intelligence in Service Systems - Applications in Computer Vision | 3 SWS | Vorlesung (V) / 🗣 | Satzger, Schmitz |

Prüfungsveranstaltungen

| SS 2023 | 7900271 | Artificial Intelligence in Service Systems - Applications in Computer Vision | Satzger |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Form).

Anmerkungen

Die Teilleistung ersetzt zum Sommersemester 2021 T-WIWI-105778 "Service Analytics A".

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Artificial Intelligence in Service Systems - Applications in Computer Vision</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2595501, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt
--- We renamed this course from "Service Analytics A" to "Artificial Intelligence in Service Systems - Applications in Computer Vision" ---

Learning objectives
This course teaches students how to apply machine learning concepts to develop predictive models that form the basis of many innovative service offerings and business models today. Using a selected use case each term, students learn the foundations of selected algorithms and development frameworks and apply them to build a functioning prototype of an analytics-based service. Students will become proficient in writing code in Python to implement a data science use case over the course period.

Description
Data-driven services have become a key differentiator for many companies. Their development is based on the increasing availability of structured and unstructured data and their analysis through methods from data science and machine learning. Examples comprise highly innovative service offerings based on technologies such as natural language processing, computer vision or reinforcement learning.

Using a selected use case, this lecture will teach students how to develop analytics-based services in an applied setting. We teach the theoretical foundations of selected machine learning algorithms (e.g., convolutional neural networks) and development concepts (e.g., developing and training, inference pipelines) and teach how to apply these concepts to build a functioning prototype of an analytics-based service (e.g., inference running on a device). During the course, students will work in small groups to apply the learned concepts in the programming language Python using packages such as Keras, Tensorflow or Scikit-Learn. For more information on recent projects as part of the course, please visit the website of our lecture: https://www.aiss-cv.com.

Recommendations
The course is aimed at students in the Master's program with basic knowledge in statistics and applied programming in Python. Knowledge from the lecture Artificial Intelligence in Service Systems may be beneficial.

Additional information
The lecture will be held as part of 7 blocks within the summer semester. Due to the practical group sessions in the course, the number of participants is limited. The official application period in the WiWi portal will open mid of February. Please apply here until April, 3rd: https://go.wiwi.kit.edu/aiss-cv. The course will be held mainly online via Zoom. For interim and final presentation, we will meet in person in building 05.20, room 1C-03. Further information on the dates of interim and final presentation will be announced via Ilias and mail.

Literaturhinweise
5.26 Teilleistung: Asset Pricing [T-WIWI-102647]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101480 - Finance 3
- M-WIWI-101482 - Finance 1
- M-WIWI-101483 - Finance 2
- M-WIWI-101502 - Ökonomische Theorie und ihre Anwendung in Finance

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 4,5

Notenskala
- Drittelnoten

Turnus
- Jedes Sommersemester

Version
- 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2530555</th>
<th>Asset Pricing</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Uhrig-Homburg, Böll, Müller</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2530556</td>
<td>Übung zu Asset Pricing</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Uhrig-Homburg, Müller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7900110 | Asset Pricing | Uhrig-Homburg, Thimme |
| WS 23/24 | 7900056 | Asset Pricing | Uhrig-Homburg |

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,🗙 Abgesagt

Erfolgskontrolle(n)
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art), oder als 60-minütige Klausur (schriftliche Prüfung) angeboten.

Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe korrekter Lösungen zu mindestens 50% der gestellten Bonusübungsaufgaben kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Die Inhalte der Bachelor-Veranstaltung Investments werden als bekannt vorausgesetzt und sind notwendig, um dem Kurs folgen zu können.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Asset Pricing</th>
<th>2530555, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
</table>
| | 🗣 Präsenz |}

Inhalt

Die Studierenden besitzen weiterführende Kenntnisse über Konzepte im Asset Pricing (insbesondere der stochastische Diskontfaktoransatz).
Sie sind in der Lage diese neu gewonnenen Kenntnisse zum Lösen empirischer Fragestellungen im Zusammenhang mit Wertpapieren anzuwenden.

Die Inhalte der Bachelor-Veranstaltung Investments werden als bekannt vorausgesetzt und sind notwendig, um dem Kurs folgen zu können.
Literaturhinweise

Basisliteratur

Zur Wiederholung/Vertiefung

Übung zu Asset Pricing

2530556, SS 2023, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise

5.27 Teilleistung: Asymmetrische Verschlüsselungsverfahren [T-INFO-101260]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Jörn Müller-Quade
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101198 - Fortgeschrittene Themen der Kryptographie

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 30min nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Empfehlungen
Kenntnisse zu Grundlagen aus der Algebra sind hilfreich. Es wird empfohlen, das Stammodull Sicherheit zu belegen.

Anmerkungen
Diese Lehrveranstaltung wird letztmalig im WS19/20 angeboten.
Teilleistung: Auktionstheorie [T-WIWI-102613]

Verantwortung: Prof. Dr. Karl-Martin Ehrhart
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101446 - Market Engineering
M-WIWI-101453 - Angewandte strategische Entscheidungen
M-WIWI-101500 - Microeconomic Theory

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modul</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2520408</td>
<td>Auktionstheorie</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2520409</td>
<td>Übungen zu Auktionstheorie</td>
<td>1 SWS</td>
<td>Übung (U)</td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900255</td>
<td>Auktionstheorie</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900039</td>
<td>Auktionstheorie</td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60 min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).

Bei geringer Teilnehmerzahl kann auch eine mündliche Prüfung (nach §4 (2), 2 SPO) angeboten werden.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auktionstheorie

<table>
<thead>
<tr>
<th>Veranstaltungsnummer</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520408, WS 23/24</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Literaturhinweise

- Ehrhart, K.-M. und S. Seifert: Auktionstheorie, Skript zur Vorlesung, KIT, 2011
- Ausubel, L.M. und P. Cramton: Demand Reduction and Inefficiency in Multi-Unit Auctions, University of Maryland, 1999
5.29 Teilleistung: Ausgewählte Kapitel der Kryptographie [T-INFO-101373]

Verantwortung: Prof. Dr. Jörn Müller-Quade
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101198 - Fortgeschrittene Themen der Kryptographie

Teilleistungsart Prüfungsleistung mündlich
Leistungspunkte 3
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Empfehlungen
Das Stammmodul Sicherheit sollte als Grundlage geprüft worden sein.

Anmerkungen
Diese Lehrveranstaltung wird nicht mehr angeboten. Stand WS19/20
5.30 Teilleistung: Ausgewählte Rechtsfragen des Internetrechts [T-INFO-108462]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>24821</th>
<th>Ausgewählte Rechtsfragen des Internetrechts</th>
<th>2 SWS</th>
<th>Kolloquium (KOL) / Dreier</th>
</tr>
</thead>
</table>

| Prüfungsveranstaltungen | SS 2023 | 7500099 | Ausgewählte Rechtsfragen des Internetrechts | Dreier, Matz |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Referat) nach § 4 Abs. 2 Nr. 3 SPO. (mündliche Präsentation und Diskussion)

Voraussetzungen

die Veranstaltung Internetrecht T-INFO-101307 darf nicht begonnen sein.

Empfehlungen

Keine

Anmerkungen

Vorlesung (mit Klausur) Internetrecht T-INFO-101307 wird im WS angeboten.
Kolloquium (Prüfung sonstiger Art) Ausgewählte Rechtsfragen des Internetrechts T-INFO-108462 wird im SS angeboten

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Ausgewählte Rechtsfragen des Internetrechts</th>
<th>Kolloquium (KOL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24821, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Inhalt

Die Erfolgskontrolle umfasst einen Vortrag mit Power-Point-Präsentation (Dauer: 20 Minuten) und anschliessende Diskussion (Dauer: 20 Minuten).
5.31 Teilleistung: Außerplanmäßige Ergänzungsveranstaltung im Modul Cross-Functional Management Accounting [T-WIWI-108651]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Marcus Wouters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101510 - Cross-Functional Management Accounting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4,5</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt abhängig von der Lehrveranstaltung, die über diese Teilleistung in das Modul "Cross-Functional Management Accounting" aufgenommen wird.

Voraussetzungen
Keine

Anmerkungen
Diese Teilleistung dient der Anrechnung einer außerplanmäßigen Lehrveranstaltung im Modul "Cross-Functional Management Accounting". Vorschläge für eine bestimmte Lehrveranstaltung müssen vorher durch den Modulkordinator genehmigt werden.
5.32 Teilleistung: Automated Planning and Scheduling [T-INFO-109085]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-104447 - Automated Planning and Scheduling

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.
5.33 Teilleistung: Automatische Sichtprüfung und Bildverarbeitung [T-INFO-101363]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von:
- M-INFO-100826 - Automatische Sichtprüfung und Bildverarbeitung
- M-INFO-101239 - Maschinelle Visuelle Wahrnehmung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Leistungspunkte</th>
<th>Uhrzeitform</th>
<th>Kursleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24169</td>
<td>Automatische Sichtprüfung und Bildverarbeitung</td>
<td>6</td>
<td>4 SWS</td>
<td>Beyerer, Zander</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Kursleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500003</td>
<td>Automatische Sichtprüfung und Bildverarbeitung</td>
<td>Beyerer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500008</td>
<td>Automatische Sichtprüfung und Bildverarbeitung</td>
<td>Beyerer</td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- ☑️ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Empfehlungen

Grundkenntnisse der Optik und der Signalverarbeitung sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Behandelte Themen:

- Sensoren und Verfahren zur Bildgewinnung
- Licht und Farbe
- Bildsignale
- Wellenoptik
- Vorverarbeitung und Bildverbesserung
- Bildrestauration
- Segmentierung
- Morphologische Bildverarbeitung
- Texturanalyse
- Detektion
- Bildpyramiden, Multiskalenanalyse und Wavelet-Transformation

Arbeitsaufwand: Gesamt: ca. 180h, davon
1. Präsenzzeit in Vorlesungen: 46h
2. Vor-/Nachbereitung derselben: 44h
3. Klausurvorbereitung und Präsenz in selbiger: 90h

Lernziele:

- Studierende haben fundierte Kenntnisse in den grundlegenden Methoden der Bildverarbeitung (Vorverarbeitung und Bildverbesserung, Bildrestauration, Segmentierung, Morphologische Bildverarbeitung, Texturanalyse, Detektion, Bildpyramiden, Multiskalenanalyse und Wavelet-Transformation).
- Studierende sind in der Lage, Lösungskonzepte für Aufgaben der automatischen Sichtprüfung zu erarbeiten und zu bewerten.
- Studierende haben fundiertes Wissen über verschiedene Sensoren und Verfahren zur Aufnahme bildhafter Daten sowie über die hierfür relevanten optischen Gesetzmäßigkeiten
- Studierende kennen unterschiedliche Konzepte, um bildhafte Daten zu beschreiben und kennen die hierzu notwendigen systemtheoretischen Methoden und Zusammenhänge.

Organisatorisches
Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Empfehlungen:
Grundkenntnisse der Optik und der Signalverarbeitung sind hilfreich.

Literaturhinweise
Weiterführende Literatur
5.34 Teilleistung: Behavioral Lab Exercise [T-WIWI-111806]

Verantwortung: Prof. Dr. Petra Nieken
Prof. Dr. Benjamin Scheibehenne

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2500040 | Behavioral Lab Exercise | 4.5 SWS | Seminar (S) / 🗣 | Scheibehenne, Nieken |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Form).

Empfehlungen

This class caters towards Master students who are interested in empirical research and in running lab experiments.

Anmerkungen

The course will be offered for the first time in the winter semester 21/22.
Due to the interactive nature of the class, the number of participants is limited. If you are interested, please contact the teachers directly via email.
5.35 Teilleistung: Beweisbare Sicherheit in der Kryptographie [T-INFO-101259]

Verantwortung: Prof. Dr. Dennis Hofheinz
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101198 - Fortgeschrittene Themen der Kryptographie

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Empfehlungen
Es wird empfohlen, das Stammmodul Sicherheit zu belegen.

Anmerkungen
Diese Lehrveranstaltung wird nicht mehr angeboten. Stand WS19/20.
5.36 Teilleistung: Biologisch Motivierte Robotersysteme [T-INFO-101351]

Verantwortung: Dr.-Ing. Arne Rönnau
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101251 - Autonome Robotik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittenoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 24619 | Biologisch Motivierte Roboter | 2 SWS | Vorlesung (V) / 🕵️ | Rönnau |

Prüfungsveranstaltungen

| SS 2023 | 7500237 | Biologisch Motivierte Robotersysteme | Rönnau |

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (15-20 min.) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.

Empfehlungen

Es ist empfehlenswert zuvor die LV „Robotik I“ zu hören.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Biologisch Motivierte Roboter</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24619, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt

Lernziele:

Arbeitsaufwand:

3 LP entspricht ca. 90 Arbeitsstunden, davon
ca. 30h für Präsenzzeit in Vorlesungen
ca. 30h für Vor- und Nachbereitungszeiten
ca. 30h für Prüfungsvorbereitung und Teilnahme an der mündlichen Prüfung
5.37 Teilleistung: Biometric Systems for Person Identification [T-INFO-101297]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101239 - Maschinelle Visuelle Wahrnehmung

Lehrveranstaltungen

| SS 2023 | 2403011 | Biometrische Systeme zur Personenerkennung | 2 SWS | Vorlesung (V) / 🗣 Sarfraz |

Prüfungsveranstaltungen

| WS 23/24 | 7500043 | Biometric Systems for Person Identification | Stiefelhagen |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Biometrische Systeme zur Personenerkennung

2403011, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Themen:
- Einführung: Biometrische Erfassung und Bildverarbeitung, Basiseinführung im Bereich Computer Vision, Maschinelles Lernen angewandt in der Biometrie
- Biometrische Systeme: Anforderungen, Registrierung, Identifikation / Verifizierung, Leistungsmetrik
- Biometrische Technologien: Übersicht über die verschiedenen biometrischen Technologien
- Fingerabdruckerkennung: Bildvergrößerung, neueste Techniken, Herausforderungen
- Gesichtserkennung: Einführung, aktuelle Methoden
- Gangarterkennung: neue Methoden
- Multi-Biometrie: zahlreiche Formen der Biometrie, Zusammenführungsstrategien
- Risikoanalyse: Angriff, Detektion von Lebendigkeit, Betrugsprävention

Erfolgskontrolle:

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Empfehlungen:

Basiswissen in Mustererkennung werden vorausgesetzt (wie Modul Kognitive Systeme gelehrt [IN3INKS/IN4INKS])
5.38 Teilleistung: Blockchains & Cryptofinance [T-WIWI-108880]

| Verantwortung: | Dr. Philipp Schuster
| | Prof. Dr. Marliese Uhrig-Homburg |
| Einrichtung: | KIT-Fakultät für Wirtschaftswissenschaften |
| Bestandteil von: | M-WIWI-101409 - Electronic Markets
| | M-WIWI-101446 - Market Engineering
| | M-WIWI-101480 - Finance 3
| | M-WIWI-101483 - Finance 2 |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4,5</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>siehe Anmerkungen</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Prüfung wird im Wintersemester 20/21 letztmals für Erstschreiber und danach noch einmal für Zweitversuche angeboten. Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75min).

Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe korrekter Lösungen zu mindestens 50% der gestellten Bonusübgaufgaben kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art) angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Vorlesung wird derzeit nicht angeboten.
5.39 Teilleistung: Bond Markets [T-WIWI-110995]

Verantwortung:
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfungsleistung</th>
<th>ECTS</th>
<th>Prüfungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2530560</td>
<td>Bond Markets</td>
<td>3 SWS</td>
<td>Uhrig-Homburg, Müller, Molnar</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>790028</td>
<td>Bond Markets</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900311</td>
<td>Bond Markets</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🌓 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 min).

Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe korrekter Lösungen zu mindestens 50% der gestellten Bonusübungsaufgaben kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art) angeboten.

Anmerkungen

Die Veranstaltung wird in englischer Sprache gehalten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bond Markets

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Anzeigetafel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530560, WS 23/24, 3 SWS, Sprache: Englisch,</td>
<td></td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Der Gesamtarbeitsaufwand für diese Lerneinheit (Blockveranstaltung) beträgt ca. 135 Stunden (4,5 Credits).

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 min.) (nach §4(2), 1 SPO). Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe korrekter Lösungen zu mindestens 50% der gestellten Bonusübungsaufgaben kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Organisatorisches

Die Veranstaltung wird in der ersten Semesterhälfte an sechs Freitagen am Campus B (Geb. 09.21) im Raum 124 angeboten. Die Klausur findet dann direkt im Anschluss statt.
5.40 Teilleistung: Bond Markets - Models & Derivatives [T-WIWI-110997]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

Lehreinheit

Prüfungsleistung anderer Art
Leistungspunkte 3
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Erfolgskontrolle(n)

Empfehlungen
Kenntnisse aus der Veranstaltung „Bond Markets“ und „Derivate“ sind sehr hilfreich.

Anmerkungen
Die Veranstaltung wird in englischer Sprache gehalten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bond Markets - Models & Derivatives
2530565, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

- Arbeitsaufwand: Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits).

Organisatorisches
Die Veranstaltung startet in der zweiten Semesterhälfte (Kickoff am 08.12.23) und hat Seminarcharakter - mit dem Ziel, ein selbstgewähltes Themenfeld in Form einer schriftlichen Ausarbeitung eigenständig zu erarbeiten.
5.41 Teilleistung: Bond Markets - Tools & Applications [T-WIWI-110996]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2530562</th>
<th>Block (B)</th>
<th>Uhrig-Homburg, Grauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond Markets - Tools & Applications</td>
<td>1 SWS</td>
<td>Präsenz/Online gemischt</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer zu bearbeitenden empirischen Fallstudie mit schriftlicher Ausarbeitung und Präsentation. Die Hauptprüfung wird einmal jährlich angeboten, Nachprüfungen jedes Semester.

Empfehlungen
Kenntnisse aus der Veranstaltung „Bond Markes“ sind sehr hilfreich.

Anmerkungen
Die Veranstaltung wird in englischer Sprache gehalten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt

- **Erfolgskontrolle(n):** Die Erfolgskontrolle erfolgt in Form einer zu bearbeitenden empirischen Fallstudie mit schriftlicher Ausarbeitung und Präsentation (nach §4(2), 3 SPO). Die Hauptprüfung wird einmal jährlich angeboten, Nachprüfungen jedes Semester.
- **Lernziele:** Die Studierenden wenden diverse Methoden im Rahmen einer projektbezogenen Fallstudie praktisch an. Sie sind in der Lage mit empirischen Daten umzugehen und gezielt zu analysieren.
- **Inhalt:** Die Veranstaltung „Bond Markets – Tools & Applications“ beinhaltet ein Praxisprojekt im Bereich nationaler und internationaler Anleihemärkte. Am Beispiel empirischer Daten sollen praktische Methoden eigenständig angewendet werden, um die Daten zielgerichtet zu analysieren.
- **Empfehlungen:** Kenntnisse aus der Veranstaltung „Bond Markes“ sind sehr hilfreich.
- **Arbeitsaufwand:** Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 45 Stunden (1.5 Credits).

Organisatorisches
Die Veranstaltung findet in der ersten Semesterhälfte statt (Kickoff am 10.11.23) und beinhaltet eine eigenständige Projektarbeit im Umgang mit realen Bond Daten. Die Erfolgskontrolle erfolgt anhand einer schriftlichen Ausarbeitung und einer kurzen Präsentation.
5.42 Teilleistung: Business Data Analytics: Application and Tools [T-WIWI-109863]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103117 - Data Science: Data-Driven Information Systems
M-WIWI-103118 - Data Science: Data-Driven User Modeling

<table>
<thead>
<tr>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilleistungsart</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>Leistungseinheiten</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2540466</td>
<td>Business Data Analytics: Application and Tools</td>
<td>2 SWS</td>
<td>Knierim, Badewitz</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540467</td>
<td>Übung zu Business Data Analytics: Application and Tools</td>
<td>1 SWS</td>
<td>Badewitz, Grote, Sterk, Bezzaoui, Nikolajevic</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungsbezeichnung</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900183</td>
<td>Business Data Analytics: Application and Tools (Hauptklausur)</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900189</td>
<td>Business Data Analytics: Application and Tools (Nachklausur)</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Kenntnisse in (objekt-orientierter) Programmierung und Statistik sind von Vorteil.

Anmerkungen
Die Vorlesung wird zu Beginn des Semesters im Block gelesen. Die Termine werden im Wiwi-Portal kommuniziert.
5.43 Teilleistung: Business Data Strategy [T-WIWI-106187]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung</td>
<td>Vorlesung (V)</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2540484 | Business Data Strategy | 2 SWS | Weinhardt, van Dinther, Badewitz |
| WS 23/24 | 2540485 | Übung zu Business Data Strategy | 1 SWS | Weinhardt, Badewitz, Schulz |

Legende: 🌐 Online, 🕐 Präsenz/Online gemischt, 🕐 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO und in Form einer Prüfungsleistung anderer Art (Form) nach § 4 Abs. 2 Nr. 3 SPO. Die Note setzt sich zu 2/3 aus der Note der schriftlichen Prüfung und zu 1/3 der Note aus einer Prüfungsleistung anderer Art (z.B. Präsentation) zusammen.

Voraussetzungen

Keine

Empfehlungen

Anmerkungen

Teilnehmeranzahl limitiert.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Business Data Strategy
2540484, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
Application/Registration

Attendance will be limited to 20-25 participants. Application/registration is therefore preliminary. After the application deadline has passed, positions will be allocated, based on evaluation of the previous study records. Applications are accepted only through the Wiwi-Portal: https://portal.wiwi.kit.edu/ys/5254

Anmeldung

5.44 Teilleistung: Business Dynamics [T-WIWI-102762]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Dr Paul Glenn
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101409 - Electronic Markets
- M-WIWI-105661 - Data Science: Intelligente, adaptive und lernende Informationsdienste

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2540531</td>
<td>Business Dynamics</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Geyer-Schulz, Glenn</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540532</td>
<td>Übung zu Business Dynamics</td>
<td>1</td>
<td>Übung (U)</td>
<td>Geyer-Schulz, Glenn</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900065</td>
<td>Business Dynamics (Nachklausur WS 2022/2023)</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)) und wird zur erreichten Punktzahl der bestandenen Klausur hinzugerechnet. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Business Dynamics

2540531, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Literaturhinweise

5.45 Teilleistung: Business Intelligence Systems [T-WIWI-105777]

Verantwortung: Prof. Dr. Alexander Mädche
Mario Nadj
Dr. Peyman Toreini

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101506 - Service Analytics
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-103117 - Data Science: Data-Driven Information Systems
- M-WIWI-104068 - Information Systems in Organizations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrveranstaltungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2540422</td>
<td>Business Intelligence Systems</td>
<td>3</td>
<td>Vorlesung (V) / 🧩 Mädche, Gnewuch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrveranstaltungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900149</td>
<td>Business Intelligence Systems</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer einstündigen Klausur und der Durchführung eines Capstone Projektes.

Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Grundlegendes Wissen über Datenbanksysteme kann hilfreich sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>V</th>
<th>Business Intelligence Systems</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2540422, WS 23/24, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt
In most modern enterprises, Business Intelligence & Analytics (BI&A) Systems represent a core enabler of decision-making in that they are supplying up-to-date and accurate information about all relevant aspects of a company’s planning and operations: from stock levels to sales volumes, from process cycle times to key indicators of corporate performance. Modern BI&A systems leverage beyond reporting and dashboards also advanced analytical functions. Thus, today they also play a major role in enabling data-driven products and services. The aim of this course is to introduce theoretical foundations, concepts, tools, and current practice of BI&A Systems from a managerial and technical perspective.

The course is complemented with an engineering capstone project, where students work in a team with real-world use cases and data in order to create running Business intelligence & Analytics system prototypes.

Learning objectives
- Understand the theoretical foundations of key Business Intelligence & Analytics concepts supporting decision-making
- Explore key capabilities of state-of-the-art Business Intelligence & Analytics Systems
- Learn how to successfully implement and run Business Intelligence & Analytics Systems from multiple perspectives, e.g. architecture, data management, consumption, analytics
- Get hands-on experience by working with Business Intelligence & Analytics Systems with real-world use cases and data

Prerequisites
This course is limited to a capacity of 50 places. The capacity limitation is due to the attractive format of the accompanying engineering capstone project. Strong analytical abilities and profound skills in SQL as well as Python and/or R are required. Students have to apply with their CV and transcript of records. All organizational details and the underlying registration process of the lecture and the capstone project will be presented in the first lecture. The teaching language is English.

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Form) nach § 4 Abs. 2 Nr. 3 SPO. Die Leistungskontrolle erfolgt in Form einer einstündigen Klausur und durch Durchführung eines Capstone Projektes. Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Literaturhinweise
- Economist Intelligence Unit. 2015 “Big data evolution: Forging new corporate capabilities for the long term”

Further literature will be made available in the lecture.
5.46 Teilleistung: BWL der Informationsunternehmen [T-WIWI-102886]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101443 - Informationswirtschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Vorlesung wird nicht mehr angeboten. Bitte beachten Sie hierzu folgende Hinweise:

Beim Studienwechsel vom M.Sc. Informationswirtschaft zum M.Sc. Wirtschaftsinformatik, wird diese für alle, die zumindest zu einer schriftlichen Klausur angetreten sind, im Modul Data Science: Advanced CRM anerkannt. Im Modul Data Science: Advanced CRM wird es eine noch zu benennende neue Vorlesung geben, die erstmalig im SS 2020 angeboten wird.

Voraussetzungen
Keine

Empfehlungen
Vorkenntnisse aus Operations Research (Lineare Programmierung) und aus der Entscheidungstheorie werden erwartet.
Teilleistung: Challenges in Supply Chain Management [T-WIWI-102872]

Verantwortung: Esther Mohr
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102805 - Service Operations
M-WIWI-102808 - Digital Service Systems in Industry

5.47 Teilleistung: Challenges in Supply Chain Management [T-WIWI-102872]

Lehrveranstaltungen
SS 2023 2550494 Challenges in Supply Chain Management 3 SWS Vorlesung (V) / Mohr

Prüfungsveranstaltungen
SS 2023 00030 Challenges in Supply Chain Management Nickel

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art, bestehend aus schriftlicher Ausarbeitung und mündlicher Abschlussprüfung (ca. 30-40 min).

Voraussetzungen
Keine

Empfehlungen
Grundlagenwissen aus dem Modul "Einführung in Operations Research" wird vorausgesetzt.

Anmerkungen
Die Anzahl der Kursteilnehmer ist aufgrund der gemeinsamen Bearbeitung in BASF-Projektteams auf 12 Teilnehmer begrenzt. Aufgrund dieser Begrenzung erfolgt eine Registrierung vor Kursbeginn. Weitere Informationen befinden sich auf der Internetseite zur Lehrveranstaltung.

Die Veranstaltung findet unregelmäßig statt. Die geplanten Vorlesungen und Kurse der nächsten drei Jahre werden online angekündigt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Challenges in Supply Chain Management
2550494, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Im Rahmen der Veranstaltung werden bei der BASF Fallstudien zu zukünftigen Herausforderungen im Supply Chain Management bearbeitet. Die Veranstaltung zielt somit auf die Präsentation, kritische Bewertung und exemplarische Diskussion aktueller Fragestellungen im Supply Chain Management ab. Der Fokus liegt hierbei neben aktuellen Trends vor allem auf zukünftigen Herausforderungen, auch hinsichtlich der Anwendbarkeit in praktischen Anwendungen (v.a. in der Chemie-Industrie).

Der Hauptteil der Veranstaltung besteht aus der Bearbeitung projektbezogener Fallstudien der BASF in Ludwigshafen. Die Studierenden sollen dabei eine praktische Fragestellung wissenschaftlich umsetzen: Die Vertiefung eines wissenschaftlichen Spezialthemas macht die Studierenden somit einerseits mit wissenschaftlicher Literatur bekannt, andererseits aber auch mit für die Praxis entscheidenden Argumentationstechniken. Des Weiteren wird auch Wert auf eine kritische Diskussion der Ansätze Wert gelegt.

Organisatorisches
Bewerbung über das Wiwi-Portal möglich:
http://go.wiwi.kit.edu/ChallengesSCM
Literaturhinweise
Wird in Abhängigkeit vom Thema in den Projektteams bekanntgegeben.
5.48 Teilleistung: Cooperative Autonomous Vehicles [T-WIWI-112690]

Verantwortung: Prof. Dr. Alexey Vinel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2511450</td>
<td>Cooperative Autonomous Vehicles</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Vinel</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2511451</td>
<td>Übungen zu Cooperative Autonomous Vehicles</td>
<td>1 SWS</td>
<td>Übung (U)</td>
<td>Vinel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name</th>
<th>Anmeldung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>79AIFB_CAV_B5</td>
<td>Cooperative Autonomous Vehicles</td>
<td>Anmeldung bis 17.07.2023</td>
<td>Vinel</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79AIFB_CAV_A3</td>
<td>Cooperative Autonomous Vehicles</td>
<td>Anmeldung bis 05.02.2024</td>
<td>Vinel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) oder in Form einer mündlichen Prüfung (20min.). Die Prüfung wird in jedes Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine
5.49 Teilleistung: Corporate Financial Policy [T-WIWI-102622]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101453 - Angewandte strategische Entscheidungen
M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2
M-WIWI-101502 - Ökonomische Theorie und ihre Anwendung in Finance

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900073</td>
<td>Corporate Financial Policy</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900058</td>
<td>Corporate Financial Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Corporate Financial Policy
2530214, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung entwickelt Grundlagen für das Management und die Finanzierung von Unternehmen in unvollkommenen Märkten. Die Veranstaltung wird auf Englisch gehalten und beinhaltet folgende Themen:

- Maßnahmen guter Corporate Governance
- Unternehmensfinanzierung
- Liquiditätsmanagement
- Mitarbeitervergütungs- und -anreizsystem
- Unternehmensübernahmen

Lernziele: Die Studierenden

- sind in der Lage, die Bedeutung von Informationsasymmetrie für die Vertragsgestaltung von Unternehmen zu erläutern,
- sind imstande, Maßnahmen zur Minderung von Informationsasymmetrie zu bewerten,
- können Verträge auf ihre Anreiz- und Kommunikationswirkung hin analysieren.
5.50 Teilleistung: Corporate Risk Management [T-WIWI-109050]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2
M-WIWI-101502 - Ökonomische Theorie und ihre Anwendung in Finance

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kurs</th>
<th>SWS</th>
<th>Veranstaltungstyp/Online</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2530218</td>
<td>Corporate Risk Management</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Ruckes, Hoang</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2530219</td>
<td>Übungen Corporate Risk Management</td>
<td>SWS</td>
<td>Übung (U) / Präsenz/Online gemischt</td>
<td>Ruckes, Hoang, Silbereis</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kurs</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900259</td>
<td>Corporate Risk Management</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900136</td>
<td>Corporate Risk Management</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Bei einer geringen Anzahl zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung abzuhalten.
Bitte beachten Sie, dass die Prüfung nur im Semester der Vorlesung und dem darauf folgenden Semester angeboten wird.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Veranstaltung wird frühestens im Sommersemester 2023 wieder angeboten. Bitte beachten Sie dazu die Ankündigungen auf unserer Homepage.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Corporate Risk Management
2530218, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches
The course will be offered as a block course in the summer term 2023. Further information will be published during the term. Please pay attention to our announcements.
In case of questions, please contact the tutor of the discussion sessions.

Literaturhinweise
5.51 Teilleistung: Critical Information Infrastructures [T-WIWI-109248]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>Critical Information Infrastructures</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung Code</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Übung Code</th>
<th>Übungstitel</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2511400</td>
<td>Critical Information Infrastructures</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Sunyaev, Dehling, Jin</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2511401</td>
<td>Übungen zu Critical Information Infrastructures</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣️</td>
<td>Sunyaev, Dehling, Jin</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥️ Online, 🕰️ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie setzt sich zusammen aus:

- Der Anfertigung einer schriftlichen Ausarbeitung sowie
- einer mündlichen Prüfung im Rahmen einer Präsentation der Arbeit.

Details zur Notenbildung werden zu Beginn der Veranstaltung bekannt gegeben.

Die Prüfung wird für Erstschreiber nur im Wintersemester angeboten, eine Wiederholungsmöglichkeit besteht im darauffolgenden Sommersemester.

Voraussetzungen
Keine.

Anmerkungen
5.52 Teilleistung: Data and Storage Management [T-INFO-101276]

Verantwortung: Prof. Dr. Bernhard Neumair
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101210 - Dynamische IT-Infrastrukturen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24074 Data and Storage Management</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Neumair</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500353 Data and Storage Management</td>
<td></td>
<td>Neumair</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500112 Data and Storage Management</td>
<td></td>
<td>Neumair</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle der Vorlesungen erfolgt in Form von mündlichen Prüfungen im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data and Storage Management
24074, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise
Literatur

Weiterführende Literatur:
5.53 Teilleistung: Data Science [T-INFO-113124]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101208 - Innovative Konzepte des Daten- und Informationsmanagements
M-INFO-101256 - Analysetechniken für große Datenbestände in Theorie und Praxis
M-INFO-106505 - Data Science

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Science 1</td>
<td>8</td>
<td>3 SWS</td>
<td>Jedes Wintersemester</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🔄 Online, 📚 Präsent/Online gemischt, 📖 Präsent, 🗿 Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen
Keine.

Empfehlungen
Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme, sind erforderlich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data Science 1
24114, WS 23/24, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
Diese Lehrveranstaltung kann nicht belegt werden, wenn Data Mining [2520375] belegt wurde/wird.

Empfehlungen:
Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Literaturhinweise

- Data Mining: Concepts and Techniques (3rd edition): Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann Publishers 2011
- Introduction to Data Mining: Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison-Wesley 2006
- Knowledge Discovery in Databases: Martin Ester, Jörg Sander, Springer 2000
5.54 Teilleistung: Datenbankeinsatz [T-INFO-101317]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von:
- M-INFO-100780 - Datenbankeinsatz
- M-INFO-101208 - Innovative Konzepte des Daten- und Informationsmanagements
- M-INFO-101256 - Analysetechniken für große Datenbestände in Theorie und Praxis

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungskurs-ID</th>
<th>Kurzbezeichnung</th>
<th>Veranstaltungsform</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2400111</td>
<td>Datenbankeinsatz</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungskurs-ID</th>
<th>Kurzbezeichnung</th>
<th>Veranstaltungsform</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500090</td>
<td>Datenbankeinsatz</td>
<td>Präsenz</td>
<td>Böhm</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500366</td>
<td>Datenbankeinsatz Zweitversuch</td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500007</td>
<td>Datenbankeinsatz</td>
<td>Präsenz</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer mündlichen Prüfung von ca. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO oder einer einstündigen schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO. Der Modus wird mind. 6 Wochen vor der Prüfung bekanntgegeben.

Voraussetzungen

Keine.

Empfehlungen

Datenbankkenntnisse, z.B. aus der Vorlesungen Datenbanksysteme [24516] und Einführung in Rechnernetze [24519].

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenbankeinsatz

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400111, WS 23/24, 3 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Diese Vorlesung soll Studierende an den Einsatz moderner Datenbanksysteme heranführen, in Breite und Tiefe. 'Breite' erreichen wir durch die ausführliche Betrachtung unterschiedlicher Philosophien, Datenmodelle mit entsprechenden Anfragesprachen und Werkzeuge. Wir gehen beispielsweise sowohl auf sogenannte NoSQL-Datenbanktechnologie ein als auch auf semistrukturierte Datenbanken (vulgo XML-Datenbanken, mit XQuery als Anfragesprache) und Graph-Datenbanken. 'Tiefe' erreichen wir durch die Betrachtung mehrerer nichttrivialer Anwendungen.

Die Vorlesung wird live gestreamt und auch aufgezeichnet, d. h. Sie können sich Vorlesungs Mitschnitte auch im Nachhinein anschauen.

Im Gegensatz zu den Angaben oben (die ich derzeit nicht korrigieren kann, weil ich (KB) dafür keine Berechtigung habe) findet der Termin um 11.30 Uhr vierzehntäglich statt. Die Tage, an denen wir eine Vorlesungssitzung um 11.30 Uhr haben werden, stehen auch schon fest, nämlich:
26.10.
8.11.
22.11.
6.12.
17.01.2023
31.01.
14.02.

Organisatorisches
Die Vorlesung findet nicht notwendigerweise jährlich statt; maßgeblich sind die Angaben im Vorlesungsverzeichnis.

Voraussetzung: Datenbankkenntnisse, z.B. aus der Vorlesung Datenbanksysteme [24516].

Die Vorlesung wird live gestreamt und auch aufgezeichnet, d. h. Sie können sich Vorlesungsmitschnitte auch im Nachhinein anschauen.

Literaturhinweise
Werden in der Vorlesung bekanntgegeben.
5.55 Teilleistung: Datenbankfunktionalität in der Cloud [T-INFO-111400]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101208 - Innovative Konzepte des Daten- und Informationsmanagements
M-INFO-101256 - Analysetechniken für große Datenbestände in Theorie und Praxis
M-INFO-105724 - Datenbankfunktionalität in der Cloud

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
SS 2023 7500056 Datenbankfunktionalität in der Cloud Böhm

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO. Abhängig von der Teilnehmerzahl wird zeitnah vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung (i.d.R 1Std) nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen
keine

Empfehlungen
Datenbankkenntnisse, z.B. aus den Vorlesungen Datenbanksysteme und Einführung in Rechnernetze werden empfohlen.
5.56 Teilleistung: Datenbank-Praktikum [T-INFO-103201]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101256 - Analysetechniken für große Datenbestände in Theorie und Praxis
M-INFO-101662 - Datenbank-Praktikum

Teilleistungsart Studienleistung
Leistungspunkte 4
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 3

Lehrveranstaltungen

| WS 23/24 | 24286 | Datenbankpraktikum | 2 SWS | Praktikum (P) / 🗣 | Böhm, Richter |

Legende: 🖥 Online, 🟢 Präsenz/Online gemischt, 🗣 Präsenz; ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO. Es müssen eine schriftliche Ausarbeitung über die praktische Arbeit erstellt und Präsentationen gehalten werden. Ein Rücktritt ist innerhalb von einer Woche nach Beginn der Veranstaltung möglich.

Es ist eine Wiederholung möglich.

Voraussetzungen
Datenbankkenntnisse aus den Vorlesungen Datenbanksysteme.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenbankpraktikum

24286, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz

Inhalt
Das Datenbankpraktikum bietet Studierenden den praktischen Einsatz von Datenbanksystemen in Ergänzung zu den unterschiedlichen Vorlesungen kennenzulernen. Die Teilnehmer werden in ausgewählten Versuchen mit kommerzieller (objekt-)relationaler sowie XML Datenbanktechnologie vertraut gemacht. Darüber hinaus können sie Datenbankentwurf an praktischen Beispielen erproben. Im Einzelnen stehen folgende Versuche auf dem Programm:

- Zugriff auf Datenbanken, auch aus Anwendungsprogrammen heraus,
- Verwaltung von Datenbeständen mit nicht konventioneller Datenbanktechnologie,
- Performanceoptimierungen bei der Anfragebearbeitung,
- Datenbank-Entwurf.

Arbeiten im Team ist ein weiterer wichtiger Aspekt bei allen Versuchen.

Im Praktikum soll das aus Vorlesungen wie "Datenbanksysteme" und "Datenbankeinsatz" erlernte Wissen in die Praxis umgesetzt werden. Dabei geht es vor allem um Anwendungsprogrammierung mit Datenbanksystemen, Benutzung interaktiver Anfragesprachen, sowie um Datenbankentwurf. Darüber hinaus sollen die Studenten lernen, im Team zusammenzuarbeiten, um die einzelnen Versuche erfolgreich zu absolvieren.

Organisatorisches
Empfehlungen:
Datenbankkenntnisse, z.B. aus den Vorlesungen Datenbanksysteme und Einführung in Rechnernetze.
Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101178 - Kommunikation und Datenhaltung

Teilleistung: Datenbanksysteme [T-INFO-101497]

Erfolgskontrolle(n)

Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Sofern die Vergabe des Bonus erteilt wurde, gilt dieser für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.

Empfehlungen
Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenbanksysteme
24516, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Der/die Studierende
- ist in der Lage den Nutzen von Datenbank-Technologie darzustellen,
- kennt die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen,
- ist in der Lage selbstständig einfache Datenbanken anzulegen und Zugriffe auf diese zu tätigen,
- kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie

Organisatorisches
Empfehlungen:
Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.
5 TEILLEISTUNGEN

Teilleistung: Datenbanksysteme [T/INFO-101497]

Literaturhinweise

- Andreas Heuer, Kai-Uwe Sattler, Gunther Saake: Datenbanken - Konzepte und Sprachen, 4. Aufl., mitp-Verlag, 2010
- Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung, 8. Aufl., Oldenbourg Verlag, 2011

Weiterführende Literatur

- Eric Redmond, Jim R. Wilson: Seven Databases in Seven Weeks

Übungen zu Datenbanksysteme

24522, SS 2023, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Übungstermine werden in der Vorlesung Datenbanksysteme angekündigt.
5.58 Teilleistung: Datenbanksysteme und XML [T-WIWI-102661]

Verantwortung: Prof. Dr. Andreas Oberweis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101456 - Intelligente Systeme und Services
M-WIWI-101477 - Entwicklung betrieblicher Informationssysteme

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4,5
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Lehrform</th>
<th>Lektor</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2511202</td>
<td>Datenbanksysteme und XML</td>
<td>2</td>
<td>Vorlesung (V) / 🛥</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2511203</td>
<td>Übungen zu Datenbanksysteme und XML</td>
<td>1</td>
<td>Übung (Ü) / 🗣</td>
<td>Oberweis, Fritsch</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Anmeldung bis</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>79AIFB_DBX_A3</td>
<td>Datenbanksysteme und XML (Anmeldung bis 17.07.2023)</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79AIFB_DBX_A4</td>
<td>Datenbanksysteme und XML (Anmeldung bis 05.02.2024)</td>
<td>Oberweis</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛥 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Datenbanksysteme und XML
2511202, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Hinweis zur Veranstaltungsform:
Die Veranstaltung Datenbanksysteme und XML findet im WS 23/24 im "Flipped-Classroom"-Format statt. Für die Vorlesungsinhalte werden Videos und unterstützende Materialien bereitgestellt, die sich die Studierenden selbstständig und im eigenen Tempo erarbeiten können. Im Laufe des Semesters finden in regelmäßigen Abständen interaktive Präsenzveranstaltungen statt, in denen die Vorlesungsinhalte geübt und vertieft werden.

Lernziele:
Studierende
- kennen die Grundlagen von XML und erstellen XML-Dokumente,
- arbeiten selbständig mit XML-Datenbanksystemen und setzen diese Systeme gezielt zur Lösung von praktischen Fragestellungen ein,
- formulieren Anfragen an XML-Dokumente,
- bewerten den Einsatz von XML in der betrieblichen Praxis in unterschiedlichen Anwendungskontexten.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 135 Stunden (4,5 Leistungspunkte).
- Vorlesung 30h
- Übung 15h
- Vor- bzw. Nachbereitung der Vorlesung 24h
- Vor- bzw. Nachbereitung der Übung 25h
- Prüfungsvorbereitung 40h
- Prüfung 1h

Literaturhinweise
- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2008

Weitere Literatur wird in der Vorlesung bekannt gegeben.
5.59 Teilleistung: Datenschutz von Anonymisierung bis Zugriffskontrolle [T-INFO-108377]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101208 - Innovative Konzepte des Daten- und Informationsmanagements
M-INFO-101256 - Analysetechniken für große Datenbestände in Theorie und Praxis
M-INFO-104045 - Datenschutz von Anonymisierung bis Zugriffskontrolle

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Unregelmäßig

Version
1

Lehrveranstaltungen

| SS 2023 | 2400132 | Datenschutz von Anonymisierung bis Zugriffskontrolle | 2 SWS | Block-Vorlesung (BV) / 🗣 Buchmann |
|———|———|———|———|———|

| SS 2023 | 7500209 | Datenschutz von Anonymisierung bis Zugriffskontrolle | Böhm |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Grundkenntnisse zu Datenbanken, verteilten Informationssystemen, Systemarchitekturen und Kommunikationsinfrastrukturen, z.B. aus der Vorlesung Datenbanksysteme

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenschutz von Anonymisierung bis Zugriffskontrolle
2400132, SS 2023, 2 SWS, im Studierendenportal anzeigen

Inhalt

Die Teilnehmer werden in die Ziele und Grundbegriffe der Informationellen Selbstbestimmung eingeführt. Sie sind in der Lage die grundlegenden Herausforderungen des Datenschutzes und ihre vielfältigen Auswirkungen auf Gesellschaft und Individuen zu benennen.

Außerdem beherrschen sie aktuelle Technologien zum Datenschutz und können diese anwenden. Z.B. Methoden des Spatial & Temporal Cloaking.

Die Studenten sollen damit in die Lage versetzt werden, die Risiken unbekannter Technologien für die Privatheit zu analysieren, geeignete Maßnahmen zum Umgang mit diesen Risiken vorschlagen und die Effektivität dieser Maßnahmen abschätzen.

Organisatorisches
Die Plätze für die Vorlesung sind beschränkt. Eine Anmeldung per Mail an sekretariat.boehm@ipd.kit.edu ist erforderlich.
5.60 Teilleistung: Deep Learning für Computer Vision I: Grundlagen [T-INFO-111491]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101239 - Maschinelle Visuelle Wahrnehmung
M-INFO-101239 - Maschinelle Visuelle Wahrnehmung

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 2400007 Deep Learning für Computer Vision I: Grundlagen 2 SWS Vorlesung (V) / Stiefelhagen

Prüfungsveranstaltungen
SS 2023 7500122 Deep Learning für Computer Vision I: Grundlagen Stiefelhagen
WS 23/24 7500258 Deep Learning für Computer Vision I: Grundlagen Stiefelhagen

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch eine mündliche Prüfung (ca. 20 min.) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Empfehlungen
Kenntnisse zu Grundlagen der Mustererkennung, wie sie im Stammmodul Kognitive Systeme vermittelt werden, werden vorausgesetzt.

Anmerkungen
Die Lehrveranstaltung findet teilweise in Deutsch und Englisch statt.
5.61 Teilleistung: Deep Learning und Neuronale Netze [T-INFO-109124]

Verantwortung: Prof. Dr. Alexander Waibel
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-104460 - Deep Learning und Neuronale Netze

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2400024 | Deep Learning und Neuronale Netze | 4 SWS | Vorlesung (V) / 🗣 | Waibel, Nguyen |

Prüfungsveranstaltungen

| SS 2023 | 7500044 | Deep Learning und Neuronale Netze | Waibel |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
T-INFO-101383 - Neuronale Netze darf nicht begonnen sein.

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Deep Learning und Neuronale Netze
2400024, SS 2023, 4 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

| Vorlesung (V) | Präsenz |

Inhalt
Die Vorlesung hat wie im Modulhandbuch beschrieben 4 SWS und damit 6 ECTS-Punkte.

Lernziele:
- Die Studierenden sollen den Aufbau und die Funktion verschiedener Typen von neuronalen Netzen lernen.
- Die Studierenden sollen die Methoden zum Training der verschiedenen Netze lernen, sowie ihre Anwendung auf Probleme.
- Die Studierenden sollen die Anwendungsgebiete der verschiedenen Netztypen erlernen.
- Gegeben ein konkretes Szenario sollen die Studierenden in die Lage versetzt werden, den geeigneten Typ eines neuronalen Netzes auswählen zu können.
5.62 Teilleistung: Demand-Driven Supply Chain Planning [T-WIWI-110971]

Verantwortung: Dr. Josef Packowski
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102805 - Service Operations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2550510</td>
<td>Demand-Driven Supply Chain Planning</td>
<td>Vorlesung (V) / 📚</td>
<td>Packowski</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900163</td>
<td>Demand-Driven Supply Chain Planning</td>
<td>Packowski</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ⚪ Präsenz/Online gemischt, 📚 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Prüfung wird im Semester der Vorlesung angeboten. Im Falle des Nichtbestehens wird eine Nachprüfung im darauffolgenden Semester angeboten.

Anmerkungen

5.63 Teilleistung: Derivate [T-WIWI-102643]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101482 - Finance 1
M-WIWI-101483 - Finance 2

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
4,5
Notenskala
Drittelnoten
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen
SS 2023 2530550 Derivate 2 SWS Vorlesung (V) / Präsenz Uhrig-Homburg
SS 2023 2530551 Übung zu Derivate 1 SWS Übung (Ü) / Präsenz Eska, Uhrig-Homburg

Prüfungsveranstaltungen
SS 2023 7900111 Derivate Uhrig-Homburg
WS 23/24 7900051 Derivate Uhrig-Homburg

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art), oder als 60-minütige Klausur (schriftliche Prüfung) angeboten.

Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe korrekter Lösungen zu mindestens 50% der gestellten Bonusübungsaufgaben kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Derivate 2530550, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Die Studierenden vertiefen - aufbauend auf den grundlegenden Inhalten der Bachelorveranstaltung Investments - in Derivate ihre Kenntnisse über Finanz- und Derivatemärkte. Sie sind in der Lage derivative Finanzinstrumente zu bewerten und diese Fähigkeiten zum Risikomanagement und zur Umsetzung komplexer Handelsstrategien anzuwenden.

Literaturhinweise

Weiterführende Literatur:
5.64 Teilleistung: Design Thinking [T-WIWI-102866]

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Design Thinking (Track 1)</td>
<td>2 SWS Seminar (S)</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Design Thinking (Track 1)</td>
<td>2 SWS Seminar (S)</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Design Thinking (Track 1)</th>
<th>Terzidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900053</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900084</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ☀️ Präsenz/Online gemischt, 🔴 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (§4(2), 3 SPO). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Lehrveranstaltung bekannt gegeben. Die Note ist die Note der schriftlichen Ausarbeitung.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Seminarinhalte werden auf der Institutshomepage veröffentlicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Design Thinking (Track 1)
2545008, SS 2023, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Inhalt

Lernziele

Während des Seminars erlernen die Studierenden grundlegende Vorgehensweisen, um nutzerzentrierte Innovationen zu realisieren. Dabei handelt es sich um konkrete Methoden, die beim potentiellen Nutzer bestimmter Produkte und Dienstleistungen beginnen. Die Methode ist problemorientiert und betont die spezifische Kundensituation. Nach der Teilnahme am Seminar haben die Studierenden ein klares Verständnis für die Notwendigkeit, die Bedürfnisse von Endanwendern zu erforschen und sind in der Lage, die Methoden des DesignThinking selbständig auf markt-getriebene Innovationen anzuwenden.

Anrechnung:

Organisatorisches
Registration is via the Wiwi-Portal.
Design Thinking (Track 1)
2545008, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierenendenportal anzeigen

Inhalt
Seminarinhalt

Lernziele:

Anmeldeinformationen:
Die Anmeldung erfolgt über das Wiwi-Portal.

Organisatorisches
Registration is via the Wiwi portal.

In the seminar you will work on a project in teams of 4-5 persons. The groups are formed in the seminar.
5.65 Teilleistung: Designing Interactive Systems [T-WIWI-110851]

Verantwortung: Prof. Dr. Alexander Mädche
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104068 - Information Systems in Organizations
M-WIWI-104080 - Designing Interactive Information Systems
M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 2540558 Designing Interactive Systems 3 SWS Vorlesung (V) / ☨ Mädche, Gnewuch

Prüfungsveranstaltungen
SS 2023 00009 Designing Interactive Systems Mädche

Legende: ☨ Online, ☨ Präsenz/Online gemischt, ☨ Präsenz, ☞ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer einstündigen Klausur und der Durchführung eines Capstone Projektes.
Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-108461 - Interactive Information Systems darf nicht begonnen worden sein.

Anmerkungen
Die Veranstaltung wird auf Englisch gehalten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Designing Interactive Systems
2540558, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Description
Computers have evolved from batch processors towards highly interactive systems. This offers new possibilities but also challenges for the successful design of the interaction between human and computer. Interactive systems are socio-technical systems in which users perform tasks by interacting with technology in a specific context in order to achieve specified goals and outcomes.

The aim of this course is to introduce advanced concepts and theories, interaction technologies as well as current practice of contemporary interactive systems.

The course is complemented with a design capstone project, where students in a team select and apply design methods & techniques in order to create an interactive prototype.

Learning objectives
- Get an advanced understanding of conceptual foundations of interactive systems from a human and computer perspective
- Explore the theoretical grounding of Interactive Systems leveraging theories from reference disciplines such as psychology
- Know specific design principles for the design of advanced interactive systems
- Get hands-on experience in conceptualizing and designing advanced Interactive Systems to solve a real-world challenge from an industry partner by applying the lecture contents.

Prerequisites
No specific prerequisites are required for the lecture.

Literature
Further literature will be made available in the lecture.

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Form) nach § 4 Abs. 2 Nr. 3 SPO. Die Leistungskontrolle erfolgt in Form einer einstündigen Klausur und durch Durchführung eines Capstone Projektes. Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Literaturhinweise
Die Vorlesung basiert zu einem großen Teil auf
Weiterführende Literatur wird in der Vorlesung bereitgestellt.
Teilleistung: Digital Democracy [T-WIWI-113160]

Verantwortung: Jonas Fegert
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101410 - Business & Service Engineering
M-WIWI-101446 - Market Engineering
M-WIWI-103117 - Data Science: Data-Driven Information Systems
M-WIWI-103118 - Data Science: Data-Driven User Modeling

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Leistungspunkte</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>00052</td>
<td>Digital Democracy</td>
<td>2 SWS</td>
<td>Vorlesung (V) / ☑️ Fegert</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>00053</td>
<td>Übung zur Digital Democracy</td>
<td>1 SWS</td>
<td>Übung (U) / ☑️ Fegert</td>
</tr>
</tbody>
</table>

Legende: Online, ☑️ Präsenz/Online gemischt, ☑️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Präsentation und mündliche Prüfung). Details zur Ausgestaltung der Erfolgskontrolle werden zu Beginn der Lehrveranstaltung bekannt gegeben.

Anmerkungen

Beschränkung auf 25 Plätze mit Bewerbung per kurzem Motivationsschreiben (über das Wiwi-Portal).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Digital Democracy
00052. WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt

Die Vorlesung führt in theoretische Grundlagen und evidenzierte Forschung zum Thema Digitale Demokratie ein. Dabei greift sie folgende Fragen auf: Was kennzeichnet deliberative Demokratien, wie verändern sich Demokratien und was kann sie beschädigen? Wie entsteht und was treibt gesellschaftliche Polarisation – off- und online. Dementsprechend sollen verschiedene Plattformtypen und Phänomene der Desinformation, wie z.B. Clickbait vorgestellt werden. Der letzte Teil der Vorlesungsreihe wird sich mit der Suche nach Lösungsansätzen und Alternativen für diese Probleme befassen.

Organisatorisches

Beschränkung auf 25 Plätze mit Bewerbung per kurzem Motivationsschreiben (ab Anfang/Mitte September über das Wiki-Portal)
5.67 Teilleistung: Digital Health [T-WIWI-109246]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2511402 | Digital Health | 2 SWS | Vorlesung (V) / 🧩 | Sunyaev, Thiebes, Schmidt-Kraepelin |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⚔️ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
Keine.
5.68 Teilleistung: Digital Marketing [T-WIWI-112693]

Verantwortung: Prof. Dr. Ann-Kristin Kupfer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-105312 - Marketing and Sales Management
M-WIWI-106258 - Digital Marketing

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte 4,5
Notenskala Drittenoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2023 2571185 Digital Marketing 2 SWS Vorlesung (V) / Präsenz Kupfer
SS 2023 2571186 Digital Marketing Exercise 1 SWS Übung (Ü) / Online gemischt Mitarbeiter

Prüfungsveranstaltungen
SS 2023 7900064 Digital Marketing Kupfer
SS 2023 7900070 Digital Marketing Kupfer

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
The control of success is done by the elaboration and presentation of a group task as well as a written exam. Further details on the design of the performance review will be announced during the lecture.

Voraussetzungen
None

Empfehlungen
Students are highly encouraged to actively participate in class.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Digital Marketing
2571185, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
Students learn the theoretical foundations of digital marketing and its most important concepts. They develop an understanding both for the digital consumer and the digital environment. Special emphasis will be given to digital marketing strategies and practices, such as content marketing and influencer marketing. A tutorial offers the opportunity to apply the key learnings of the lecture as part of a group work.

The learning objectives are as follows:

- Getting to know the theoretical foundations of digital marketing
- Evaluating digital marketing strategies and practices (e.g., in the context of content marketing and influencer marketing)
- Fostering critical and analytical thinking skills and the application of knowledge to marketing problems
- Improving English skills

Total time required for 4.5 credit points: approx. 135 hours
Attendance time: 30 hours
Self-study: 105 hours

Organisatorisches
Termine werden bekannt gegeben.
5.69 Teilleistung: Digital Marketing and Sales in B2B [T-WIWI-106981]

Verantwortung: Prof. Dr. Martin Klarmann
Anja Konhäuser

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-105312 - Marketing and Sales Management
M-WIWI-106258 - Digital Marketing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO (Teampräsentation einer Case Study mit anschließender Diskussion im Umfang von insg. 30 Minuten).

Voraussetzungen
Keine.

Anmerkungen
Die Veranstaltung findet im Sommersemester 2023 leider nicht statt und wird voraussichtlich ab dem Sommersemester 2024 wieder regulär angeboten.
5.70 Teilleistung: Digital Services: Innovation & Business Models [T-WIWI-112757]

Verantwortung: Prof. Dr. Gerhard Satzger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-101448 - Service Management
- M-WIWI-102754 - Service Economics and Management
- M-WIWI-102806 - Service Innovation, Design & Engineering

Lehrveranstaltungen

| SS 2023 | 2595468 | Digital Services: Innovation & Business Models | 1.5 SWS | Vorlesung (V) / 🕵️ | Satzger, Benz, Schüritz |
| SS 2023 | 2595469 | Übung zu Digital Services: Innovation & Business Models | 1.5 SWS | Übung (U) / 🗣 | Satzger, Benz, Schüritz |

Prüfungsveranstaltungen

| SS 2023 | 7900113 | Digital Services: Innovation & Business Models (HK - 15.08.2023) | Satzger |
| WS 23/24 | 7900215 | Digital Services: Innovation & Business Models - oral | Satzger |

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60min. schriftlichen Prüfung (Klausur).

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Leveraging data and digital technologies for business success is a key challenge for organizations as they need to

- get aware of the newly arising potential
- develop suitable digital services that are user-centric and individualized
- "servitize" their offering portfolio and business model
- transform their organizations

This course will equip students with concepts and methods to tackle this challenge along two dimensions: First, we will cover innovation as a concept as well as apply contemporary innovation methods (like Design Thinking, Open Innovation) to the services space. Second, we deal with leveraging innovation to develop new business models (including multi-partner concepts in platforms or ecosystems), to servitize existing business models (e.g., via product-service-systems), and to accordingly transform the organization.

The course links innovation and business model theories with practical examples and exercises. Students are asked to actively engage in the discussion.

Organisatorisches
The course will be offered in the form of a flipped classroom concept starting in summer semester 2023. The lecture will be recorded in advance and made available online. During the "in presence" sessions, the contents of the lecture will be applied and expanded on.

Literaturhinweise

5.71 Teilleistung: Digitale Signaturen [T-INFO-101280]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Dennis Hofheinz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Informatik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-INFO-101198 - Fortgeschrittene Themen der Kryptographie</td>
</tr>
<tr>
<td>Teilleistungsart</td>
<td>Prüfungsleistung mündlich</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>3</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

keine

Anmerkungen

Diese Lehrveranstaltung wird nicht mehr angeboten. Stand WS19/20.
Teilleistung: Digitale Transformation und Geschäftsmodelle [T-WIWI-108875]

Verantwortung: Dr. Daniel Jeffrey Koch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101507 - Innovationsmanagement
M-WIWI-101507 - Innovationsmanagement

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 2545103 Digitale Transformation und Geschäftsmodelle 2 SWS Seminar (S) Koch

Prüfungsveranstaltungen
SS 2023 7900284 Digitale Transformation und Geschäftsmodelle Weissenberger-Eibl

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (schriftliche Ausarbeitung) nach § 4(2), 3 SPO. Die Note setzt sich zu 75% aus der Note für die schriftliche Ausarbeitung und zu 25% aus der Note für das Referat zusammen.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch der Vorlesung Innovationsmanagement wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Digitale Transformation und Geschäftsmodelle
2545103, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
5.73 Teilleistung: Digitaltechnik und Entwurfsverfahren [T-INFO-103469]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-102978 - Digitaltechnik und Entwurfsverfahren

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
6
Notenskala
Drittelnoten
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24007</td>
<td>Digitaltechnik und Entwurfsverfahren</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Hanebeck</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500254</td>
<td>Digitaltechnik und Entwurfsverfahren</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500254</td>
<td>Digitaltechnik und Entwurfsverfahren</td>
<td>Karl, Tahoori</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.
Die Modulnote ist die Note der Klausur.
Durch die Bearbeitung von Übungsblättern kann ein Notenbonus von max. 0,4 Punkte (entspricht einem Notenschritt) erreicht werden. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Digitaltechnik und Entwurfsverfahren

<table>
<thead>
<tr>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>24007, SS 2023</td>
<td>Digitaltechnik und Entwurfsverfahren</td>
<td>3 SWS</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt
Der Inhalt der Lehrveranstaltung umfasst die Grundlagen der Informationsdarstellung, Zahlensysteme, Binärdarstellungen negativer Zahlen, Gleitkomma-Zahlen, Alphabete, Codes; Rechnerntechnologie: MOS-Transistoren, CMOS-Schaltungen; formale Schaltungsbeschreibungen, boolesche Algebra, Normalformen, Schaltungsoptimierung; Realisierungsformen von digitalen Schaltungen: Gatter, PLDs, FPGAs, ASICs; einfache Grundschaltungen: FlipFlop-Typen, Multiplexer, Halb/Voll-Addierer; Rechenwerke: Addierer-Varianten, Multiplizier-Schaltungen, Divisionsschaltungen; Mikroprogrammierung.
5.74 Teilleistung: Dynamic Macroeconomics [T-WIWI-109194]

Verantwortung: Prof. Dr. Johannes Brumm
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101478 - Innovation und Wachstum
M-WIWI-101496 - Wachstum und Agglomeration

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2560402</th>
<th>Dynamic Macroeconomics</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 📚</th>
<th>Brumm</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2560403</td>
<td>Übung zu Dynamic Macroeconomics</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Hußmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7900188 | Dynamic Macroeconomics | Brumm |

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.).

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Dynamic Macroeconomics
2560402, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

Literaturhinweise
Literatur und Skripte werden in der Veranstaltung angegeben.
5.75 Teilleistung: Economics of Innovation [T-WIWI-112822]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101478 - Innovation und Wachstum
M-WIWI-101514 - Innovationsökonomik

Teilleistung: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 2560236 Economics of Innovation 2 SWS Vorlesung (V) / Präsenz Otto
SS 2023 2560237 Exercises of Economics of Innovation 1 SWS Übung (Ü) / Präsenz Mirzoyan

Prüfungsveranstaltungen
SS 2023 7900107 Economics of Innovation Otto

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Durch eine kurze schriftliche Hausarbeit samt deren Präsentation in der Übung kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um maximal eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben.
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Es werden grundlegende mikro- und makroökonomische Kenntnisse vorausgesetzt, wie sie beispielsweise in den Veranstaltungen Volkswirtschaftslehre I und Volkswirtschaftslehre II vermittelt werden. Außerdem wird ein Interesse an quantitativ-mathematischer Modellierung vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Economics of Innovation 2560236, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

Lernziele:

Der/die Studierende ist in der Lage die Bedeutung alternativer Anreizmechanismen für die Entstehung und Verbreitung von Innovationen zu identifizieren.

lern die Zusammenhänge zwischen Marktform und der Entstehung von Innovationen zu verstehen und

kann begründen, in welchen Fällen Markteingriffe durch den Staat, bspw. in Form von Steuern und Subventionen legitimiert werden können und sie vor dem Hintergrund wohlfahrtsökonomischer Maßstäbe bewerten.

Lehrinhalt:

Folgende Themen werden in der Veranstaltung behandelt:

• Anreize zur Entstehung von Innovationen
• Patente
• Diffusion
• Wirkung von technologischem Fortschritt
• Innovationspolitik

Empfehlungen:

Arbeitsaufwand:

• Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
• Präsenzzeit: 30 Stunden
• Vor- und Nachbereitung der LV: 45.0 Stunden
• Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Prüfung:

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

In der Vorlesung haben Studierende die Möglichkeit, durch eine kurze schriftliche Hausarbeit samt deren Präsentation in der Übung eine auf die Klausurnote anrechenbare Leistung zu erbringen. Für diese Ausarbeitung werden Punkte vergeben. Wenn in der Kreditpunkte-Klausur die für ein Bestehen erforderliche Mindestpunktzahl erreicht wird, werden die in der veranstaltungsbegleitend erbrachten Leistung erzielten Punkte zur in der Klausur erreichten Punktzahl addiert. Eine Notenverschlechterung ist damit definitionsgemäß nicht möglich, eine Notenverbesserung nicht zwangsläufig, aber sehr wahrscheinlich (nicht jeder zusätzliche Punkt verbessert die Note; besser als 1 geht nicht). Die Ausarbeitungen können die Note "nicht ausreichend" in der Klausur dabei nicht ausgleichen.

Literaturhinweise

Auszug:

• Aghion, P., Howitt, P. (2009), The Economics of Growth, MIT Press, Cambridge MA.
5.76 Teilleistung: Efficient Energy Systems and Electric Mobility [T-WIWI-102793]

Verantwortung: PD Dr. Patrick Jochem
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101452 - Energiewirtschaft und Technologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungseinheit</th>
<th>Sprache</th>
<th>Ort</th>
<th>Termine</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>Englisch</td>
<td>Vorlesung (V) /</td>
<td>Jochem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Präsenz</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungseinheit</th>
<th>Sprache</th>
<th>Ort</th>
<th>Termine</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>Englisch</td>
<td>Fichtner</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>Englisch</td>
<td>Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Efficient Energy Systems and Electric Mobility
V 2581006, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
This lecture series combines two of the most central topics in the field of energy economics at present, namely energy efficiency and electric mobility. The objective of the lecture is to provide an introduction and overview to these two subject areas, including theoretical as well as practical aspects, such as the technologies, political framework conditions and broader implications of these for national and international energy systems.

- Understand the concept of energy efficiency as applied to specific systems
- Obtain an overview of the current trends in energy efficiency
- Be able to determine and evaluate alternative methods of energy efficiency improvement
- Overview of technical and economical stylized facts on electric mobility
- Judging economical, ecological and social impacts through electric mobility

Organisatorisches
s. Institutsaushang

Literaturhinweise
Wird in der Vorlesung bekanntgegeben.
5.77 Teilleistung: eFinance: Informationssysteme für den Wertpapierhandel [T-WIWI-110797]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2540454</th>
<th>eFinance: Informationssysteme für den Wertpapierhandel</th>
<th>2 SWS</th>
<th>Vorlesung (V) /</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540455</td>
<td>Übungen zu eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>1 SWS</td>
<td>Übung (Ü) /</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 💻 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch laufende Ausarbeitungen und Präsentationen von Aufgaben und eine Klausur (60 Minuten) am Ende der Vorlesungszeit. Das Punkteschema für die Gesamtbewertung wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

eFinance: Informationssysteme für den Wertpapierhandel
2540454, WS 23/24, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Literaturhinweise

Weiterführende Literatur:

5.78 Teilleistung: Einführung in die Bildfolgenauswertung [T-INFO-101273]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24684</td>
<td>2</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500031</td>
<td></td>
<td>Beyerer, Arens</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500099</td>
<td></td>
<td>Beyerer, Arens</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⚤ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 30 Minuten) nach §4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Bildfolgenauswertung

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>24684, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
5.79 Teilleistung: Einführung in die Stochastische Optimierung [T-WIWI-106546]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102832 - Operations Research im Supply Chain Management
M-WIWI-103289 - Stochastische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Rechnerübung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2550470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2550471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2550474</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Rechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900311</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung. Die Prüfung wird jedes Semester angeboten.

Voraussetzungen
Keine.

Informatik
5.80 Teilleistung: Einführung in Rechnernetze [T-INFO-102015]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>SS 2023</td>
<td>Einführung in Rechnernetze</td>
</tr>
<tr>
<td></td>
<td>SS 2023</td>
<td>Übung zu Einführung in Rechnernetze</td>
</tr>
<tr>
<td></td>
<td>SS 2023</td>
<td>Einführung in Rechnernetze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Empfehlungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in Rechnernetze
24519, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Diese Lehrveranstaltung soll Studierenden die theoretischen und praktischen Aspekte von Rechnernetzen vermitteln. Behandelt werden dabei Grundlagen der Nachrichtentechnik, generelle Protokollmechanismen und die Schichtenarchitektur bis hin zur Anwendungsschicht.

Lernziele
Studierende
- beherrschen die grundlegende Architekturen und Protokolle sowie den Aufbau von Kommunikationssystemen,
- sind mit der Zusammensetzung von Protokollen aus einzelnen Protokollmechanismen vertraut und konzipieren einfache Protokolle eigenständig
- kennen und verstehen das Zusammenspiel einzelner Kommunikationsschichten und Anwendungen

Studierende kennen die Einflüsse der physikalischen Grundlagen auf die Datenübertragung, wie beispielsweise Signale, deren Darstellung und Digitalisierung, sowie Möglichkeiten zur Mehrfachnutzung von Übertragungsmedien.

Studierende kennen und verstehen Dienste und Aufgaben der Transportschicht des ISO/OSI-Schichtenmodells. Sie kennen den grundlegenden Aufbau und die Funktionsweise von TCP (Staukontrolle, Flusskontrolle, Verbindungsmanagement) und UDP.

Literaturhinweise

Weiterführende Literatur
5.81 Teilleistung: Emerging Trends in Digital Health [T-WIWI-110144]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

Teilleistungsart	Prüfungsleistung anderer Art	Leistungspunkte	Notenskala	Turnus	Version
		4,5	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen

| SS 2023 | 2513404 | Seminar Emerging Trends in Digital Health (Bachelor) | 2 SWS | Seminar (S) / 📜 | Sunyaev, Toussaint, Brecker, Danylak |
| SS 2023 | 2513405 | Seminar Emerging Trends in Digital Health (Master) | 2 SWS | Seminar (S) / 📜 | Sunyaev, Toussaint, Brecker, Danylak |

Prüfungsveranstaltungen

| SS 2023 | 7900146 | Seminar Emerging Trends in Digital Health (Master) | Sunyaev |

Legende: 🖥 Online, 📜 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer Hausarbeit.

Voraussetzungen

Keine.

Anmerkungen

Die Veranstaltung wird in der Regel als Blockveranstaltung durchgeführt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar Emerging Trends in Digital Health (Bachelor)
2513404, SS 2023, 2 SWS, Im Studierendenportal anzeigen
Seminar (S) Präsenz/Online gemischt

Inhalt

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Seminar Emerging Trends in Digital Health (Master)
2513405, SS 2023, 2 SWS, Im Studierendenportal anzeigen
Seminar (S) Präsenz/Online gemischt

Inhalt

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
5.82 Teilleistung: Emerging Trends in Internet Technologies [T-WIWI-110143]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2513402 | Seminar Emerging Trends in Internet Technologies (Bachelor) | 2 SWS | Seminar (S) / 📅 | Sunyaev, Toussaint, Brecker, Danylak |
| SS 2023 | 2513403 | Seminar Emerging Trends in Internet Technologies (Master) | 2 SWS | Seminar (S) / 📅 | Sunyaev, Toussaint, Brecker, Danylak |

Prüfungsveranstaltungen

| SS 2023 | 7900128 | Seminar Emerging Trends in Internet Technologies (Master) | Sunyaev |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer Hausarbeit.

Voraussetzungen

Keine.

Anmerkungen

Die Veranstaltung wird in der Regel als Blockveranstaltung durchgeführt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Seminar Emerging Trends in Internet Technologies (Bachelor)</th>
<th>Seminar (S) Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2513402, SS 2023, 2 SWS, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Seminar Emerging Trends in Internet Technologies (Master)

<table>
<thead>
<tr>
<th>Seminar Emerging Trends in Internet Technologies (Master)</th>
<th>Seminar (S) Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2513403, SS 2023, 2 SWS, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
5.83 Teilleistung: Emissionen in die Umwelt [T-WIWI-102634]

Verantwortung: Ute Karl
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101412 - Industrielle Produktion III
M-WIWI-101471 - Industrielle Produktion II

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3,5
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
WS 23/24 2581962 Emissionen in die Umwelt 2 SWS Vorlesung (V) / Karl

Prüfungsveranstaltungen
SS 2023 7981962 Emissionen in die Umwelt Schultmann

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗾 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Emissionen in die Umwelt 2581962, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Gliederung:
Luftreinhaltung
 • Einführung, Begriffe und Definitionen
 • Quellen und Schadstoffe
 • Rechtlicher Rahmen des Immissionsschutzes
 • Technische Maßnahmen zur Emissionsminderung

Kreislaufwirtschaft und Recycling
 • Einführung, Rechtliche Grundlagen
 • Duale Systeme, Entsorgungslogistik
 • Recycling, Deponierung
 • Thermische und biologische Abfallbehandlung

Literaturhinweise
Wird in der Veranstaltung bekannt gegeben.
5.84 Teilleistung: Energie und Umwelt [T-WIWI-102650]

Verantwortung: Ute Karl
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101452 - Energiewirtschaft und Technologie
M-WIWI-101468 - Umwelt- und Ressourcenökonomie

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4,5
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

SS 2023 2581003 Energie und Umwelt 2 SWS Vorlesung (V) / Präsenz Karl
SS 2023 2581004 Übungen zu Energie und Umwelt 1 SWS Übung (Ü) / Präsenz Langenmayr, Fichtner, Kraft

Prüfungsveranstaltungen

SS 2023 7981003 Energie und Umwelt 7981004 Energie und Umwelt Fichtner
WS 23/24 7981003 Energie und Umwelt Fichtner

Legende: 📱 Online, 📖 Präsenz/Online gemischt, ⚫ Präsenz, ☒ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Energie und Umwelt
2581003, SS 2023. 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Vorlesung konzentriert sich auf die Umweltauswirkungen der energetischen Nutzung fossiler Brennstoffe und deren Bewertung. Die Themen umfassen:

- Grundlagen der Energieumwandlung
- Schadstoffentstehung bei der Verbrennung
- Maßnahmen zur Emissionsminderung bei fossil befeuerten Kraftwerken
- Externe Effekte der Energiebereitstellung (Lebenszyklusanalysen ausgewählter Energiesysteme)
- Umweltkommunikation bei Energiedienstleistungen (Stromkennzeichnung, Footprint)
- Integrierte Bewertungsmodelle zur Unterstützung der Europäischen Luftreinhaltestrategie ("Integrated Assessment Modelling")
- Kosten-Wirksamkeits-Analysen und Kosten-Nutzen-Analysen für Emissionsminderungsstrategien
- Monetäre Bewertung von externen Effekten (externe Kosten)

Literaturhinweise
Die Literaturhinweise sind in den Vorlesungsunterlagen enthalten (vgl. ILIAS)
5.85 Teilleistung: Energy Market Engineering [T-WIWI-107501]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101451 - Energiewirtschaft und Energiemärkte
- M-WIWI-103720 - eEnergy: Markets, Services and Systems

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
| SS 2023 | 2540464 | Energy Market Engineering | 2 SWS | Vorlesung (V) / 🗣 | Weinhardt |
| SS 2023 | 2540465 | Übung zu Energy Market Engineering | 1 SWS | Übung (U) / 🗣 | Semmelmann |

Prüfungsveranstaltungen
| SS 2023 | 79852 | Energy Market Engineering (Hauptklausur) | Weinhardt |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPOs).
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Frühere Bezeichnung bis einschließlich SS17: T-WIWI-102794 “eEnergy: Markets, Services, Systems”.
Die Veranstaltung wird neben den Modulen des IISM auch im Modul Energiewirtschaft und Energiemärkte des IIP angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energy Market Engineering
2540464, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise
5.86 Teilleistung: Energy Networks and Regulation [T-WIWI-107503]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101446 - Market Engineering
M-WIWI-103720 - eEnergy: Markets, Services and Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2540494</td>
<td>Energy Networks and Regulation</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Rogat, Miskiw</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540495</td>
<td>Übung zu Energy Networks and Regulation</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Rogat, Miskiw</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60min. Prüfung (Klausur) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Frühere Bezeichnung bis einschließlich SS17: T-WIWI-103131 "Regulierungsmanagement und Netzwirtschaft – Erfolgsfaktoren für den wirtschaftlichen Betrieb von Energienetzen"

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energy Networks and Regulation
2540494, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

Lernziele

Der / die Studierende

- versteht das Geschäftsmodell eines Netzbetreibers und kennt dessen zentrale Funktion im System der Energieversorgung.
- versteht die regulatorischen und betriebswirtschaftlichen Wechselwirkungen,
- kennt insbesondere das geltende Modell der Anreizregulierung mit seinen wesentlichen Bestandteilen und versteht dessen Implikationen für die Entscheidungen eines Netzbetreibers
- ist in der Lage, strittige Fragen und kontroverse Themen aus der Perspektive unterschiedlicher Stakeholder heraus zu analysieren und zu beurteilen.

Lehrinhalt

- Energienetze in Deutschland - eine heterogene Landschaft: groß vs. klein, städtisch vs. ländlich, TSO vs. DSO
- Konzessionswettbewerb
- Netzirtschaftliche Grundlagen eines liberalisierten Energiemarktes: Bilanzierung und Bilanzausgleich
- Hauptziele der Regulierung: faire Preisbestimmung und hohe Standards bei den Zugangsbedingungen
- Die sog. Anreizregulierung
- Der „Revenue-Cap“ und seine Anpassung in Abhängigkeit von bestimmten exogenen Faktoren
- Erste größere Reform der Anreizregulierung: Vorteile und Nachteile
- Netzentgelte: Berechnung und zugrundeliegende Prinzipien. Brauchen wir eine Reform der Netzentgeltsystematik und, falls ja, welche?
- (Arbiträre?) Übertragung netzfremder Aufgaben und Kosten auf das Netz: erneuerbare Energien und dezentrale Erzeugung
- Aktuelle Herausforderungen: der sog. Smart-Meter-Rollout

Literaturhinweise

5.87 Teilleistung: Energy Trading and Risk Management [T-WIWI-112151]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101451 - Energiewirtschaft und Energiemarkte

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3,5
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 2

Lehrveranstaltungen
SS 2023 2581020 Energy Trading and Risk Management 2 SWS Vorlesung (V) / K. Kraft, S. Fichtner

Prüfungsveranstaltungen
SS 2023 7981020 Energy Trading and Risk Management Fichtner
WS 23/24 7981020 Energy Trading and Risk Management Fichtner

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energy Trading and Risk Management
2581020, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

1. Einführung Märkte, Mechanismen, Zusammenhänge
2. Strommärkte (Handelsformen, Produkte Mechanismen)
3. System Regelleistung und Engpassmanagement
4. Kohlemärkte (Vorkommen, Angebot, Nachfrage, Akteure)
5. Investitionen und Kapazitätsmärkte
6. Öl- und Gasmärkte (Angebot, Nachfrage, Handel und Transport)
7. Planspiele
8. Risikomanagement in der Energiewirtschaft
Literaturhinweise
Weiterführende Literatur:
www.riskglossary.com
5.88 Teilleistung: Engineering Interactive Systems [T-WIWI-110877]

Verantwortung: Prof. Dr. Alexander Mädche
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-102806 - Service Innovation, Design & Engineering
- M-WIWI-104080 - Designing Interactive Information Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungspunkt</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>00006</td>
<td>Engineering Interactive Systems</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900195</td>
<td>Engineering Interactive Systems: AI & Wearables</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer einstündigen Klausur und der Durchführung eines Capstone Projektes.

Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Veranstaltung wird in englischer Sprache gehalten.
5.89 Teilleistung: Entrepreneurial Leadership & Innovation Management [T-WIWI-102833]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101507 - Innovationsmanagement

Teilleistungsart | Prüfungsleistung anderer Art
Leistungspunkte | 3
Notenskala | Drittelnoten
Turnus | Unregelmäßig
Version | 3

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine
5.90 Teilleistung: Entrepreneurship [T-WIWI-102864]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)
 M-WIWI-101507 - Innovationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2023	2545001	Entrepreneurship	2 SWS	Vorlesung (V) / 🧩	Terzidis, Dang
WS 23/24	2545001	Entrepreneurship	2 SWS	Vorlesung (V) / 🧩	Terzidis
WS 23/24	9005470	Entrepreneurship	SWS	Vorlesung (V) / 🗣	Terzidis

Prüfungsveranstaltungen

| SS 2023 | 7900002 | Entrepreneurship | Terzidis |
| SS 2023 | 7900192 | Entrepreneurship | Terzidis |

Legende: 💻 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Note ist die Note der schriftlichen Prüfung.
Den Studierenden wird durch gesonderte Aufgabenstellungen die Möglichkeit geboten einen Notenbonus zu erwerben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um maximal eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Entrepreneurship
2545001, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt
Inhalt
Schwerpunkte bilden hierbei die Einführung in Methoden zur Generierung innovativer Geschäftsideen, zur Übersetzung von Patenten in Geschäftskonzepte sowie allgemeine Grundlagen der Geschäftsmodellierung und Geschäftplanung. Insbesondere werden Ansätze wie Lean-Startup und Effectuation sowie Konzepte zur Finanzierung von jungen Unternehmen behandelt.
Teil der Vorlesung ist jeweils ein „KIT Entrepreneurship Talk“, in welchem erfahrene Gründer- und Unternehmerpersönlichkeiten von ihren Erfahrungen in der Praxis der Unternehmensgründung berichten.
Termine und Referenten werden rechtzeitig über die Homepage des EnTechno bekannt gegeben.

Lernziele:
Die Studierenden werden an die Thematik Entrepreneurship herangeführt. Nach erfolgreichem Besuch der Veranstaltung sollen sie einen Überblick über die Teilbereiche des Entrepreneurships haben und in der Lage sein, Grundkonzepte des Entrepreneurships zu verstehen und Schlüsselkonzepte anzuwenden.

Arbeitsaufwand:
- Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
- Präsenzzeit: 30 Stunden
- Vor- und Nachbereitung der LV: 45,0 Stunden
- Prüfung und Prüfungsvorbereitung: 15,0 Stunden

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Note ist die Note der schriftlichen Prüfung.
Durch die erfolgreiche Teilnahme an einer Fallstudie im Rahmen der Entrepreneurship Vorlesung kann ein Notenbonus erworben werden. Die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu 0,3 oder 0,4. Der Bonus gilt nur, wenn Sie die Prüfung mindestens mit 4,0 bestanden haben. Mehr Details werden in der Vorlesung bekannt gegeben. Die Teilnahme an der Fallstudie ist freiwillig.

Klausurtermin: tbd, voraussichtlich 22.06.2023, 18:00 - 19.10 Uhr

Organisatorisches
VL findet jeweils Di, 15:45 - 19:00 an folgenden Terminen statt:
18.04.2023
25.04.2023
02.05.2023
09.05.2023
16.05.2023
23.05.2023
06.06.2023
13.06.2023 (Prep Session)
22.06.2023 (Klausur, 18.00 - 19.10 Uhr)

Literaturhinweise
Füglistaller, Urs, Müller, Christoph und Volery, Thierry (2008): Entrepreneurship
Ries, Eric (2011): The Lean Startup
Inhalt

Schwerpunkte bilden hierbei die Einführung in Methoden zur Generierung innovativer Geschäftsideen, zur Übersetzung von Patenten in Geschäftsmodelle sowie allgemeine Grundlagen der Geschäftsmodellierung und Geschäftsplanung. Insbesondere werden Ansätze wie Lean-Startup und Effectuation sowie Konzepte zur Finanzierung von jungen Unternehmen behandelt.

Teil der Vorlesung ist jeweils ein „KIT Entrepreneurship Talk“, in welchem erfahrene Gründer- und Unternehmerpersönlichkeiten von ihren Erfahrungen in der Praxis der Unternehmensgründung berichten. Termine und Referenten werden rechtzeitig über die Homepage des EnTechnon bekannt gegeben.

Lernziele:
Die Studierenden werden an die Thematik Entrepreneurship herangeführt. Nach erfolgreichem Besuch der Veranstaltung sollen sie einen Überblick über die Teilbereiche des Entrepreneurships haben und in der Lage sein, Grundkonzepte des Entrepreneurships zu verstehen und Schlüsselkonzepte anzuwenden.

Arbeitsaufwand:
- Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
- Präsenzzeit: 30 Stunden
- Vor- und Nachbereitung der LV: 45.0 Stunden
- Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach §4(2), 1 SPO. Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach §4(2), 1 SPO. Die Note ist die Note der schriftlichen Prüfung.

Durch die erfolgreiche Teilnahme an einer Fallstudie im Rahmen der Entrepreneurship Vorlesung kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu 0,3 oder 0,4. Der Bonus gilt nur, wenn Sie die Prüfung mindestens mit 4,0 bestanden haben. Mehr Details werden in der Vorlesung bekannt gegeben.

Die Teilnahme an der Fallstudie ist freiwillig.

Klausurtermin: tba

Organisatorisches
VL findet jeweils Mo, 15:45 - 19:00 an folgenden Terminen statt:
23.10.2023
30.10.2023
06.11.2023
13.11.2023
20.11.2023
27.11.2023
04.12.2023
11.12.2023 (Prep Session)

Literaturhinweise
Füglistaller, Urs, Müller, Christoph and Volery, Thierry (2008): Entrepreneurship

Entrepreneurship
9005470, WS 23/24, SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt

Arbeitsaufwand für ECTS:
3 ECTS: Klausur.

Wichtig: Für dieses SQ-Seminar werden keine WIWIs zugelassen, da es bei Ihnen Teil des curricularen Angebots ist.

Studenten anderer Fakultäten die an der Vorlesung "Entrepreneurship" teilnehmen möchten, um 3 ECTS zu erhalten, müssen die Klausur mitschreiben.

Organisatorisches
Anmeldung unter studium.hoc.kit.edu

Literaturhinweise
Urs Fueglistaller, Christoph A. Müller, Thierry Volery: Entrepreneurship: Modelle - Umsetzung - Perspektiven (2008)
Eric Ries: The Lean Startup (2011)
Peter Drucker: Entrepreneurship & Innovation (1984)
5.91 Teilleistung: Entrepreneurship Seasonal School [T-WIWI-113151]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2500215 | Entrepreneurship Seasonal School | 2 SWS | Block (B) / 🗣 | Weimar, Terzidis |

Prüfungsveranstaltungen

| WS 23/24 | 7900146 | Entrepreneurship Seasonal School | Terzidis |

Legende: 🖥 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Die Note setzt sich aus der Präsentation und der schriftlichen Ausarbeitung zusammen. Details zur Ausgestaltung der Prüfungsleistung anderer Art werden im Rahmen der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Die Seasonal School richtet sich an fortgeschrittene Bachelor- und alle Masterstudierende (alle Fachrichtungen). Voraussetzung ist die Teilnahme am Auswahlverfahren.

Empfehlungen

Anmerkungen

Die Arbeitssprache der Seasonal School ist Englisch.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| V | Entrepreneurship Seasonal School | 2500215, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierenportal anzeigen | Block (B) | Präsenz |

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt
Während der Entrepreneurship Seasonal School entwickeln die Studierenden in Workshops in internationalen Teams eine Woche lang ein Geschäftsmodell basierend auf innovativen Technologien und gesellschaftlichen Problemstellungen.

Kursinhalt:
Die Entrepreneurship Seasonal School bringt Studierende aus verschiedenen Universitäten zusammen, um eine Woche lang ihr Wissen über digitales Unternehmertum im Gesundheitswesen zu vertiefen. Erleben Sie das Leben eines Unternehmers und lernen Sie, wie man Ressourcen für die Umsetzung einer Produkvision erlangt. Während einer Woche werden Sie eine Reihe von unternehmerischen Kompetenzen entwickeln, die für die Gründung eines erfolgreichen Unternehmens entscheidend sind. Unser Hauptaugenmerk liegt auf digitalen Unternehmungen im Gesundheitswesen, was Ihnen die Möglichkeit gibt, in den Bereich des Unternehmertums im Gesundheitswesen einzutauchen. Indem Sie ein tiefes Verständnis für die Bedürfnisse des Gesundheitswesens erlangen, werden Sie Kreativitätstechniken anwenden, um potenzielle Geschäftsideen zu entdecken, die einen Mehrwert für Patienten und Ärzte bieten. Darüber hinaus lernen Sie, wie Sie tragfähige Geschäftsmodelle entwickeln, sich mit Gesundheitsvorschriften auseinandersetzen und Ihre Idee vor einer Jury präsentieren.

Im WS 2023/24 wird das einwöchige Programm am KIT durchgeführt, mit Unterstützung der Eucor-Partner Universität Basel und Universität Straßburg.

Im Seminar arbeiten Sie in Teams von maximal 5 Personen an einem Projekt.

Lernziele:
Nach Besuch der Veranstaltung können Sie...

- die Rolle des Unternehmertums beschreiben,
- innovative und technologiebasierte Lösungen für gesellschaftliche Problemstellungen entwickeln,
- ein tragfähiges Geschäftsmodell für ein Problem entwickeln,
- eine Geschäftsidee vor einer Jury präsentieren,
- und werden befähigt, in multidisziplinären und multikulturellen Teams selbständig zu arbeiten

Organisatorisches
19.02.24 – 23.02.24, Details will be announced later. Registration via wiwi portal.
5.92 Teilleistung: Entrepreneurship-Forschung [T-WIWI-102894]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2545002</td>
<td>Entrepreneurship-Forschung</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗣</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900052</td>
<td>Entrepreneurship-Forschung</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Seminararbeit). Die Note ergibt sich aus der Bewertung der Seminararbeit und deren Präsentation, sowie der aktiven Beteiligung an der Seminarveranstaltung.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Entrepreneurship-Forschung

<table>
<thead>
<tr>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2545002</td>
<td>Seminar (S)</td>
<td>2</td>
<td>🗣</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Inhalt

Lernziele

Organisatorisches

The dates will be announced.

Registration is via the Wiwi-Portal.

Literaturhinweise

Will be announced in the seminar.
5.93 Teilleistung: Entwicklung Soziotechnischer Informationssysteme [T-WIWI-109249]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte 4,5
Notenskala Drittelnoten
Turnus Jedes Semester
Version 2

Lehrveranstaltungen
SS 2023 2512400 Praktikum Entwicklung Soziotechnischer Informationssysteme (Bachelor) 3 SWS Praktikum (P) / Online Sunyaev, Pandl, Goram, Leiser
SS 2023 2512401 Praktikum Entwicklung Soziotechnischer Informationssysteme (Master) 3 SWS Praktikum (P) / Online Sunyaev, Pandl, Goram, Leiser

Prüfungsveranstaltungen
SS 2023 7900173 Praktikum Entwicklung Soziotechnischer Informationssysteme (Master) Sunyaev

Legende: Online, Präsenz/Online gemischt, Präsenz; X Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer Implementierung sowie einer Hausarbeit, welche die Entwicklung und den Nutzen der Anwendung dokumentiert.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Entwicklung Soziotechnischer Informationssysteme (Bachelor)
2512400, SS 2023, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Praktikum Entwicklung Soziotechnischer Informationssysteme (Master)
2512401, SS 2023, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
5.94 Teilleistung: Entwicklung von Nachhaltigen Geschäftsmodellen [T-WIWI-112143]

Verantwortung: Prof. Dr. Marion Weissenberger-Eibl
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101507 - Innovationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🟢 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art.
Die Note setzt sich zu gleichen Teilen aus den Noten der schriftlichen Ausarbeitung (ca. 5 Seiten/Person) und der Präsentation der Ergebnisse zusammen.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch der Vorlesung Innovationsmanagement wird empfohlen.
5.95 Teilleistung: Ereignisdiskrete Simulation in Produktion und Logistik [T-WIWI-102718]

Verantwortung: Hon.-Prof. Dr. Sven Spieckermann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102805 - Service Operations
M-WIWI-102832 - Operations Research im Supply Chain Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550488</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900244</td>
<td>Ereignisdiskrete Simulation in Produktion und Logistik</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle anderer Art bestehend aus schriftlicher Ausarbeitung und mündlicher Abschlussprüfung von ca. 30-40 min Dauer (Prüfungsleistung anderer Art).

Voraussetzungen

Keine

Empfehlungen

Anmerkungen

Aufgrund der begrenzten Teilnehmerzahl ist eine Bewerbung erforderlich. Weitere Informationen entnehmen Sie der Internetseite der Veranstaltung.
Die Lehrveranstaltung wird voraussichtlich in jedem Sommersemester angeboten.
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ereignisdiskrete Simulation in Produktion und Logistik
2550488, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches

Den Bewerbungszeitraum finden Sie auf der Veranstaltungsseite im Lehre-Bereich unter dol.ior.kit.edu
Literaturhinweise

5.96 Teilleistung: Erfolgreiche Transformation durch Innovation [T-WIWI-111823]

Verantwortung: Malte Busch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101507 - Innovationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Drittelnoten</td>
<td>3</td>
<td>Unregelmäßig</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 2500018 Erfolgreiche Transformation durch Innovation 2 SWS Seminar (S) / Busch

Prüfungsveranstaltungen
SS 2023 7900025 Erfolgreiche Transformation durch Innovation Busch

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art bestehend aus einer Präsentation der Ergebnisse (50%) und einer Seminararbeit (Ausarbeitung in der Gruppe, mit ca. 5 Seiten/Person) (50%).

Empfehlungen
Der vorherige Besuch der Vorlesung Innovationsmanagement [2545015] wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Erfolgreiche Transformation durch Innovation
2500018, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
Weblink: https://itm.entechnon.kit.edu/192_1281.php
5.97 Teilleistung: Ergänzung Betriebliche Informationssysteme [T-WIWI-110346]

Verantwortung: Prof. Dr. Andreas Oberweis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101477 - Entwicklung betrieblicher Informationssysteme

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) oder ggf. mündlichen Prüfung (30 min.) nach der Studien- und Prüfungsordnung.

Voraussetzungen
Keine

Anmerkungen
Die Platzhalter-Teilleistung "Ergänzung Betriebliche Informationssysteme" ist mit Vorlesungen verknüpft, die nur temporär angeboten werden.

Die Teilleistung kann aber auch für die Anrechnung von externen Lehrveranstaltungen genutzt werden, deren Inhalt in den Bereich der Angewandten Informatik fällt, aber nicht einer anderen Lehrveranstaltung aus diesem Themenbereich zugeordnet werden kann. Eine Anrechnung ist jedoch nur dann möglich, wenn es sich um Leistungen aus einem vorangegangenen Studiengang oder aus einem Zeitstudium im Ausland handelt.
5.98 Teilleistung: Europäisches und Internationales Recht [T-INFO-101312]

Verantwortung: Ulf Brühann
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101217 - Öffentliches Wirtschaftsrecht

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Europäisches und Internationales Recht</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Brühann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Europäisches und Internationales Recht</td>
<td>Drei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Europäisches und Internationales Recht</td>
<td>Zufall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Europäisches und Internationales Recht

24666, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Präsenz

Inhalt

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt bei 3 Leistungspunkten 90 h, davon 22,5 Präsenz.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.
Organisatorisches

Achtung!

Die Termine von 08:00 - 18:00 Uhr beziehen sich jeweils auf die Raumbuchung des Seminarraumes Nr. 313 in der Vincenz-Prießnitz-Straße 3.

Die Block-Vorlesungen finden wie folgt statt (Update vom 02.05.2023):
Montag, den 08.05.2023, 09:30 - 17:30 Uhr (Mittagspause wird flexibel gehalten)
Montag, den 05.06.2023, 09:00 - 17:00 Uhr (Mittagspause wird flexibel gehalten)
Montag, den 03.07.2023, 09:00 - 17:00 Uhr (Mittagspause wird flexibel gehalten).

Literaturhinweise
Literatur wird in der Vorlesung angegeben.

Weiterführende Literatur
Erweiterte Literaturangaben werden in der Vorlesung bekannt gegeben.
5.99 Teilleistung: Experimentelle Wirtschaftsforschung [T-WIWI-102614]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Angewandte strategische Entscheidungen
- M-WIWI-101505 - Experimentelle Wirtschaftsforschung
- M-WIWI-103118 - Data Science: Data-Driven User Modeling
- M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstyp</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Lehrer/-innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2540489</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Prüfung</td>
<td>Knierim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Präsenz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540493</td>
<td>Übung zu ...</td>
<td>1</td>
<td>Übung</td>
<td>Greif-Winzrieth, Knierim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Präsenz gemischt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min).
Bei der erfolgreichen Teilnahme am Übungsbetrieb durch das Erreichen von 70% der Maximalpunktzahl der gestellten Übungsaufgabe(n) kann ein Bonus erworben werden.
Lieg die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelle Wirtschaftsforschung
2540489, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Literaturhinweise
- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2. Aufl. 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.
5.100 Teilleistung: Fallstudienseminar Innovationsmanagement [T-WIWI-102852]

Verantwortung: Prof. Dr. Marion Weissenberger-Eibl
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101507 - Innovationsmanagement
M-WIWI-101507 - Innovationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Seminarnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2545105</td>
<td>Fallstudienseminar Innovationsmanagement</td>
<td>2</td>
<td>Seminar (S) / 🗣</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Seminarnummer</th>
<th>Lehrveranstaltung</th>
<th></th>
<th></th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7900237</td>
<td>Fallstudienseminar Innovationsmanagement</td>
<td></td>
<td></td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (§4(2), 3 SPO).
Die Note setzt sich zu 70 % aus der Note für die schriftliche Ausarbeitung und zu 30% aus der Note für das Referat zusammen.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch der Vorlesung Innovationsmanagement wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fallstudienseminar Innovationsmanagement

2545105, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

Literaturhinweise
Werden in der ersten Veranstaltung bekannt gegeben.
5.101 Teilleistung: Financial Analysis [T-WIWI-102900]

Verantwortung: Dr. Torsten Luedecke
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 2530205 Financial Analysis 2 SWS Vorlesung (V) / 🗣 Luedecke
SS 2023 2530206 Übungen zu Financial Analysis 2 SWS Übung (Ü) / 🗣 Luedecke

Prüfungsveranstaltungen
SS 2023 7900075 Financial Analysis Luedecke
WS 23/24 7900059 Financial Analysis Ruckes, Luedecke

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Note ist das Ergebnis der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse in Finanzwirtschaft und Rechnungswesen sowie Grundlagen der Unternehmensbewertung vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Financial Analysis
2530205, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise
5.102 Teilleistung: Financial Econometrics [T-WIWI-103064]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101638 - Ökonometrie und Statistik I
M-WIWI-101639 - Ökonometrie und Statistik II

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsfeld</th>
<th>Semesterwochenstunden (SWS)</th>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2520022</td>
<td>Financial Econometrics I</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Schienle, Buse</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2520023</td>
<td>Übungen zu Financial Econometrics I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Schienle, Buse</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltungsfeld</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900223</td>
<td>Financial Econometrics Nachklausur</td>
<td>Schienle</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900123</td>
<td>Financial Econometrics II Nachklausur</td>
<td>Schienle</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900126</td>
<td>Financial Econometrics</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Die Veranstaltung findet in Englischer Sprache statt.

Anmerkungen
Die nächste Vorlesung findet im Wintersemester 2022/23 statt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teil­leistung:

Financial Econometrics I
2520022, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Lernziele:

Der/die Studierende

- besitzt umfangreiche Kenntnisse finanzökonomischer Schätz- und Testmethoden
- ist in der Lage diese mit Hilfe statistischer Software umzusetzen und empirische Problemstellungen kritisch zu analysieren

Inhalt:
ARMA, ARIMA, ARFIMA, (Nicht)stationarität, Kausalität, Kointegration ARCH/GARCH, stochastische Volatilitätsmodelle, Computerbasierte Übungen

Voraussetzungen:

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 65 Stunden
Prüfung und Prüfungsvorbereitung: 40 Stunden

Literaturhinweise
Additional literature will be discussed in the lecture.
5.103 Teilleistung: Financial Econometrics II [T-WIWI-110939]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101638 - Ökonometrie und Statistik I
- M-WIWI-101639 - Ökonometrie und Statistik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursschlüssel</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung (V/U)</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2521302</td>
<td>Financial Econometrics II</td>
<td>2</td>
<td>Vorschung/V</td>
<td>Schienle, Buse</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2521303</td>
<td>Übung zu Financial Econometrics II</td>
<td>1</td>
<td>Übung/U</td>
<td>Buse, Schienle</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursschlüssel</th>
<th>Veranstaltung</th>
<th>Prüfungsart</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900081</td>
<td>Financial Econometrics II</td>
<td>Prüfung</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✖ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Minuten). Bei geringer Teilnehmerzahl wird stattdessen eine mündliche Prüfung durchgeführt.

Voraussetzungen
Keine

Empfehlungen
Es werden inhaltliche Kenntnisse der Veranstaltung "Financial Econometrics" vorausgesetzt.

Anmerkungen
Die Veranstaltung findet in englischer Sprache statt.
Die nächste Vorlesung findet im Sommersemester 2023 statt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung: Financial Econometrics II

2521302, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Lernziele:

- besitzt umfangreiche Kenntnisse weiterführender finanzökonometrischer Schätz- und Testmethoden
- ist in der Lage diese mit Hilfe statistischer Software umzusetzen und empirische Probleme kritisch zu analysieren

Inhalt:

ARCH/GARCH, stochastische Volatilitätsmodelle, Assetpricing Modelle, Hochfrequenzdaten, Computerbasierte Übungen

Voraussetzungen:

Es werden inhaltliche Kenntnisse der Veranstaltung *Financial Econometrics* [2520022] vorausgesetzt.

Arbeitsaufwand:

- Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
- Präsenzzeit: 30 Stunden
- Vor-/Nachbereitung: 65 Stunden
- Prüfung und Prüfungsvorbereitung: 40 Stunden

Organisatorisches

jedes Sommersemester
Literaturhinweise
Additional literature will be discussed in the lecture.
5.104 Teilleistung: Finanzintermediation [T-WIWI-102623]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101453 - Angewandte strategische Entscheidungen
M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2
M-WIWI-101502 - Ökonomische Theorie und ihre Anwendung in Finance

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsleistung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Organisatorisches</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2530232</td>
<td>Finanzintermediation</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Ruckes</td>
<td></td>
</tr>
<tr>
<td>WS 23/24 2530233</td>
<td>Übung zu Finanzintermediation</td>
<td>1 SWS</td>
<td>Übung (Ü) / Ruckes, Benz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Prüfungsleistung</th>
<th>Organisatorisches</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 7900078</td>
<td>Finanzintermediation</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WS 23/24 7900063</td>
<td>Finanzintermediation</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🖇 Präsenz/Online gemischt, 🔴 Präsenz; ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Finanzintermediation
2530232, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Organisatorisches
Terminankündigungen des Instituts beachten

Literaturhinweise
Weiterführende Literatur:
5.105 Teilleistung: Formale Systeme [T-INFO-101336]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100799 - Formale Systeme

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>24086</th>
<th>Formale Systeme</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Beckert, Ulbrich, Weigl</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7500009 | Formale Systeme WS 22/23 - Nachklausur | Beckert |
| WS 23/24 | 7500036 | Formale Systeme | Beckert |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 der SPO.
Zusätzlich werden Zwischentests und Praxisaufgaben angeboten, für die ein Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben werden. Der erlangte Notenbonus wird auf eine bestandene schriftliche Prüfung (Klausur) im gleichen Semester angerechnet. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.

Empfehlungen
Der erfolgreiche Abschluss des Moduls Theoretische Grundlagen der Informatik wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Formale Systeme

24086, WS 23/24, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

- **Statische Modellierung und Verifikation**

 Aufbauend auf den aussagenlogischen Fall werden Syntax, Semantik der Prädikatenlogik eingeführt. Es werden zwei Kalküle behandelt, z.B. Resolutions-, Sequenzen-, Tableau- oder Hilbertkalkül. Wobei in einem Fall ein Beweis der Korrektheit und Vollständigkeit geführt wird.

 Die Brücke zwischen Theorie und Praxis soll geschlagen werden durch die Behandlung einer gängigen auf der Prädikatenlogik fußenden Spezifikationssprache, wie z.B. OCL, JML oder ähnliche. Zusätzlich kann auf automatische oder interaktive Beweise eingegangen werden.

- **Dynamische Modellierung und Verifikation**

 Als Spezialisierung der modalen Logiken wird eine temporale modale Logik in Syntax und Semantik eingeführt, z.B. LTL oder CTL.

 Es wird der Zusammenhang hergestellt zwischen Verhaltensbeschreibungen durch omega-Automaten und durch Formeln temporalen Logiken.

 Die Brücke zwischen Theorie und Praxis soll geschlagen werden durch die Behandlung eines Modellprüfungsverfahrens (model checking).

Lernziele:
Der Studierende soll in die Grundbegriffe der formalen Modellierung und Verifikation von Informatiksystemen eingeführt werden.
Der Studierende soll die grundlegenden Definitionen und ihre wechselseitigen Abhängigkeiten verstehen und anwenden lernen.
Der Studierende soll für kleine Beispiele eigenständige Lösungen von Spezifikationsaufgaben finden können, gegebenfalls mit Unterstützung entsprechender Softwarewerkzeuge.
Der Studierende soll für kleine Beispiele selbständig Verifikationsaufgaben lösen können, gegebenfalls mit Unterstützung entsprechender Softwarewerkzeuge.

Literaturhinweise
Vorlesungsskriptum 'Formale Systeme',
User manuals oder Bedienungsanleitungen der benutzten Werkzeuge (SAT-solver, Theorembeweiser, Modellprüfungsverfahren (model checker)).

Weiterführende Literatur
Wird in der Vorlesung bekannt gegeben.
5.106 Teilleistung: Formale Systeme II: Anwendung [T-INFO-101281]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von:
- M-INFO-100744 - Formale Systeme II: Anwendung
- M-INFO-101201 - Software-Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2400093 | Formale Systeme II - Anwendung | 3 SWS | Vorlesung (V) / 🗣️ | Ulbrich, Beckert |

Prüfungsveranstaltungen

| SS 2023 | 7500006 | Formale Systeme II: Anwendung | Beckert |

Legende: 🖥 Online, ⛔ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung über die belegten Vorlesungen nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.

Empfehlungen

Der vorherige Besuch des Stammoduls "Formale Systeme" wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Formale Systeme II - Anwendung</th>
<th>2400093, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V) Präsenz</td>
<td></td>
</tr>
</tbody>
</table>

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt

Nachweis:

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Lerninhalten:

Methoden für die formale Spezifikation und Verifikation - zumeist auf der Basis von Logik und Deduktion - haben einen hohen Entwicklungsstand erreicht. Es ist zu erwarten, dass sie zukünftig traditionelle Softwareentwicklungsmethoden ergänzen und teilweise ersetzen werden.

Nahezu sämtliche formale Spezifikations- und Verifikationsverfahren haben zwar die gleichen theoretisch-logischen Grundlagen, wie man sie etwa in der Vorlesung "Formale Systeme" kennenlernt. Zum erfolgreichen praktischen Einsatz müssen die Verfahren aber auf die jeweiligen Anwendungen und deren charakteristischen Eigenschaften abgestimmt sein. An die Anwendung angepasst sein müssen dabei sowohl die zur Spezifikation verwendeten Sprachen als auch die zur Verifikation verwendeten Kalküle.

Auch stellt sich bei der praktischen Anwendung die Frage nach der Skalierbarkeit, Effizienz und Benutzbarkeit (Usability) der Verfahren und Werkzeuge.

Beispiele für Methoden und Werkzeuge, die vorgestellt werden können, sind:

- Verifikation funktionaler Eigenschaften imperativer und objekt-orientierter Programme (KeY-System)
- Systemmodellierung durch Verfeinerung (Event-B mit Rodin)
- (Probabilistisches) Model Checking (SPIN und PRISM)
- Interaktives Theorembeweisen in Logiken höherer Stufe (Isabelle/HOL)
- Techniken zur statischen Analyse von Programmen (bspw. Abstrakte Interpretation)
- Beweise von Programmeigenschaften durch Typsysteme
- Software Bounded Model Checking (bspw. JBJMC)
- Spezifikation und Verifikation von Sicherheitseigenschaften (KeY, JIF)

Voraussetzungen:

Empfehlungen:

Lernziele:

Organisatorisches

https://formal.kastel.kit.edu/teaching/FormSys2SoSe2023/
5.107 Teilleistung: Formale Systeme II: Theorie [T-INFO-101378]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100841 - Formale Systeme II: Theorie
M-INFO-101201 - Software-Systeme

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (§ 4 Abs. 2 Nr. 2 der SPO).

Voraussetzungen
Keine
5.108 Teilleistung: Fortgeschrittene Stochastische Optimierung [T-WIWI-106548]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung
M-WIWI-103289 - Stochastische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7900034 | Fortgeschrittene Stochastische Optimierung | Rebennack |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 Minuten). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen
Keine

Verantwortung: Prof. Dr. Maxim Ulrich
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Erfolgskontrolle(n)
Due to the professor’s research sabbatical, the BSc module “Financial Data Science” and MSc module “Foundations for Advanced Financial -Quant and -Machine Learning Research” and the MSc module “Advanced Machine Learning and Data Science” along with the respective examinations will not be offered in SS2023. Bachelor and Master thesis projects are not affected and will be supervised.

The module examination is an alternative exam assessment with a maximum score of 100 points to be achieved. These points are distributed over 4 worksheets to be submitted during the semester. The worksheets cover the respective material of the module and are handed out, worked on and assessed in lecture weeks 3 (10 points), 6 (20 points), 9 (30 points) and 12 (40 points).

The module-wide exam (all 4 worksheets) must be taken in the same semester.

The worksheets are a mixture of analytical tasks and programming tasks with financial data.

Empfehlungen

- Strongly recommended to have good knowledge in financial econometrics (MLE, OLS, GLS, ARMA-GARCH), mathematics (differential equations, difference equations and optimization), investments (CAPM, factor models), asset pricing (SDF, SDF pricing), derivatives (Black-Scholes, risk-neutral pricing), and programming of statistical concepts (Java or R or Python or Matlab or C or ...)
- Strongly recommended to have a strong interest for interdisciplinary research work in statistics, programming, applied math and financial economics.
- Students lacking the prior knowledge might find the resources of the Chair helpful: www.youtube.com/c/cram-kit.

Anmerkungen
The course is offered every second year.
5.110 Teilleistung: Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie [T-INFO-101262]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Hon.-Prof. Dr. Uwe Spetzger

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100725 - Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24678</td>
<td>Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Spetzger</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>24139</td>
<td>Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Spetzger</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500145</td>
<td>Gehirn und zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie</td>
<td>Spetzger</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500118</td>
<td>Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie</td>
<td>Spetzger</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 45 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine

Empfehlungen

Der Besuch der Praktika und Seminare im Bereich Medizintechnik am Institut ist empfehlenswert, da erste praktische und theoretische Erfahrungen in den vielen unterschiedlichen Bereichen vermittelt und vertieft werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>24678, SS 2023, 2 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt

Die Lehrveranstaltung vermittelt einen Überblick über die Neuromedizin und bewirkt ein grundsätzliches Verständnis für die Sinnes- und Neurophysiologie, was eine wichtige Schnittstelle zu den innovativen Forschungsgebieten der Neuroprothetik (optische, akustische Prothesen) darstellt. Zudem besteht hier ebenso eine enge Anbindung zu den motorischen Systemen in der Robotik. Weitere Verknüpfungen bestehen zu den Bereichen der Bildgebung und Bildverarbeitung, der intraoperativen Unterstützungssysteme. Es wird ein Praxisbezug hergestellt sowie konkrete Anwendungsbeispiele in der medizinischen Diagnostik und Therapie dargestellt.

Lernziele:

Arbeitsaufwand: ca. 40 Stunden

Gehirn und Zentrales Nervensystem: Struktur, Informationtransfer, Reizverarbeitung, Neurophysiologie und Therapie

24139, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Lehrveranstaltung vermittelt einen Überblick über die Neuromedizin und bewirkt ein grundsätzliches Verständnis für die Sinnes- und Neurophysiologie, was eine wichtige Schnittstelle zu den innovativen Forschungsgebieten der Neuroprothetik (optische, akustische Prothesen) darstellt. Zudem besteht hier ebenso eine enge Anbindung zu den motorischen Systemen in der Robotik. Weitere Verknüpfungen bestehen zu den Bereichen der Bildgebung und Bildverarbeitung, der intraoperativen Unterstützungssysteme. Es wird ein Praxisbezug hergestellt sowie konkrete Anwendungsbeispiele in der medizinischen Diagnostik und Therapie dargestellt.

Lernziele:

Arbeitsaufwand: 40 Stunden
Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung
M-WIWI-102832 - Operations Research im Supply Chain Management
M-WIWI-103289 - Stochastische Optimierung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Unregelmäßig
Version: 1

Lehrveranstaltungen

| WS 23/24 | 2550138 | Gemischt-ganzzahlige Optimierung I | 2 SWS | Vorlesung (V) / 🗣 | Stein |
| WS 23/24 | 2550139 | Übung zu Gemischt-ganzzahlige Optimierung I | SWS | Übung (Ü) / 🗣 | Stein, Beck |

Prüfungsveranstaltungen

| WS 23/24 | 7900180_WS2324_HK | Gemischt-ganzzahlige Optimierung I | | Stein |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Gemischt-ganzzahlige Optimierung II [25140] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkungen
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (kop.ior.kit.edu) nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gemischt-ganzzahlige Optimierung I
2550138, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Bei der Modellierung vieler Optimierungsprobleme aus Wirtschafts-, Ingenieur- und Naturwissenschaften treten sowohl kontinuierliche als auch diskrete Variablen auf. Beispiele sind das energieoptimale Design eines chemischen Prozesses, bei dem verschiedene Reaktoren wahlweise ein- oder ausgeschaltet werden können oder die Portfolio-Optimierung unter Anzahlbeschränkungen an die Wertpapiere. Für die algorithmische Identifizierung von Optimalpunkten solcher Probleme ist ein Zusammenspiel von Ideen der diskreten und der kontinuierlichen Optimierung notwendig.

Die Vorlesung konzentriert sich auf gemischt-ganzzahlige lineare Optimierungsprobleme und ist wie folgt aufgebaut:

- Einführung, Lösbarkeit und grundlegende Konzepte
- LP-Relaxierung und Fehlerschranken für Rundungen
- Branch-and-Bound-Verfahren
- Gomorys Schnittebenen-Verfahren
- Benders-Dekomposition

Die zur Vorlesung angebotene Übung bietet unter anderem Gelegenheit, einige Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkung:
Die Behandlung von gemischt-ganzzahligen nichtlinearen Optimierungsproblemen bildet den Inhalt der Vorlesung "Gemischt-ganzzahlige Optimierung II".

Lernziele:
Der/die Studierende

- kennt und versteht die Grundlagen der linearen gemischt-ganzzahligen Optimierung,
- ist in der Lage, moderne Techniken der linearen gemischt-ganzzahligen Optimierung in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

- J. Kallrath: Gemischt-ganzzahlige Optimierung, Vieweg, 2002
- D. Li, X. Sun: Nonlinear Integer Programming, Springer, 2006
5.112 Teilleistung: Gemischt-ganzzahlige Optimierung II [T-WIWI-102720]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101473 - Mathematische Optimierung
- M-WIWI-102832 - Operations Research im Supply Chain Management
- M-WIWI-103289 - Stochastische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Gemischt-ganzzahlige Optimierung I [2550138] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkungen
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (kop.ior.kit.edu) nachgelesen werden.
5.113 Teilleistung: Geometrische Optimierung [T-INFO-101267]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100730 - Geometrische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7500230 | Geometrische Optimierung | Prautzsch |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20-30 Minuten) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.
5.114 Teilleistung: Geschäftsmodelle im Internet: Planung und Umsetzung [T-WIWI-102639]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102806 - Service Innovation, Design & Engineering

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine
5.115 Teilleistung: Geschäftsplanung für Gründer [T-WIWI-102865]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Form</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2545109</td>
<td>Business Planning for Founders</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗣️</td>
<td>Terzidis, Martjan</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2545109</td>
<td>Business Planning for Founders</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗣️</td>
<td>Martjan, Terzidis</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900234</td>
<td>Business Planning for Founders</td>
<td>Terzidis</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900023</td>
<td>Business Planning for Founders</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art.
Die Note setzt sich aus der Präsentation und der schriftlichen Ausarbeitung zusammen.

Voraussetzungen

Keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Business Planning for Founders

<table>
<thead>
<tr>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Form</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>2545109</td>
<td>Business Planning for Founders</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗣️</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Kursinhalt:

Lernziele

Nach Abschluss des Kurses sind die Kursteilnehmer in der Lage:

- Einem Design Thinking Prozess zu folgen
- Zu verstehen, wie Prototypen entwickelt werden
- Eine solide Value Proposition für einen Zielkunden zu entwickeln
- Geschäftsdenken basierend auf realen Use Cases im Bereich IT-Security zu erstellen
- Ein Geschäftsmodell mit dem Tool Business Model Canvas zu entwickeln
- Ihre Geschäftsideen zu pitchen

Informationen zum Seminar:

Organisatorisches
Tuesday, 18.04.2023
Tuesday, 02.05.2023
Tuesday, 16.05.2023
Registration is via the Wiwi-Portal.
In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation. The seminars will be held in English.

Business Planning for Founders
2545109, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Kursinhalt:

Informationen zum Seminar:

Zielgruppe: Masterstudierende

Organisatorisches
Registration is via the Wiwi-Portal.
In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation. The seminars will be held in English.
5.116 Teilleistung: Geschäftspolitik der Kreditinstitute [T-WIWI-102626]

Verantwortung: Prof. Dr. Wolfgang Müller
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
 M-WIWI-101483 - Finance 2

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Vorlesung wird im Wintersemester 2021/22 zum letzten Mal angeboten.
5.117 Teilleistung: Global Manufacturing [T-WIWI-112103]

Verantwortung: Dr. Henning Sasse
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101412 - Industrielle Produktion III
M-WIWI-101471 - Industrielle Produktion II

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungsveranstaltung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2581956</td>
<td>Global Manufacturing</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Sasse</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Prüfungsveranstaltung</th>
<th>Lehrveranstaltung</th>
<th>Vorlesung (V) / Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981956</td>
<td>Global Manufacturing</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Vorlesung wird erstmals im Wintersemester 2022/23 gehalten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Global Manufacturing
2581956, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
- Grundlagen des internationalen Unternehmens
- Formen der internationalen Wertschöpfung und Kooperation
- Standortauswahl
- Kostenmotivierte Internationalisierung und Standortwahl
- Absatzmotivierte Internationalisierung und Standortwahl
- Herausforderungen, Risiken und Risikominimierung
- Management internationaler Produktionsstandorte
- Formen und Fallbeispiele der internationalen Produktion

Organisatorisches
Blockveranstaltung, siehe Homepage

Literaturhinweise
Wird in der Veranstaltung bekannt gegeben.
5.118 Teilleistung: Globale Optimierung I [T-WIWI-102726]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2550134</th>
<th>Globale Optimierung I</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900205_SS2023_HK</td>
<td>Globale Optimierung I</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900004_WS2324_NK</td>
<td>Globale Optimierung I</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung II" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V
Globale Optimierung I
2550134, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

Die Vorlesung behandelt Verfahren zur globalen Optimierung von konvexen Funktionen unter konvexen Nebenbedingungen. Sie ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Lösbareheit
- Optimalität in der konvexen Optimierung
- Dualität, Schranken und Constraint Qualifications
- Algorithmen (Schnittebenenverfahren von Kelley, Verfahren von Frank-Wolfe, primal-duale Innere-Punkte-Methoden)

Die zur Vorlesung angebotene Übung bietet unter anderem Gelegenheit, einige Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkung:
Die Behandlung nichtkonvexer Optimierungsprobleme bildet den Inhalt der Vorlesung "Globale Optimierung II". Die Vorlesungen "Globale Optimierung I" und "Globale Optimierung II" werden nacheinander im selben Semester gelesen.

Lernziele:
Der/die Studierende

- kennt und versteht die Grundlagen der deterministischen globalen Optimierung im konvexen Fall,
- ist in der Lage, moderne Techniken der deterministischen globalen Optimierung im konvexen Fall in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
5.119 Teilleistung: Globale Optimierung I und II [T-WIWI-103638]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
9
Notenskala
Drittelnoten
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2550134</td>
<td>Globale Optimierung I</td>
<td>2</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Stein</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2550135</td>
<td>Übung zu Globale Optimierung I und II</td>
<td>2</td>
<td>Übung (U) / 🗣️</td>
<td>Stein, Beck</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2550136</td>
<td>Globale Optimierung II</td>
<td>2</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Organisator</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900207_SS2023_HK</td>
<td>Globale Optimierung I und II</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900006_WS2324_NK</td>
<td>Globale Optimierung I und II</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 🗣️ Präsenz, X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Globale Optimierung I
2550134, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

Die Vorlesung behandelt Verfahren zur globalen Optimierung von konvexen Funktionen unter konvexen Nebenbedingungen. Sie ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Lösbarkeit
- Optimalität in der konvexen Optimierung
- Dualität, Schranken und Constraint Qualifications
- Algorithmen (Schnittstellenverfahren von Kelley, Verfahren von Frank-Wolfe, primal-duale Innere-Punkte-Methoden)

Die zur Vorlesung angebotene Übung bietet unter anderem Gelegenheit, einige Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkung:
Die Behandlung nichtkonvexer Optimierungsprobleme bildet den Inhalt der Vorlesung "Globale Optimierung II". Die Vorlesungen "Globale Optimierung I" und "Globale Optimierung II" werden nacheinander im selben Semester gelesen.

Lernziele:
Der/die Studierende

- kennt und versteht die Grundlagen der deterministischen globalen Optimierung im konvexen Fall,
- ist in der Lage, moderne Techniken der deterministischen globalen Optimierung im konvexen Fall in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
Literaturhinweise

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
5.120 Teilleistung: Globale Optimierung II [T-WIWI-102727]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2550136</th>
<th>Globale Optimierung II</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Stein</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>7900206_SS2023_HK</th>
<th>Globale Optimierung II</th>
<th>Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7900005_WS2324_NK</td>
<td>Globale Optimierung II</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung I" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt

Die Vorlesung behandelt Verfahren zur globalen Optimierung von nichtkonvexen Funktionen unter nichtkonvexen Nebenbedingungen. Sie ist wie folgt aufgebaut:

- Einführende Beispiele
- Konvexe Relaxierung
- Intervallarithmetik
- Konvexe Relaxierung per alphaBB-Verfahren
- Branch-and-Bound-Verfahren
- Lipschitz-Optimierung

Die zur Vorlesung angebotene Übung bietet unter anderem Gelegenheit, einige Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkung:
Die Behandlung konvexer Optimierungsprobleme bildet den Inhalt der Vorlesung "Globale Optimierung I". Die Vorlesungen "Globale Optimierung I" und "Globale Optimierung II" werden nacheinander im selben Semester gelesen.

Lernziele:
Der/die Studierende

- kennt und versteht die Grundlagen der deterministischen globalen Optimierung im nichtkonvexen Fall,
- ist in der Lage, moderne Techniken der deterministischen globalen Optimierung im nichtkonvexen Fall in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
Teilleistung: Graph Theory and Advanced Location Models [T-WIWI-102723]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung
M-WIWI-102832 - Operations Research im Supply Chain Management
M-WIWI-103289 - Stochastische Optimierung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Unregelmäßig
Version: 2

Lehrveranstaltungen
WS 23/24 2500007 Übungen zu Graph Theory and Advanced Location Models 1,5 SWS Übung (Ü) / 🕐 Bakker
WS 23/24 2550484 Graph Theory and Advanced Location Models 3 SWS Vorlesung (V) / 🕐 Nickel
WS 23/24 2550485 Übungen zu Graph Theory and Advanced Location Models 1 SWS Übung (Ü) / Dunke, Bindewald

Prüfungsveranstaltungen
WS 23/24 7900033 Graph Theory and Advanced Location Models 3 SWS Vorlesung (V) / 🕐 Nickel

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).
Die Prüfung wird im Semester der Vorlesung und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Graph Theory and Advanced Location Models
2550484, WS 23/24, 3 SWS, Sprache: Englisch, Im Studierenendonportal anzeigen

Inhalt
Literaturhinweise
• Jungnickel: Graphs, Networks and Algorithms, 2nd edition, Springer, 2005
• Diestel: Graph Theory, 3rd edition, Springer, 2006
• Bondy, Murty: Graph Theory, Springer, 2008
• Nickel, Puerto: Location Theory, Springer, 2005
• Drezner: Facility Location – Applications and Theory, 2nd edition, Springer, 2005
5.122 Teilleistung: Growth and Development [T-WIWI-112816]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101478 - Innovation und Wachstum
M-WIWI-101496 - Wachstum und Agglomeration

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Akronym</th>
<th>ECTS</th>
<th>Veranstaltungsart</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Wachstum und Entwicklung</td>
<td>2561503</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Deutsch/Englisch</td>
<td>Ott</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Übung zu Wachstum und Entwicklung</td>
<td>2561504</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td></td>
<td>Völkle, Ott, Zoroglu</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Akronym</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Wachstum und Entwicklung</td>
<td>7900105</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen
Keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wachstum und Entwicklung

<table>
<thead>
<tr>
<th>Akronym</th>
<th>WS</th>
<th>SWS</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>2561503</td>
<td>23/24</td>
<td>2</td>
<td>Deutsch/Englisch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Vorlesung (V)
Präsenz
Inhalt
Die endogene Wachstumstheorie, oder die moderne Wachstumstheorie ist eine makroökonomische Theorie, die erklärt, wie sich aus wirtschaftlichen Aktivitäten technischer Fortschritt ergibt und wie sich aus diesem Fortschritt langfristiges Wirtschaftswachstum ergibt.

Lernziele:
Der/die Studierende versteht, analysiert und bewertet ausgewählte Modelle der endogenen Wachstumstheorie.

Lehrinhalt:
Folgende Themen werden in der Veranstaltung behandelt:

• Die intertemporale Verbrauchsentcheidung
• Wachstum bei gegebener Sparquote: Solow
• Wachstumsmodelle mit endogener Sparquote: Ramsey
• Wachstum und Erschöpfbare Ressourcen
• Grundlegende Modelle endogenen Wachstums
• Humankapital und wirtschaftliches Wachstum
• Modellierung von technologischem Fortschritt
• Vielfaltsmodelle
• Schumpeterianisches Wachstum
• Gerichteteter technologischer Fortschritt
• Diffusion von Technologien

Empfehlungen:

Arbeitsaufwand:
• Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
• Präsenzzeit: 30 Stunden
• Vor- und Nachbereitung der LV: 45.0 Stunden
• Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

In der Vorlesung haben Studierende die Möglichkeit, durch eine kurze schriftliche Hausarbeit samt deren Präsentation in der Übung eine auf die Klausurnote anrechenbare Leistung zu erbringen. Für diese Ausarbeitung werden Punkte vergeben. Wenn in der Kreditpunkte-Klausur die für ein Bestehen erforderliche Mindestpunktzahl erreicht wird, werden die in der veranstaltungsbeigefüllt erbrachten Leistung erzielten Punkte zur in der Klausur erreichten Punktzahl addiert. Eine Notenverschlechterung ist damit definitionsgemäß nicht möglich, eine Notenverbesserung nicht zwangsläufig, aber sehr wahrscheinlich (nicht jeder zusätzliche Punkt verbessert die Note; besser als 1 geht nicht). Die Ausarbeitungen können die Note “nicht ausreichend” in der Klausur dabei nicht ausgleichen.

Literaturhinweise
Auszug:

5.123 Teilleistung: Gründen im Umfeld IT-Sicherheit [T-WIWI-110374]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Die Note setzt sich aus der Präsentation und der schriftlichen Ausarbeitung zusammen.

Voraussetzungen
Keine
5.124 Teilleistung: Grundlagen der nationalen und internationalen Konzernbesteuerung [T-WIWI-111304]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101511 - Vertiefung Finanzwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Lehrveranstaltung</th>
<th>Veranstaltungsart</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungstitel</th>
<th>Dozent*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2560133</td>
<td>Vorlesung (V)</td>
<td>Wigger, Gutekunst</td>
<td>Grundlagen der nationalen und internationalen Konzernbesteuerung</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Prüfungsveranstaltung</th>
<th>Veranstaltungsart</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungstitel</th>
<th>Dozent*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>790kobe</td>
<td>Vorlesung (V)</td>
<td>Wigger</td>
<td>Grundlagen der nationalen und internationalen Konzernbesteuerung</td>
<td>3 SWS</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>790kobe</td>
<td>Vorlesung (V)</td>
<td>Wigger</td>
<td>Grundlagen der nationalen und internationalen Konzernbesteuerung</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Legende: ☑️Online, 🗂 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (90 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine

Empfehlungen

Es werden Kenntnisse aus der Veranstaltung "Grundlagen der Unternehmens Besteuerung" vorausgesetzt.
5.125 Teilleistung: Grundlagen der Unternehmensbesteuerung [T-WIWI-108711]

Verantwortung:
Dr. Gerd Gutekunst
Prof. Dr. Berthold Wigger

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101511 - Vertiefung Finanzwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Vorlesungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2560134</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>3</td>
<td>Vorlesung (V) / 🗣</td>
<td>Wigger, Gutekunst</td>
</tr>
<tr>
<td>SS 2023</td>
<td>790unbe</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td></td>
<td></td>
<td>Wigger</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>790unbe</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td></td>
<td></td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>790unbe</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>Wigger</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>790unbe</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 📦 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 90-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse über die Erhebung staatlicher Einnahmen vorausgesetzt. Daher empfiehlt es sich, die Lehrveranstaltungen "Öffentliche Einnahmen" im Vorfeld zu besuchen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Unternehmensbesteuerung
2560134, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Arbeitsaufwand:
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden.
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 45 Stunde
5.126 Teilleistung: Human Factors in Security and Privacy [T-WIWI-109270]

Verantwortung: Prof. Dr. Melanie Volkamer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104520 - Human Factors in Security and Privacy

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (30min.) (nach §4(2), 2 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb und an den Vorlesungen im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Die beiden folgenden Voraussetzungen müssen erfüllt sein:

- Quiz zu grafischen Passwörter bestehen
- Präsentation der Ergebnisse Übung 2

Zusätzlich müssen 9 der folgenden 11 Aufgaben gelöst werden:

- Einreichen des ILIAS-Zertifikats bis zum 24. Oktober
- Bestehen Quiz zur Informationssicherheit Vorlesung
- Aktive Teilnahme Übung 1 Teil 1 - Auswertungs- und Analysemethoden
- Bestehen Quiz Paper Discussion 1 - User Behaviour and motivation theories Teil 1
- Aktive Teilnahme an Übung 1 Teil 2
- Bestehen Quiz Paper Discussion 2 - User Behaviour and motivation theories Teil 2
- Bestehen Quiz Paper Discussion 3 - Security Awareness
- Aktive Teilnahme an Übung 1 Teil 3
- Bestehen Quiz Paper Diskussion 4 - Grafische Authentifizierung
- Bestehen Quiz Paper Discussion 5 - Shoulder Surfing Authentifizierung
- Aktive Teilnahme Übung 2

Empfehlungen
Der vorherige Besuch der Vorlesung "Informationssicherheit" wird dringend empfohlen.

Anmerkungen
Die Vorlesung wird im Wintersemester 2021/22 nicht angeboten.
Manche Vorlesungseinheiten werden auf Deutsch, andere auf Englisch gehalten.
5.127 Teilleistung: Incentives in Organizations [T-WIWI-105781]

Verantwortung: Prof. Dr. Petra Nieken
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101453 - Angewandte strategische Entscheidungen
M-WIWI-101500 - Microeconomic Theory
M-WIWI-101505 - Experimentelle Wirtschaftsforschung
M-WIWI-101510 - Cross-Functional Management Accounting
M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2573003</td>
<td>Incentives in Organizations</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Nieken</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2573004</td>
<td>Übung zu Incentives in Organizations</td>
<td>2 SWS</td>
<td>Übung (U) / Präsenz</td>
<td>Nieken, Mitarbeiter, Walther, Gorny</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900132</td>
<td>Incentives in Organizations</td>
<td>Nieken</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900201</td>
<td>Incentives in Organizations</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗝 Präsenz; X Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1 Stunde. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmerinnen und Teilnehmer behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

Voraussetzungen

Keine

Empfehlungen

Es werden Kenntnisse in Mikroökonomie, Spieltheorie und Statistik vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Veranstaltungstitel</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentives in Organizations</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

2573003, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt

Lernziele
Der/ die Studierende

- entwickelt ein strategisches Verständnis über die Wirkung von Anreizsystemen.
- ist in der Lage personalökonomische Modelle zu analysieren.
- versteht, wie statistische Methoden zur Analyse von Performance- und Entlohnungsdaten eingesetzt werden.
- kennt in der Praxis verwendete Entlohnungssysteme und kann diese kritisch bewerten.
- ist in der Lage basierend auf theoretischen Modellen und empirischen Daten konkrete Handlungsempfehlungen für die Praxis abzuleiten.
- versteht die aktuellen Herausforderungen des Anreiz- und Entlohnungsmanagements sowie dessen Bezug zur Unternehmensstrategie.

Arbeitenaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 32 Stunden
Vor-/Nachbereitung: 52 Stunden
Prüfung und Prüfungsvorbereitung: 51 Stunden

Literatur
Literatur (verpflichtend): Folien, Fallstudien und ausgewählte Forschungspapiere, die in der Vorlesung bekannt gegeben werden.
Literatur (ergänzend):
Behavioral Game Theory, Camerer, Russel Sage Foundation, 2003
Introduction to Econometrics, Wooldridge, Andover, 2014
Econometric Analysis of Cross Section and Panel Data, Wooldridge, MIT Press, 2010
5.128 Teilleistung: Information Service Engineering [T-WIWI-106423]

Verantwortung: Prof. Dr. Harald Sack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101456 - Intelligente Systeme und Services

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2511606 | Information Service Engineering | 2 SWS | Vorlesung (V) / 🗣 | Sack, Tan, Vafaie |
| SS 2023 | 2511607 | Übungen zu Information Service Engineering | 1 SWS | Übung (U) / 🗣 | Sack |

Prüfungsveranstaltungen

| SS 2023 | 79AIFB_ISE_B3 | Information Service Engineering (Anmeldung bis 17.07.2023) | Sack |
| WS 23/24 | 79AIFB_ISE_B2 | Information Service Engineering (Anmeldung bis 05.02.2024) | Sack |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (20min.) (nach §4(2), 2 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Information Service Engineering
2511606, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

- The Art of Understanding
 - Data, Information, Knowledge and Wisdom
 - Syntax, Semantics, Context, Pragmatics, and Experience

- Natural Language Processing
 - NLP and Basic Linguistic Knowledge
 - NLP Applications, Techniques & Challenges
 - Evaluation, Precision and Recall
 - Regular Expressions and Automata
 - Tokenization
 - Language Model and N-Grams
 - Part-of-Speech Tagging
 - Distributional Semantics & Word Embeddings

- Knowledge Graphs
 - Knowledge Representations and Ontologies
 - Resource Description Framework (RDF) as simple Data Model
 - Creating new Models with RDFS
 - Querying RDF(S) with SPARQL
 - More Expressivity via Web Ontology Language (OWL)
 - From Linked Data to Knowledge Graphs
 - Wikipedia, DBpedia, and Wikidata
 - Knowledge Graph Quality Assurance with SHACL

- Basic Machine Learning
 - Machine Learning Fundamentals
 - Evaluation and Generalization Problems
 - Linear Regression
 - Decision Trees
 - Unsupervised Learning
 - Neural Networks and Deep Learning

- ISE Applications
 - Knowledge Graph Embeddings
 - Knowledge Graph Completion
 - Knowledge Graphs and Large Language Models
 - Semantic Search
 - Exploratory Search and Recommender Systems

Learning objectives:

- The students know the fundamentals and measures of information theory and are able to apply those in the context of Information Service Engineering.
- The students have basic skills of natural language processing and are enabled to apply natural language processing technology to solve and evaluate simple text analysis tasks.
- The students have fundamental skills of knowledge representation with ontologies as well as basic knowledge of Semantic Web and Linked Data technologies. The students are able to apply these skills for simple representation and analysis tasks.
- The students have fundamental skills of information retrieval and are enabled to conduct and to evaluate simple information retrieval tasks.
- The students apply their skills of natural language processing, Linked Data engineering, and Information Retrieval to conduct and evaluate simple knowledge mining tasks.
- The students know the fundamentals of recommender systems as well as of semantic and exploratory search.

Literaturhinweise

5 TEILLEISTUNGEN

5.129 Teilleistung: Innovationsmanagement: Konzepte, Strategien und Methoden [T-WIWI-102893]

Verantwortung: Prof. Dr. Marion Weissenberger-Eibl
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101507 - Innovationsmanagement

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
3
Notenskala
Drittelnoten
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen
SS 2023 2545100 Innovationsmanagement: Konzepte, Strategien und Methoden 2 SWS Vorlesung (V) / Weissenberger-Eibl

Prüfungsveranstaltungen
SS 2023 7900144 Innovationsmanagement: Konzepte, Strategien und Methoden Weissenberger-Eibl
WS 23/24 7900145 Innovationsmanagement: Konzepte, Strategien und Methoden Weissenberger-Eibl

Erfolgskontrollen
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.). Die Prüfung wird in jedem Sommersemester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Innovationsmanagement: Konzepte, Strategien und Methoden 2545100, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen Vorlesung (V) Präsenz/Online gemischt

Inhalt
Inhalt der Vorlesung Innovationsmanagement: Konzepte, Strategien und Methoden sind wissenschaftliche Konzepte, die das Verständnis der verschiedenen Phasen des Innovationsprozesses möglich machen so wie daraus abgeleitete Strategien und zur Anwendung geeignete Methoden.

Ziel: Die Studierenden entwickelt in der Vorlesung Innovationsmanagement: Konzepte, Strategien und Methoden ein Verständnis für die verschiedenen Phasen und Konzeptionen des Innovationsprozesses, differenzierte Strategien und Methoden des Innovationsmanagements.

Organisatorisches
Wichtig! Bitte treten Sie dem ILIAS-Kurs zur Vorlesung bei, damit wir Ihnen weitere Informationen mitteilen können.

Literaturhinweise
Eine ausführliche Literaturliste wird mit den Vorlesungsunterlagen zur Verfügung gestellt.

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
5.130 Teilleistung: Integriertes Netz- und Systemmanagement [T-INFO-101284]

Verantwortung: Prof. Dr. Bernhard Neumair
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101210 - Dynamische IT-Infrastrukturen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 2400004 Integriertes Netz- und Systemmanagement 2 SWS Vorlesung (V) / Präsenz Neumair

Prüfungsveranstaltungen
SS 2023 7500144 Integriertes Netz- und Systemmanagement Neumair
WS 23/24 7500051 Integriertes Netz- und Systemmanagement Neumair

Erfolgskontrolle(n)
Die Erfolgskontrolle der Vorlesungen erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
Keine

Empfehlungen
Grundkenntnisse im Bereich Rechnernetze, entsprechend der Vorlesung „Einführung in Rechnernetze“ sind notwendig.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integriertes Netz- und Systemmanagement
2400004, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
5.131 Teilleistung: Intelligent Agent Architectures [T-WIWI-111267]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Andreas Geyer-Schulz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-105661 - Data Science: Intelligente, adaptive und lernende Informationsdienste</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2540525 Intelligent Agent Architectures 2 SWS Vorlesung (V)</td>
</tr>
<tr>
<td>WS 23/24 2540526 Übung zu Intelligent Agent Architectures 1 SWS Übung (Ü)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 7900069 Intelligent Agent Architectures (Nachklausur WS 2022/2023)</td>
</tr>
<tr>
<td>WS 23/24 79011480 Intelligent Agent Architectures (WS 2023/2024)</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Es wird empfohlen die Vorlesung "Customer Relationship Management" aus dem Bachelor-Modul "CRM und Servicemanagement" ergänzend zu wiederholen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Intelligent Agent Architectures

<table>
<thead>
<tr>
<th>2540525, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
<td></td>
</tr>
</tbody>
</table>

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt
Lehrinhalt:
Die Lehrveranstaltung besteht aus drei Teilen:
Im ersten Teil wird die Entwicklung von Architekturen und die dafür notwendigen Methoden behandelt (Systemanalyse, UML, formale Definition von Schnittstellen, Software- und Analyse Pattern, Trennung in konzeptionelle und IT-Architekturen). Der zweite Teil ist lernenden Architekturen und maschinellen Lernverfahren gewidmet. Im dritten Teil werden Beispiele für lernende CRM-Architekturen vorgestellt.

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten ca. 135 Stunden:
- Präsenzzeit
 - Besuch der Vorlesung: 15 x 90min = 22h 30m
 - Besuch der Übung: 7 x 90min = 10h 30m
 - Prüfung: 1h 00m

- Selbststudium
 - Vor-/Nachbereitung der Vorlesung: 15 x 180min = 45h 00m
 - Vorbereitung der Übung: 25h 00m
 - Vorbereitung der Prüfung: 31h 00m

Summe: 135h 00m

Lernziele:
Der/Die Studierende verfügt über spezielle Kenntnisse über Softwarearchitekturen und den Methoden die zu ihrer Entwicklung eingesetzt werden (Systemanalyse, formale Methoden zur Spezifikation von Schnittstellen und algebraische Semantik, UML, sowie der Abbildung von konzeptionellen auf IT-Architekturen).
Der/Die Studierende kennt wichtige Architekturmuster und kann diese auf Basis seiner CRM Kenntnisse im CRM-Kontext innovativ zu neuen Anwendungen kombinieren.

Nachweis:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt eine Notenstufe (0,3 oder 0,4)). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Note: Mindestpunkte
- 1,0: 95
- 1,3: 90
- 1,7: 85
- 2,0: 80
- 2,3: 75
- 2,7: 70
- 3,0: 65
- 3,3: 60
- 3,7: 55
- 4,0: 50
- 5,0: 0

Literaturhinweise
5.132 Teilleistung: Intelligent Agents and Decision Theory [T-WIWI-110915]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105661 - Data Science: Intelligente, adaptive und lernende Informationsdienste

Lehrveranstaltungen

| SS 2023 | 2540537 | Intelligent Agents and Decision Theory | 2 SWS | Vorlesung (V) | Geyer-Schulz |
| SS 2023 | 2540538 | Übung zu Intelligent Agents and Decision Theory | 1 SWS | Übung (Ü) | Schweizer |

Prüfungsveranstaltungen

| SS 2023 | 7900306 | Intelligent Agents and Decision Theory (SoSe 2023) | | Geyer-Schulz |
| WS 23/24 | 7900294 | Intelligent Agents and Decision Theory (Nachklausur SS 2023) | | Geyer-Schulz |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Details zur Notenbildung und zu einem gegebenenfalls erreichbaren Klausurbonus aus dem Übungsbetrieb werden in der Lehrveranstaltung bekanntgegeben.

Voraussetzungen

Keine

Empfehlungen

Anmerkungen

neue Vorlesung zum Sommersemester 2020

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Intelligent Agents and Decision Theory

| 2540537, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen | Vorlesung (V) |
Inhalt
The key assumption of this lecture is that the concept of artificial intelligence is inseparably linked to the economic concept of rationality of agents. We consider different classes of decision problems - decisions under certainty, risk and uncertainty - from an economic, managerial and AI-engineering perspective:

From an economic point of view, we analyze how to act rationally in these situations based on classic utility theory. In this regard, the course also introduces the relevant parts of decision theory for dealing with

- multiple conflicting objectives,
- incomplete, risky and uncertain information about the world,
- assessing utility functions, and
- quantifying the value of information ...

From an engineering perspective, we discuss how to develop practical solutions for these decision problems, using appropriate AI components. We introduce

- a general, agent-based design framework for AI systems,

as well as AI methods from the fields of

- search (for decisions under certainty),
- inference (for decisions under risk) and
- learning (for decisions under uncertainty).

Where applicable, the course highlights the theoretical ties of these methods with decision theory.

We conclude with a discussion of ethical and philosophical issues concerning the development and use of AI.

Learning objectives
Students are able to design, analyze, implement, and evaluate intelligent agents.

Lecture Outline

1. Introduction: Artificial intelligence and the economic concept of rationality
2. Intelligent Agents: A general, agent-based design framework for AI systems
3. Decision under certainty: Assessing utility functions for decisions with multiple objectives
4. Search: Linear programming for decisions under certainty
5. Decisions under risk: The expected utility principle
6. Information systems: Improving economic decisions under risk
7. Inference: Bayesian networks for decisions under risk
8. Information value: When should an agent gather new information?
9. Decisions under uncertainty: Complete lack of information
10. Learning: Statistical learning of bayesian networks
11. Learning: Supervised learning with neural networks
12. Learning: Reinforcement learning
13. Learning: Preference-based reinforcement learning
14. Discussion: Ethical and philosophical issues

Note: This rough outline may be subject to change.
Literaturhinweise

Basic literature (by lecture):

1. Russell & Norvig (2016, chapter 1), Bamberg et al. (2019, chapters 1 & 2)
2. Russell & Norvig (2016, chapter 2)
4. Nickel et al. (2014, chapter 1) [German], Russell & Norvig (2016, chapter 3)
6. Bamberg et al. (2019, chapter 6)
7. Russell & Norvig (2016, chapters 13, 14, 16)
8. Russell & Norvig (2016, chapter 16), Bamberg et al. (2019, chapter 6)
9. Bamberg et al. (2019, chapter 5)
10. Russell & Norvig (2016, chapter 20)
11. Goodfellow et al. (2016, chapter 6)
13. Wirth et al. (2017)

Detailed references:

5.133 Teilleistung: International Business Development and Sales [T-WIWI-110985]

Verantwortung: Erice Casenave
 Prof. Dr. Martin Klarmann
 Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)
 M-WIWI-105312 - Marketing and Sales Management

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 6
Notenskala: Drittelnoten

Teilnehmer: Max 10 Studierende des KIT und max. 10 Studierende der EM Strasbourg entwickeln jeweils in Tandems (2er-Teams) eine Verkaufspräsentation. Diese basiert auf der Value Proposition eines zuvor entwickelten Geschäftsmodells.

Gesamtaufwand bei 6 Leistungspunkten: ca. 180 Stunden
5.134 Teilleistung: Internationale Finanzierung [T-WIWI-102646]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>siehe Anmerkungen</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bemerkung</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2530570</td>
<td>Internationale Finanzierung</td>
<td>Walter, Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bemerkung</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900097</td>
<td>Internationale Finanzierung</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900052</td>
<td>Internationale Finanzierung</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Veranstaltung wird 14-tägig oder als Blockveranstaltung angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Internationale Finanzierung

2530570, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches

Kickoff am Mittwoch, 26.04.23, 15:45 - 19:00 Uhr im Raum 320 im Geb. 09.21 (Blücherstr. 17). Die Veranstaltung wird samstags als Blockveranstaltung angeboten, nach dem Kickoff nach Absprache.

Literaturhinweise

Weiterführende Literatur:

5.135 Teilleistung: Internet of Everything [T-INFO-101337]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101203 - Wireless Networking
M-INFO-101205 - Future Networking

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungskennzahl</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Vorlesung (V) / 📚</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24104</td>
<td>Internet of Everything</td>
<td>2 SWS</td>
<td>Zitterbart, Mahrt, Neumeister</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungskennzahl</th>
<th>Vorlesungstitel</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500071</td>
<td>Internet of Everything</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500009</td>
<td>Internet of Everything</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsent/Online gemischt, 🗂 Präsent, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO.

Bei unvertretbar hohem Prüfungsaufwand wird eine schriftliche Prüfung im Umfang von ca. 60 Minuten anstatt einer mündlichen Prüfung angeboten. Daher wird sechs Wochen im Voraus angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen

Keine

Empfehlungen

Die Inhalte der Vorlesung Einführung in Rechnernetze werden als bekannt vorausgesetzt. Der Besuch der Vorlesung Telematik wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Internet of Everything
24104, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Inhalte

Voraussetzungen
Die Inhalte der Vorlesung *Einführung in Rechnernetze* werden als bekannt vorausgesetzt. Der Besuch der Vorlesung *Telematik* wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

Lernziele
Studierende kennen die Plattformen und Anwendungen des Internet of Everything. Studierende haben ein Verständnisses für Herausforderungen beim Entwurf von Protokollen und Anwendungen für das IoE sowohl aus technischer wie auch aus rechtlicher Sicht.

Studierende kennen und verstehen die Gefahren für die Privatsphäre der Nutzer des zukünftigen IoE. Sie kennen Protokolle und Mechanismen um zukünftige Anwendungen zu ermöglichen, beispielsweise Smart Metering und Smart Traffic, und gleichzeitig die Privatsphäre der Nutzer zu schützen.

Studierende kennen ausgewählte Protokolle für das Internet der Dinge wie beispielsweise 6LoWPAN, RPL, CoAP und DICE. Die Studierenden verstehen die Herausforderungen und Annahmen, die zur Standardisierung der Protokolle geführt haben.

Die Studierenden haben ein grundlegendes Verständnis von Sicherheitstechnologien im IoE. Sie kennen typische Schutzziele und Angriffe, sowie Bausteine und Protokolle um die Schutzziele umzusetzen.

Literaturhinweise
5.136 Teilleistung: Internetrecht [T-INFO-101307]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101215 - Recht des geistigen Eigentums

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung (V)</th>
<th>SWS</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24354 - Internetrecht</td>
<td>2 SWS</td>
<td>Sattler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500057 - Internetrecht</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500060 - Internetrecht</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Im WS besteht diese Teilleistung aus einer Vorlesung, die mit einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO abgeschlossen wird.

Voraussetzungen
Die Veranstaltung Ausgewählte Rechtsfragen des Internetrechts T-INFO-108462 darf nicht begonnen sein.

Empfehlungen
Keine

Anmerkungen
Vorlesung (mit Klausur) Internetrecht T-INFO-101307 wird im WS angeboten.
Kolloquium (Prüfung sonstiger Art) Ausgewählte Rechtsfragen des Internetrechts T-INFO-108462 wird im SS angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Internetrecht
24354, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Veranstaltung wird unter Einbindung von Praktikern durchgeführt. Auf diese Weise sollen die Studierenden einen möglichst hautnahen Einblick in die aktuellen Probleme der Praxis erhalten.

Jeder der teilnehmenden Praxisvertreter erhält die Möglichkeit, ein praktisch relevantes Thema eigener Wahl je nach Umfang in ein bis drei Doppelstunden vorzustellen und mit den Studenten zu erarbeiten. Über die didaktische Vorgehensweise (Vortrag, Diskussion, Case study, Studentenreferat o.A.) entscheidet jeder Praxisteilnehmer selbst, damit eine möglichst themenadäquate Behandlung gewährleistet ist.

Lernziele: Die Studierenden erhalten anhand praktischer relevanter Fragestellungen und Einzelfällen eine Orientierung für die Rechtsfragen, die sich durch den Einsatz von Digitalisierung und Vernetzung stellen.

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden, davon 22,5 h Präsenz, 45 h Vor- und Nachbereitungszeit sowie 22,5 h für die Klausurvorbereitung.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 SPO.
5.137 Teilleistung: Introduction to Bayesian Statistics for Analyzing Data [T-WIWI-110918]

Verantwortung: Prof. Dr. Benjamin Scheibehenne
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltnummer</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsart</th>
<th>Stundendauer</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2500016</td>
<td>Bayesian Statistics for Analyzing Data</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2500025</td>
<td>Bayesian Statistics for Analyzing Data</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Scheibehenne</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Grades will be based on active participation (50%) and homework assignments (50%).

Voraussetzungen
Participants should already have a basic knowledge of R and standard frequentist statistical tests. Please bring your own Laptop with you as we will be using R for several hands-on examples and exercises during the class. We will mainly work with the book "Statistical Rethinking. A Bayesian Course with Examples in R and Stan" by Richard McElrath. Students are advised to obtain the book before the class starts.

Anmerkungen
Due to its interactive nature, the number of participants will be limited.
5.138 Teilleistung: IT-Sicherheit [T-INFO-112818]

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 240010</td>
<td>IT-Sicherheit</td>
<td>4 SWS</td>
<td>Voraussetzung (VÜ)</td>
<td>Müller-Quade, Strufe, Wressnegger, Hartenstein</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Hannes Hartenstein
Prof. Dr. Jörn Müller-Quade
Prof. Dr. Thorsten Strufe
TT-Prof. Dr. Christian Wressnegger

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-106315 - IT-Sicherheit

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von 90 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Empfehlungen
Der Stoff der Pflichtvorlesung Informationssicherheit wird vorausgesetzt
5.139 Teilleistung: IT-Sicherheitsmanagement für vernetzte Systeme [T-INFO-101323]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Hannes Hartenstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Informatik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-INFO-101204 - Networking Labs</td>
</tr>
<tr>
<td></td>
<td>M-INFO-101207 - Netz sicherheit - Theorie und Praxis</td>
</tr>
<tr>
<td></td>
<td>M-INFO-101210 - Dynamische IT-Infrastrukturen</td>
</tr>
<tr>
<td></td>
<td>M-WIWI-101458 - Ubiquitous Computing</td>
</tr>
</tbody>
</table>

Prüfungsleistung mündlich
- **Leistungspunkte**: 5
- **Notenskala**: Drittelnoten
- **Turnus**: Jedes Wintersemester
- **Version**: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24149</td>
<td>IT-Sicherheitsmanagement für vernetzte Systeme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Hartenstein, Droll, Grundmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500599</td>
<td>IT-Sicherheitsmanagement für vernetzte Systeme</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500599</td>
<td>IT-Sicherheitsmanagement für vernetzte Systeme</td>
<td>Hartenstein</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach §§ 4 Abs. 2 Nr. 2 SPO.

Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

* in Form einer mündlichen Prüfung nach §§ 4 Abs. 2 Nr. 2 SPO oder
* in Form einer schriftlichen Prüfung (i.d.R. 60 min) nach §§ 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

IT-Sicherheitsmanagement für vernetzte Systeme
- **24149, WS 23/24, 3 SWS, Sprache: Deutsch**
- **Vorlesung / Übung (VÜ) Präsenz**
 - **Im Studierendenportal anzeigen**
Inhalt

Lehrinhalte
Ziel der Vorlesung ist es, den Studenten die Grundlagen des IT-Sicherheitsmanagements für vernetzte Systeme sowohl in methodischer als auch in technischer Hinsicht zu vermitteln und aktuelle Forschungsfragen vorzustellen.

Arbeitsaufwand
Präsenzzeit: 45h (3 SWS * 15 Vorlesungswochen)
Vor- und Nachbereitungszeit: 67.5h (3 SWS * 1.5h/SWS * 15 Vorlesungswochen)
Klausurvorbereitung: 37.5h
150h (= 5 ECTS Punkte)

Lernziele
Der/Die Studierende kennt die wesentlichen technischen, organisatorischen, und rechtlichen Bausteine eines professionellen IT-Sicherheitsmanagements und kann ihnen ihre Funktionsweise beschreiben, sondern sie auch selbst in der Praxis anwenden und Vor- und Nachteile alternativer Ansätze analysieren. Weiterhin kann er/sie die Eignung bestehender IT-Sicherheitskonzepte beurteilen. Zudem kennt der/die Studierende den Stand aktueller Forschungsfragen im Bereich des IT-Sicherheitsmanagements sowie zugehörige Lösungsansätze. Die Lernziele sind im Einzelnen:

1. Der/Die Studierende kennt die wesentlichen Schutzziele der IT-Sicherheit und kann ihre Bedeutung und Zielsetzung wiedergeben.
2. Der/Die Studierende versteht Aufbau, Phasen und wichtige Standards des IT-Sicherheitsprozesses und kann seine Anwendung beschreiben.
3. Der/Die Studierende kennt die Bedeutung des Risikomanagements für Unternehmen, kann dessen wesentliche Bestandteile verdeutlichen, und kann die Risikoanalyse auf exemplarische Bedrohungen anwenden.
4. Der/Die Studierende kennt zentrale Gesetze aus dem rechtlichen Umfeld der IT-Sicherheit und kann ihre Anwendung erläutern.
5. Der/Die Studierende versteht die Funktionsweise elementarer kryptographischer Bausteine und kann deren Eignung für spezifische Fälle bewerten.
6. Der/Die Studierende kennt alternative Schlüsselmanagement-Architekturen und kann ihre Vor- und Nachteile beurteilen.
7. Der/Die Studierende versteht den Begriff der digitalen Identität und kann verschiedene Authentifikationsstrategien anwenden.
10. Der/Die Studierende versteht Bedeutung eines professionellen Notfallmanagements und kann dessen Umsetzung beschreiben.
11. Der/Die Studierende versteht die in der Vorlesung vorgestellten Problemstellungen aktueller Forschung und ist in der Lage diese zu erläutern.
5.140 Teilleistung: Joint Entrepreneurship Summer School [T-WIWI-109064]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)

Lehrveranstaltungen
| SS 2023 | 2545021 | Joint Entrepreneurship School | 4 SWS | Seminar (S) / 🖥 Kleinn, Terzidis |

Prüfungsveranstaltungen
| SS 2023 | 7900346 | Joint Entrepreneurship Summer School | Terzidis |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle des Programms (Summer School) setzt sich aus zwei Teilen zusammen:

Die Note setzt sich zusammen aus 50% Präsentationsleistung und 50% schriftliche Ausarbeitung.

Voraussetzungen
Die Summer School richtet sich an Masterstudierende des KIT. Voraussetzung ist die Teilnahme am Auswahlverfahren.

Empfehlungen

Anmerkungen
Die Arbeitssprache während der Summer School ist englisch. Ein einwöchiger Aufenthalt in China ist Bestandteil der Summer School.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Joint Entrepreneurship School
2545021, SS 2023, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Während der Summer School in Shanghai und Karlsruhe entwickeln die Studierenden in Workshops in deutsch-chinesischen Tandems zwei Wochen lang ein Geschäftsmodell für am KIT entwickelte Technologien und Patente.

Klicke auf unsere Webseite für ausführliche Informationen und ein Video: https://etm.entechnon.kit.edu/english/1095.php

Organisatorisches
Preparation dates: Dates will be announced.
JES: Dates will be announced, expected to be in July and/or September
5.141 Teilleistung: Judgement and Decision Making [T-WIWI-111099]

Verantwortung: Prof. Dr. Benjamin Scheibehenne
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-105312 - Marketing and Sales Management
M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations
M-WIWI-106258 - Digital Marketing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2500041</th>
<th>Übung zur Vorlesung Judgment and Decision Making</th>
<th>2 SWS</th>
<th>Übung (U) / 🌐</th>
<th>Seidler</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2540440</td>
<td>Judgment and Decision Making</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🌐</td>
<td>Scheibehenne, Seidler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7900001 | Judgement and Decision Making | Scheibehenne |

Erfolgskontrolle(n)
Alternative exam assessment. The grading includes the following aspects:

- a written exam (60 minutes)
- a presentation during the exercise.

The scoring system for the grading will be announced at the beginning of the course.

Voraussetzungen
Registration via the WIWI-Portal is required for participation in the Übung. The Übung is a prerequisite for the exam.

Anmerkungen
The judgments and decisions that we make can have long ranging and important consequences for our (financial) well-being and individual health. Hence, the goal of this lecture is to gain a better understanding of how people make judgments and decisions and the factors that influence their behavior. We will look into simple heuristics and mental shortcuts that decision makers use to navigate their environment, in particular so in an economic context. Following this the lecture will provide an overview into social and emotional influences on decision making. In the second half of the semester we will look into some more specific topics including self-control, nudging, and food choice. The last part of the lecture will focus on risk communication and risk perception. We will address these questions from an interdisciplinary perspective at the intersection of Psychology, Behavioral Economics, Marketing, Cognitive Science, and Biology. Across all topics covered in class, we will engage with basic theoretical work as well as with groundbreaking empirical research and current scientific debates.

The workload of the class is 4.5 ECTS. This consists of 3 ECTS for the lecture and 1.5 ECTS for the Übung. Details about the Übung will be communicated at the first day of the class.
5.142 Teilleistung: KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics [T-WIWI-111109]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101446 - Market Engineering
- M-WIWI-103118 - Data Science: Data-Driven User Modeling
- M-WIWI-104080 - Designing Interactive Information Systems
- M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

Lehrveranstaltungen

| SS 2023 | 2540474 | KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics | 3 SWS | Vorlesung (V) / 🗣 | Greif-Winzrieth, Knierim |

Prüfungsveranstaltungen

| SS 2023 | 7900368 | KD²Lab Forschungspraktikum: New Ways and Tools in Experimental Economics | Weinhardt |

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 🗣 Präsenz, Ⓞ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich zusammen aus:

- Der Anfertigung einer schriftlichen Ausarbeitung und
- einer Gruppenpräsentation mit anschließender Diskussion und Fragerunde im Umfang von 30 Minuten.

Für besonders aktive und konstruktive Teilnahme an den Diskussionen anderer Arbeiten im Rahmen der Abschlusspräsentation kann ein Bonus von einer Notenstufe (0.3 oder 0.4) auf die bestandene Prüfungsleistung erreicht werden. Details zur Notenbildung werden zu Beginn der Veranstaltung bekannt gegeben.

Anmerkungen
Aufgrund der Laborkapazität und um eine optimale Betreuung der Projektgruppen zu gewährleisten, ist die Teilnehmerzahl begrenzt. Die Platzvergabe erfolgt unter Berücksichtigung von Präferenzen und Eignung für die Themen. Dabei spielen insbesondere Vorkenntnisse im Bereich Experimentelle Wirtschaftsforschung eine Rolle.

Die Teilleistung wird zum Sommersemester 2021 neu angeboten.
5.143 Teilleistung: Knowledge Discovery [T-WIWI-102666]

Verantwortung: Dr.-Ing. Michael Färber

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101456 - Intelligente Systeme und Services
- M-WIWI-105366 - Artificial Intelligence
- M-WIWI-105368 - Web and Data Science

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 4,5

Notenskala
- Drittelnoten

Turnus
- Jedes Wintersemester

Version
- 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2511302 Knowledge Discovery and Graph Representation Learning 2 SWS Vorlesung (V)</td>
<td>SS 2023 79AIFB_KD_C3 Knowledge Discovery (Anmeldung bis 17.07.2023) 60 Minuten Färber</td>
</tr>
<tr>
<td>WS 23/24 2511303 Übungen zu Knowledge Discovery and Graph Representation Learning 1 SWS Übung (Ü)</td>
<td>WS 23/24 79AIFB_KD_B3 Knowledge Discovery (Anmeldung bis 05.02.2024) Färber</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten.

Bei erfolgreicher Teilnahme am Übungsbetrieb kann auf zwei Wegen jeweils ein Notenbonus erworben werden:

1. Durch Abgabe eines Übungsblattes und erreichen von 80% korrekten Lösungen der gestellten Aufgaben.
2. Durch Abgabe der Ergebnisse einer Implementierungsaufgabe im Bereich des maschinellen Lernens, welche einen vorgegebenen Evaluationswert erreicht.

Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um maximal eine Notenstufe (0,3 oder 0,4).

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Knowledge Discovery and Graph Representation Learning
2511302, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

Der Inhalt der Vorlesung umfasst den gesamten Prozess des maschinellen Lernens und der Datengewinnung. Es werden Themen zu überwachten und unüberwachten Lernmethoden sowie zur empirischen Evaluierung behandelt. Es werden verschiedene Lernmethoden erforscht, die von klassischen Ansätzen wie Entscheidungsbäumen, Support Vector Machines und neuronalen Netzen bis hin zu neueren Entwicklungen wie Graph Neural Networks reichen.

Lernziele: Studierende
- kennen die Grundlagen des Maschinellen Lernens, Data Minings und Knowledge Discovery.
- können lernfähige Systeme, konzipieren, trainieren und evaluieren.
- führen Knowledge Discovery Projekte unter Berücksichtigung von Algorithmen, Repräsentationen and Anwendungen durch.

Arbeitsaufwand:
- Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
- Präsenzzeit: 45 Stunden
- Vor- und Nachbereitung der LV: 60 Stunden
- Prüfung und Prüfungsvorbereitung: 30 Stunden

Literaturhinweise
- M. Berhold, D. Hand (eds). Intelligent Data Analysis - An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley

Übungen zu Knowledge Discovery and Graph Representation Learning
2511303, WS 23/24, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Die Übungen orientieren sich an der Vorlesung Knowledge Discovery. Mehrere Übungen werden abgehandelt, welche die Themen, die in der Vorlesung Knowledge Discovery behandelt werden, aufgreifen und im Detail besprechen. Dabei werden den Studierenden praktische Beispiele demonstriert, um einen Wissenstransfer der gelernten theoretischen Aspekte in die praktische Umsetzung zu ermöglichen.

Lernziele: Studierende
- kennen die Grundlagen des Maschinellen Lernens, Data Minings und Knowledge Discovery.
- können lernfähige Systeme, konzipieren, trainieren und evaluieren.
- führen Knowledge Discovery Projekte unter Berücksichtigung von Algorithmen, Repräsentationen and Anwendungen durch.
Literaturhinweise

- M. Berhold, D. Hand (eds). Intelligent Data Analysis - An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley
Teilleistung: Komplexitätstheorie, mit Anwendungen in der Kryptographie [T-INFO-103014]

Verantwortung: Prof. Dr. Dennis Hofheinz
Prof. Dr. Jörn Müller-Quade

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101575 - Komplexitätstheorie, mit Anwendungen in der Kryptographie

Verantwortung: Prof. Dr. Dennis Hofheinz
Prof. Dr. Jörn Müller-Quade

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101575 - Komplexitätstheorie, mit Anwendungen in der Kryptographie

Teilleistungsart Prüfungsleistung mündlich
Leistungspunkte 6
Notenskala Drittelnoten
Turnus Unregelmäßig
Version 1

Lehrveranstaltungen
SS 2023 2400124 Komplexitätstheorie, mit Anwendungen in der Kryptographie 4 SWS Vorlesung (V) Müller-Quade, Benz, Berger

Prüfungsveranstaltungen
SS 2023 7500183 Komplexitätstheorie, mit Anwendungen in der Kryptographie Geiselmann, Müller-Quade

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse in Entwurf und Analyse von Algorithmen werden vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Komplexitätstheorie, mit Anwendungen in der Kryptographie
2400124, SS 2023, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
5.145 Teilleistung: Kontextsensitive Systeme [T-INFO-107499]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100728 - Kontextsensitive Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>V/Ü/Üb</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2400099</td>
<td>Kontextsensitive Systeme</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🖥️</td>
<td>Riedel</td>
</tr>
<tr>
<td>SS 2023</td>
<td>24658</td>
<td>Kontextsensitive Systeme</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Riedel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Vorlesungstitel</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500305_25.09.23</td>
<td>Kontextsensitive Systeme</td>
<td>Riedel</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500305_28.07.23</td>
<td>Kontextsensitive Systeme</td>
<td>Riedel</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500305_31.08.23</td>
<td>Kontextsensitive Systeme</td>
<td>Riedel</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500113_09.01.24</td>
<td>Kontextsensitive Systeme</td>
<td>Riedel</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500305_20.11.23</td>
<td>Kontextsensitive Systeme</td>
<td>Riedel</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥️ Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrollen der Vorlesung erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO. Die Prüfung umfasst i.d.R. 20 Minuten.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kontextsensitive Systeme

24658. SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Beschreibung:
Die Vorlesung ist eine vertiefende Veranstaltung im Bereich Data Analytics, welche den Fokus auf Erkennung, Verarbeitung und Nutzung von Kontext (Maschinen-, Nutzer-Umgebungsinformationen,...) in Softwaresystemen legt.

Anwendungsbeispiele kontextsensitiver Systeme sogenannte Cyberphysical Systems in industriellen Anwendungen (Industrie4.0), kontextgewahre SmartPhone Apps wie Google Now, lokationsgewahre Werbung, das intelligente Haus, oder ERP-Systeme, welche Entscheidungen durch Realweltinformationen optimieren, so und implizit mit Menschen und Umwelt interagieren.
Allen gemein ist, dass sie durch die massenhafte, automatisierte Analyse von Zeitreihen und Sensorinformationen die Diskrepanz zwischen Realwelt und IT-System verringern. Durch die Nutzung von Kontext in der Interaktion von Mensch zu Mensch, aber eben auch von Maschine zu Maschine und Mensch zu Maschine sowie vice versa, kann die explizite Kommunikation stark optimiert werden.

Begleitend zur Vorlesung wird das gleichnamige Praktikum angeboten, welches die Lehrinhalte anhand der Anwendung von Technologien aus dem Bereich Machine Learning Algorithmen, Predictive Analytics und Smart/Big Data Technologien sowie Datensätzen aus realen Anwendungen praktisch vertieft. Die gleichzeitige Teilnahme am Praktikum wird empfohlen.

Lehrinhalt:

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 120 Stunden (4.0 Credits).

Aktivität
Arbeitsaufwand
Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min
Vor- / Nachbereitung der Vorlesung
15 x 90 min
22 h 30 min
Literatur erarbeiten
14 x 45 min
10 h 30 min
Selbständige Übungen
14 x 45 min
10 h 30 min
Foliensatz 2x durchgehen
2 x 12 h
24 h 00 min
Prüfung vorbereiten
30 h 00 min

SUMME

120 h 00 min

Arbeitsaufwand für die Lerneinheit "Kontextsensitive Systeme"

Lernziele:

Ziel der Vorlesung ist es, Kenntnisse über Grundlagen und weitergehende Methoden und Techniken zu kontextsensitiven Systemen in vermitteln.

Nach Abschluss der Vorlesung können die Studierenden

- das Konzept von Kontext erörtern und verschiedene für die Informationsverarbeitung durch Menschen und Computer relevante Kontexte aufzählen
- kontextsensitive Systemen anhand verschiedener Kriterien kategorisieren und unterscheiden
- Aus Methoden zur Erfassung, Vernetzung, Merkmalsextraktion, Klassifikation und Adaption sinnvoll zu Kontextanhand einer Referenzarchitektur konkrete technische Implementierungen durch existierende Komponenten ableiten
- die Leistungsfähigkeit konkreter kontextsensitiver Systemen anhand von experimentell ermittelter Metriken bewerten und vergleichen
- Probleme der Skalierung von Datenanalysemethoden im praktischen Anwendungsfall durch Einsatz von Big Data Architekturen adressieren

Literaturhinweise

5.146 Teilleistung: Konvexe Analysis [T-WIWI-102856]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2550120 | Konvexe Analysis | 2 SWS | Vorlesung (V) | Stein |
| SS 2023 | 2550121 | Übung zu Konvexe Analysis | 2 SWS | Übung (U) | Stein, Schwarze |

Prüfungsveranstaltungen

| SS 2023 | 7900208_SS2023_HK | Konvexe Analysis | Stein |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗞️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Voraussetzungen

Keine

Empfehlungen

Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkungen

Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konvexe Analysis

2550120, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt
Die konvexe Analysis beschäftigt sich mit Eigenschaften konvexer Funktionen und konvexer Mengen, unter anderem im Hinblick auf die Minimierung konvexer Funktionen über konvexen Mengen. Dass die beteiligten Funktionen dabei nicht notwendigerweise differenzierbar zu sein brauchen, eröffnet eine Reihe von Anwendungen, die durch Verfahren der differenzierbaren Optimierung nicht behandelt werden können, etwa Approximationsprobleme bezüglich der Manhattan- oder der Maximumsnorm, Klassifikationsprobleme oder die Theorie statistischer Schätzer. Die Vorlesung wird entlang eines weiteren, geometrisch leicht verständlichen Beispiels entwickelt, in dem ein nichtglatt beschriebenes Hindernis derart durch eine differenzierbare konvexe Funktion beschrieben werden soll, dass Mindest- und Höchstabstände zum Hindernis berechenbar sind. Die Vorlesung ist wie folgt aufgebaut:

- Einführung in entropische Glättung und Konvexität
- Globale Fehlerschranken
- Glattheitseigenschaften konvexer Funktionen
- Das konvexe Subdifferential
- Globale Lipschitz-Stetigkeit
- Abstiegsrichtungen und Stationaritätsbedingungen

Anmerkung:
Zum Erwerb fundierten Basiswissens wird vor Besuch dieser Spezialvorlesung die Belegung einer der Veranstaltungen "Globale Optimierung I und II" und "Nichtlineare Optimierung I und II" dringend empfohlen.

Lernziele:
Der/die Studierende

- kennt und versteht die Grundlagen der konvexen Analysis,
- ist in der Lage, moderne Techniken der konvexen Analysis in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

5.147 Teilleistung: Kryptographische Wahlverfahren [T-INFO-101279]

Verantwortung: Prof. Dr. Jörn Müller-Quade
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101198 - Fortgeschrittene Themen der Kryptographie

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 30min nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Empfehlungen
Kenntnisse zu Grundlagen der Kryptographie sind hilfreich.
5.148 Teilleistung: Large-scale Optimierung [T-WIWI-106549]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung
M-WIWI-102832 - Operations Research im Supply Chain Management
M-WIWI-103289 - Stochastische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung. Die Prüfung wird jedes Semester angeboten.

Voraussetzungen
Keine.
5.149 Teilleistung: Liberalised Power Markets [T-WIWI-107043]

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101451 - Energiewirtschaft und Energiemärkte
M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semesternummer</th>
<th>Lehrveranstaltungsnr.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2581998</td>
<td>Liberalised Power Markets</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581999</td>
<td>Übungen zu Liberalised Power Markets</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Signer, Fichtner, Beranek</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semesternummer</th>
<th>Lehrveranstaltungsnr.</th>
<th>Lehrveranstaltung</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900253</td>
<td>Liberalised Power Markets</td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900160</td>
<td>Liberalised Power Markets NEU</td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900193</td>
<td>Liberalised Power Markets</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Liberalised Power Markets
2581998, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
1. Power markets in the past, now and in future
2. Designing liberalised power markets
 2.1. Unbundling Dimensions of liberalised power markets
 2.2. Central dispatch versus markets without central dispatch
 2.3. The short-term market model
 2.4. The long-term market model
 2.5. Market flaws and market failure
 2.6. Regulation in liberalised markets
3. The power (sub)markets
 3.1 Day-ahead market
 3.2 Intraday market
 3.3 (Long-term) Forwards and futures markets
 3.4 Emission rights market
 3.5 Market for ancillary services
 3.6 The “market” for renewable energies
 3.7 Future market segments
4. Grid operation and congestion management
 4.1. Grid operation
 4.2. Congestion management
5. Market power
 5.1. Defining market power
 5.2. Indicators of market power
 5.3. Reducing market power
6. Future market structures in the electricity value chain

Literaturhinweise
Weiterführende Literatur:
Teilleistung: Life Cycle Assessment – Grundlagen und Anwendungsmöglichkeiten im industriellen Kontext [T-WIWI-113107]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101412 - Industrielle Produktion III
M-WIWI-101471 - Industrielle Produktion II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2581995 | Life Cycle Assessment - Grundlagen und Anwendungsmöglichkeiten im industriellen Kontext | 2 SWS | Vorlesung (V) | Steffl, Treml |

Legende: [Online], [Präsenz/Online gemischt], [Präsenz], [Abgesagt]

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine.

Empfehlungen
Keine

Anmerkungen
Titel der Teilleistung bis einschließlich Sommersemester 2019 "Ökobilanzen".

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Life Cycle Assessment - Grundlagen und Anwendungsmöglichkeiten im industriellen Kontext
2581995, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Themen umfassen:
- Bedeutung und Einsatzgebiete
- Berechnungsmodelle
- Attributional/Consequential LCA
- Life Cycle Sustainability Assessment, Social LCA und Life Cycle Costing
- Limitationen
- Erarbeiten einer Case Study

Literaturhinweise
werden in der Veranstaltung bekannt gegeben
The assessment of this course is a written examination (60 min) or an oral exam (30 min) depending on the number of participants.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Machine Learning and Optimization in Energy Systems

WS 23/24, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101452 - Energiewirtschaft und Technologie

Inhalt
Goals: Participants should know about the most common optimization and machine learning approaches for the application in energy systems. They should understand the basic principles of the methods and should be able to apply them for solving important problems of future energy systems with high shares of renewable energy sources.

Content: In the beginning, the essential transition of the energy system into a smart grid and the need for methods from the field of optimization and machine learning are explained. The course can be subdivided into an optimization part and a larger machine learning part. In the optimization part, the basics of optimization approaches that are used in energy systems are shown. Further, heuristic methods and approaches from the field of multiobjective optimization are introduced. In the machine learning part, the most important methods from the field of unsupervised learning, supervised learning and reinforcement learning are introduced and their application in future energy systems are investigated.

Amongst the considered applications are power plant dispatch, intelligent heating with heat pumps, charging strategies for electric vehicles, clustering of energy data for energy system models and electricity demand and renewable generation forecasting.

We also offer a voluntary computer exercise that deepens the understanding of the methods and applications covered in the lecture. The students will have the opportunity to solve problems from the energy domain by using optimization and machine learning approaches implemented in the programming language Python.

The course’s general focus is on the application of the methods in the energy field and not on the mathematical details of the different approaches.

The total workload for this course is approximately 105 hours:

- Attendance: 30 hours
- Self-study: 30 hours
- Exam preparation: 45 hours
5.152 Teilleistung: Management Accounting 1 [T-WIWI-102800]

Verantwortung: Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101498 - Controlling (Management Accounting)

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>SWS</th>
<th>Übung (U)</th>
<th>Vorlesung (V)</th>
<th>Wotenors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2579900</td>
<td>Management Accounting 1</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2579901</td>
<td>Übung zu Management Accounting 1 (Bachelor)</td>
<td>2 SWS</td>
<td>Übung (U) / 🗣</td>
<td>Dickemann</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2579902</td>
<td>Übung zu Management Accounting 1 (Master)</td>
<td>2 SWS</td>
<td>Übung (U) / 🗣</td>
<td>Dickemann</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>SWS</th>
<th>Übung (U)</th>
<th>Vorlesung (V)</th>
<th>Wotenors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>79-2579900-B</td>
<td>Management Accounting 1 (Bachelor)</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79-2579900-B</td>
<td>Management Accounting 1 (Bachelor)</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Wouters</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Empfehlungen
Wir empfehlen Ihnen eine Teilnahme an unserer Übung zur Vorlesung.

Anmerkungen
Die Übung wird getrennt für Bachelorstudierende sowie für Studierende im Mastervorzug und Master angeboten.

Hinweis für die Prüfungsanmeldung:

- Studierende im Bachelor: 79-2579900-B Management Accounting 1 (Bachelor)
- Studierende im Mastervorzug und Master: 79-2579900-M Management Accounting 1 (Mastervorzug und Master)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Management Accounting 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2579900, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
</tr>
<tr>
<td>Online</td>
</tr>
</tbody>
</table>
Inhalt
Die Lehrveranstaltung beschäftigt sich mit Fragestellungen des Controlling (Management Accounting) im Rahmen von Entscheidungsprozessen. Einige dieser Themen in der LV MA1 sind: Kurzzeitplanung, Investitionsentscheidungen, Budgetierung und Kostenrechnung.

Es werden internationale Lektüren/Publikationen in englischer Sprache verwendet.

Diese Fragestellung wird hauptsächlich aus der Perspektive der Nutzer von Finanzinformationen behandelt, nicht so sehr auch der Perspektive von Controllern, die diese Informationen erstellen.

Die Lehrveranstaltung baut auf Grundwissen von Buchhaltungskonzepten auf, die im Rahmen von betriebswirtschaftlichen Lehrveranstaltungen im Kernprogramm (Basis) erworben wurden. Der Kurs richtet sich an die Studierenden der Fachrichtung Wirtschaftsingenieurwesen.

Lernziele:
- Die Studierenden kennen die Theorie und Anwendungsmöglichkeiten des Controlling (Management Accounting).
- Die Teilnehmer sind in der Lage Finanzdaten für verschiedene Zwecke in Unternehmen auszuwerten.

Nachweis:
- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung: schriftliche Prüfung (120 min) nach § 4 Abs. 2 Nr. 1 SPO; am Ende von jedem Semester.
- Die Note ist die Note der schriftlichen Prüfung.

Arbeitsaufwand:
- Gesamtaufwand: 135 Stunden
- Präsentzeit: [56] Stunden (4 SWS)
- Vor-/Nachbereitung: [54] Stunden
- Prüfung und Prüfungsvorbereitung: [25] Stunden

Literaturhinweise
- In addition, several papers that will be available on ILIAS.

Übung zu Management Accounting 1 (Bachelor)
2579901, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
siehe Modulhandbuch

Übung zu Management Accounting 1 (Master)
2579902, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
siehe Modulhandbuch
5.153 Teilleistung: Management Accounting 2 [T-WWI-102801]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WWI-101498 - Controlling (Management Accounting)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung (V/U)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/24</td>
<td>2579903</td>
<td>Management Accounting 2</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wouters</td>
</tr>
<tr>
<td>23/24</td>
<td>2579904</td>
<td>Übung zu Management Accounting 2 (Bachelor)</td>
<td>2</td>
<td>Übung (U)</td>
<td>Letmathe</td>
</tr>
<tr>
<td>23/24</td>
<td>2579905</td>
<td>Übung zu Management Accounting 2 (Master)</td>
<td>2</td>
<td>Übung (U)</td>
<td>Letmathe</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>Prüfung (V/U)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/24</td>
<td>79-2579903-B</td>
<td>Management Accounting 2 (Bachelor)</td>
<td></td>
<td>Wouters</td>
</tr>
<tr>
<td>23/24</td>
<td>79-2579903-M</td>
<td>Management Accounting 2 (Mastervorzug und Master)</td>
<td></td>
<td>Wouters</td>
</tr>
<tr>
<td>23/24</td>
<td>79-2579903-B</td>
<td>Management Accounting 2 (Bachelor)</td>
<td></td>
<td>Wouters</td>
</tr>
<tr>
<td>23/24</td>
<td>79-2579903-M</td>
<td>Management Accounting 2 (Mastervorzug und Master)</td>
<td></td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine

Empfehlungen
Empfohlen wird:
- die LV "Management Accounting 1" vorab zu besuchen
- die Teilnahme an der Übung zur Vorlesung "Management Accounting 2"

Anmerkungen
Die Übung zur Vorlesung wird getrennt für Bachelorstudierende sowie für Studierende im Mastervorzug und Master angeboten.

Hinweis für die Prüfungsanmeldung:
- Studierende im Bachelor: 79-2579903-B Management Accounting 2 (Bachelor)
- Studierende im Mastervorzug und Master: 79-2579903-M Management Accounting 2 (Mastervorzug und Master)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Management Accounting 2
2579903, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt

Es werden internationale Lektüren/Publikationen in englischer Sprache verwendet.

Diese Fragestellung wird hauptsächlich aus der Perspektive der Nutzer von Finanzinformationen behandelt, nicht so sehr auch der Perspektive von Controllern, die diese Informationen erstellen.

Die Lehrveranstaltung baut auf Grundwissen von Buchhaltungskonzepten auf, die im Rahmen von betriebswirtschaftlichen Lehrveranstaltungen im Kernprogramm (Basis) erworben wurden. Der Kurs richtet sich an die Studierenden der Fachrichtung Wirtschaftsingenieurswesen.

Lernziele:
- Die Studierenden kennen die Theorie und Anwendungsmöglichkeiten des Controlling (Management Accounting).
- Die Teilnehmer sind in der Lage Finanzdaten für verschiedene Zwecke in Unternehmen auszuwerten.

Empfehlungen:
- Empfohlen wird, die LV "Management Accounting1" vorab zu besuchen.

Nachweis:
- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung: schriftliche Prüfung (120 min) nach § 4 Abs. 2 Nr. 1 SPO; am Ende von jedem Semester.
- Die Note ist die Note der schriftlichen Prüfung.

Arbeitsaufwand:
- Gesamtaufwand: 135 Stunden
- Präsenzzeit: [56] Stunden (4 SWS)
- Vor-/Nachbereitung: [54] Stunden
- Prüfung und Prüfungsvorbereitung: [25] Stunden

Literaturhinweise
- Zusätzlich werden Artikel auf ILIAS zur Vergütung gestellt.

Übung zu Management Accounting 2 (Bachelor)
2579904, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung zu Management Accounting 2 (Master)
2579905, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
siehe ILIAS
5.154 Teilleistung: Management neuer Technologien [T-WIWI-102612]

Verantwortung: Dr. Thomas Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2545003 | Management neuer Technologien | 2 SWS | Vorlesung (V) / Reiß |

Prüfungsveranstaltungen

| SS 2023 | 7900169 | Management neuer Technologien | Reiß |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4 (2), 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Leistungspunkte der Teilleistung T-WIWI-102612 "Management neuer Technologien" wurden zum Sommersemester 2019 auf 3 Leistungspunkte reduziert.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Management neuer Technologien

2545003, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Organisatorisches

Bitte melden Sie sich für die Prüfung Nr. 7900169 an, das ist die Prüfungs-Nr. für die schriftliche Prüfung.

(Die Prüfungs-Nr. 7900235 ist eine mündliche Prüfung, zu der sich Studierende nur nach Aufforderung durch das EnTechnon Sekretariat anmelden sollen, wenn Studierende eine mündliche Prüfung haben.)

Literaturhinweise

- Hausschildt/Salomo: Innovationsmanagement; Borchert et al.: Innovations- und Technologiemanagement;
- Specht/Möhrle; Gabler Lexikon Technologiemanagement

Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.
5.155 Teilleistung: Management von IT-Projekten [T-WIWI-112599]

Verantwortung: Dr. Roland Schätzle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101477 - Entwicklung betrieblicher Informationssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp (V) / (Ü)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2511214</td>
<td>Management von IT-Projekten</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Schätzle</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2511215</td>
<td>Übungen zu Management von IT-Projekten</td>
<td>1 SWS</td>
<td>Übung (Ü) / Präsenz</td>
<td>Schätzle</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Prüfungstitel</th>
<th>Anmeldung</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>79AIFB_MvIP_A1</td>
<td>Management von IT-Projekten (Anmeldung bis 17.07.2023)</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79AIFB_MvIP_C3</td>
<td>Management von IT-Projekten (Anmeldung bis 05.02.2024)</td>
<td>Oberweis</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗒 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Voraussetzung für die Teilnahme an der Prüfung ist ab Sommersemester 2020 die erfolgreiche Beteiligung an der Übung, die im Sommersemester stattfindet. Die Teilnehmerzahl an der Übung ist begrenzt. Bitte informieren Sie sich rechtzeitig vor Semesterbeginn in Ilias über die Anmeldung via Wiwi-Portal.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
</table>
| Management von IT-Projekten
2511214, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen |
Inhalt

Inhalt:
Es werden Rahmenbedingungen, Einflussfaktoren und Methoden bei der Planung, Abwicklung und Steuerung von Informatikprojekten behandelt. Insbesondere wird auf folgende Themen eingegangen:

- Projektumfeld
- Projektorganisation
- Projektplanung mit den Elementen:
 - Projektstrukturplan
 - Ablaufplan
 - Terminplan
 - Ressourcenplan
- Aufwandsschätzung
- Projektinfrastruktur
- Projektsteuerung und Projektcontrolling
- Risikomanagement
- Wirtschaftlichkeitsbetrachtung
- Entscheidungsprozesse, Verhandlungsführung, Zeitmanagement.

Lernziele:
Die Studierenden

- erklären die Begriffswelt des IT-Projektmanagement und die dort typischerweise angewendeten Methoden zur Planung, Abwicklung und Steuerung,
- wenden die Methoden passend zur Projektphase und zum Projektkontext an,
- berücksichtigen dabei u.a. organisatorische und soziale Einflussfaktoren.

Empfehlungen:
Kenntnisse aus der Vorlesung Software-Engineering sind hilfreich.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 135 Stunden (4,5 Leistungspunkte).

- Vorlesung 30h
- Übung 15h
- Vor- bzw. Nachbereitung der Vorlesung 24h
- Vor- bzw. Nachbereitung der Übung 25h
- Prüfungsvorbereitung 40h
- Prüfung 1h

Literaturhinweise

- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004

Übungen zu Management von IT-Projekten

2511215, SS 2023, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Markenrecht
24609, SS 2023, 2 SWS, Sprache: Deutsch,
Im Studierendenportal anzeigen

Inhalt
Die Vorlesung befasst sich mit den Grundfragen des Markenrechts: was ist eine Marke, wie erhalte ich Markenschutz, welche Rechte habe ich als Markeninhaber, welche Rechte anderer Markeninhaber muss ich beachten, welche anderen Kennzeichenrechte gibt es, etc. Die Studenten werden auch in die Grundlagen des europäischen und internationalen Kennzeichenrechts eingeführt.

Ziel der Vorlesung ist es, den Studenten Kenntnisse über die Regelungen des nationalen sowie des europäischen Kennzeichenrechts zu verschaffen. Die Vorlesung führt in die strukturellen Grundlagen des Markenrechts ein und behandelt insbesondere das markenrechtliche Anmeldeverfahren und die Ansprüche, die sich aus der Verletzung von Markenrechten ergeben, sowie das Recht der geschäftlichen Bezeichnungen, der Werktitel und der geographischen Herkunftsangaben.

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt 90 h, davon 22,5 h Präsenz, 45 h Vor- und Nachbereitungszeit sowie 22,5 h für die Klausurvorbereitung.

Literaturhinweise

Inhalt
Die Vorlesung befasst sich mit den Grundfragen des Markenrechts: was ist eine Marke, wie erhalte ich Markenschutz, welche Rechte habe ich als Markeninhaber, welche Rechte anderer Markeninhaber muss ich beachten, welche anderen Kennzeichenrechte gibt es, etc. Die Studenten werden auch in die Grundlagen des europäischen und internationalen Kennzeichenrechts eingeführt.

Am Ende der Vorlesung besitzt der/die Studierende die Fähigkeit, sich in kennzeichenrechtliche Problematiken einzuarbeiten und Lösungen zu entwickeln.

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt 90 h, davon 22,5 h Präsenz, 45 h Vor- und Nachbereitungszeit sowie 22,5 h für die Klausurvorbereitung.

Literaturhinweise
5.157 Teilleistung: Market Research [T-WIWI-107720]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-101647 - Data Science: Evidence-based Marketing
- M-WIWI-105312 - Marketing and Sales Management
- M-WIWI-106258 - Digital Marketing

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2571150</td>
<td>Market Research</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Klarmann</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2571151</td>
<td>Market Research Tutorial</td>
<td>1</td>
<td>Übung (U) / 🗣</td>
<td>Pade</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900015</td>
<td>Market Research</td>
<td>Klarmann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900053</td>
<td>Market Research</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Klausur mit zusätzlichen Hilfsmitteln im Sinne einer Open Book Klausur. Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen
Diese Veranstaltung ist Voraussetzung für Studierende, die an Abschlussarbeiten bei der Forschungsgruppe "Marketing und Vertrieb" interessiert sind.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Market Research

<table>
<thead>
<tr>
<th>Vorlesungsnummer</th>
<th>SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2571150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhalt
Within the lecture, essential statistical methods for measuring customer attitudes (e.g. satisfaction measurement), understanding customer behavior and making strategic decisions will be discussed. The practical use as well as the correct handling of different survey methods will be taught, such as experiments and surveys. To analyze the collected data, various analysis methods are presented, including hypothesis tests, factor analyses, cluster analyses, variance and regression analyses. Building on this, the interpretation of the results will be discussed.

Topics addressed in this course are for example:

- Theoretical foundations of market research
- Statistical foundations of market research
- Measuring customer attitudes
- Understanding customer reactions
- Strategical decision making

The aim of this lecture is to give an overview of essential statistical methods. In the lecture students learn the practical use as well as the correct handling of different statistical survey methods and analysis procedures. In addition, emphasis is put on the interpretation of the results after the application of an empirical survey. The derivation of strategic options is an important competence that is required in many companies in order to react optimally to customer needs.

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.

The total workload for this course is approximately 135.0 hours.

Presence time: 30 hours
Preparation and wrap-up of the course: 45.0 hours
Exam and exam preparation: 60.0 hours

Please note that this course has to be completed successfully by students interested in master thesis positions at the chair of marketing.

Literaturhinweise
5.158 Teilleistung: Marketing Analytics [T-WIWI-103139]

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101647 - Data Science: Evidence-based Marketing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marketing Analytics</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>5</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Prüfungsleistung anderer Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Marketing Analytics</td>
<td>2 SWS</td>
<td>Klarmann</td>
<td>2572170</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Übung zu Marketing Analytics</td>
<td>1 SWS</td>
<td>Pade</td>
<td>7900082</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Prüfungsleistung anderer Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Klarmann</td>
<td>Marketing Analytics</td>
</tr>
</tbody>
</table>

Legende: 🗃️ Online, 📂 Präsenz/Online gemischt, 🗂️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt (nach §4(2), 3 SPO) in Form einer Prüfungsleistung anderer Art (Aufgaben parallel zur Vorlesung zur Bearbeitung in einer Gruppe).

Voraussetzungen

Ein erfolgreiches Absolvieren von "Market Research" ist Voraussetzung für das Absolvieren der Prüfung in "Marketing Analytics".

Empfehlungen

Es wird dringend empfohlen, vor Belegung des Kurses "Marketing Analytics" die Veranstaltung "Market Research" zu absolvieren.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Marketing Analytics

2572170, WS 23/24, 2 SWS, Sprache: Englisch, *Im Studierendenportal anzeigen*
Inhalt

Der/ die Studierende
• erhält aufbauend auf der Vorlesung Marktforschung einen Überblick über weiterführende statistische Verfahren
• lernt im Zuge der Vorlesung den Umgang mit fortgeschrittenen Erhebungsmethoden und Analyseverfahren
• ist darauf aufbauend in der Lage die Ergebnisse zu interpretieren und Handlungsimpikationen abzuleiten.

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 StundenPräsenzzeit: 30 StundenVor- /Nachbereitung: 45 StundenPrüfung und Prüfungsvorbereitung: 60 Stunden

Voraussetzung für das Belegen des Kurses ist das erfolgreiche Absolvieren der Veranstaltung Market Research.

Im Falle von Austauschstudierenden kann die Bedingung, dass der Kurs Market Research bestanden sein muss umgangen werden, wenn diese ausreichende Statistikkenntnisse durch Statistikurse an der Heimatuniversität nachweisen können. Dies wird individuell vom Lehrstuhl geprüft.

Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Literaturhinweise
• Gelman, Andrew, Hill, Jennifer (2006), Data analysis using regression and multilevel/hierarchical models, New York.
• Cameron, A. Colin, Trivedi, Pravin K. (2005), Microeconometrics: methods and applications, New York.
• Chapman, Christopher, Feit, Elea M. (2015), R for Marketing Research and Analytics, Cham.
• Ledolter, Johannes (2013), Data mining and business analytics with R, New York.

Übung zu Marketing Analytics
2572171, WS 23/24, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Aufgaben parallel zur Vorlesung zur Bearbeitung in einer Gruppe.

Organisatorisches
Blockveranstaltung: genaue Uhrzeiten und Raum werden noch bekannt gegeben
5.159 Teilleistung: Marketing Strategy Planspiel [T-WIWI-102835]

Verantwortung:	Prof. Dr. Martin Klarmann
Einrichtung:	KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:	M-WIWI-101510 - Cross-Functional Management Accounting

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
5.160 Teilleistung: Maschinelles Lernen - Grundlagen und Algorithmen [T-INFO-111558]

Verantwortung: Prof. Dr. Gerhard Neumann
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-105778 - Maschinelles Lernen - Grundlagen und Algorithmen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2400018</td>
<td>Maschinelles Lernen - Grundlagen und Algorithmen</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / Prüfung (VÜ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neumann</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500215</td>
<td>Maschinelles Lernen - Grundlagen und Algorithmen</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neumann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500292</td>
<td>Maschinelles Lernen - Grundlagen und Algorithmen</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Neumann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (i.d.R. 90min) nach § 4 Abs. 2 Nr. 1 SPO.

Lieg die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Note Stufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Empfehlungen

- Python Kenntnisse sind empfehlenswert
- Mathematik-lastige Vorlesung. Es werden zwar die Grundlagen wiederholt, aber eine mathematische Geschicklichkeit ist hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Maschinelles Lernen - Grundlagen und Algorithmen</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400018, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>
Inhalt

Diese Vorlesung bietet einen Überblick über essentielle Methoden des Maschinellen Lernens. Nach einer Wiederholung der notwendigen mathematischen Grundkenntnisse beschäftigt sich die Vorlesung hauptsächlich mit Algorithmen für Klassifikation, Regression und Dichteschätzung. Beispielhafte Auflistung der Themen:

- Basics in Linear Algebra, Probability Theory, Optimization and Constraint Optimization
- Linear Regression
- Linear Classification
- Model Selection, Overfitting, and Regularization
- Support Vector Machines
- Kernel Methods
- Bayesian Learning and Gaussian Processes
- Neural Networks
- Dimensionality Reduction
- Density estimation
- Clustering
- Expectation Maximization
- Graphical Models
- Python Kenntnisse sind empfehlenswert
- Mathematik-lastige Vorlesung. Es werden zwar die Grundlagen wiederholt, aber eine mathematische Geschicklichkeit ist hilfreich.

Organisatorisches
Vorlesung: mittwochs 15:45-17:15, außer am 10.05. und 31.05. und freitags 9:45-11:15
Arbeitsaufwand 150h
 - ca 30h Vorlesungsbesuch
 - ca 15h Übungsbesuch
 - ca 75h Nachbearbeitung und Bearbeitung der Übungsblätter
 - ca 30h Prüfungsvorbereitung
5.161 Teilleistung: Maschinelles Lernen 1 - Grundverfahren [T-WIWI-106340]

Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103356 - Maschinelles Lernen

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>SWS</th>
<th>Vorlesung (V) / Übung (Ü)</th>
<th>Prüfung</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2511500</td>
<td>Maschinelles Lernen 1 - Grundverfahren</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Übung (Ü)</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2511501</td>
<td>Übungen zu Maschinelles Lernen 1 - Grundverfahren</td>
<td>1 SWS</td>
<td>Übung (Ü) / Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V) / Übung (Ü)</th>
<th>Prüfung</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>79AIFB_ML1_C4</td>
<td>Maschinelles Lernen 1 - Grundverfahren (Anmeldung bis 17.07.2023)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79AIFB_ML1_C5</td>
<td>Maschinelles Lernen 1 - Grundverfahren (Anmeldung bis 05.02.2024)</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art), oder als schriftliche Prüfung (60 min) angeboten.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Durch die erfolgreiche Bearbeitung von Übungsaufgaben kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Die Teilleistung T-INFO-101354 „Maschinelles Lernen 1 – Grundverfahren“ darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinelles Lernen 1 - Grundverfahren

2511500, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Der Kurs wird von einer entsprechenden Übung begleitet, in welcher die Studierenden praktische Erfahrung sammeln, indem sie verschiedene Algorithmen des maschinellen Lernens implementieren und experimentieren, was ihnen hilft diese auf real Problemstellungen anzuwenden.

Am Ende des Kurses werden die Studierenden eine solide Grundlage im Bereich des maschinellen Lernens erworben haben, die sie in die Lage versetzt, modernste Algorithmen zur Lösung komplexer Probleme anzuwenden, zu Forschungsarbeiten beizutragen und sich in fortgeschrittene Themen auf diesem Gebiet einzuarbeiten.

Lernziele:

- Studierende erlangen Kenntnis der grundlegenden Methoden im Bereich des Maschinellen Lernens.
- Studierende können Methoden des Maschinelles Lernens einordnen, formal beschreiben und bewerten.
- Die Studierenden können ihr Wissen für die Auswahl geeigneter Modelle und Methoden für ausgewählte Probleme im Bereich des Maschinelles Lernens einsetzen.
Literaturhinweise
Die Folienätze sind als PDF verfügbar

Weiterführende Literatur

- Machine Learning - Tom Mitchell
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
5.162 Teilleistung: Maschinelles Lernen 2 - Fortgeschrittene Verfahren [T-WIWI-106341]

Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101637 - Analytics und Statistik
M-WIWI-103356 - Maschinelles Lernen

Teilleistungsarten
<table>
<thead>
<tr>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V)</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2511502 | Maschinelles Lernen 2 - Fortgeschrittene Verfahren | 2 SWS | Vorlesung (V) / 🗣️ | Zöllner |
| SS 2023 | 2511503 | Übungen zu Maschinelles Lernen 2 - Fortgeschrittene Verfahren | 1 SWS | Übung (Ü) / 🗣️ | Zöllner |

Prüfungsveranstaltungen

| SS 2023 | 79AIFB_ML2_B1 | Maschinelles Lernen 2 - Fortgeschrittene Verfahren (Anmeldung bis 17.07.2023) | Zöllner |
| WS 23/24 | 79AIFB_ML2_B8 | Maschinelles Lernen 2 - Fortgeschrittene Verfahren (Anmeldung bis 05.02.2024) | Zöllner |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art), oder als schriftliche Prüfung (60 min) angeboten.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Die Teilleistung T-INFO-101392 „Maschinelles Lernen 2 - Fortgeschrittene Verfahren“ darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinelles Lernen 2 - Fortgeschrittene Verfahren

2511502, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt
Das Themenfeld Maschinelle Intelligenz und speziell Maschinelles Lernen unter Berücksichtigung realer Herausforderungen komplexer Anwendungsdomänen ist ein stark expandierendes Wissensgebiet und Gegenstand zahlreicher Forschungs- und Entwicklungsvorhaben.

Die Vorlesung führt in die neuesten Grundprinzipien sowie erweiterte Grundstrukturen ein und erläutert bisher entwickelte Algorithmen. Der Aufbau sowie die Arbeitsweise der Verfahren und Methoden werden anhand einiger Anwendungsszenarien, insbesondere aus dem Gebiet technischer (teil-)autonomer Systeme (Fahrzeuge, Robotik, Neurorobotik, Bildverarbeitung etc.) vorgestellt und erläutert.

Lernziele:

- Studierende verstehen erweiterte Konzepte des Maschinellen Lernens sowie ihre Anwendungsmöglichkeit.
- Studierende können Methoden des Maschinellen Lernens einordnen, formal beschreiben und bewerten.
- Im Einzelnen können Methoden des Maschinellen Lernens in komplexe Entscheidungs- und Inferenzsysteme eingebettet und angewendet werden.
- Die Studierenden können ihr Wissen zur Auswahl geeigneter Modelle und Methoden des Maschinellen Lernens für vorliegende Probleme im Bereich der Maschinellen Intelligenz einsetzen.

Empfehlungen:
Der Besuch der Vorlesung Maschinelles Lernen 1 oder einer vergleichbaren Vorlesung ist sehr hilfreich beim Verständnis dieser Vorlesung.

Literaturhinweise
Die Folienpakete sind als PDF verfügbar

Weiterführende Literatur

- Deep Learning - Ian Goodfellow
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Machine Learning - Tom Mitchell
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
5.163 Teilleistung: Masterarbeit [T-WIWI-103142]

Verantwortung: Studiendekan der KIT-Fakultät für Informatik
Studiendekan des KIT-Studienganges

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101656 - Modul Masterarbeit

Teilleistungsart: Abschlussarbeit
Leistungspunkte: 30
Notenskala: Drittelnoten
Version: 1

Erfolgskontrolle(n)
siehe Modulbeschreibung

Voraussetzungen
siehe Modulbeschreibung

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit**: 6 Monate
- **Maximale Verlängerungsfrist**: 3 Monate
- **Korrekturfrist**: 8 Wochen
5.164 Teilleistung: Matching Theory [T-WIWI-113264]

Verantwortung: Prof. Dr. Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101500 - Microeconomic Theory

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2500042</th>
<th>Matching Theory</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🗣 Okulicz</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Matching Theory
2500042, WS 23/24, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz

Inhalt

How should we organize recruitment of students to schools? Could we improve the placement of doctors to hospitals? Why there always seems to be a better roommate to the one you currently have? Matching Theory answers all these questions and more. During the course we will formally study mathematical systems of allocating goods and people, and see their many real life applications from organizing kidney exchange to improving dating apps. The course will cover three main topics in Matching Theory and Market Design: (1) assignment problems (e.g., allocation of social housing), (2) two-sided matching (e.g., allocation of children to schools), (3) transferable-utility matching (e.g., labor market).

The students are expected to:

1. Understand the mathematical properties of allocations and commonly used mechanism
2. Understand the connection between Matching Theory and real-life allocation systems
3. Be able to use their knowledge to propose solutions for novel real-life problems
5.165 Teilleistung: Mathematische Grundlagen hochdimensionaler Statistik [T-WIWI-111247]

Verantwortung: Prof. Dr. Oliver Grothe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101473 - Mathematische Optimierung
- M-WIWI-101637 - Analytics und Statistik
- M-WIWI-103289 - Stochastische Optimierung

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4,5
Notenskala Drittelnoten
Turnus Unregelmäßig
Version 1

Lehrveranstaltungen
SS 2023 2550562 Mathematische Grundlagen hochdimensionaler Statistik 2 SWS Vorlesung (V) / Praxis Grothe
SS 2023 2550563 Übung zu Mathematische Grundlagen hochdimensionaler Statistik 2 SWS Übung (U) / Praxis Grothe, Rieger

Prüfungsveranstaltungen
SS 2023 7900362 Mathematische Grundlagen hochdimensionaler Statistik Grothe

Legende: Online, 🗻 Präsenz/Online gemischt, 🗼 Präsenz; ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min.) in der vorlesungsfreien Zeit des Semesters.

Voraussetzungen
Keine

Empfehlungen
Grundkenntnisse in Mathematik und Statistik werden vorausgesetzt.
Kenntnisse in multivariater Statistik sind von Vorteil, sind für die Veranstaltung aber nicht notwendig.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Grundlagen hochdimensionaler Statistik
2550562, SS 2023, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Inhalt:

Lernziele:
Studierende können
- statistische Eigenschaften von hochdimensionalen Objekten (Vektoren, Matrizen, Funktionen) benennen und begründen.
- Unterschiede im Verhalten von niedrig- zu hochdimensionalen Zufallsojektten beschreiben und erklären.
- Verfahren zur Abschätzung von Unsicherheiten in statistischen Modellen nennen und in einfachen Beispielen anwenden.
- begründet entscheiden, welche Modellierungen von hochdimensionalen Strukturen am besten in einer konkreten Situation geeignet sind.
- Daten in niedriger Dimension transformieren und entstehende Fehler quantifizieren.
- grundlegende Beweistechniken in der hochdimensionalen Statistik an Beispielen nachvollziehen.
- kleinere Simulationen in einer Programmiersprache ihrer Wahl entwickeln, implementieren und auswerten.
5.166 Teilleistung: Media Management [T-WIWI-112711]

Verantwortung: Prof. Dr. Ann-Kristin Kupfer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-106258 - Digital Marketing

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte 4,5
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Module</th>
<th>WS 23/24</th>
<th>Präsenz</th>
<th>Online</th>
<th>Vorlesung (V) / Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Media Management</td>
<td>2572192</td>
<td>2 SWS</td>
<td>Präsenz</td>
<td>Kupfer</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Media Management Exercise</td>
<td>2572193</td>
<td>1 SWS</td>
<td>Präsenz</td>
<td>Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Module</th>
<th>WS 23/24</th>
<th>Präsenz</th>
<th>Online</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Media Management</td>
<td>7900135</td>
<td>Vorlesung (V)</td>
<td>Kupfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗼 Präsenz, ☛ Abgesagt

Erfolgskontrolle(n)
The control of success is done by the elaboration and presentation of a group task as well as a written exam. Further details on the design of the performance review will be announced during the lecture.

Voraussetzungen
None

Empfehlungen
Students are highly encouraged to actively participate in class.

Anmerkungen
The course will take place in the winter term 23/24 for the first time.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Media Management
2572192, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Lernziele ergeben sich entsprechend wie folgt:

- Erlernen von theoretischen Grundlagen zum Medienmanagement
- Bewerten von strategischen Handlungsoptionen im Medienmanagement und sowie dem medienspezifischen Marketing Mix
- Förderung von kritischem und analytischem Denkvermögen sowie problemorientierte Wissensanwendung
- Stärkung von Teamfähigkeit und Kompetenzen im Bereich Projektmanagement im Rahmen der Gruppenarbeiten
- Förderung von Fremdsprachenkenntnissen im Bereich Wirtschaftsenglisch

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden
Organisatorisches
Appointments to be announced.
5.167 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 24659</td>
<td>Mensch-Maschine-Interaktion</td>
<td>2 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7500048 | Mensch-Maschine-Interaktion | Beigl |
| WS 23/24 | 7500076 | Mensch-Maschine-Interaktion | Beigl |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mensch-Maschine-Interaktion
24659, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Beschreibung:

Lehrinhalt:
Themenbereiche sind:
1. Wahrnehmung des Menschen (physiologische Grundlagen, menschliche Sinne, Gestalt)
2. Informationsverarbeitung des Menschen (HIP-Modelle, psychologische Grundlagen, Handlungsprozesse)
3. Designgrundlagen und Designmethoden, Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
4. Designanalyse von Mensch-Maschine Interaktion
5. Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen und Methoden zur Modellierung von Benutzungsschnittstellen
7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Aktivität
Arbeitsaufwand
Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min
Präsenzzeit: Besuch der Übung
8 x 90 min
12 h 00 min
Vor-/Nachbereitung der Vorlesung
15 x 150 min
37 h 30 min
Vor-/Nachbereitung der Übung
8 x 360 min
48 h 00 min
Foliensatz/Skriptum 2 x durchgehen
2 x 12 h
24 h 00 min
Prüfung vorbereiten
36 h 00 min
SUMME
180 h 00 min
Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"

Lernziele:
Die Vorlesung führt in Grundlagen der Mensch-Maschine Kommunikation ein. Nach Abschluss der Veranstaltung können die Studierenden
- grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
- grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
- grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
- existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Organisatorisches
Die Vorlesung ist ein Stammmodul und wird schriftlich abgeprüft (Klausur).
Literaturhinweise
5.168 Teilleistung: Methoden im Innovationsmanagement [T-WIWI-110263]

Verantwortung: Dr. Daniel Jeffrey Koch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101507 - Innovationsmanagement
- M-WIWI-101507 - Innovationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art (§4(2), 3 SPO) bestehend aus einem Referat (25%) und einer schriftlichen Ausarbeitung (75%).

Voraussetzungen
Keine.

Empfehlungen
Der vorherige Besuch der Vorlesung Innovationsmanagement: Konzepte, Strategien und Methoden wird empfohlen.
5.169 Teilleistung: Methods in Economic Dynamics [T-WIWI-102906]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101514 - Innovationsökonomik

<table>
<thead>
<tr>
<th>Leistung</th>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS 2023</td>
<td>SS 2023</td>
</tr>
<tr>
<td>2560240</td>
<td>Methods in Economic Dynamics</td>
<td>7900108 Methods in Economic Dynamics</td>
</tr>
<tr>
<td>1 SWS</td>
<td>Ott</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕒 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Form). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen

Anmerkungen
Die Teilnehmerzahl ist begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfungsveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods in Economic Dynamics</td>
<td>Methods in Economic Dynamics</td>
</tr>
<tr>
<td>SS 2023, 1 SWS, Sprache: Deutsch/Englisch</td>
<td>SS 2023, 1 SWS, Sprache: Deutsch/Englisch</td>
</tr>
</tbody>
</table>

Vorlesung (V) Präsenz
Inhalt
Die ökonomische Verwertung von Erfindungen stellt einen wichtigen Teilbereich der Innovationsökonomik dar. Formale Schutzrechte zur Sicherung geistigen Eigentums wie beispielsweise Patente oder Marken spielen hierbei eine zentrale Rolle. Im Rahmen dieses Workshops wird die Erfassung, Aufbereitung und Analyse solcher Schutzrechte vertieft, zum Beispiel anhand spezifischer Technologien. Studierende erlernen den Umgang mit relationalen Datenbanken, die ökonometrische Auswertung erfasster Daten sowie Methoden zu deren Darstellung.

Lernziele:
Der/die Studierende
• lernt Datenquellen abzufragen.
• ist in der Lage, Daten mit statistischen Verfahren auszuwerten.
• visualisiert und interpretiert Datenauswertungen (bspw. mithilfe von Dashboards oder Methoden der Netzwerkanalyse).

Empfehlungen:
Ein Interesse an der Arbeit mit Daten, grundlegende Kenntnisse über Datenbanken sowie ökonomische und statistische Grundkenntnisse sind von Vorteil.

Arbeitsaufwand:
Der Gesamtaufwand bei 1,5 Leistungspunkten entspricht ca. 45 Stunden.
• Präsenzzeit: ca. 5 Stunden
• Selbststudium: ca. 40 Stunden

Nachweis:
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Form) nach § 4 Abs. 2 Nr. 3 SPO 2015.

Organisatorisches
The course is structured along two assignments, the first of which is an individual assignment, whereas the second assignment is a group project. Assignment 1 will be completed within one month’s time, whereas assignment 2 will take place on a different date.

Assignment 1 will take place on 03.05.2023 in Building 01.87, B5.25. Assignment 2 will take place on 23.06.2023 in Building 01.87, B5.25. The exact time will be announced later. Students are offered the opportunity to participate in this course jointly with the course “Seminar in Economic Policy”, within the module “Economics of Innovation”. The work in both courses will be strongly related to each other, as students will work on the same topic from two different perspectives. Students in the course “Seminar in Economic Policy” will be provided with the opportunity to write a paper that addresses the results found by the students in the course “Methods in Economic Dynamics”. Taking both courses together will enable the students to earn 4.5 ECTS.

Literaturhinweise
Relevante Literatur wird in der Vorlesung bekanntgegeben. (Relevant literature will be announced in the lecture.)
5.170 Teilleistung: Mobilkommunikation [T-INFO-101322]

| Verantwortung: | Prof. Dr. Oliver Waldhorst
| | Prof. Dr. Martina Zitterbart |
| Einrichtung: | KIT-Fakultät für Informatik |
| Bestandteil von: | M-INFO-100785 - Mobilkommunikation
| | M-INFO-101203 - Wireless Networking
| | M-INFO-101205 - Future Networking |

Teilleistungsart	Prüfungsleistung mündlich
	Leistungspunkte 4
	Notenskala Drittelnoten
	Turnus Jedes Wintersemester
	Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 24643</td>
<td>Mobilkommunikation 2 SWS Waldhorst, Mahrt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 7500073</td>
<td>Mobilkommunikation Waldhorst, Zitterbart</td>
</tr>
<tr>
<td>WS 23/24 7500015</td>
<td>Mobilkommunikation Waldhorst, Zitterbart</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen

Keine

Empfehlungen

Die Inhalte der Vorlesung Einführung in Rechnernetze werden als bekannt vorausgesetzt. Der Besuch der Vorlesung Telematik wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Mobilkommunikation</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24643, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>
Inhalt

Voraussetzungen

Die Inhalte der Vorlesung Einführung in Rechnernetze werden als bekannt vorausgesetzt. Der Besuch der Vorlesung Telematik wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

Lernziele

Die Studierenden kennen ein Portfolio von Methoden zur Modulation digitaler Daten, zum Multiplexen, zur Koordination konkurrrierender Medienzugriffe und zum Mobilitätsmanagement. Sie können diese in eigenen Worten erläutern, können sie bewerten und geeignete Kandidaten beim Entwurf von Systemen zur Mobilkommunikation auswählen.

Die Studierenden beherrschen die grundsätzlichen Konzepte drahtloser lokaler Netze nach IEEE 802.11 (WLAN) sowie drahtloser persönlicher Netze mit Bluetooth. Sie können diese erläutern und die jeweiligen Varianten miteinander vergleichen. Weiterhin können sie insbesondere den Medienzugriff detailliert analysieren und bewerten.

Die Studierenden kennen grundlegende Verfahren im Bereich des Routings in selbstorganisierenden drahtlosen Ad-hoc Netzen und können diese umfassend analysieren sowie ihnen Einsatz abhängig vom Anwendungsszenario bewerten. Weiterhin beherrschen sie die grundlegenden Konzepte zur Mobilitätsunterstützung im Internet (Mobile IP und Mobile IPv6).

Literaturhinweise

J. Schiller; Mobilkommunikation; Addison-Wesley, 2003.

Weiterführende Literatur

H. Kaarinen, A. Ahtiainen, et. al., UMTS Networks - Architecture, Mobility and Services, Wiley Verlag, 2001.

B. A. Miller, C. Bisidikian, Bluetooth Revealed, Prentice Hall, 2002

What You Should Know About the ZigBee Alliance http://www.zigbee.org.

H. Holma, WCDMA For UMTS, HSPA Evolution and LTE, 2007
5.171 Teilleistung: Modeling and Simulation [T-WIWI-112685]

Verantwortung: Prof. Dr. Sanja Lazarova-Molnar
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101456 - Intelligente Systeme und Services

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling and Simulation</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2511100</td>
<td>Modeling and Simulation</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lazarova-Molnar</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2511101</td>
<td>Übungen zu Modeling and Simulation</td>
<td>1</td>
<td>Übung (U)</td>
<td>Lazarova-Molnar</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
<th>Anmeldung bis</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>79AIFB_MaS_C6</td>
<td>Modeling and Simulation</td>
<td>17.07.2023</td>
<td>Lazarova-Molnar</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79AIFB_MaS_A6</td>
<td>Modeling and Simulation</td>
<td>05.02.2024</td>
<td>Lazarova-Molnar</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Depending on the number of participants in the course, the exam will be offered either as an oral exam (approx. 20 min), or as a written exam (60 min).

The exam takes place every semester and can be repeated at every regular examination date.

Voraussetzungen

None

Empfehlungen

Some experience in programming and knowledge of basic mathematics and statistics.

Anmerkungen

Instruction is in the form of lectures and exercises. A detailed course schedule will be published before the start of the semester.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Modeling and Simulation

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>SS 2023</th>
<th>SWS</th>
<th>Sprache</th>
<th>Anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511100</td>
<td>2</td>
<td>2</td>
<td>Englisch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Modeling and Simulation is the most widely used operations research / systems engineering technique for designing new systems and optimizing the performance of existing systems. In one way or another, just about every engineering or scientific field uses simulation as an exploration, modeling, or analysis technique. The course is designed to provide students with basic knowledge of modeling and simulation approaches and to provide them with first experience of using a simulation package. The course will focus on modeling and simulation of real-world discrete event systems. Examples of discrete events are customer arrivals at a queue of a service desk, machine failures in manufacturing systems, telephone calls in a call center, etc. Moreover, continuous and hybrid models will be also discussed. Topics include Discrete-Event Simulation, Input Modeling, Output Analysis, Random Number Generation, Verification and Validation, Stochastic Petri Nets and Markov Chains.

Competence Certificate
Depending on the number of participants in the course, the exam will be offered either as an oral exam (20 min), or as a written exam (60 min).

The exam takes place every semester and can be repeated at every regular examination date.

Learning Objectives
Knowledge:
- Demonstrate knowledge about general and specific theories, challenges, algorithms, methods, technologies, and tools related to modelling and simulation
- Demonstrate knowledge of two important classes of simulation:
 - Discrete-event Monte-Carlo simulation,
 - Continuous simulation with ODEs
- Demonstrate knowledge of algorithms necessary to build a simulator

Skills:
- Analyse suitability of an approach/tool for a given modelling problem
- Understand simulation models of various types
- Demonstrate methods and techniques to overcome common challenges in modelling and simulation
- Model simulation input data
- Analyse and model discrete stochastic systems
- Analyse and interpret simulation results

Competences:
- Use different methods to conduct simulation-based analysis of real-world data
- Build and simulate stochastic models
- Use simulation software

Prerequisites
Some experience in programming and knowledge of basic mathematics and statistics

Form of instruction
Lectures and exercises. A detailed course plan will be published before the semester start.

Literaturhinweise
Discrete-Event System Simulation, 5th Edition
Jerry Banks, John S. Carson, II, Barry L. Nelson and David M. Nicol
5.172 Teilleistung: Modellgetriebene Software-Entwicklung [T-INFO-101278]

Verantwortung: Prof. Dr. Ralf Reussner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101201 - Software-Systeme
M-INFO-101202 - Software-Methodik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsmethoden</td>
<td>Vorlesung (V) / 👤</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>DO</th>
<th>Vorlesungsthema</th>
<th>Veranstaltungsmodus</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24657</td>
<td>Modellgetriebene Software-Entwicklung</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 👤</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>DO</th>
<th>Prüfungsthema</th>
<th>Veranstaltungsmodus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500016</td>
<td>Modellgetriebene Software-Entwicklung</td>
<td>Burger, Reussner</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Empfehlungen
Grundkenntnisse aus der Vorlesung Softwaretechnik II [24076] sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Modellgetriebene Software-Entwicklung
24657, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
5.173 Teilleistung: Modellieren und OR-Software: Fortgeschrittene Themen [T-WIWI-106200]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102808 - Digital Service Systems in Industry
M-WIWI-102832 - Operations Research im Supply Chain Management

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24 2550490</td>
<td>Modellieren und OR-Software: Fortgeschrittene Themen</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🧩</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023 7900035</td>
<td>Modellieren und OR-Software: Fortgeschrittene Themen</td>
<td></td>
<td>Nickel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24 7900071</td>
<td>Modellieren und OR-Software: Fortgeschrittene Themen</td>
<td></td>
<td>Nickel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Zulassungsvoraussetzung zu Klausur ist die erfolgreiche Teilnahme am Übungsbetrieb. Dies beinhaltet die Bearbeitung und Präsentation von Übungsaufgaben.

Empfehlungen

Erfolgreicher Abschluss der Lehrveranstaltung Modellieren und OR-Software: Einführung.

Anmerkungen
Aufgrund der begrenzten Teilnehmerzahl wird um eine Voranmeldung gebeten. Weitere Informationen entnehmen Sie der Internetseite des Software-Praktikums.

Die Veranstaltung wird in jedem Semesterangeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Modellieren und OR-Software: Fortgeschrittene Themen
2550490, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt

Inhalt

Organisatorisches
Link zur Bewerbung:
http://go.wiwi.kit.edu/OR_Bewerbung

Bewerberzeitraum:
01.09.2023 00:00 - 12.10.2023 23:55

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
5.174 Teilleistung: Multikriterielle Optimierung [T-WIWI-111587]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung
M-WIWI-102832 - Operations Research im Supply Chain Management
M-WIWI-103289 - Stochastische Optimierung

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4,5
Notenskala Drittelnoten
Turnus siehe Anmerkungen
Version 1

Prüfungsveranstaltungen
SS 2023 7900209_SS2023_NK Multikriterielle Optimierung Stein

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss.
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkungen
Die Lehrveranstaltung wird in jedem zweiten Wintersemester angeboten (ab WiSe 22/23). Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.

Inhalt:

Einige scheinbar naheliegende Skalarisierungsansätze leiden allerdings unter verschiedenen Nachteilen, so dass unabhängig von Skalarisierungsansätzen zunächst zu klären ist, was überhaupt unter der Lösung eines multikriteriellen Optimierungsproblems zu verstehen ist. Für solche Pareto-optimalen Punkte lassen sich Optimalitätsbedingungen und darauf basierende Lösungsverfahren formulieren. Aus der üblicherweise mehrpunktigen Pareto-Menge wählen Entscheidungsträger schließlich anhand ihrer subjektiven Präferenzen eine Alternative aus.

Die Vorlesung gibt eine mathematisch fundierte Einführung in die multikriterielle Optimierung und ist wie folgt aufgebaut:
- Einführende Beispiele und Terminologie
- Lösungsbegriffe
- Verfahren zur Bestimmung der Pareto-Menge
- Auswahl Pareto-optimaler Punkte bei subjektiven Präferenzen

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
5.175 Teilleistung: Multivariate Verfahren [T-WIWI-103124]

Verantwortung: Prof. Dr. Oliver Grothe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung
M-WIWI-101637 - Analytics und Statistik
M-WIWI-101639 - Ökonometrie und Statistik II
M-WIWI-103289 - Stochastische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 2550554 Multivariate Verfahren 2 SWS Vorlesung (V) / Präsenz Grothe
SS 2023 2550555 Übung zu Multivariate Verfahren 2 SWS Übung (U) / Präsenz Kächele

Prüfungsveranstaltungen
SS 2023 7900351 Multivariate Verfahren Grothe

Erfolgskontrolle(n)
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen
Keine

Empfehlungen

Der vorherige Besuch der Bachelor-Veranstaltung "Analyse multivariater Daten" wird empfohlen. Alternativ kann interessierten Studierenden das Skript der Veranstaltung zur Verfügung gestellt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Multivariate Verfahren
2550554, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Literaturhinweise
Skript zur Vorlesung
Teilleistung: Mustererkennung [T-INFO-101362]

Verantwortung: Prof. Dr.-Ing. Jürgen Beyerer
Tim Zander

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100825 - Mustererkennung
M-INFO-101239 - Maschinelle Visuelle Wahrnehmung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td></td>
<td></td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 24675 Mustererkennung 4 SWS Vorlesung / Übung (VÜ) / Präsenz
SS 23/24 7500032 Mustererkennung

Prüfungsveranstaltungen
SS 2023 7500032 Mustererkennung
WS 23/24 7500111 Mustererkennung

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.
Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen
Keine.

Empfehlungen
Kenntnisse der Grundlagen der Stochastik, Signal- und Bildverarbeitung sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Organisatorisches
Vorlesung: montags 15:45 bis 16:30 Uhr und mittwochs 14:00 bis 15:30 Uhr
Übung: montags 16:30 bis 17:15 Uhr

Literaturhinweise
Weiterführende Literatur
5.177 Teilleistung: Netze und Punktwolken [T-INFO-101349]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100812 - Netze und Punktwolken

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7500317 | Netze und Punktwolken | Prautzsch |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 - 30 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.
5.178 Teilleistung: Netzsicherheit: Architekturen und Protokolle [T-INFO-101319]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100782 - Netzsicherheit: Architekturen und Protokolle
M-INFO-101203 - Wireless Networking
M-INFO-101204 - Networking Labs
M-INFO-101206 - Networking
M-INFO-101207 - Netzsicherheit - Theorie und Praxis

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Veranstaltungstitel</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Prüfungsform</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 24601</td>
<td>Netzsicherheit: Architekturen und Protokolle</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Vorlesung (V) / 🗣</td>
<td>Baumgart, Bless, Heseding, Zitterbart</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Veranstaltungstitel</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 7500072</td>
<td>Netzsicherheit: Architekturen und Protokolle</td>
<td></td>
<td></td>
<td>Zitterbart</td>
</tr>
<tr>
<td>WS 23/24 7500014</td>
<td>Netzsicherheit: Architekturen und Protokolle</td>
<td></td>
<td></td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen

Keine

Empfehlungen

Die Inhalte der Vorlesung Einführung in Rechnernetze werden als bekannt vorausgesetzt. Der Besuch der Vorlesung Telematik wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Netzsicherheit: Architekturen und Protokolle
24601, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Die Inhalte der Vorlesung Einführung in Rechnernetze werden als bekannt vorausgesetzt. Der Besuch der Vorlesung Telematik wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

Lernziele
Studierende

- kennen grundlegende Herausforderungen, Schutzziele und kryptographische Bausteine, die für den Entwurf sicherer Kommunikationssysteme relevant sind
- beherrschen sicherheitsrelevante Kommunikationsprotokolle (z.B. Kerberos, TLS, IPSec) und können grundlegende Sicherheitsmechanismen identifizieren und erläutern
- besitzen die Fähigkeit, Kommunikationsprotokolle unter Sicherheitsaspekten zu analysieren und zu bewerten
- besitzen die Fähigkeit, die Qualität von Sicherheitsmechanismen im Bezug zu geforderten Schutzzielen zu beurteilen und zu bewerten

Studierende kennen den verteilten Authentifizierungsdienst Kerberos und können den Protokollablauf in eigenen Worten erläutern und grundlegende Konzepte (z.B. Tickets) benennen. Zudem beherrschen Studierende relevante Kommunikationsprotokolle zum Schutz der Kommunikation im Internet (u.a. IPsec, TLS) und können diese erklären sowie deren Sicherheitseigenschaften analysieren und bewerten.

Studierende beherrschen unterschiedliche Vertrauensmodelle und können grundlegende technische Konzepte (z.B. digitale Zertifikate, PKI) in eigenen Worten erklären und anwenden. Zudem entwickeln die Studierenden ein Verständnis für Datenschutzaspekte in Kommunikationsnetzen und können technische Verfahren zum Schutz der Privatsphäre erläutern und anwenden.

Literaturhinweise

Weiterführende Literatur

- Carlisle Adams und Steve Lloyd. Understanding PKI. Addison Wesley, 2003
5.179 Teilleistung: Next Generation Internet [T-INFO-101321]

Verantwortung: Dr.-Ing. Roland Bless
Prof. Dr. Martina Zitterbart

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101205 - Future Networking
M-INFO-101206 - Networking

Lehrveranstaltungen
SS 2023 24674 Next Generation Internet 2 SWS Vorlesung (V) / Bress

Prüfungsveranstaltungen
SS 2023 7500074 Next Generation Internet Bress, Zitterbart
WS 23/24 7500016 Next Generation Internet Bress, Zitterbart

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO

stattfinden.

Voraussetzungen
Keine

Empfehlungen
Die Inhalte der Vorlesung Einführung in Rechnernetze werden als bekannt vorausgesetzt. Der Besuch der Vorlesung Telematik wird dringend empfohlen, da die Inhalte eine wichtige Grundlage für Verständnis und Einordnung des Stoffes sind.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Next Generation Internet
24674, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise

Weiterführende Literatur
wird in der Vorlesung bekanntgegeben.
5 TEILLEISTUNGEN

5.180 Teilleistung: Nicht- und Semiparametrik [T-WIWI-103126]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101638 - Ökonometrie und Statistik I
M-WIWI-101639 - Ökonometrie und Statistik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2521300</td>
<td>Nicht- und Semiparametrik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Schienle</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2521301</td>
<td>Übung zu Nicht- und Semiparametrik</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Schienle, Rüter, Wolffram</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7900009</td>
<td>Nicht- und Semiparametrik</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO). Bei geringer Teilnehmerzahl findet eine mündliche Prüfung statt.

Voraussetzungen
Keine

Empfehlungen
Es werden inhaltliche Kenntnisse der Veranstaltung "Angewandte Ökonometrie" [2520020] vorausgesetzt.

Anmerkungen
Die Veranstaltung findet jedes zweite Wintersemester statt: 2018/19 dann 2020/21 ...

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vicht: Nicht- und Semiparametrik
2521300, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Lernziele:
Der/ die Studierende
- besitzt umfassende Kenntnisse nicht- und semiparametrischer Schätzmethoden
- ist in der Lage diese mit Hilfe statistischer Software umzusetzen und empirische Problemstellungen kritisch zu analysieren

Inhalt:
Kerndichteschätzer, lokal konstante und lokal lineare Regression, Bandweitenwahl, Reihen - und Sieve-Schätzer, additive Modelle, Semiparametrische Modelle

Voraussetzungen:
Der vorherige Besuch der Veranstaltung Angewandte Ökonometrie wird empfohlen.

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Vor- /Nachbereitung: 65 Stunden
Prüfung und Prüfungsvorbereitung: 40 Stunden

Literaturhinweise
5.181 Teilleistung: Nichtlineare Optimierung I [T-WIWI-102724]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>course_code</th>
<th>学科名称</th>
<th>SWS</th>
<th>Prüfung /</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2550111</td>
<td>Nichtlineare Optimierung I</td>
<td>2</td>
<td>Vorlesung (V) /</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2550112</td>
<td>Übungen zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (U) /</td>
<td>Stein, Schwarze</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>course_code</th>
<th>学科名称</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900202_SS2023_NK</td>
<td>Nichtlineare Optimierung I</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900001_WS2324_HK</td>
<td>Nichtlineare Optimierung I</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben. Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten. Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Nichtlineare Optimierung II [2550113] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Die Teilleistung T-WIWI-103637 “Nichtlineare Optimierung I und II” darf nicht begonnen worden sein.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Nichtlineare Optimierung I
2550111, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Die Vorlesung behandelt die Minimierung glatter nichtlinearer Funktionen ohne Nebenbedingungen. Für solche Probleme, die in Wirtschafts-, Ingenieur- und Naturwissenschaften sehr häufig auftreten, werden Optimalitätsbedingungen hergeleitet und darauf basierende Lösungsverfahren entwickelt. Die Vorlesung ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Lösbarkeit
- Optimalitätsbedingungen erster und zweiter Ordnung
- Algorithmen (Schrittweitensteuerung, Gradientenverfahren, Variable-Metrik-Verfahren, Newton-Verfahren, Quasi-Newton-Verfahren, CG-Verfahren, Trust-Region-Verfahren)

Die zur Vorlesung angebotene Übung bietet unter anderem Gelegenheit, einige Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkung:
Theilprobleme mit Nebenbedingungen bilden den Inhalt der Vorlesungen "Nichtlineare Optimierung I" und "Nichtlineare Optimierung II", die nacheinander im selben Semester gelesen werden.

Lernziele:
Theilende
- kennt und versteht die Grundlagen der unrestringierten nichtlinearen Optimierung,
- ist in der Lage, moderne Techniken der unrestringierten nichtlinearen Optimierung in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
5.182 Teilleistung: Nichtlineare Optimierung I und II [T-WIWI-103637]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>6</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>Stunde</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2550111</td>
<td>Nichtlineare Optimierung I</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2550112</td>
<td>Übungen zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (Ü) / Präsenz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2550113</td>
<td>Nichtlineare Optimierung II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900204_SS2023_NK</td>
<td>Nichtlineare Optimierung I und II</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900003_WS2324_HK</td>
<td>Nichtlineare Optimierung I und II</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

(Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:)

V Nichtlineare Optimierung I

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>Stunde</th>
<th>Sprache</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550111, WS 23/24</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Vorlesung (V)

Präsenz
Inhalt

Die Vorlesung behandelt die Minimierung glatter nichtlinearer Funktionen ohne Nebenbedingungen. Für solche Probleme, die in Wirtschafts-, Ingenieur- und Naturwissenschaften sehr häufig auftreten, werden Optimierungsprobleme hergeleitet und darauf basierende Lösungsverfahren entwickelt. Die Vorlesung ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Lösbarkeit
- Optimierungsverfahren erster und zweiter Ordnung
- Algorithmen (Schrägverfahren, Gradientenverfahren, Variable-Metrik-Verfahren, Newton-Verfahren, Quasi-Newton-Verfahren, CG-Verfahren, Trust-Region-Verfahren)

Die zur Vorlesung angebotene Übung bietet unter anderem Gelegenheit, einige Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkung:

Die Behandlung von Optimierungsproblemen mit Nebenbedingungen bildet den Inhalt der Vorlesung "Nichtlineare Optimierung II". Die Vorlesungen "Nichtlineare Optimierung I" und "Nichtlineare Optimierung II" werden nacheinander im selben Semester gelesen.

Lernziele:

Der/die Studierende

- kennt und versteht die Grundlagen der unrestringierten nichtlinearen Optimierung,
- ist in der Lage, moderne Techniken der unrestringierten nichtlinearen Optimierung in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
Literaturhinweise

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
5.183 Teilleistung: Nichtlineare Optimierung II [T-WIWI-102725]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Übung (U) / ○</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2550112</td>
<td>Übungen zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Stein, Schwarze</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2550113</td>
<td>Nichtlineare Optimierung II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / ○</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900203_SS2023_NK</td>
<td>Nichtlineare Optimierung II</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900002_WS2324_HK</td>
<td>Nichtlineare Optimierung II</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Nichtlineare Optimierung I erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im gleichen Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Nichtlineare Optimierung II
2550113, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Die Vorlesung behandelt die Minimierung glatter nichtlinearer Funktionen unter nichtlinearen Nebenbedingungen. Für solche Probleme, die in Wirtschafts-, Ingenieur- und Naturwissenschaften sehr häufig auftreten, werden Optimalitätsbedingungen hergeleitet und darauf basierende Lösungsverfahren entwickelt. Die Vorlesung ist wie folgt aufgebaut:

- Topologie und Approximationen erster Ordnung der zulässigen Menge
- Alternativsätze, Optimalitätsbedingungen erster und zweiter Ordnung
- Algorithmen (Strafterm-Verfahren, Multiplikatoren-Verfahren, Barriere-Verfahren, Innere-Punkte-Verfahren, SQP-Verfahren, Quadratische Optimierung)

Die zur Vorlesung angebotene Übung bietet unter anderem Gelegenheit, einige Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkung:
Die Behandlung von Optimierungsproblemen ohne Nebenbedingungen bildet den Inhalt der Vorlesung "Nichtlineare Optimierung I". Die Vorlesungen "Nichtlineare Optimierung I" und "Nichtlineare Optimierung II" werden nacheinander im selben Semester gelesen.

Lernziele:
Der/die Studierende

- kennt und versteht die Grundlagen der restringierten nichtlinearen Optimierung,
- ist in der Lage, moderne Techniken der restringierten nichtlinearen Optimierung in der Praxis auszuwählen, zu gestalten und einzusetzen.

Literaturhinweise

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
5.184 Teilleistung: Öffentliche Einnahmen [T-WIWI-102739]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101511 - Vertiefung Finanzwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Art</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2560120</td>
<td>Öffentliche Einnahmen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2560121</td>
<td>Übung zu Öffentliche Einnahmen</td>
<td>1 SWS</td>
<td>Übung (U)</td>
<td>Wigger, Schmelzer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>790oeff</td>
<td>Öffentliche Einnahmen</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>790oeff</td>
<td>Öffentliche Einnahmen</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen
Keine

Empfehlungen
Es wird Kenntnis der Grundlagen der Finanzwissenschaft vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Öffentliche Einnahmen
2560120, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Lernziele:
Der/die Studierende

- besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung und der Staatsverschuldung.
- beurteilt die allokativen und distributiven Effekte verschiedener Besteuerungsarten.
- versteht Umfang, Struktur und Formen der staatlichen Kreditaufnahme und kennt mögliche Langzeitfolgen und Nachhaltigkeit der öffentlichen Kreditaufnahme.

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden
Literaturhinweise

Literatur:

5.185 Teilleistung: Online-Konzepte für Karlsruher Innenstadthändler [T-WIWI-111848]

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101510 - Cross-Functional Management Accounting
M-WIWI-105312 - Marketing and Sales Management
M-WIWI-106258 - Digital Marketing

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistung</th>
<th>Unterrichtsmodus</th>
<th>Lehrer/Lehrerinnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2571184</td>
<td>Online-Konzepte für Karlsruher Innenstadthändler</td>
<td>2 SWS</td>
<td>Sonstige (sonst.) / 📥</td>
<td>Klarmann, Kupfer, Weber, Gerlach</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistung</th>
<th>Unterrichtsmodus</th>
<th>Lehrer/Lehrerinnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900221</td>
<td>Online-Konzepte für Karlsruher Innenstadthändler</td>
<td>Sonstige (sonst.)</td>
<td>📥</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 📥 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art:

- Präsentationen in Teams im Umfang von jeweils ca. 15 Minuten pro Team mit anschließender Diskussion
- Abgabe einer schriftlichen Ausarbeitung pro Team.

Anmerkungen
Bitte beachten Sie, dass für den Besuch dieser Veranstaltung eine Bewerbung erforderlich ist. Nähere Informationen zum Bewerbungsprozess erhalten Sie in der Regel kurz vor Beginn der Vorlesungszeit im Sommersemester auf der Webseite der Forschungsgruppe Marketing und Vertrieb (marketing.iism.kit.edu).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Online-Konzepte für Karlsruher Innenstadthändler
2571184, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Sonstige (sonst.) Präsenz
Inhalt

Lernziele ergeben sich entsprechend wie folgt:
- Erlernen von theoretischen Grundlagen zu zentralen, anwendungsorientierten Tools des Onlinemarketings
- Anwendung und Vertiefung des erlangten Wissens in einem realen Case
- Pragnantes und strukturiertes Präsentieren der Ergebnisse

Gesamtaufwand bei 3 Leistungspunkten: ca. 90.0 Stunden

Präsenzzeit: 12 Stunden
Vor – und Nachbereitung der LV: 58 Stunden
Prüfung und Prüfungsvorbereitung: 20 Stunden
5.186 Teilleistung: Operations Research in Health Care Management [T-WIWI-102884]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-102805 - Service Operations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7900229 | Operations Research in Health Care Management | Nickel |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).

Die Prüfung wird im Semester der Vorlesung und dem darauf folgenden Semester angeboten.

Voraussetzungen

Keine

Empfehlungen

Anmerkungen

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung
M-WIWI-102805 - Service Operations
M-WIWI-102832 - Operations Research im Supply Chain Management
M-WIWI-103289 - Stochastische Optimierung

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Termine</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2550480</td>
<td>Operations Research in Supply Chain Management</td>
<td>2 SWS</td>
<td>Nickel</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2550481</td>
<td>Übungen zu OR in Supply Chain Management</td>
<td>1 SWS</td>
<td>Hoffmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Termine</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>00013</td>
<td>Operations Research in Supply Chain Management</td>
<td></td>
<td>Nickel</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900076</td>
<td>Operations Research in Supply Chain Management</td>
<td></td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).
Die Prüfung wird im Semester der Vorlesung und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen

Anmerkungen
Die Lehrveranstaltung wird unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://doi.or.kit.edu/Lehrveranstaltungen.php nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Operations Research in Supply Chain Management
2550480, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise

- Dyckhoff, H.; Finke, U.: Cutting and Packing in Production and Distribution - A Typology and Bibliography, Physica-Verlag, 1992
5.188 Teilleistung: Optimierungsansätze unter Unsicherheit [T-WIWI-106545]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103243 - Optimierung unter Unsicherheit in der Informationswirtschaft
M-WIWI-103289 - Stochastische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltungsbeschriftung</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2550464</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Online</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2550465</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td>1 SWS</td>
<td>Übung (Ü) / Präsenz</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2550466</td>
<td>Rechnerübungen zu Optimierungsansätze unter Unsicherheit</td>
<td>2 SWS</td>
<td>Sonstige (sonst.)</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltungsbeschriftung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900309</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>Rebennack</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900322</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen
Keine.
5.189 Teilleistung: Optimierungsmodelle in der Praxis [T-WIWI-110162]

Verantwortung:
Dr. Nathan Sudermann-Merx

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101473 - Mathematische Optimierung
- M-WIWI-102832 - Operations Research im Supply Chain Management
- M-WIWI-103289 - Stochastische Optimierung

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
siehe Anmerkungen

Version
1

Erfolgskontrolle(n)
Die Prüfung findet letztmals im Wintersemester 2020/2021 statt.

Voraussetzung für die Teilnahme an der Prüfung ist das Erreichen einer Mindestpunktzahl in Abgabeblättern. Details werden zu Beginn der Veranstaltung bekannt gegeben.

Voraussetzungen
Keine.

Anmerkungen
Die Veranstaltung wird im Wintersemester 20/21 letzmalig stattfinden.
5.190 Teilleistung: Paneldaten [T-WIWI-103127]

Verantwortung: apl. Prof. Dr. Wolf-Dieter Heller
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101638 - Ökonometrie und Statistik I
- M-WIWI-101639 - Ökonometrie und Statistik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Dreitlett</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Sprache</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Prüfungsvorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2520320</td>
<td>Paneldaten</td>
<td>2</td>
<td>Deutsch</td>
<td>Vorlesung (V)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2520321</td>
<td>Übungen zu Paneldaten</td>
<td>2</td>
<td>Deutsch</td>
<td>Übung (Ü)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltungsname</th>
<th>Sprache</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900115</td>
<td>Paneldaten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Paneldaten
2520320, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

Inhalt:
Fixed-Effects-Modelle, Random-Effects-Modelle, Time-Demeaning

Arbeitsaufwand:

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 65 Stunden
Prüfung und Prüfungsvorbereitung: 40 Stunden

Literaturhinweise

5.191 Teilleistung: Parallele Algorithmen [T-INFO-101333]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Peter Sanders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Informatik</td>
</tr>
</tbody>
</table>
| Bestandteil von: | M-INFO-100796 - Parallele Algorithmen
 M-INFO-101199 - Advanced Algorithms: Design and Analysis
 M-INFO-101200 - Advanced Algorithms: Engineering and Applications |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2400053</td>
<td>Parallele Algorithmen</td>
<td>Sanders, Hübner, Uhl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfungsteam</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7575489</td>
<td>Parallele Algorithmen</td>
<td>Sanders</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑️ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20 Minuten) nach § 4 Abs. 2 Nr. 2. Gewichtung: 80 % mündliche Prüfung, 20 % Übung.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse aus der Vorlesungen wie *Algorithmen I/II* werden empfohlen.
5.192 Teilleistung: Parallele Algorithmen Übung [T-INFO-111857]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von:
- M-INFO-100796 - Parallele Algorithmen
- M-INFO-101199 - Advanced Algorithms: Design and Analysis
- M-INFO-101200 - Advanced Algorithms: Engineering and Applications

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 2 Abs. 2 Nr. 3.
Gewichtung: 80 % mündliche Prüfung, 20 % Übung.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse aus der Vorlesungen wie *Algorithmen I/II* werden empfohlen.
5.193 Teilleistung: Parallelrechner und Parallelprogrammierung [T-INFO-101345]

Verantwortung: Prof. Dr. Achim Streit
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101210 - Dynamische IT-Infrastrukturen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2023 24617 Parallelrechner und Parallelprogrammierung 2 SWS Vorlesung (V) Streit, Raffeiner, Barthel

Prüfungsveranstaltungen
SS 2023 7500141 Parallelrechner und Parallelprogrammierung Streit
SS 2023 7500369 Wiederholungsprüfung Parallelrechner und Parallelprogrammierung Streit
WS 23/24 7500241 Parallelrechner und Parallelprogrammierung Streit

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 der SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse zu Grundlagen aus der Lehrveranstaltung Rechnerstrukturen sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Parallelrechner und Parallelprogrammierung 24617, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung gibt eine Einführung in die Welt moderner Parallel- und Höchstleistungsrechner, des Supercomputings bzw. des High-Performance Computings (HPC) und die Programmierung dieser Systeme.

Zunächst werden allgemein und exemplarisch Parallelrechnersysteme vorgestellt und klassifiziert. Im Einzelnen wird auf speichergekoppelte und nachrichtengekoppelte System, Hybride System und Cluster sowie Vektorrechner eingegangen. Aktuelle Beispiele der leistungsfähigsten Supercomputer der Welt werden ebenso wie die Supercomputer am KIT kurz vorgestellt.

Im zweiten Teil wird auf die Programmierung solcher Parallelrechner, die notwendigen Programmierparadigmen und Synchronisationsmechanismen, die Grundlagen paralleler Software sowie den Entwurf paralleler Programme eingegangen. Eine Einführung in die heute üblichen Methoden der parallelen Programmierung mit OpenMP und MPI runden die Veranstaltung ab.

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert. Dies ist bisher eine mündliche Einzelprüfung.

Der Arbeitsaufwand beträgt 120 h / Semester, davon 30 h Präsenzzeit und 90 h Selbstlernen aufgrund der Komplexität des Stoffs. Auch wenn die Corona-Zahlen etwas anderes sagen, ist derzeit geplant, dass die Vorlesung am 20.4.2022 in Präsenz in SR217 in Geb. 20.21 startet. Weitere Infos kommen im Verlauf der Vorlesung dann ggf. über ILIAS.
Literaturhinweise

5.194 Teilleistung: Parametrische Optimierung [T-WIWI-102855]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101473 - Mathematische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss.
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, vor Besuch dieser Veranstaltung mindestens eine Vorlesung aus dem Bachelor-Programm des Lehrstuhls zu belegen.

Anmerkungen
Die Lehrveranstaltung wird nicht regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet (www.ior.kit.edu) nachgelesen werden.
5.195 Teilleistung: Patentrecht [T-INFO-101310]

Verantwortung: Patric Werner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101215 - Recht des geistigen Eigentums

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Leistung</th>
<th>SWS</th>
<th>Präfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24656</td>
<td>Patentrecht</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Werner</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500109</td>
<td>Patentrecht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500006</td>
<td>Patentrecht</td>
<td></td>
<td></td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| Vorlesung (V) | Patentrecht | 24656, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#) | Präsenz |

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
5 TEILLEISTUNGEN

Teilleistung: Patentrecht [T-INFO-101310]

Inhalt

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt bei 3 Leistungspunkten 90 h, davon 22,5 Präsenz.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach § 4 Abs. 2 Nr. 1 SPO.
5.196 Teilleistung: Planspiel Energiewirtschaft [T-WIWI-108016]

Verantwortung: Dr. Massimo Genoese
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101451 - Energiewirtschaft und Energiemärkte

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3,5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2581025</td>
<td>Planspiel Energiewirtschaft</td>
<td>3</td>
<td>Genoese, Zimmermann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981025</td>
<td>Planspiel Energiewirtschaft</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Ausarbeitung und einer mündlichen Präsentation (Prüfungsleistungen anderer Art nach §4 (2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Besuch der Lehrveranstaltung "Einführung in die Energiewirtschaft"

Anmerkungen
Die Anzahl der Teilnehmer ist begrenzt. Es findet ein Anmeldeverfahren über CAS sowie ein anschließendes Auswahlverfahren statt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Planpiel Energiewirtschaft
2581025, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

1. Einleitung
2. Akteure und Marktplätze in der Elektrizitätswirtschaft
3. Ausgewählte Planungsaufgaben von Energieversorgungsunternehmen
4. Modellierungsmethoden im Energiebereich
5. Agentenbasierte Simulation: Das PowerACE-Modell
6. Planspiel: Energiewirtschaftliche Simulationen (Strom- und Emissionshandel, Investitionsentscheidungen)

Nachweis: Präsentation und kurze Ausarbeitung

Voraussetzungen: Grundkenntnisse Energiewirtschaft/-märkte von Vorteil

Organisatorisches
CIP-Pool West, Raum 102, Geb. 06.41 - siehe Institutsaushang

Literaturhinweise
Weiterführende Literatur:

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101409 - Electronic Markets
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Angewandte strategische Entscheidungen
- M-WIWI-102754 - Service Economics and Management

Lehrveranstaltungen

| SS 2023 | 2540460 | Platform & Market Engineering: Commerce, Media, and Digital Democracy | 2 SWS | Vorlesung (V) / 🗣 | Fegert, Weinhardt |
| SS 2023 | 2540461 | Übungen zu Platform & Market Engineering: Commerce, Media, and Digital Democracy | 1 SWS | Übung (Ü) / 🗣 | Jachimowicz, Stein, Bezzaoui, Fegert |

Prüfungsveranstaltungen

| SS 2023 | 7979235 | Platform & Market Engineering: Commerce, Media, and Digital Democracy (Hauptklausur) | Weinhardt |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPOs).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus in Höhe von max. 6 Punkten für die schriftliche Prüfung erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um max. eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Platform & Market Engineering: Commerce, Media, and Digital Democracy

2540460, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches

ehemals: "Market Engineering: Information in Institutions"

Literaturhinweise

5.198 Teilleistung: Portfolio and Asset Liability Management [T-WIWI-103128]

Verantwortung: Dr. Mher Safarian
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101639 - Ökonometrie und Statistik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Leistungspunkte</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2520357 Portfolio and Asset Liability Management</td>
<td>2 SWS Vorlesung</td>
<td>Safarian</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2520358 Übungen zu Portfolio and Asset Liability Management</td>
<td>2 SWS Übung</td>
<td>Safarian</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Leistungspunkte</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900116 Portfolio and Asset Liability Management</td>
<td>2 SWS</td>
<td>Safarian</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach § 4, Abs. 2, 1 SPO im Umfang von 180 Minuten.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Portfolio and Asset Liability Management

2520357, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Lernziele:
Kenntnisse verschiedener Verfahren aus der Portfolioverwaltung von Finanzinstituten.

Inhalt:
Portfoliotheorie: Investmentprinzipien, Markowitz-Portfolioanalyse, Modigliani-Miller Theorems und Arbitragefreiheit, effiziente Märkte, Capital Asset Pricing Model (CAPM), multifaktorielles CAPM, Arbitrage Pricing Theorie (APT), Arbitrage und Hedging, Multifaktormodelle, Equity-Portfoliomanagement, passive Strategien, actives Investing.

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 65 Stunden
Prüfung und Prüfungsvorbereitung: 40 Stunden

Organisatorisches
Blockveranstaltung, Termine werden über Ilias bekanntgegeben

Literaturhinweise
To be announced in the lecture

Verantwortung: Prof. Dr. Gerhard Satzger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101506 - Service Analytics

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 7900301</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine.

Empfehlungen
5.200 Teilleistung: Practical Seminar: Service Innovation [T-WIWI-110887]

Verantwortung: Prof. Dr. Gerhard Satzger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101410 - Business & Service Engineering
M-WIWI-102806 - Service Innovation, Design & Engineering

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900293 Service Design Thinking</td>
<td></td>
<td></td>
<td>Satzger</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900301 Seminarpraktikum Service Innovation</td>
<td></td>
<td></td>
<td>Satzger</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungsbeschreibung.

Voraussetzungen
Keine

Empfehlungen

Anmerkungen
Aufgrund der Projektarbeit ist die Zahl der Teilnehmer des Seminarpraktikums beschränkt und die Teilnahme setzt Kenntnisse der Modelle, Konzepte und Vorgehensweisen voraus, die in der Vorlesung Service Innovation gelehrt werden. Der vorherige Besuch der Vorlesung Service Innovation oder der Nachweis äquivalenter Kenntnisse ist für die Teilnahme an diesem Seminarpraktikum verpflichtend. Informationen zur Anmeldung werden auf den Seiten zur Lehrveranstaltung veröffentlicht.

Die Veranstaltung wird nicht regelmäßig angeboten.
5.201 Teilleistung: Praktikum Algorithmentechnik [T-INFO-104374]

Verantwortung: Prof. Dr. Peter Sanders
Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications
M-INFO-102072 - Praktikum Algorithmentechnik

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
6

Notenskala
Drittelnoten

Turnus
Unregelmäßig

Version
1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach 4 Abs. 2 Nr. 3 SPO.

Die Note setzt sich aus der Bearbeitung der Programmieraufgabe, einer schriftlichen Evaluation der Ergebnisse im Umfang von ca. 10 Seiten sowie der Abschlusspräsentation zusammen.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Praktikum Algorithm Engineering-Routenplanung
2424305, WS 23/24, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Praktikum Algorithm Engineering-Routenplanung
2424305, WS 23/24, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

V

Inhalt

Lernziele:

Die Studierenden
• können das in den Grundlagenmodulen zur Algorithmentechnik erlernte Wissen praktisch anwenden,
• sind in der Lage, Probleme anhand von vorgegebenen Themen der Algorithmik (z.B. Flussalgorithmen, Kürzeste-Wege Probleme, oder Clusteringtechniken) zu analysieren und anschließend eigenständig und in effizienter Weise zu implementieren,
• beherrschen die Schritte von der Modellierung bis hin zur Implementierung und Auswertung bei der praktischen Umsetzung algorithmischer Verfahren,
• besitzen die Fähigkeit, in einem Team ergebnisorientiert zu agieren, das eigene Handeln selbstkritisch zu bewerten und verfügen über hohe eigene Kommunikationskompetenz.

Die Teilnehmer sind außerdem in der Lage, auftretende Problembestellungen mit den Methoden des Algorithm Engineering zu analysieren, Algorithmen zu entwerfen und unter Berücksichtigung moderner Rechnerarchitektur zu implementieren, sowie aussagekräftige experimentelle Evaluationen zu planen und durchzuführen. Die Teilnehmer können zudem die vorgestellten Methoden und Techniken autonom auf verwandte Fragestellungen anwenden.

Voraussetzungen: Kenntnisse aus der Vorlesung Algorithmen II werden empfohlen.

Arbeitsaufwand: Praktikum mit 4 SWS, 6 LP
6 LP entspricht ca. 180 Arbeitsstunden, davon ca. 10 Std. Präsenzzeit,
c. 12 Std. Bearbeitung der Übungsaufgaben,
c. 128 Std. Implementierungsphase,
c. 30 Std. Ausarbeitung und Vorbereitung der Präsentation

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
5.202 Teilleistung: Praktikum Blockchain Hackathon (Master) [T-WIWI-111126]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2512403</td>
<td>Praktikum Blockchain Hackathon (Master)</td>
<td>SWS</td>
<td>Sunyaev, Kannengießer, Sturm, Beyene</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900172</td>
<td>Praktikum Blockchain Hackathon (Master)</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

Keine
5.203 Teilleistung: Praktikum Informatik (Master) [T-WIWI-110548]

Verantwortung:
Professorenschaft des Instituts AIFB

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101455 - Web Data Management
- M-WIWI-101456 - Intelligente Systeme und Services
- M-WIWI-101477 - Entwicklung betrieblicher Informationssysteme
- M-WIWI-105366 - Artificial Intelligence
- M-WIWI-105368 - Web and Data Science

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2512205</td>
<td>Praktikum Realisierung innovativer Dienste (Master)</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Schiefer, Schüler, Toussaint</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2512207</td>
<td>Praktikum Alltagsautomatisierung (Master)</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Oberweis, Forell, Frister, Schiefer</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2512401</td>
<td>Praktikum Entwicklung Soziotechnischer Informationssysteme (Master)</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Sunyaev, Pandl, Goram, Leiser</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2512403</td>
<td>Praktikum Blockchain Hackathon (Master)</td>
<td></td>
<td>SWS Praktikum (P)</td>
<td>Sunyaev, Sturm, Kannengießer, Beyene</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2512500</td>
<td>Projektpraktikum Maschinelles Lernen</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Zöllner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2512205</td>
<td>Praktikum Realisierung innovativer Dienste (Master)</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Oberweis, Toussaint, Schiefer, Schüler</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2512401</td>
<td>Praktikum Entwicklung Soziotechnischer Informationssysteme (Master)</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Sunyaev, Goram, Leiser</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2512403</td>
<td>Praktikum Blockchain Hackathon (Master)</td>
<td></td>
<td>SWS Praktikum (P)</td>
<td>Sunyaev, Kannengießer, Sturm, Beyene</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2512501</td>
<td>Praktikum Kognitive Automobile und Roboter (Master)</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Zöllner, Daaboul</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2512600</td>
<td>Praktikum Information Service Engineering (Master)</td>
<td>3</td>
<td>Praktikum (P) / 🖥</td>
<td>Sack</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900020</td>
<td>Praktikum Alltagsautomatisierung (Master)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900086</td>
<td>Projektpraktikum Maschinelles Lernen</td>
<td>Zöllner</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900148</td>
<td>Praktikum Realisierung innovativer Dienste (Master)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900172</td>
<td>Praktikum Blockchain Hackathon (Master)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900173</td>
<td>Praktikum Entwicklung Soziotechnischer Informationssysteme (Master)</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
Keine
Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Realisierung innovativer Dienste (Master)
2512205, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Praktikum (P) Präsenz/Online gemischt

Inhalt
Im Rahmen des Praktikums sollen die Teilnehmer in kleinen Gruppen gemeinsam innovative Dienste (vorwiegend für Studierende) realisieren.

Weiterführende Informationen finden sich auf der ILIAS-Seite des Praktikums.

Organisatorisches
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Praktikum Alltagsautomatisierung (Master)
2512207, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Praktikum (P) Präsenz/Online gemischt

Inhalt
Im Rahmen dieses Praktikums werden verschiedene Themen zur Alltagsautomatisierung angeboten. Während des Praktikums werden die Teilnehmer einen Einblick in die problemlösungsorientierte Projektarbeit erhalten und in Gruppen gemeinsam ein Projekt bearbeiten.

Weiterführende Informationen finden sich auf der ILIAS-Seite des Praktikums.

Organisatorisches
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Praktikum Entwicklung Soziotechnischer Informationssysteme (Master)
2512401, SS 2023, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen
Praktikum (P) Online

Inhalt
Das Ziel des Praktikums ist es, die Entwicklung von soziotechnischen Informationssystemen in verschiedenen Anwendungsbereichen praxisnah kennen zu lernen. Im Veranstaltungsrahmen sollen Sie für Ihre Problemstellung alleine oder in Gruppenarbeit eine geeignete Lösungsstrategie entwickeln, Anforderungen erheben, und ein darauf basierendes Softwareartefakt (z.B. Webplattform, Mobile Apps, Desktopanwendung) implementieren. Ein weiterer Schwerpunkt des Praktikums liegt auf der anschließenden Qualitätssicherung und Dokumentation des implementierten Softwareartefaktes.

Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Praktikum Blockchain Hackathon (Master)
2512403, SS 2023, SWS, Im Studierendenportal anzeigen
Praktikum (P) Online
Inhalt

Lernziele
- Verständnis der Grundlagen der DLT sowie der DLT-Anwendungsentwicklung
- Selbstständige und selbstorganisierte Realisierung eines Softwareentwicklungsprojekts
- Verwendung aktueller Entwicklungsmethoden
- Auswahl und Bewertung von Entwicklungswerkzeugen und -methoden
- Planung und Durchführung von Entwurf, Implementierung und Qualitätssicherung von Softwareartefakten
- Anfertigen einer Dokumentation für ein Softwareprojekt
- Projektergebnisse verständlich und strukturiert aufbereiten und präsentieren

Wichtig: Das Praktikum findet in der vorlesungsfreien Zeit statt. Bitte halten Sie sich die folgenden Termine frei, wenn Sie an dem Praktikum teilnehmen möchten

- Do., 01.09.2022
 - 09:00 – 09:30: Kick-Off
 - 10:30 – 12:00: Einführung in Blockchain und die DLT
 - 12:00 – 13:00: Pause
 - 13:00 – 14:30: Einführung in die Entwicklung von Smart Contracts
 - 14:30 – 15:00: Pause
 - 15:00 – 16:30: Einführung in die Entwicklung von DLT-Anwendungen
- Fr., 02.09.2022
 - 09:00 – 11:00: Vorstellungen der Themen
 - 11:00 – 11:30: Themenzuteilung
 - Ab 11:30 Selbstständige Bearbeitung der Themen in Gruppen
- Mo., 05.09.2021 bis Fr., 17.10.2021
 - Selbstständige Bearbeitung der Themen in Gruppen
- Do., 22.09.2022
 - 09:00 – 11:00: Zwischenpräsentation der Softwareartefakte (Dauer abhängig von der Anzahl der Gruppen)
- Mi., 19.10.2022
 - 09:00 – 11:00: Präsentation der Softwareartefakte (Dauer abhängig von der Anzahl der Gruppen)
 - Ab 11:00: Abschlussgespräch und Ausklang

Die Veranstaltung wird virtuell abgehalten.

Liste der Themen
Auch in diesem Jahr werden die Themen wieder von Praxispartnern gestellt. Wer die Praxispartner sind und welche Themen gestellt werden, werden wir in den kommenden Wochen bekanntgeben.

Anmeldung

Wichtige Datenschutzinformation
Inhalt

Neben den wissenschaftlichen Zielen, die in der Untersuchung und Anwendung der Methoden werden auch die Aspekte projektspezifischer Teamarbeit in der Forschung (von der Spezifikation bis zur Präsentation der Ergebnisse) in diesem Praktikum erarbeitet.

Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Verfahren, Spezifikation und Implementierung und Evaluierung des Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Lernziele:
- Die Studierenden können Kenntnisse aus der Vorlesung Maschinelles Lernen auf einem ausgewählten Gebiet der aktuellen Forschung im Bereich Robotik oder kognitive Automobile praktisch anwenden.
- Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team.
- Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Empfehlungen:
Besuch der Vorlesung Maschinelles Lernen, C/C++ Kenntnisse, Python Kenntnisse

Arbeitsaufwand:
Der Arbeitsaufwand von 4,5 Leistungspunkten setzt sich zusammen aus Präsenzzeit am Versuchsort zur praktischen Umsetzung der gewählten Lösung, sowie der Zeit für Literaturrecherchen und Planung/Specifikation der selektierten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Organisatorisches
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.
Inhalt

Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Verfahren, Spezifikation und Implementierung und Evaluierung des Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Lernziele:

- Die Studierenden können theoretische Kenntnisse aus Vorlesungen über das Maschinelle Lernen auf einem ausgewählten Gebiet der aktuellen Forschung praktisch anwenden.
- Die Studierenden beherrschen die Analyse und Lösung von thematischen Problemstellungen.
- Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Empfehlungen:

- Thoeretische Kenntnisse des maschinellen Lernen und/oder KI
- Python Kenntnisse

Arbeitsaufwand:
Der Arbeitsaufwand von 5 Leistungspunkten setzt sich zusammen aus der praktischen Umsetzung der gewählten Lösung, sowie der Zeit für Literaturrecherchen und Planung/Specifikation der selektierten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Organisatorisches
Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.
Inhalt

The ISE project lab is based on the summer semester lecture "Information Service Engineering". Goal of the course is to work on a given research problem in small groups (3-4 students) related to the ISE lecture topics, i.e. Natural Language Processing, Knowledge Graphs, and Machine Learning. The solution of the given research problem requires the development of a software implementation.

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

Required coursework includes:

- Mid term presentation (5-10 min)
- Final presentation (10-15 min)
- Course report (c. 20 pages)
- Participation and contribution of the students during the course
- Software development and delivery

Notes:

The ISE project lab can also be credited as a seminar (if necessary).

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

Participation will be restricted to 16 students.

Participation in the lecture "Information Service Engineering" (summer semester) is required. There are video recordings on our youtube channel.

ISE Tutor Team:

- Dr. Genet Asefa Gesese
- M. Sc. Mirza Mohtasim Alam
- M. Sc. Oleksandra Bruns
- M. Sc. Ebrahim Norouzi
- M. Sc. Mary Ann Tan
- B. Sc. Tabea Tietz
- M. Sc. Mahsa Vafaie

WS 2023/24 Tasks List:

- **Task 1: Zero-shot Ultrafine Typing of Named Entities.** Use Pre-trained Language Models to assign predefined labels to entity mentions in a given context. Evaluate approaches which require no training data on a standard benchmark, i.e. UFET

- **Task 2: Object Detection on Historical Theatre Photographs.** Use Pre-trained DL models to detect and identify objects in historical theatre photographs and integrate the results into an existing Knowledge Graph.

- **Task 3: Automatically Generate Ontologies from Competency Questions using Language Models.** Competency questions (CQs) define the scope of knowledge represented in an ontology and are used to evaluate an ontology based on its ability to answer each question. In this task, we are investigating the benefit of Large Language Models to generate and evaluate ontologies from a set of competency questions.

- **Task 4: Boosting the Performance of Large Language Models for Question Answering with Knowledge Graph Integration.** Often, large language models hallucinate users with wrong or confusing answers. In order to generate relevant answers, knowledge graphs can help in many ways. The goal of this task is to utilize a knowledge graph to provide context and factual information to a language model, thereby improving the relevance and accuracy of its responses.

- **Task 5: Information Extraction and Knowledge Graph Engineering on the Use Case of Historical Political Flyers** Information extraction and Knowledge Graph construction from digitized political leaflets of the Weimar Republic.

- **Task 6: Sentiment Analysis on Multilingual Wikipedia.** Analyse how different language Versions of Wikipedia differ in terms of Sentiment Bias.

Literaturhinweise

ISE video channel on youtube: https://www.youtube.com/channel/UCjkkhNSNuXrJpMYZoeSBw6Q/
5.204 Teilleistung: Praktikum Protocol Engineering [T-INFO-104386]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101206 - Networking

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Protocol Engineering</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2400086 | Praktikum Protocol Engineering | 4 SWS | Praktikum (P) | König, Mahrt, Zitterbart |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt benotet nach § 4 Abs. 2 Nr. 3 SPO als Prüfungsleistung anderer Art.
Für die Veranstaltung “Praktikum Protocol Engineering” ist zu Beginn des Praktikums ein Protokollentwurf anzufertigen (4-6 Seiten, Zeitaufwand ca. 1-2 Wochen). Darüber hinaus wird im Verlauf der Veranstaltung in Teamarbeit (d.h. von allen Praktikumsteilnehmern gemeinsam) ein umfangreicheres Dokument (15-20 Seiten) angefertigt.

Voraussetzungen
Keine

Empfehlungen
Das Praktikum sollte semesterbegleitend zur LV Telematik [24128] belegt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Protocol Engineering
2400086, WS 23/24, 4 SWS, im Studierendenportal anzeigen

Inhalt
Dieses Praktikum findet immer im selben Semester wie die Telematikvorlesung statt. Es wird empfohlen das Praktikum zusammen mit der Vorlesung Telematik zu belegen.
Das semesterbegleitende Projekt behandelt die Standardisierung eines Internetprotokolls. Diese gliedert sich in Entwurf, Spezifikation, Implementierung und Interoperabilitätstest.

Organisatorisches
nach Vereinbarung
5.205 Teilleistung: Praktikum Realisierung innovativer Dienste (Master) [T-WIWI-112914]

Verantwortung: Prof. Dr. Andreas Oberweis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101477 - Entwicklung betrieblicher Informationssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ⚫ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Anmerkungen
Im Rahmen des Praktikums sollen die Teilnehmer in kleinen Gruppen gemeinsam innovative Dienste (vorwiegend für Studierende) realisieren.
Eine Anrechnung im Seminarmodul ist nicht möglich.
Weiterführende Informationen finden sich auf der ILIAS-Seite des Praktikums.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Praktikum Realisierung innovativer Dienste (Master)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2512205, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt
Im Rahmen des Praktikums sollen die Teilnehmer in kleinen Gruppen gemeinsam innovative Dienste (vorwiegend für Studierende) realisieren.
Weiterführende Informationen finden sich auf der ILIAS-Seite des Praktikums.

Organisatorisches
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
5.206 Teilleistung: Praktikum Security, Usability and Society [T-WIWI-108439]

Verantwortung: Prof. Dr. Melanie Volkamer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104520 - Human Factors in Security and Privacy

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: siehe Anmerkungen
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2512554</td>
<td>Praktikum Security, Usability and Society (Bachelor)</td>
<td>3</td>
<td>Praktikum (P)</td>
<td>Volkamer, Mayer, Berens, Mossano, Ballreich</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2512555</td>
<td>Praktikum Security, Usability and Society (Master)</td>
<td>3</td>
<td>Praktikum (P)</td>
<td>Volkamer, Mayer, Berens, Mossano, Ballreich</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Kenntnisse aus der Vorlesung "Informationssicherheit" werden empfohlen.

Anmerkungen
Das Praktikum wird im Sommersemester 2023 nicht angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Security, Usability and Society (Bachelor)
2512554, WS 23/24, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Praktikum (P) Online
Inhalt

Wichtige Termine:
Anstoß: 13.10.2022, 10:00 AM CET Uhr Big Blue Button - Link
Bericht + Codeübermittlung: 30.01.2023, 23:59 CET
Präsentationsfrist: 30.01.2023, 23:59 CET
Präsentationstag: 01.02.2023

Themen:
Programming usable security measures
In diesem Fach entwickeln die Schüler einen Teil der Codierung, eine Erweiterung oder eine andere Programmieraufgabe, die sich mit verschiedenen verwendbaren Sicherheitsmaßnahmen befasst, z. B. als Erweiterung, ZB TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) oder PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Nach wie vor erhalten die Schüler eine Punktestelle mit Zielen, die sowohl grundlegende Funktionen enthält, die für das Bestehen des Kurses erforderlich sind, als auch fortgeschrittene, die die Abschlussnote verbessern.

Titel: Portfolio Graphical Recognition-Based PWDs with Gamepads
Anzahl der Studenten: 2 Bachelor or Master level
Beschreibung: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Titel: Development of a secure web interface with a ticket system for the Hashcat Password Cracker
Anzahl der Studenten: 2 Bachelor or Master level
Beschreibung: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User Studies

Titel: NoPhish Cardgame
Anzahl der Studenten: 1/2 Bachelor level

Titel: Analysing the perceptions on email subject extensions like 'Caution' - This e-mail is sent from someone outside the company'
Anzahl der Studenten: 1/2 Bachelor or Master level
Beschreibung: Email subject extensions are used in many organisations to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develope the study protocol and to collect first data which should be analysed.

Titel: Benutzerstudie zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten
Anzahl der Studenten: 2 Bachelor or Master level
Titel: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)
Anzahl der Studenten: 1 Bachelor or Master level
Beschreibung: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users [https://secuso.aifb.kit.edu/english/105.php]. One of these apps is "Sudoku", available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by rheumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., [https://idarinstitute.com/products/arthritis-simulation-gloves]). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.

Titel: Replication and extension of “What is this URL’s destination?” (English only)
Anzahl der Studenten: 1 Bachelor level
Beschreibung: Replication of studies is a fundamental part of the scientific process: it allows to confirm or deny experimental results and can open new lines of research. This topic is a replication of the study presented in Albakry, S., Vaniea, K. & Wolters, M.K. (2020) What is this URL’s destination? Empirical Evaluation of Users’ URL Reading” [https://doi.org/10.1145/3313831.3376168]. The student will re-implement the study following the precise description from the original authors, run it and then compare the results with the previous iteration.

Titel: Password Generator Defaults
Anzahl der Studenten: 2 Bachelor or Master level
Beschreibung: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular website, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds: (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Titel: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Anzahl der Studenten: 1/2 Bachelor or Master level

Dieses Ereignis zählt für das KASTEL-Zertifikat. Weitere Informationen zum Erhalt des Zertifikats finden Sie auf der SECUSO-Website [https://secuso.aifb.kit.edu/Studium_und_Lehre.php].
Inhalt

WiWi portal: https://portal.wiwi.kit.edu/ys/6273

Wichtige Termine:
Anstoß: 13.10.2022, 10:00 AM CET Uhr Big Blue Button - Link
Bericht + Codeübermittlung: 30.01.2023, 23:59 CET
Präsentationsfrist: 30.01.2023, 23:59 CET
Präsentationstag: 01.02.2023

Themen:

Programming usable security measures
In diesem Fach entwickeln die Schüler einen Teil der Codierung, eine Erweiterung oder eine andere Programmieraufgabe, die sich mit verschiedenen verwendbaren Sicherheitsmaßnahmen befasst, z. B. als Erweiterung, ZB TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) oder PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Nach wie vor erhalten die Schüler eine Punkteliste mit Zielen, die sowohl grundlegende Funktionen enthält, die für das Bestehen des Kurses erforderlich sind, als auch fortgeschrittene, die die Abschlussnote verbessern.

Titel: Portfolio Graphical Recognition-Based PWDs with Gamepads
Anzahl der Studenten: 2 Bachelor oder Master level
Beschreibung: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Titel: Development of a secure web interface with a ticket system for the Hashcat Password Cracker
Anzahl der Studenten: 2 Bachelor oder Master level
Beschreibung: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User Studies

Titel: Analysing the perceptions on email subject extensions like 'Caution - This e-mail is sent from someone outside the company'
Anzahl der Studenten: 1/2 Bachelor oder Master level
Beschreibung: Email subject extensions are used in mn organisations to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develope the study protocol and to collect first data which should be analysed.

Titel: Benutzerstudie zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten
Anzahl der Studenten: 2 Bachelor oder Master level

Titel: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)
Anzahl der Studenten: 1 Bachelor oder Master level
Beschreibung: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users (https://secuso.aifb.kit.edu/english/105.php). One of these apps is "Sudoku", available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by reumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., https://idarstitute.com/products/arthritis-simulation-gloves). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.
Titel: Password Generator Defaults
Anzahl der Studenten: 2 Bachelor oder Master level
Beschreibung: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular website, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds: (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Titel: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Anzahl der Studenten: 1/2 Bachelor oder Master level

Titel: User study on user’s knowledge about brainwaves verification
Anzahl der Studenten: 1 Master level
Beschreibung: Brainwaves can be used to authenticate users. Hoever, several questions are left unanswered regarding the users' stance on this: What is the prior knowledge of users about verification and brainwaves? Are they comfortable wearing a device to record their brainwaves? How are they feeling regarding storing their brainwaves samples? Which kind of information can be extracted from the smaples? How secure would such an authentication scheme be? The task of the student is to design, implement an pre-test a user study investigating these questions.

5.207 Teilleistung: Praktikum Ubiquitous Computing [T-WIWI-102761]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Prof. Dr. Hartmut Schmeck

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101458 - Ubiquitous Computing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Prüfungsleistung andere Art (nach §4(2), 3 SPO) setzt sich zusammen aus:
- Praktische Tätigkeit
- Präsentation der Ergebnisse
- Schriftliche Ausarbeitung
- Mitarbeit und Diskussion

Voraussetzungen
Keine

Anmerkungen
Dies ist ein Platzhalter für ein Praktikum, das in dem zugeordneten Modul von einem der beteiligten Dozenten angeboten werden kann.
5.208 Teilleistung: Praktikum: Data Science [T-INFO-111262]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101256 - Analysetechniken für große Datenbestände in Theorie und Praxis
M-INFO-105632 - Praktikum: Data Science

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7500091 | Praktikum: Data Science | Böhm |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich. Es sind insgesamt zwei Wiederholungen möglich.

Voraussetzungen
Es müssen Leistungen aus der Vorlesung Data Science (vormals Analysetechniken für große Datenbestände), oder Vergleichbares erbracht worden sein.

Empfehlungen
Die Vorlesung Data Science 1 (vormals Analysetechniken) oder eine vergleichbare Vorlesung sollte gehört worden sein.
5.209 Teilleistung: Praktikum: Data Science für die Wissenschaften [T-INFO-112844]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101256 - Analysetechniken für große Datenbestände in Theorie und Praxis
M-INFO-106329 - Praktikum: Data Science für die Wissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus Unregelmäßig</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 242424 | Data Science für die Wissenschaften | 2 SWS | Praktikum (P) | Böhm |

Prüfungsveranstaltungen

| SS 2023 | 75751 | Praktikum: Data Science für die Wissenschaften | Böhm |

Legende: ⏯ Online, 🎤 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO. Es müssen eine schriftliche Ausarbeitung über die praktische Arbeit erstellt und Präsentationen gehalten werden. Ein Rücktritt ist innerhalb von einer Woche nach Beginn der Veranstaltung möglich.

Es ist eine Wiederholung möglich.

Voraussetzungen

Es müssen Leistungen aus der Vorlesung Date Science (vormals Analysetechniken für große Datenbestände), oder Vergleichbares erbracht worden sein.
5.210 Teilleistung: Praktikum: Geometrisches Modellieren [T-INFO-103207]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101666 - Praktikum: Geometrisches Modellieren

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| SS 2023 | 2400107 | Praktikum Geometrisches Modellieren | 2 SWS | Praktikum (P) / ☑ | Xu, Prautzsch |
| WS 23/24 | 2400024 | Praktikum Geometrisches Modellieren | SWS | Praktikum (P) / ☑ | Prautzsch, Xu |

Prüfungsveranstaltungen

| SS 2023 | 7500212 | Praktikum Geometrisches Modellieren | | Prautzsch |

Legende: ☑ Online, ☑ Präsenz/Online gemischt, ☑ Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
The assessment is carried out as an examination of another type (§ 4 Abs. 2 No. 3 SPO).
The overall impression is evaluated. Solutions to assignments and their presentations will be included in the grading.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Praktikum Geometrisches Modellieren
2400107, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

Programmierkenntnisse in C++
80h
Im Praktikum wird die Anwendung einiger CAD-Techniken für die Arbeit mit Freiformkurven und -flächen geübt. Darüber hinaus soll im Team zusammengearbeitet werden, um die Aufgaben des Praktikums zu lösen.

Organisatorisches
Siehe Institutseite
Termin nach Vereinbarung

V Praktikum Geometrisches Modellieren
2400024, WS 23/24, SWS, Im Studierendenportal anzeigen
Inhalt
In diesem Praktikum werden klassische Techniken des Kurven- und Flächenentwurfs behandelt, die in zahlreichen CAD-Systemen Anwendung finden. Anhand kleiner Beispielprobleme wird der Stoff aus den Vorlesungen im Bereich der geometrischen Datenverarbeitung erarbeitet. Im Rahmen des Praktikums wird mit einer C++-Klassenbibliothek gearbeitet, die um Methoden und Klassen erweitert werden soll.

Programmierkenntnisse in C++

80h

Im Praktikum wird die Anwendung einiger CAD-Techniken für die Arbeit mit Freiformkurven und -flächen geübt. Darüber hinaus soll im Team zusammengearbeitet werden, um die Aufgaben des Praktikums zu lösen.

Organisatorisches
siehe Institutsseite / n.V.
5.211 Teilleistung: Praktikum: Graphenvisualisierung in der Praxis [T-INFO-106580]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-103302 - Praktikum: Graphenvisualisierung in der Praxis

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2400117</th>
<th>Graphenvisualisierung in der Praxis</th>
<th>SWS</th>
<th>Praktikum (P) / 🗣️</th>
<th>Wagner, Jungeblut</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7500347 | Praktikum: Graphenvisualisierung in der Praxis | | Wagner |

Legende: 🖥 Online, 📦 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach 4 Abs. 2 Nr. 3 SPO.

Die Note setzt sich aus der Bearbeitung der Programmieraufgabe, einer schriftlichen Evaluation der Ergebnisse im Umfang von ca. 10 Seiten sowie der Abschlusspräsentation zusammen.

Voraussetzungen

Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Graphenvisualisierung in der Praxis
2400117, SS 2023, SWS, Sprache: Deutsch, im Studierendenportal anzeigen
Inhalt

In diesem Kurs bearbeiten die Teilnehmer in Kleingruppen ein ausgewähltes Optimierungsproblem im Bereich der Graphenvisualisierung aus praktischer Sicht. Ziel ist es, bis zum Ende des Praktikums ein lauffähiges Programm zum Zeichnen von Graphen im vorgegebenen Layoutstil zu erstellen, das das Optimierungsproblem möglichst gut löst. Die Teams mit den besten Programmen können im Anschluss am alljährlichen internationalen Graph Drawing Contest teilnehmen.

Im Einzelnen besteht das Praktikum aus drei Phasen:
1.) Erarbeiten der relevanten bestehenden Literatur zum Thema
2.) Entwurf eigener Lösungsansätze, beruhend auf Anpassungen und Kombinationen der bestehenden Algorithmen, sowie durch Entwicklung neuer heuristischer Verfahren
3.) Implementierung und Evaluation der entwickelten Lösungsansätze

Lernziele:
Nach erfolgreichem Besuch des Praktikums sollen die Studierenden

- sich eigenständig in Fachliteratur einarbeiten können;
- im Team basierend auf den Techniken aus der Literatur neue Lösungsideen für die aktuelle Fragestellung des Graph Drawing Contests entwickeln, diskutieren und bewerten können;
- im Team die eigenen Lösungsideen implementieren und ein Programm für die Wettbewerbssteilnahme entwickeln können;
- die Arbeitsergebnisse in einem wissenschaftlichen Vortrag präsentieren können.

Empfehlungen: Programmierkenntnisse werden vorausgesetzt.
Arbeitsaufwand: 150h

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.
5.212 Teilleistung: Praktikum: Smart Data Analytics [T-INFO-106426]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-103235 - Praktikum: Smart Data Analytics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 24895 | Praktikum: Smart Data Analytics | 4 SWS | Praktikum (P) / 🧩 | Beigl, Riedel, Zhou, Huang |

Prüfungsveranstaltungen

| SS 2023 | 7500088 | Praktikum: Smart Data Analytics | | Beigl, Riedel |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Das bearbeitete Kleinprojekt ist mit einem Praktikumsbericht zu dokumentieren und eine Abschlusspräsentation ist zu halten. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen
Keine.

Empfehlungen
Das Praktikum ist idealerweise begleitend zur Vorlesung Kontextsensitive Systeme (24658) zu belegen.
Vorwissen im Bereich Data-Mining/Machine-Learning ist vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum: Smart Data Analytics
24895, SS 2023, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt
Inhalt
Anmeldung:
Anmeldung bei WiWi Portal, Link: https://portal.wiwi.kit.edu/ys?id=
Veranstaltungsziffer: SS2024895 (KIT-Fakultät für Informatik)
Beschreibung:
Im Praktikum werden Techniken, Methoden und Software der Kontexterfassung und -verarbeitung als Basis von Smart Data Analytics vertieft. Im Fokus steht vor allem die im Smart Data Innovation Lab verwendete Hardware und Software (industriell genutzte Systeme wie z.B. SAP HANA und IBM Watson aber auch insbesondere Open Source Software zur Datenanalyse wie Spark, scikit-learn und Jupyter/IPython Notebooks) sowie Nutzung von Sensordaten und Zeitserien in wirtschaftlich-relevanten Anwendungen.
Bewertet wird die praktische Lösung von Aufgaben die als Übungsblätter verteilt werden. Des Weiteren wird ein beispielhaftes Anwendungsproblem aus dem Analytisbereich während des Praktikums mit Teilnahme an Wettbewerben (z.B. Kaggle o.A.) gelöst. In dieser Phase wird an das CRISP-DM Vorgehensweise angelehnt, was während des Praktikums erläutert wird. Vorwissen im Bereich Data-Mining/Machine-Learning ist vorausgesetzt.
Lehrinhalt:
Kontextsensitivität wird oftmals als Schlüsselkomponente intelligenter Software bezeichnet. Systeme, die den Kontext ihrer Nutzer erkennen und verarbeiten können, können Dienste optimal und idealerweise ohne explizite Eingaben der Nutzer erbringen (siehe auch Beschreibung zur Vorlesung 24658).
Im Praktikum werden Techniken, Methoden und Software der Kontexterfassung und -verarbeitung als Basis von Smart Data Analytics vertieft. Im Fokus steht vor allem die im Smart Data Innovation Lab verwendete Hardware und Software (industriell genutzte Systeme wie SAP HANA und SAP HANA Vora, IBM SPSS und Big Insights, Software AG Terracotta und Apama aber auch insbesondere Open Source Software zur Datenanalyse wie Jupyter/IPython Notebooks und scikit-learn).
Die Teilnehmerinnen und Teilnehmer werden bei der Durchführung von den wissenschaftlichen Mitarbeiterinnen und Mitarbeitern unterstützt und erhalten Zugang zu den notwendigen Datenquellen und Großrechnern.
Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).
Aktivität
Arbeitsaufwand
Präsenzzeit: Präsentation/Diskussion
15 x 45 min
11 h 15 min
Persönliche Nachbereitung der Folien/Aufgaben
15 x 30 min
7 h 30 min
Individuelle Präsentation eines für die Implementierung relevanten wiss. Artikels
30 h 0 min
Praktische Bearbeitung der Aufgaben in Gruppe und individuell
15 x 8h
120 h 0 min
Ergebnisse dokumentieren und für Präsentation aufbereiten
15 x 45 min
11 h 15 min
SUMME
180 h 00 min
Arbeitsaufwand für die Lerneinheit "Praktikum: Kontextsensitive ubiquitäre Systeme"
Lernziele:
Nach Abschluss des Praktikums können die Studierenden
- neue kontextsensible Systeme unter Einsatz existierender "IoT", "Machine Learning" und "Big Data"-Komponenten implementieren
- existierende Komponenten und Algorithmen im Bereich Maschine Learning, Data Mining und Big Data auswählen und anpassen
5 TEILLEISTUNGEN

Teilleistung: Praktikum: Smart Data Analytics [T-INFO-106426]

- Datensätze aufbereiten und hierzu geeignete Verfahren identifizieren
- durch Experimente verschiedene Verfahren und Parametrisierungen bewerten und vergleichen
- durch Analyse der experimentellen Ergebnissen Verfahren und Verarbeitungsketten anwendungsspezifisch verbessern
- explorative Konzepte der Smart Data Innovation als "Data Analyst" bzw. "Data Scientist" selbständig anwenden

Empfehlungen:
Das Praktikum ist idealerweise begleitend zur Vorlesung Kontextsensitive Systeme (24658) zu belegen.

Zielgruppe:
Studenten im Diplom- oder Master-Studiengang Informatik
Studenten im Diplom- oder Master-Studiengang Informationswirtschaft

Organisatorisches
Das bearbeitete Kleinprojekt ist mit einem Praktikumsbericht zu dokumentieren und eine Abschlusspräsentation ist zu halten.
Eine Anmeldung im Voraus wird stark empfohlen, da die max. Teilnehmerzahl begrenzt ist.
Aktuelle Anmeldeinformationen entnehmen Sie bitte der Webseite des Lehrstuhls.
Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.
5.213 Teilleistung: Praktikum: Web-Anwendungen und Serviceorientierte Architekturen (II) [T-INFO-103121]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-104061 - Microservice-basierte Web-Anwendungen

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte 5
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 3

Lehrveranstaltungen
SS 2023 24873 Praktikum: Web-Anwendungen und Serviceorientierte Architekturen (II) 2 SWS Praktikum (P) / Abeck, Schneider, Sänger, Throner

Prüfungsveranstaltungen
SS 2023 7500139 Praktikum: Web-Anwendungen und Serviceorientierte Architekturen (II) Abeck

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Ergebnisdokumentation sowie der Präsentation derselben als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum: Web-Anwendungen und Serviceorientierte Architekturen (II) 24873, SS 2023, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Literaturhinweise
- Anleitung der Forschungsgruppe zur Durchführung von Arbeiten im Projektteam
- Vorlesungsskript 'Advanced Web Applications'

Weiterführende Literatur
Literaturbestand des jeweiligen Projektteams
5.214 Teilleistung: Praxis der Unternehmensberatung [T-INFO-101975]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101208 - Innovative Konzepte des Daten- und Informationsmanagements

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1,5</td>
<td>best./nicht best.</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 24664 | Praxis der Unternehmensberatung | 2 SWS | Vorlesung (V) / 🗣 | Böhm, Lang |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Dazu gehören Vorträge, Projektarbeiten, schriftliche Arbeiten und Seminararbeiten.

Zum Bestehen der Prüfung müssen alle Teilaufgaben erfolgreich bestanden werden.

Voraussetzungen

Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Praxis der Unternehmensberatung

24664, WS 23/24, 2 SWS, im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

In der Vorlesung werden thematisch die Bereiche Allgemeine Unternehmensberatung und Funktions-spezifische Beratung (am Beispiel der DV-Beratung) behandelt. Die Struktur der Vorlesung orientiert sich dabei an den Phasen eines Beratungsprojekts:

- **Diagnose**: Der Berater als analytischer Problemlöser.
- **Strategische Neuausrichtung/Neugestaltung der Kernprozesse**: Optimierung/Neugestaltung wesentlicher Unternehmensfunktionen zur Lösung des diagnostizierten Problems in gemeinschaftlicher Arbeit mit dem Klienten.
- **Umsetzung**: Verankerung der Maßnahmen in der Klientenorganisation zur Sicherstellung der Implementierung.

Thematische Schwerpunkte der Vorlesung sind:

- **Elementare Problemlösung**: Problemdefinition, Strukturierung von Problemen und Fokussierung durch Anwendung von Werkzeugen (z.B. Logik- und Hypothesenbäume), Kreativitätstechniken, Lösungssysteme etc.
- **Effektive Gewinnung von Informationen**: Zugriff auf Informationsquellen, Interviewtechniken etc.
- **Effektive Kommunikation von Erkenntnissen/Empfehlungen**: Kommunikationsanalyse/-planung (Medien, Zuhörerschaft, Formate), Kommunikationsstile (z.B. Top-down vs. Bottom-up), Sonderthemen (z.B. Darstellung komplexer Informationen) etc.
- **Effizientes Arbeiten im Team**: Hilfsmittel zur Optimierung effizienter Arbeit, Zusammenarbeit mit Klienten, intellektuelle und Prozess-Führerschaft im Team etc.

Am Ende der Lehrveranstaltung sollen die Teilnehmer

- Wissen und Verständnis für den Ablauf des Prozesses der Allgemeinen Unternehmensberatung entwickelt haben,
- Wissen und Verständnis für die Funktions-spezifische DV-Beratung entwickelt haben,
- einen Überblick über Beratungsunternehmen bekommen haben,
- konkrete Beispiele der Unternehmensberatung kennen,
- erfahren haben, wie effektive Arbeit im Team funktioniert, sowie
- einen Einblick in das berufliche Tätigkeitsfeld "Beratung" bekommen haben.
5.215 Teilleistung: Praxis des Lösungsvertriebs [T-INFO-101977]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101208 - Innovative Konzepte des Daten- und Informationsmanagements

Erfolgskontrolle(n)

Voraussetzungen
Keine.

Anmerkungen
Praxis der Lösungsvertriebs findet zur Zeit nicht statt
5.216 Teilleistung: Praxis-Seminar: Health Care Management (mit Fallstudien) [T-WIWI-102716]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102805 - Service Operations

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Praxis-Seminar: Health Care Management</td>
<td>3 SWS</td>
<td>Seminar (S) / 🏫</td>
<td>Nickel, Mitarbeiter</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Praxis-Seminar: Health Care Management</td>
<td>3 SWS</td>
<td>Sonstige (sonst.) / 🗣</td>
<td>Nickel, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Praxis-Seminar: Health Care Management (mit Fallstudien)</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🏫 Präsenz/Online gemischt, 🗣 Präsenz, ☐ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer zu bearbeitenden Fallstudie, einer zu erstellenden Seminararbeit und einer abschließenden mündlichen Prüfung (nach §4(2), 2 SPO).

Voraussetzungen
Keine.

Empfehlungen

Anmerkungen
Die Leistungspunkte wurden zum Sommersemester 2016 auf 4,5 reduziert.
Die Lehrveranstaltung wird in jedem Semester angeboten.
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Praxis-Seminar: Health Care Management</th>
<th>Seminar (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550498, SS 2023, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt

Voraussetzungen:

Organisatorisches
Termine und Veranstaltungsort finden sie auf der Homepage des Lehrstuhls dol.ior.kit.edu

Inhalt

Voraussetzungen:

Anmeldezeitraum: 11.09.23 bis 30.09.23 im Wiwi Portal

Organisatorisches
Termine und Veranstaltungsort finden sie auf der Homepage des Lehrstuhls dol.ior.kit.edu
5.217 Teilleistung: Predictive Mechanism and Market Design [T-WIWI-102862]

Verantwortung: Prof. Dr. Johannes Philipp Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101453 - Angewandte strategische Entscheidungen
M-WIWI-101505 - Experimentelle Wirtschaftsforschung

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Anmerkungen
Die Vorlesung wird jedes zweite Wintersemester angeboten, z.B. im WS2017/18, WS2019/20, ...
Die Wiederholungsprüfung kann zu jedem späteren, ordentlichen Prüfungstermin angetreten werden. Die Prüfungstermine werden ausschließlich in dem Semester, in dem die Vorlesung angeboten wird sowie im unmittelbar darauf folgenden Semester angeboten. Die Stoffinhalte beziehen sich auf die zuletzt gehaltene Lehrveranstaltung.
5.218 Teilleistung: Predictive Modeling [T-WIWI-110868]

Verantwortung: Prof. Dr. Fabian Krüger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101638 - Ökonometrie und Statistik I
M-WIWI-101639 - Ökonometrie und Statistik II

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Unregelmäßiger
Version: 2

Lehrveranstaltungen
SS 2023 2521311 Predictive Modeling 2 SWS Vorlesung (V) / 🗣️ Krüger, Eberl, Koster
SS 2023 2521312 Predictive Modeling (Übung) 2 SWS Übung (Ü) / 🗣️ Koster, Eberl

Prüfungsveranstaltungen
SS 2023 7900298 Predictive Modeling Krüger
WS 23/24 7900014 Predictive Modeling Krüger

Legende: 🖥 Online, ☐ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
90-minütige Klausur (schriftliche Prüfung nach SPO §4 Abs. 2, Punkt 1).
Durch erfolgreiche Bearbeitung einer Zusatzaufgabe (schriftliche Ausarbeitung + Kurzvortrag) während des Semesters kann ein Notenbonus erreicht werden. Liegt die Klausurnote zwischen 4,0 und 1,3, so verbessert der Bonus diese um eine Notenstufe (0,3 oder 0,4).

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Predictive Modeling
2521311, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Lehrinhalt

Lernziele
Die Studierenden besitzen umfangreiche konzeptionelle Kenntnisse statistischer Prognosemethoden. Sie sind in der Lage diese mit statistischer Software umzusetzen und empirische Problemstellungen kritisch zu analysieren.

Voraussetzungen
Es werden inhaltliche Kenntnisse der Veranstaltung "Angewandte Ökonometrie" [2520020] vorausgesetzt.

Literaturhinweise
- Weitere Literatur wird in der Vorlesung bekanntgegeben.

V Predictive Modeling (Übung)
2521312, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz
5 TEILLEISTUNGEN

5.219 Teilleistung: Preismanagement [T-WIWI-105946]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Dr Paul Glenn

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101409 - Electronic Markets

Lehrveranstaltungen
SS 2023 2540529 Preismanagement 2 SWS Vorlesung (V) / 🗣 Glenn

Prüfungsveranstaltungen
SS 2023 7900139 Preismanagement (SoSe 2023) Geyer-Schulz
WS 23/24 7900170 Preismanagement (Nachklausur SS 2023) Geyer-Schulz

Erfolgskontrolle(n)

Prüfung Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben. Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)) und wird zur erreichten Punktzahl der bestandenen Klausur hinzugerechnet. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Vorlesung wird im SS2016 erstmalig angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Preismanagement
2540529, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Termine:
Samstags von 9:00 - 19:00 Uhr
29.04.2023 => (verschoben auf 06.05.2023) - Termin 1
20.05.2023 => (verschoben auf 03.06.2023) - Termin 2
17.06.2023 - Termin 3
08.07.2023 - Termin 4

Literaturhinweise
5.220 Teilleistung: Pricing [T-WIWI-102883]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105312 - Marketing and Sales Management

Teilleistungsart

<table>
<thead>
<tr>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pricing</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2572199 | Pricing | 3 SWS | Block (B) / 📚 | Bill, Klarmann, Schröder |

Legende: 🖱 Online, 📚 Präsenz/Online gemischt, 📚 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Die Prüfung (und damit die Note) setzt sich aus drei Teilen zusammen:

1. Die Konzeption und Durchführung einer eigenen kleinen experimentellen Studie zum Thema Behavioral Pricing (als Gruppenarbeit).
2. Die Bearbeitung und Präsentation einer Case Study zur Preisbestimmung (als Gruppenarbeit).

Voraussetzungen

Da die früheren Veranstaltung (a) „Pricing Excellence“ und (b) „Preisverhandlungen und Verkaufspräsentationen“ Teile der Veranstaltung Pricing werden, kann Pricing nicht belegt werden, falls bereits (a) und/oder (b) abgeschlossen wurde.

Empfehlungen

Die aktive Teilnahme an dem Kurs wird nachdrücklich empfohlen.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Pricing

2572199, WS 23/24, 3 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]
Inhalt
Bei der Vorlesung „Pricing“ lernen Studierende aktuelle Forschung und Best Practices zum Preismanagement kennen. Die in Workshopform durchgeführte Vorlesung hat drei zentrale Elemente:

1. Workshop „Behavioral Pricing“
 In diesem Veranstaltungsteil werden auf Grundlage wichtiger verhaltenswissenschaftlicher Theorien (z.B. Prospect Theory und Informationsökonomie) zentrale Konzepte und Erkenntnisse aus der verhaltenswissenschaftlichen Preisforschung vorgestellt und diskutiert (z.B. Preisinformationsverarbeitung, Referenzpreise, Preisfairness und Mental Accounting). Nach einer kurzen Einführung in experimentelle Forschung führen die Teilnehmerinnen und Teilnehmer dann in Form einer Gruppenarbeit eine eigene kleine experimentelle Studie zu einer von Ihnen entwickelten Hypothese zum Preisverhalten durch, werten die Daten aus und präsentieren diese.

2. Workshop „Pricing Excellence“

3. Workshop „Preisverhandlungen“
 Nach einer Einführung in zentrale Theorien und Konzepte zur Verhandlungsführung bereiten die Studierende in kleinen Gruppen angeleitet eine simulierte Preisverhandlung vor und führen diese dann auch durch.

Lernziele:
Studierende…

- kennen zentrale Theorien zur Erklärung von verhaltenswissenschaftlichen Phänomenen im Umgang von Konsumentinnen und Konsumenten mit Preisen
- können zentrale verhaltenswissenschaftliche Phänomene im Hinblick auf das Preisverhalten beschreiben, erklären und Implikationen daraus herleiten
- können eigene Hypothesen zum Preisverhalten formulieren und eine dazu geeignete experimentelle Studie konzipieren, durchführen und auswerten
- lernen theoretische Grundlagen zur Preissetzung
- lernen theoretische Grundlagen zur Preisdurchsetzung und zum Preismonitoring
- wenden das erlangte Wissen in einer praxisnahen Case Study an
- kennen wichtige konzeptionelle Grundlagen zum Thema Preisverhandlungen
- können Preisverhandlungen vorbereiten und kompetent durchführen
- präsentieren Ergebnisse ihrer Gruppenarbeiten prägnant und strukturiert

Es handelt sich um eine reine Präsenzveranstaltung mit Anwesenheitspflicht bei allen Terminen.

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Organisatorisches
Dates will be announced.
5.221 Teilleistung: Probabilistic Time Series Forecasting Challenge [T-WIWI-111387]

Verantwortung: Prof. Dr. Fabian Krüger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
M-WIWI-101638 - Ökonometrie und Statistik I
M-WIWI-101639 - Ökonometrie und Statistik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Projekt (PRO)</th>
<th>Leistungserbringer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500080</td>
<td>Probabilistic Time Series Forecasting Challenge</td>
<td>2</td>
<td>🖥</td>
<td>Bracher, Koster, Lerch</td>
<td></td>
</tr>
<tr>
<td>2500081</td>
<td>Probabilistic Time Series Forecasting Challenge</td>
<td>SWS</td>
<td>🧩</td>
<td>Bracher, Koster, Lerch</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art. Notwendige Voraussetzungen zum Bestehen des Kurses:

Die Benotung erfolgt auf Grundlage des Abschlussberichts.

Voraussetzungen
Gute methodische Kenntnisse in Statistik und Data Science.
Gute Kenntnisse in angewandter Datenanalyse, inkl. Programmierkenntnisse in R, Python o.Ä.
Kenntnisse in Zeitreihenanalyse sind hilfreich, aber nicht zwingend erforderlich.

Anmerkungen
Die Veranstaltung ist teilnahmebeschränkt. Die Auswahl der Teilnehmenden erfolgt über das WIWI-Portal.
5.222 Teilleistung: Product and Innovation Management [T-WIWI-109864]

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101510 - Cross-Functional Management Accounting
M-WIWI-101514 - Innovationsökonomik
M-WIWI-105312 - Marketing and Sales Management

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
3
Notenskala
Drittelnoten
Turnus
Jedes Sommersemester
Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung Code</th>
<th>Vorlesung</th>
<th>WS 2023</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2571154</td>
<td>Product and Innovation Management</td>
<td>2 SWS</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung Code</th>
<th>Vorlesung</th>
<th>WS 23/24</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7900024</td>
<td>Product and Innovation Management</td>
<td>Klarmann</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7900055</td>
<td>Product and Innovation Management</td>
<td>Klarmann</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Klausur mit zusätzlichen Hilfsmitteln im Sinne einer Open Book Klausur. Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Anmerkungen
Bitte beachten Sie, dass Product and Innovation Management erst wieder im Sommersemester 2026 angeboten wird. Im Sommersemester 2024 und 2025 wird die Veranstaltung nicht stattfinden.
Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Product and Innovation Management
2571154, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
This course addresses topics around the management of new as well as existing products. After the foundations of product management, especially the product choice behavior of customers, students get to know in detail different steps of the innovation process. Another section regards the management of the existing product portfolio.

Students
- know the most important terms of the product and innovation concept
- understand the models of product choice behavior (e.g., the Markov model, the Luce model)
- are familiar with the basics of network theory (e.g. the Triadic Closure concept)
- know the central strategic concepts of innovation management (especially the market driving approach, pioneer and successor, Miles/Snow typology, blockbuster strategy)
- master the most important methods and sources of idea generation (e.g. open innovation, lead user method, crowdsourcing, creativity techniques, voice of the customer, innovation games, conjoint analysis, quality function deployment, online toolkits)
- are capable of defining and evaluating new product concepts and know the associated instruments like focus groups, product testing, speculative sales, test market simulation Assessor, electronic micro test market
- have advanced knowledge about market introduction (e.g. adoption and diffusion models Bass, Fourt/Woodlock, Mansfield)
- understand important connections of the innovation process (cluster formation, innovation culture, teams, stage-gate process)

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.
Total effort for 3 credit points: approx. 90 hours
Presence time: 30 hours
Preparation and wrap-up of LV: 45.0 hours
Exam and exam preparation: 15.0 hours

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Literaturhinweise
5.223 Teilleistung: Produktions- und Logistikmanagement [T-WIWI-102632]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101412 - Industrielle Produktion III

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung/Übung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2581954</td>
<td>Produktions- und Logistikmanagement</td>
<td>2</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Schultmann, Rudi</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2581955</td>
<td>Übung zu Produktions- und Logistikmanagement</td>
<td>2</td>
<td>Übung (Ü) / Präsenz</td>
<td>Huster, Treml</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung/Übung</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981954</td>
<td>Produktions- und Logistikmanagement</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktions- und Logistikmanagement
2581954, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise
Wird in der Veranstaltung bekannt gegeben.
5.224 Teilleistung: Project Management [T-WIWI-103134]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101412 - Industrielle Produktion III
M-WIWI-101471 - Industrielle Produktion II

Prüfungsleistung schriftlich
Leistungspunkte 3,5
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
WS 23/24 2581963 Project Management 2 SWS Vorlesung (V) / 🗣 Schultmann, Volk

Prüfungsveranstaltungen
SS 2023 7981963 Project Management Schultmann

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine
Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Project Management
2581963, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Introduction
2. Principles of Project Management
3. Project Scope Management
4. Time Management and Resource Scheduling
5. Cost Management
6. Quality Management
7. Risk Management
8. Stakeholder
9. Communication, Negotiation and Leadership
10. Project Controlling
11. Agile Project Management

Literaturhinweise
Wird in der Veranstaltung bekannt gegeben.
5.225 Teilleistung: Projektmanagement aus der Praxis [T-INFO-101976]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1,5</td>
<td>best./nicht best.</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101208 - Innovative Konzepte des Daten- und Informationsmanagements

Erfolgskontrolle(n)

Voraussetzungen
Keine.

Empfehlungen
Kenntnisse zu Grundlagen des Projektmanagements.
5.226 Teilleistung: Projektpraktikum Computer Vision für Mensch-Maschine-Interaktion [T-INFO-105943]

Verantwortung: Prof. Dr.-Ing. Rainer Stiefelhagen
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101239 - Maschinelle Visuelle Wahrnehmung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 2400123 Projektpraktikum Computer Vision für Mensch-Maschine-Interaktion 2 SWS Praktikum (P) / 🖥️ Stiefelhagen

Prüfungsveranstaltungen
SS 2023 7500279 Projektpraktikum Computer Vision für Mensch-Maschine-Interaktion Stiefelhagen

Legende: 🖥️ Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Anfertigung einer ausführlichen schriftlichen Ausarbeitung der im Praktikum geleisteten Arbeit, incl. einer Diskussion des Standes der Technik sowie der Präsentation derselben als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen
T-INFO-110325 - Projektpraktikum Computer Vision für Mensch-Maschine-Interaktion mit wissenschaftlicher Ausarbeitung darf nicht begonnen sein.

Empfehlungen
- Kenntnisse zu Grundlagen aus Computer Vision und Mensch-Maschine-Interaktion sind hilfreich.
- C/C++ und/oder Python wird vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektpraktikum Computer Vision für Mensch-Maschine-Interaktion
2400123, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Das Praktikum beschäftigt sich mit der Umsetzung von Methoden der Computer Vision und des maschinellen Lernens in praktischen Systemen zur visuellen Wahrnehmung von Menschen und der Umgebung.
Zu diesem Zweck werden wir ein übergreifendes Thema zur Bearbeitung vorstellen und einzelne Teilprojekte passend zu diesem Thema zur Bearbeitung durch einzelne Studenten oder Kleingruppen vorschlagen; allerdings ist auch die Benennung und Verwirklichung eigener Ideen/Projekte unter dem vorgegebenen Thema möglich und sogar erwünscht. Jedes Teilprojekt soll dabei seine Arbeit präsentieren und insbesondere die gemachten Erfahrung bzgl. praktischer Probleme und deren Lösungen austauschen.
Da in diesem Projektpraktikum praxistaugliche Systeme entwickelt werden sollen, werden wir einen Fokus auf der Realisierung von echtzeitfähigen, interaktiven Systemen setzen, die im Idealfall in realistischen Umgebungen getestet werden sollen. Da in diesem Kontext häufig Probleme auftreten, die in Vorlesungen nicht vermittelt werden können, bildet die Vermittlung von Erfahrung im Umgang mit praktischen Problemen einen wichtigen Bestandteil der Veranstaltung.

Lehrinhalt:
Darüber hinaus sollen die Studenten erste Erfahrungen darin sammeln, den notwendigen Zeitaufwand der einzelnen Entwicklungsschritte einzuschätzen. Ferner soll durch die Arbeit in einer Gruppe und die abschließende Präsentation die Fähigkeit der Studenten gefördert werden, die eigene Arbeit zu vermitteln.

Arbeitsaufwand:
1 SWS Meeting pro Woche
10 SWS Vorbereitungszeit für die Präsentationsleistung kombiniert mit weiteren 10 SWS für die Erarbeitung der schriftlichen Zusammenfassung
Die restliche Zeit soll ausschließlich für die praktische Arbeit verwendet werden

Organisatorisches
Geb. 07.08, R003
5.227 Teilleistung: Projektpraktikum Kognitive Automobile und Roboter [T-WIWI-109985]

Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
M-WIWI-103356 - Maschinelles Lernen
M-WIWI-106491 - Projektpraktikum Angewandtes Maschinelles Lernen

<table>
<thead>
<tr>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum Kognitive Automobile und Roboter (Master)</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer praktischen Arbeit, einem Vortrag und einer schriftlichen Ausarbeitung. Details zur Notenbildung werden zu Beginn der Veranstaltung bekanntgegeben.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Kognitive Automobile und Roboter (Master)
2512501, WS 23/24, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Neben den wissenschaftlichen Zielen, wie die Untersuchung und Anwendung der Methoden, werden auch die Aspekte projektübergreifender Teamarbeit in der Forschung (von der Spezifikation bis zur Präsentation der Ergebnisse) in diesem Praktikum erarbeitet.
Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Verfahren, Spezifikation und Implementierung und Evaluierung des Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Lernziele:
- Die Studierenden können theoretische Kenntnisse aus Vorlesungen über das Maschinelle Lernen auf einem ausgewählten Gebiet der aktuellen Forschung praktisch anwenden.
- Die Studierenden beherrschen die Analyse und Lösung von thematischen Problemstellungen.
- Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Empfehlungen:
- Théoretische Kenntnisse des maschinellen Lernen und oder KI
- Python Kenntnisse

Arbeitsaufwand:
Der Arbeitsaufwand von 5 Leistungspunkten setzt sich zusammen aus der praktischen Umsetzung der gewählten Lösung, sowie der Zeit für Literaturrecherchen und Planung/Specifikation der selektierten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Organisatorisches
Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.
5.228 Teilleistung: Projektpraktikum Maschinelles Lernen [T-WIWI-109983]

Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-103356 - Maschinelles Lernen
M-WIWI-106491 - Projektpraktikum Angewandtes Maschinelles Lernen

Teilleistungsart: Prüfungsleistung anderer Art

Leistungspunkte: 5

Notenskala: Drittelnoten

Turnus: Jedes Sommersemester

Version: 3

Lehrveranstaltungen

SS 2023 2512500 Projektpraktikum Maschinelles Lernen 3 SWS Praktikum (P) / 🧩 Zöllner

Prüfungsveranstaltungen

SS 2023 7900086 Projektpraktikum Maschinelles Lernen Zöllner

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer praktischen Arbeit, einem Vortrag und einer schriftlichen Ausarbeitung. Details zur Notenbildung werden zu Beginn der Veranstaltung bekanntgegeben.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektpraktikum Maschinelles Lernen
2512500, SS 2023, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz/Online gemischt

Inhalt

Neben den wissenschaftlichen Zielen, die in der Untersuchung und Anwendung der Methoden werden auch die Aspekte projektbezogener Teamarbeit in der Forschung (von der Spezifikation bis zur Präsentation der Ergebnisse) in diesem Praktikum erarbeitet.

Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Verfahren, Spezifikation und Implementierung und Evaluierung des Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Lernziele:

- Die Studierenden können Kenntnisse aus der Vorlesung Maschinelles Lernen auf einem ausgewählten Gebiet der aktuellen Forschung im Bereich Robotik oder kognitive Automobile praktisch anwenden.
- Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team.
- Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Empfehlungen:

Besuch der Vorlesung Maschinelles Lernen, C/C++ Kenntnisse, Python Kenntnisse

Arbeitsaufwand:

Der Arbeitsaufwand von 4,5 Leistungspunkten setzt sich zusammen aus Präsenzzeit am Versuchsornt zur praktischen Umsetzung der gewählten Lösung, sowie der Zeit für Literaturrecherchen und Planung/Specifikation der selektierten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Organisatorisches

Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.
5.229 Teilleistung: Public Management [T-WIWI-102740]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101504 - Collective Decision Making
M-WIWI-101511 - Vertiefung Finanzwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltnummer</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2561127</td>
<td>Public Management</td>
<td>3</td>
<td>Präsenz/Online gemischt</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltnummer</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>790puma</td>
<td>Public Management</td>
<td></td>
<td>Wigger</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>790puma</td>
<td>Public Management</td>
<td></td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Legende: 📱 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗓 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 90-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Empfehlungen

Es wird Kenntnis der Grundlagen der Finanzwissenschaft vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

1. **Public Management**
 - WS 23/24, 2561127, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
 - **Vorlesung / Übung (VÜ)**: Präsenz/Online gemischt

Literaturhinweise

Weiterführende Literatur:

Verantwortung: Dr. Patrick Plötz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101451 - Energiewirtschaft und Energiemärkte

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Geschäftseinheit</th>
<th>Studienämter</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2581007</td>
<td>Quantitative Methods in Energy Economics</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581008</td>
<td>Übungen zu Quantitative Methods in Energy Economics</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Geschäftseinheit</th>
<th>Studienämter</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981007</td>
<td>Quantitative Methods in Energy Economics</td>
<td></td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Quantitative Methods in Energy Economics
2581007, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Lernziele:
Der/die Studierende
- kennt und versteht ausgewählte quantitative Methoden der Energiewirtschaft,
- kann ausgewählte quantitative Methoden der Energiewirtschaft selbst anwenden,
- versteht deren möglichen Anwendungsbereich und Grenzen und kann diese selbständig auf neue Probleme anwenden.

Literaturhinweise
Wird in der Vorlesung bekannt gegeben.
5.231 Teilleistung: Randomisierte Algorithmen [T-INFO-101331]

Verantwortung: Thomas Worsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications

<table>
<thead>
<tr>
<th>Prüfungsleistungsmöglichkeiten</th>
<th>Prüfungsmethoden</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>mündlich</td>
<td></td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
SS 2023 75400002 Randomisierte Algorithmen Worsch

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung gemäß § 4 Abs. 2 Nr. 2 SPO im Umfang von i.d.R. 20 Minuten.

Voraussetzungen
Keine

Anmerkungen
Diese LV wird ab dem SS23 nicht mehr angeboten.
- Prüfbar bis Ende SS 23.
5.232 Teilleistung: Recommendersysteme [T-WIWI-102847]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101410 - Business & Service Engineering
M-WIWI-105661 - Data Science: Intelligente, adaptive und lernende Informationsdienste

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Thema</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2540506</td>
<td>Recommendersysteme</td>
<td>2</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540507</td>
<td>Übungen zu Recommendersysteme</td>
<td>1</td>
<td></td>
<td>Geyer-Schulz, Nazemi</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Thema</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900138</td>
<td>Recommendersysteme (Nachklausur WS 2022/2023)</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900310</td>
<td>Recommendersysteme (WS 2023/2024)</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)) und wird zur erreichten Punktzahl der bestandenen Klausur hinzugerechnet. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Recommendersysteme
2540506, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Prüfung
Inhalt

Lernziele:
Der/die Studierende
- beherrscht konkrete Verfahren zur Berechnung von impliziten und expliziten Empfehlungen aus den Bereichen der Statistik, des Data Mining und der Spieltheorie.
- evaluiert Recommender Systeme und vergleicht diese mit anderen Systemen in diesem sehr forschungsnahen Gebiet.

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten ca. 135 Stunden:
Präsenzzeit
- Besuch der Vorlesung: 15 x 90min = 22h 30m
- Besuch der Übung: 7 x 90min = 10h 30m
- Prüfung: 1h 00m
Selbststudium
- Vor-/Nachbereitung der Vorlesung: 15 x 180min = 45h 00m
- Vorbereitung der Übung: 25h 00m
- Vorbereitung der Prüfung: 31h 00m

Summe: 135h 00m
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach §4, Abs. 2, 1 SPO und durch Ausarbeiten von Übungsaufgaben als Erfolgskontrolle anderer Art nach §4, Abs. 2, 3 SPO.

Nachweis:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Note: Mindestpunkte
- 1,0: 95
- 1,3: 90
- 1,7: 85
- 2,0: 80
- 2,3: 75
- 2,7: 70
- 3,0: 65
- 3,3: 60
- 3,7: 55
- 4,0: 50
- 5,0: 0
Literaturhinweise
Weiterführende Literatur:
5.233 Teilleistung: Regelkonformes Verhalten im Unternehmensbereich [T-INFO-101288]

Verantwortung: Andreas Herzig
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101216 - Recht der Wirtschaftsunternehmen

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
| WS 23/24 | 2400087 | Regelkonformes Verhalten im Unternehmensbereich | 2 SWS | Vorlesung (V) / 🗣 | Herzig, Siddiq |

Prüfungsveranstaltungen
| SS 2023 | 7500063 | Regelkonformes Verhalten im Unternehmensbereich | Dreier, Matz |
| WS 23/24 | 7500063 | Regelkonformes Verhalten im Unternehmensbereich | Matz |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. Nr. 1 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Regelkonformes Verhalten im Unternehmensbereich
2400087, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Lernziele: Der/die Studierende hat vertiefte Kenntnisse hinsichtlich der Thematik "Governance, Risk & Compliance" sowohl im Hinblick auf die regulatorischen als auch im Hinblick auf die betriebswirtschaftlichen Rahmenbedingungen sowie ein profundes Verständnis für die Notwendigkeit dieser Systeme. Er/sie kennt die nationalen, europäischen und internationalen Regularien und kann sie anwenden. Der/die Studierende ist in der Lage, praxisrelevante Sachverhalte selbstständig zu analysieren, zu bewerten und in den Kontext einzuordnen.

Empfehlungen: Der erfolgreiche Abschluss von Veranstaltungen zum BGB, HGB und Gesellschaftsrecht (z.B. Bachelor InWi Leistungsstufe 2) wird empfohlen.

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden, davon 30 h Präsenz, 45 h Vor- und Nachbereitungszeit sowie 15 h für die Klausurvorbereitung.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach § 4 Abs. 2 Nr. 1 SPO. Die Note ergibt sich aus der Benotung der schriftlichen Prüfung.
5.234 Teilleistung: Regulierungstheorie und -praxis [T-WIWI-102712]

| Teilleistungsart | Prüfungsleistung mündlich | Leistungspunkte | 4,5 | Notenskala | Drittelnoten | Turnus | siehe Anmerkungen | Version | 2 |
|------------------|---------------------------|-----------------|-----|------------|-------------|--------|------------------|---------|

Erfolgskontrolle(n)

Die Vorlesung wird auf unbestimmte Zeit nicht angeboten.
Die Erfolgskontrolle erfolgt in Form einer 20-30 min. mündlichen Prüfung zu einem vereinbarten Termin. Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Voraussetzungen

Keine

Empfehlungen

Grundkenntnisse und Fertigkeiten der Mikroökonomie aus einem Bachelorstudium werden erwartet.

Besonders hilfreich, aber nicht notwendig: Industrieökonomie und Principal-Agent- oder Vertragstheorie. Der vorherige Besuch der Veranstaltung "Wettbewerb in Netzen" [26240] ist in jedem Falle hilfreich, gilt allerdings nicht als formale Voraussetzung.

Anmerkungen

Die Vorlesung wird auf unbestimmte Zeit nicht angeboten.
5.235 Teilleistung: Responsible Artificial Intelligence [T-WIWI-111385]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103117 - Data Science: Data-Driven Information Systems
M-WIWI-103118 - Data Science: Data-Driven User Modeling
M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

Teilleistung: Responsible Artificial Intelligence

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>2545164</th>
<th>Responsible Artificial Intelligence</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Hoffmann, Miskiw</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2545165</td>
<td>Responsible Artificial Intelligence</td>
<td>1 SWS</td>
<td>Übung (U)</td>
<td>Hoffmann, Miskiw</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art gem. SPO §4(2). Diese besteht aus:

- Bearbeiten einer Übungsaufgabe inkl. kurzer Präsentation (15 min)(max. 30 Punkte)
- Bearbeiten einer Fallstudie mit mündlicher Prüfung (max. 60 Punkte).

Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen

Anmerkungen

5.236 Teilleistung: Risk Management in Industrial Supply Networks [T-WIWI-102826]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101412 - Industrielle Produktion III
M-WIWI-101471 - Industrielle Produktion II

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2581992</td>
<td>Risk Management in Industrial Supply Networks</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Schultmann, Kaiser</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>Prüfung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981992</td>
<td>Risk Management in Industrial Supply Networks</td>
<td></td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Risk Management in Industrial Supply Networks

2581992, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt

Students learn methods and tools to manage risks in complex and dynamically evolving supply chain networks. Students learn the key terms and concepts of risk management and decision theory, in particular expected utility theory. Based on the theoreic prerequisites, students are able to determine and analyze risk diversification, risk pooling, insurance mechanisms and get an overview on statistical risk measures and real options. These approaches are adapted to analyze supply chain risks in a network context. In this manner, students gain knowledge in basic notions of network theory, network metrics and network-strategies for supply chain decisions.

- Introduction
- Risks in decisions under uncertainty: Expected Utility Theory & risk preferences
- The newsvendor model; multivariate risks and insurance
- Risk measures & evaluation techniques: Value-at-Risk, Conditional Value at Risk, Monte Carlo and Real Options
- Transparency in complex supply chains
- Network risk: network basics and criticality
- Risk in supply networks: empirical approaches and insights

Literaturhinweise

Wird in der Veranstaltung bekannt gegeben.

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
5.237 Teilleistung: Roadmapping [T-WIWI-102853]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Daniel Jeffrey Koch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>
| Bestandteil von: | M-WIWI-101488 - Entrepreneurship (EnTechnon)
 M-WIWI-101507 - Innovationsmanagement
 M-WIWI-101507 - Innovationsmanagement |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch der Vorlesung Innovationsmanagement wird empfohlen.

Anmerkungen
Das Seminar findet im Sommersemester ungerader Jahre statt.
5.238 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100893 - Robotik I - Einführung in die Robotik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2424152</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>3/1</td>
<td>Vorlesung (V) / Presence</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Asfour</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500106</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 💡 Präsenz/Online gemischt, 🗣 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bachelor-Studiengang Informatik SPO 2008 die Lehrveranstaltung Robotik I mit 3 LP im Rahmen des Moduls Grundlagen der Robotik geprüft wurde.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesungsbezeichnung</th>
<th>Vorlesungsnummer</th>
<th>SWS</th>
<th>Sprache</th>
<th>Anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robotik I - Einführung in die Robotik</td>
<td>2424152</td>
<td>WS 23/24</td>
<td>3/1</td>
<td>Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt

Empfehlungen:

Arbeitsaufwand:
Vorlesung mit 3 SWS + 1 SWS Übung,
6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbesuch,
ca. 15 Std. Übungsbesuch,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
ca. 30 Std. Prüfungsvorbereitung

Lernziele:
Studierende sind in der Lage die vorgestellten Konzepte auf einfache und realistische Aufgaben aus dem Bereich der Robotik anzuwenden. Dazu zählt die Beherrschung und Herleitung der für die Roboter-modellierung relevanten mathematischen Modelle.

Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik,
Elektrotechnik und Informationstechnik

Literaturhinweise
Weiterführende Literatur
Fu, Gonzalez, Lee: Robotics - Control, Sensing, Vision, and Intelligence
5.239 Teilleistung: Robotik II - Humanoide Robotik [T-INFO-105723]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101251 - Autonome Robotik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beteiligung</td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Vorlesung (V) / Lab</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2400074</td>
<td>Robotik II: Humanoide Robotik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Asfour</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>Asfour</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500086</td>
<td>Robotik II: Humanoide Robotik</td>
<td>Asfour</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500211</td>
<td>Robotik II: Humanoide Robotik</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
• M-INFO-100816 - Robotik II - Lernende und planende Roboter Modul darf nicht begonnen sein.
• T-INFO-101391 - Anthropomatik: Humanoide Robotik Teilleistung darf nicht begonnen sein.

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Robotik II: Humanoide Robotik
2400074, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Die Vorlesung stellt aktuelle Arbeiten auf dem Gebiet der humanoiden Robotik vor, die sich mit der Implementierung komplexer sensomotorischer und kognitiver Fähigkeiten beschäftigen. In den einzelnen Themenkomplexen werden verschiedene Methoden und Algorithmen, deren Vor- und Nachteile sowie der aktuelle Stand der Forschung diskutiert.

Es werden folgende Themen behandelt: Anwendungen und reale Beispiele der humanoiden Robotik; biomechanische Modell des menschlichen Körpers; biologisch inspirierte und datengetriebene Methoden des Greifens, Imitationslernen und Programmieren durch Vormachen; semantische Repräsentationen von sensomotorischem Erfahrungswissen sowie kognitive Software-Architekturen der humanoiden Robotik.

Lernziele:
Die Studierenden haben einen Überblick über aktuelle Forschungsthemen bei autonomen lernenden Robotersystemen am Beispiel der humanoiden Robotik und sind dazu in der Lage aktuelle Entwicklungen auf dem Gebiet der kognitiven humanoiden Robotik einzuordnen und zu bewerten.

Die Studierenden kennen die wesentlichen Problemstellungen der humanoiden Robotik und können auf der Basis der existierenden Forschungsarbeiten Lösungsvorschläge erarbeiten.

Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand: 90 h

Empfehlungen: Der Besuch der Vorlesungen Robotik I – Einführung in die Robotik und Mechano-Informatik in der Robotik wird empfohlen

Zielgruppe: Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Literaturhinweise

Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.
5.240 Teilleistung: Robotik III – Sensoren und Perzeption in der Robotik [T-INFO-109931]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101251 - Autonome Robotik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

SS 2023 2400067 Robotik III – Sensoren und Perzeption in der Robotik 2 SWS Vorlesung (V) Asfour

Prüfungsveranstaltungen

SS 2023 7500242 Robotik III – Sensoren und Perzeption in der Robotik Asfour
WS 23/24 7500207 Robotik III – Sensoren und Perzeption in der Robotik Asfour

Legende: 🌐 Online, 🎤 Präsenz/Online gemischt, 🗂 Präsenz, ⌚ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Empfehlungen
Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Robotik III – Sensoren und Perzeption in der Robotik
2400067, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Im Inhalts
Die Vorlesung ergänzt die Vorlesung Robotik I um einen breiten Überblick über in der Robotik verwendete Sensorik und Methoden der Perzeption in der Robotik. Der Schwerpunkt der Vorlesung liegt auf der visuellen Perzeption, der Objekterkennung, der simultanen Lokalisierung und Kartenerstellung (SLAM) sowie der semantischen Szeneninterpretation. Die Vorlesung ist zweiteilig gegliedert:

Im ersten Teil der Vorlesung wird ein umfassender Überblick über aktuelle Sensortechnologien gegeben. Hierbei wird grundlegend zwischen Sensoren zur Wahrnehmung der Umgebung (exterozeptiv) und Sensoren zur Wahrnehmung des internen Zustandes (pro priozeptiv) unterschieden. Der zweite Teil der Vorlesung konzentriert sich auf den Einsatz von exterozeptiver Sensorik in der Robotik. Die behandelten Themen umfassen insbesondere die taktile Exploration und die Verarbeitung visueller Daten, einschließlich weiterführender Themen wie der Merkmalsextraktion, der Objektlokalisierung, der simultanen Lokalisierung und Kartenerstellung (SLAM) sowie der semantischen Szeneninterpretation.

Lernziele:
Studierende kennen die wesentlichen in der Robotik gebräuchlichen Sensorprinzipien und verstehen den Datenfluss von der physikalischen Messung über die Digitalisierung bis hin zur Verwendung der aufgenommenen Daten für Merkmalsextraktion, Zustandsabschätzung und Umweltmodellierung.

Studierende sind in der Lage, für gängige Aufgabenstellungen der Robotik, geeignete Sensorkonzepte vorzuschlagen und zu begründen.
Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Empfehlungen: Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird empfohlen

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h

Literaturhinweise
Eine Foliensammlung wird im Laufe der Vorlesung angeboten.
Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.
5.241 Teilleistung: Semantic Web Technologies [T-WIWI-110848]

Verantwortung: Dr.-Ing. Tobias Christof Käfer

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101455 - Web Data Management
- M-WIWI-101456 - Intelligente Systeme und Services
- M-WIWI-105366 - Artificial Intelligence

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2511310</td>
<td>Semantic Web Technologies</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Färber, Käfer, Braun</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2511311</td>
<td>Übungen zu Semantic Web Technologies</td>
<td>1</td>
<td>Übung (U) / 🗣</td>
<td>Färber, Käfer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>Anmeldung bis</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>79AIFB_SWebT_A4</td>
<td>Semantic Web Technologien (Anmeldung bis 17.07.2023)</td>
<td></td>
<td>Färber</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79AIFB_SWebT_A2</td>
<td>Semantic Web Technologien (Anmeldung bis 05.02.2024)</td>
<td></td>
<td>Käfer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛹 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (20min.) (nach §4(2), 2 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Informatikvorlesungen der Bachelorstudiengänge Wirtschaftsinformatik/Wirtschaftsingenieurwesen Semester 1-4 oder gleichwertige Veranstaltungen werden vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar Web Technologies

2511310, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

Konkret behandelt die Vorlesung die grundlegenden Technologien RDF, RDFS, OWL, SPARQL, und dem Web in den folgenden Themenblöcken:

- Lesen und Schreiben von RDF-Dokumenten in der Turtle-Syntax
- Nutzung und Publikation von RDF-Dokumenten als Linked Data
- Formulieren von Anfragen in SPARQL gegen lokale Quellen und solche im Netzwerk
- Übersetzung von SPARQL-Anfragen in SPARQL-Algebra
- Anwendungen semantischer Technologien in der Wirtschaft und Wissenschaft
- Modellierung von Ontologien und Vokabularen in RDFS und OWL sowie deren Veröffentlichung im Web
- Semantik von Vokabularen und Ontologien mittels Modelltheorie
- Kombination von SPARQL-Anfragebearbeitung mit logischem Schlussfolgern
- Definition und Ausführung von User Agenten zur Integration und zum Download von Linked Data mittels Regeln in Notation3

Lernziele:
Der/die Studierende

- besitzt Grundkenntnisse über Ideen und Realisierung von Semantic Web Technologien, inklusive Linked Data
- besitzt grundlegende Kompetenz im Bereich Daten- und Systemintegration im Web
- beherrscht fortgeschrittene Fertigkeiten zur Wissensmodellierung mit Ontologien

Empfehlungen:
Informatikvorlesungen des Bachelor Wirtschaftsinformatik Semester 1-4 oder gleichwertige Veranstaltungen werden vorausgesetzt. Kenntnisse im Bereich Modellierung mit UML sind erforderlich.

Arbeitsaufwand:

- Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
- Präsenzzeit: 45 Stunden
- Vor- und Nachbereitung der LV: 60 Stunden
- Prüfung und Prüfungsvorbereitung: 30 Stunden

Literaturhinweise

Weitere Literatur

Inhalt
Die Übungen orientieren sich an der Vorlesung Semantic Web Technologies.

Mehrere Übungen werden abgehandelt, welche die Themen, die in der Vorlesung Semantic Web Technologies behandelt werden, aufgreifen und im Detail besprechen. Dabei werden den Studierenden praktische Beispiele demonstriert um einen Wissenstransfer der gelernten theoretischen Aspekte in die praktische Umsetzung zu ermöglichen.

Folgende Themenbereiche werden abgedeckt:
- Resource Description Framework (RDF) und RDF Schema (RDFS)
- Web Architektur und Linked Data
- Web Ontology Language (OWL)
- Abfragesprache SPARQL
- Regelsprachen
- Anwendungen

Lernziele:
Der/die Studierende
- besitzt Grundkenntnisse über Ideen und Realisierung von Semantic Web Technologien, inklusive Linked Data
- besitzt grundlegende Kompetenz im Bereich Daten- und Systemintegration im Web
- beherrscht fortgeschrittene Fertigkeiten zur Wissensmodellierung mit Ontologien

Empfehlungen:
Informatikvorlesungen des Bachelor Wirtschaftsinformatik Semester 1-4 oder gleichwertige Veranstaltungen werden vorausgesetzt. Kenntnisse im Bereich Modellierung mit UML sind erforderlich.

Organisatorisches
Die Übungen finden im Rahmen der Termine der Blockvorlesung statt.

Literaturhinweise

Weitere Literatur
Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101218 - Seminarmodul Recht

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2400005</td>
<td>Vertiefungs-Seminar Governance, Risk & Compliance</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Bless, Bohem, Hartenstein, Mädche, Volkamer, Zitterbart</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400061</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Bless, Bohem, Hartenstein, Mädche, Volkamer, Zitterbart</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400078</td>
<td>Intelligente Chatbots und Recht</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Raabe</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400149</td>
<td>„Vom Original zur Kopie und vom Analogon zum Digitalen“</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Dreier</td>
</tr>
<tr>
<td>SS 2023</td>
<td>24820</td>
<td>Aktuelle Fragen des Patentrechts</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Melullis</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400060</td>
<td>Daten in software-intensiven technischen Systemen – Modellierung – Analyse – Schutz</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Reussner, Raabe, Werner, Müller-Quade</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400184</td>
<td>EU Digital Regulatory Framework</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Zuffal</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400203</td>
<td>(Smart) City in and as a Network</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Kasper</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2513214</td>
<td>Seminar Informationssicherheit und Datenschutz (Bachelor)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Oberweis, Volkamer, Raabe, Schiefer, Hennig, Sterz, Veit, Ballreich, Mossano</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500106</td>
<td>Seminar Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>Bless, Hartenstein, Mädche, Zitterbart, Boehm, Sunyaev</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500140</td>
<td>Seminar aus Rechtswissenschaften I</td>
<td>Dreier, Melullis, Matz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500035</td>
<td>Seminar aus Rechtswissenschaften II</td>
<td>Zuffal</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500182</td>
<td>Seminar aus Rechtswissenschaften II</td>
<td>Zuffal</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500232</td>
<td>Seminar Daten in software-intensiven technischen Systemen – Modellierung – Analyse – Schutz</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit sowie ihrer Präsentation als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen
Keine

Anmerkungen
Es können alle Seminare des Instituts für Informations- und Wirtschaftsrecht (IIWR) belegt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vertiefungs-Seminar Governance, Risk & Compliance
2400005, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Teilleistung: Seminar aus Rechtswissenschaften I [T-INFO-101997]

Inhalt

Lernziele: Der/die Studierende hat vertiefte Kenntnisse hinsichtlich der Thematik "Governance, Risk & Compliance" sowohl auf regulatorischer Ebene als auch auf betriebswirtschaftlicher Ebene. Er/sie ist in der Lage, eine konkrete Fragestellung schriftlich in Form einer Seminararbeit auszuarbeiten sowie anschließend im mündlichen Vortrag zu präsentieren.

Der Arbeitsaufwand beträgt 21 h Präsenzzeit, 60 h schriftliche Ausarbeitung, 9h Vortrag vorbereiten.

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit sowie ihrer Präsentation als Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Die Seminarnote entspricht dabei der Benotung der schriftlichen Leistung, kann aber durch die Präsentationsleistung um bis zu zwei Notenstufen gesenkt bzw. angehoben werden.

Inhalt
- Blockseminar
- Anmeldung über https://portal.wiwi.kit.edu/ys/5877

Organisatorisches
nach Vereinbarung

Inhalt
In den USA bestand ChatGPT teilweise das juristische Examen (Bar-Exam) [Bommarito, Katz 2022, arXiv:2212.14402v1]. Im Gegensatz zu den USA müssen in Deutschland für das juristische Examen keine Multiple-Choice Fragen beantwortet, sondern Fälle gelöst werden. Im Seminar soll daher untersucht werden, inwieweit sich bereits heute rechtliche Probleme mit Hilfe von Chatbots bearbeiten lassen.

Die Ergebnisse werden im Anschluss an den jeweiligen Vortrag mit den Teilnehmer:innen diskutiert, wobei auch die Mitarbeit in die Benotung mit einfließt. Ziel des Seminars ist dabei auch, dass die Teilnehmer:innen einen Eindruck davon gewinnen, ob und bei welchen juristischen Fragen Chatbots hilfreich sein können und wie Eingaben am sinnvollsten gestaltet werden sollten, um eine möglichst nützliche Antwort zu erhalten.

Das Seminar richtet sich bevorzugt an Masterstudenten!

Die Einführungsveranstaltung findet am Mittwoch, 19.04.2023 von 14-15.30 Uhr am ZAR im Seminarraum 313 statt (07.08., Vincenz-Prießnitz-Str. 3). Am Seminar interessierte Studierende, die an diesem Termin aufgrund sich überschneidender Veranstaltungen nicht teilnehmen können, wenden sich bitte per E-Mail an leonie.sterz@kit.edu.

Die übrigen Termine werden in der Einführungsveranstaltung in der ersten Vorlesungswoche mit den Teilnehmer:innen vereinbart.

Themen werden noch bekannt gegeben!

WICHTIG: Damit Ihre Anmeldung am Seminar verbindlich wird, muss

1. eine Zusage durch das WIWI Portal,
2. Ihre fristgerechte Rückmeldung UND

Ein unbegründeter Abbruch des Seminars nach Themenvergabe wird mit einer 5,0 verbucht.
Aktuelle Fragen des Patentrechts
24820, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Das Seminar wird als wöchentlich stattfindende Veranstaltung angeboten.

Das Seminar steht und fällt mit der Mitarbeit seiner Teilnehmer. Daher ergibt sich ein wesentlicher Teil der Seminarnote aus der Beurteilung der wöchentlichen Mitarbeit, d.h. aus der Beteiligung an den Diskussionen.

Der gesamte Arbeitsaufwand beträgt ca. 75-100 h, davon sind 22,5 h Präsenzzeit.

Daten in software-intensiven technischen Systemen – Modellierung – Analyse – Schutz
2400060, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Sobald personenbezogene Daten Gegenstand einer automatisierten Datenverarbeitung sind, gilt es datenschutzrechtliche Vorgaben in allen Stadien der Entwicklung und der Laufzeit sowohl auf Komponenten- als auch auf Gesamtsystemebene einzuzeichnen.

Rechtliche Vorgaben haben damit einen zu unterschätzenden Einfluss auf das Software-Design und die Gestaltung technischer Systeme insgesamt.

Die Umsetzung dieser rechtlichen Vorgaben erfolgt je nach Anwendungsfall entsprechend der Vorgaben des BSI, das für bestimmte Bereiche genauer spezifiziert was als „aktueller Stand der Technik“ zu verstehen ist. Um genauer zu verstehen, wie sich die Menge an tatsächlich für eine Anwendung notwendigen Daten reduzieren lässt, wie unbefugter Zugriff darauf mit kryptographischen Mitteln verhindert werden kann und wie sich der Privatphänenverlust durch verschiedene Verarbeitungen von Daten einschätzen lässt, werden in Seminar auch verschiedene kryptographische Methoden und Privacy-Begriffe thematisiert.

Lernziele:

- Fähigkeit zur eigenständigen Literaturrecherche: Auffinden, bewerten, auswerten und einbeziehen von relevanter Literatur zum jeweiligen Seminarthema
- Anfertigung einer schriftlichen Ausarbeitung unter Beachtung vorgegebener Formalien und Einhaltung der Standards wissenschaftlicher Arbeitseise
- Aufbereitung und Vorstellung eigener Arbeitsergebnisse im Rahmen eines Seminarvortrags mit Präsentation, anschließende Auseinandersetzung mit dem Thema in einer Frage- und Diskussionsrunde
- Förderung des Verständnisses für interdisziplinäre Zusammenhänge und Fragestellungen

Link zur Veranstaltung mit Informationen zur Anmeldung:
https://sdq.kastel.kit.edu/wiki/Seminar_Daten_in_software-intensiven_technischen_Systemen_%E2%80%93_Modellierung_%E2%80%93_Analyse_%E2%80%93_Schutz_WS_2023/24

Organisatorisches

KASTEL Reussner, IIWR ZAR Forschungsgruppe Compliance PD Dr. Raabe, KASTEL Müller-Quade

Das Seminar wird als gemeinsame Veranstaltung von Prof. Dr. Reussner (KASTEL), Prof. Dr. Raabe (IIWR / ZAR) und Prof. Müller-Quade (KASTEL) angeboten und verfolgt einen entsprechend interdisziplinären Ansatz, der Verständnis für komplexe Sachverhalte an der Schnittstelle von Recht und Technik fördern soll. Vergeben werden sowohl bereichsspezifische Themen aus einem der genannten Gebiete als auch Querschnittsthemen. Das Seminar richtet sich bevorzugt an Masterstudenten. Für die Bearbeitung der rechtlichen Themen sollten einschlägige Vorkenntnisse aus früheren Lehrveranstaltungen vorhanden sein.

Das Seminar richtet sich bevorzugt an Masterstudenten. Für die Bearbeitung der rechtlichen Themen sollten einschlägige Vorkenntnisse aus früheren Lehrveranstaltungen vorhanden sein.

Anmeldungen über ILIAS

Link zur Veranstaltung:
https://sdq.kastel.kit.edu/wiki/Seminar_Daten_in_software-intensiven_technischen_Systemen_%E2%80%93_Modellierung_%E2%80%93_Analyse_%E2%80%93_Schutz_WS_2023/24

EU Digital Regulatory Framework

2400184, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Beschreibung des Seminars nur auf Englisch, da es in englischer Sprache stattfindet wird.

Note:
this class is intended for Bachelor and Master students in Business Information Systems and Law as a minor subject.

Hinweis:
 dieses Seminar ist für Studierende Bachelor und Master Wirtschaftsinformatik und Recht im Nebenfach vorgesehen.

Organisatorisches

WS 2023/24
5.243 Teilleistung: Seminar Betriebswirtschaftslehre A (Master) [T-WIWI-103474]

Verantwortung: Professorenschaft des Fachbereichs Betriebswirtschaftslehre
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102736 - Seminarmodul Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2023</th>
<th>2400121</th>
<th>Interactive Analytics Seminar</th>
<th>2 SWS</th>
<th>Seminar (PS/S) /</th>
<th>Beigl, Mächde</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2500018</td>
<td>2 SWS</td>
<td>Erfolgreiche Transformation durch Innovation</td>
<td>Seminar (S) /</td>
<td>Busch</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2500020</td>
<td>2 SWS</td>
<td>Digital Democracy - Herausforderungen und Möglichkeiten der digitalen Gesellschaft</td>
<td>Seminar (S) /</td>
<td>Fegert</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2500027</td>
<td>2 SWS</td>
<td>Design Seminar: Digital Citizen Science</td>
<td>Seminar (S)</td>
<td>Mächde</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2500125</td>
<td>3 SWS</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>Seminar (S) /</td>
<td>Mächde</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2530580</td>
<td>2 SWS</td>
<td>Seminar in Finance (Master)</td>
<td>Seminar (S) /</td>
<td>Uhrig-Homburg, Müller, Thimme</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540472</td>
<td>2 SWS</td>
<td>Digital Citizen Science</td>
<td>Seminar (S)</td>
<td>Weinhardt, Knierim, Mächde</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540475</td>
<td>2 SWS</td>
<td>Positive Information Systems</td>
<td>Seminar (S)</td>
<td>Knierim, del Puppo, Bartholomeyczik</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540477</td>
<td>2 SWS</td>
<td>Digital Experience & Participation</td>
<td>Seminar (S) /</td>
<td>Peukert, Fegert</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540478</td>
<td>2 SWS</td>
<td>Smart Grid Economics & Energy Markets</td>
<td>Seminar (S)</td>
<td>Henni, Semmelmann, Bluhm, Golla</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540510</td>
<td>2 SWS</td>
<td>Master Seminar in Data Science and Machine Learning</td>
<td>Seminar (S)</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540553</td>
<td>2 SWS</td>
<td>User-Adaptive Systems Seminar</td>
<td>Seminar (S) /</td>
<td>Mächde, Beigl</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540557</td>
<td>3 SWS</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>Seminar (S) /</td>
<td>Mächde</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2545002</td>
<td>2 SWS</td>
<td>Entrepreneurship-Forschung</td>
<td>Seminar (S) /</td>
<td>Terzidis</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2550493</td>
<td>2 SWS</td>
<td>Krankenhausmanagement</td>
<td>Block (B) /</td>
<td>Hansis</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2571180</td>
<td>2 SWS</td>
<td>Seminar in Marketing und Vertrieb (Master)</td>
<td>Seminar (S) /</td>
<td>Klarmann, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2571182</td>
<td>2 SWS</td>
<td>Seminar "The Future of Marketing" (Master)</td>
<td>Seminar (S) /</td>
<td>Kupfer</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2573012</td>
<td>2 SWS</td>
<td>Seminar Human Resource Management (Master)</td>
<td>Seminar (S) /</td>
<td>Nielen, Mitarbeiter, Gorny</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2573013</td>
<td>2 SWS</td>
<td>Seminar Personal und Organisation (Master)</td>
<td>Seminar (S) /</td>
<td>Nielen, Mitarbeiter, Walther</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2579909</td>
<td>2 SWS</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>Seminar (S) /</td>
<td>Wouters, Jaedeke, Kepl</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2579910</td>
<td>2 SWS</td>
<td>Entrepreneurial Strategy and Financing of Start-Ups</td>
<td>Seminar (S) /</td>
<td>Burkardt</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2579919</td>
<td>2 SWS</td>
<td>Seminar Management Accounting - Sustainability Topics</td>
<td>Seminar (S) /</td>
<td>Letmathe</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2581030</td>
<td>2 SWS</td>
<td>Seminar Energiewirtschaft IV</td>
<td>Seminar (S) /</td>
<td>Fichtner</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2581977</td>
<td>2 SWS</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>Seminar (S) /</td>
<td>Volk, Schultmann</td>
<td></td>
</tr>
<tr>
<td>Semester</td>
<td>Code</td>
<td>Begriff</td>
<td>Perioden</td>
<td>Veranstaltungstyp</td>
<td>leitend(s)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--</td>
<td>----------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kraft, Fichtner</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2530293</td>
<td>Seminar in Finance (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ruckes, Hoang, Benz, Luedecke, Silbereis, Wiegratz, Kohl</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2530586</td>
<td>Finance auf den Punkt gebracht</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Uhrig-Homburg, Eska, Molnar</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540473</td>
<td>Business Data Analytics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Badewitz, Grote, Schulz, Motz</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540475</td>
<td>Positive Information Systems</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Knieritz, del Puppo</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540477</td>
<td>Smart Grids and Energy Markets</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Weinhardtm, Semmelmann, Miskiw</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540510</td>
<td>Master Seminar in Data Science and Machine Learning</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Geyer-Schulz, Nazemi, Schweizer</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2540557</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2550493</td>
<td>Krankenhausmanagement</td>
<td>2 SWS</td>
<td>Block (B)</td>
<td>Hansis</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2571181</td>
<td>Seminar Digital Marketing (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Kupfer</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2573012</td>
<td>Seminar Human Resource Management (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2573013</td>
<td>Seminar Personal und Organisation (Master)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2579911</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Wouters, Dickmann, Letmathe</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2579919</td>
<td>Seminar Management Accounting - Sustainability Topics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Wouters, Dickmann</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581030</td>
<td>Seminar Energiewirtschaft IV</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Fichtner, Sloot</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581976</td>
<td>Seminar Produktionswirtschaft und Logistik I</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Schultmann, Rudi</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581977</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Volk, Schultmann</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581978</td>
<td>Seminar Produktionswirtschaft und Logistik III</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Schultmann, Kaiser</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581979</td>
<td>Seminar Energiewirtschaft I</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Fichtner, Kleinebrahm, Finck</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Fichtner</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2581981</td>
<td>Seminar Energiewirtschaft III</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Ardone, Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<p>| SS 2023 | 00018 | Seminar Digital Democracy – Herausforderungen und Möglichkeiten der digitalen Gesellschaft | Weinhardtm |
| SS 2023 | 7900008 | Krankenhausmanagement | Nickel |
| SS 2023 | 7900019 | Master Seminar in Data Science and Machine Learning | Geyer-Schulzm |
| SS 2023 | 7900025 | Erfolgreiche Transformation durch Innovation | Busch |
| SS 2023 | 7900052 | Entrepreneurship-Forschung | Terzidis |
| SS 2023 | 7900093 | Seminar Smart Grid and Energy Markets | Weinhardtm |
| SS 2023 | 7900101 | Seminar Human Resource Management (Master) | Nieken |
| SS 2023 | 7900127 | Seminar in Finance: Big Data in Finance (Master) | Uhrig-Homburg |
| SS 2023 | 7900165 | Practical Seminar: Data Science for Industrial Applications | Satzger |
| SS 2023 | 7900166 | Home Office Design Seminar: Digital Citizen Science | Mädche |
| SS 2023 | 7900167 | Design Seminar: Digital Citizen Science | Mädche |</p>
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900180</td>
<td>Seminar Digital Experience and Participation</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900190</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>Mädche</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900214</td>
<td>Seminar Business Data Analytics</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900231</td>
<td>Seminar Personal und Organisation (Master)</td>
<td>Nieken</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900233</td>
<td>Seminar in Marketing und Vertrieb (Master)</td>
<td>Klarmann</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900238</td>
<td>Technologiebewertung</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900240</td>
<td>Seminar "The Future of Marketing" (Master)</td>
<td>Kupfer</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900256</td>
<td>Seminar Positive Information Systems</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900261</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>Mädche</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900265</td>
<td>User-adaptive Systems Seminar</td>
<td>Mädche</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900284</td>
<td>Digitale Transformation und Geschäftsmodelle</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900293</td>
<td>Service Design Thinking</td>
<td>Satzger</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900301</td>
<td>Seminarpraktikum Service Innovation</td>
<td>Satzger</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900328</td>
<td>Seminar - Grundlagen und Konzepte zum bezahlbaren Wohnen am Beispiel RoofKIT</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900372</td>
<td>Seminar Digital Citizen Science</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>79-2579909-M</td>
<td>Seminar Management Accounting - Special Topics (Master)</td>
<td>Wouters</td>
</tr>
<tr>
<td>SS 2023</td>
<td>79-2579919-M</td>
<td>Seminar Management Accounting - Sustainability Topics (Master)</td>
<td>Wouters</td>
</tr>
<tr>
<td>SS 2023</td>
<td>792581030</td>
<td>Seminar Energiewirtschaft IV: Soziale und verhaltenswissenschaftliche Dimensionen nachhaltiger Energietechnologien</td>
<td>Fichtner</td>
</tr>
<tr>
<td>SS 2023</td>
<td>792581031</td>
<td>Seminar Energiewirtschaft V: Ökonomische Aspekte der Verkehrswende</td>
<td>Plötz</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7981976</td>
<td>Seminar Produktionswirtschaft und Logistik I: Building Sustainable Value Chains - anwendungsorientierte Forschungsmethoden am IIP</td>
<td>Schultmann</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7981979</td>
<td>Seminar Energiewirtschaft I: Dezentrale Bausteine für eine nachhaltige Energie- und Verkehrswende: Wärmemanagement und Elektromobilität</td>
<td>Fichtner</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7981980</td>
<td>Seminar Energiewirtschaft II: Lessons Learned aus der Energiekrise und Marktdesign für Erneuerbare Energien</td>
<td>Fichtner</td>
</tr>
<tr>
<td>SS 2023</td>
<td>7981981</td>
<td>Seminar Energiewirtschaft III: Herausforderung Energiewende – sektorspezifische Lösungsansätze für Infrastrukturen</td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900069</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900106</td>
<td>Krankenhausmanagement</td>
<td>Hansis</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900163</td>
<td>Seminar Human Resource Management (Master)</td>
<td>Nieken</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900164</td>
<td>Seminar Personal und Organisation (Master)</td>
<td>Nieken</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900184</td>
<td>Seminar in Finance (Master, Prof. Ruckes)</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900203</td>
<td>Seminar Finance auf den Punkt gebracht</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900233</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900237</td>
<td>Fallstudienseminar Innovationsmanagement</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79-2579911-M</td>
<td>Seminar Management Accounting - Special Topics (Master) - Porsche</td>
<td>Wouters</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>79-2579919-M</td>
<td>Seminar Management Accounting - Sustainability Topics (Master)</td>
<td>Wouters</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7981976</td>
<td>Seminar Produktionswirtschaft und Logistik I: Building Sustainable Value Chains - anwendungsorientierte quantitative Forschungsmethoden am IIP</td>
<td>Schultmann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7981977</td>
<td>Seminar Produktionswirtschaft und Logistik II: Data Science in Urban Research and Remote Sensing</td>
<td>Schultmann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7981978</td>
<td>Seminar Produktionswirtschaft und Logistik III: Current Topics in Risk Management</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt
Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangegangen Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangegangen Semesters erforderlich ist.

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Interactive Analytics Seminar
2400121, SS 2023, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](https://campus.kit.edu)

Inhalt
Providing new and innovative ways for interacting with data is becoming increasingly important. In this seminar, an interdisciplinary team of students engineers a running software prototype of an advanced interactive system leveraging state-of-the-art hardware and software focusing on an analytical use case. The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). This seminar follows an interdisciplinary approach. Students the fields of computer science, information systems and industrial engineering work together in teams.

Learning Objectives
- Explore and specify a data-driven interaction challenge
- Suggest and evaluate different design solutions for addressing the identified problem
- Build interactive analytics prototypes using advanced interaction concepts and pervasive computing technologies

Prerequisites
Strong analytic abilities and profound skills in SQL as well as Python and/or R are required.

Literature
Further literature will be made available in the seminar.

Organisatorisches
nach Vereinbarung
Inhalt

Organisatorisches
Weblink: https://itm.entechnon.kit.edu/192_1281.php

Design Seminar: Digital Citizen Science
2500027, SS 2023, 2 SWS, Im Studierendenportal anzeigen

V Engineering Seminar: Human-Centered Systems
2500125, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Präsenz/Online gemischt

V Master Seminar in Data Science and Machine Learning
2540510, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Dieses Seminar dient einerseits der Vertiefung der Techniken des wissenschaftlichen Arbeitens, andererseits sollen sich Studierende intensiv mit einem vorgegebenen Thema auseinandersetzen, und ausgehend von einer Themenvorgabe eine fundierte wissenschaftliche Arbeit erstellen. Die Basis bildet dabei eine gründliche Literaturrecherche, bei der relevante Literatur identifiziert, aufgefunen, bewertet und in die Arbeit integriert wird.

Die genauen Schwerpunkte sowie Themenbeschreibungen werden jeweils rechtzeitig ab Beginn der Bewerbungsphase bekannt gegeben.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits). Je nach Art der Seminar durchführung können die angegebenen Zeiten variieren. Hauptaugenmerk ist jedoch immer das eigenständige Arbeiten.

Lernziele:
Der Student soll in die Lage versetzt werden,

- eine Literaturrecherche ausgehend von einem vorgegebenen Thema durchzuführen, die relevante Literatur zu identifizieren, aufzufinden, zu bewerten und schließlich auszuwerten,
- ein Thema selbständig (ggf. in einer Gruppe) zu Bearbeiten; hierzu gehören auch technische Konzeption und Implementierung,
- die Ergebnisse der Fragestellung in einer Seminararbeit im Umfang von 15-20 Seiten strukturiert und wissenschaftlichen Standards entsprechend aufzuschreiben,
- die Ergebnisse in einer Präsentation mit anschließender Diskussion (Dauer ca. 20+10 min) zu kommunizieren.

Inhalt
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school "KD2School: Designing Adaptive Systems for Economic Decisions" (https://kd2school.info/)

Learning objectives of the seminar

- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organisatorisches
Termine werden bekannt gegeben
Inhalt
Formerly known as "Information Systems and Service Design Seminar"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group IS I (Prof. Mädche). The research group "Information Systems I" (IS I) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites
No specific prerequisites are required for the seminar.

Literature
Further literature will be made available in the seminar.

Organisatorisches
Termine werden bekannt gegeben

Inhalt

Lernziele

Organisatorisches
The dates will be announced.

Registration is via the Wiwi-Portal.
Literaturhinweise
Will be announced in the seminar.

Krankenhausmanagement
2550493, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Seminar 'Krankenhausmanagement' stellt am Beispiel von Krankenhäusern interne Organisationsstrukturen, Arbeitsbedingungen und Arbeitsumfeld dar und spiegelt dies an sonst üblichen und erwarteten Bedingungen anderer Dienstleistungsbranchen.

Die Erfolgskontrolle erfolgt in Form der Teilnahme und eines Referates oder einer Fallstudie.

Organisatorisches
Das Seminar wird als Blockveranstaltung vom 08.05.-12.05. (jeweils 8-10:30 Uhr) stattfinden mit Eigenstudiumphasen an den Nachmittagen. Zusätzlich wird eine Vorbesprechung am Freitag, 5. Mai um 16 Uhr stattfinden.

Seminar Human Resource Management (Master)
2573012, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Seminarthemen werden auf Basis aktueller Fragestellungen jedes Semester neu definiert. Eine Liste mit den aktuellen Themen finden Sie auf dem Wiwi-Portal.

Lernziele
Der/ die Studierende

- setzt sich mit aktuellen Forschungsthemen aus dem Bereich Human Resource Management und Personalökonomie auseinander.
- trainiert seine / ihre Präsentationsfähigkeiten.
- lernt seine / ihre Ideen und Erkenntnisse schriftlich und mündlich präzise auszudrücken und wesentliche Erkenntnisse anschaulich zusammenzufassen.
- übt sich in der fachlichen Diskussion von Forschungsansätzen.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsentszeit: 30 Stunden
Vor- /Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Papiere und Bücher

Organisatorisches
Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Personal und Organisation (Master)
2573013, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Seminarthemen werden auf Basis aktueller Fragestellungen jedes Semester neu definiert. Eine Liste mit den aktuellen Themen finden Sie auf dem Wiwi-Portal.

Lernziele
Der/die Studierende
- setzt sich mit aktuellen Forschungsthemen aus den Bereichen Personal und Organisation auseinander.
- trainiert seine/ihr Präsentationsfähigkeiten.
- lernt seine/ihr Ideen und Erkenntnisse schriftlich und mündlich präzise auszudrücken und wesentliche Erkenntnisse anschaulich zusammenzufassen.
- übt sich in der fachlichen Diskussion von Forschungsansätzen.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Papiere und Bücher.

Organisatorisches
Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Management Accounting - Special Topics
2579909, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.
Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.
Die Themen können im Rahmen des Seminarthemas frei gewählt werden.
Die Treffen konzentrieren sich auf mehrere Termine, die über das Semester verteilt sind.

Lernziele:
- Die Studierenden können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren.
- Die Studierenden sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen.
- Die Studierenden können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.

Arbeitsaufwand:
- Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
- Präsenzzeit: [30] Stunden (2 SWS)
- Vor-/Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Nachweis:
- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (nach § 4 Abs. 2 Nr. 3 SPO). Ein Aufsatz, welchen die Teilnehmer in Gruppenarbeit erstellen.
- Die Note ist die Note des Aufsatzes.

Anmerkungen:
- 16 Studenten maximal.

Organisatorisches
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literaturhinweise
Will be announced in the course.
Entrepreneurial Strategy and Financing of Start-Ups

2579910, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Seminar (S)
Präsenz/Online gemischt

Inhalt

Siehe Themenbeschreibung im jeweiligen Semester.

Lernziele:

Der/die Studierende

- können selbstständig anhand geeigneter Modelle und Bezugshorizonten der Managementlehre strukturiert strategische Fragestellungen analysieren und Empfehlungen ableiten.
- können ihre Position durch eine durchdachte Argumentationsweise in strukturierten Diskussionen überzeugend darlegen.

Workload:

Präsenzzeit: 15h
Selbststudium: 75h

Voraussetzungen:

Der vorherige Besuch des Bachelor-Moduls „Strategie und Organisation“ oder eines Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen, ist aber nicht verpflichtend.

Erfolgskontrolle:

Organisatorisches

Blockveranstaltung
nähere Infos auf der Institutshomepage

Seminar Management Accounting - Sustainability Topics

2579919, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Seminar (S)
Präsenz

Inhalt

Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.

Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.

Die Themen werden vorgegeben.

Die Treffen konzentrieren sich auf mehrere Termine, die über das Semester verteilt sind.

Lernziele:

- Die Studierenden können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren.
- Die Studierenden sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen,
- und die Studierenden können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.

Arbeitsaufwand:

- Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
- Präsenzzeit: [28] Stunden (2 SWS)
- Vor- /Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Nachweis:

- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (nach § 4 Abs. 2 Nr. 3 SPO). Ein Aufsatz, welchen die Teilnehmer in Gruppenarbeit erstellen.
- Die Note ist die Note des Aufsatzes.

Anmerkungen:

- 16 Studenten maximal.
Organisatorisches
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literaturhinweise
Will be announced in the course.

Finance auf den Punkt gebracht
2530586, WS 23/24, SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Die Gesamtnote setzt sich zusammen aus diesen Teilleistungen.

Empfehlungen:

Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Organisatorisches
Zwischenpräsentation am 11.12.23, 16 Uhr und Abschlusspräsentation am 23.01.24, 17:30 Uhr, beides am Campus B (Geb. 09.21), Raum 209

Master Seminar in Data Science and Machine Learning
2540510, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Krankenhausmanagement
2550493, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Seminar Human Resource Management (Master)
2573012, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt
Seminartemmen werden auf Basis aktueller Fragestellungen jedes Semester neu definiert. Eine Liste mit den aktuellen Themen finden Sie auf dem Wiwi-Portal.

Lernziele
Der/ die Studierende
- setzt sich mit aktuellen Forschungsthemen aus dem Bereich Human Resource Management und Personalökonomie auseinander.
- trainiert seine / ihre Präsentationsfähigkeiten.
- lernt seine / ihre Ideen und Erkenntnisse schriftlich und mündlich präzise auszudrücken und wesentliche Erkenntnisse anschaulich zusammenzufassen.
- übt sich in der fachlichen Diskussion von Forschungsansätzen.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Papiere und Bücher

Organisatorisches
Blockveranstaltung siehe Homepage

Seminar Personal und Organisation (Master)
2573013, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Seminartemmen werden auf Basis aktueller Fragestellungen jedes Semester neu definiert. Eine Liste mit den aktuellen Themen finden Sie auf dem Wiwi-Portal.

Lernziele
Der/ die Studierende
- setzt sich mit aktuellen Forschungsthemen aus den Bereichen Personal und Organisation auseinander.
- trainiert seine / ihre Präsentationsfähigkeiten.
- lernt seine / ihre Ideen und Erkenntnisse schriftlich und mündlich präzise auszudrücken und wesentliche Erkenntnisse anschaulich zusammenzufassen.
- übt sich in der fachlichen Diskussion von Forschungsansätzen.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Papiere und Bücher

Organisatorisches
Blockveranstaltung siehe Homepage

Seminar Management Accounting - Special Topics
2579911, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.

Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.

Die Themen werden vorgegeben.

Die Treffen konzentrieren sich auf mehrere Termine, die über das Semester verteilt sind.

Lernziele:
- Die Studierenden können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren,
- Die Studierenden sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen,
- und die Studierenden können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.

Nachweis:
- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (nach § 4 Abs. 2 Nr. 3 SPO). Ein Aufsatz, welchen die Teilnehmer in Gruppenarbeit erstellen.
- Die Note ist die Note des Aufsatzes.

Voraussetzungen:
- Die Lehrveranstaltung "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) muss vorher erfolgreich abgeschlossen sein.

Arbeitsaufwand:
- Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
- Präsenzzeit: [28] Stunden (2 SWS)
- Vor-/Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Anmerkungen:
- 12 Studenten maximal.

Organisatorisches
Ort und Zeit werden noch bekannt gegeben bzw. über ILIAS

Literaturhinweise
Will be announced in the course.

Seminar Management Accounting - Sustainability Topics
2579919, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.
Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.
Die Themen werden vorgegeben.
Die Treffen konzentrieren sich auf mehrere Termine, die über das Semester verteilt sind.

Lernziele:
- Die Studierenden können weitgehend selbständig ein abgegrenztes Thema aus dem Bereich des Controlling (Management Accounting) identifizieren,
- Die Studierenden sind in der Lage das Thema zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen,
- und die Studierenden können die Ergebnisse anschließend unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren.

Nachweis:
- Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (nach § 4 Abs. 2 Nr. 3 SPO). Ein Aufsatz, welchen die Teilnehmer in Gruppenarbeit erstellen.
- Die Note ist die Note des Aufsatzes.

Voraussetzungen:
- Die Lehrveranstaltung "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) muss vorher erfolgreich abgeschlossen sein.

Arbeitsaufwand:
- Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
- Präsenzzeit: [28] Stunden (2 SWS)
- Vor-/Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Anmerkungen:
- 8 Studenten maximal.

Organisatorisches
Ort und Zeit werden noch bekannt gegeben bzw. über ILIAS

Literaturhinweise
Will be announced in the course.
5.244 Teilleistung: Seminar in Wirtschaftspolitik [T-WIWI-102789]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101514 - Innovationsökonomik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
</tr>
<tr>
<td>WS 23/24</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme und aktive Beteiligung an den Seminarterminen (10%)
- Anfertigung einer Seminararbeit zu einem Teilspektrum des Seminarthemas nach wissenschaftlichen Methoden (Umfang 12 bis 15 Seiten, 50%)
- Vortrag zum Thema der Seminararbeit im Rahmen einer Seminarsitzung (40%)

Das Punkteschema wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Mindestens eine der Vorlesungen "Endogene Wachstumstheorie" oder "Innovationstheorie und -politik" sollte nach Möglichkeit vorher gehört werden.
5.245 Teilleistung: Seminar Informatik A [T-INFO-104336]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-102822 - Seminarmodul Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrveranstaltungstyp</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2400011</td>
<td>Hot Topics in Bioinformatics</td>
<td>2</td>
<td>Seminar (S) / ☑</td>
<td>Stamatakis</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400072</td>
<td>Seminar: Serviceorientierte Architekturen</td>
<td>SWS</td>
<td>Seminar (S) / ☑</td>
<td>Abeck, Schneider, Sänger</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400137</td>
<td>Embedded Machine Learning</td>
<td>SWS</td>
<td>Seminar (S) / ☑</td>
<td>Sikal, Pfeiffer, Balaskas, Khdr, Henkel</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400144</td>
<td>Kann Statistik Ursachen beweisen?</td>
<td>2</td>
<td>Seminar (S) / ☑</td>
<td>Janzing</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400148</td>
<td>Embedded Security and Architectures</td>
<td>SWS</td>
<td>Seminar (S) / ☑</td>
<td>Hussain, Nassar, Bauer, Khdr, Gonzalez, Henkel, Sikal</td>
</tr>
<tr>
<td>SS 2023</td>
<td>24344</td>
<td>Moderne Methoden der Informationsverarbeitung</td>
<td>2</td>
<td>Seminar (S) / ☑</td>
<td>Hanebeck, Reith-Braun</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>3</td>
<td>Seminar (S) / ☑</td>
<td>Mädche</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540553</td>
<td>User-Adaptive Systems Seminar</td>
<td>2</td>
<td>Seminar (S) / ☑</td>
<td>Mädche, Beigl</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540557</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>3</td>
<td>Seminar (S) / ☑</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400137</td>
<td>Embedded Machine Learning Seminar</td>
<td>SWS</td>
<td>Seminar (S) / ☑</td>
<td>Sikal, Balaskas, Ahmed, Khdr, Demirdag, Henkel</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400148</td>
<td>Embedded Security and Architectures</td>
<td>SWS</td>
<td>Seminar (S) / ☑</td>
<td>Hussain, Nassar, Bauer, Khdr, Gonzalez, Sikal, Henkel</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400210</td>
<td>Seminar: Kritische Betrachtung der künstlichen Intelligenz</td>
<td>SWS</td>
<td>Seminar (S) / ☑</td>
<td>Friederich, Zhou, Reiser, Torresi, Neubert, Eberhard, Schlöder</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>24344</td>
<td>Moderne Methoden der Informationsverarbeitung</td>
<td>2</td>
<td>Seminar (S) / ☑</td>
<td>Hanebeck, Reith-Braun</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>24844</td>
<td>Seminar: Ubiquitäre Systeme</td>
<td>2</td>
<td>Seminar (S) / ☑</td>
<td>Beigl, Zhou</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>2</td>
<td>Seminar (S) / ☑</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrveranstaltungstyp</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500013</td>
<td>Moderne Methoden der Informationsverarbeitung</td>
<td>Hanebeck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500014</td>
<td>Seminar: Hot Topics in Bioinformatics</td>
<td>Stamatakis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500040</td>
<td>Seminar Informationssysteme</td>
<td>Böhm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500106</td>
<td>Seminar Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>Bless, Hartenstein, Mädche, Zitterbart, Boehm, Sunyaev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500162</td>
<td>Seminar: Ubiquitäre Systeme</td>
<td>Beigl, Riedel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500177</td>
<td>Seminar Hot Topics in Networking</td>
<td>Zitterbart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500276</td>
<td>Seminar: Kann Statistik Ursachen beweisen?</td>
<td>Janzing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500301</td>
<td>Seminar: Proofs from THE BOOK</td>
<td>Sanders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7500335</td>
<td>CES - Seminar: Machine Learning</td>
<td>Henkel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen
keine

Anmerkungen
Es muss ein Seminar aus der Informatik belegt werden. Dieses kann durch die Informatik-Professoren der KIT-Fakultät für Informatik angeboten werden oder durch die Professoren des AIFB.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar: Serviceorientierte Architekturen
2400072, SS 2023, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Organisatorisches
Zur Platzvergabe beim ersten WASA-Vorlesungstermin erscheinen

Embedded Machine Learning
2400137, SS 2023, SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen
Inhalt
Dieser Vortrag deckt einige Themenbereiche auf, die in der Seminarvorlesung behandelt wurden. Die Themenbereiche sind in der folgenden Tabelle dargestellt. Die Inhalte der Vorlesung wurden in einer Seminararbeit niedergeschrieben und an die Teilnehmer der Seminarvorlesung vorgestellt. In der Seminararbeit wurden die Themen in verschiedenen Bereichen behandelt, die in der Seminarvorlesung nicht behandelten wurden.

Machine learning on on-chip systems
Machine learning und on-chip systems form a symbiosis in which each research direction benefits from advances in the other. In this seminar, the students discuss the latest findings in both research areas. Machine learning (ML) is finding its way more and more into all areas of information systems - from high-level algorithms such as image classification to hardware-related, intelligent CPU management. On-chip systems also benefit from advances in ML. Examples of this are adaptive resource management or the prediction of application behavior. Conversely, however, ML techniques also benefit from advances in on-chip systems. An example of this is the acceleration of training and inference of neural networks in current desktop graphics cards and even smartphone processors.

The students are able to independently research the state of research on a specific topic. This includes finding and analyzing, as well as comparing and evaluating publications. The students can prepare and present the state of research on a specific topic in writing.

Approximate Computing for Efficient Machine Learning
Nowadays, energy efficiency is a first-class design constraint in the ICT sector. Approximate computing emerges as a new design paradigm for generating energy efficient computing systems. There is a large body of resource-hungry applications (e.g., image processing and machine learning) that exhibit an intrinsic resilience to errors and produce outputs that are useful and of acceptable quality for the users despite their underlying computations being performed in an approximate manner. By exploiting this inherent error tolerance of such applications, approximate computing trades computational accuracy for savings in other metrics, e.g., energy consumption and performance. Machine learning, a very common and top trending workload of both data centers and embedded systems, is a perfect candidate for approximate computing application since, by definition, it delivers approximate results. Performance as well as energy efficiency (especially in the case of embedded systems) are crucial for machine learning applications and thus, approximate computing techniques are widely adopted in machine learning (e.g., TPU) to improve its energy profile as well as performance.

Machine Learning methods for DNN compilation and mapping
Deep neural networks have achieved great success in challenging tasks such as image classification and object detection. There is a great demand for deploying these networks in different devices, ranging from cloud servers to embedded devices. Mapping DNNs to these devices is a challenging task since each of these devices has different characteristics in terms of memory organization, compute units, etc. There have been efforts to automate the process of mapping/compiling DNNs to hardware with different characteristics.

In this seminar, we will discuss the efforts that have been done in mapping/compiling DNNs over hardware using machine learning methods.

Organisatorisches
Please register in ILIAS to participate.

Kann Statistik Ursachen beweisen?
2400144, SS 2023, 2 SWS, Im Studierendenportal anzeigen

Seminar (S) Online

Inhalt
Die Suche nach Ursache und Wirkung: ein hartes Problem für natürliche und künstliche Intelligenz

Kausalität scheint menschliches Denken oft zu überfordern, für die häufigsten Fehlschlüsse bei der kausalen Interpretation von Statistiken gibt es inzwischen anschauliche Literatur [1].

Organisatorisches
Dozent: Dominik Janzing, Amazon Research Tübingen. Privatdozent am KIT
Email: nicht janzing@amazon.de, sondern ersetze ‘g’ durch ‘d’.
Webseite: https://janzing.github.io
Literaturhinweise
Literatur:

Moderne Methoden der Informationsverarbeitung
24344, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Durch die stetig zunehmende Verbreitung und Leistungsfähigkeit moderner Informations- und Kommunikationstechnologien stehen uns mit ständig wachsender Geschwindigkeit mehr digitale Informationen und Daten zur Verfügung als je zuvor. Aus diesen gigantischen Datenmengen wichtige Informationen zuverlässig abzuleiten und leicht verständlich darzustellen, ist eine der zentralen Herausforderung der technologischen Moderne.
Ein interdisziplinärer Ansatz zur Bewältigung dieser Aufgabe formiert sich unter dem Begriff Data Science. Der Ansatz vereint Herangehensweisen und Methoden aus den Bereichen Machine Learning, Mathematik, Schätztheorie, Visualisierung und Mustererkennung. Im Rahmen dieses Seminars sollen die in der Data Science verwendeten Konzepte und Methoden, insbesondere im Kontext der Schätztheorie, vorgestellt und an konkreten Anwendungsbispielen dargestellt werden.

Engineering Seminar: Human-Centered Systems
2500125, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Formerly known as "Current Topics in Digital Transformation"

User-Adaptive Systems Seminar
2540553, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädeche). It is offered as part of the DFG-funded graduate school “KD2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organisatorisches
Termine werden bekannt gegeben
Literaturhinweise
Required literature will be made available in the seminar.

Research Seminar: Human-Centered Systems
2540557, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Formerly known as "Information Systems and Service Design Seminar"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group IS I (Prof. Mädche). The research group "Information Systems I" (IS I) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives
- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites
No specific prerequisites are required for the seminar.

Literature
Further literature will be made available in the seminar.

Organisatorisches
Termine werden bekannt gegeben

Embedded Machine Learning Seminar
2400137, WS 23/24, SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen
5 TEILLEISTUNGEN

Teilleistung: Seminar Informatik A [T-INFO-104336]

Inhalt

Machine Learning on On-Chip Systems

Organisatorisches
Bitte im ILIAS zur Teilnahme anmelden.

Embedded Security and Architectures
2400148, WS 23/24, SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen Präsent/Online gemischt
Inhalt
This seminar covers several topics, which are briefly presented here. In this seminar, the students discuss the latest research findings (publications) on the topics below. The findings are summarized in a seminar paper and presented to other participants in the seminar. Your own suggestions for topics are welcome, but not required. The seminar can be completed in German or English.

Dependability for Reconfigurable Architectures
Reliability has become a major concern in the recent nano era. Reliability (the ability of the system to provide the specified services) and security (the ability of the system to protect itself against intentional or accidental intrusion) are the two critical properties of reliable systems. Among the other reliability threats posed by the physical limitations of CMOS technology, radiation-induced soft errors or transient errors are the greatest challenge to be overcome. During this seminar we will examine the state of the art for energy efficient soft error reliability and examine various research solutions, to improve soft error elasticity in an energy efficient way, taking advantage of tradeoffs between performance, performance and reliability. During this seminar, students will also be able to understand hardware security in reconfigurable architectures, learn the ways of inserting Trojans into an FPGA design / IP, and explore various techniques for detecting such stealthy Trojans, such as Bitstream reverse engineering using open source tool flow.

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re)configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality. This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (ie, systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.

In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems. During this seminar, students will dive into the security aspects of resource management, while investigating answers to the following research questions:

- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What’s their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organisatorisches
Please register in ILIAS to participate.

Moderne Methoden der Informationsverarbeitung
24344, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
Durch die stetig zunehmende Verbreitung und Leistungsfähigkeit moderner Informations- und Kommunikationstechnologien stehen uns mit ständig wachsender Geschwindigkeit mehr digitale Informationen und Daten zur Verfügung als je zuvor. Aus diesen gigantischen Datenmengen wichtige Informationen zuverlässig abzuleiten und leicht verständlich darzustellen, ist eine der zentralen Herausforderungen der technologischen Moderne. Ein interdisziplinärer Ansatz zur Bewältigung dieser Aufgabe formiert sich unter dem Begriff „Data Science“. Der Ansatz vereint Herangehensweisen und Methoden aus den Bereichen Machine Learning, Mathematik, Schätzungstheorie, Visualisierung und Mustererkennung. Im Rahmen dieses Seminars sollen die in der Data Science verwendeten Konzepte und Methoden, insbesondere im Kontext der Schätzungstheorie, vorgestellt und an konkreten Anwendungsbeispielen dargestellt werden.

Seminar: Ubiquitäre Systeme
24844, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen
Inhalt

Beschreibung:

Lehrinhalt:

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 120 Stunden (4.0 Credits).

Aktivität

Arbeitsaufwand

Präsenzzeit: Kickoff, Präsentation und Diskussion und Treffen mit Betreuern
10 h
10 h 00 min

Literaturrecherche und Schreiben der Ausarbeitung
106 h
106 h 00 min

Vorbereiten der Präsentation
4 h
4 h 00 min

SUMME
120 h 00 min

Arbeitsaufwand für die Lerneinheit "Seminar: ubiquitäre Systeme"-

Lernziele:
Aktuelle Forschungsergebnisse aus dem Bereich ubiquitärer Systeme sollen erarbeitet und kritisch diskutiert werden. Nach Abschluss des Seminars können die Studierenden

- selbständig eine strukturierte Literaturrecherche zu einem gegebenen Thema durchführen und geeignete Literatur selbständig suchen, identifizieren, analysieren und bewerten
- den Stand der Technik bzw. Wissenschaft zu einem Themenbereich darstellen, differenziert bewerten und Schlüsse draus ziehen
- wissenschaftliche Ergebnisse zu einem Thema strukturiert darstellen und einem Fachpublikum im Rahmen eines Vortrags präsentieren
- Techniken des wissenschaftlichen Schreibens dazu anzuwenden, einen wissenschaftlichen Übersichtsartikel zu einem Thema zu verfassen
- Wissenschaftliche Texte anderer kritisch bewerten und einordnen

Organisatorisches
Kickoff-Termin zum Semesterbeginn, siehe Website des Lehrstuhls

Das Seminar wird gemeinsam mit dem Proseminar Mobile Computing gehalten, es werden also sowohl Seminararbeiten (Master-Studenten) als auch Proseminararbeiten (Bachelor-Studenten) in der Abschlussveranstaltung vorgestellt.

Es ist eine Seminararbeit anzufertigen, am Review-Prozess und allen Veranstaltungen teilzunehmen und ein Abschlussvortrag zu halten.

Die Benotung der Veranstaltung setzt sich aus diesen Teilen zusammen.

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.
5 TEILLEISTUNGEN

5.246 Teilleistung: Seminar Informatik B (Master) [T-WIWI-103480]

Verantwortung: Professorenschaft des Instituts AIFB
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-INFO-102822 - Seminarmodul Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Lehrveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>SS 2023 2513211 Seminar Betriebliche Informationssysteme (Master) 2 SWS Seminar (S)</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SS 2023 2513309 Seminar Knowledge Discovery and Data Mining (Master) 3 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS 2023 2513311 Seminar Data Science & Real-time Big Data Analytics (Master) 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS 2023 2513317 Seminar Anwendungen von Semantic MediaWiki (Master) 3 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS 2023 2513319 Seminar Graph Representation Learning (Master) 3 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS 2023 2513403 Seminar Emerging Trends in Internet Technologies (Master) 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS 2023 2513405 Seminar Emerging Trends in Digital Health (Master) 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS 2023 2513500 Kognitive Automobile und Roboter 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 2400125 Security and Privacy Awareness 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 2500044 Machine Learning on Graphs (Master) SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 2513100 Seminar Data-driven Simulation for Industrial Systems (Master) 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 251313 Seminar Linked Data and the Semantic Web (Master) 3 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 251314 Seminar Real-World Challenges in Data Science and Analytics (Bachelor) 3 SWS Seminar / Praktikum (S/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 251315 Seminar Real-World Challenges in Data Science and Analytics (Master) 3 SWS Seminar / Praktikum (S/P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 2513451 Seminar Cooperative Autonomous Vehicles (Master) 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24 2513500 Seminar Kognitive Automobile und Roboter (Master) 2 SWS Seminar (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen	SS 2023 7900031 Seminar Selected Issues in Critical Information Infrastructures (Master)				
	SS 2023 7900088 Seminar Betriebliche Informationssysteme (Master)				
	SS 2023 7900128 Seminar Emerging Trends in Internet Technologies (Master)				
	SS 2023 7900146 Seminar Emerging Trends in Digital Health (Master)				
	SS 2023 7900147 Kognitive Automobile und Roboter				
	SS 2023 7900191 Seminar Anwendungen von Semantic MediaWiki (Master)				
	SS 2023 7900198 Seminar Data Science & Real-time Big Data Analytics (Master)				
Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen
Platzhalter für Seminarveranstaltungen des Instituts AIFB der KIT-Fakultät für Wirtschaftswissenschaften.

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar Betriebliche Informationssysteme (Master)
2513211, SS 2023, 2 SWS, Im Studierendenportal anzeigen

Seminar Knowledge Discovery and Data Mining (Master)
2513309, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Die Themen werden in enger Abstimmung mit der Betreuerin oder dem Betreuer individuell angepasst. Bei eigenen Themenvorschlägen gerne auch eine E-Mail an uns senden.

Die Bewertung erfolgt über das Wiwi-Portal.
Inhalt
In diesem Seminar werden verschiedene Machine Learning und Data Mining Methoden implementiert.
Das Seminar beinhaltet verschiedene Methoden des Maschinellen Lernens und Data Mining. Teilnehmer des Seminars sollten grundlegende Kenntnisse des Maschinellen Lernens und Programmierkenntnisse besitzen.
Mögliche Anwendungsgebiete sind z.B.:
- Medizin
- Soziale Medien
- Finanzmarkt
- Wissenschaftliche Publikationen

Mehr Informationen: https://aifb.kit.edu/web/Lehre/Praktikum_Knowledge_Discovery_and_Data_Science
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Organisatorisches
Die Anmeldung erfolgt über das WiWi Portal https://portal.wiwi.kit.edu/.
Für weitere Fragen bezüglich des Seminar und der behandelten Themen wenden Sie sich bitte an die entsprechenden Verantwortlichen.

Literaturhinweise
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B.aus den folgenden Lehrbüchern:
- Mitchell, T.; Machine Learning

Seminar Data Science & Real-time Big Data Analytics (Master)
2513311, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
In diesem Seminar werden die Studierenden in Teams Anwendungen entwerfen, die Event Processing sinnvoll und kreativ einsetzen. Dabei können die Studierenden auf einen vorhandenen Datensatz zurückgreifen.
Weitere Informationen zum Seminarpraktikum erhalten Sie unter folgendem Link:
http://seminar-cep.fzi.de
Fragen werden über die E-Mail-Adresse sem-ep@fzi.de entgegengenommen.

Organisatorisches
Further information as well as the registration form can be found under the following link:
http://seminar-cep.fzi.de
Questions are answered via the e-mail address sem-ep@fzi.de.

Seminar Anwendungen von Semantic MediaWiki (Master)
2513317, SS 2023, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

Ziel des Seminars ist es innovative Anwendung zu realisieren und zu präsentieren.
<table>
<thead>
<tr>
<th>Seminar</th>
<th>Titel</th>
<th>Code</th>
<th>Semester</th>
<th>Form</th>
<th>Sprache</th>
<th>Hinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar Graph Representation Learning (Master)</td>
<td>Seminar Graph Representation Learning (Master)</td>
<td>2513319, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
<td>Seminar (S) Präsenz</td>
<td>Seminar, SS 2023, 3 SWS, Sprache: Englisch,</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
<tr>
<td>Seminar Emerging Trends in Internet Technologies (Master)</td>
<td>Seminar Emerging Trends in Internet Technologies (Master)</td>
<td>2513403, SS 2023, 2 SWS, Im Studierendenportal anzeigen</td>
<td>Seminar (S) Präsenz/Online gemischt</td>
<td>Seminar, SS 2023, 2 SWS, Sprache: Englisch,</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
<tr>
<td>Seminar Emerging Trends in Digital Health (Master)</td>
<td>Seminar Emerging Trends in Digital Health (Master)</td>
<td>2513405, SS 2023, 2 SWS, Im Studierendenportal anzeigen</td>
<td>Seminar (S) Präsenz/Online gemischt</td>
<td>Seminar, SS 2023, 2 SWS, Sprache: Englisch,</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
<tr>
<td>Kognitive Automobile und Roboter</td>
<td>Kognitive Automobile und Roboter</td>
<td>2513500, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen</td>
<td>Seminar (S) Online</td>
<td>Seminar, SS 2023, 2 SWS, Sprache: Deutsch/Englisch,</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
<tr>
<td>Security and Privacy Awareness</td>
<td>Security and Privacy Awareness</td>
<td>2400125, WS 23/24, 2 SWS, Im Studierendenportal anzeigen</td>
<td>Seminar (S) Präsenz/Online gemischt</td>
<td>Seminar, WS 23/24, 2 SWS, Sprache: Englisch,</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Graphen sind eine natürliche Möglichkeit, die Informationen von Objekten und die topologische Beziehung zwischen ihnen darzustellen. Sie sind die Grundlage für verschiedene Anwendungen, die von Empfehlungssystemen, Finanzen, sozialen Netzwerken und persönlichen Assistenten (z. B. Alexa) reichen.

In diesem Seminar lesen, diskutieren und arbeiten die Studierenden an Graphalgorithmen auf der Grundlage wissenschaftlicher Literatur, einschließlich neuester Methoden zur Analyse und Erstellung großer Graphen (etwa Link Prediction auf Wissensgraphen) und Methoden, um das Verhalten von neuronalen Netzen, welche auf Graphen basieren, erkla rbar zu machen (z.B. durch das Generieren von Text auf Basis eines Subgraphen).

Inhalt

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Inhalt

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Inhalt

Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Verfahren, Spezifikation und theoretische Evaluierung des Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Lernziele:

- Die Studierenden können Kenntnisse aus der Vorlesung Maschinelles Lernen auf einem ausgewählten Gebiet der aktuellen Forschung im Bereich Robotik oder kognitive Automobile theoretisch analysieren.
- Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Empfehlungen:

Besuch der Vorlesung Maschinelles Lernen

Arbeitsaufwand:

Der Arbeitsaufwand von 3 Leistungspunkten setzt sich zusammen aus der Zeit für Literaturrecherchen und Planung/Spezifikation der selektierten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Organisatorisches

Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.
Inhalt
Im Rahmen dieses interdisziplinären Seminars soll die Themen Security Awareness und Privacy Awareness aus verschiedenen Blickwinkeln betrachtet werden. Es werden sowohl rechtliche, informationstechnische, psychologische, gesellschaftliche als auch philosophische Aspekte behandelt.

Der Anmeldelink gilt für alle Studierende unabhängig von dem Studiengang!

Termine:
- Kick-Off: 23.10.23 14:00 Uhr Raum 1C-03 Geb. 5.20
- Abgabe erste Version: 07.01.24
- Abgabe finale Arbeit: 17.02.24
- Präsentation: KW 12

Die Themen werden nach dem Kick-Off vergeben (Löserverfahren).

Wenn Sie sich für ein rechtliches Thema entscheiden, wird vorausgesetzt, dass Sie die deutsche Sprache ausreichend beherrschen.

Themen:
1: Literature review on reporting obligations / information security incidents (literature - seminar) / Literaturrecherche zu Informationssicherheitsvorfällen

Folgende Quellen geben einen ersten Überblick ins Thema:
- https://www.bundesgesundheitsministerium.de/elektronische-patientenakte.html

2: Privacy Awareness with electronic patient file / Security und Privacy Awareness bei der elektronischen Patientenakte

4: Ethische Analyse von sogenannten Angriffsstudien im Kontext der Erhebung der Security Awareness im öffentlichen Raum

5: Daten sammeln: die Grenzen der Einwilligung*
Nutzer*innen müssen in die Speicherung und Nutzung ihrer Daten einwilligen. Einwilligung ist ein Akt, der eine Handlung, die eigentlich (moralisch oder gesetzlich) verboten ist, in eine (moralisch oder gesetzlich) zulässige Handlung verwandelt. So wird aus durch Zustimmung aus Körperverletzung etwa Gesundheitsvorsorge (bei einer OP oder Impfung) oder Sport (beim Boxen). Oft erklären Nutzer*innen ihre Einwilligung in die Speicherung und Nutzung von Daten jedoch, ohne die entsprechenden Erklärungen gelesen zu haben. Hier stellen sich mehrere Fragen:
1. (Unter welchen Bedingungen) Ist überhaupt eine wirksame -- d.h. Verbotenes erlaubt machende -- Einwilligung erfolgt?
2. Selbst wenn die Einwilligung wirksam ist: Gibt es vielleicht Daten, die man (aus rechtlichen oder aus moralischen Gründen) trotz wirksamer Einwilligung nicht erheben sollte, auch wenn man es könnte?

Weitere Themen folgen!

ACHTUNG: Das Seminar richtet sich nur an MASTER-Studierende!

Machine Learning on Graphs (Master)

V
2500044, WS 23/24, SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)
Seminar (S) Präsenz

Inhalt

Das Lernen von Graphendarstellungen befasst sich mit dem Erfassen und Verstehen der komplexen Beziehungen und Muster, die in graphisch strukturierten Daten enthalten sind. Der Schwerpunkt liegt auf der Entwicklung von Techniken und Algorithmen zur Extraktion aussagekräftiger Darstellungen aus Graphen, die Aufgaben wie die Klassifizierung von Knoten, die Vorhersage von Links, die Erkennung von Gemeinschaften und die Erstellung von Graphen ermöglichen.

In diesem Seminar werden die grundlegenden Konzepte des Lernens von Graphendarstellungen behandelt, wie z.B. Wissensgraphen, Graphentheorie und Graphenspektraltheorie. Darüber hinaus haben Sie die Möglichkeit, gemeinsam mit Ihren Kommilitonen aktuelle Forschungsarbeiten zu lesen, die Algorithmen des maschinellen Lernens für große Sprachmodelle, die Einbettung von Wissen und die Vorhersage sozialer Attribute umfassen.

Seminar Linked Data and the Semantic Web (Master)

V
2513313, WS 23/24, 3 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen](#)
Seminar (S) Präsenz

Inhalt

Die Linked Data Prinzipien sind eine Reihe von Praktiken für die Datenveröffentlichung im Internet. Linked Data baut auf der Web-Architektur auf und nutzt HTTP für den Datenzugriff und RDF für die Beschreibung von Daten und zielt darauf ab, auf Web-Scale-Datenintegration zu erreißen. Es gibt eine riesige Menge an Daten, die nach diesen Prinzipien veröffentlicht werden: Vor kurzem wurden 4,5 Milliarden Fakten mit Informationen über verschiedene Domänen, einschließlich Musik, Filme, Geograpie, Naturwissenschaften gezählt. Linked Data wird auch verwendet, um Web-Seiten maschinell verständlich zu machen, entsprechende Annotationen werden von den großen Suchmaschinenanbietern berücksichtigt. Im kleineren Maßstab können auch Geräte im Bereich Internet of Things mit Linked Data abgerufen werden, was die einheitliche Verarbeitung von Gerätedaten und Daten aus dem Web einfach macht.

In diesem praktischen Seminar werden die Studierenden prototypische Anwendungen aufbauen und Algorithmen entwickeln, die verknüpfte Daten verwenden, bereitstellen oder analysieren. Diese Anwendungen und Algorithmen können auch bestehende Anwendungen von Datenbanken zu mobilen Apps erweitern.

Mögliche Themensind z.B.:

- Reisesicherheit
- Geodaten
- Nachrichten
- Soziale Medien

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Seminar Real-World Challenges in Data Science und Analytics (Bachelor)

V
2513314, WS 23/24, 3 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen](#)
Seminar / Praktikum (S/P) Präsenz

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023

577
Inhalt
Im Seminar werden verschiedene Real-World Challenges in Data Science und Analytics bearbeitet.

Im Rahmen dieses Seminars bearbeiten Gruppen von Studierenden eine Case Challenge mit bereitgestellten Daten. Hierbei wird der typische Ablauf eines Data Science Projektes abgebildet: Integration von Daten, Analyse dieser, Modellierung der Entscheidungen und Visualisierung der Ergebnisse.

Während des Seminars werden Lösungskonzepte ausgearbeitet, als Softwarelösung umgesetzt und in einer Zwischen- und Endpräsentation vorgestellt. Das Seminar "Real-World Challenges in Data Science and Analytics" richtet sich an Studierende in Master-Studiengängen.

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Seminar Real-World Challenges in Data Science and Analytics (Master)
| 2513315, WS 23/24, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen |
| Seminar / Praktikum (S/P) | Präsenz |

Inhalt
Im Seminar werden verschiedene Real-World Challenges in Data Science und Analytics bearbeitet.

Im Rahmen dieses Seminars bearbeiten Gruppen von Studierenden eine Case Challenge mit bereitgestellten Daten. Hierbei wird der typische Ablauf eines Data Science Projektes abgebildet: Integration von Daten, Analyse dieser, Modellierung der Entscheidungen und Visualisierung der Ergebnisse.

Während des Seminars werden Lösungskonzepte ausgearbeitet, als Softwarelösung umgesetzt und in einer Zwischen- und Endpräsentation vorgestellt. Das Seminar "Real-World Challenges in Data Science and Analytics" richtet sich an Studierende in Master-Studiengängen.

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Seminar Kognitive Automobile und Roboter (Master)
| 2513500, WS 23/24, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen |
| Seminar (S) | Präsenz/Online gemischt |

Inhalt

Die einzelnen Projekte erfordern die Analyse der gestellten Aufgabe, Auswahl geeigneter Verfahren, Spezifikation und theoretische Evaluierung des Lösungsansatzes. Schließlich ist die gewählte Lösung zu dokumentieren und in einem Kurzvortrag vorzustellen.

Lernziele:
- Die Studierenden können Kenntnisse aus der Vorlesung Maschinelles Lernen auf einem ausgewählten Gebiet der aktuellen Forschung im Bereich Robotik oder kognitive Automobile theoretisch anwenden.
- Die Studierenden können ihre Konzepte und Ergebnisse evaluieren, dokumentieren und präsentieren.

Empfehlungen:
Besuch der Vorlesung Maschinelles Lernen

Arbeitsaufwand:
Der Arbeitsaufwand von 3 Leistungspunkten setzt sich zusammen aus der Zeit für Literaturrecherchen und Planung/Spezifikation der selektierten Lösung. Zusätzlich wird ein kurzer Bericht und eine Präsentation der durchgeführten Arbeit erstellt.

Organisatorisches
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.
Teilleistung: Seminar Informatik Master [T-INFO-111205]

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2023</th>
<th>Seminar Bildauswertung und -fusion</th>
<th>2 SWS</th>
<th>Seminar (S) / ☐²</th>
<th>Beyerer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2400039</td>
<td>Research Focus Class: Blockchain & Payment Channel Networks Seminar</td>
<td>2 SWS</td>
<td>Seminar (S) / ☐²</td>
<td>Droll, Hartenstein, Grundmann, Stengele</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400044</td>
<td>Seminar Kryptoanalyse</td>
<td>2 SWS</td>
<td>Seminar (S) / ☐²</td>
<td>Geiselmann, Müller-Quade, Tiepelt</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400084</td>
<td>Seminar: Robot Reinforcement Learning</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Neumann</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400085</td>
<td>Quantum Information Theory</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Müller-Quade, Tiepelt, Schwerdt, Ottenhues, Frübose</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400089</td>
<td>Decentralized Systems: Fundamentals, Modeling, and Applications</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ) / ☒²</td>
<td>Stengele, Hartenstein</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400136</td>
<td>Seminar: Interactive Learning</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Lioutikov</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400137</td>
<td>Embedded Machine Learning</td>
<td>SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Sikal, Pfeiffer, Balaskas, Khdr, Henkel</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400148</td>
<td>Embedded Security and Architectures</td>
<td>SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Hussain, Nassar, Bauer, Khdr, Gonzalez, Henkel, Sikal</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400178</td>
<td>Maschinelles Lernen in den Klima- und Umweltwissenschaften</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Nowack</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400181</td>
<td>Interpretability and Causality in Machine Learning</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Stühmer</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2400285</td>
<td>Seminar: Kritische Fragestellungen der Künstlichen Intelligenz</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Friederich, Nierling, Bareis</td>
</tr>
<tr>
<td>SS 2023</td>
<td>24344</td>
<td>Moderne Methoden der Informationsverarbeitung</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Hanebeck, Reith-Braun</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>3 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Mädche</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540553</td>
<td>User-Adaptive Systems Seminar</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Mädche, Beigl</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2540557</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>3 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400013</td>
<td>Seminar Energieinformatik</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Wagner, Hagenmeyer, Fichtner, Heidrich, Ueckerdt, Bläsius, Göttlicher, Yi</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400047</td>
<td>Seminar Algorithmentechnik</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Ueckerdt, Wilhelm, Feihauer, Katzmann, Bläsius, Jungeblut, Merker, Sauer, Weyand, Göttlicher, Yi, von der Heydt, Zündorf, Goetze</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2400108</td>
<td>Continuous Software Engineering</td>
<td>2 SWS</td>
<td>Seminar (S) / ☒²</td>
<td>Koziolek</td>
</tr>
</tbody>
</table>
WS 23/24 2400126 Post-Quantum Cryptography 2 SWS Seminar (S) / Online Ottenhues, Tiepelt, Müller-Quade, Cojjanovic, Fruböse, Gröll, Beskorovajnov, Benz

WS 23/24 2400129 Seminar Digitale Barrierefreiheit und Assistive Technologien 2 SWS Seminar (S) / Präsenz/Online gemischt Stiefelhagen, Schwarz

WS 23/24 2400137 Embedded Machine Learning Seminar 2 SWS Seminar (S) / Präsenz Sikal, Balaskas, Ahmed, Khdr, Demirdag, Henkel

WS 23/24 2400148 Embedded Security and Architectures SWS Seminar (S) / Präsenz Hussain, Nassar, Bauer, Khdr, Gonzalez, Sikal, Henkel

WS 23/24 2400210 Seminar: Kritische Betrachtung der künstlichen Intelligenz SWS Seminar (S) / Präsenz Friederich, Zhou, Reiser, Torresi, Neubert, Eberhard, Schlöder

WS 23/24 24344 Moderne Methoden der Informationsverarbeitung 2 SWS Seminar (S) / Präsenz Hanebeck, Reith-Braun

WS 23/24 2500125 Engineering Seminar: Human-Centered Systems 2 SWS Seminar (S) / Präsenz Mädche

Prüfungsveranstaltungen
SS 2023 7500013 Moderne Methoden der Informationsverarbeitung Hanebeck
SS 2023 7500108 Seminar: Fortgeschrittene Algorithmen in der Computergrafik Dachsberger
SS 2023 7500284 Decentralized Systems: Fundamentals, Modeling, and Applications Hartenstein
SS 2023 7500285 Seminar: Kritische Fragestellungen der Künstlichen Intelligenz Friederich
SS 2023 7500302 Research Focus Class: Blockchain & Payment Channel Networks - Seminar Hartenstein
SS 2023 7500319 Seminar: Interpretability and Causality in Machine Learning Stühmer
SS 2023 7500335 CES - Seminar: Machine Learning Henkel
WS 23/24 7500021 Moderne Methoden der Informationsverarbeitung Hanebeck

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen
keine

Anmerkungen
Es muss ein Seminar aus der Informatik belegt werden. Dieses kann durch die Informatik-Professoren der KIT-Fakultät für Informatik angeboten werden oder durch die Professoren des AIFB.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar Bildauswertung und -fusion
2400035, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen Seminar (S) Präsenz

Organisatorisches
Termin und Ort der Einführungsveranstaltung werden vor Semesterbeginn auf der Webseite bekannt gegeben. Findet - sofern Präsenz-Veranstaltung erlaubt - im Fraunhofer IOSB statt.

Research Focus Class: Blockchain & Payment Channel Networks Seminar
2400039, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen Seminar (S) Präsenz
Inhalt
Blockchains wie Bitcoin und Ethereum sind dezentrale Systeme, die in der aktuellen Forschung viel Aufmerksamkeit bekommen. Mit ihnen können Bezahlungen und Berechnungen dezentral durchgeführt werden. Basierend auf einer Blockchain können durch Payment Channels zwei Parteien Transaktionen durchführen, ohne aber jede Transaktion auf der Blockchain veröffentlichen zu müssen. Diese Payment Channels können zu Payment Channel Networks vernetzt werden. Solche Payment Channel Networks verändern die Eigenschaften der zugrunde liegenden Blockchains in Bezug auf Skalierbarkeit und Privatsphäre und eröffnen viele spannende Forschungsfragen.

Diese Veranstaltung beginnt mit einer Vorlesung, die Grundlagen im Themenbereich Blockchain und Payment Channel Networks vermittelt. Nach einer Einführung in den Aufbau und die Funktionsweise einer Blockchain werden darauf aufbauende Payment Channels und Payment Channel Networks vorgestellt. Im Folgenden werden verschiedene fortgeschrittene Themen behandelt wie zum Beispiel Watchtower, Routing in Payment Channel Networks und alternative Protokolle. Das in der Vorlesung vermittelte Grundwissen soll im Seminar, dem zweiten Teil der Veranstaltung, durch eigene Forschungsarbeit angewendet werden.

Das Seminar bietet die Möglichkeit ein eigenes Thema im Bereich Blockchain und Payment Channel Networks zu finden, was durch die vorhergehende Vorlesung und direkte Beratung erleichtert wird. Aufgabe der Studierenden ist es, die Literatur zum gewählten Thema aufzuarbeiten und das Thema zu bearbeiten. Die Ergebnisse sollen in einer Ausarbeitung nach wissenschaftlichen Standards dokumentiert und in einem Kolloquium vorgestellt werden.

Seminar: Robot Reinforcement Learning
2400084, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen](#)

Reinforcement Learning is a popular machine learning method where an artificial agent has to learn how to act optimally in an unknown environment by trial and error. In this seminar, we will focus on recent developments in RL for robotics, i.e., RL for continuous state and action spaces. The students can choose from different topics from the area of reinforcement learning (RL) for robotics, including deep reinforcement learning, model-free RL, actor-critic methods, model-based RL, meta learning, hierarchical reinforcement learning and robot applications of RL. Each topic consists of several research papers for which the students have to prepare a presentation as well as a report in form of a scientific research paper.

Qualifikationsziel: Students are able to independently understand a complex research topic, present the content in a concise and understandable way and prepare a scientific report summarizing the topic. Lernziele: Students are able to independently understand a complex research topic, present the content in a concise and understandable way and prepare a scientific report summarizing the topic. Students get a deeper understanding of state-of-the-art RL algorithms and get to know current research challenges.

Empfehlungen:
Der Besuch der Vorlesung „Maschinelles Lernen 1 – Grundverfahren“ ist empfehlenswert.

Arbeitsaufwand/Arbeitsaufwand = 90 h = 3 ECTS

Erfolgskontrolle(n) Die Erfolgskontrolle erfolgt benotet durch Ausarbeiten einer schriftlichen Seminararbeit sowie der Präsentation derselben in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO

Quantum Information Theory
2400085, SS 2023, 2 SWS, [Im Studierendenportal anzeigen](#)

Quantum Information Theory

Decentralized Systems: Fundamentals, Modeling, and Applications
2400089, SS 2023, 4 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)

Decentralized Systems: Fundamentals, Modeling, and Applications

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt
Decentralized Systems (like blockchain-based systems) represent distributed systems that are controlled by multiple parties who make their own independent decisions. In this course, we cover fundamental theoretical aspects as well as up-to-date decentralized systems and connect theory with current practice. We thereby address fault tolerance, security & trust, as well as performance aspects at the example of applications like Bitcoin, Ethereum Smart Contracts, and Matrix.

The lecture covers the following topics:

- Fundamentals
 - Peer-to-Peer Overlay Networks, Sybil and Eclipse Attacks
 - Formalization of decentralized systems, including models for their computation, communication, faults, and timing.
 - Leader election and mutual exclusion in decentralized systems based on different models for node identities and timing.
 - Byzantine consensus in synchronous and asynchronous settings, including Bracha’s fundamental algorithm for reliable broadcast, Practical Byzantine Fault Tolerant consensus, and the fundamental limits.
 - Consistency models and protocols, up to and including Conflict-Free Replicated Data Types.

- Applications
 - Matrix
 - Distributed Ledgers, Blockchain, and Bitcoin
 - Payment Channel Networks
 - Ethereum as a smart contract platform
 - Decentralized storage systems

Competency
Goals:

1. Fundamentals & Modeling
 1. The student is able to recognize and distinguish distributed, federated, and decentralized systems.
 2. The student understands consensus, consistency and coordination within the context of networked and decentralized systems.
 3. The student understands the concept of Sybil attacks.
 4. The student is familiar with decentralized algorithms for leader election and mutual exclusion for execution contexts with various guarantees.
 5. The student understands the formally proven limits of fault tolerance and their underlying assumptions. This includes an understanding of synchronous and asynchronous network models which underpin the respective proofs. The student also understands several models for fault tolerance, notably silent and noisy crash as well as byzantine fault tolerance within the context of decentralized and distributed systems.
 6. The student has a basic understanding of state machine replication.
 7. The student knows various models for and levels of consistency.

2. Applications
 1. The student understands conflict-free replicated data types and their use in decentralized systems like Matrix.
 2. The student has a fundamental understanding of blockchain-based cryptocurrencies (e.g. Bitcoin/Ethereum), Payment Channels, and decentralized communication systems like Matrix.
 3. The student understands trust relations in distributed and decentralized systems and applications.
 4. The student is able to understand how the previously introduced theoretical foundations relate to networked and decentralized systems in practice.
 5. The student understands concepts of decentralized storage systems.
Inhalt
This seminar covers several topics, which are briefly presented here. In this seminar, the students discuss the latest research findings (publications) on the topics below. The findings are summarized in a seminar paper and presented to other participants in the seminar. Your own suggestions for topics are welcome, but not required. The seminar can be completed in German or English.

Machine learning on on-chip systems
Machine learning and on-chip systems form a symbiosis in which each research direction benefits from advances in the other. In this seminar, the students discuss the latest findings in both research areas.

Machine learning (ML) is finding its way more and more into all areas of information systems - from high-level algorithms such as image classification to hardware-related, intelligent CPU management. On-chip systems also benefit from advances in ML. Examples of this are adaptive resource management or the prediction of application behavior. Conversely, however, ML techniques also benefit from advances in on-chip systems. An example of this is the acceleration of training and inference of neural networks in current desktop graphics cards and even smartphone processors.

The students are able to independently research the state of research on a specific topic. This includes finding and analyzing, as well as comparing and evaluating publications. The students can prepare and present the state of research on a specific topic in writing.

Approximate Computing for Efficient Machine Learning
Nowadays, energy efficiency is a first-class design constraint in the ICT sector. Approximate computing emerges as a new design paradigm for generating energy efficient computing systems. There is a large body of resource-hungry applications (eg, image processing and machine learning) that exhibit an intrinsic resilience to errors and produce outputs that are useful and of acceptable quality for the users despite their underlying computations being performed in an approximate manner. By exploiting this inherent error tolerance of such applications, approximate computing trades computational accuracy for savings in other metrics, eg, energy consumption and performance. Machine learning, a very common and top trending workload of both data centers and embedded systems, is a perfect candidate for approximate computing application since, by definition, it delivers approximate results. Performance as well as energy efficiency (especially in the case of embedded systems) are crucial for machine learning applications and thus, approximate computing techniques are widely adopted in machine learning (eg, TPU) to improve its energy profile as well as performance.

Machine Learning methods for DNN compilation and mapping
Deep neural networks have achieved great success in challenging tasks such as image classification and object detection. There is a great demand for deploying these networks in different devices, ranging from cloud servers to embedded devices. Mapping DNNs to these devices is a challenging task since each of these devices has different characteristics in terms of memory organization, compute units, etc. There have been efforts to automate the process of mapping/compiling DNNs to hardware with different characteristics.

In this seminar, we will discuss the efforts that have been done in mapping/compiling DNNs over hardware using machine learning methods.

Organisatorisches
Please register in ILIAS to participate.

Maschinelles Lernen in den Klima- und Umweltwissenschaften
2400178, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Teilleistung: Seminar Informatik Master [T-INFO-111205]

Inhalt

Arbeitsaufwand
Insgesamt 90 h, bestehend aus:
Präsenzzeiten im Seminar und persönliche Treffen mit den Betreuern: 10 h
Literaturrecherche: 30 h
Verfassung der Seminararbeit und Erstellen der Abschlusspräsentation: 50 h

Teilleistung:

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Empfehlungen
Interesse am Themenbereich Klima- und Umwelt wird vorausgesetzt.

Interpretability and Causality in Machine Learning
2400181, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Topic of this Masterseminar are machine learning approaches and deep learning methods for learning of interpretable representations. These methods enable to reconstruct underlying principles from data, for example the reconstruction of generative factors of a dataset.
Starting from these methods for interpretable representations, we will discuss further methods for causal discovery, that enable the inference of causal dependencies in data.
Methods and algorithms covered include for example variational inference, contrastive learning, as well as statistical methods for factor analysis.
There will be a kick-off meeting at the beginning of the semester and 2-3 block seminars towards the end of the term.
Dates for both will still be determined.
The Masterseminar will be held in English language.

Organisatorisches
Informationen zu Prüfungsanmeldung finden Sie im ILIAS-Portal auf dem Schwarzen Brett.

Moderne Methoden der Informationsverarbeitung
24344, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
Durch die stetig zunehmende Verbreitung und Leistungsfähigkeit moderner Informations- und Kommunikationstechnologien stehen uns mit ständig wachsender Geschwindigkeit mehr digitale Informationen und Daten zur Verfügung als je zuvor. Aus diesen gigantischen Datenmengen wichtige Informationen zuverlässig abzuleiten und leicht verständlich darzustellen, ist eine der zentralen Herausforderung der technologischen Moderne.
Ein interdisziplinärer Ansatz zur Bewältigung dieser Aufgabe formiert sich unter dem Begriff Data Science. Der Ansatz vereint Herangehensweisen und Methoden aus den Bereichen Machine Learning, Mathematik, Schätztheorie, Visualisierung und Mustererkennung. Im Rahmen dieses Seminars sollen die in der Data Science verwendeten Konzepte und Methoden, insbesondere im Kontext der Schätztheorie, vorgestellt und an konkreten Anwendungsbeispielen dargestellt werden.

Mehr Informationen, insbesondere zur Einführungsveranstaltung, finden Sie unter dem angegebenen Link zur Veranstaltung.

Engineering Seminar: Human-Centered Systems
2500125, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Formerly known as "Current Topics in Digital Transformation"

User-Adaptive Systems Seminar
2540553, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Präsenz/Online gemischt

Inhalt
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school “KD2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organisatorisches
Termine werden bekannt gegeben

Literaturhinweise
Required literature will be made available in the seminar.
Inhalt
Formerly known as "Information Systems and Service Design Seminar"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group IS I (Prof. Mädche). The research group "Information Systems I" (IS I) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites

No specific prerequisites are required for the seminar.

Literatur

Further literature will be made available in the seminar.

Organisatorisches

Termine werden bekannt gegeben

Seminar Energieinformatik
2400013, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Im Seminar "Energieinformatik" schauen wir uns ausgewählte Fragestellungen an, die aus aktueller Forschung stammen. Diese Fragestellungen betrachten beispielsweise Modellierungen, Algorithmen oder Simulationen im Kontext von Energiesystemen.

Dieses Seminar richtet sich an Master-Studierende der Fächer mit Überschneidungen zur Energieinformatik, zum Beispiel Informatik, Wirtschaftsinformatik, Wirtschaftsmathematik, Wirtschaftsingenieurwesen oder Technische Volkswirtschaftslehre. Bei Fragen zur Anrechenbarkeit wenden Sie sich bitte an Ihren Studiengangsservice.

Idealerverweise besitzen Studierende einen vertieften Einblick in Themenbereiche der Energieinformatik und haben grundlegende Kenntnisse in den Bereichen der Modellierung, Simulation und Algorithmik.

Weitere Beteiligte: Prof. Dr. Veit Hagenmeyer, Prof. Dr. Fichtner

Arbeitsaufwand: 4 LP entspricht ca. 120 Stunden, ca. 21 Std. Besuch des Seminars, ca. 45 Std. Analyse und Bearbeitung des Themas, ca. 27 Std. Vorbereitung und Erstellung der Präsentation, und ca. 27 Std. Schreiben der Ausarbeitung.

Inhalt
Wechselnde, aktuelle Themen, aufbauend auf die Inhalte der zugehörigen Vorlesungen.

Lernziele:
Studierende können,

• eine Literaturrecherche ausgehend von einem vorgegebenen Thema durchführen, die relevante Literatur identifizieren, auffinden, bewerten und schließlich auswerten.
• Präsentationen im Rahmen eines wissenschaftlichen Kontextes ausarbeiten. Hierfür beherrschen die Studenten Techniken, die es ermöglichen, die vorzustellenden Inhalte auditoriumsgerecht aufzuarbeiten und vorzutragen.
• ihre schriftliche Seminararbeit (wie später für weitere wissenschaftliche Arbeiten erforderlich) nach den Anforderungen und Qualitätsstandards des wissenschaftlichen Schreibens anfertigen und dabei Formatvorgaben berücksichtigen, wie sie von wissenschaftlichen Verlagen bei der Veröffentlichung von Dokumenten vorgegeben werden.
• die Ausarbeitungen anderer Teilnehmer kritisch beurteilen und konstruktive Verbesserungsvorschläge erstellen.

Arbeitsaufwand:
Seminar mit 2SWS, 4LP
4 LP entspricht ca. 120 Arbeitsstunden, davon
ca. 10h Seminarbesuch
ca. 40h Literaturrecherche, Beurteilung und Auswertung relevanter Literatur
ca. 30h Vorbereitung der eigenen Präsentation
ca. 30h Verfassen der schriftlichen Ausarbeitung
ca. 10h Lesen zweier Ausarbeitungen und schriftliches Formulieren von konstruktiver Kritik und Verbesserungsvorschlägen

Inhalt
Modernes Software Engineering findet in kurzen Zyklen statt, die schnelles Feedback ermöglichen Technologien wie Build Server und Containerization ermöglichen schnelle, häufige und automatisches Einsetzen der Software im Produktivbetrieb und schnelles Feedback in die Entwicklung (DevOps).

Der Begriff „Continuous Software Engineering“ fasst die Verzahnung der verschiedenen Aktivitäten zusammen.

Im Seminar sollen verschiedene aktuelle Herausforderungen im Bereich Continuous Software Engineering beleuchtet werden, darunter auch das Engineering von Anwendungen mit Machine-Learning-Komponenten.

Literaturhinweise
Inhalt

Machine Learning on On-Chip Systems

DNN Pruning and Quantization
As DNNs become more computationally hungry, their hardware implementation becomes more challenging, since embedded devices have limited resources. DNN compression techniques, such as pruning and quantization, can be applied for efficient utilization of computational resources. While pruning involves removing unimportant elements of a DNN structure (connections, filters, channels etc), quantization decreases the precision for representing DNN-related tensors (weights and activations). Both promise to trade-off some of the application’s accuracy for limited energy consumption and reduced memory footprint. Students will review state-of-the-art research works on hardware-aware DNN pruning and quantization. The findings will be summarized in a seminar report and presented to the other members of the course.

Organisatorisches
Bitte im ILIAS zur Teilnahme anmelden.
Teilleistung: Seminar Informatik Master [T-INFO-111205]

Inhalt
This seminar covers several topics, which are briefly presented here. In this seminar, the students discuss the latest research findings (publications) on the topics below. The findings are summarized in a seminar paper and presented to other participants in the seminar. Your own suggestions for topics are welcome, but not required. The seminar can be completed in German or English.

Dependability for Reconfigurable Architectures
Reliability has become a major concern in the recent nano era. Reliability (the ability of the system to provide the specified services) and security (the ability of the system to protect itself against intentional or accidental intrusion) are the two critical properties of reliable systems. Among the other reliability threats posed by the physical limitations of CMOS technology, radiation-induced soft errors or transient errors are the greatest challenge to be overcome. During this seminar we will examine the state of the art for energy efficient soft error reliability and examine various research solutions, to improve soft error elasticity in an energy efficient way, taking advantage of tradeoffs between performance, performance and reliability. During this seminar, students will also be able to understand hardware security in reconfigurable architectures, learn the ways of inserting Trojans into an FPGA design/IP, and explore various techniques for detecting such stealthy Trojans, such as Bitstream reverse engineering using open source tool flow.

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re)configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality. This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (ie, systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.

In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems. During this seminar, student will dive into the security aspects of resource management, while investigating answers to the following research questions:

- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What’s their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organisatorisches
Please register in ILIAS to participate.

Moderne Methoden der Informationsverarbeitung
24344, WS 23/24, 2 SWS, Sprache: Deutsch, [im Studierendenportal anzeigen]

Inhalt
Durch die stetig zunehmende Verbreitung und Leistungsfähigkeit moderner Informations- und Kommunikationstechnologien stehen uns mit ständig wachsender Geschwindigkeit mehr digitale Informationen und Daten zur Verfügung als je zuvor. Aus diesen gigantischen Datenmengen wichtige Informationen zuverlässig abzuleiten und leicht verständlich darzustellen, ist eine der zentralen Herausforderungen der technologischen Moderne. Ein interdisziplinärer Ansatz zur Bewältigung dieser Aufgabe formiert sich unter dem Begriff „Data Science“. Der Ansatz verleiht Herangehensweisen und Methoden aus den Bereichen Machine Learning, Mathematik, Schätztheorie, Visualisierung und Mustererkennung. Im Rahmen dieses Seminars sollen die in der Data Science verwendeten Konzepte und Methoden, insbesondere im Kontext der Schätztheorie, vorgestellt und an konkreten Anwendungsbeispielen dargestellt werden.
5.248 Teilleistung: Seminar Operations Research A (Master) [T-WIWI-103481]

Verantwortung: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-102736 - Seminarmodul Wirtschaftswissenschaften

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

SS 2023 2550131 Seminar zu Methodischen Grundlagen des Operations Research (B) 2 SWS Seminar (S) / 🗣 Stein, Beck, Schwarze
SS 2023 2550132 Seminar zur Mathematischen Optimierung (MA) 2 SWS Seminar (S) / 🗣 Stein, Beck, Schwarze
SS 2023 2550462 Seminar: Trending Topics in Machine Learning and Optimization (Master) 2 SWS Seminar (S) / 🗣 Rebennack, Warwicker
SS 2023 2550473 Seminar: Energy and Power Systems Optimization (Master) 2 SWS Seminar (S) / 🗣 Rebennack, Warwicker
SS 2023 2550491 Seminar: Modern OR and Innovative Logistics 2 SWS Seminar (S) / 🗣 Nickel, Mitarbeiter
WS 23/24 2550131 Seminar zu Methodischen Grundlagen des Operations Research (B) 2 SWS Seminar (S) / 🗣 Stein, Beck, Schwarze
WS 23/24 2550132 Seminar zur Mathematischen Optimierung (MA) 2 SWS Seminar (S) / 🗣 Stein, Beck, Schwarze
WS 23/24 2550462 Seminar on Trending Topics in Optimization and Machine Learning (Master) 2 SWS Seminar (S) / 🗣 Rebennack, Warwicker
WS 23/24 2550473 Seminar on Energy and Power Systems Optimization (Master) 2 SWS Seminar (S) / 🗣 Rebennack, Warwicker
WS 23/24 2550491 Seminar: Modern OR and Innovative Logistics 2 SWS Seminar (S) / 🗣 Nickel, Mitarbeiter

Prüfungsveranstaltungen

SS 2023 7900026 Seminar Modern OR and Innovative Logistics 7900200_SS2023 Seminar zur Mathematischen Optimierung (SemA) Stein
SS 2023 7900201_SS2023 Seminar zu Methodische Grundlagen des Operations Research (SemB) Stein
SS 2023 7900349 Seminar on Power Systems Optimization (Master) 7900342 SS 2023 Seminar Modern OR and Innovative Logistics Nickel

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.
Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangegangenen Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangegangenen Semesters erforderlich ist.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar zu Methodischen Grundlagen des Operations Research (B)
2550131, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Für eine weitere Vertiefung des wissenschaftlichen Arbeitens wird bei Studierenden aus Masterstudiengängen insbesondere auf die kritische Bearbeitung der Seminarthemen Wert gelegt.
Mit Blick auf die Seminarvorträge werden die Studierenden mit den technischen Grundlagen von Präsentationen und mit den Grundlagen wissenschaftlicher Argumentation vertraut gemacht. Ebenfalls werden rhetorische Fähigkeiten vermittelt.

Anmerkungen:
Bei allen Seminarvorträgen besteht Anwesenheitspflicht.
Nach Möglichkeit sollte mindestens ein Modul des Instituts für Operations Research vor der Teilnahme am Seminar belegt werden.

Erfolgskontrolle:
Das Seminar kann sowohl von Studierenden aus Bachelor- als auch aus Masterstudiengängen besucht werden. Eine Differenzierung erfolgt durch unterschiedliche Bewertungsmaßstäbe bei Seminararbeit und -vortrag.

Arbeitsaufwand:
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literaturhinweise
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbesprechung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preparatory meeting.

Seminar: Modern OR and Innovative Logistics
2550491, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt

Die Seminarthemen werden zu Semesterbeginn in einer Vorbesprechung vergeben. Es besteht Anwesenheitspflicht bei der Vorsbesprechung sowie bei allen Seminarvorträgen.

Prüfung:
Die Gesamtnote setzt sich zusammen aus Seminarausarbeitung, Seminarvortrag und Handout sowie gegebenenfalls weiterem Material wie z.B. programmiertem Code.

Voraussetzungen:
Nach Möglichkeit sollte mindestens ein Modul des Instituts vor der Teilnahme am Seminar belegt werden.

Lernziele:
Der/die Studierende

- illustriert und bewertet aktuelle und klassische Fragestellungen im Bereich der diskreten Optimierung,
- wendet Modelle und Algorithmen der diskreten Optimierung an, auch mit Blick auf ihre Praxistaiglichkeit (insbesondere im Supply Chain und Health Care Management),
- hat den erste Kontakt mit wissenschaftlichem Arbeiten erfolgreich bewältigt, indem er/sie durch die vertiefte Bearbeitung eines wissenschaftlichen Spezialthemas die Grundsätze wissenschaftlichen Recherchierens und Argumentierens erlernt,
- besitzt gute rhetorische Fähigkeiten und setzt Präsentationstechniken gut ein.

Für eine weitere Vertiefung des wissenschaftlichen Arbeitens wird bei Studierenden des Masterstudiengangs insbesondere auf die kritische Bearbeitung der Seminarthemen Wert gelegt.

Organisatorisches
wird auf der Homepage dol.ior.kit.edu bzw. auf dem WiWi-Portal bekannt gegeben

Literaturhinweise
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar zu Methodischen Grundlagen des Operations Research (B)
2550131, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Seminar (S)
Präsenz

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt

Für eine weitere Vertiefung des wissenschaftlichen Arbeitens wird bei Studierenden aus Masterstudiengängen insbesondere auf die kritische Bearbeitung der Seminarthemen Wert gelegt.

Mit Blick auf die Seminarvorträge werden die Studierenden mit den technischen Grundlagen von Präsentationen und mit den Grundlagen wissenschaftlicher Argumentation vertraut gemacht. Ebenfalls werden rhetorische Fähigkeiten vermittelt.

Anmerkungen:
Bei allen Seminarvorträgen besteht Anwesenheitspflicht.

Nach Möglichkeit sollte mindestens ein Modul des Instituts für Operations Research vor der Teilnahme am Seminar belegt werden.

Erfolgskontrolle:

Das Seminar kann sowohl von Studierenden aus Bachelor- als auch aus Masterstudiengängen besucht werden. Eine Differenzierung erfolgt durch unterschiedliche Bewertungsmaßstäbe bei Seminararbeit und -vortrag.

Arbeitsaufwand:
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literaturhinweise
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbereitung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preatory meeting.

Seminar: Modern OR and Innovative Logistics
2550491, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Präsenz/Online gemischt

Inhalt

Organisatorisches
Anmeldezeitraum: 11.09.23 bis 30.09.23 im Wiwi Portal

Literaturhinweise
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.
5.249 Teilleistung: Seminar Statistik A (Master) [T-WIWI-103483]

Verantwortung: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-102736 - Seminarmodul Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilleistung: Seminar Statistik A (Master) [T-WIWI-103483]</td>
<td>SS 2023</td>
<td>SS 2023</td>
</tr>
<tr>
<td></td>
<td>2500004</td>
<td>00010</td>
</tr>
<tr>
<td></td>
<td>Predictive Data Analytics - An Introduction to Statistical Machine Learning</td>
<td>Spezielle fortgeschrittene Themen der Datenanalyse und Statistik</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Seminar (S)</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td></td>
<td>Schienle, Lerch</td>
<td>Schienle, Rüter</td>
</tr>
<tr>
<td></td>
<td>SS 2023</td>
<td>SS 2023</td>
</tr>
<tr>
<td></td>
<td>2521310</td>
<td>7900204</td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Econometrics</td>
<td>Predictive Data Analytics - An Introduction to Statistical Machine Learning</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Seminar (S)</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td></td>
<td>Schienle, Krüger, Buse, Rüter, Pavlova, Bracher</td>
<td>Grothe, Kaplan, Kächele</td>
</tr>
<tr>
<td></td>
<td>SS 2023</td>
<td>SS 2023</td>
</tr>
<tr>
<td></td>
<td>2550561</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spezielle fortgeschrittene Themen der Datenanalyse und Statistik</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar (S)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schienle, Rüter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS 23/24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2521310</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics in Econometrics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar (S)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schienle, Rüter</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punktenschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

- Predictive Data Analytics - An Introduction to Statistical Machine Learning
 2500004, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Organisatorisches
Blockveranstaltung, Termine werden bekannt gegeben
Advanced Topics in Econometrics

Teilung: 2521310, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, [Im Studierendenportal anzeigen](#)

Organisatorisches
Blockveranstaltung, Termine werden bekannt gegeben

Topics in Econometrics

Teilung: 2521310, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Organisatorisches
Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben
5.250 Teilleistung: Seminar Volkswirtschaftslehre A (Master) [T-WIWI-103478]

Verantwortung: Professorenschaft des Fachbereichs Volkswirtschaftslehre
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102736 - Seminarmodul Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Lehrveranstaltungsname</th>
<th>Vorlesungsart</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>250004</td>
<td>Predictive Data Analytics - An Introduction to Statistical Machine Learning</td>
<td>2 SWS Seminar (S)</td>
<td>Schienle, Lerch</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2520367</td>
<td>Strategische Entscheidungen</td>
<td>2 SWS Seminar (S)</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2520536</td>
<td>Wirtschaftstheoretisches Seminar II</td>
<td>2 SWS Seminar (S)</td>
<td>Müller, Ammann, Kretz, Puppe</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2520563</td>
<td>Wirtschaftstheoretisches Seminar III</td>
<td>2 SWS Seminar (S)</td>
<td>Müller, Ammann, Kretz, Puppe</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2521310</td>
<td>Advanced Topics in Econometrics</td>
<td>2 SWS Seminar (S)</td>
<td>Schienle, Krüger, Buse, Rüter, Pavlova, Bracher</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2560282</td>
<td>Wirtschaftspolitisches Seminar</td>
<td>2 SWS Seminar (S)</td>
<td>Ott, Assistenten</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2560552</td>
<td>Shaping AI and Digitalization for Society (Master)</td>
<td>2 SWS Seminar (S)</td>
<td>Zhao</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2560555</td>
<td>Bounded Rationality - Theory and Experiments (Bachelor)</td>
<td>2 SWS Seminar (S)</td>
<td>Szech, Rau</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2560557</td>
<td>Law and Economics (Master)</td>
<td>2 SWS Seminar (S)</td>
<td>Okulicz</td>
</tr>
<tr>
<td>SS 2023</td>
<td>2560560</td>
<td>Co-Opetition: A practical perspective to game theory in the game of business (Bachelor & Master)</td>
<td>2 SWS Seminar (S)</td>
<td>Rosar</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2500024</td>
<td>Wirtschaftstheoretisches Seminar IV (Master)</td>
<td>2 SWS Seminar (S)</td>
<td>Puppe, Kretz, Ammann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2500032</td>
<td>Disruption in the Digital Economy: Markets, Strategies, and Society (Master)</td>
<td>2 SWS Seminar (S)</td>
<td>Rosar</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2500051</td>
<td>Die Herausforderungen der Mobilitätswende im urbanen Bereich - welche Beiträge kann das Serious Game "MobileCityGame" liefern?</td>
<td>2 SWS Seminar (S)</td>
<td>Szimba</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2520367</td>
<td>Strategische Entscheidungen</td>
<td>SWS Seminar (S)</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2520405</td>
<td>Topics in Experimental Economics</td>
<td>SWS Seminar (S)</td>
<td>Reiß, Peters</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2520563</td>
<td>Wirtschaftstheoretisches Seminar III (Master)</td>
<td>2 SWS Seminar (S)</td>
<td>Puppe, Ammann, Kretz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>2 SWS Seminar (S)</td>
<td>Schienle, Rüter</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2560130</td>
<td>Seminar Finanzwissenschaft</td>
<td>2 SWS Seminar (S)</td>
<td>Wigger, Setio, Schmelzer</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2560142</td>
<td>Lying and Cheating in Economic Experiments (Master)</td>
<td>2 SWS Seminar (S)</td>
<td>Rau</td>
</tr>
<tr>
<td>Semester</td>
<td>Lerneinheit</td>
<td>Titel</td>
<td>SWS</td>
<td>Veranstaltungstyp</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2560143</td>
<td>AI and Digitization for Society (Master)</td>
<td>2 SWS</td>
<td>Seminar (S) / 📚</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2560282</td>
<td>Wirtschaftspolitisches Seminar</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗤</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2560400</td>
<td>Seminar in Macroeconomics I</td>
<td>2 SWS</td>
<td>Seminar (S) / 📚</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2560401</td>
<td>Seminar in Macroeconomics II</td>
<td>2 SWS</td>
<td>Seminar (S) / 📚</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2561208</td>
<td>Ausgewählte Aspekte der europäischen Verkehrsplanung und -modellierung</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lerneinheit</th>
<th>Titel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900051</td>
<td>Seminar in Wirtschaftspolitik</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900059</td>
<td>Bounded Rationality - Theory and Experiments (Master)</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7901311</td>
<td>Shaping AI and Digitization for Society (Master)</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790204</td>
<td>Predictive Data Analytics - An Introduction to Statistical Machine Learning</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790205</td>
<td>Law and Economics (Master)</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790222</td>
<td>Co-Opition (Bachelor & Master)</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790226</td>
<td>What's up Inflation? Recent Advances in Theory and Empirics</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790228</td>
<td>Digitalization, AI, and the Future Economy</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790260</td>
<td>Seminar: Capital in the Twenty-First Century</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790266</td>
<td>Seminar: Market Design</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790282</td>
<td>Digital IT-Solutions and Services Transforming the Field of Public Transportation</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>790285</td>
<td>Strategische Entscheidungen (Master)</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7910003</td>
<td>Seminar Themen der Angewandte Mikroökonomik</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7910005</td>
<td>Seminar on Topics in Experimental Economics</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>79sefi2</td>
<td>Seminar Finanzwissenschaft A (Master)</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2560212</td>
<td>Seminar in Wirtschaftspolitik</td>
<td>2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Predictive Data Analytics - An Introduction to Statistical Machine Learning

2500004, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen
Wirtschaftstheoretisches Seminar III
2520563, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches
Blockveranstaltung. Termine werden bekannt gegeben

Inhalt
Für Studierende der Masterstudiengänge Wirtschaftsingenieurwesen, Informationswirtschaft, Technische Volkswirtschaftslehre oder Wirtschaftsmathematik.

Die Vergabe der Seminarplätze erfolgt unter Berücksichtigung von Präferenzen und Eignung für die Themen. Dabei spielen u.a. fachliche und praktische Erfahrungen im Gebiet der Verhaltensökonomie sowie Englischkenntnisse eine Rolle.

Die Studierenden erstellen eine Seminararbeit von 8–10 Seiten.

Die Endnote setzt sich aus der Qualität der Seminar-Präsentation (40%), der Seminararbeit (40%) sowie 2 Abstracts unterschiedlicher Länge (20%) zusammen. Studierende können durch aktive Teilnahme an der Diskussion einen Notenbonus erhalten.

Empfehlung: Kenntnisse der experimentellen Wirtschaftsforschung oder Verhaltensökonomie, sowie der Mikroökonomie und Spieltheorie sind hilfreich.

Advanced Topics in Econometrics
2521310, SS 2023, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Organisatorisches
TBA

Shaping AI and Digitization for Society (Master)
2560552, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches
Blockveranstaltung. Termine werden bekannt gegeben

Inhalt
Für Studierende der Masterstudiengänge Wirtschaftsingenieurwesen, Informationswirtschaft, Technische Volkswirtschaftslehre oder Wirtschaftsmathematik.

Die Vergabe der Seminarplätze erfolgt unter Berücksichtigung von Präferenzen und Eignung für die Themen. Dabei spielen u.a. fachliche und praktische Erfahrungen im Gebiet der Verhaltensökonomie sowie Englischkenntnisse eine Rolle.

Die Studierenden erstellen eine Seminararbeit von 8–10 Seiten.

Die Endnote setzt sich aus der Qualität der Seminar-Präsentation (40%) und der Seminararbeit + individueller Abstract (60%) zusammen. Studierende können durch aktive Teilnahme an der Diskussion einen Notenbonus erhalten.

Empfehlung: Kenntnisse der experimentellen Wirtschaftsforschung oder Verhaltensökonomie, sowie der Mikroökonomie und Spieltheorie sind hilfreich.

Bounded Rationality - Theory and Experiments (Bachelor)
2560555, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Organisatorisches
Blockveranstaltung:
Introductory Meeting April 19, 11.00 - 12.00 Uhr (online)
Seminar Presentations June 7, 2023, 14.00 - 18.30 Uhr (in person)

Inhalt
Für Studierende der Bachelorstudiengänge Wirtschaftsingenieurwesen, Informationswirtschaft, Technische Volkswirtschaftslehre oder Wirtschaftsmathematik.

Die Vergabe der Seminarplätze erfolgt unter Berücksichtigung von Präferenzen und Eignung für die Themen. Dabei spielen u.a. fachliche und praktische Erfahrungen im Gebiet der Verhaltensökonomie sowie Englischkenntnisse eine Rolle.

Die Studierenden erstellen eine Seminararbeit von 8–10 Seiten.

Die Endnote setzt sich aus der Qualität der Seminar-Präsentation (40%) und der Seminararbeit + individueller Abstract (60%) zusammen. Studierende können durch aktive Teilnahme an der Diskussion einen Notenbonus erhalten.

Empfehlung: Kenntnisse der experimentellen Wirtschaftsforschung oder Verhaltensökonomie, sowie der Mikroökonomie und Spieltheorie sind hilfreich.

Introductory Blockveranstaltung:
Organisatorisches
Introductory Meeting April 18 at 2pm (in person)
Seminar Presentations June 5 (in person)
Inhalt
Für Studierende der Masterstudiengänge Wirtschaftsingenieurwesen, Informationswirtschaft, Technische Volkswirtschaftslehre oder Wirtschaftsmathematik.

Die Vergabe der Seminarplätze erfolgt unter Berücksichtigung von Präferenzen und Eignung für die Themen. Dabei spielen u.a. fachliche und praktische Erfahrungen im Gebiet der Verhaltensökonomie sowie Englischkenntnisse eine Rolle.

Die Studierenden erstellen eine Seminararbeit von 8–10 Seiten.

Die Endnote setzt sich aus der Qualität der Seminar-Präsentation (40%), der Seminararbeit (40%) sowie 2 Abstracts unterschiedlicher Länge (20%) zusammen. Studierende können durch aktive Teilnahme an der Diskussion einen Notenbonus erhalten.

Empfehlung: Kenntnisse der experimentellen Wirtschaftsforschung oder Verhaltensökonomie, sowie der Mikroökonomie und Spieltheorie sind hilfreich.

Organisatorisches
Blockveranstaltung
Kick-off 19.04.2023, 10.45 - 11.30 (online)
Presentations 26.05.2023, 14.00 - 18.30 Uhr

Organisatorisches
Blockseminar:
Kick-off 19.04.2023
Präsentation 22.05.2023, 14.00 - 18.30 Uhr, Geb. 10.50, Raum 604
Inhalt
Für Studierende der Masterstudiengänge Wirtschaftsingenieurwesen, Informationswirtschaft, Technische Volkswirtschaftslehre, Wirtschaftsmathematik oder Digital Economics.
Es sind Seminararbeiten im Umfang von 8-10 Seiten einzureichen.
Empfehlung: Kenntnisse auf dem Gebiet der Mikroökonomie und der Spieltheorie können hilfreich sein.

Organisatorisches
Application is possible via https://portal.wiwi.kit.edu/Seminare
Kick-off: 27.10.2023, 14.00 - 15.30 Uhr, Geb. 01.85, KD2Lab (1. OG über Außentrepp), Teamraum
Präsentationen: 15.01.2024 14.00 - 18.00 Uhr, Geb. 01.85, KD2Lab (1. OG über Außentrepp), Teamraum

Die Herausforderungen der Mobilitätswende im urbanen Bereich - welche Beiträge kann das Serious Game "MobileCityGame" liefern?

Inhalt
Das Seminar in Kooperation mit dem Fraunhofer Isi basiert auf dem neuartigen Tool, "Mobile City Game".

Organisatorisches
(im WS2021/22 online; sonst Blockseminar; Blücherstraße 17); Termine werden separat bekannt gegeben

Literaturhinweise
Als Pflichtliteratur dienen ausgewählte Paper.

Wirtschaftstheoretisches Seminar III (Master)

Organisatorisches
Termin wird noch bekannt gegeben

Topics in Econometrics

Organisatorisches
Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben

Inhalt
Für Studierende der Masterstudiengänge Wirtschaftsingenieurwesen, Informationswirtschaft, Technische Volkswirtschaftslehre oder Wirtschaftsmathematik.
Empfehlung: Kenntnisse der experimentellen Wirtschaftsforschung oder Verhaltensökonomie, sowie der Mikroökonomie und Spieltheorie sind hilfreich.

Organisatorisches
Application is possible via https://portal.wiwi.kit.edu/Seminare
Kick-off: 24.10.23, 14.00 - 15.30 h, Geb. 01.85, KD2Lab (1. OG über Außentrepp), Teamraum
Präsentationen: 08.01.2024, 14.00 - 18.00 h, Geb. 01.85, KD2Lab (1. OG über Außentrepp), Teamraum
Inhalt
Für Studierende der Masterstudiengänge Wirtschaftsingenieurwesen, Informationswirtschaft, Technische Volkswirtschaftslehre oder Wirtschaftsmathematik.
Die Studierenden erstellen eine Seminararbeit von 8–10 Seiten.
Empfehlung: Kenntnisse der experimentellen Wirtschaftsforschung oder Verhaltensökonomie, sowie der Mikroökonomie und Spieltheorie sind hilfreich.

Organisatorisches
Application is possible via https://portal.wiwi.kit.edu/Seminare
Kick-off: 25.10.2023, 11.00 - 12.00 (online)
Presentations: 12.01.2024, 14.00 - 18.00, Geb. 01.85, KD2Lab (1. OG über Außentreppe), Teamraum
Teilleistung: Seminar: Handels- und Gesellschaftsrecht in der IT-Branche [T-INFO-111405]

Verantwortung: Dr. Georg Nolte
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101216 - Recht der Wirtschaftsunternehmen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2400165</td>
<td>Seminar Handels- und Gesellschaftsrecht in der IT-Branche</td>
<td>2 SWS</td>
<td>Nolte</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7500182</td>
<td>Seminar aus Rechtswissenschaften II</td>
<td>Boehm, Raabe</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500310</td>
<td>Seminar: Handels- und Gesellschaftsrecht in der IT-Branche</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit, durch ihre Präsentation sowie die aktive Beteiligung am Seminar als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen

Keine

Empfehlungen

Besuch der Vorlesung "Handels- und Gesellschaftsrecht" sollte erfolgt sein.

Anmerkungen

Die Teilnehmerzahl ist begrenzt. Plätze werden bevorzugt an Studierende des Studiengangs Wirtschaftsinformatik vergeben.
5.252 Teilleistung: Seminar: Informatik TECO [T-INFO-110808]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-105328 - Seminar: Informatik TECO

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Unregelmäßig

Version
2

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen
Keine.
5.253 Teilleistung: Seminar: IT-Sicherheitsrecht [T-INFO-111404]

Verantwortung: Martin Schallbruch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101217 - Öffentliches Wirtschaftsrecht

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>24389</th>
<th>Seminar "IT-Sicherheitsrecht"</th>
<th>2 SWS</th>
<th>Seminar (S)</th>
<th>Schallbruch</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>7500249</th>
<th>Seminar: IT-Sicherheitsrecht</th>
<th>Zufall</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit, durch ihre Präsentation sowie die aktive Beteiligung am Seminar als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Gewichtung: 70 % Seminararbeit, 20 % Vortrag, 10 % Diskussion und mündliche Mitarbeit

Voraussetzungen
Keine.

Empfehlungen
Grundkenntnisse im Datenschutzrecht und – je nach gewähltem Seminarthema – im öffentlichen Recht oder Zivilrecht sollten vorhanden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar "IT-Sicherheitsrecht"
24389, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Die Sicherheit der Informationstechnik ist zu einer Schlüsselfrage der Gestaltung der Informationsgesellschaft geworden. Die Abhängigkeit der Wirtschaft und des Staates vom Funktionieren von IT-Systemen und Internet, die zunehmende Komplexität der IT-Systeme, die Verteilung der Verantwortung auf unterschiedliche Beteiligte und die steigende Zahl von Cyberangriffen durch verschiedenste Akteure erschweren die IT-Sicherheit.

Das Seminar soll ausgehend von den Schutzzielen des IT-Sicherheitsrechts und der Cybersicherheitslage einen Überblick über die unterschiedlichen Materien des IT-Sicherheitsrechts geben und seine Weiterentwicklung, auch vor dem Hintergrund des vom Bundesverfassungsgericht entwickelten Rechts auf den Schutz der Integrität und Vertraulichkeit informationstechnischer Systeme, diskutieren.

Der Arbeitsaufwand beträgt 90 h für 3 Credits.

Grundkenntnisse im Datenschutzrecht und – je nach gewähltem Seminarthema – im öffentlichen Recht oder Zivilrecht sollten vorhanden sein.

Die Verteilung der Themen erfolgt rechtzeitig vor Semesterbeginn. Die Teilnahme an der Vorbesprechung ist verpflichtend.

Die Erfolgskontrolle erfolgt durch Ausarbeitungen einer schriftlichen Seminararbeit sowie der Präsentation derselben als Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Die Seminararbeiten sind bis zum (Datum wird noch festgelegt. Stand per 2.10.2023) in elektronischer Form beim Lehrbeauftragten abzugeben. Bitte beachten Sie die Formvorgaben im Leitfaden zur Erstellung juristischer Seminararbeiten (www.zar.kit.edu/497.php).

Organisatorisches
Mittwoch, 25.10.2023 v. 16-18 Uhr:
Vorbesprechung Seminar IT-Sicherheitsrecht Schallbruch im Seminarraum Nr. 313, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe.

Herr Schallbruch wird in der o.g. Vorbesprechung am 25.10. mit den Seminarteilnehmern abklären ob er das Seminar das Seminar am 26.01./27.01.
oder am
09.02./10.02.2024 hält (Abklärung wegen Fasching).
5.254 Teilleistung: Seminarpraktikum Digital Service Systems [T-WIWI-106563]

Verantwortung: Prof. Dr. Alexander Mädche
Prof. Dr. Gerhard Satzger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-102808 - Digital Service Systems in Industry

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Unregelmäßig

Version
1

Lehrveranstaltungen

| SS 2023 | 2540554 | Practical Seminar: Information Systems & Service Design (Master) | 3 SWS | Vorlesung (V) / Online gemischt | Mädche |
| WS 23/24 | 2540554 | Practical Seminar: Information Systems & Service Design | 3 SWS | Vorlesung (V) / Online gemischt | Mädche |

Prüfungsveranstaltungen

SS 2023	7900293	Service Design Thinking	Satzger
SS 2023	7900301	Seminarpraktikum Service Innovation	Satzger
SS 2023	7900314	Seminarpraktikum Digital Service Systems	Satzger
WS 23/24	7900341	Seminarpraktikum: Information Systems and Service Design	Mädche

Legende: Online, Online gemischt, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungbeschreibung.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Teilleistung wurde im Sommersemester 2017 umbenannt in "Seminarpraktikum Digital Service Systems".
Das aktuelle Angebot der Seminarpraktikathemen wird auf der Webseite www.ksri.kit.edu bekannt gegeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Practical Seminar: Information Systems & Service Design (Master)
2540554, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

In this practical seminar, students get an individual assignment and develop a running software prototype. Beside the software prototype, the students also deliver a written documentation.

Prerequisites

Profound skills in software development are required

Literature

Further literature will be made available in the seminar.
Practical Seminar: Information Systems & Service Design
2540554, WS 23/24, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V)
Präsenz/Online gemischt
Verantwortung:	Prof. Dr. Christof Weinhardt
Einrichtung:	KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:	M-WIWI-103118 - Data Science: Data-Driven User Modeling

Erfolgskontrolle(n)

The assessment consists of practical work in the field of advanced analytics, a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Voraussetzungen

Keine

Empfehlungen

At least one module offered by the institute should have been chosen before attending this seminar.

Anmerkungen

Die Veranstaltung wird in englischer Sprache gehalten. Die Veranstaltung wird nicht regelmäßig angeboten.
5.256 Teilleistung: Seminarpraktikum: Data-Driven Information Systems [T-WIWI-106207]

Verantwortung:
- Prof. Dr. Alexander Mädche
- Prof. Dr. Gerhard Satzger
- Prof. Dr. Thomas Setzer
- Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-103117 - Data Science: Data-Driven Information Systems

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 7900165</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Voraussetzungen

Keine

Empfehlungen

At least one module offered by the institute should have been chosen before attending this seminar.

Anmerkungen

Die Veranstaltung wird in englischer Sprache gehalten. Sie wird nicht regelmäßig angeboten.

Verantwortung: Prof. Dr. Alexander Mädche
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-102806 - Service Innovation, Design & Engineering
M-WIWI-104068 - Information Systems in Organizations
M-WIWI-104080 - Designing Interactive Information Systems

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Teilleistungsart: Prüfungsleistung anderer Art

Lehrveranstaltungen
SS 2023 2540554 Practical Seminar: Information Systems & Service Design (Master) 3 SWS Vorlesung (V) Mädche

Prüfungsveranstaltungen
WS 23/24 7900341 Seminarpraktikum: Information Systems und Service Design Mädche

Erfolgskontrolle(n)
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Voraussetzungen
Keine.

Empfehlungen
Der Besuch der Veranstaltung „Digital Service Design“ wird empfohlen, aber nicht vorausgesetzt.

Anmerkungen
Die Veranstaltung wird in englischer Sprache gehalten. In Wintersemestern wird die Veranstaltung nur als Seminar angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Practical Seminar: Information Systems & Service Design (Master)
2540554, SS 2023, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
In this practical seminar, students get an individual assignment and develop a running software prototype. Beside the software prototype, the students also deliver a written documentation.

Prerequisites
Profound skills in software development are required

Literature
Further literature will be made available in the seminar.
5.258 Teilleistung: Service Design Thinking [T-WIWI-102849]

Verantwortung: Prof. Dr. Gerhard Satzger
Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101503 - Service Design Thinking

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Service Design Thinking</td>
<td>12</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kurs</th>
<th>ECTS</th>
<th>Lehrveranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2595600</td>
<td>Service Design Thinking</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Satzger, Feldmann</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2595600</td>
<td>Service Design Thinking</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Satzger, Feldmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kurs</th>
<th>Lehrveranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900293</td>
<td>Service Design Thinking</td>
<td>Satzger</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>7900301</td>
<td>Seminarpraktikum Service Innovation</td>
<td>Satzger</td>
<td></td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Fallstudie, Workshops, Abschlusspräsentation).

Voraussetzungen
Keine

Empfehlungen
Diese Veranstaltung findet in englischer Sprache statt – Teilnehmer sollten sicher in Schrift und Sprache sein. Unsere bisherigen Teilnehmer fanden es empfehlenswert, das Modul zu Beginn des Master-Programms zu belegen.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Service Design Thinking
2595600, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
Das Service Design Thinking Programm ist weit mehr als ein normaler Kurs. Im Rahmen dieses Programms vermitteln wir das Wissen und die Fähigkeiten, die echte Innovatoren benötigen. In diesem Zusammenhang bilden wir unsere Teilnehmer im Human-zentrischen Innovationsansatz „Design Thinking“ aus. Darüber hinaus arbeiten die Teilnehmer in kleinen internationalen und interdisziplinären Teams an echten Innovationsherausforderungen aus der Praxis.

Die Teams werden dabei jeweils aus Studierenden des KIT und einer weiteren Universität aus dem globalen SUGAR Netzwerk zusammengestellt. Hierzu gehören beispielsweise, die Universität St. Gallen, das Trinity College in Dublin oder die University of Science and Technology of China. Das Programm sieht Besuche internationaler Events des SUGAR Netzwerks vor, die in der Regel an Orten durchgeführt werden, die für Ihren hohen Innovationsgrad bekannt sind. Bei diesen Events präsentieren unsere Teilnehmer ihre (Zwischen-)Ergebnisse vor einem großen Publikum, bestehend aus Vertretern der Partnerunternehmen sowie der beteiligten Universitäten.

Lerninhalte:
- ein umfassendes Verständnis der weltweit anerkannten Innovationsmethodik "Design Thinking" wie sie an der Stanford University gelehrt wird
- neue, kreative Lösungen durch umfassendes Beobachten seiner/ihrer Umwelt und insbesondere des betreffenden Service-Endnutzers zu entwickeln
- frühzeitig und eigenständig Prototypen der gesammelten Ideen zu entwickeln, diese zu testen und iterativ zu verbessern und damit die vom Partnerunternehmen definierter Themenvorstellung zu lösen
- in einem interdisziplinären und internationalen Umfeld zu kommunizieren sowie sich zu präsentieren und zu vernetzen
- die erlernten Methodik im Rahmen eines echten Innovationsprojekts anzuwenden, das von einem Praxispartner gestellt wird.

Kursphasen (jeweils ca. 4 Wochen):
- **Paper Bike Challenge:**
- **Design Space Exploration:**
 Erkundung des Problemraums durch Beobachtung von Kunden/Menschen, die mit dem Problem in Zusammenhang stehen. In dieser Phase bilden sich die Studierenden zu „Experten“ aus.
- **Critical Function Prototype:**
- **Dark Horse Prototype:**
- **Funky Prototype:**
 Integration der einzelnen erfolgreich getesteten Funktionen aus der Critical Function und Dark Horse Phase zu Lösungskonzepten. Diese werden ebenso getestet und weiterentwickelt.
- **Functional Prototype:**
 Selektion erfolgreicher Funky Prototypen und Entwicklung dieser in Richtung hoch aufgelöster Prototypen. Der endgültige Lösungsansatz für das Projekt wird detailliert niedergelegt und Feedback dazu eingeholt.
- **Final Prototype:**
 Umsetzung des erfolgreichsten Functional Prototypen für die Abschlusspräsentation.

Literaturhinweise:
- Design Thinking: Das Handbuch; Falk Uebernickel, Walter Brenner, Therese Naef, Britta Pukall, Bernhard Schindlholzer
- The Design Thinking Playbook: Mindful Digital Transformation of Teams, Products, Services, Businesses and Ecosystems; Michael Lewrick, Patrick Link, Larry Leifer
- The Design Thinking Toolbox: A Guide to Mastering the Most Popular and Valuable Innovation Methods; Michael Lewrick, Patrick Link, Larry Leifer
- Frame Innovation: Create New Thinking by Design (Design Thinking, Design Theory); Kees Dorst

Service Design Thinking
2595600, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Die Teams werden dabei jeweils aus Studierenden des KIT und einer weiteren Universität aus dem globalen SUGAR Netzwerk zusammengestellt. Hierzu gehören beispielsweise, die Universität St. Gallen, das Trinity College in Dublin oder die University of Science and Technology of China. Das Programm sieht Besuche internationaler Events des SUGAR Netzwerks vor, die in der Regel an Orten durchgeführt werden, die für Ihren hohen Innovationsgrad bekannt sind. Bei diesen Events präsentieren unsere Teilnehmer ihre (Zwischen-)Ergebnisse vor einem großen Publikum, bestehend aus Vertretern der Partnerunternehmen sowie der beteiligten Universitäten.

Lerninhalte:

- ein umfassendes Verständnis der weltweit anerkannten Innovationsmethodik "Design Thinking" wie sie an der Stanford University gelehrt wird
- neue, kreative Lösungen durch umfassendes Beobachten seiner/ihrer Umwelt und insbesondere des betreffenden Service-Endnutzers zu entwickeln
- frühzeitige und eigenständig Prototypen der gesammelten Ideen zu entwickeln, diese zu testen und iterativ zu verbessern und damit die vom Partnerunternehmen definierte Themenstellung zu lösen
- in einem interdisziplinären und internationalen Umfeld zu kommunizieren sowie sich zu präsentieren und zu vernetzen
- die erlernte Methodik im Rahmen eines echten Innovationsprojekts anzuwenden, das von einem Praxispartner gestellt wird.

Kursphasen (jeweils ca. 4 Wochen):

- **Paper Bike Challenge:**
- **Design Space Exploration:**
 Erkundung des Problemaums durch Beobachtung von Kunden / Menschen, die mit dem Problem in Zusammenhang stehen. In dieser Phase bilden sich die Studierenden zu "Experten" aus.
- **Critical Function Prototype:**
- **Dark Horse Prototype:**
- **Funky Prototype:**
 Integration der einzelnen erfolgreich getesteten Funktionen aus der Critical Function und Dark Horse Phase zu Lösungskonzepten. Diese werden ebenso getestet und weiterentwickelt.
- **Functional Prototype:**
 Selektion erfolgreicher Funky Prototypen und Entwicklung dieser in Richtung hoch aufgelöster Prototypen. Der endgültige Lösungsansatz für das Projekt wird detailliert niedergelegt und Feedback dazu eingeholt.
- **Final Prototype:**
 Umsetzung des erfolgreichsten Functional Prototypen für die Abschlusspräsentation.

Organisatorisches
Bei der Vorlesung handelt es sich um eine zweisemestrische Veranstaltung, die jährlich im September startet.

Literaturhinweise

- Design Thinking: Das Handbuch; Falk Uebernickel, Walter Brenner, Therese Naef, Britta Pukall, Bernhard Schindlholzer
- The Design Thinking Playbook: Mindful Digital Transformation of Teams, Products, Services, Businesses and Ecosystems; Michael Lewrick, Patrick Link, Larry Leifer
- The Design Thinking Toolbox: A Guide to Mastering the Most Popular and Valuable Innovation Methods; Michael Lewrick, Patrick Link, Larry Leifer
- Frame Innovation: Create New Thinking by Design (Design Thinking, Design Theory); Kees Dorst
5.259 Teilleistung: Service Innovation [T-WIWI-102641]

Verantwortung: Prof. Dr. Gerhard Satzger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-102808 - Digital Service Systems in Industry

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

SS 2023 2595468 Digital Services: Innovation & Business Models 1.5 SWS Vorlesung (V) Satzger, Benz, Schüritz

Prüfungsveranstaltungen

SS 2023 7900113 Digital Services: Innovation & Business Models (HK - 15.08.2023) Satzger

SS 2023 7900249 Service Innovation - oral exam Satzger

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Hinweis: Ab dem Sommersemester 2023 wird die Veranstaltung Service Innovation mit einem überarbeiteten Lernkonzept und -inhalten angeboten. Dabei liegt der Fokus auf der engeren Verzahnung der Themenfelder Service Innovation und Digitalisierung. Derzeitige grundlegende Inhalte (z.B. zu Herausforderungen von Service Innovation oder human-zentrische Innovationsmethoden) bleiben erhalten. Die Erfolgskontrolle erfolgt in Form einer 60min. schriftlichen Prüfung (Klausur). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Digital Services: Innovation & Business Models
2595468, SS 2023, 1.5 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Inhalt
Leveraging data and digital technologies for business success is a key challenge for organizations as they need to

- get aware of the newly arising potential
- develop suitable digital services that are user-centric and individualized
- "servitize" their offering portfolio and business model
- transform their organizations

This course will equip students with concepts and methods to tackle this challenge along two dimensions: First, we will cover innovation as a concept as well as apply contemporary innovation methods (like Design Thinking, Open Innovation) to the services space. Second, we deal with leveraging innovation to develop new business models (including multi-partner concepts in platforms or ecosystems), to servitize existing business models (e.g., via product-service-systems), and to accordingly transform the organization.

The course links innovation and business model theories with practical examples and exercises. Students are asked to actively engage in the discussion.
Organisatorisches
The course will be offered in the form of a flipped classroom concept starting in summer semester 2023. The lecture will be recorded in advance and made available online. During the “in presence” sessions, the contents of the lecture will be applied and expanded on.

Literaturhinweise
5.260 Teilleistung: Sicherheit [T-INFO-101371]

Verantwortung: Prof. Dr. Dennis Hofheinz
Prof. Dr. Jörn Müller-Quade
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101207 - Netz sicherheit - Theorie und Praxis

Prüfungsveranstaltungen		
SS 2023	7524941	Sicherheit

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 90 Minuten.

Voraussetzungen
Keine.

Anmerkungen
Diese Lehrveranstaltung ist bereits ausgelaufen.

Bis Ende des SS 2023 werden die Prüfungen (inkl. Wiederholungsversuche) angeboten.

Die Stammmodule Kognitive Systeme und Sicherheit werden ab WS 2022 / 2023 nicht mehr angeboten. Übergangsweise können alle Studierenden der SPO 15 die neuen Pflichtmodule Grundlagen der künstlichen Intelligenz und Informationssicherheit als Stammmodule (mit 6 statt 5 ECTS) belegen. Um die Pflichtmodule als Stammmodule anzuerkennen, müssen Studierende 1 bis 2 Kapitel mehr belegen und bekommen voraussichtlich 1 bis 2 Aufgaben mehr in der Klausur.
5.261 Teilleistung: Signale und Codes [T-INFO-101360]

Verantwortung: Prof. Dr. Jörn Müller-Quade
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101198 - Fortgeschrittene Themen der Kryptographie

Lehrveranstaltungen

| WS 23/24 | 24137 | Signale und Codes | 2 SWS | Vorlesung (V) / 🗣 | Geiselmann, Müller-Quade |

Prüfungsveranstaltungen

| SS 2023 | 7500179 | Signale und Codes | Geiselmann, Müller-Quade |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗡 Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 30min nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Empfehlungen
Grundlegende Kenntnisse der linearen Algebra sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Signale und Codes
24137, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
In der Vorlesung werden Schranken von Codes (Hamming, Gilbert-Varshamov, Singleton) vorgestellt. Neben der Codierung und Decodierung von klassischen algebraischen Codes (lineare-, zyklische-, Reed Solomon-, Goppa- und Reed Muller-Codes) werden auch verkettete Codes behandelt.

Literaturhinweise
Todd Moon, 'Error Correction Coding', Wiley, 2005
Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weiterführende Literatur
Wird in der Vorlesung bekannt gegeben.
5.262 Teilleistung: Smart Energy Infrastructure [T-WIWI-107464]

Verantwortung:
Dr. Armin Ardone
Dr. Dr. Andrej Marko Pustisek

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101452 - Energiewirtschaft und Technologie

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Prüfung (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2581023</td>
<td>(Smart) Energy Infrastructure</td>
<td>4</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Ardone, Pustisek</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfung (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981023</td>
<td>Smart Energy Infrastructure</td>
<td></td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900178</td>
<td>Smart Energy Infrastructure NEU</td>
<td></td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7981023</td>
<td>Smart Energy Infrastructure</td>
<td></td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

(Smart) Energy Infrastructure
2581023, WS 23/24, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V): Präsenz

Inhalt
The lecture provides a techno-economic overview of different infrastructures of the energy system and their importance regarding the future energy system ("Energiewende") – in particular

- for electricity:
 - the supply side (e.g. power plants)
 - the demand side (e.g. load structures of appliances, flexibilities) as well as
 - transport infrastructures (electricity grids)

- for fuel transportation:
 - pipeline infrastructures (focus on natural gas)
 - shipping of LNG
 - crude oil and oil product transportation
 - hydrogen transportation
 - comparison of potential energy carriers for global trade of renewable energy (e.g., hydrogen and its derivates, e-fuels, reactive metals)

- storage systems (e.g. batteries)

Additionally, the lecture provides a toolbox for energy system analysis such as an overview and classification of energy systems modelling approaches as well as the usage of scenario techniques for energy systems analysis.

The lecture also provides practical examples for the relevant methods presented.

Organisatorisches
Blockveranstaltung
5.263 Teilleistung: Smart Grid Applications [T-WIWI-107504]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4,5</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>siehe Anmerkungen</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101446 - Market Engineering
- M-WIWI-103720 - eEnergy: Markets, Services and Systems

Erfolgskontrolle(n)
Die Prüfung wird letztmals im Wintersemester 2023/2024 angeboten.
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPOs).
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Veranstaltung wird ab dem kommenden Wintersemester 2023/24 nicht mehr angeboten. Es besteht lediglich die Möglichkeit, an der Hauptklausur (Erstschreiber) und Nachklausur (Wiederholer) teilzunehmen.
Teilleistung: Social Choice Theory [T-WIWI-102859]

Verantwortung: Prof. Dr. Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101500 - Microeconomic Theory
M-WIWI-101504 - Collective Decision Making

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4,5

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

| SS 2023 | 2520537 | Social Choice Theory | 2 SWS | Vorlesung (V) / 🗣 | Puppe |
| SS 2023 | 2520539 | Übung zu Social Choice Theory | 1 SWS | Übung (Ü) / 🗣 | Müller, Puppe |

Prüfungsveranstaltungen

| SS 2023 | 7900039 | Social Choice Theory | Puppe |
| SS 2023 | 7900045 | Social Choice Theory | Puppe |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Open-Book-Prüfung).
Die Prüfung wird in jedem Sommersemester angeboten.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt
How should (political) candidates be elected? What are good ways of merging individual judgments into collective judgments?
Social Choice Theory is the systematic study and comparison of how groups and societies can come to collective decisions.
The course offers a rigorous and comprehensive treatment of judgment and preference aggregation as well as voting theory. It is divided into two parts. The first part deals with (general binary) aggregation theory and builds towards a general impossibility result that has the famous Arrow theorem as a corollary. The second part treats voting theory. Among other things, it includes proving the Gibbard-Satterthwaite theorem.

Literaturhinweise

Main texts:

Secondary texts:
5.265 Teilleistung: Software-Architektur und -Qualität [T-INFO-101381]

Verantwortung: Prof. Dr. Ralf Reussner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101201 - Software-Systeme
M-INFO-101202 - Software-Methodik

<table>
<thead>
<tr>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilleistungsart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2023 | 24667 | Software-Architektur und -Qualität | 2 SWS | Vorlesung (V) / 🗣 | Reussner

Prüfungsveranstaltungen
SS 2023 | 750021 | Software-Architektur und -Qualität | Reussner
WS 23/24 | 7500032 | Software-Architektur und -Qualität | Reussner

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Diese Vorlesung und die Vorlesungen Komponentenbasierte Software-Entwicklung sowie Software-Architektur schließen sich aus.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Software-Architektur und -Qualität
24667, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
5.266 Teilleistung: Software-Evolution [T-INFO-101256]

Verantwortung: Prof. Dr. Ralf Reussner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101201 - Software-Systeme
M-INFO-101202 - Software-Methodik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 24164 | Software-Evolution | 2 SWS | Vorlesung (V) / 🗣 | Heinrich |

Prüfungsveranstaltungen

| SS 2023 | 7500023 | Software-Evolution | Reussner |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 25 Minuten nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

keine

Empfehlungen

Kenntnisse aus der Software-Technik und zu Software-Architekturen sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Software-Evolution

24164, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
5.267 Teilleistung: Software-Qualitätsmanagement [T-WIWI-102895]

Verantwortung: Prof. Dr. Andreas Oberweis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101477 - Entwicklung betrieblicher Informationssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungstitel</th>
<th>Kurscode</th>
<th>ECTS</th>
<th>Veranstaltungstyp</th>
<th>Lehrveranstaltungsster</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Software-Qualitätsmanagement</td>
<td>2511208</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Alpers</td>
<td></td>
</tr>
<tr>
<td>SS 2023</td>
<td>Übungen zu Software-Qualitätsmanagement</td>
<td>2511209</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Frister, Forell</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstitel</th>
<th>Prüfungskurscode</th>
<th>Prüfungstitel (Anmeldung bis)</th>
<th>Prüfungstermin</th>
<th>Prüfungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Software-Qualitätsmanagement</td>
<td>79AIFB_STQM_A5</td>
<td>Software-Qualitätsmanagement (Anmeldung bis 17.07.2023)</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Software-Qualitätsmanagement (Anmeldung bis 05.02.2024)</td>
<td>79AIFB_STQM_C1</td>
<td>Oberweis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Vorlesungstitel</th>
<th>Kurscode</th>
<th>Semester</th>
<th>ECTS</th>
<th>Veranstaltungstyp</th>
<th>Lehrveranstaltungsster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software-Qualitätsmanagement</td>
<td>2511208</td>
<td>SS 2023</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen

Informationswirtschaft M.Sc.
Modulhandbuch mit Stand vom 04.10.2023
Inhalt

Die Vorlesung vermittelt Grundlagen zum aktiven Software-Qualitätsmanagement (Qualitätsplanung, Qualitätsprüfung, Qualitätslenkung, Qualitätssicherung) und veranschaulicht diese anhand konkreter Beispiele, wie sie derzeit in der industriellen Softwareentwicklung Anwendung finden. Stichworte aus dem Inhalt sind: Software und Softwarequalität, Vorgehensmodelle, Softwareprozessqualität, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, Software-Tests.

Lernziele:

Die Studierenden

- erläutern die relevanten Qualitätsmodelle,
- wenden aktuelle Methoden zur Beurteilung der Softwarequalität an und bewerten die Ergebnisse,
- kennen die wichtigsten Modelle zur Zertifizierung der Qualität in der Softwareentwicklung, vergleichen und bewerten diese Modelle,
- formulieren wissenschaftliche Arbeiten zum Qualitätsmanagement in der Softwareentwicklung, entwickeln selbständig innovative Lösungen für Anwendungsprobleme.

Empfehlungen:

Programmierkenntnisse in Java sowie grundlegende Kenntnisse in Informatik werden vorausgesetzt.

Arbeitsaufwand:

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 135 Stunden (4,5 Leistungspunkte).

- Vorlesung 30h
- Übung 15h
- Vor- bzw. Nachbereitung der Vorlesung 24h
- Vor- bzw. Nachbereitung der Übung 25h
- Prüfungsvorbereitung 40h
- Prüfung 1h

Literaturhinweise

- Peter Liggesmeyer: Software-Qualität, Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag 2002
- Mauro Pezzè, Michal Young: Software testen und analysieren. Oldenbourg Verlag 2009

Weitere Literatur wird in der Vorlesung bekanntgegeben.
5.268 Teilleistung: Spatial Economics [T-WIWI-103107]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101485 - Verkehrsinfrastrukturpolitik und regionale Entwicklung
M-WIWI-101496 - Wachstum und Agglomeration

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4.5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsschlüssel</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfung (V/Ü)</th>
<th>Vorlesung/Übungspraktik</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2561260</td>
<td>Spatial Economics</td>
<td>2</td>
<td></td>
<td>V, Ott</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2561261</td>
<td>Übung zu Spatial Economics</td>
<td>1</td>
<td></td>
<td>Ü, Ott, Mirzoyan</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsschlüssel</th>
<th>Veranstaltungsname</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900103</td>
<td>Spatial Economics</td>
<td>Ott</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900075</td>
<td>Spatial Economics</td>
<td>Ott</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900276</td>
<td>Spatial Economics (Nachklausur)</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Legende: 📱 Online, 🧩 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
c

Voraussetzungen
Keine

Empfehlungen

Anmerkungen
Aufgrund des Forschungssemesters von Prof. Dr. Ingrid Ott wird die Lehrveranstaltung zur Teilleistung im Wintersemester 2021/22 nicht angeboten. Die Prüfung findet statt. Vorbereitungsmaterialien finden Sie im ILIAS.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Spatial Economics
2561260, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Folgende Themen werden in der Veranstaltung behandelt:

- Geographie, Handel und Entwicklung
- Geographie und ökonomische Theorie
- Kernmodelle der ökonomischen Geographie und empirische Evidenz
- Agglomeration, Home Market Effect (HME), räumliche Lohnstrukturen
- Anwendungen und Erweiterungen

Lernziele:
Der/die Studierende

- analysiert Determinanten von räumlicher Verteilung ökonomischer Aktivität.
- wendet quantitative Methoden im Rahmen ökonomischer Modelle an.
- besitzt grundlegende Kenntnisse formal-analytischer Methoden.
- versteht die Verbindung von ökonomischer Theorie und deren empirische Anwendung.
- versteht, inwiefern Konzentrationsprozesse aus der Interaktion von Agglomerations- und Dispersionskräften resultieren.
- kann theoretiesierte Politikempfehlungen ableiten.

Empfehlungen:

Arbeitsaufwand:
Der Gesamtaufwand bei 4,5 Leistungspunkten (ECTS) entspricht ca. 135 Stunden.

- Präsenzzeit: ca. 30 Stunden
- Vor – und Nachbereitung: ca. 45 Stunden
- Prüfung und Prüfungsvorbereitung: ca. 60 Stunden

Nachweis:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Literaturhinweise

Weitere Literatur wird in der Vorlesung bekanntgegeben.
(Further literature will be announced in the lecture.)
5.269 Teilleistung: Spezialveranstaltung Wirtschaftsinformatik [T-WIWI-109940]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101410 - Business & Service Engineering
M-WIWI-101506 - Service Analytics
M-WIWI-103720 - eEnergy: Markets, Services and Systems

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023 00019</td>
</tr>
<tr>
<td>SS 2023 00032</td>
</tr>
<tr>
<td>SS 2023 7900326</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch das Ausarbeiten einer schriftlichen Dokumentation, einer Präsentation der Ergebnisse der durchgeführten praktischen Komponenten und der aktiven Beteiligung an den Diskussionen.

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungsbeschreibung.

Die Gesamtnote der Prüfungsleistung anderer Art wird wie folgt gebildet:

Insgesamt können 60 Punkte erreicht werden, davon
- maximal 30 Punkte für die schriftliche Dokumentation
- maximal 30 Punkte für die praktische Komponente

Voraussetzungen
siehe "Modellierte Voraussetzungen"

Empfehlungen
Keine

Anmerkungen
Für die Spezialveranstaltung Wirtschaftsinformatik können sich interessierte Studierende initiativ mit einem Themenvorschlag an die Wissenschaftlichen Mitarbeiter des Lehrstuhls von Prof. Weinhardt wenden.

Die Spezialveranstaltung Wirtschaftsinformatik kann anstelle einer regulären Vorlesung (siehe Modulbeschreibung) gewählt werden. Sie kann aber nur einmal pro Modul angerechnet werden.
5.270 Teilleistung: Startup Experience [T-WIWI-111561]

Verantwortung: Prof. Dr. Orestis Terzidis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Prüfungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2545004</td>
<td>Startup Experience</td>
<td>4</td>
<td>Seminar (S) / 🗣</td>
<td>Finner, Manthey, Weimar, Terzidis</td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2545004</td>
<td>Startup Experience</td>
<td>4</td>
<td>Seminar (S) / 🗣</td>
<td>Weimar, Martjan, Terzidis</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900186</td>
<td>Startup Experience</td>
<td>Terzidis</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900186</td>
<td>Startup Experience</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Details zur Ausgestaltung der Prüfungsleistung anderer Art werden im Rahmen der Lehrveranstaltung bekannt gegeben.

Die Note setzt sich aus einer Präsentation und einer schriftlichen Ausarbeitung zusammen (plus evtl. spezifizierte Dokumentation, z.B. Arbeitsergebnisse, Ereignistagebuch, Reflexion).

Empfehlungen

Vorlesung Entrepreneurship bereits absolviert

Anmerkungen

Die Arbeitssprache im Seminar ist Englisch. Die Seminarinhalte werden auf der Lehrstuhl-Webseite veröffentlicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Veranstaltungsnummer</th>
<th>SS 2023, WS 23/24, Sprache: Englisch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup Experience</td>
<td>2545004</td>
<td>2545004, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Seminar (S) Präsenz
Inhalt
Seminarinhalt

Im Seminar Startup Experience entwickeln Sie unternehmerische Kompetenzen, die Sie befähigen, ein neues Unternehmen aufzubauen. In einem unternehmerischen Projekt haben Sie drei Hauptziele:

1. Identifizieren und entwickeln Sie eine Gelegenheit. Wer ist Ihr Zielkunde und welches Problem oder welche Aufgabe hat er oder sie? Wie attraktiv und wie groß ist dieser Markt?
2. Wie werden Sie einen Mehrwert für ihn schaffen? Wie können Sie bestimmte Ressourcen, einschließlich Technologie, nutzen, um eine Lösung zu entwickeln?
3. Wie können Sie eine lebensfähige Organisation konzipieren und einrichten? Welches Geschäftsmodell schlagen Sie vor, um Werte zu schaffen, zu liefern und zu erfassen?

Nachdem die Teams gebildet wurden folgt eine Teambuilding Session, sodass die Teammitglieder sich besser kennen lernen und die Grundpfeiler für das gemeinsame Arbeiten festlegen. Damit schaffen sie eine Basis für ihr gemeinsames Projekt.

Lernziele

Nach Abschluss dieses Kurses werden die Teilnehmer in der Lage sein:

- Den Kernprozess von TAS zu charakterisieren,
- Effektiv in einem zusammengestellten Team zu arbeiten,
- ein Technologie-Charakterisierungs-Canvas zu verwenden, um die Kerneigenschaften einer Technologie zu extrahieren,
- Kreativitätstechniken anzuwenden, um Ideen für potenzielle Anwendungen zu entwickeln,
- Nutzwertanalysen durchzuführen, um eine vielversprechende Technologieanwendung auszuwählen,
- Ein Wertangebot basierend auf Techniken wie dem Value Proposition Canvas oder der Jobs-to-be-Done-Methode entwickeln,
- Ansätze der Technologiefolgenabschätzung anwenden, um verantwortungsvolle Innovationsprozesse zu implementieren,
- Anwendung fortgeschrittener Methoden der Geschäftsmodellierung, um ein fundiertes Geschäftskonzept zu entwickeln,
- Eine prägnante Präsentation ("Pitch") entwickeln und abliefern, um Ihr Projekt zu kommunizieren.

Weitere Informationen:

Für einen erfolgreichen Abschluss des Kurses erwarten wir von Ihnen die Vorlage eines Businessplans mit folgenden Merkmalen:

- Umfang: 9000 Wörter,
- Solide und klare Struktur,
- Ausdruck und Rechtschreibung sind korrekt
- Vollständige und korrekte Referenzen, Zitate, etc.
- Visuelle Elemente sind angemessen gewählt
- Dokumentation und Nachvollziehbarkeit der Datenerfassung, -analyse und -auswertung,
- Die Inhalte werden entsprechend den Vorgaben des Kurses erarbeitet.

Außerdem erwarten wir, dass Sie einen Team-Pitch abliefern.

- Dauer: wird kommuniziert (typischerweise 5-10 Minuten)
- Inhalt: Einleitung/Zweck; Problem; Lösung; Geschäftsmodell; Prototyp; Wettbewerb; Managementteam; Aktueller Stand und nächste Schritte,
- Layout und Form: angemessene Wahl,
- Erscheinungsbild: angemessene Menge an visuellen Elementen,
- Daten: gut recherchiert und visuell organisiert
- Storyline: ist fundiert; klar und überzeugend
Organisatorisches
Registration is via the Wiwi-Portal.
In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation. The seminars will be held in English.

Inhalt
Seminarinhalt
Im Seminar Startup Experience entwickeln Sie unternehmerische Kompetenzen, die Sie befähigen, ein neues Unternehmen aufzubauen. In einem unternehmerischen Projekt haben Sie drei Hauptziele:

1. Identifizieren und entwickeln Sie eine Gelegenheit. Wer ist Ihr Zielkunde und welches Problem oder welche Aufgabe hat er oder sie? Wie attraktiv und wie groß ist dieser Markt?
2. Wie werden Sie einen Mehrwert für ihn schaffen? Wie können Sie bestimmte Ressourcen, einschließlich Technologie, nutzen, um eine Lösung zu entwickeln?
3. Wie können Sie eine lebensfähige Organisation konzipieren und einrichten? Welches Geschäftsmodell schlagen Sie vor, um Werte zu schaffen, zu liefern und zu erfassen?

Lernziele
Nach Abschluss dieses Kurses werden die Teilnehmer in der Lage sein:

- Effektives Arbeiten in einem kohärenten Team
- Die Rolle des digitalen Unternehmertums im Gesundheitswesen verstehen
- Anwendung von Kreativitätstechniken zur Ideenfindung
- Nutzenanalyseansätze zur Auswahl vielversprechender Lösungen anwenden
- Entwicklung eines Wertversprechens auf der Grundlage von Techniken wie der Value Proposition Canvas oder der Jobs-to-Be-Done-Methode
- Anwendung fortgeschrittener Geschäftsmodellierungsmethoden zur Entwicklung eines soliden Geschäftskonzepts
- Eine prägnante Präsentation ("Pitch") zu entwickeln und zu halten, um Ihr Projekt zu kommunizieren
- Erwerb von Grundkenntnissen der Regulatorik im Gesundheitswesen und der Erstattungsmodalitäten

Weitere Informationen:

Für einen erfolgreichen Abschluss des Kurses erwarten wir von Ihnen die Vorlage eines Businessplans mit folgenden Merkmalen:

- Umfang: 9000 Wörter,
- Solide und klare Struktur,
- Ausdruck und Rechtschreibung sind korrekt
- Vollständige und korrekte Referenzen, Zitate, etc.
- Visuelle Elemente sind angemessen gewählt
- Dokumentation und Nachvollziehbarkeit der Datenerfassung, -analyse und -auswertung,
- Die Inhalte werden entsprechend den Vorgaben des Kurses erarbeitet.

Außerdem erwarten wir, dass Sie einen Team-Pitch abliefern.

- Dauer: wird kommuniziert (typischerweise 5-10 Minuten)
- Inhalt: Einleitung/Zweck; Problem; Lösung; Geschäftsmodell; Prototyp; Wettbewerb; Managementteam; Aktueller Stand und nächste Schritte,
- Layout und Form: angemessene Wahl,
- Erscheinungsbild: angemessene Menge an visuellen Elementen,
- Daten: gut recherchiert und visuell organisiert
- Storyline: ist fundiert; klar und überzeugend
Organisatorisches
Registration is via the Wiwi portal.
In the seminar you will work on a project in teams of max. 5 persons. The groups are formed in the seminar.
5.271 Teilleistung: Statistik für Fortgeschrittene [T-WIWI-103123]

Verantwortung: Prof. Dr. Oliver Grothe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101637 - Analytics und Statistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7900037 | Statistik für Fortgeschrittene | Grothe |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (nach §4(2), 1 SPOs).

Voraussetzungen

Keine
5.272 Teilleistung: Statistische Modellierung von allgemeinen Regressionsmodellen [T-WIWI-103065]

Verantwortung: apl. Prof. Dr. Wolf-Dieter Heller
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101638 - Ökonometrie und Statistik I
M-WIWI-101639 - Ökonometrie und Statistik II

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 23/24 | 2521350 | Statistische Modellierung von Allgemeinen Regressionsmodellen | 2 SWS | Vorlesung (V) | Heller |

Prüfungsveranstaltungen

| SS 2023 | 7900146 (SS23) | Statistische Modellierung von allgemeinen Regressionsmodellen | Heller |
| WS 23/24 | 7900146 (WS23/24) | Statistische Modellierung von allgemeinen Regressionsmodellen | Heller |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO.

Voraussetzungen
Keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Statistische Modellierung von Allgemeinen Regressionsmodellen
2521350, WS 23/24, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Lernziele:
Der/ die Studierende besitzt umfassende Kenntnisse allgemeiner Regressionsmodelle.

Voraussetzungen:

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 65 Stunden
Prüfung und Prüfungsvorbereitung: 40 Stunden
5.273 Teilleistung: Steuerrecht [T-INFO-111437]

Verantwortung: Detlef Dietrich
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101216 - Recht der Wirtschaftsunternehmen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>24646</th>
<th>Steuerrecht</th>
<th>2 SWS</th>
<th>Vorlesung (V) /</th>
<th>Dietrich</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>7500120</th>
<th>Steuerrecht</th>
<th>Dreier, Matz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7500062</td>
<td>Steuerrecht</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Steuerrecht
24646, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt bei 3 Leistungspunkten 90 h, davon 22,5 Präsenz.

Organisatorisches

Literaturhinweise
- Spangemacher, Gewerbesteuer, Band 5, Grüne Reihe, Erich Fleischer Verlag
- Falterbaum/Bolk/Reiß/Eberhart, Buchführung und Bilanz, Band 10, Grüne Reihe, Erich Fleischer Verlag
- Tipke, K./Lang, J., Steuerrecht, Köln, in der neuesten Auflage.
- Jäger/Lang Körperschaftsteuer, Band 6, Grüne Reihe, Erich Fleischer Verlag
- Lippross Umsatzsteuer, Band 11, Grüne Reihe, Erich Fleischer Verlag
- Plückebaum/Wendt/Niemeler/Schlierenkämper Einkommensteuer, Band 3, Grüne Reihe, Erich Fleischer Verlag

Weiterführende Literatur
5.274 Teilleistung: Stochastic Calculus and Finance [T-WIWI-103129]

Verantwortung: Dr. Mher Safarian
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101639 - Ökonometrie und Statistik II

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2521331</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>2 SWS</td>
<td>Safarian</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2521332</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>2 SWS</td>
<td>Safarian</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung und Prüfungsvorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>7900225</td>
<td>2</td>
<td>40 Stunden</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 SPO im Umfang von 180 Minuten.

Voraussetzungen
Keine

Anmerkungen
Für weitere Informationen: http://statistik.econ.kit.edu/

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Stochastic Calculus and Finance

Inhalt
Lernziele:
Nach erfolgreichem Besuch dieser Vorlesung werden viele gängige Verfahren zur Preisbestimmung und Portfoliomodelle im Finance verstanden werden. Der Fokus liegt aber nicht nur auf dem Finance alleine, sondern auch auf der dahinterliegenden Theorie.

Inhalt:
The course will provide rigorous yet focused training in stochastic calculus and mathematical finance. Topics to be covered:

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 65 Stunden
Prüfung und Prüfungsvorbereitung: 40 Stunden

Organisatorisches
Blockveranstaltung. Termine werden über Ilias bekannt gegeben.
Literaturhinweise

- Stochastic Finance: An Introduction in Discrete Time by H. Föllmer, A. Schied, de Gruyter, 2011
- Introduction to Stochastic Calculus Applied to Finance by D. Lamberton, B. Lapeyre, Chapman & Hall, 1996
5.275 Teilleistung: Strategic Finance and Technology Change [T-WIWI-110511]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstitel</th>
<th>Veranstalteinrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>Strategic Finance and Technology Change</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>Strategic Finance and Technology Change</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Bei einer geringen Anzahl zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung abzuhalten.

Voraussetzungen
Keine

Empfehlungen
Der Besuch der Vorlesung "Financial Management" wird dringend empfohlen.
5.276 Teilleistung: Strategie- und Managementtheorie: Entwicklungen und Klassiker [T-WIWI-106190]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103119 - Strategie und Management: Fortgeschrittene Themen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2577921 | Strategie- und Managementtheorie: Entwicklungen und Klassiker (Master) | 2 SWS | Seminar (S) / 📚 | Lindstädt |

Prüfungsveranstaltungen

| SS 2023 | 7900278 | Strategie- und Managementtheorie: Entwicklungen und Klassiker | Lindstädt |

Legende: 🖥 Online, 🎤 Präsent/Online gemischt, 📚 Präsent, ❌ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

Keine

Empfehlungen

Der vorherige Besuch des Bachelor-Moduls „Strategie und Organisation“ oder eines Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen.

Anmerkungen

Die Lehrveranstaltung ist zulassungsbeschränkt. Im Falle einer vorherigen Zulassung zu einer anderen Lehrveranstaltung im Modul „Strategie und Management: Fortgeschrittene Themen“ wird die Teilnahme an dieser Veranstaltung garantiert.

Die Lehrveranstaltung wird voraussichtlich im WS17/18 erstmals angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Strategie- und Managementtheorie: Entwicklungen und Klassiker (Master)</th>
<th>Seminar (S)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2577921, SS 2023, 2 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>
Inhalt

Dieser Kurs bietet den Studierenden die Gelegenheit, sich mit aktuellen Managementthemen auseinanderzusetzen und ihre Fähigkeiten in der strategischen Analyse und Bewertung zu schärfen. Durch die intensive Zusammenarbeit und die praktische Anwendung des erlernten Wissens werden die Studierenden optimal auf die Anforderungen und Herausforderungen des modernen Unternehmensmanagements vorbereitet.

Aufbau

Lernziele
Nach Abschluss des Kurses sind die Studierenden in der Lage,

- komplexe Unternehmenssituationen zu analysieren, strategisch zu denken und fundierte Managemententscheidungen abzuleiten.
- klare und überzeugende schriftliche Ausarbeitungen zu verfassen, die die erarbeiteten Analysen und Empfehlungen präzise darzustellen.
- Ergebnisse ansprechend zu präsentieren und inhaltliche Diskussionen aktiv mitzugestalten.

Empfehlungen:
Der vorherige Besuch des Bachelor-Moduls "Strategie und Organisation" oder eines anderen Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen.

Arbeitsaufwand:
Gesamtaufwand ca. 90 Stunden
Präsenzzeit: 15 Stunden
Vor-/Nachbereitung: 75 Stunden
Prüfung und Prüfungsvorbereitung: entfällt

Nachweis:

Anmerkung:

Die Prüfungen werden mindestens jedes zweite Semester angeboten, sodass das gesamt Modul in zwei Semestern abgeschlossen werden kann.

Organisatorisches
siehe Homepage
5.277 Teilleistung: Strategisches Management der betrieblichen Informationsverarbeitung [T-WIWI-102669]

Verantwortung: Prof. Dr. Thomas Wolf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101477 - Entwicklung betrieblicher Informationssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) oder ggf. mündlichen Prüfung (30 min.) nach §4(2) der Prüfungsordnung.

Voraussetzungen
Keine
5.278 Teilleistung: Supply Chain Management in der Automobilindustrie [T-WIWI-102828]

Verantwortung: Tilman Heupel
Hendrik Lang

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101412 - Industrielle Produktion III
M-WIWI-101471 - Industrielle Produktion II

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3,5

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

SS 2023 2581957, Supply Chain Management in der Automobilindustrie 2 SWS Vorlesung (V) / Online, Heupel, Lang

Prüfungsveranstaltungen

SS 2023 7981957, Supply Chain Management in der Automobilindustrie Schultmann

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Vorlesung wird zum nächsten Mal im Sommersemester 2023 angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Supply Chain Management in der Automobilindustrie
2581957, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Online

Inhalt
- Bedeutung der Automobilindustrie
- Die automobile Supply Chain
- Gestaltung der Wertschöpfungsstrukturen der automobilen Supply Chain und Beherrschung der Produktionssysteme als Erfolgsfaktor im SCM
- Strategische Beschaffungslogistik
- Risikomanagement
- Quality Engineering und -Management in der automobilen Supply Chain
- Cost Engineering und -Management in der automobilen Supply Chain
- Einkauf (Lieferantenauswahl, Vertragsmanagement)
- Leistungsmessung der Supply Chain
- Organisatorische Ansätze

Organisatorisches
Blockveranstaltung, siehe Homepage

Literaturhinweise
Wird in der Veranstaltung bekannt gegeben.
5.279 Teilleistung: Supply Chain Management with Advanced Planning Systems [T-WIWI-102763]

Verantwortung: Claus J. Bosch
Dr. Mathias Göbelt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101412 - Industrielle Produktion III
M-WIWI-101471 - Industrielle Produktion II

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3,5
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2023 2581961 Supply Chain Management with Advanced Planning Systems 2 SWS Vorlesung (V) Göbelt, Bosch

Prüfungsveranstaltungen
SS 2023 7981961 Supply Chain Management with Advanced Planning Systems Schultmann

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Supply Chain Management with Advanced Planning Systems
2581961, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Inhalt
This lecture deals with supply chain management from a practitioner’s perspective with a special emphasis Advanced Planning Systems (APS) and the planning domain. The software solution SAP SCM, one of the most widely used Advanced Planning Systems, is used as an example to show functionality and application of an APS in practice.

First, the term supply chain management is defined and its scope is determined. Methods to analyze supply chains as well as indicators to measure supply chains are derived. Second, the structure of an APS (advanced planning system) is discussed in a generic way. Later in the lecture, the software solution SAP SCM is mapped to this generic structure. The individual planning tasks and software modules (demand planning, supply network planning / sales & operations planning, production planning / detailed scheduling, deployment, transportation planning, global available-to-promise) are presented by discussing the relevant business processes, providing academic background, describing typical planning processes and showing the user interface and user-related processes in the software solution. At the end of the lecture, implementation methodologies and project management approaches for SAP SCM are covered.

Contents
1. Introduction to Supply Chain Management
 1.1. Supply Chain Management Fundamentals
 1.2. Supply Chain Management Analytics
2. Structure of Advanced Planning Systems
3. SAP SCM
 3.1. Introduction / SCM Solution Map
 3.2. Demand Planning
 3.4. Production Planning and Detailed Scheduling
 3.5. Deployment
 3.6. Transportation Planning / Global Available to Promise
 3.7. Cloud-based Supply Chain Planning
4. SAP SCM in Practice
 4.1. Project Management and Implementation
 4.2. SAP Implementation Methodology

Literaturhinweise
will be announced in the course
5.280 Teilleistung: Symmetrische Verschlüsselungsverfahren [T-INFO-101390]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung
Prof. Dr. Jörn Müller-Quade

Einrichtung
KIT-Fakultät für Informatik

Bestandteil von
M-INFO-101198 - Fortgeschrittene Themen der Kryptographie

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>24629</th>
<th>Symmetrische Verschlüsselungsverfahren</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Müller-Quade, Geiselmann</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>7500070</th>
<th>Symmetrische Verschlüsselungsverfahren</th>
<th>Geiselmann, Müller-Quade</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung von i.d. Regel 20 Min. nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Symmetrische Verschlüsselungsverfahren

| 24629, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen |
|--------------------------|--------------------------|
| Vorlesung (V) | Präsenz |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt
5.281 Teilleistung: Technologiebewertung [T-WIWI-102858]

Verantwortung: Dr. Daniel Jeffrey Koch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101507 - Innovationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>siehe Anmerkungen</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2545101 | Technologiebewertung | 2 SWS | Seminar (S) / 🗣 | Koch |

Prüfungsveranstaltungen

| SS 2023 | 7900238 | Technologiebewertung | Weissenberger-Eibl |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art.

Die Note setzt sich zu gleichen Teilen aus den Noten der schriftlichen Ausarbeitung und des Referats zusammen.

Voraussetzungen

Keine

Empfehlungen

Der vorherige Besuch der Vorlesung Innovationsmanagement wird empfohlen.

Anmerkungen

Das Seminar findet in Sommersemestern gerader Jahre statt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technologiebewertung

2545101, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches

Weblink: https://itm.entechnon.kit.edu/192_1284.php
5.282 Teilleistung: Technologien für das Innovationsmanagement [T-WIWI-102854]

Verantwortung: Dr. Daniel Jeffrey Koch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101507 - Innovationsmanagement
M-WIWI-101507 - Innovationsmanagement

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art in Form eines Referats und einer schriftlichen Ausarbeitung im Umfang von ca. 15 Seiten. Die Note setzt sich zu gleichen Teilen aus den Noten der schriftlichen Ausarbeitung und des Referats zusammen.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch der Vorlesung Innovationsmanagement: Konzepte, Strategien und Methoden wird empfohlen.
5.283 Teilleistung: Telecommunications and Internet – Economics and Policy [T-WIWI-113147]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101406 - Netzwerkökonomie
- M-WIWI-101409 - Electronic Markets

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>4,5</th>
<th>Notenskala</th>
<th>Drittelnoten</th>
<th>Turnus</th>
<th>Jedes Wintersemester</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2561232</td>
<td>Telecommunication and Internet - Economics and Policy</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🚀</td>
<td>Mitusch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2561233</td>
<td>Exercises to Telecommunication and Internet - Economics and Policy</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🚀</td>
<td>Mitusch, Wisotzky, Corbo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900276</td>
<td>Telekommunikations- und Internetökonomie</td>
<td></td>
<td></td>
<td>Mitusch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🚀 Präsenz/Online gemischt, ✍️ Präsenz, ☘️ Abgesagt

Erfolgskontrolle(n)

Students' understanding and knowledge will be assessed through either an oral or a written exam. The actual method used will be announced during the course. The course takes place every winter term, and exams are offered two times a year, in March and in September.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102713 - Telekommunikations- und Internetökonomie darf nicht begonnen worden sein.

Empfehlungen

Basic knowledge of microeconomics is a precondition. Further knowledge of industrial economics or networks economics is useful, but not necessary. No prior knowledge of telecommunications or internet technologies is required.

Anmerkungen

Disclaimer: German wording is sometimes provided in parallel. Some German original literature is used (especially official and legislative texts) where we will try to provide English translations in parallel.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Telecommunication and Internet - Economics and Policy
2561232, WS 23/24, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt
Inhalt
Description:

The course provides students with a comprehensive understanding of the economic principles, dynamics, and policies that govern the telecommunication and internet industries and markets. It focuses on the infrastructure of the internet, both physical and logical.

Course Objectives:

Understand the telecommunication and internet landscape: Students will be introduced to the historical development, evolution, and current state of the telecommunication and internet industries. This includes technology, industrial organization, regulation, and other policies. Students will explore the emergence of modern telecommunication networks, the birth of the internet, and key milestones that have shaped the global communication landscape.

Examine network economics: Students will explore the unique economic characteristics of telecommunications networks, including network effects, economies of scale, the implications for investment decisions and market entry barriers, and regulatory responses.

Analyse market structures and competition policies: Students will dive into the various market structures that exist within the telecommunication and internet industries, including: access to the internet by users, access to the infrastructure by firms, economic interactions between the autonomous systems (i.e. sub-networks) and other players (like internet exchange points) of the internet. Implications for quality of services and network neutrality. Emphasis will be placed on competitiveness of markets, resp. market power, on the role of regulation, and how they impact market dynamics.

Investigate infrastructure investment and policy: The course will address the significant role of infrastructure investment in the telecommunication and internet sectors. Students will analyse the economic drivers behind infrastructure construction, government policies, and regulatory frameworks that influence investment decisions.

Address emerging trends: The course will address the latest trends and technologies in telecommunication and the internet, such as 5G, Internet of Things (IoT), and cloud computing, content delivery networks, and their economic implications.

Assess platform economics: The role of digital platforms in the telecommunication and internet industries will be addressed. Students will understand platform business models and the economics of multisided markets. In this context, the "hypergiants" of the internet get into the focus as well as the challenges and opportunities they present.

Teaching Methodology:

The course will adopt a combination of lectures, case studies, and guest lectures from (industry) experts. Real-world examples will be used to illustrate economic principles in action within the telecommunication and internet sectors. A few economic models will be analysed, but most of the issues will be addressed verbally.
5.284 Teilleistung: Telekommunikationsrecht [T-INFO-101309]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101217 - Öffentliches Wirtschaftsrecht

Teilleistungsart: Prüfungsleistung schriftlich

Leistungspunkte: 3

Notenskala: Drittelnoten

Turnus: Jedes Sommersemester

Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Vorlesungsart</th>
<th>Kursverantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24632</td>
<td>Telekommunikationsrecht</td>
<td>2</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Döveling</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfungstyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500085</td>
<td>Telekommunikationsrecht</td>
<td></td>
<td>Dreier</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500049</td>
<td>Telekommunikationsrecht</td>
<td></td>
<td>Zufall</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📧 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

keine

Empfehlungen

Details dazu auf der Homepage des ZAR (www.kit.edu/zar).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Telekommunikationsrecht

24632, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V) Präsenz

Inhalt

Die Vorlesung bietet einen Überblick über das neue TKG. Dabei wird die ganze Bandbreite der Regulierung behandelt: Von den materiellrechtlichen Instrumenten der wettbewerbschaffenden ökonomischen Regulierung (Markt-, Zugangs-, Entgeltregulierung sowie besondere Missbrauchsauflösung) und der nicht-ökonomischen Regulierung (Kundenschutz; Rundfunkübertragung; Vergabe von Frequenzen, Nummern und Wegerechten; Fernmeldegeheimnis; Datenschutz und öffentliche Sicherheit) bis hin zur institutionellen Ausgestaltung der Regulierung. Zum besseren Verständnis werden zu Beginn der Vorlesung die technischen und ökonomischen Grundlagen sowie die gemeinschafts- und verfassungsrechtlichen Vorgaben geklärt.

Die Vorlesung findet als Blockvorlesung statt.

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt bei 3 Leistungspunkten 90 h, davon 22,5 Präsenz.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.
Organisatorisches
Stand per 13.03.2023:

Die Vorlesung wird als Block-Veranstaltung im Seminarraum Nr. 313, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe, an folgenden Tagen gehalten:

- Montag den 24. April, 09:45 – 17:00 Uhr (mit Mittagspause)
- Montag, den 22. Mai, 09:45 – 17:00 Uhr (mit Mittagspause)
- Montag, den 12. Juni, 09:45 – 17:00 Uhr (mit Mittagspause)

Literaturhinweise
Da der Rechtsstoff teilweise im Diskurs mit den Studierenden erarbeitet werden soll, ist eine aktuelle Version des TKG zu der Vorlesung mitzubringen.
Weitere Literatur wird in der Vorlesung angegeben.

Weiterführende Literatur
Erweiterte Literaturangaben werden in der Vorlesung bekannt gegeben.
5.285 Teilleistung: Telematik [T-INFO-101338]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100801 - Telematik
M-INFO-101205 - Future Networking
M-INFO-101206 - Networking

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Prüfungsart</th>
<th>Lehrer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24128</td>
<td>Telematik</td>
<td>6</td>
<td>Vorlesung (V) / 🗣</td>
<td>Kopmann, Seehofer, Zitterbart</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Prüfungsart</th>
<th>Lehrer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500115</td>
<td>Telematik</td>
<td></td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ⛔ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von ca. 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.
Bei unvertretbar hohem Prüfungsaufwand kann die Prüfungsmodalität geändert werden. Daher wird sechs Wochen im Voraus angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen
Keine

Empfehlungen

- Inhalte der Vorlesung Einführung in Rechnernetze oder vergleichbarer Vorlesungen werden vorausgesetzt.
- Der Besuch des modulbegleitenden Basispraktikums Protokoll Engineering wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Telematik
24128, WS 23/24, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

Inhalte der Vorlesung Einführung in Rechnernetze oder vergleichbarer Vorlesungen werden vorausgesetzt.

Lernziele
Studierende

- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Wegewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- kennen Möglichkeiten zur Verwaltung und Administration von Netzen.

Studierende kennen die Architektur von ISDN und können insbesondere die Besonderheiten beim Aufbau des ISDN-Teilnehmeranschlusses wiedergeben. Studierende können die technischen Besonderheiten von DSL wiedergeben.

Literaturhinweise
5.286 Teilleistung: Topics in Experimental Economics [T-WIWI-102863]

Verantwortung: Prof. Dr. Johannes Philipp Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101505 - Experimentelle Wirtschaftsforschung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittenoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse in Experimenteller Wirtschaftsforschung vorausgesetzt.

Anmerkungen
5.287 Teilleistung: Topics in Stochastic Optimization [T-WIWI-112109]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101473 - Mathematische Optimierung
- M-WIWI-101637 - Analytics und Statistik
- M-WIWI-102832 - Operations Research im Supply Chain Management
- M-WIWI-103289 - Stochastische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2500024 | Übungen zu Topics in Stochastic Optimization | 1 SWS | Übung (U) / 📌 | Rebennack, Gabl |
| SS 2023 | 2500026 | Topics in Stochastic Optimization | 2 SWS | Vorlesung (V) / 📌 | Rebennack, Gabl |

Prüfungsveranstaltungen

| SS 2023 | 7900341 | Topics in Stochastic Optimization | Rebennack |

Erfolgskontrolle(n)

Students will be given problem sets on which they work in groups. The problem sets will involve the implementation of the models presented in the course, and exploring features of these models. The groups will present their findings in front of the class. The grading will be based on the presentation.

Empfehlungen

A solid understanding of Stochastic Optimization and/or Optimization under Uncertainty as well as optimization in general is highly recommended, since we will heavily build upon basics of these areas.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Topics in Stochastic Optimization
2500026, SS 2023, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

Content:
While Stochastic Optimization is a long established, powerful paradigm for dealing with optimization problems under uncertainty, it is also a field that is continuously evolving, in an effort to expand the applicability of the respective techniques, but also to challenge frontiers to other paradigms such as robust optimization. In this course we will closely examine more recent developments in the field, and introduce, and train the usage of the computational techniques, that act as a workhorse for solution strategies.

Prerequisites
None.
5.288 Teilleistung: Transportökonomie [T-WIWI-100007]

Verantwortung: Prof. Dr. Kay Mitusch
Dr. Eckhard Szimba

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101406 - Netzwerkökonomie
M-WIWI-101468 - Umwelt- und Ressourcenökonomie
M-WIWI-101485 - Verkehrsinfrastrukturpolitik und regionale Entwicklung

Lehrveranstaltungen

SS 2023 2560230 Transportökonomie 2 SWS Vorlesung (V) Mitusch, Szimba
SS 2023 2560231 Übung zu Transportökonomie 1 SWS Übung (Ü) Mitusch, Szimba, Wisotzky

Prüfungsveranstaltungen

SS 2023 7900275 Transportökonomie Mitusch

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60 min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Transportökonomie
2560230, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Inhalt

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Nachweis:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60 min. Prüfung in der vorlesungs­freien Zeit des Semesters (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Literaturhinweise

Literatur:
5.289 Teilleistung: Trustworthy Emerging Technologies [T-WIWI-113026]

Verantwortung: Prof. Dr. Ali Sunyaev
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (§ 4(2), 3 SPO). Details werden in der jeweiligen Lehrveranstaltung bekannt gegeben.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-109251 - Selected Issues in Critical Information Infrastructures darf nicht begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>V</th>
<th>Trustworthy Emerging Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511404, WS 23/24, SWS, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt
Informationen zur Anmeldung werden auf der Veranstaltungsseite bekanntgegeben.
5.290 Teilleistung: Ubiquitäre Informationstechnologien [T-INFO-101326]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100789 - Ubiquitäre Informationstechnologien
M-INFO-101203 - Wireless Networking
M-INFO-101210 - Dynamische IT-Infrastrukturen
M-WIWI-101458 - Ubiquitous Computing

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsserie</th>
<th>Code</th>
<th>Stunde</th>
<th>Lehrveranstaltungsart</th>
<th>Lehrveranstaltung</th>
<th>Turnus</th>
<th>Vorlesungsveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24146</td>
<td>2+1</td>
<td>VÜ</td>
<td>Ubiquitäre Informationstechnologien</td>
<td>Beigl</td>
<td>20 min.</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungsserie</th>
<th>Code</th>
<th>Datum</th>
<th>Lehrveranstaltung</th>
<th>Turnus</th>
<th>Vorlesungsveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500342_03.07.23</td>
<td>Ubiquitäre Informationstechnologien</td>
<td>Beigl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500351_27.11.2023</td>
<td>Ubiquitäre Informationstechnologien</td>
<td>Beigl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 min. nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ubiquitäre Informationstechnologien
24146, WS 23/24, 2+1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt

Beschreibung:
Die Vorlesung gibt einen Überblick über Konzepte, Theorien und Methoden der Ubiquitären Informationstechnologie (Ubiquitous Computing).

Lehrinhalt:

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Aktivität

Arbeitsaufwand
Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min
Präsenzzeit: Besuch der Übung
15 x 45 min
11 h 15 min
Vor- / Nachbereitung der Vorlesung und Übung
15 x 90 min
22 h 30 min
Selbstentwickeltes Konzept für eine Information Appliance entwickeln
33 h 45 min
Foliensatz 2x durchgehen
2 x 12 h
24 h 00 min
Prüfung vorbereiten
36 h 00 min
SUMME
150 h 00 min
Arbeitsaufwand für die Lerneinheit "Ubiquitäre Informationstechnologien"

Lernziele:
Ziel der Vorlesung ist es, Kenntnisse über Grundlagen und weitergehende Methoden und Techniken des Ubiquitous Computing zu vermitteln. Nach Abschluss der Vorlesung können die Studierenden

- das erlernte Wissen über existierende Ubiquitous Computing Systeme wiedergeben und erörtern.
• die allgemeinen Kenntnisse zu Ubiquitären Systemen bewerten und Aussagen und Gesetzmäßigkeiten auf Sonderfälle übertragen.
• unterschiedliche Methoden zu Design-Prozessen und Nutzerstudien bewerten und beurteilen sowie geeignete Methoden für die Entwicklung neuer Lösungen auswählen.
• selbst neue ubiquitäre Systeme für den Einsatz in Alltags- oder industriellen Prozessumgebungen erfinden, planen, entwerfen und bewerten sowie Aufwände und technische Implikationen bemessen.

Organisatorisches
Mündliche Prüfung nach Vereinbarung.
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von 20 min. nach § 4 Abs. 2 Nr. 2 SPO.
Vorlesung: Dienstags, 11:15 bis 13:00 Uhr (Corona-Online/Zoom: 12:00-13:30), Geb. 50.34, Raum -102. Übung: Mittwochs, 08:10 bis 09:30 Uhr (Corona-Online/Zoom: 8:10-9:30), Geb. 20.21, Raum 217 (Übung nicht wöchentlich sondern nach Vereinbarung)
5.291 Teilleistung: Übungsschein Mensch-Maschine-Interaktion [T-INFO-106257]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2400095</th>
<th>Mensch-Maschine-Interaktion</th>
<th>1 SWS</th>
<th>Übung (Ü) / 🕵️</th>
<th>Beigl, Lee</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24659</td>
<td>Mensch-Maschine-Interaktion</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🕵️</td>
<td>Beigl, Lee</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7500121 | Übungsschein Mensch-Maschine-Interaktion | Beigl |

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO (unbenoteter Übungsschein).
Für das Bestehen müssen regelmäßig Übungsblätter abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine.

Anmerkungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mensch-Maschine-Interaktion

24659, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Beschreibung:

Lehrinhalt:
Themenbereiche sind:

1. Wahrnehmung des Menschen (physiologische Grundlagen, menschliche Sinne, Gestalt)
2. Informationsverarbeitung des Menschen (HIP-Modelle, psychologische Grundlagen, Handlungsprozesse)
3. Designgrundlagen und Designmethoden, Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
4. Designanalyse von Mensch-Maschine Interaktion
5. Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen und Methoden zur Modellierung von Benutzungsschnittstellen
7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand:
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Aktivität
Arbeitsaufwand
Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min
Präsenzzeit: Besuch der Übung
8 x 90 min
12 h 00 min
Vor-/Nachbereitung der Vorlesung
15 x 150 min
37 h 30 min
Vor-/Nachbereitung der Übung
8 x 360 min
48 h 00 min
Foliensatz/Skriptum 2x durchgehen
2 x 12 h
24 h 00 min
Prüfung vorbereiten
36 h 00 min
SUMME
180 h 00 min
Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"

Lernziele:
Die Vorlesung führt in Grundlagen der Mensch-Maschine Kommunikation ein. Nach Abschluss der Veranstaltung können die Studierenden

• grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
• grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
• grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
• existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Organisatorisches
Die Vorlesung ist ein Stammmodul und wird schriftlich abgeprüft (Klausur).
Literaturhinweise
5.292 Teilleistung: Umwelt- und Ressourcenpolitik [T-WIWI-102616]

Verantwortung: Rainer Walz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101468 - Umwelt- und Ressourcenökonomie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2023 | 2560548 | Umwelt- und Ressourcenpolitik | 2 SWS | Vorlesung / Übung (VÜ) | Walz |

Prüfungsveranstaltungen

| SS 2023 | 7900277 | Umwelt- und Ressourcenpolitik | | Mitusch, Walz |

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Umwelt- und Ressourcenpolitik

2560548, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Literaturhinweise

Weiterführende Literatur:

- OECD: Environmental Performance Review Germany, Paris
5.293 Teilleistung: Umweltökonomik und Nachhaltigkeit [T-WIWI-102615]

Verantwortung: Prof. Dr. Rainer Walz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101468 - Umwelt- und Ressourcenökonomie

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Semesterwochenstunden (SWS)</th>
<th>Übung (VÜ)</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2521547</td>
<td>Umweltökonomik und Nachhaltigkeit (mit Übung)</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Walz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900273</td>
<td>Umweltökonomik und Nachhaltigkeit</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Es ist empfohlen schon Kenntnisse im Bereich Makro- und Mikroökonomik zu besitzen, diese können beispielsweise in den Veranstaltungen Volkswirtschaftslehre I (Mikroökonomie) [2600012] und Volkswirtschaftslehre II (Makroökonomie) [2600014] erworben werden.
5.294 Teilleistung: Umweltrecht [T-BGU-111102]

Verantwortung: Dr. Urich Smeddinck
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-WIWI-101468 - Umwelt- und Ressourcenökonomie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorausgabe</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Vorlesung/Vortrag/Übung</th>
<th>Voraussetzungen</th>
<th>Vorauspräsenz</th>
<th>Literaturquelle</th>
<th>Anmerkungen</th>
</tr>
</thead>
</table>
5.295 Teilleistung: Urheberrecht [T-INFO-101308]

Verantwortung: N.N.
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101215 - Recht des geistigen Eigentums

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungskennung</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>24121</td>
<td>Urheberrecht</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Sattler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltungskennung</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500064</td>
<td>Urheberrecht</td>
<td>2</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500064</td>
<td>Urheberrecht</td>
<td>2</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 SPO.

Voraussetzungen

keine

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Urheberrecht
24121, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Das Urheberrecht betrifft jeden: Wer auf Facebook oder seinem Blog postet, in der Bibliothek kopiert oder Filme auf seinem iPad oder Laptop schaut, gelangt in den Anwendungsbereich des Urheberrechts. Es beantwortet die Fragen: Was wird geschützt, was gehört zur public domain? Darf ich fremde Bilder posten, ohne abgemahnt zu werden? Was kann ich tun, wenn jemand ein Foto oder einen Text von meiner Seite genommen und ohne Zustimmung als seine eigenen Schaffen ausgegeben hat?

Die Vorlesung ist Teil des Masterstudiengangs Informationswirtschaft / Wirtschaftsinformatik sowie der Wahlfächer Recht anderer Fachrichtungen.

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt 90 h, davon 22,5 h Präsenz; 45 h Vor- und Nachbereitungszeit sowie 22,5 h für die Klausurvorbereitung.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 SPO.

Literaturhinweise
Schulze, Gernot: "Meine Rechte als Urheber", Verlag C.H.Beck, aktuelle Auflage

Weiterführende Literatur
Ergänzende Literatur wird in den Vorlesungsfolien angegeben.
5.296 Teilleistung: Valuation [T-WIWI-102621]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101480 - Finance 3
M-WIWI-101482 - Finance 1
M-WIWI-101483 - Finance 2
M-WIWI-101510 - Cross-Functional Management Accounting

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Modulnummer</th>
<th>Inhalt</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V)</td>
<td>2530212</td>
<td>Valuation</td>
<td>2</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Ruckes</td>
</tr>
<tr>
<td>Übungen (Ü)</td>
<td>2530213</td>
<td>Übungen zu Valuation</td>
<td>1</td>
<td>Übung (Ü) / Präsenz</td>
<td>Ruckes, Luedecke</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungstermin</th>
<th>Modulnummer</th>
<th>Inhalt</th>
<th>Prüfungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900072</td>
<td>Valuation</td>
<td>Vorlesung (V)</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7900057</td>
<td>Valuation</td>
<td>Vorlesung (V)</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Legende: ☑ Online, ☐ Präsenz/Online gemischt, ✔ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Im folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Valuation
2530212, WS 23/24, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Literaturhinweise
Weiterführende Literatur
5.297 Teilleistung: Verteiltes Rechnen [T-INFO-101298]

Verantwortung: Prof. Dr. Achim Streit
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101210 - Dynamische IT-Infrastrukturen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 23/24 | 2400050 | Verteiltes Rechnen | 2 SWS | Vorlesung (V) / 🗣 Streit, Krauß, Fischer |
| SS 2023 | 7500282 | Verteiltes Rechnen | | Streit |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle
• in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
• in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO stattfindet.

Voraussetzungen
Keine

Empfehlungen
Das Modul: Einführung in Rechnernetze wird vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Verteiltes Rechnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400050, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Vorlesung (V) Präsenz
Inhalt
In einem weiteren Themenblock werden Konzepte zum Management großer bzw. verteilter Daten vorgestellt. Dabei wird sowohl auf übliche Werkzeuge und Frameworks eingegangen, als auch auf den Lebenszyklus von Daten, deren Metadaten und die Daten-Speicherung.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO. Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle
• in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
• in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO stattfindet.
120 h / Semester, davon 30 h Präsenzzeit und 90 h Selbstlernen aufgrund der Komplexität des Stoffs

Literaturhinweise
5.298 Teilleistung: Vertragsgestaltung im IT-Bereich [T-INFO-102036]

Verantwortung: Michael Menk
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101216 - Recht der Wirtschaftsunternehmen

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung (V) / 🗣</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2411604</td>
<td>Vertragsgestaltung im IT-Bereich</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Menk</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500066</td>
<td>Vertragsgestaltung im IT-Bereich</td>
<td>3 SWS</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7500065</td>
<td>Vertragsgestaltung im IT-Bereich</td>
<td>3 SWS</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗣 Präsenz; X Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 SPO.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vertragsgestaltung im IT-Bereich
2411604, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung befasst sich mit Verträgen aus folgenden Bereichen:

- Verträge über Software
- Verträge des IT-Arbeitsrechts
- IT-Projekte und Outsourcing
- Internet-Verträge

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt bei 3 Leistungspunkten 90 h, davon 22,5 Präsenz.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 SPO.
Literaturhinweise

- Langenfeld, Gerrit Vertragsgestaltung Verlag C.H. Beck, III. Aufl. 2004
- Heussen, Benno Handbuch Vertragsverhandlung und Vertragsmanagement Verlag C.H. Beck, II. Aufl. 2002
- Schneider, Jochen Handbuch des EDV-Rechts Verlag Dr. Otto Schmidt KG, III. Aufl. 2002

Weiterführende Literatur

Ergänzende Literatur wird in den Vorlesungsfolien angegeben.
5.299 Teilleistung: Wärmewirtschaft [T-WIWI-102695]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101452 - Energiewirtschaft und Technologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3,5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistungspunkte</th>
<th>Prüfungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>2581001</td>
<td>Wärmewirtschaft</td>
<td>2</td>
<td></td>
<td>Vorlesung (V) / Fichtner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7981001</td>
<td>Wärmewirtschaft</td>
<td>Fichtner</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>7981001</td>
<td>Wärmewirtschaft</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🚀 Präsenz/Online gemischt, 📚 Präsenz, ☠ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 Minuten) oder mündlichen Prüfung (30 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine.

Empfehlungen

Keine

Anmerkungen

Zum Ende der Lehrveranstaltung findet ein Laborpraktikum statt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wärmewirtschaft

Vorlesung (V) 2581001, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Organisatorisches

Block, Seminarraum Standort West - siehe Institutsaußhang
5.300 Teilleistung: Web App Programming for Finance [T-WIWI-110933]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>TT-Prof. Dr. Julian Thimme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101480 - Finance 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Drittelnoten</td>
<td>Einmalig</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO. (Anmerkung: gilt nur für SPO 2015). Die Note setzt sich wie folgt zusammen: 50% Ergebnis des Projektes (R-Code), 50% Präsentation des Projektes.

Voraussetzungen
Keine

Empfehlungen
Die Inhalte der Bachelor-Veranstaltung Investments werden als bekannt vorausgesetzt und sind notwendig, um dem Kurs folgen zu können.
5.301 Teilleistung: Web-Anwendungen und Serviceorientierte Architekturen (II) [T-INFO-101271]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-104061 - Microservice-basierte Web-Anwendungen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Form</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>24677</td>
<td>Web-Anwendungen und Serviceorientierte Architekturen (II)</td>
<td>Vorlesung (V) / Prüfung</td>
<td>Abeck, Schneider, Sänger, Throner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7500138</td>
<td>Web-Anwendungen und Serviceorientierte Architekturen (II)</td>
<td>Abeck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer **mündlichen** Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO. Die Zulassung zur Prüfung erfolgt nur bei nachgewiesener Mitarbeit an den in der Vorlesung gestellten praktischen Aufgaben.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Web-Anwendungen und Serviceorientierte Architekturen (II)

24677, SS 2023, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V) Präsenz

Inhalt

Studierende, die die Vorlesung bei Prof. Abeck besuchen und prüfen lassen möchten, werden gebeten, eine **Interessensbekundungs-Mail** mit ihrer de-pseudonymisierten KIT-Mail-Adresse (siehe hierzu auch https://my.scc.kit.edu/shib/pseudonymisierung.php) an cm.research@lists.kit.edu zu schicken. Die WASA-Auftaktveranstaltung findet am Mittwoch, den 19.04.2023 um 09:45 Uhr in Gebäude 50.34 Raum 301 statt.

Zum Inhalt der Vorlesungen WASA1 und WASA2; weitere Details siehe WASA INTRODUCTION

WASA1 (Bachelor): Current concepts of software development and architectures (including Behavior-Driven Development, Domain-Driven Design, Microservices, RESTful Webservices, 12 Factor App, CI/CD Build Pipelines, DevOps, Container-virtualized Infrastructures) as well as related standards and technologies (including HTTP, Java, JavaScript/TypeScript, Angular, Spring, GitLab-CI, Docker, Kubernetes, Prometheus) are introduced which are needed to develop advanced (i.e. microservice-based, IoT aware, cloud-native, mobile) web applications. The web applications stem from different domains (Healthcare, ConnectedCar) and includes concepts from the domain of Internet of Things.

WASA2 (Master): A compact summary of the concepts covered by WASA1 is provided. In WASA2, Identity and Access Management (IAM) as an advanced topic is presented. IAM is a highly relevant for the digitization strategy of companies. In the lecture, leading IAM solutions and products are introduced to illustrate how the topics are solved in IT practice.
Literaturhinweise

5.302 Teilleistung: Wettbewerb in Netzen [T-WIWI-100005]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101406 - Netzwerkökonomie

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung (V) / 🕵️</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2561204</td>
<td>Wettbewerb in Netzen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🕵️</td>
<td>Mitusch</td>
</tr>
<tr>
<td>WS 23/24</td>
<td>2561205</td>
<td>Übung zu Wettbewerb in Netzen</td>
<td>1 SWS</td>
<td>Übung (U) / 🕵️</td>
<td>Wisotzky, Mitusch, Corbo</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2023</td>
<td>7900274</td>
<td>Wettbewerb in Netzen</td>
<td>1 SWS</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine.

Empfehlungen
Grundkenntnisse und Fertigkeiten der Mikroökonomie aus einem Bachelorstudium der Ökonomie werden vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Wettbewerb in Netzen
2561204, WS 23/24, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Arbeitsaufwand:
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135,0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45,0 Stunden
Prüfung und Prüfungsvorbereitung: 60,0 Stunden

Nachweis:

Literaturhinweise
Literatur und Skripte werden in der Veranstaltung angegeben.
5.303 Teilleistung: Workshop aktuelle Themen Strategie und Management [T-WIWI-106188]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103119 - Strategie und Management: Fortgeschrittene Themen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SEM</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>Workshop aktuelle Themen Strategie und Management (Master)</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗣</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Beurteilung der Leistung erfolgt über die aktive Diskussionsteilnahme in den Diskussionsrunden; hier kommt eine angemessene Vorbereitung zum Ausdruck und ein klares Verständnis für Thema und Framework wird erkennbar. Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch des Bachelor-Moduls „Strategie und Organisation“ oder eines Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen.

Anmerkungen
Die Lehrveranstaltung ist zulassungsbeschränkt. Im Falle einer vorherigen Zulassung zu einer anderen Lehrveranstaltung im Modul „Strategie und Management: Fortgeschrittene Themen“ wird die Teilnahme an dieser Veranstaltung garantiert.

Die Lehrveranstaltung wird voraussichtlich im WS17/18 erstmals angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Workshop aktuelle Themen Strategie und Management (Master)
2577923, WS 23/24, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Seminar (S)
Präsenz
Inhalt
Aspekte des strategischen Managements finden sich in einer Vielzahl tagesaktueller Geschehnisse. In dieser Lehrveranstaltung werden aktuelle strategische und industriepolitische Themen diskutiert sowie der Austausch über aktuelle Managementthemen gefördert.

Dafür werden im Vorhinein praxisrelevante Fallstudien und dedizierte Fragestellungen an die Studierenden kommuniziert, sodass sich diese auf die Diskussion individuell vorbereiten können. Das Lehrstuhltteam moderiert die Diskussion aktiv und kreiert typische Gesprächssituationen wie Pro-/ Contra-Diskussionen und widerstreitende Interessen verschiedener Gruppen, um gegensätzliche Meinungen in einen Austausch zu bringen und die Argumentationskraft zu fördern. So vermittelt die Diskussion nicht nur Wissen über die Inhalte, sondern stärkt auch die Fähigkeiten der Teilnehmenden durch eine Simulation realer Gesprächssituationen im Managementteam.

Darüber hinaus nehmen bei einzelnen Fallstudien Unternehmensvertreter und Managerinnen teil, um den inhaltlichen Kontext zu stärken und die tägliche Diskussionsdynamik in strategischen Geschäftsfeldern zu erfahren.

Lernziele:
Die Studierenden

- können strategische Entscheidungen mittels geeigneter Modelle der strategischen Unternehmensführung bewerten,
- sind in der Lage, theoretische Ansätze und Modelle im Bereich der strategischen Unternehmensführung darzustellen, kritisch zu bewerten und anhand von Praxisbeispielen zu veranschaulichen und
- haben die Fähigkeit ihre Position durch eine durchdachte Argumentationsweise in strukturierten Diskussionen überzeugend darlegen.

Empfehlungen:
Der vorherige Besuch des Bachelor-Moduls "Strategie und Organisation" oder eines anderen Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen.

Arbeitsaufwand:
Gesamtaufwand ca. 90 Stunden
Präsenzzeit: 15 Stunden
Vor-/Nachbereitung: 75 Stunden
Prüfung und Prüfungsvorbereitung: entfällt

Nachweis:
Die Beurteilung der Leistung erfolgt über die aktive Diskussionsteilnahme in den Diskussionsrunden; hier kommt eine angemessene Vorbereitung zum Ausdruck und ein klares Verständnis für Thema und Framework wird erkennbar. Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Anmerkung:

Die Prüfungen werden mindestens jedes zweite Semester angeboten, sodass das gesamte Modul in zwei Semestern abgeschlossen werden kann.
Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-103119 - Strategie und Management: Fortgeschrittene Themen

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Unregelmäßig
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2023</th>
<th>2577922</th>
<th>Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)</th>
<th>2 SWS</th>
<th>Seminar (S) / 🗣</th>
<th>Lindstädt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 23/24</td>
<td>2577922</td>
<td>Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)</td>
<td>2 SWS</td>
<td>Seminar (S) / 🗣</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2023 | 7900071 | Workshop Business Wargaming - Analyse strategischer Interaktionen | Lindstädt |

Legende: 🖥 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, 🗣 Abgesagt

Erfolgskontrolle(n)
In dieser Lehrveranstaltung werden reale Konfliktsituationen unter Zuhilfenahme verschiedener Methoden aus dem Business Wargaming simuliert und analysiert. Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch des Bachelor-Moduls „Strategie und Organisation“ oder eines Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen.

Anmerkungen
Die Lehrveranstaltung ist zulassungsbeschränkt. Im Falle einer vorherigen Zulassung zu einer anderen Lehrveranstaltung im Modul „Strategie und Management: Fortgeschrittene Themen“ wird die Teilnahme an dieser Veranstaltung garantiert.
Die Lehrveranstaltung wird voraussichtlich im SS 18 erstmals angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)
2577922, SS 2023, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Diese Lehrveranstaltung ermöglicht die Simulation strategischer Konflikte, in denen die Teilnehmer Rollen ausgewählter Akteure übernehmen. Mithilfe speziell programmiert der Wargaming-Software werden strategische Konflikte interaktiv simuliert und im Anschluss reflektiert und diskutiert.

Die Lehrveranstaltung fokussiert sich auf die Simulation und Analyse realer Konfliktsituationen mit strategischer Interaktion. Studierende erlangen ein besseres Verständnis der strukturellen Eigenschaften strategischer Konflikte in den Bereichen Wirtschaft und Politik sowie die Fähigkeit, eigene Handlungsstrategien abzuleiten.

Durch die Kombination von Gruppenarbeit, Simulation und Reflexion bietet das Seminar eine Lernerfahrung, bei der sowohl Teamfähigkeiten gestärkt als auch analytische Fähigkeiten bei strategischen Konflikten entwickelt werden. Nehmen Sie an diesem Seminar teil, um fundierte Einblicke in Konflikt dynamiken zu gewinnen und effektive Handlungsstrategien für komplexe Situationen zu entwickeln.

Lernziele
Nach Abschluss des Kurses sind die Studierenden in der Lage,

- die grundlegenden Methodiken, Besonderheiten und Vorteile des Business Wargamings erlernen
- das Verständnis von Konflikt dynamiken durch Reflektieren von strategischen Konflikten verbessern
- die analytischen Kompetenzen durch Verarbeiten von einer Vielzahl an Handlungsoptionen und Ableiten an Handlungsstrategien stärken

Empfehlungen:
Der vorherige Besuch des Bachelor-Moduls "Strategie und Organisation" oder eines anderen Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen.

Arbeitsaufwand:

- Gesamtaufwand ca. 90 Stunden
- Präsenzzeit: 15 Stunden
- Vor-/Nachbereitung: 75 Stunden
- Prüfung und Prüfungsvorbereitung: entfällt

Nachweis:
In dieser Lehrveranstaltung werden reale Konfliktsituationen unter Zuhilfenahme verschiedener Methoden aus dem Business Wargaming simuliert und analysiert. Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Anmerkung:

Die Prüfungen werden mindestens jedes zweite Semester angeboten, sodass das gesamte Modul in zwei Semestern abgeschlossen werden kann.

Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)
2577922, WS 23/24, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen
Inhalt
Diese Lehrveranstaltung ermöglicht die Simulation strategischer Konflikte, in denen die Teilnehmer Rollen ausgewählter Akteure übernehmen. Mithilfe speziell programmiert er Wargaming-Software werden strategische Konflikte interaktiv simuliert und im Anschluss reflektiert und diskutiert.

Die Lehrveranstaltung fokussiert sich auf die Simulation und Analyse realer Konfliktsituationen mit strategischer Interaktion. Studierende erlangen ein besseres Verständnis der strukturellen Eigenschaften strategischer Konflikte in den Bereichen Wirtschaft und Politik sowie die Fähigkeit, eigene Handlungsstrategien abzuleiten.

Durch die Kombination von Gruppenarbeit, Simulation und Reflexion bietet das Seminar eine Lernerfahrung, bei der sowohl Teamfähigkeiten gestärkt als auch analytische Fähigkeiten bei strategischen Konflikten entwickelt werden. Nehmen Sie an diesem Seminar teil, um fundierte Einblicke in Konflikt dynamiken zu gewinnen und effektive Handlungsstrategien für komplexe Situationen zu entwickeln.

Lernziele
Nach Abschluss des Kurses sind die Studierenden in der Lage,

- die grundlegenden Methodiken, Besonderheiten und Vorteilen des Business Wargamings zu erlernen
- das Verständnis von Konflikt dynamiken durch Reflektieren von strategischen Konflikten verbessern
- die analytischen Kompetenzen durch Verarbeiten von einer Vielzahl an Handlungsoptionen und Ableiten an Handlungsstrategien stärken

Empfehlungen:
Der vorherige Besuch des Bachelor-Moduls "Strategie und Organisation" oder eines anderen Moduls mit vergleichbaren Inhalten an einer anderen Hochschule wird empfohlen.

Arbeitsaufwand:
- Gesamtaufwand ca. 90 Stunden
- Präsenzzeit: 15 Stunden
- Vor-/Nachbereitung: 75 Stunden
- Prüfung und Prüfungsvorbereitung: entfällt

Nachweis:
In dieser Lehrveranstaltung werden reale Konfliktsituationen unter Zuhilfenahme verschiedener Methoden aus dem Business Wargaming simuliert und analysiert. Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Anmerkung:

Die Prüfungen werden mindestens jedes zweite Semester angeboten, sodass das gesamte Modul in zwei Semestern abgeschlossen werden kann.