Table Of Contents

1. General information ... 10
 1.1. Structural elements .. 10
 1.2. Begin and completion of a module .. 10
 1.3. Module versions .. 10
 1.4. General and partial examinations ... 10
 1.5. Types of exams .. 10
 1.6. Repeating exams .. 11
 1.7. Examiners ... 11
 1.8. Additional accomplishments .. 11
 1.9. Further information .. 11
 1.10. Contact persons .. 11

2. The Master's degree program in Information Engineering and Management .. 12
 2.1. Qualification objectives of the Master's program in Information Engineering and Management 12
 2.2. Structure of the Master's degree program in Information Engineering and Management SPO 2015 12

3. Field of study structure ... 14
 3.1. Master's Thesis .. 14
 3.2. Informatics ... 15
 3.3. Economics and Management ... 18
 3.4. Law ... 20
 3.5. Research Course .. 21

4. Modules ... 22
 4.1. Advanced Algorithms: Design and Analysis - M-INFO-101199 .. 22
 4.2. Advanced Algorithms: Engineering and Applications - M-INFO-101200 ... 23
 4.3. Advanced Machine Learning and Data Science - M-WIWI-105659 ... 24
 4.4. Advanced Topics in Cryptography - M-INFO-101198 ... 25
 4.5. Advanced Topics in Public Finance - M-WIWI-101511 ... 26
 4.6. Advanced Topics in Strategy and Management - M-WIWI-103119 ... 27
 4.7. Algorithm Engineering - M-INFO-100795 ... 28
 4.9. Algorithmic Methods for Network Analysis - M-INFO-102400 .. 31
 4.10. Algorithms for Routing - M-INFO-100031 .. 32
 4.11. Algorithms for Visualization of Graphs - M-INFO-102094 .. 33
 4.15. Artificial Intelligence - M-WIWI-105366 ... 37
 4.16. Automated Planning and Scheduling - M-INFO-104447 .. 38
 4.18. Autonomous Robotics - M-INFO-101251 ... 40
 4.21. Communication and Database Systems - M-INFO-101178 .. 43
 4.22. Computational Complexity Theory, with a View Towards Cryptography - M-INFO-101575 44
 4.23. Computational Geometry - M-INFO-102110 .. 45
 4.25. Critical Digital Infrastructures - M-WIWI-104403 .. 47
 4.27. Data Privacy: From Anonymization to Access Control - M-INFO-104045 ... 49
 4.28. Data Science - M-INFO-106505 .. 50
 4.29. Data Science: Data-Driven Information Systems - M-WIWI-103117 ... 51
 4.30. Data Science: Data-Driven User Modeling - M-WIWI-103118 .. 53
 4.31. Data Science: Evidence-based Marketing - M-WIWI-101647 ... 54
 4.32. Data Science: Intelligent, Adaptive, and Learning Information Services - M-WIWI-105661 55
 4.33. Database as a Service - M-INFO-105724 ... 56
 4.34. Deep Learning and Neural Networks - M-INFO-104460 .. 57
 4.35. Deployment of Database Systems - M-INFO-100780 ... 58
 4.36. Designing Interactive Information Systems - M-WIWI-104080 ... 59
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101477</td>
<td>Development of Business Information Systems</td>
<td>60</td>
</tr>
<tr>
<td>M-INF-102978</td>
<td>Digital Circuits Design</td>
<td>61</td>
</tr>
<tr>
<td>M-WIWI-106258</td>
<td>Digital Marketing</td>
<td>62</td>
</tr>
<tr>
<td>M-WIWI-102808</td>
<td>Digital Service Systems in Industry</td>
<td>63</td>
</tr>
<tr>
<td>M-INF-101210</td>
<td>Dynamic IT-Infrastructures</td>
<td>64</td>
</tr>
<tr>
<td>M-WIWI-101638</td>
<td>Econometrics and Statistics I</td>
<td>65</td>
</tr>
<tr>
<td>M-WIWI-101639</td>
<td>Econometrics and Statistics II</td>
<td>66</td>
</tr>
<tr>
<td>M-WIWI-101502</td>
<td>Economic Theory and its Application in Finance</td>
<td>67</td>
</tr>
<tr>
<td>M-WIWI-103720</td>
<td>eEnergy: Markets, Services and Systems</td>
<td>68</td>
</tr>
<tr>
<td>M-WIWI-101409</td>
<td>Electronic Markets</td>
<td>69</td>
</tr>
<tr>
<td>M-WIWI-101451</td>
<td>Energy Economics and Energy Markets</td>
<td>71</td>
</tr>
<tr>
<td>M-WIWI-101452</td>
<td>Energy Economics and Technology</td>
<td>72</td>
</tr>
<tr>
<td>M-WIWI-101488</td>
<td>Entrepreneurship (EnTechnon)</td>
<td>73</td>
</tr>
<tr>
<td>M-WIWI-101468</td>
<td>Environmental Economics</td>
<td>75</td>
</tr>
<tr>
<td>M-WIWI-101505</td>
<td>Experimental Economics</td>
<td>76</td>
</tr>
<tr>
<td>M-WIWI-101482</td>
<td>Finance 1</td>
<td>77</td>
</tr>
<tr>
<td>M-WIWI-101483</td>
<td>Finance 2</td>
<td>78</td>
</tr>
<tr>
<td>M-WIWI-101480</td>
<td>Finance 3</td>
<td>80</td>
</tr>
<tr>
<td>M-INF-100799</td>
<td>Formal Systems</td>
<td>82</td>
</tr>
<tr>
<td>M-INF-100744</td>
<td>Formal Systems II: Application</td>
<td>83</td>
</tr>
<tr>
<td>M-INF-100841</td>
<td>Formal Systems II: Theory</td>
<td>84</td>
</tr>
<tr>
<td>M-WIWI-101205</td>
<td>Future Networking</td>
<td>86</td>
</tr>
<tr>
<td>M-INF-100730</td>
<td>Geometric Optimization</td>
<td>87</td>
</tr>
<tr>
<td>M-WIWI-101496</td>
<td>Growth and Agglomeration</td>
<td>88</td>
</tr>
<tr>
<td>M-INF-100725</td>
<td>Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy</td>
<td>89</td>
</tr>
<tr>
<td>M-INF-100729</td>
<td>Human Computer Interaction</td>
<td>90</td>
</tr>
<tr>
<td>M-WIWI-104520</td>
<td>Human Factors in Security and Privacy</td>
<td>91</td>
</tr>
<tr>
<td>M-WIWI-105923</td>
<td>Incentives, Interactivity & Decisions in Organizations</td>
<td>93</td>
</tr>
<tr>
<td>M-WIWI-101471</td>
<td>Industrial Production I</td>
<td>94</td>
</tr>
<tr>
<td>M-WIWI-101412</td>
<td>Industrial Production II</td>
<td>96</td>
</tr>
<tr>
<td>M-WIWI-101443</td>
<td>Information Engineering and Management</td>
<td>98</td>
</tr>
<tr>
<td>M-WIWI-104068</td>
<td>Information Systems in Organizations</td>
<td>99</td>
</tr>
<tr>
<td>M-WIWI-101478</td>
<td>Innovation and Growth</td>
<td>100</td>
</tr>
<tr>
<td>M-WIWI-101514</td>
<td>Innovation Economics</td>
<td>101</td>
</tr>
<tr>
<td>M-WIWI-101507</td>
<td>Innovation Management</td>
<td>102</td>
</tr>
<tr>
<td>M-INF-101208</td>
<td>Innovative Concepts of Data and Information Management</td>
<td>104</td>
</tr>
<tr>
<td>M-INF-101215</td>
<td>Intellectual Property Law</td>
<td>105</td>
</tr>
<tr>
<td>M-WIWI-101456</td>
<td>Intelligent Systems and Services</td>
<td>106</td>
</tr>
<tr>
<td>M-INF-100736</td>
<td>Introduction to Video Analysis</td>
<td>107</td>
</tr>
<tr>
<td>M-INF-106315</td>
<td>IT Security</td>
<td>108</td>
</tr>
<tr>
<td>M-INF-103302</td>
<td>Lab: Graph Visualization in Practice</td>
<td>110</td>
</tr>
<tr>
<td>M-INF-102072</td>
<td>Laboratory Course Algorithm Engineering</td>
<td>111</td>
</tr>
<tr>
<td>M-INF-100806</td>
<td>Language Technology and Compiler</td>
<td>112</td>
</tr>
<tr>
<td>M-WIWI-103356</td>
<td>Machine Learning</td>
<td>113</td>
</tr>
<tr>
<td>M-INF-105778</td>
<td>Machine Learning - Foundations and Algorithms</td>
<td>114</td>
</tr>
<tr>
<td>M-INF-101239</td>
<td>Machine Vision</td>
<td>115</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Management Accounting</td>
<td>116</td>
</tr>
<tr>
<td>M-WIWI-101446</td>
<td>Market Engineering</td>
<td>117</td>
</tr>
<tr>
<td>M-WIWI-105312</td>
<td>Marketing and Sales Management</td>
<td>118</td>
</tr>
<tr>
<td>M-WIWI-101473</td>
<td>Mathematical Programming</td>
<td>119</td>
</tr>
<tr>
<td>M-INF-100812</td>
<td>Mesbes and Point Clouds</td>
<td>121</td>
</tr>
<tr>
<td>M-WIWI-101500</td>
<td>Microeconomic Theory</td>
<td>122</td>
</tr>
<tr>
<td>M-INF-104061</td>
<td>Microservice-Based Web Applications</td>
<td>123</td>
</tr>
<tr>
<td>M-INF-100785</td>
<td>Mobile Communication</td>
<td>124</td>
</tr>
<tr>
<td>M-WIWI-101656</td>
<td>Module Master’s Thesis</td>
<td>125</td>
</tr>
<tr>
<td>M-WIWI-101406</td>
<td>Network Economics</td>
<td>127</td>
</tr>
<tr>
<td>M-INF-100782</td>
<td>Network Security: Architectures and Protocols</td>
<td>128</td>
</tr>
<tr>
<td>M-INF-101206</td>
<td>Networking</td>
<td>129</td>
</tr>
</tbody>
</table>
Table Of Contents

4.96. Networking Labs - M-INFO-101204 .. 130
4.99. Optimization under Uncertainty in Information Engineering and Management - M-WIWI-103243 134
4.100. Parallel Algorithms - M-INFO-100796 ... 135
4.101. Pattern Recognition - M-INFO-100825 .. 137
4.102. Practical Course: Data Science - M-INFO-105632 ... 138
4.103. Practical Course: Data Science for Scientific Data - M-INFO-106329 ... 139
4.104. Practical Course: Database Systems - M-INFO-101662 .. 140
4.105. Practical Course: Geometric Modeling - M-INFO-101666 .. 141
4.106. Practical Course: Smart Data Analytics - M-INFO-103235 ... 142
4.107. Private Business Law - M-INFO-101216 .. 143
4.108. Project Lab Applied Machine Learning - M-WIWI-106491 ... 144
4.110. Robotics I - Introduction to Robotics - M-INFO-100893 ... 146
4.111. Seminar Module Economic Sciences - M-WIWI-102736 ... 147
4.112. Seminar Module Informatics - M-INFO-102822 ... 148
4.113. Seminar Module Law - M-INFO-101218 ... 149
4.114. Seminar: Computer Science TECO - M-INFO-105328 .. 150
4.115. Service Analytics - M-WIWI-101506 .. 151
4.116. Service Design Thinking - M-WIWI-101503 .. 152
4.117. Service Economics and Management - M-WIWI-102754 .. 154
4.118. Service Innovation, Design & Engineering - M-WIWI-102806 .. 155
4.119. Service Management - M-WIWI-101448 ... 157
4.120. Service Operations - M-WIWI-102805 .. 158
4.121. Software Methods - M-INFO-101202 .. 160
4.122. Software Systems - M-INFO-101201 .. 161
4.123. Stochastic Optimization - M-WIWI-103289 ... 162
4.124. Telematics - M-INFO-100801 ... 164
4.125. Theory and Practice of Data Warehousing and Mining - M-INFO-101256 ... 165
4.126. Transport Infrastructure Policy and Regional Development - M-WIWI-101485 .. 166
4.127. Ubiquitous Computing - M-WIWI-101458 ... 167
4.128. Ubiquitous Computing - M-INFO-100789 ... 168
4.129. Wearable Robotic Technologies - M-INFO-103294 ... 169
4.130. Web and Data Science - M-WIWI-105368 ... 170
4.131. Web Data Management - M-WIWI-101455 ... 171
4.132. Wireless Networking - M-INFO-101203 .. 172

5. Courses ... 173
5.1. Advanced Empirical Asset Pricing - T-WIWI-110513 ... 173
5.2. Advanced Game Theory - T-WIWI-102861 ... 175
5.3. Advanced Information Systems - T-WIWI-110373 .. 176
5.4. Advanced Lab Blockchain Hackathon (Master) - T-WIWI-111126 ... 177
5.5. Advanced Lab in Ubiquitous Computing - T-WIWI-102761 ... 178
5.6. Advanced Lab Informatics (Master) - T-WIWI-110548 .. 179
5.7. Advanced Lab Realization of Innovative Services (Master) - T-WIWI-112914 .. 184
5.8. Advanced Lab Security, Usability and Society - T-WIWI-108439 ... 185
5.9. Advanced Machine Learning - T-WIWI-109921 ... 190
5.10. Advanced Machine Learning and Data Science - T-WIWI-111305 ... 192
5.11. Advanced Management Accounting - T-WIWI-102885 ... 193
5.13. Advanced Stochastic Optimization - T-WIWI-106548 ... 196
5.14. Advanced Topics in Digital Management - T-WIWI-111912 .. 197
5.15. Advanced Topics in Economic Theory - T-WIWI-102609 ... 199
5.16. Advanced Topics in Human Resource Management - T-WIWI-111913 .. 200
5.17. Algorithm Engineering - T-INFO-101332 .. 202
5.18. Algorithm Engineering Pass - T-INFO-111856 ... 203
5.19. Algorithmic Methods for Hard Optimization Problems - T-INFO-103334 ... 204
5.20. Algorithmic Methods for Network Analysis - T-INFO-104759 ... 205
5.22. Algorithms for Visualization of Graphs - T-INFO-104390 .. 207
Table Of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.23. Algorithms II · T/INFO-102020</td>
<td>208</td>
</tr>
<tr>
<td>5.25. Applied Econometrics · T/WIWI-111388</td>
<td>210</td>
</tr>
<tr>
<td>5.26. Applied material flow simulation · T/MACH-112213</td>
<td>211</td>
</tr>
<tr>
<td>5.27. Artificial Intelligence in Service Systems · T/WIWI-108715</td>
<td>213</td>
</tr>
<tr>
<td>5.28. Artificial Intelligence in Service Systems · Applications in Computer Vision · T/WIWI-111219</td>
<td>215</td>
</tr>
<tr>
<td>5.29. Asset Pricing · T/WIWI-102647</td>
<td>217</td>
</tr>
<tr>
<td>5.30. Asymmetric Encryption Schemes · T/INFO-101260</td>
<td>218</td>
</tr>
<tr>
<td>5.31. Auction Theory · T/WIWI-102613</td>
<td>219</td>
</tr>
<tr>
<td>5.32. Automated Planning and Scheduling · T/INFO-109085</td>
<td>220</td>
</tr>
<tr>
<td>5.33. Automated Visual Inspection and Image Processing · T/INFO-101363</td>
<td>221</td>
</tr>
<tr>
<td>5.34. Basics of German Company Tax Law and Tax Planning · T/WIWI-108711</td>
<td>222</td>
</tr>
<tr>
<td>5.35. Behavioral Lab Exercise · T/WIWI-111806</td>
<td>223</td>
</tr>
<tr>
<td>5.36. Biologically Inspired Robots · T/INFO-101351</td>
<td>224</td>
</tr>
<tr>
<td>5.37. Biometric Systems for Person Identification · T/INFO-101297</td>
<td>225</td>
</tr>
<tr>
<td>5.38. Blockchains & Cryptofinance · T/WIWI-108880</td>
<td>226</td>
</tr>
<tr>
<td>5.39. Bond Markets · T/WIWI-110995</td>
<td>227</td>
</tr>
<tr>
<td>5.40. Bond Markets · Models & Derivatives · T/WIWI-110997</td>
<td>228</td>
</tr>
<tr>
<td>5.41. Bond Markets · Tools & Applications · T/WIWI-110996</td>
<td>229</td>
</tr>
<tr>
<td>5.42. Business Administration in Information Engineering and Management · T/WIWI-102886</td>
<td>230</td>
</tr>
<tr>
<td>5.43. Business Data Analytics: Application and Tools · T/WIWI-109863</td>
<td>231</td>
</tr>
<tr>
<td>5.44. Business Data Strategy · T/WIWI-106187</td>
<td>232</td>
</tr>
<tr>
<td>5.45. Business Dynamics · T/WIWI-102762</td>
<td>233</td>
</tr>
<tr>
<td>5.46. Business Intelligence Systems · T/WIWI-105777</td>
<td>234</td>
</tr>
<tr>
<td>5.47. Business Models in the Internet: Planning and Implementation · T/WIWI-102639</td>
<td>236</td>
</tr>
<tr>
<td>5.48. Business Planning · T/WIWI-102865</td>
<td>237</td>
</tr>
<tr>
<td>5.49. Business Strategies of Banks · T/WIWI-102626</td>
<td>239</td>
</tr>
<tr>
<td>5.50. Case Studies Seminar: Innovation Management · T/WIWI-102852</td>
<td>240</td>
</tr>
<tr>
<td>5.51. Challenges in Supply Chain Management · T/WIWI-102872</td>
<td>241</td>
</tr>
<tr>
<td>5.52. Competition in Networks · T/WIWI-100005</td>
<td>242</td>
</tr>
<tr>
<td>5.53. Computational Complexity Theory, with a View Towards Cryptography · T/INFO-103014</td>
<td>243</td>
</tr>
<tr>
<td>5.54. Computational Geometry · T/INFO-104429</td>
<td>244</td>
</tr>
<tr>
<td>5.55. Computer Contract Law · T/INFO-102036</td>
<td>245</td>
</tr>
<tr>
<td>5.56. Consulting in Practice · T/INFO-101975</td>
<td>246</td>
</tr>
<tr>
<td>5.57. Context Sensitive Systems · T/INFO-107499</td>
<td>247</td>
</tr>
<tr>
<td>5.58. Convex Analysis · T/WIWI-102856</td>
<td>248</td>
</tr>
<tr>
<td>5.59. Cooperative Autonomous Vehicles · T/WIWI-112690</td>
<td>250</td>
</tr>
<tr>
<td>5.60. Copyright · T/INFO-101308</td>
<td>251</td>
</tr>
<tr>
<td>5.61. Corporate Compliance · T/INFO-101288</td>
<td>252</td>
</tr>
<tr>
<td>5.62. Corporate Financial Policy · T/WIWI-102622</td>
<td>253</td>
</tr>
<tr>
<td>5.63. Corporate Risk Management · T/WIWI-109050</td>
<td>254</td>
</tr>
<tr>
<td>5.64. Critical Information Infrastructures · T/WIWI-109248</td>
<td>255</td>
</tr>
<tr>
<td>5.65. Cryptographic Voting Schemes · T/INFO-101279</td>
<td>256</td>
</tr>
<tr>
<td>5.66. Data and Storage Management · T/INFO-101276</td>
<td>257</td>
</tr>
<tr>
<td>5.67. Data Privacy: From Anonymization to Access Control · T/INFO-108377</td>
<td>258</td>
</tr>
<tr>
<td>5.68. Data Science · T/INFO-113124</td>
<td>259</td>
</tr>
<tr>
<td>5.69. Database as a Service · T/INFO-111400</td>
<td>260</td>
</tr>
<tr>
<td>5.70. Database Systems · T/INFO-101497</td>
<td>261</td>
</tr>
<tr>
<td>5.71. Database Systems and XML · T/WIWI-102661</td>
<td>262</td>
</tr>
<tr>
<td>5.72. Deep Learning and Neural Networks · T/INFO-109124</td>
<td>264</td>
</tr>
<tr>
<td>5.73. Deep Learning for Computer Vision I: Basics · T/INFO-111491</td>
<td>265</td>
</tr>
<tr>
<td>5.74. Demand-Driven Supply Chain Planning · T/WIWI-110971</td>
<td>266</td>
</tr>
<tr>
<td>5.75. Deployment of Database Systems · T/INFO-101317</td>
<td>267</td>
</tr>
<tr>
<td>5.76. Derivatives · T/WIWI-102643</td>
<td>268</td>
</tr>
<tr>
<td>5.77. Design Thinking · T/WIWI-102866</td>
<td>269</td>
</tr>
<tr>
<td>5.78. Designing Interactive Systems · T/WIWI-110851</td>
<td>271</td>
</tr>
<tr>
<td>5.79. Development of Sustainable Business Models · T/WIWI-112143</td>
<td>273</td>
</tr>
<tr>
<td>5.80. Digital Circuits Design · T/INFO-103469</td>
<td>274</td>
</tr>
<tr>
<td>5.81. Digital Democracy · T/WIWI-113160</td>
<td>275</td>
</tr>
<tr>
<td>5.82. Digital Health · T/WIWI-109246</td>
<td>276</td>
</tr>
<tr>
<td>Page</td>
<td>Table Of Contents</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>5.83</td>
<td>Digital Marketing - T-WIWI-112693 .. 277</td>
</tr>
<tr>
<td>5.84</td>
<td>Digital Marketing and Sales in B2B - T-WIWI-106981 ... 278</td>
</tr>
<tr>
<td>5.85</td>
<td>Digital Services: Innovation & Business Models - T-WIWI-112757 .. 279</td>
</tr>
<tr>
<td>5.86</td>
<td>Digital Signatures - T-INFO-101280 ... 281</td>
</tr>
<tr>
<td>5.87</td>
<td>Digital Transformation and Business Models - T-WIWI-108875 .. 282</td>
</tr>
<tr>
<td>5.88</td>
<td>Discrete-Event Simulation in Production and Logistics - T-WIWI-102718 ... 283</td>
</tr>
<tr>
<td>5.89</td>
<td>Distributed Computing - T-INFO-101298 ... 285</td>
</tr>
<tr>
<td>5.90</td>
<td>Dynamic Macroeconomics - T-WIWI-109194 ... 286</td>
</tr>
<tr>
<td>5.91</td>
<td>Economics of Innovation - T-WIWI-112822 ... 287</td>
</tr>
<tr>
<td>5.92</td>
<td>Efficient Energy Systems and Electric Mobility - T-WIWI-102793 .. 289</td>
</tr>
<tr>
<td>5.93</td>
<td>eFinance: Information Systems for Securities Trading - T-WIWI-110797 ... 290</td>
</tr>
<tr>
<td>5.94</td>
<td>Emerging Trends in Digital Health - T-WIWI-110144 ... 291</td>
</tr>
<tr>
<td>5.95</td>
<td>Emerging Trends in Internet Technologies - T-WIWI-110143 ... 292</td>
</tr>
<tr>
<td>5.96</td>
<td>Emissions into the Environment - T-WIWI-102634 ... 293</td>
</tr>
<tr>
<td>5.97</td>
<td>Employment Law - T-INFO-111436 ... 294</td>
</tr>
<tr>
<td>5.98</td>
<td>Energy and Environment - T-WIWI-102650 ... 295</td>
</tr>
<tr>
<td>5.100</td>
<td>Energy Networks and Regulation - T-WIWI-107503 ... 297</td>
</tr>
<tr>
<td>5.101</td>
<td>Energy Systems Analysis - T-WIWI-102830 ... 299</td>
</tr>
<tr>
<td>5.102</td>
<td>Energy Trading and Risk Management - T-WIWI-112151 .. 300</td>
</tr>
<tr>
<td>5.103</td>
<td>Engineering Interactive Systems - T-WIWI-110877 ... 302</td>
</tr>
<tr>
<td>5.104</td>
<td>Entrepreneurial Leadership & Innovation Management - T-WIWI-102833 ... 303</td>
</tr>
<tr>
<td>5.105</td>
<td>Entrepreneurship - T-WIWI-102864 ... 304</td>
</tr>
<tr>
<td>5.106</td>
<td>Entrepreneurship Research - T-WIWI-102894 ... 307</td>
</tr>
<tr>
<td>5.107</td>
<td>Entrepreneurship Seasonal School - T-WIWI-113151 ... 308</td>
</tr>
<tr>
<td>5.108</td>
<td>Environmental and Resource Policy - T-WIWI-102616 ... 310</td>
</tr>
<tr>
<td>5.109</td>
<td>Environmental Economics and Sustainability - T-WIWI-102615 ... 311</td>
</tr>
<tr>
<td>5.110</td>
<td>Environmental Law - T-BGU-111102 ... 312</td>
</tr>
<tr>
<td>5.111</td>
<td>European and International Law - T-INFO-101312 ... 313</td>
</tr>
<tr>
<td>5.112</td>
<td>Experimental Economics - T-WIWI-102614 ... 314</td>
</tr>
<tr>
<td>5.113</td>
<td>Extraordinary Additional Course in the Module Cross-Functional Management Accounting - T-WIWI-108651 ... 315</td>
</tr>
<tr>
<td>5.114</td>
<td>Financial Analysis - T-WIWI-102900 ... 316</td>
</tr>
<tr>
<td>5.115</td>
<td>Financial Econometrics - T-WIWI-103064 ... 317</td>
</tr>
<tr>
<td>5.116</td>
<td>Financial Econometrics II - T-WIWI-110939 ... 319</td>
</tr>
<tr>
<td>5.117</td>
<td>Financial Intermediation - T-WIWI-102623 ... 320</td>
</tr>
<tr>
<td>5.118</td>
<td>Firm creation in IT security - T-WIWI-110374 ... 321</td>
</tr>
<tr>
<td>5.119</td>
<td>Formal Systems - T-INFO-101336 ... 322</td>
</tr>
<tr>
<td>5.120</td>
<td>Formal Systems II: Application - T-INFO-101281 ... 323</td>
</tr>
<tr>
<td>5.121</td>
<td>Formal Systems II: Theory - T-INFO-101378 ... 324</td>
</tr>
<tr>
<td>5.122</td>
<td>Fundamentals for Financial -Quart and -Machine Learning Research - T-WIWI-111846 ... 325</td>
</tr>
<tr>
<td>5.123</td>
<td>Fundamentals of National and International Group Taxation - T-WIWI-111304 ... 326</td>
</tr>
<tr>
<td>5.124</td>
<td>Geometric Optimization - T-INFO-101267 ... 327</td>
</tr>
<tr>
<td>5.125</td>
<td>Global Manufacturing - T-WIWI-112103 ... 328</td>
</tr>
<tr>
<td>5.126</td>
<td>Global Optimization I - T-WIWI-102726 ... 329</td>
</tr>
<tr>
<td>5.127</td>
<td>Global Optimization I and II - T-WIWI-103638 ... 331</td>
</tr>
<tr>
<td>5.128</td>
<td>Global Optimization II - T-WIWI-102727 ... 334</td>
</tr>
<tr>
<td>5.129</td>
<td>Graph Theory and Advanced Location Models - T-WIWI-102723 ... 336</td>
</tr>
<tr>
<td>5.130</td>
<td>Growth and Development - T-WIWI-112816 ... 337</td>
</tr>
<tr>
<td>5.131</td>
<td>Heat Economy - T-WIWI-102695 ... 339</td>
</tr>
<tr>
<td>5.133</td>
<td>Human Factors in Security and Privacy - T-WIWI-109270 ... 341</td>
</tr>
<tr>
<td>5.134</td>
<td>Human-Machine-Interaction - T-INFO-101266 ... 342</td>
</tr>
<tr>
<td>5.135</td>
<td>Human-Machine-Interaction Pass - T-INFO-106257 ... 343</td>
</tr>
<tr>
<td>5.136</td>
<td>Incentives in Organizations - T-WIWI-105781 ... 344</td>
</tr>
<tr>
<td>5.137</td>
<td>Information Service Engineering - T-WIWI-106423 ... 346</td>
</tr>
<tr>
<td>5.138</td>
<td>Innovation Management: Concepts, Strategies and Methods - T-WIWI-102893 ... 348</td>
</tr>
<tr>
<td>5.139</td>
<td>Integrated Network and Systems Management - T-INFO-101284 ... 349</td>
</tr>
<tr>
<td>5.140</td>
<td>Intelligent Agent Architectures - T-WIWI-111267 ... 350</td>
</tr>
<tr>
<td>5.141</td>
<td>Intelligent Agents and Decision Theory - T-WIWI-110915 ... 352</td>
</tr>
</tbody>
</table>
Table Of Contents

5.142. International Business Development and Sales - T-WIWI-110985 .. 355
5.143. International Finance - T-WIWI-102646 ... 356
5.144. Internet Law - T-INFO-101307 .. 357
5.145. Internet of Everything - T-INFO-101337 ... 358
5.146. Introduction in Computer Networks - T-INFO-102015 ... 359
5.147. Introduction to Bayesian Statistics for Analyzing Data - T-WIWI-110918 360
5.148. Introduction to Stochastic Optimization - T-WIWI-106546 .. 361
5.149. Introduction to Video Analysis - T-INFO-101273 ... 362
5.150. IT Security - T-INFO-112818 .. 363
5.151. IT-Security Management for Networked Systems - T-INFO-101323 .. 364
5.152. Joint Entrepreneurship Summer School - T-WIWI-109064 .. 365
5.154. KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics - T-WIWI-111109 367
5.155. Knowledge Discovery - T-WIWI-102666 ... 368
5.156. Lab: Graph Visualization in Practice - T-INFO-106580 .. 370
5.157. Laboratory Course Algorithm Engineering - T-INFO-104374 ... 371
5.158. Language Technology and Compiler - T-INFO-101343 ... 372
5.159. Large-scale Optimization - T-WIWI-106549 ... 373
5.160. Liberalised Power Markets - T-WIWI-107043 .. 374
5.163. Machine Learning 1 - Basic Methods - T-WIWI-106340 .. 379
5.164. Machine Learning 2 – Advanced Methods - T-WIWI-106341 ... 381
5.166. Management Accounting 1 - T-WIWI-102800 .. 384
5.167. Management Accounting 2 - T-WIWI-102801 .. 386
5.168. Management of IT-Projects - T-WIWI-112599 .. 388
5.170. Market Research - T-WIWI-107720 .. 391
5.171. Marketing Analytics - T-WIWI-103139 ... 393
5.172. Marketing Strategy Business Game - T-WIWI-102835 ... 395
5.173. Master's Thesis - T-WIWI-103142 .. 396
5.174. Mathematics for High Dimensional Statistics - T-WIWI-111247 ... 397
5.175. Media Management - T-WIWI-112711 ... 398
5.176. Meshes and Point Clouds - T-INFO-101349 ... 399
5.177. Methods in Economic Dynamics - T-WIWI-102906 ... 400
5.179. Mixed Integer Programming I - T-WIWI-102719 ... 403
5.180. Mixed Integer Programming II - T-WIWI-102720 .. 405
5.181. Mobile Communication - T-INFO-101322 .. 406
5.182. Model Driven Software Development - T-INFO-101278 .. 407
5.183. Modeling and OR-Software: Advanced Topics - T-WIWI-106200 .. 408
5.184. Modeling and Simulation - T-WIWI-112685 .. 409
5.185. Multicriteria Optimization - T-WIWI-111587 ... 411
5.186. Multivariate Statistical Methods - T-WIWI-103124 ... 412
5.188. Next Generation Internet - T-INFO-101321 .. 414
5.189. Non- and Semiparametrics - T-WIWI-103126 .. 415
5.190. Nonlinear Optimization I - T-WIWI-102724 .. 416
5.191. Nonlinear Optimization I and II - T-WIWI-103637 .. 418
5.192. Nonlinear Optimization II - T-WIWI-102725 ... 420
5.193. Online Concepts for Karlsruhe City Retailers - T-WIWI-111848 ... 422
5.196. Optimization Models and Applications - T-WIWI-110162 .. 426
5.197. Optimization under Uncertainty - T-WIWI-106545 ... 427
5.198. Panel Data - T-WIWI-103127 ... 428
5.199. Parallel Algorithms - T-INFO-101333 ... 429
5.200. Parallel Algorithms Pass - T-INFO-111857 .. 430
5.201. Parallel Computer Systems and Parallel Programming - T-INFO-101345 431
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.262</td>
<td>Seminar: IT - Security Law - T-INFO-111404</td>
</tr>
<tr>
<td>5.263</td>
<td>Seminar: Legal Studies I - T-INFO-101997</td>
</tr>
<tr>
<td>5.264</td>
<td>Service Design Thinking - T-WIWI-102849</td>
</tr>
<tr>
<td>5.265</td>
<td>Service Innovation - T-WIWI-102641</td>
</tr>
<tr>
<td>5.266</td>
<td>Signals and Codes - T-INFO-101360</td>
</tr>
<tr>
<td>5.267</td>
<td>Simulation Game in Energy Economics - T-WIWI-108016</td>
</tr>
<tr>
<td>5.268</td>
<td>Smart Energy Infrastructure - T-WIWI-107464</td>
</tr>
<tr>
<td>5.269</td>
<td>Smart Grid Applications - T-WIWI-107504</td>
</tr>
<tr>
<td>5.270</td>
<td>Social Choice Theory - T-WIWI-102859</td>
</tr>
<tr>
<td>5.271</td>
<td>Sociotechnical Information Systems Development - T-WIWI-109249</td>
</tr>
<tr>
<td>5.272</td>
<td>Software Architecture and Quality - T-INFO-101381</td>
</tr>
<tr>
<td>5.273</td>
<td>Software Quality Management - T-WIWI-102895</td>
</tr>
<tr>
<td>5.274</td>
<td>Software-Evolution - T-INFO-101256</td>
</tr>
<tr>
<td>5.275</td>
<td>Spatial Economics - T-WIWI-103107</td>
</tr>
<tr>
<td>5.276</td>
<td>Special Topics in Information Systems - T-WIWI-109940</td>
</tr>
<tr>
<td>5.277</td>
<td>Startup Experience - T-WIWI-111561</td>
</tr>
<tr>
<td>5.278</td>
<td>Statistical Modeling of Generalized Regression Models - T-WIWI-103065</td>
</tr>
<tr>
<td>5.279</td>
<td>Stochastic Calculus and Finance - T-WIWI-103129</td>
</tr>
<tr>
<td>5.280</td>
<td>Strategic Finance and Technology Change - T-WIWI-110511</td>
</tr>
<tr>
<td>5.281</td>
<td>Strategic Management of Information Technology - T-WIWI-102669</td>
</tr>
<tr>
<td>5.282</td>
<td>Strategy and Management Theory: Developments and “Classics” - T-WIWI-106190</td>
</tr>
<tr>
<td>5.283</td>
<td>Successful Transformation Through Innovation - T-WIWI-111823</td>
</tr>
<tr>
<td>5.284</td>
<td>Supplement Enterprise Information Systems - T-WIWI-110346</td>
</tr>
<tr>
<td>5.285</td>
<td>Supply Chain Management in the Automotive Industry - T-WIWI-102828</td>
</tr>
<tr>
<td>5.286</td>
<td>Supply Chain Management with Advanced Planning Systems - T-WIWI-102763</td>
</tr>
<tr>
<td>5.287</td>
<td>Symmetric Encryption - T-INFO-101390</td>
</tr>
<tr>
<td>5.288</td>
<td>Tax Law - T-INFO-111437</td>
</tr>
<tr>
<td>5.289</td>
<td>Technologies for Innovation Management - T-WIWI-102854</td>
</tr>
<tr>
<td>5.290</td>
<td>Technology Assessment - T-WIWI-102858</td>
</tr>
<tr>
<td>5.291</td>
<td>Telecommunications and Internet – Economics and Policy - T-WIWI-113147</td>
</tr>
<tr>
<td>5.292</td>
<td>Telecommunications Law - T-INFO-101309</td>
</tr>
<tr>
<td>5.293</td>
<td>Telematics - T-INFO-101338</td>
</tr>
<tr>
<td>5.294</td>
<td>Topics in Experimental Economics - T-WIWI-102863</td>
</tr>
<tr>
<td>5.295</td>
<td>Topics in Stochastic Optimization - T-WIWI-112109</td>
</tr>
<tr>
<td>5.296</td>
<td>Trademark and Unfair Competition Law - T-INFO-101313</td>
</tr>
<tr>
<td>5.297</td>
<td>Transport Economics - T-WIWI-100007</td>
</tr>
<tr>
<td>5.298</td>
<td>Trustworthy Emerging Technologies - T-WIWI-113026</td>
</tr>
<tr>
<td>5.299</td>
<td>Ubiquitous Computing - T-INFO-101326</td>
</tr>
<tr>
<td>5.300</td>
<td>Valuation - T-WIWI-102621</td>
</tr>
<tr>
<td>5.301</td>
<td>Wearable Robotic Technologies - T-INFO-106557</td>
</tr>
<tr>
<td>5.302</td>
<td>Web App Programming for Finance - T-WIWI-110933</td>
</tr>
<tr>
<td>5.303</td>
<td>Web Applications and Service-Oriented Architectures (II) - T-INFO-101271</td>
</tr>
<tr>
<td>5.304</td>
<td>Workshop Business Wargaming – Analyzing Strategic Interactions - T-WIWI-106189</td>
</tr>
<tr>
<td>5.305</td>
<td>Workshop Current Topics in Strategy and Management - T-WIWI-106188</td>
</tr>
</tbody>
</table>
1 General information

Welcome to the new module handbook of your study program! We are delighted that you have decided to study at the KIT Department of Economics and Management and wish you a good start into the new semester! In the following we would like to give you a short introduction to the most important terms and rules that are important in connection with the choice of modules, courses and examinations.

1.1 Structural elements

The program exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.2 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.3 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student’s "binding declaration" on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive at http://www.wiwi.kit.edu/Archiv_MHB.php.

1.4 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.5 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.
1.6 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can be repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after losing the examination claim. For further information see http://www.wiwi.kit.edu/hinweiseZweitwdh.php.

1.7 Examiners

The examination committee has appointed the KIT examiners and lecturers listed in the module handbook for the modules and their courses as examiners for the courses they offer.

1.8 Additional accomplishments

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Additional accomplishments with at most 30 CP may appear additionally in the certificate.

1.9 Further information

For current information about studying at the KIT Department of Economics and Management, please visit our website www.wiwi.kit.edu as well as Instagram, LinkedIn, and YouTube. Please also see current notices and announcements for students at: https://www.wiwi.kit.edu/studium.php.

Information around the legal and official framework of the study program can be found in the respective study and examination regulations of your study program. These are available under the Official Announcements of KIT (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

1.10 Contact persons

for Bachelor students

Personal consultation: KIT Department of Informatics, Informatics Study Program Service
Informatics Building 50.34, EG, Rooms 001.2/.3
bachelor@wirtschaftsinformatik.kit.edu

for master students

Personal consultation: KIT Department of Economics and Management, Examination Office
Gebäude am Kronenplatz Building 05.20, 3rd floor, Room 3C-05
master@wirtschaftsinformatik.kit.edu

editorial responsibility:

Dr. André Wiesner, KIT Department of Economics and Management
Phone: +49 721 608-44061
modul@wiwi.kit.edu
2 The Master's degree program in Information Engineering and Management

2.1 Qualification objectives of the Master's program in Information Engineering and Management

Graduates of the interdisciplinary, four-semester Master's program in Information Engineering and Management have an advanced and in-depth research-based knowledge in the fields of informatics, economics and law as well as subject-independent competences that can be applied across multiple disciplines.

By combining their knowledge and competences, they are in a position to independently acknowledge economic and IT opportunities and development potentials for innovative change of structures and processes and implement them within the applicable legal framework. They are able to analyze, structure and describe complex, field-related problems and challenges.

They know how to identify advantages and disadvantages of existing procedures, models, technologies and approaches, compare alternatives, evaluate critically and apply the findings to new application areas.

If necessary, they are also in a position to combine different approaches, adapt them accordingly or even independently develop and apply new and innovative solutions.

They know how to critically interpret, validate and illustrate the achieved results.

Their decisions are made independently based on scientific facts under consideration of social and ethical aspects.

The graduates can communicate with expert representatives on a scientific level and even assume prominent responsibility in a team. Karlsruhe's Infonomics experts are characterized by their interdisciplinary methodological skills and innovative abilities.

Their qualifications are perfectly ideal particularly for interdisciplinary occupations in the fields of Information and Communication Technology (ICT), controlling, consulting, management and organization, for starting and management of firms as well as a downstream scientific career (PhD).

2.2 Structure of the Master's degree program in Information Engineering and Management SPO 2015

The Master's degree program in Information Engineering and Management has 4 terms. The terms 1 to 3 of the program are method-oriented and provide the students with state-of-the-art knowledge in informatics, business administration, operations research, economics, statistics and law. The interdisciplinary approach is especially emphasized in the interdisciplinary seminar.

It is recommended to study the courses in the following sequence:

- The (mandatory) modules in business administration and operations research should be studied in the first two terms of the program.
- The interdisciplinary seminar module should be taken until the end of the third term of the program.
- The (elective) modules from business administration, economics, operations research, and statistics, from informatics, and from law should be studied in the first three terms of the program.
- The 4-th term is reserved for the Master Thesis in which the student proves his ability for independent scientific research in informatics, the economic sciences, and law.

Figure 2 shows a summary of this recommendation with the structure of the disciplines and with credit points allocated to the modules of the program.
Structure of the Master's degree program in Information Engineering and Management SPO 2015 (Recommendation)

<table>
<thead>
<tr>
<th>Term</th>
<th>Credits</th>
<th>Informatics</th>
<th>Economics and Management</th>
<th>Law</th>
<th>Research Course</th>
<th>Master Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Electives</td>
<td>Compulsory</td>
<td>Electives</td>
<td>Electives</td>
<td>Electives</td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>INFO 8 CP</td>
<td>BUS 10 CP</td>
<td>OR 5 CP</td>
<td>Law 9 CP</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30,5</td>
<td>INFO 8 CP</td>
<td>BUS 9 CP</td>
<td></td>
<td>Law 9 CP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32,5</td>
<td>INFO 9 CP</td>
<td>BUS/ECON/ OR/STAT 9 CP</td>
<td></td>
<td>2 Seminars 3 CP + 3 CP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Master Thesis</td>
</tr>
</tbody>
</table>

Figure 2: Structure of the Master's degree program in Information Engineering and Management SPO 2015 (Recommendation)
3 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's Thesis</td>
<td>30 CR</td>
</tr>
<tr>
<td>Informatics</td>
<td>33 CR</td>
</tr>
<tr>
<td>Economics and Management</td>
<td>33 CR</td>
</tr>
<tr>
<td>Law</td>
<td>18 CR</td>
</tr>
<tr>
<td>Research Course</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

3.1 Master's Thesis

Mandatory

<table>
<thead>
<tr>
<th>M-WIWI-101656</th>
<th>Module Master's Thesis</th>
<th>30 CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Informatics</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Title</td>
<td>Credits</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>M-INFO-101199</td>
<td>Advanced Algorithms: Design and Analysis</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101200</td>
<td>Advanced Algorithms: Engineering and Applications</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100795</td>
<td>Algorithm Engineering</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100031</td>
<td>Algorithms for Routing</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-102094</td>
<td>Algorithms for Visualization of Graphs</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101173</td>
<td>Algorithms II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-102110</td>
<td>Computational Geometry</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101237</td>
<td>Algorithmic Methods for Hard Optimization Problems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-102400</td>
<td>Algorithmic Methods for Network Analysis</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101256</td>
<td>Theory and Practice of Data Warehousing and Mining</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-103294</td>
<td>Wearable Robotic Technologies</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-WIWI-105366</td>
<td>Artificial Intelligence</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-104447</td>
<td>Automated Planning and Scheduling</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100826</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101251</td>
<td>Autonomous Robotics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104403</td>
<td>Critical Digital Infrastructures</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-106505</td>
<td>Data Science neu</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-100780</td>
<td>Deployment of Database Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-105724</td>
<td>Database as a Service</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101662</td>
<td>Practical Course: Database Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-104045</td>
<td>Data Privacy: From Anonymization to Access Control</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-104460</td>
<td>Deep Learning and Neural Networks</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-102978</td>
<td>Digital Circuits Design</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101210</td>
<td>Dynamic IT-Infrastructures</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100736</td>
<td>Introduction to Video Analysis</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-101477</td>
<td>Development of Business Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100799</td>
<td>Formal Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100744</td>
<td>Formal Systems II: Application</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100841</td>
<td>Formal Systems II: Theory</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101198</td>
<td>Advanced Topics in Cryptography</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101205</td>
<td>Future Networking</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-100730</td>
<td>Geometric Optimization</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-104520</td>
<td>Human Factors in Security and Privacy</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101208</td>
<td>Innovative Concepts of Data and Information Management</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-WIWI-101456</td>
<td>Intelligent Systems and Services</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-106315</td>
<td>IT Security</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101178</td>
<td>Communication and Database Systems</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-101575</td>
<td>Computational Complexity Theory, with a View Towards Cryptography</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100728</td>
<td>Context Sensitive Systems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101239</td>
<td>Machine Vision</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103356</td>
<td>Machine Learning</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-105778</td>
<td>Machine Learning - Foundations and Algorithms</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100729</td>
<td>Human Computer Interaction</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-104061</td>
<td>Microservice-Based Web Applications</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-100785</td>
<td>Mobile Communication</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100825</td>
<td>Pattern Recognition</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101206</td>
<td>Networking</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-101204</td>
<td>Networking Labs</td>
<td>9 CR</td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Name</td>
<td>Credits</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>M-INFO-100812</td>
<td>Meshes and Point Clouds</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101207</td>
<td>Networking Security - Theory and Praxis</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100796</td>
<td>Parallel Algorithms</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-102072</td>
<td>Laboratory Course Algorithm Engineering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-105632</td>
<td>Practical Course: Data Science</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-106329</td>
<td>Practical Course: Data Science for Scientific Data</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101666</td>
<td>Practical Course: Geometric Modeling</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-103302</td>
<td>Lab: Graph Visualization in Practice</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-103235</td>
<td>Practical Course: Smart Data Analytics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-105328</td>
<td>Seminar: Computer Science TECO</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101202</td>
<td>Software Methods</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101201</td>
<td>Software Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100806</td>
<td>Language Technology and Compiler</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-100801</td>
<td>Telematics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100789</td>
<td>Ubiquitous Computing</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-WIWI-101458</td>
<td>Ubiquitous Computing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105368</td>
<td>Web and Data Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101455</td>
<td>Web Data Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-101203</td>
<td>Wireless Networking</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-WIWI-106491</td>
<td>Project Lab Applied Machine Learning</td>
<td>5 CR</td>
</tr>
</tbody>
</table>
3.3 Economics and Management

<p>| Credits | 33 |</p>
<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101443 Information Engineering and Management</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-WIWI-103243 Optimization under Uncertainty in Information Engineering and Management</td>
<td>5 CR</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Modules in Economics and Management (Selection: 9 credits)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-105659 Advanced Machine Learning and Data Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101637 Analytics and Statistics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101453 Applied Strategic Decisions</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101410 Business & Service Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101504 Collective Decision Making</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101498 Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101510 Cross-Functional Management Accounting</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103117 Data Science: Data-Driven Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103118 Data Science: Data-Driven User Modeling</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101647 Data Science: Evidence-based Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105661 Data Science: Intelligent, Adaptive, and Learning Information Services</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104080 Designing Interactive Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-106258 Digital Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102808 Digital Service Systems in Industry</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103720 eEnergy: Markets, Services and Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101409 Electronic Markets</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101452 Energy Economics and Technology</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101488 Entrepreneurship (EnTechnon)</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101505 Experimental Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101482 Finance 1</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101483 Finance 2</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101480 Finance 3</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105923 Incentives, Interactivity & Decisions in Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101471 Industrial Production II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101412 Industrial Production III</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104068 Information Systems in Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101478 Innovation and Growth</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101507 Innovation Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101514 Innovation Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101446 Market Engineering</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105312 Marketing and Sales Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101473 Mathematical Programming</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101500 Microeconomic Theory</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101406 Network Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101638 Econometrics and Statistics I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101639 Econometrics and Statistics II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101502 Economic Theory and its Application in Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102832 Operations Research in Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101506 Service Analytics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101503 Service Design Thinking</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101448 Service Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102754 Service Economics and Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102805 Service Operations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102806 Service Innovation, Design & Engineering</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
3.4 Law

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INF-101215</td>
<td>Intellectual Property Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INF-101216</td>
<td>Private Business Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INF-101217</td>
<td>Public Business Law</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
3.5 Research Course

<table>
<thead>
<tr>
<th>Research Courses Choose (2 out of 3 Modules) (Election: 2 items)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101218 Seminar Module Law</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-102822 Seminar Module Informatics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-102736 Seminar Module Economic Sciences</td>
<td>3 CR</td>
</tr>
</tbody>
</table>
4 Modules

4.1 Module: Advanced Algorithms: Design and Analysis [M-INFO-101199]

Responsible: Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Design and Analysis / Engineering and Applications (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101334</td>
<td>Algorithms in Cellular Automata</td>
<td>5 CR</td>
<td>Worsch</td>
</tr>
<tr>
<td>T-INFO-101331</td>
<td>Randomized Algorithms</td>
<td>5 CR</td>
<td>Worsch</td>
</tr>
<tr>
<td>T-INFO-101333</td>
<td>Parallel Algorithms</td>
<td>4 CR</td>
<td>Sanders</td>
</tr>
<tr>
<td>T-INFO-103334</td>
<td>Algorithmic Methods for Hard Optimization Problems</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-INFO-104390</td>
<td>Algorithms for Visualization of Graphs</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-INFO-104374</td>
<td>Laboratory Course Algorithm Engineering</td>
<td>6 CR</td>
<td>Sanders, Ueckerdt, Wagner</td>
</tr>
<tr>
<td>T-INFO-101332</td>
<td>Algorithm Engineering</td>
<td>4 CR</td>
<td>Sanders, Wagner</td>
</tr>
<tr>
<td>T-INFO-100002</td>
<td>Algorithms for Routing</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-INFO-111856</td>
<td>Algorithm Engineering Pass</td>
<td>1 CR</td>
<td>Sanders, Wagner</td>
</tr>
<tr>
<td>T-INFO-111857</td>
<td>Parallel Algorithms Pass</td>
<td>1 CR</td>
<td>Sanders</td>
</tr>
</tbody>
</table>

Competence Goal

The student

- knows advanced methodical approaches with respect to the design and analysis of algorithms,
- can comment on theoretical aspects of algorithmics in a qualified and well-structured manner,
- identifies algorithmic problems from different areas and can formulate these formally,
- can analyze and judge the computational complexity of algorithmic problems from different areas,
- can recognize and design suitable algorithmic techniques to solve algorithmic problems.

Content

This module conveys profound knowledge concerning theoretical aspects of algorithmics. Its focus is on the design and analysis of advanced algorithms, particularly, on algorithms for graphs, randomized algorithms, parallel algorithms and algorithms for NP-hard problems.

Workload

approx. 270h
4.2 Module: Advanced Algorithms: Engineering and Applications [M-INFO-101200]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Engineering and Applications / Design and Analysis
(Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-100002</td>
<td>Algorithms for Routing</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-INFO-101332</td>
<td>Algorithm Engineering</td>
<td>4 CR</td>
<td>Sanders, Wagner</td>
</tr>
<tr>
<td>T-INFO-101333</td>
<td>Parallel Algorithms</td>
<td>4 CR</td>
<td>Sanders</td>
</tr>
<tr>
<td>T-INFO-103334</td>
<td>Algorithmic Methods for Hard Optimization Problems</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-INFO-104374</td>
<td>Laboratory Course Algorithm Engineering</td>
<td>6 CR</td>
<td>Sanders, Ueckerdt, Wagner</td>
</tr>
<tr>
<td>T-INFO-104390</td>
<td>Algorithms for Visualization of Graphs</td>
<td>5 CR</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-INFO-101331</td>
<td>Randomized Algorithms</td>
<td>5 CR</td>
<td>Worsch</td>
</tr>
<tr>
<td>T-INFO-111856</td>
<td>Algorithm Engineering Pass</td>
<td>1 CR</td>
<td>Sanders, Wagner</td>
</tr>
<tr>
<td>T-INFO-111857</td>
<td>Parallel Algorithms Pass</td>
<td>1 CR</td>
<td>Sanders</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
The Student

- knows advanced methodical approaches concerning the design of algorithms and their applications,
- can comment on the practical aspects of algorithmics in a qualified and well-structured manner,
- identifies algorithmic problems from different areas of application and can formulate these formally,
- can judge the computational complexity of algorithmic problems,
- recognizes suitable algorithmic techniques for solving these problems and can transfer and apply knowledge of these techniques to new problems,
- can implement solutions based on algorithmic techniques for practical problems and can evaluate these

Content
This module conveys profound knowledge concerning practical aspects of algorithmics and covers applications of algorithms for practical problems. Its focus is on the design, the practical implementation and the evaluation of algorithms, particularly, algorithms for graphs, parallel algorithms, algorithms for NP-hard problems, optimization algorithms inspired by nature, as well as algorithms from various areas of application.

Workload
270h
4.3 Module: Advanced Machine Learning and Data Science [M-WIWI-105659]

Responsible: Prof. Dr. Maxim Ulrich

Organisation: KIT Department of Economics and Management

Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111305</td>
<td>Advanced Machine Learning and Data Science</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Due to the professor's research sabbatical, the BSc module "Financial Data Science" and MSc module "Foundations for Advanced Financial -Quant and -Machine Learning Research" and the MSc module "Advanced Machine Learning and Data Science" along with the respective examinations will not be offered in SS2023. Bachelor and Master thesis projects are not affected and will be supervised.

The assessment is carried out in an alternative form. The final grade is evaluated based on the intermediate presentations during the project, the quality of the implementation, the final written thesis and a final presentation.

Prerequisites

see T-WIWI-106193 "Advanced Machine Learning and Data Science".

Competence Goal

After a successful project, the students can:

- select and apply modern machine learning methods to solve a data science problem;
- organize themselves in a team in a goal-oriented manner and bring an extensive software project in the field of data science and machine learning to success;
- deepen their data science and machine learning skills
- solve a finance problem with the help of data science and machine learning algorithm.

Content

The course is targeted at students with a major in Data Science and/or Machine Learning and/or Quantitative Finance. It offers students the opportunity to develop hands-on knowledge on new developments in the intersection of quantitative financial markets, data science and machine learning. The result of the project should not only be a final thesis, but the implementation of methods or development of an algorithm in machine learning and data science. Typically, problems and data are taken from current research and innovations in the field of quantitative asset and risk management.

Workload

Total effort for 9 credit points: approx. 270 hours are divided into the following parts: Communication: Exchange during the project: 30 h; Final presentation: 10 h; Implementation and thesis: Preparation before development (Problem analysis and solution design): 70 h; Solution implementation: 110 h; Tests and quality assurance: 50 h.

Recommendation

None
4.4 Module: Advanced Topics in Cryptography [M-INFO-101198]

Responsible: Prof. Dr. Jörn Müller-Quade
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Advanced Topics in Cryptography (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101373</td>
<td>Selected Topics in Cryptography</td>
<td>3 CR</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101260</td>
<td>Asymmetric Encryption Schemes</td>
<td>3 CR</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101259</td>
<td>Provable Security in Cryptography</td>
<td>3 CR</td>
<td>Hofheinz</td>
</tr>
<tr>
<td>T-INFO-101280</td>
<td>Digital Signatures</td>
<td>3 CR</td>
<td>Hofheinz</td>
</tr>
<tr>
<td>T-INFO-101279</td>
<td>Cryptographic Voting Schemes</td>
<td>3 CR</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101360</td>
<td>Signals and Codes</td>
<td>3 CR</td>
<td>Müller-Quade</td>
</tr>
<tr>
<td>T-INFO-101390</td>
<td>Symmetric Encryption</td>
<td>3 CR</td>
<td>Müller-Quade</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
The student

- will be familiar with the theoretical foundations and the basic mechanisms of computer security and cryptography,
- can understand and explain the methods of computer security and cryptography,
- will be able to read and understand the latest scientific papers,
- will be able to critically assess appropriate security solutions, and identify weaknesses / threats,
- can design an own security solution to a given problem, (eg. later in the a master's thesis).

Content
The module is intended to provide depth theoretical and practical aspects of IT security and cryptography.

- Development of safety goals and classification of threats.
- Formal description of authentication systems.
- Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective methods / avoidance strategies.
- Overview of opportunities for side channel attacks.
- Introduction to key management and Public Key Infrastructure.
- Presentation and comparison of current safety certifications.
- The current research issues from some of the following areas are covered:
 - Block ciphers, hash functions.
 - Public-key encryption, digital signature, key exchange.
 - Basic security protocols such as fair coin toss over the phone, Byzantine Agreement, Dutch Flower Auctions, Zero Knowledge.
 - Threat models and security definitions.
 - Modular design and protocol composition.
 - Security definitions of simulatability.
 - Universal Composability.
 - Deniability as an additional safety feature.
 - Electronic Voting.
4.5 Module: Advanced Topics in Public Finance [M-WIWI-101511]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Electives (Election: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4.5 CR</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management</td>
<td>4.5 CR</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: between 0 and 1 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111304</td>
<td>Fundamentals of National and International Group Taxation</td>
<td>4.5 CR</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4.5 CR</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

At least one of the courses "Public Management" or "Basics of German Company Tax Law and Tax Planning" is mandatory in the module and must be successfully examined.

Competence Goal

The student

- understands the theory and politics of taxation
- has knowledge in the area of public debt.
- understands efficiency problems of public organizations.
- is able to work on fiscal problems.

Content

As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs.

In the course of the lectures within this module the students achieve knowledge in the areas of public revenues, national and international law of taxation and theory of public sector organizations.

Annotation

The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Students who successfully passed the exam in „Public Management” before the introduction of the module "Advanced Topics in Public Finance" in winter term 2014/15 are allowed to take both courses "Public Revenues" and "Specific Aspects in Taxation".

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

Basic knowledge in the area of public finance and public management is required.
4.6 Module: Advanced Topics in Strategy and Management [M-WIWI-103119]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106188</td>
<td>Workshop Current Topics in Strategy and Management</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-WIWI-106189</td>
<td>Workshop Business Wargaming – Analyzing Strategic Interactions</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-WIWI-106190</td>
<td>Strategy and Management Theory: Developments and "Classics"</td>
<td>3 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students

- are able to analyze business strategies and derive recommendations using appropriate frameworks
- learn to express their position through compelling reasoning in structured discussions
- are qualified to critically examine recent research topics in the field of strategic management
- can derive own conclusions from less structured information by using interdisciplinary knowledge

Content

The module is divided into three main topics:

The students

- analyze and discuss a wide range of business strategies on the basis of collectively selected case studies.
- participate in a business wargaming workshop and analyze strategic interactions.
- write a paper about current topics in the field of strategic management theory.

Annotation

This course is admission restricted. After being admitted to one course of this module, the participation at the other courses will be guaranteed.

Every course of this module will be at least offered every second term. Thus, it will be possible to complete the module within two terms.

Recommendation

None
4.7 Module: Algorithm Engineering [M-INFO-100795]

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101332</td>
<td>Algorithm Engineering</td>
<td>4 CR</td>
<td>T-INFO-101332</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-INFO-111856</td>
<td>Algorithm Engineering Pass</td>
<td>1 CR</td>
<td></td>
<td>German/English</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

There are two partial achievements Algorithm Engineering and Algorithm Engineering Exercises. The partial achievement Algorithm Engineering Exercises must be started to be allowed to take the oral examination for Algorithm Engineering.

Competence Goal

The students acquire a systematic understanding of algorithmic problems and solution approaches in the field of Algorithm Engineering, building on existing knowledge in the subject area of algorithms. In addition, they will be able to apply learned techniques to related problems and interpret and comprehend current research topics in the field of Algorithm Engineering.

Upon successful completion of the course, the student will be able to

- Explain terms, structures, basic problem definitions, and algorithms from the lecture;
- Select which algorithms and data structures are suitable for solving an algorithmic problem and, if necessary, adapt them to the requirements of a specific problem;
- Execute algorithms and data structures, analyze them mathematically precise and prove the algorithmic properties;
- Explain machine models from the lecture and analyze algorithms and data structures according to these models;
- Analyze new problems from applications, reduce them to their algorithmic core and create a suitable abstract model; based on the concepts and techniques learned in the lecture, design and analyze own solutions in this model, and prove algorithmic properties in this model.

Content

- What is Algorithm Engineering, Motivation etc.
- Realistic modeling of machines and applications
- Practice-oriented algorithm design
- Implementation techniques
- Experimental techniques
- Evaluation of measurements

The above skills are taught primarily using concrete examples. In the past these were for example the following topics from the area of basic algorithms and data structures:

- Linked lists without special cases
- Sorting: parallel, external, superscalar,...
- Priority queues (cache efficient,...)
- Search trees for integer keys
- Full text indexes
- Graph algorithms: minimal spanning trees (external,...), route planning

In each of these cases, the focus is on the best known practical and theoretical methods. These usually differ considerably from the methods taught in beginners' lectures.
Workload
Lecture and exercise with a combined 3 semester hours, 5 ECTS
5 ECTS correspond to about 150h of work, split into
about 45h visiting lectures and exercise or block seminar
about 25h preparation and follow-up on lectures
about 40h solving exercise tasks (programming, preparing presentation for mini seminar, etc)
about 40h exam preparation
4.8 Module: Algorithmic Methods for Hard Optimization Problems [M-INFO-101237]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
| T-INFO-103334 | Algorithmic Methods for Hard Optimization Problems | 5 CR | Wagner |

Competence Goal
The goal of this course is to familiarize the students with hard problems and possible approaches to solve them. Online problems may also be part of the course.

Content
There are many practical problems that cannot be solved optimally - some not at all and some not in a reasonable amount of time. An example is the "bin packing problem" where a collection of objects must be packed using a possibly small number of bins. Moreover, problems sometimes arise where knowledge about the future (or even about the present) is incomplete, but a decision is required nevertheless ("online problems"). Regarding bin packing, for example, there must be a point in time when you close the bins and send them away. Even if there are some more objects arriving later.
Module: Algorithmic Methods for Network Analysis [M-INFO-102400]

Responsible: Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-104759 | Algorithmic Methods for Network Analysis | 5 CR | Ueckerdt, Wagner |

Workload

150 h
4.10 Module: Algorithms for Routing [M-INFO-100031]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-100002</td>
<td>Algorithms for Routing</td>
<td>5 CR</td>
<td>Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.11 Module: Algorithms for Visualization of Graphs [M-INFO-102094]

Responsible: Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-104390 | Algorithms for Visualization of Graphs | 5 CR | Wagner |

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
M 4.12 Module: Algorithms II [M-INFO-101173]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102020</td>
<td>Algorithms II</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
The student has an in-depth insight into the theoretical and practical aspects of algorithms and is able to identify and formally formulate algorithmic problems in various application areas. Furthermore, they know advanced algorithms and data structures from the areas of graph algorithms, algorithmic geometry, string matching, algebraic algorithms, combinatorial optimization, and external memory algorithms. They are able to independently understand algorithms they are unfamiliar with, associate them with the above areas, apply them, determine their running time, evaluate them, and select appropriate algorithms for given applications. Furthermore, the student is able to adapt existing algorithms to related problems. In addition to algorithms for concrete problems, the student knows advanced techniques of algorithmic design. This includes parameterized algorithms, approximation algorithms, online algorithms, randomized algorithms, parallel algorithms, linear programming, and algorithm engineering techniques. For given algorithms, the student is able to identify techniques used to better understand these algorithms. In addition, they are able to select appropriate techniques for a given problem and use them to design their own algorithms.

Content
This module is designed to provide students with the basic theoretical and practical aspects of algorithm design, analysis, and engineering. It teaches general methods for designing and analyzing algorithms for basic algorithmic problems, as well as the basic principles of general algorithmic methods such as approximation algorithms, linear programming, randomized algorithms, parallel algorithms, and parameterized algorithms.

Workload
Lecture with 3 semester hours + 1 semester hour exercise
6 ECTS correspond to about 180 hours
about 45h visiting the lectures
about 15h visiting the exercises
about 90h follow-up of lectures and solving the exercise sheets
about 30h preparation for the exam
4.13 Module: Analytics and Statistics [M-WIWI-101637]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td>4.5 CR</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-111247</td>
<td>Mathematics for High Dimensional Statistics</td>
<td>4.5 CR</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Statistical Methods</td>
<td>4.5 CR</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103123</td>
<td>Advanced Statistics</td>
<td>4.5 CR</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-112109</td>
<td>Topics in Stochastic Optimization</td>
<td>4.5 CR</td>
<td>Rebbennack</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

A Student

- Deepens the knowledge of descriptive and inferential statistics.
- Deals with simulation methods.
- Learns basic and advanced methods of statistical analysis of multivariate and high-dimensional data.

Content

- Deriving estimates and testing hypotheses
- Stochastic processes
- Multivariate statistics, copulas
- Dependence measures
- Dimension reduction
- High-dimensional methods
- Prediction

Annotation

The planned lectures and courses for the next three years are announced online.

Workload

The total workload for this module is approximately 270 hours.
Module: Applied Strategic Decisions [M-WIWI-101453]

Responsible: Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Crs.</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4,5 CR</td>
<td>Ehrhart, Puppe, Reiß</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Elective: between 4.5 and 5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Crs.</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102613</td>
<td>Auction Theory</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimental Economics</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5 CR</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4,5 CR</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112823</td>
<td>Platform & Market Engineering: Commerce, Media, and Digital Democracy</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design</td>
<td>4,5 CR</td>
<td>Reiß</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5 CR</td>
<td>Nieken</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course "Advanced Game Theory" is obligatory. Exception: The course "Introduction to Game Theory" was completed. Even those who have already successfully proven "Advanced Game Theory" in another master module can take the module. In this case you can choose freely from the rest of the offer. However, this choice can only be made by the examination office of the Department of Economics and Management.

Competence Goal

Students

- can model and analyze complex situations of strategic interaction using advanced game theoretic concepts;
- are provided with essential and advanced game theoretic solution concepts on a rigorous level and can apply them to understand real-life problems;
- learn about the experimental method, ranging from designing an economic experiment to data analysis.

Content

The module provides solid skills in game theory and offers a broad range of game theoretic applications. To improve the understanding of theoretical concepts, it pays attention to empirical evidence as well.

Annotation

The course Predictive Mechanism and Market Design is not offered each year.

Workload

The total workload for this module is approximately 270 hours. The exact distribution is made according to the credit points of the courses of the module.

Recommendation

Basic knowledge in game theory is assumed.
4.15 Module: Artificial Intelligence [M-WIWI-105366]

Responsoble: Dr.-Ing. Michael Färber
Organisation: KIT Department of Economics and Management
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td>4,5 CR</td>
<td>Färber</td>
</tr>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4,5 CR</td>
<td>Käfer</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4,5 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The student:
- understands the concepts behind Semantic Web and Linked Data technologies
- develops ontologies to be employed in semantic web-based applications and chooses suitable representation languages,
- is familiar with approaches in the area of knowledge representation and modelling,
- is able to transfer the methods and technologies of semantic web technologies to new application sectors,
- evaluates the potential of semantic web for new application sectors,
- understands the challenges in the areas of Data and system integration on the web is able to develop solutions,
- know the basics of machine learning, data mining and knowledge discovery
- can design, train and evaluate systems that are capable of learning
- carry out knowledge discovery projects, taking into account algorithms, representations and applications.

Content
The focus of the module is on Semantic Web Technologies as well as machine learning and data mining methods for knowledge acquisition from large databases.

The goal of the semantic web is the meaning (semantics) of data on the web for intelligent systems, e.g. in e-commerce and to make Internet portals usable. The representation of knowledge in the form of RDF and ontologies, the provision of data as Linked Data, as well as the request of data using SPARQL. In this lecture the basics of knowledge representation and processing for the corresponding technologies and application examples are presented.

The lecture “Knowledge Discovery” gives an overview of approaches of machine learning and data mining for knowledge extraction from large data sets. These are examined especially with regard to algorithms, applicability to different data representations and the use in real application scenarios.

Knowledge Discovery is an established research area with a large community that investigates methods for discovering patterns and regularities in large amounts of data, including unstructured text. A variety of methods exist to extract patterns and provide previously unknown insights. This information can be predictive or descriptive.

The lecture gives an overview of Knowledge Discovery. Specific techniques and methods, challenges and current and future research topics in this research area will be taught.

Contents of the lecture cover the entire machine learning and data mining process with topics on supervised and unsupervised learning and empirical evaluation. Covered learning methods range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.

Workload
The total workload for this module is approximately 270 hours.
4.16 Module: Automated Planning and Scheduling [M-INFO-104447]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Peter Sanders
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-109085</td>
</tr>
</tbody>
</table>
Module: Automated Visual Inspection and Image Processing [M-INFO-100826]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101363 | Automated Visual Inspection and Image Processing | 6 CR | Beyerer |
4.18 Module: Autonomous Robotics [M-INFO-101251]

Responsible: Prof. Dr.-Ing. Rüdiger Dillmann

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Once</td>
<td>2 terms</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Autonomous Robotics (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Course Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101351</td>
<td>Biologically Inspired Robots</td>
<td>3 CR</td>
<td>Rönnau</td>
</tr>
<tr>
<td>T-INFO-109931</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>3 CR</td>
<td>Asfour</td>
</tr>
<tr>
<td>T-INFO-105723</td>
<td>Robotics II - Humanoid Robotics</td>
<td>3 CR</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Prerequisites

None
4.19 Module: Business & Service Engineering [M-WIWI-101410]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration 1 term</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>4.5 CR</td>
<td>Fegert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td></td>
<td></td>
<td></td>
<td>4,5 CR</td>
<td>Satger</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,5 CR</td>
<td>Satger</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5 CR</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration 1 term</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td>4.5 CR</td>
<td>Fegert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112757</td>
<td>Digital Services: Innovation & Business Models</td>
<td>4.5 CR</td>
<td>Satger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110887</td>
<td>Practical Seminar: Service Innovation</td>
<td>4.5 CR</td>
<td>Satger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102847</td>
<td>Recommender Systems</td>
<td>4.5 CR</td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student should

- learn to develop and implement new markets with regards to the technological progresses of information and communication technology and the increasing economic networking
- learn to restructure and develop new business processes in markets under those conditions
- understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services.
- improve his statistics skills and apply them to appropriate cases
- learn to elaborate solutions in a team

Content

This module addresses the challenges of creating new kinds of products, processes, services, and markets from a service perspective in the context of new developed information and communication technologies and the globalization process. The module describes service competition as a business strategy in the long term that leads to the design of business processes, business models, forms of organization, markets, and competition. This will be shown by actual examples from personalized services, recommender systems and social networks.

Annotation

All practical Seminars offered at the IM can be chosen for Special Topics in Information Systems. Please update yourself on www.iism.kit.edu/im/lehre.

From summer semester 2023, the course Service Innovation will be offered with a revised course concept and content. The focus will be on the closer integration of the topics of service innovation and digitalization. Current foundational content (e.g., on service innovation challenges or human-centered innovation methods) will remain. New content will cover topics such as digital platforms and ecosystems, IoT and smart service innovation, and business models.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

None
4.20 Module: Collective Decision Making [M-WIWI-101504]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102740</td>
<td>Public Management</td>
<td>4,5 CR</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory</td>
<td>4,5 CR</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
Students
- are able to model and assess problems in public economics and to analyze them with respect to positive and normative aspects,
- understand individual incentives and social outcomes of different institutional designs,
- are familiar with the functioning and design of democratic elections and can analyze them with respect to their individual incentives.

Content
The focus of the module is on mechanisms for public decision making including voting and the aggregation of preferences and judgements.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
4.21 Module: Communication and Database Systems [M-INFO-101178]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101497</td>
<td>Database Systems</td>
<td>4 CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-102015</td>
<td>Introduction in Computer Networks</td>
<td>4 CR</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Competence Goal

The students will

- have learned fundamentals of data communication as well as the design of communication systems,
- be familiar with the composition of the different protocols and their mechanisms and be able to design simple protocols on their own,
- have understood the relationships between the different communication layers,
- be able to explain the benefits of database technology at the end of the course,
- have understood the development of database applications and be able to set up and access simple databases,
- be familiar with the terminology and the underlying database theory.

Content

Distributed information systems are worldwide information repositories which are accessible by everybody at any place of the world at any time. The physical distance is bridged by telecommunication systems, while database management technology manages and coordinates data for arbitrary periods of time. In order to understand globally running processes, one has to understand both data transmission techniques and database technology. Besides the telecommunication and database technologies on their own, an understanding of their cooperation is required, too.

Workload

approx. 240 h
4.22 Module: Computational Complexity Theory, with a View Towards Cryptography [M-INFO-101575]

Responsible: Prof. Dr. Jörn Müller-Quade
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103014 | Computational Complexity Theory, with a View Towards Cryptography | 6 CR | Hofheinz, Müller-Quade |

4.23 Module: Computational Geometry [M-INFO-102110]

Responsible: TT-Prof. Dr. Thomas Bläsius
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-104429</th>
<th>Computational Geometry</th>
<th>6 CR</th>
<th>Wagner</th>
</tr>
</thead>
</table>
4.24 Module: Context Sensitive Systems [M-INFO-100728]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-107499</td>
<td>Context Sensitive Systems</td>
<td>5 CR</td>
<td>Beigl</td>
</tr>
</tbody>
</table>
Module: Critical Digital Infrastructures [M-WIWI-104403]

4.25 Module: Critical Digital Infrastructures [M-WIWI-104403]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109248</td>
<td>Critical Information Infrastructures</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at most 4,5 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112690</td>
<td>Cooperative Autonomous Vehicles</td>
<td>4,5 CR</td>
<td>Vinel</td>
</tr>
<tr>
<td>T-WIWI-109246</td>
<td>Digital Health</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110144</td>
<td>Emerging Trends in Digital Health</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-110143</td>
<td>Emerging Trends in Internet Technologies</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-109249</td>
<td>Sociotechnical Information Systems Development</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-111126</td>
<td>Advanced Lab Blockchain Hackathon (Master)</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-113026</td>
<td>Trustworthy Emerging Technologies</td>
<td>4,5 CR</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams according to § 4 paragraph 2 Nr. 1 – Nr. 3 SPO of the examination regulation of the core course and further single courses of this module, whose sum of credits must meet 9 credits.

The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with creditpoints and is cut off after the first comma point.

Prerequisites

None

Competence Goal

The students ...

- have foundational knowledge about the design and operation of critical digital infrastructures
- have in-depth methodological knowledge in design science research and related scientific domains
- can distinguish between the challenges and opportunities of critical digital infrastructures in different domains
- can evaluate and improve sociotechnical systems
- combine theoretical and practical contents of the courses in the module to solve existing problems in the domain of critical digital infrastructures

Content

Critical digital infrastructures are sociotechnical systems comprising essential software components and information systems with pivotal impact on individuals, organizations, governments, economies, and society. Critical information infrastructures require careful design, development, and evaluation to ensure reliable, secure, and purposeful operation. This module features a strong focus on different subject areas, including, but not limited to, internet technologies, health care, and information privacy. The lectures in the module introduce students to a domain relevant to critical digital infrastructures and the labs allow to gain hands-on experience in this interesting domain.

Workload

30 hours per ECTS

Total workload for 9 ECTS: approx. 270 hours

The exact allocation is made according to the credit points of the courses.

Recommendation

The courses in the module may be held in English. Participants should be well versed in written and spoken English.

The courses can be visited independently. Participants can start the module in the winter as well as in the summer term.

Programming skills may be required in some courses.

Experience in writing scientific papers is helpful but not required.
Module: Cross-Functional Management Accounting [M-WIWI-101510]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>11</td>
</tr>
</tbody>
</table>

Mandatory
- T-WIWI-102885 Advanced Management Accounting 4,5 CR Wouters

Supplementary Courses (Election: 4,5 credits)
- T-WIWI-105777 Business Intelligence Systems 4,5 CR Mädche, Nadj, Toreini
- T-WIWI-105781 Incentives in Organizations 4,5 CR Nieken
- T-WIWI-102835 Marketing Strategy Business Game 1,5 CR Klarmann
- T-WIWI-107720 Market Research 4,5 CR Klarmann
- T-WIWI-111848 Online Concepts for Karlsruhe City Retailers 3 CR Klarmann
- T-WIWI-109864 Product and Innovation Management 3 CR Klarmann
- T-WIWI-102621 Valuation 4,5 CR Ruckes
- T-WIWI-108651 Extraordinary Additional Course in the Module Cross-Functional Management Accounting 4,5 CR Wouters

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course "Advanced Management Accounting" is compulsory.
The additional courses can only be chosen after the compulsory course has been completed successfully.

Competence Goal
Students will be able to apply advanced management accounting methods to managerial decision-making problems in marketing, finance, organization and strategy.

Content
The module includes a course on several advanced management accounting methods that can be used for various decisions in operations and innovation management. By selecting another course, each student looks in more detail at one interface between management accounting and the respective field in management, namely marketing, finance, or organization and strategy.

Annotation
The module "Cross-functional Management Accounting" always includes the compulsory course "Advanced Management Accounting." Students look at the interface between management accounting and another field in management. Students build the module by adding a course from the specified list. Students can also suggest another suitable course for this module for evaluation by the coordinator.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
Module: Data Privacy: From Anonymization to Access Control [M-INFO-104045]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-108377</td>
<td>Data Privacy: From Anonymization to Access Control</td>
<td>3</td>
<td>CR</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Böhm
4.28 Module: Data Science [M-INFO-106505]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-INFO-113124 Data Science 8 CR Böhm

Competence Goal
At the end of this course, participants should have a good understanding of the data-science process, i.e., the process of generating practical insights from large data sets, and of the different steps of this process. They should be able to explain and compare approaches for the analysis and management of large data sets in terms of their effectiveness and applicability. Participants should understand which problems are currently open in the field of Data Science and have gained insights into the current state of the art.

Content

DS1
Our intention is to devote more attention to the Data Science process and to explicitly address the steps of this process. Techniques for analyzing large data sets are attracting great interest among users. The spectrum is broad and includes classic industries such as banks and insurance companies, but also newer players, such as Internet companies, social media, natural sciences and engineering. In all cases, the desire is to extract interesting patterns from very large data sets with as little effort as possible, and to monitor the behavior or systems. This lecture deals with the steps to extract knowledge from data, ranging from techniques to preprocess data to fundamental models to extract knowledge from data, e.g., in the form of statistics, association rules, clusters or systematic predictions.

DS2

Literature

- Data Mining: Concepts and Techniques (3rd edition):
 Jiawei Han, Micheline Kamber, Jian Pei, Morgan Kaufmann Publishers 2011
- Introduction to Data Mining:
 Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison-Wesley 2006
- Knowledge Discovery in Databases:
 Martin Ester, Jörg Sander, Springer 2000
Module: Data Science: Data-Driven Information Systems [M-WIWI-103117]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Selection:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108715</td>
<td>Artificial Intelligence in Service Systems</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-111219</td>
<td>Artificial Intelligence in Service Systems - Applications in Computer Vision</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-109863</td>
<td>Business Data Analytics: Application and Tools</td>
<td>4.5</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-106187</td>
<td>Business Data Strategy</td>
<td>4.5</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4.5</td>
<td>CR</td>
<td>Mädche, Nadj, Toreini</td>
</tr>
<tr>
<td>T-WIWI-113160</td>
<td>Digital Democracy</td>
<td>4.5</td>
<td>CR</td>
<td>Fegert</td>
</tr>
<tr>
<td>T-WIWI-110918</td>
<td>Introduction to Bayesian Statistics for Analyzing Data</td>
<td>4.5</td>
<td>CR</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-111385</td>
<td>Responsible Artificial Intelligence</td>
<td>4.5</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-106207</td>
<td>Practical Seminar: Data-Driven Information Systems</td>
<td>4.5</td>
<td>CR</td>
<td>Mädche, Satzger, Setzer, Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Prerequisites

None.

Competence Goal

The student

- understands the strategic role of integrating, transforming, and analyzing large and complex enterprise data in modern business information systems and is capable of comparing and assessing strategic alternatives
- has the core skills to design, model, and control complex, inter-organisational analytical, processes, including various business functions as well as customers and markets
- understands the usage of performance indicators for a variety of controlling and management issues and is able to define models for generating the relevant performance indicators under considerations of data availability
- distinguishes different analytics methods and concepts and learn when to apply to better understand and anticipate business relationships and developments of industrial and in particular service companies to derive fact- and data-founded managerial actions and strategies.
- knows how to capture uncertainty in the data and how to appropriately consider and visualize uncertainty in decision support or business intelligence systems and analytical processes as a whole.
Content

The amount of business-related data available in modern enterprise information systems grows exponentially, and the various data sources are more and more integrated, transformed, and analyzed jointly to gain valuable business insights, pro-actively control and manage business processes, to leverage planning and decision making, and to provide appropriate, potentially novel services to customers based on relationships and developments observed in the data.

Also, data sources are more and more connected and single business unit that used to operate on separate data pools are now becoming highly integrated, providing tremendous business opportunities but also challenges regarding how the data should be represented, integrated, preprocessed, transformed, and finally used in analytics planning and decision processes.

The courses of this module equip the students with core skills to understand the strategic role of integrating, transforming, and analyzing large and complex enterprise data in modern business information systems. Students will be capable to designing, comparing, and evaluating strategic alternatives. Also, students will learn how to design, model, and control complex analytical processes, including various business functions of industrial and service companies including customers and markets. Students learn core skills to understand fundamental strategies for integrating analytic models and operative controlling mechanisms while ensuring the technical feasibility of the resulting information systems.

Furthermore, the student can distinguish different methods and concepts in the realm of data science and learns when to apply. She/he will know the means of characterizing and analyzing heterogeneous, high-dimensional data available data in data warehouses and external data sources to gain additional insights valuable for enterprise planning and decision making. Also, the students know how to capture uncertainty in the data and how to appropriately consider and visualize uncertainty in business information and business intelligence systems.

The module offers the opportunity to apply and deepen this knowledge in a seminar and hands-on tutorials that are offered with all lectures.

Texteintrag

Annotation

The course „Business Data Strategy“ can be chosen from winter term 2016 on.

Recommendation

Basic knowledge of Information Management, Operations Research, Descriptive Statistics, and Inferential Statistics is assumed.
Module: Data Science: Data-Driven User Modeling [M-WIWI-103118]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)

Credits: 9

Grading scale: Grade to a tenth

Recurrence: Each term

Duration: 1 term

Language: German/English

Level: 4

Version: 7

<table>
<thead>
<tr>
<th>Compulsory Elective Courses (Selection: at least 9 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109863 Business Data Analytics: Application and Tools</td>
</tr>
<tr>
<td>T-WIWI-113160 Digital Democracy</td>
</tr>
<tr>
<td>T-WIWI-102614 Experimental Economics</td>
</tr>
<tr>
<td>T-WIWI-111109 KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics</td>
</tr>
<tr>
<td>T-WIWI-111385 Responsible Artificial Intelligence</td>
</tr>
<tr>
<td>T-WIWI-108765 Practical Seminar: Advanced Analytics</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Prerequisites
None

Competence Goal
Students of this module

- learn methods for planning empirical studies, in particular laboratory experiments,
- acquire theoretical knowledge and practical skills in analysing empirical data,
- familiarize with different ways of modelling user behaviour, are able to critically discuss, and to evaluate them

Content
Understanding and supporting user interactions with applications better plays an increasingly large role in the design of business applications. This applies both to interfaces for customers and to internal information systems. The data that is generated during user interactions can be channelled straight into business processes, for instance by analysing and decomposing purchase decisions, and by feeding this data into product design processes.

The Crowd Analytics section considers the analysis of data from online platforms, particularly of those following crowd- or peer-to-peer based business models. This includes platforms like Airbnb, Kickstarter and Amazon Mechanical Turk.

Theoretical models of user (decision) behaviour help analyzing the empirically observed user behaviour in a systematic fashion. Testing these models and their predictions in controlled experiments (primarily in the lab) in turn helps refine theory and to generate practically relevant design recommendations. Analyses are carried out using advanced analytic methods.

Students learn fundamental theoretical models for user behaviour in systems and apply them to cases. Students are also taught methods and skills for conceptualizing and planning empirical studies and for analyzing the resulting data.

Recommendation
Basic knowledge of Information Management, Operations Research, Descriptive Statistics, and Inferential Statistics is assumed.
4.31 Module: Data Science: Evidence-based Marketing [M-WIWI-101647]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elective: 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103139</td>
<td>Marketing Analytics</td>
<td>4,5 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td>4,5 CR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

Keine.

Competence Goal

Students

- possess advanced knowledge of relevant market research contents
- know many different qualitative and quantitative methods for measuring customer behavior, preparation of strategic decisions, making causal deductions, usage of social media data and sales forecasting
- possess the statistical skills required for working in marketing research

Content

This module provides in-depth knowledge of relevant quantitative and qualitative methods used in market research. Students can attend the following courses:

- The course "Market Research" provides contents of practical relevance for measuring customer attitudes and customer behavior. The participants learn using statistical methods for strategic decision-making in marketing. Students who are interested in writing their master thesis at the Marketing & Sales Research Group are required to take this course.
- The course "Marketing Analytics" is based on "Market Research" and teaches advanced statistical methods for analyzing relevant marketing and market research questions. Please note that a successful completion of "Market Research" is a prerequisite for the completion of "Marketing Analytics".

Workload

The total workload for this module is approximately 270 hours.

Recommendation

None
4.32 Module: Data Science: Intelligent, Adaptive, and Learning Information Services
[M-WIWI-105661]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109921</td>
<td>Advanced Machine Learning</td>
<td>4.5 CR</td>
<td>Geyer-Schulz, Nazemi</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111219</td>
<td>Artificial Intelligence in Service Systems - Applications in Computer Vision</td>
<td>4.5 CR</td>
<td>Satger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102762</td>
<td>Business Dynamics</td>
<td>4.5 CR</td>
<td>Geyer-Schulz, Glenn</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111267</td>
<td>Intelligent Agent Architectures</td>
<td>4.5 CR</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110915</td>
<td>Intelligent Agents and Decision Theory</td>
<td>4.5 CR</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102847</td>
<td>Recommender Systems</td>
<td>4.5 CR</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The student

- models, analyzes and optimizes the structure and dynamics of complex economic changes.
- designs and develops intelligent, adaptive or learning agents as essential elements of information services.
- knows the essential learning methods for this and can apply them (also on modern architectures) in a targeted manner.
- develops and implements personalized services, especially in the area of recommender systems.
- develops solutions in teams.

Content
The Intelligent Architectures course addresses how to design modern agent-based systems. The focus here is on software architecture and design patterns relevant to learning systems. In addition, important machine learning methods that complete the intelligent system are discussed. Examples of systems presented include key-map architectures and genetic methods.

The impact of management decisions in complex systems is considered in Business Dynamics. Understanding, modeling, and simulating complex systems enables analysis, purposeful design, and optimization of markets, business processes, regulations, and entire enterprises.

Special problems of intelligent systems are covered in Personalization and Services and Recommendersystems. The content includes approaches and methods to design user-oriented services. The measurement and monitoring of service systems is discussed, the design of personalized offers is discussed and the generation of recommendations based on collected data from products and customers is shown. The importance of user modeling and recognition is addressed, as well as data security and privacy.

Annotation
The module replaces from summer semester 2021 M-WIWI-101470 "Data Science: Advanced CRM".

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
4.33 Module: Database as a Service [M-INFO-105724]

Competence Goal
At the end of the lecture the participants shall be able to explain what is specific to database functionality in the cloud, and what the advantages and disadvantages are. They shall have understood how cloud-enabled database technology differs from conventional technology of this kind, but also where the commonalities reside. Participants shall be able to explain the core ideas and approaches that define cloud-enabled database technology and discern them from each other.

Content
We currently witness owners of large data sets, be they big organizations, be they startups, to rent database functionality to a significant extent, rather than providing it themselves. The total costs of ownership just happen to be much lower in many cases. This lecture features database technology that facilitates exactly this. This concerns you if you want to make use of such services at some time in the future, but is also is of interest if you will have to do with ‘conventional’ database technology.

According to my perspective, the following features of “cloud-enabled” database technology are key, and the lecture will cover them:

- Fully automated tuning of individual database – the option to interact with a database administrator does not exist any more!
- Approximate query results suddenly are attractive. The monetary costs of evaluating a query are commensurate with the necessary effort – on the other side, high fixed costs that typically occur with owner-operated databases do not incur any more.
- Multi-tenancy. I.e., how to ensure tenants that are completely independent from each other to have a DBMS for their applications available, not only without interfering with each other, but also with performance guarantees for each tenant individually?
- Secure storage. Administering data and evaluating queries shall take place in the cloud. At the same time, the cloud provider must not be allowed to see the data. Both objectives in full beauty currently are incompatible – we will discuss possible compromises.

In this setting, conventional, established concepts like distributed transactions and distributed data management and query processing play an important role as well, and the lecture will address them equally.

Literature
Will be made available in the lecture. The following books cover foundations and specifics of at least some chapters of the lecture:

- Database Systems Implementation, by Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom.
- Concurrency Control and Recovery in Database Systems, by Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.
- Principles of Distributed Database Systems Tamer Özsu, Patrick Valduriez
4.34 Module: Deep Learning and Neural Networks [M-INFO-104460]

Responsible: Prof. Dr. Alexander Waibel
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-109124</td>
<td>Deep Learning and Neural Networks</td>
<td>6 CR</td>
<td>Waibel</td>
<td></td>
</tr>
</tbody>
</table>
4.35 Module: Deployment of Database Systems [M-INFO-100780]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101317</td>
<td>Deployment of Database Systems</td>
<td>5 CR</td>
<td>Böhm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Designing Interactive Information Systems [M-WIWI-104080]

Responsible: Prof. Dr. Alexander Mädche
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
 Economics and Management (Elective Modules in Business Administration)

Credits: 9 Grading scale: Grade to a tenth Recurrence: Each term Duration: 1 term
Language: German/English Level: 4 Version: 4

Compulsory Elective Courses (Selection: at least 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110851</td>
<td>Designing Interactive Systems</td>
<td>4,5 CR</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110877</td>
<td>Engineering Interactive Systems</td>
<td>4,5 CR</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Selection: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111109</td>
<td>KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108437</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>4,5 CR</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

Prerequisites
In this module, the courses "Designing Interactive Systems" or "Engineering Interactive Systems" must be compulsorily taken.

Competence Goal
The student

- has a comprehensive understanding of conceptual and theoretical foundations of interactive systems
- knows design processes for interactive systems
- is aware of the most important techniques and tools for designing interactive systems and knows how to apply them to real-world problems
- is able to apply design principles for the design of most important classes of interactive systems,
- creates new solutions of interactive systems teams

Content
Advanced information and communication technologies make interactive systems ever-present in the users' private and business life. They are an integral part of smartphones, devices in the smart home, mobility vehicles as well as at the working place in production and administration (e.g. in the form of dashboards).

With the continuous growing capabilities of computers, the design of the interaction between human and computer becomes even more important. This module focuses on design processes and principles for interactive systems. The contents of the module abstract from the technical implementation details and focus on foundational concepts, theories, practices and methods for the design of interactive systems. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

Each lecture in the module is accompanied with a capstone project that is carried out with an industry partner.

Annotation

Workload
The total workload for this module is approximately 270 hours.
Compulsory Elective Courses (Election: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102661</td>
<td>Database Systems and XML</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-102895</td>
<td>Software Quality Management</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110346</td>
<td>Supplement Enterprise Information Systems</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-112599</td>
<td>Management of IT-Projects</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-112914</td>
<td>Advanced Lab Realization of Innovative Services (Master)</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T-WIWI-102669</td>
<td>Strategic Management of Information Technology</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course Datenbanksysteme und XML or the course Software Quality Management must be examined.

Competence Goal

Students

- describe the structure and the components of enterprise information systems,
- explain functionality and architecture of the enterprise information system components,
- choose and apply relevant components to solve given problems in a methodic approach,
- describe roles, activities and products in the field of software engineering management,
- compare process and quality models and choose an appropriate model in a concrete situation,
- write scientific theses in the areas of enterprise information system components and software engineering management and find own solutions for given problems and research questions.

Content

An enterprise information system contains the complete application software to store and process data and information in an organisation including design and management of databases, workflow management and strategic information planning.

Due to global networking and geographical distribution of enterprises as well as the increasing acceptance of eCommerce the application of distributed information systems becomes particular important.

This module teaches concepts and methods for design and application of information systems.

Annotation

The course T-WIWI-102759 “Requirements Analysis and Requirements Management” will no longer be offered in the module as of winter semester 2018/2019.

Workload

See German version
Module: Digital Circuits Design [M-INFO-102978]

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103469</td>
<td>Digital Circuits Design</td>
<td>6</td>
<td>CR</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
4.39 Module: Digital Marketing [M-WIWI-106258]

Responsible: Prof. Dr. Ann-Kristin Kupfer

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management) Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112693</td>
<td>Digital Marketing</td>
<td>4,5 CR</td>
<td>Kupfer</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Elective: at most 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106981</td>
<td>Digital Marketing and Sales in B2B</td>
<td>1,5 CR</td>
<td>Klarmann, Konhäuser</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111099</td>
<td>Judgement and Decision Making</td>
<td>4,5 CR</td>
<td>Scheibehenne</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td>4,5 CR</td>
<td>Klarmann</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112711</td>
<td>Media Management</td>
<td>4,5 CR</td>
<td>Kupfer</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111848</td>
<td>Online Concepts for Karlsruhe City Retailers</td>
<td>3 CR</td>
<td>Klarmann</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course, weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students

- have an advanced knowledge about central marketing contents
- have a fundamental understanding of the marketing instruments
- know current fundamental principles and latest trends in the field of digital marketing
- know and understand several strategic concepts and how to implement them
- are able to implement their extensive marketing knowledge in a practical context
- are able to critically discuss and question theoretical concepts and current practices in marketing
- have theoretical knowledge that is fundamental for writing a master thesis in the field of marketing
- have gained insight into scientific research that prepares them to independently write a master’s thesis
- have the theoretical knowledge and skills necessary to work in or collaborate with the marketing department of a company

Content

The aim of this module is to deepen central marketing contents in different areas.

Workload

Total effort for 9 credit points: approx. 270 hours.

The exact distribution is done according to the credit points of the courses of the module.
Module: Digital Service Systems in Industry [M-WIWI-102808]

Responsible
Prof. Dr. Wolf Fichtner
Prof. Dr. Stefan Nickel

Organisation
KIT Department of Economics and Management

Part of
Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

Credits
9

Grading scale
Grade to a tenth

Recurrence
Each term

Duration
2 terms

Language
German

Level
4

Version
7

Compulsory Elective Courses (Electation: 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102872</td>
<td>Challenges in Supply Chain Management</td>
<td>4.5 CR</td>
<td>Mohr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107043</td>
<td>Liberalised Power Markets</td>
<td>5.5 CR</td>
<td>Fichtner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106200</td>
<td>Modeling and OR-Software: Advanced Topics</td>
<td>4.5 CR</td>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106563</td>
<td>Practical Seminar Digital Service Systems</td>
<td>4.5 CR</td>
<td>Mädche, Satzger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102641</td>
<td>Service Innovation</td>
<td>4.5 CR</td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
This module can only be assigned as an elective module.

Competence Goal
Students
- understand the basics of the management of digital services applied on an industrial context
- gain an industry-specific insight into the importance and most relevant characteristics of information systems as key components of the digitalization of business processes, products and services
- are able to transfer and apply the models and methods introduced on practical scenarios and simulations.
- understand the control and optimization methods in the sector of service management and are able to apply them properly.

Content
This module aims at deepening the fundamental knowledge of digital service management in the industrial context. Various mechanisms and methods to shape and control connected digital service systems in different industries are discussed and demonstrated with real-life application cases.

Annotation
This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

From summer semester 2023, the course Service Innovation will be offered with a revised course concept and content. The focus will be on the closer integration of the topics of service innovation and digitalization. Current foundational content (e.g., on service innovation challenges or human-centered innovation methods) will remain. New content will cover topics such as digital platforms and ecosystems, IoT and smart service innovation, and business models.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
4.41 Module: Dynamic IT-Infrastructures [M-INFO-101210]

Responsible: Prof. Dr. Hannes Hartenstein
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Dynamic IT-Infrastructures (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101323</td>
<td>IT-Security Management for Networked Systems</td>
<td>5</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>T-INFO-101326</td>
<td>Ubiquitous Computing</td>
<td>5</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-101276</td>
<td>Data and Storage Management</td>
<td>4</td>
<td>Neumair</td>
</tr>
<tr>
<td>T-INFO-101284</td>
<td>Integrated Network and Systems Management</td>
<td>4</td>
<td>Neumair</td>
</tr>
<tr>
<td>T-INFO-101298</td>
<td>Distributed Computing</td>
<td>4</td>
<td>Streit</td>
</tr>
<tr>
<td>T-INFO-101345</td>
<td>Parallel Computer Systems and Parallel Programming</td>
<td>4</td>
<td>Streit</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
The students will get to know established as well as novel concepts for the design, implementation, operation and management of dynamic IT infrastructures (Web, Grid, Cloud, Internet):

- Getting to know established and novel concepts for IT infrastructures
- Application of methods for the evaluation and analysis of dynamic IT infrastructures
- Assessment of tools, protocols and procedures for the operation and management of dynamic IT infrastructures
- Assessment of the strengths and weaknesses of IT infrastructures
- Insight into the practical operation of dynamic IT infrastructures using the example of the operation within the Steinbuch Centre for Computing (SCC)

Content
This module covers various aspects of dynamic IT infrastructures such as layout, design, concept, development, operation and performance evaluation as well as optimization. These topics are considered from a theoretical-analytical approach as well as from the perspective of the practical experiences of day-to-day use. Being a modern IT service provider, the Steinbuch Centre for Computing (SCC) serves as object of study, since it combines both aspects in real life.
Module: Econometrics and Statistics I [M-WIWI-101638]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111388</td>
<td>Applied Econometrics</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: between 4,5 and 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Non- and Semiparametrics</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Panel Data</td>
<td>4,5 CR</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-110868</td>
<td>Predictive Modeling</td>
<td>4,5 CR</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-111387</td>
<td>Probabilistic Time Series Forecasting Challenge</td>
<td>4,5 CR</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4,5 CR</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1-3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course "Applied Econometrics" [2520020] is compulsory and must be examined.

Competence Goal

The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data. He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Content

The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the art data analysis.

Workload

The total workload for this module is approximately 270 hours.
4.43 Module: Econometrics and Statistics II [M-WIWI-101639]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Election notes

This module will not count towards the degree until the module "Econometrics and Statistics I" has also been successfully completed. If the module "Econometrics and Statistics I" is booked out to the additional examinations, the "Econometrics and Statistics II" module loses its curricular validity/valuation for the degree.

Compulsory Elective Courses (Choice: between 9 and 10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Language</th>
<th>Module Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Statistical Methods</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103126</td>
<td>Non- and Semiparametrics</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103127</td>
<td>Panel Data</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-103128</td>
<td>Portfolio and Asset Liability Management</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Safarian</td>
</tr>
<tr>
<td>T-WIWI-110868</td>
<td>Predictive Modeling</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-111387</td>
<td>Probabilistic Time Series Forecasting Challenge</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Krüger</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-103129</td>
<td>Stochastic Calculus and Finance</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Safarian</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4.5</td>
<td>CR</td>
<td>German</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1-3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
This module can only be passed if the module "Econometrics and Statistics I" has been finished successfully before.

Competence Goal
The student shows an in depth understanding of advanced Econometric techniques suitable for different types of data. He/She is able to apply his/her theoretical knowledge to real world problems with the help of statistical software and to evaluate performance of different approaches based on statistical criteria.

Content
This module builds on prerequisites acquired in Module "Econometrics and Statistics I". The courses of this module offer students a broad range of advanced Econometric techniques for state-of-the-art data analysis.

Workload
The total workload for this module is approximately 270 hours.
Module: Economic Theory and its Application in Finance [M-WIWI-101502]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

Compulsory Elective Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td>Ehrhart, Puppe, Reiß</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td>Ruckes, Uhrig-Homburg</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td>Ruckes</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td>Ruckes</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td>Ruckes</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
One of the courses T-WIWI-102861 "Advanced Game Theory" and T-WIWI-102609 "Advanced Topics in Economic Theory" is compulsory.

Competence Goal
The students

- have learnt the methods of formal economic modeling, particularly of General Equilibrium Theory and contract theory
- will be able to apply these methods to the topics in Finance, specifically the areas of financial markets and institutions and corporate finance
- have gained many useful insights into the relationship between firms and investors and the functioning of financial markets

Content
The mandatory course "Advanced Topics in Economic Theory" is devoted in equal parts to General Equilibrium Theory and to contract theory. The course "Asset Pricing" will apply techniques of General Equilibrium Theory to valuation of financial assets. The courses "Corporate Financial Policy" and "Finanzintermediation" will apply the techniques of contract theory to issues of corporate finance and financial institutions.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elective: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-107501</td>
<td>Energy Market Engineering</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107503</td>
<td>Energy Networks and Regulation</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107504</td>
<td>Smart Grid Applications</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Competence Goal
The student

- is aware of design options for energy and especially electricity markets and can derive implications for the market results from the market design,
- knows about current trends regarding the Smart Grid and understands affiliated modelling approaches,
- can evaluate business models of electricity grids according to the regulation regime
- is prepared for scientific contributions in the field of energy system analysis.

Content
The module conveys scientific and practical knowledge to analyse energy markets and according business models. To do so the scientific discussion on energy market designs is evaluated and analysed. Different energy market models are presented and their design implications are evaluated. Furthermore, the electricity system is analysed with regards to being a network industry and resulting regulation and business models are discussed. Besides these traditional areas of energy economics we will look at methods and models of digitalisation in the energy sector.

Annotation
The lecture Smart Grid Applications will be available starting in the winter term 2018/19.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
4.46 Module: Electronic Markets [M-WIWI-101409]

Responsible: Prof. Dr. Andreas Geyer-Schulz

Organisation: KIT Department of Economics and Management

Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108880</td>
<td>Blockschain & Cryptofinance</td>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-102762</td>
<td>Business Dynamics</td>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-112823</td>
<td>Platform & Market Engineering: Commerce, Media, and Digital Democracy</td>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-105946</td>
<td>Price Management</td>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-WIWI-113147</td>
<td>Telecommunications and Internet – Economics and Policy</td>
<td>9</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 9 credits)

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The student
- knows coordination and motivation methods and analyzes them regarding their efficiency,
- classifies markets and describes the roles of the participants in a formal way,
- knows the conditions for market failure and knows and develops countermeasures,
- knows institutions and market mechanisms, their fundamental theories and empirical research results,
- knows the design criteria of market mechanisms and a systematical approach for creating new markets,
- models, analyzes and optimizes the structure and dynamics of complex business applications.

Content

What are the conditions that make electronic markets develop, and how can one analyze and optimize such markets?

In this module, the selection of the type of organization as an optimization of transaction costs is treated. Afterwards, the efficiency of electronic markets (price, information and allocation efficiency) as well as reasons for market failure are described. Finally, motivational issues like bounded rationality and information asymmetries (private information and moral hazard), as well as the development of incentive schemes, are presented. Regarding the market design, especially the interdependencies of market organization, market mechanisms, institutions and products are described, and theoretical foundations are lectured.

Electronic markets are dynamic systems that are characterized by feedback loops between many different variables. By means of the tools of business dynamics, such markets can be modelled. Simulations of complex systems allow the analysis and optimization of markets, business processes, policies, and organizations.

Topics include
- classification, analysis, and design of markets
- simulation of markets
- auction methods and auction theory
- automated negotiations
- nonlinear pricing
- continuous double auctions
- market-maker, regulation, control
Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Mandatory

- T-WIWI-107043 Liberalised Power Markets 5.5 CR Fichtner

Supplementary Courses (Election: at least 6 credits)

- T-WIWI-107501 Energy Market Engineering 4.5 CR Weinhardt
- T-WIWI-112151 Energy Trading and Risk Management 3.5 CR N.N.
- T-WIWI-108016 Simulation Game in Energy Economics 3.5 CR Genoese
- T-WIWI-107446 Quantitative Methods in Energy Economics 3.5 CR Plötz
- T-WIWI-102712 Regulation Theory and Practice 4.5 CR Mitusch

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The lecture Liberalised Power Markets has to be examined.

Competence Goal

The student

- gains detailed knowledge about the new requirements of liberalised energy markets,
- describes the planning tasks on the different energy markets,
- knows solution approaches to respective planning tasks.

Content

- Liberalised Power Markets: The European liberalisation process, energy markets, pricing, market failure, investment incentives, market power
- Energy Trade and Risk Management: trade centres, trade products, market mechanisms, position and risk management
- Simulation Game in Energy Economics: Simulation of the German electricity system

Workload

The total workload for this module is approximately 270 hours.

Recommendation

The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.
4.48 Module: Energy Economics and Technology [M-WIWI-101452]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102793</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>3.5 CR</td>
</tr>
<tr>
<td>T-WIWI-102650</td>
<td>Energy and Environment</td>
<td>4.5 CR</td>
</tr>
<tr>
<td>T-WIWI-102830</td>
<td>Energy Systems Analysis</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-113073</td>
<td>Machine Learning and Optimization in Energy Systems</td>
<td>3.5 CR</td>
</tr>
<tr>
<td>T-WIWI-107464</td>
<td>Smart Energy Infrastructure</td>
<td>5.5 CR</td>
</tr>
<tr>
<td>T-WIWI-102695</td>
<td>Heat Economy</td>
<td>3.5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The student
- gains detailed knowledge about present and future energy supply technologies (focus on final energy carriers electricity and heat),
- knows the techno-economic characteristics of plants for energy provision, for energy transport as well as for energy distribution and demand,
- is able to assess the environmental impact of these technologies.

Content
Heat Economy: district heating, heating technologies, reduction of heat demand, statutory provisions
Energy Systems Analysis: Interdependencies in energy economics, energy systems modelling approaches in energy economics
Energy and Environment: emission factors, emission reduction measures, environmental impact
Efficient Energy Systems and Electric Mobility: concepts and current trends in energy efficiency, Overview of and economical, ecological and social impacts through electric mobility

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Entrepreneurship (EnTechnon) [M-WIWI-101488]

4.49 Module: Entrepreneurship (EnTechnon) [M-WIWI-101488]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)

Credits: 9

Grading scale: Grade to a tenth

Recurrence: Each term

Duration: 2 terms

Language: German/English

Level: 4

Version: 12

<table>
<thead>
<tr>
<th>Mandatory part (Election: 1 item)</th>
<th>T-WIWI-102864</th>
<th>Entrepreneurship</th>
<th>3 CR</th>
<th>Terzidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory Elective Courses (Election: between 1 and 2 items)</td>
<td>T-WIWI-102866</td>
<td>Design Thinking</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-102833</td>
<td>Entrepreneurial Leadership & Innovation Management</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-113151</td>
<td>Entrepreneurship Seasonal School</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-102865</td>
<td>Business Planning</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-110374</td>
<td>Firm creation in IT security</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-110985</td>
<td>International Business Development and Sales</td>
<td>6 CR</td>
<td>Casenave, Klarmann, Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-109064</td>
<td>Joint Entrepreneurship Summer School</td>
<td>6 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-111561</td>
<td>Startup Experience</td>
<td>6 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>Supplementary Courses (Election: between 0 and 1 items)</td>
<td>T-WIWI-102894</td>
<td>Entrepreneurship Research</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-102852</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-102893</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-102612</td>
<td>Managing New Technologies</td>
<td>3 CR</td>
<td>Reiß</td>
</tr>
<tr>
<td></td>
<td>T-WIWI-102853</td>
<td>Roadmapping</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Competence Certificate

See German version.

Prerequisites

None

Competence Goal

Students are familiar with the basics and contents of entrepreneurship and ideally are able to start a company during or after their studies. The courses are therefore structured sequentially in modules, although in principle they can also be attended in parallel. In this way, the skills are taught to generate business ideas, to develop inventions into innovations, to write business plans for startups and to successfully establish a company. In the lecture, the basics of entrepreneurship will be developed, in the seminars, individual contents will be deepened. The overall learning objective is to enable students to develop and implement business ideas.

Content

The lectures form the basis of the module and give an overview of the overall topic. The seminars deepen the phases of the foundation processes, in particular the identification of opportunities, the development of a value proposition (especially based on inventions and technical innovations), the design of a business model, business planning, the management of a start-up, the implementation of a vision as well as the acquisition on resources and the handling of risks. The lecture Entrepreneurship provides an overarching and connecting framework for this.

Annotation

Please note: Seminars offered by Prof. Terzidis (or the members of his research group) are not eligible for crediting in a seminar module of the WiWi degree programs. Exception: Seminar “Entrepreneurship Research”.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Recommendation
None
Module: Environmental Economics [M-WIWI-101468]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102650</td>
<td>Energy and Environment</td>
<td>4,5 CR</td>
<td>Karl</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transport Economics</td>
<td>4,5 CR</td>
<td>Mitusch, Szimba</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102615</td>
<td>Environmental Economics and Sustainability</td>
<td>3 CR</td>
<td>Walz</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102616</td>
<td>Environmental and Resource Policy</td>
<td>4 CR</td>
<td>Walz</td>
<td></td>
</tr>
<tr>
<td>T-BGU-111102</td>
<td>Environmental Law</td>
<td>3 CR</td>
<td>Smeddinck</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The students

- understand the treatment of non-market resources as well as future resource shortages
- are able to model markets of energy and environmental goods
- are able to assess the results of government intervention
- know legal basics and are able to evaluate conflicts with regard to legal situation

Content

Environmental degradation and increasing resource use are global challenges, which have to be tackled on a worldwide level. The module addresses these challenges from the perspective of economics, and imparts the fundamental knowledge of environmental and sustainability economics, and environmental and resource policy to the students. Additional courses address environmental law, environmental pressure, and applications to the transport sector.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

Knowledge in the area of microeconomics and of the content of the course Economics I: Microeconomics[2600012], respectively, is required.
Module: Experimental Economics [M-WIWI-101505]

Responsible: Prof. Dr. Johannes Philipp Reiß
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102614</td>
<td>Experimental Economics</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5 CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-102862</td>
<td>Predictive Mechanism and Market Design</td>
<td>4,5 CR</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-102863</td>
<td>Topics in Experimental Economics</td>
<td>4,5 CR</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Competence Goal
Students
- are acquainted with the methods of Experimental Economics along with its strengths and weaknesses;
- understand how theory-guided research in Experimental Economics interacts with the development of theory;
- are provided with foundations in data analysis;
- design an economic experiment and analyze its outcome.

Content
The module Experimental Economics offers an introduction into the methods and topics of Experimental Economics. It also fosters and extends knowledge in theory-guided experimental economics and its interaction with theory development. Throughout the module, readings of selected papers are required.

Annotation
The course “Predictive Mechanism and Market Design” is offered every second winter semester, e.g. WS2013 / 14, WS2015 / 16, ...

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
Basic knowledge in mathematics, statistics, and game theory is assumed.
4.52 Module: Finance 1 [M-WIWI-101482]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4,5 CR</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4,5 CR</td>
<td>Ruckes, Uhrig-Homburg</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student

- has core skills in economics and methodology in the field of finance
- assesses corporate investment projects from a financial perspective
- is able to make appropriate investment decisions on financial markets

Content

The courses of this module equip the students with core skills in economics and methodology in the field of modern finance. Securities which are traded on financial and derivative markets are presented, and frequently applied trading strategies are discussed. A further focus of this module is on the assessment of both profits and risks in security portfolios and corporate investment projects from a financial perspective.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
4.53 Module: Finance 2 [M-WIWI-101483]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Election notes

This module will not count towards the degree until the module *Finance 1* has also been successfully completed. If the module Finance 1 is booked out to the additional examinations, the *Finance 2* module loses its curricular validity/valuation for the degree.

Compulsory Elective Courses (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110513</td>
<td>Advanced Empirical Asset Pricing</td>
<td>4.5 CR</td>
<td>Thimme</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4.5 CR</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4.5 CR</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110995</td>
<td>Bond Markets</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110997</td>
<td>Bond Markets - Models & Derivatives</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110996</td>
<td>Bond Markets - Tools & Applications</td>
<td>1.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis</td>
<td>4.5 CR</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

It is only possible to choose this module in combination with the module *Finance 1*. The module is passed only after the final partial exam of *Finance 1* is additionally passed.

Competence Goal

The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.

Content

The module Finance 2 is based on the module Finance 1. The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.
Annotation
The courses eFinance: Information Engineering and Management for Securities Trading [2540454] and Financial Analysis [2530205] can be chosen from summer term 2015 on.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Finance 3 [M-WIWI-101480]

Responsible:
- Prof. Dr. Martin Ruckes
- Prof. Dr. Marliese Uhrig-Homburg

Organisation:
KIT Department of Economics and Management

Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Election notes

This module will not count towards the degree until the modules Finance 1 and Finance 2 have also been successfully completed. If the modules Finance 1 and/or Finance 2 are booked out to the additional examinations, the Finance 3 module loses its curricular validity/valuation for the degree.

Compulsory Elective Courses (Elective: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110513</td>
<td>Advanced Empirical Asset Pricing</td>
<td>4.5 CR</td>
<td>Thimme</td>
</tr>
<tr>
<td>T-WIWI-102647</td>
<td>Asset Pricing</td>
<td>4.5 CR</td>
<td>Ruckes, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-108880</td>
<td>Blockchains & Cryptofinance</td>
<td>4.5 CR</td>
<td>Schuster, Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110995</td>
<td>Bond Markets</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110997</td>
<td>Bond Markets - Models & Derivatives</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110996</td>
<td>Bond Markets - Tools & Applications</td>
<td>1.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102622</td>
<td>Corporate Financial Policy</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-109050</td>
<td>Corporate Risk Management</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102900</td>
<td>Financial Analysis</td>
<td>4.5 CR</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102621</td>
<td>Valuation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-110933</td>
<td>Web App Programming for Finance</td>
<td>4.5 CR</td>
<td>Thimme</td>
</tr>
</tbody>
</table>

Compence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

It is only possible to choose this module in combination with the module Finance 1 and Finance 2. The module is passed only after the final partial exams of Finance 1 and Finance 2 are additionally passed.

Competence Goal

The student is in a position to discuss, analyze and provide answers to advanced economic and methodological issues in the field of modern finance.
Content
The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Formal Systems [M-INFO-100799]

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101336</td>
<td>Formal Systems</td>
<td>6 CR</td>
<td>Beckert</td>
<td></td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101281</td>
<td>Formal Systems II: Application</td>
<td>5 CR</td>
<td>Beckert</td>
<td>Each summer term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Module: Formal Systems II: Theory [M-INFO-100841]

Responsible: Prof. Dr. Bernhard Beckert

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101378</th>
<th>Formal Systems II: Theory</th>
<th>5 CR</th>
<th>Beckert</th>
</tr>
</thead>
</table>

Responsible: Prof. Dr. Maxim Ulrich

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management) Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>see Annotations</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
</table>

Competence Certificate

Due to the professor’s research sabbatical, the BSc module “Financial Data Science” and MSc module “Foundations for Advanced Financial -Quant and -Machine Learning Research” and the MSc module “Advanced Machine Learning and Data Science” along with the respective examinations will not be offered in SS2023. Bachelor and Master thesis projects are not affected and will be supervised.

The module examination is an alternative exam assessment with a maximum score of 100 points to be achieved. These points are distributed over 4 worksheets to be submitted during the semester. The worksheets cover the respective material of the module and are handed out, worked on and assessed in lecture weeks 3 (10 points), 6 (20 points), 9 (30 points) and 12 (40 points).

The module-wide exam (all 4 worksheets) must be taken in the same semester.

The worksheets are a mixture of analytical tasks and programming tasks with financial data.

Competence Goal

This MSc module teaches students fundamental stats and analytics concepts, as well necessary financial economic intuition, necessary to identify, design and execute interesting research questions in quant finance and financial machine learning.

Topics include: Maximum Likelihood learning of arma-garch models, expectation maximization learning applied to stochastic volatility and valuation models, Kalman filter techniques to learn latent states, estimation of affine jump diffusion models with options and higher-order moments, stochastic calculus, dynamic modeling of asset markets (bond, equity, options), equilibrium determination of risk premiums, risk premiums for higher moment risk, risk decomposition (fundamental vs idiosyncratic), option-implied return distributions, mixture-density-networks and neural nets.

Content

Learning Objectives: Skills and understanding of how to successfully set-up, execute and interpret financial data driven research with the following methods: MLE, Kalman Filter, Expectation Maximization, Option Pricing, dynamic asset pricing theory, backward-looking historical return densities, forward-looking options-implied return densities, mixture-density-network, neural networks. Programming is not taught in this course, yet, some graded and non-graded exercises might make heavy use of software based data analysis. See the course’s pre-requisites and comments in the modul handbook.

Annotation

- Strongly recommended to have good knowledge in financial econometrics (MLE, OLS, GLS, ARMA-GARCH), mathematics (differential equations, difference equations and optimization), investments (CAPM, factor models), asset pricing (SDF, SDF pricing), derivatives (Black-Scholes, risk-neutral pricing), and programming of statistical concepts (Java or R or Python or Matlab or C or ...)
- Strongly recommended to have a strong interest for interdisciplinary research work in statistics, programming, applied math and financial economics.
- Students lacking the prior knowledge might find the resources of the Chair helpful: www.youtube.com/c/cram-kit.

Workload

The total workload for this course is approximately 270 hours. This is for a student with the appropriate prior knowledge in financial econometrics, finance, mathematics and programming. Students without programming experience of statistical concepts will need to invest extra time. Students who have struggled in math- or programming- or finance- oriented classes, will find this course very challenging. Please check the pre-requisites and comments in the module handbook.
Module: Future Networking [M-INFO-101205]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Future Networking (Election: at least 1 item as well as at least 8 credits)

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101321</td>
<td>Next Generation Internet</td>
<td>4 CR</td>
<td>Bless, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101322</td>
<td>Mobile Communication</td>
<td>4 CR</td>
<td>Waldhorst, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101337</td>
<td>Internet of Everything</td>
<td>4 CR</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101338</td>
<td>Telematics</td>
<td>6 CR</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Competence Goal

Each student should be able to:
- learn and use the concepts and principles of future network design
- identify the flaws and benefits of future communication systems
- judge the performance of protocols, future networks and architectures
- master advanced protocols, architectures and algorithms of future communication systems

Content

This module details selected aspects of future communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.
Module: Geometric Optimization [M-INFO-100730]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101267</td>
<td>Geometric Optimzation</td>
<td>3 CR</td>
<td></td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
4.61 Module: Growth and Agglomeration [M-WIWI-101496]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109194</td>
<td>Dynamic Macroeconomics</td>
<td>4,5 CR</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-112816</td>
<td>Growth and Development</td>
<td>4,5 CR</td>
<td>Ott</td>
</tr>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics</td>
<td>4,5 CR</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (see the lectures descriptions).

The overall grade for the module is the average of the grades for each course weighted by the credits.

Prerequisites

None

Competence Goal

The student

- gains deepened knowledge of micro-based general equilibrium models
- understands how based on individual optimizing decisions aggregate phenomena like economic growth or agglomeration (cities / metropolises) result
- is able to understand and evaluate the contribution of these phenomena to the development of economic trends
- can derive policy recommendations based on theory

Content

The module includes the contents of the lectures *Endogenous Growth Theory*, *Spatial Economics* and *Dynamic Macroeconomics*. While the first lecture focuses on dynamic programming in modern macroeconomics, the other two lectures are more formal and analytical.

The common underlying principle of all three lectures in this module is that, based on different theoretical models, economic policy recommendations are derived.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

Attendance of the course *Introduction Economic Policy* [2560280] is recommended.

Successful completion of the courses *Economics I: Microeconomics* and *Economics II: Macroeconomics* is required.

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

4.63 Module: Human Computer Interaction [M-INFO-100729]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Human-Machine-Interaction Pass</td>
<td>0 CR</td>
<td>Beigl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.64 Module: Human Factors in Security and Privacy [M-WIWI-104520]

Responsible: Prof. Dr. Melanie Volkamer
Organisation: KIT Department of Economics and Management
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109270</td>
<td>Human Factors in Security and Privacy</td>
<td>4.5</td>
<td>CR</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-108439</td>
<td>Advanced Lab Security, Usability and Society</td>
<td>4.5</td>
<td>CR</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination is carried out in the form of partial examinations on the selected courses of the module, with which the minimum requirement at creditpoints is fulfilled. The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with creditpoints and is cut off after the first comma point.

Prerequisites

None

Competence Goal

Students...

- know why many existing security and privacy mechanisms are not usable and why many awareness/education/training approaches are not effective
- can explain for concrete examples why these are not usable / not effective including why people are likely to face problems with these
- can explain what mental models are, why they are important and how they can be identified
- know how to conduct a cognitive walkthrough to identify problems with existing mechanisms and approaches
- know how to conduct semi-structured interviews
- know how user studies in the security context differ from those conducted in other contexts
- can explain the process of human centered security / privacy by design
- know the advantages and disadvantages of various graphical password schemes
- know concepts such as just in time and place security interventions
Content
The history of information security and privacy has taught us that it takes more than technological innovation to develop effective security and privacy mechanisms: Many aspects of information security and privacy actually depend on both technical and human factors. As a result of focusing on the technical factors, we are seeing a persistent gap between theoretical security and actual security in real world which becomes an increasing problem in the age of digitalization. The gap is mainly caused by strong and actually unrealistic assumptions regarding the users' knowledge and behavior.

Human factors in security and privacy research addresses several types of security and privacy mechanisms, e.g., authentication mechanisms including text and graphical passwords, security and privacy indicators (such as the icons in the address bar of nowadays web browsers) and security and privacy interventions like warning messages, permission dialogs and security and privacy policies as well as corresponding configuration interfaces. Besides security and privacy mechanisms, human factors in security and privacy researchers deal with security and privacy awareness, education, and training approaches.

'Human factors in security & privacy' research areas are:

- identifying users' mental models using techniques such as (semi-)structured interviews or focus groups,
- evaluating existing approaches regarding their effectiveness in supporting their users in making secure decisions / informed decisions in the context of privacy using techniques such as cognitive walkthroughs, lab user studies or even field studies,
- proposing improved / new approaches and evaluating their effectiveness using the so called human-centered security / privacy by design approach.

This module discusses the various problems of existing security and privacy mechanisms and security and privacy awareness/education/training approaches. The lecture addresses relevant psychological and sociological aspects which are important to know and to consider when developing more usable security/privacy mechanisms and more effective awareness/education/training approaches. The human centered security and privacy by design approach is introduced. Furthermore, some of the methodologies used in this area are explained and a subset of them is applied. Finally, positive examples, such as graphical passwords, are introduced and discussed. Note, the main part of the exercise is replicating an interview based study. The main focus of the lab will be to replicate a quantitative based user study.

Annotation
This new module can be chosen from winter term 2018/2019.

Workload
The total workload for this module is approximately 270 hours.
Module: Incentives, Interactivity & Decisions in Organizations [M-WIWI-105923]

Responsible: Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management) Economics and Management (Elective Modules in Business Administration)

Credits: 9 Grading scale: Grade to a tenth

Recurrence: Each term Duration: 2 terms

Language: German/English Level: 4 Version: 1

Elective Offer (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5 CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-111912</td>
<td>Advanced Topics in Digital Management</td>
<td>3 CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-111913</td>
<td>Advanced Topics in Human Resource Management</td>
<td>3 CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-111806</td>
<td>Behavioral Lab Exercise</td>
<td>4,5 CR</td>
<td>Nieken, Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-110851</td>
<td>Designing Interactive Systems</td>
<td>4,5 CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-111099</td>
<td>Judgement and Decision Making</td>
<td>4,5 CR</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-111385</td>
<td>Responsible Artificial Intelligence</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102614</td>
<td>Experimental Economics</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-111109</td>
<td>KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams of the courses in this module. The assessment procedures are described for each course in the module separately. The overall grade of the module is the average of grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Please refer to the course descriptions for potential restrictions regarding an individual course.

Competence Goal
The student

- understands and analyses challenges and objectives within organizations
- applies economic models and empirical methods to analyze and solve challenges with a focus on the workplace and future of work
- understands the impact of digitalization and new information and communication technology on the work life and management decisions
- knows how to apply scientific research methods and understands the underlying problems

Content
The module „Incentives, Interactivity & Decisions in Organizations“ offers an interdisciplinary approach to study incentive structures, the role of interactivity in information systems, and decision making in organizations. The module specifically focuses on topics related to the workplace and the future of work in organizations. The topics range from designing incentive systems and interactive systems to leadership, decision making, as well as understanding human behavior. All courses in the module foster active participation and allow students to learn state-of-the-art research methods and apply them to real-world challenges.

Workload
Total workload for 9 credits: approx. 270 hours.

Recommendation
Knowledge of Human Resource Management, microeconomics, game theory, and statistics is recommended.
4.66 Module: Industrial Production II [M-WIWI-101471]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

- T-WIWI-102631 Planning and Management of Industrial Plants 5.5 CR Schultmann

Supplementary Courses (Elective: at most 1 item)

- T-WIWI-102763 Supply Chain Management with Advanced Planning Systems 3.5 CR Bosch, Göbelt
- T-WIWI-102826 Risk Management in Industrial Supply Networks 3.5 CR Schultmann
- T-WIWI-102828 Supply Chain Management in the Automotive Industry 3.5 CR Heupel, Lang
- T-WIWI-103134 Project Management 3.5 CR Schultmann

Supplementary Courses (Elective: at most 1 item)

- T-WIWI-102634 Emissions into the Environment 3.5 CR Karl
- T-WIWI-112103 Global Manufacturing 3.5 CR Sasse
- T-WIWI-113107 Life Cycle Assessment – Basics and Application Possibilities in an Industrial Context 3.5 CR Schultmann

Competence Certificate

The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course Planning and Managing of Industrial Plants [2581952] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course Planning and Managing of Industrial Plants [2581952] and at least one additional activity are compulsory and must be examined.

Competence Goal

- Students shall be able to describe the tasks of tactical production management with special attention drawn upon industrial plants.
- Students shall understand the relevant tasks in plant management (projection, realisation and supervising tools for industrial plants).
- Students shall be able to describe the special need of a techno-economic approach to solve problems in the field of tactical production management.
- Students shall be proficient in using selected techno-economic methods like investment and cost estimates, plant layout, capacity planning, evaluation principles of production techniques, production systems as well as methods to design and optimize production systems.
- Students shall be able to evaluate techno-economical approaches in planning tactical production management with respect to their efficiency, accuracy and relevance for industrial use.

Content

- Planning and Management of Industrial Plants: Basics, circulation flow starting from projecting to techno-economic evaluation, construction and operating up to plant dismantling.

Annotation

Apart from the core course the courses offered are recommendations and can be replaced by courses from the Module Industrial Production III.
Workload

Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h.

The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.
Module: Industrial Production III [M-WIWI-101412]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management) Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102632</td>
<td>Production and Logistics Management</td>
<td>5.5 CR</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Supplementary Courses from Module Industrial Production II (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102634</td>
<td>Emissions into the Environment</td>
<td>3.5 CR</td>
<td>Karl</td>
</tr>
<tr>
<td>T-WIWI-112103</td>
<td>Global Manufacturing</td>
<td>3.5 CR</td>
<td>Sasse</td>
</tr>
<tr>
<td>T-WIWI-113107</td>
<td>Life Cycle Assessment – Basics and Application Possibilities in an Industrial Context</td>
<td>3.5 CR</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102763</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>3.5 CR</td>
<td>Bosch, Göbelt</td>
</tr>
<tr>
<td>T-WIWI-102826</td>
<td>Risk Management in Industrial Supply Networks</td>
<td>3.5 CR</td>
<td>Schultmann</td>
</tr>
<tr>
<td>T-WIWI-102828</td>
<td>Supply Chain Management in the Automotive Industry</td>
<td>3.5 CR</td>
<td>Heupel, Lang</td>
</tr>
<tr>
<td>T-WIWI-103134</td>
<td>Project Management</td>
<td>3.5 CR</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course *Production and Logistics Management* [2581954] and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course *Production and Logistics Management* [2581954] and at least one additional activity are compulsory and must be examined.

Competence Goal

- Students describe the tasks concerning general problems of an operative production and logistics management.
- Students describe the planning tasks of supply chain management.
- Students use proficiently approaches to solve general planning problems.
- Students explain the existing interdependencies between planning tasks and applied methods.
- Students describe the mail goals and set-up of software supporting tools in production and logistics management (i.e. APS, PPS-, ERP- and SCM Systems).
- Students discuss the scope of these software tools and their general disadvantages.

Content

- Planning tasks and exemplary methods of production planning and control in supply chain management.
- Supporting software tools in production and logistics management (APS, PPS- and ERP Systems).
- Project management in the field of production and supply chain management.

Annotation

Apart from the core course the courses offered are recommendations and can be replaced by courses from the Module Industrial Production II.
Workload
The total amount of work for this module is approx. 270 hours (9 credits). The allocation is made according to the credit points of the courses of the module.

The total number of hours per course results from the effort required to attend the lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
4.68 Module: Information Engineering and Management [M-WIWI-101443]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (mandatory)

<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td>T-WIWI-110373</td>
<td>Advanced Information Systems</td>
<td>5 CR</td>
<td>Each term</td>
<td>2 terms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-WIWI-102886</td>
<td>Business Administration in Information Engineering and Management</td>
<td>5 CR</td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of each course of this module, whose sum of credits meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student
- understands and analyzes the central role of information as an economic good, a production factor, and a competitive factor,
- identifies, evaluates, prices, and markets information goods,
- evaluates informations flows and the value of information in an interdisciplinary context,
- works out solutions in teams,
- transfers models from Business Administration to situations in business whose basic conditions are changed due to the implementation of information and communication technology,
- applies methods from Business Administration (Decision theory, game theory, operations research, etc.) to questions of Information Engineering and Management,
- analyzes the potential to automize the decision making process in businesses by data bases,
- describes the process to extract relevant data for decision making from operational accounting systems.

Content
The module Information Engineering and Management comprises the lectures Advanced Information Systems and Business Administration in Information Engineering and Management.

In the lecture Advanced Information Systems, a clear distinction of information as a production, competitive, and economic good is introduced. The central role of information is explained through the concept of the information lifecycle. The single phases from extraction/generation through storage transformation and evaluation until the marketing and usage of information are analyzed from the business administration perspective and the microeconomic perspective. The state of the art of economic theory is presented throughout the different phases of the information lifecycle. The lecture is complemented by accompanying exercise courses.

In the lecture Business Administration in Information Engineering and Management, classical Business Administration is applied to businesses in an information- and communication-technological environment. The process to extract relevant data for decision making from operational accounting systems receives special attention. In order to do so, topics such as activity-based costing and transaction costs models are addressed. The automization of the decision making process in businesses by data bases is another focus of the module. To solve such issues within a company, relevant methods such as decision theory and game theory are lectured. Finally, complex business relevant questions in a dynamically changing environment are addressed by presenting models and methods from system dynamics.
4.69 Module: Information Systems in Organizations [M-WIWI-104068]

Responsible:	Prof. Dr. Alexander Mädche
Organisation:	KIT Department of Economics and Management
Part of:	Economics and Management (Elective Modules in Economics and Management)
	Economics and Management (Elective Modules in Business Administration)

Credits	9
Grading scale	Grade to a tenth
Recurrence	Each term
Duration	2 terms
Language	German
Level	4
Version	4

Compulsory Elective Courses (Electing: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td>4,5 CR</td>
<td>Mädche, Nadj, Toreini</td>
</tr>
<tr>
<td>T-WIWI-110851</td>
<td>Designing Interactive Systems</td>
<td>4,5 CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-108437</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>4,5 CR</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The student
- has a comprehensive understanding of conceptual and theoretical foundations of information systems in organizations
- is aware of the most important classes of information systems used in organizations: process-centric, information-centric and people-centric information systems.
- knows the most important activities required to execute in the pre-implementation, implementation and post-implementation phase of information systems in organizations in order to create business value
- has a deep understanding of key capabilities of business intelligence systems and/or interactive information systems used in organizations

Content
During the last decades we witnessed a growing importance of Information Technology (IT) in the business world along with faster and faster innovation cycles. IT has become core for businesses from an operational company-internal and external customer perspective. Today, companies have to rethink their way of doing business, from an internal as well as an external digitalization perspective.

This module focuses on the internal digitalization perspective. The contents of the module abstract from the technical implementation details and focus on foundational concepts, theories, practices and methods for information systems in organizations. The students get the necessary knowledge to guide the successful digitalization of organizations. Each lecture in the module is accompanied with a capstone project that is carried out in cooperation with an industry partner.

Annotation
New module starting summer term 2018.

Workload
The total workload for this module is approximately 270 hours.
4.70 Module: Innovation and Growth [M-WIWI-101478]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale Grade to a tenth</th>
<th>Recurrence Each term</th>
<th>Duration 1 term</th>
<th>Language German/English</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: between 9 and 10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109194</td>
<td>Dynamic Macroeconomics</td>
<td>4.5</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-112822</td>
<td>Economics of Innovation</td>
<td>4.5</td>
<td>Ott</td>
</tr>
<tr>
<td>T-WIWI-112816</td>
<td>Growth and Development</td>
<td>4.5</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students shall be given the ability to

- know the basic techniques for analyzing static and dynamic optimization models that are applied in the context of micro- and macroeconomic theories
- understand the important role of innovation to the overall economic growth and welfare
- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Content

The module includes courses that deal with issues of innovation and growth in the context of micro- and macroeconomic theories. The dynamic analysis makes it possible to analyze the consequences of individual decisions over time, and sheds light on the tension between static and dynamic efficiency in particular. In this context is also analyzed, which policy is appropriate to carry out corrective interventions in the market and thus increase welfare in the presence of market failure.

Workload

Total expenditure of time for 9 credits: 270 hours

Attendance time per lecture: 3x14h

Preparation and wrap-up time per lecture: 3x14h

Rest: Exam Preparation

The exact distribution is subject to the credits of the courses of the module.

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.
Module: Innovation Economics [M-WIWI-101514]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: between 9 and 10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Exam Credits</th>
<th>Exam Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112822</td>
<td>Economics of Innovation</td>
<td>4.5 CR</td>
<td>Ott</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102906</td>
<td>Methods in Economic Dynamics</td>
<td>1.5 CR</td>
<td>Ott</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>3 CR</td>
<td>Klarmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102789</td>
<td>Seminar in Economic Policy</td>
<td>3 CR</td>
<td>Ott</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students shall be given the ability to

- understand the important role of innovation for economic growth and welfare
- understand the relevance of alternative incentive mechanisms for the emergence and dissemination of innovations
- know basic terms of product and innovation concepts
- know fundamental concepts of innovation management
- work with fundamental theoretical innovation models and to implement them in appropriate computer algebra systems
- query appropriate data sources and to analyse and visualise them using statistical methods

Content

The module provides students with knowledge about implications of technological and organizational changes. Addressed economic issues are incentives for developing innovations, diffusion processes, and associated effects. In this context the module analyses appropriate policies in the presence of market failures to take corrective action on the market process and thus to increase the dynamic efficiency of economies.

Furthermore, the module offers the possibility to learn about different aspects of theoretical modelling of innovation-based growth as a part of the seminar and the methods-workshop. This includes the implementation of formal models in computer algebra systems as well as recording, processing and econometric analysis of related data from relational databases (concerning for example patents or trademarks). Moreover, methods of network theory are applied.

Finally, the module emphasises the business perspective: Issues of all stages of innovation processes will be discussed, from innovation strategies up to the market commercialisation.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012] and Economics II [2600014]. Further, it is assumed that students have interest in using quantitative-mathematical methods.
Module: Innovation Management [M-WIWI-101507]

Responsible: Prof. Dr. Marion Weissenberger-Eibl
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102893</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108875</td>
<td>Digital Transformation and Business Models</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-112143</td>
<td>Development of Sustainable Business Models</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>T-WIWI-111823</td>
<td>Successful Transformation Through Innovation</td>
<td>3 CR</td>
<td>Busch</td>
</tr>
<tr>
<td>T-WIWI-102852</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>T-WIWI-110263</td>
<td>Methods in Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102853</td>
<td>Roadmapping</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102858</td>
<td>Technology Assessment</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102854</td>
<td>Technologies for Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102866</td>
<td>Design Thinking</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-108875</td>
<td>Digital Transformation and Business Models</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102833</td>
<td>Entrepreneurial Leadership & Innovation Management</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-102864</td>
<td>Entrepreneurship</td>
<td>3 CR</td>
<td>Terzidis</td>
</tr>
<tr>
<td>T-WIWI-111823</td>
<td>Successful Transformation Through Innovation</td>
<td>3 CR</td>
<td>Busch</td>
</tr>
<tr>
<td>T-WIWI-102852</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>3 CR</td>
<td>Weissenberger-Eibl</td>
</tr>
<tr>
<td>T-WIWI-110263</td>
<td>Methods in Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102853</td>
<td>Roadmapping</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102854</td>
<td>Technologies for Innovation Management</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
<tr>
<td>T-WIWI-102858</td>
<td>Technology Assessment</td>
<td>3 CR</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Competence Certificate

See German version.

Prerequisites

The lecture “Innovation Management: Concepts, Strategies and Methods” and one of the seminars of the chair for Innovation and Technology Management are compulsory. The third course can be chosen from the courses of the module.

Competence Goal

Students develop a comprehensive understanding of the innovation process and its conditionality. There is an additional focus on the concepts and processes which are of particular relevance with regard to shaping the entire process. Various strategies and methods are then taught based on this. After completing the module, students should have developed a systemic understanding of the innovation process and be able to shape this by developing and applying suitable methods.

Content

The Innovation Management: Concepts, Strategies and Methods lecture course teaches concepts, strategies and methods which help students to form a systemic understanding of the innovation process and how to shape it. Building on this holistic understanding, the seminar courses then go into the subjects in greater depth and address specific processes and methods which are central to innovation management.
Annotation
Seminars offered by Prof. Terzidis (or the members of his research group) are not eligible for crediting in a seminar module of the WiWi degree programs. Exception: Seminar "Entrepreneurship Research".

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
4.73 Module: Innovative Concepts of Data and Information Management [M-INFO-101208]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Innovative Concepts of Data and Information Management (Election: at least 1 item as well as at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101317</td>
<td>Deployment of Database Systems</td>
<td>5</td>
<td>CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-101975</td>
<td>Consulting in Practice</td>
<td>1.5</td>
<td>CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-101976</td>
<td>Project Management in Practice</td>
<td>1.5</td>
<td>CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-108377</td>
<td>Selling IT-Solutions Professionally</td>
<td>1.5</td>
<td>CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-1011400</td>
<td>Data Privacy: From Anonymization to Access Control</td>
<td>3</td>
<td>CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-111400</td>
<td>Database as a Service</td>
<td>5</td>
<td>CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-113124</td>
<td>Data Science</td>
<td>8</td>
<td>CR</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Competence Certificate
Siehe Teilleistung.

Prerequisites
None

Competence Goal
The students
- know the research area of information systems in its various facets and are able to do scientific work in this area,
- are able to develop complex information systems on their own,
- are able to structure and manage complex projects in the field of information systems with unpredictable difficulties,
- are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders.

Content
This module aims at exposing students to modern information management, both, in 'breadth' and 'depth'. We achieve 'breadth' by means of a close inspection and comparison of different systems and their respective aims. We achieve 'depth' by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications.

Annotation
The courses of this module are offered irregularly. Nonetheless, it is guaranteed that the module can be passed anytime.
4.74 Module: Intellectual Property Law [M-INFO-101215]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Thomas Dreier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Law</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Credits 9
Grading scale Grade to a tenth
Recurrence Each term
Duration 2 terms
Language German
Level 4
Version 5

Intellectual Property Law (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Course Required Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101308</td>
<td>Copyright</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101313</td>
<td>Trademark and Unfair Competition Law</td>
<td>3 CR</td>
<td>Matz</td>
</tr>
<tr>
<td>T-INFO-101307</td>
<td>Internet Law</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-108462</td>
<td>Selected Legal Issues of Internet Law</td>
<td>3 CR</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-101310</td>
<td>Patent Law</td>
<td>3 CR</td>
<td>Werner</td>
</tr>
</tbody>
</table>

Prerequisites
None
Compulsory Elective Courses (Election: between 9 and 10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102661</td>
<td>Database Systems and XML</td>
<td>4.5 CR</td>
<td>Oberweis</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-106423</td>
<td>Information Service Engineering</td>
<td>4.5 CR</td>
<td>Sack</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-112685</td>
<td>Modeling and Simulation</td>
<td>4.5 CR</td>
<td>Lazarova-Molnar</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4.5 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td>4.5 CR</td>
<td>Färber</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4.5 CR</td>
<td>Käfer</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students

- know the different machine learning procedures for the supervised as well as the unsupervised learning,
- identify the pros and cons of the different learning methods,
- apply the discussed network learning methods in specific scenarios,
- compare the practicality of methods and algorithms with alternative approaches.

Content

In the broader sense learning systems are understood as biological organisms and artificial systems which are able to change their behavior by processing outside influences. Network learning methods based on symbolic, statistic and neuronal approaches are the focus of Computer Sciences.

In this module the most important network learning methods are introduced and their applicability is discussed with regard to different information sources such as data and text mining, natural analogue procedures as well as the application of organic learning procedures within the finance sector.

Annotation

Detailed information on the recognition of examinations in the field of Informatics can be found at http://www.aifb.kit.edu/web/Auslandsaufenthalt.
4.76 Module: Introduction to Video Analysis [M-INFO-100736]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101273</td>
<td>Introduction to Video Analysis</td>
<td>3</td>
<td>CR</td>
<td>Each summer term</td>
<td>German</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.77 Module: IT Security [M-INFO-106315]

Responsible: Prof. Dr. Hannes Hartenstein
Prof. Dr. Jörn Müller-Quade
Prof. Dr. Thorsten Strufe
TT-Prof. Dr. Christian Wressnegger

Organisation: KIT Department of Informatics

Part of: Informatics

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language German/English
Level 4
Version 2

Mandatory
T-INFO-112818 IT Security 6 CR Hartenstein, Müller-Quade, Strufe, Wressnegger

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
Students
• have in-depth knowledge of cryptography and IT security
• know and understands sophisticated techniques and security primitives to achieve the protection goals
• know and understand scientific evaluation and analysis methods of IT security (game-based formalization of confidentiality and integrity, security and anonymity notions)
• have a good understanding of types of data, personal data, legal and technical fundamentals of privacy protection
• know and understand the fundamentals of system security (buffer overflow, return-oriented programming, ...)
• know different mechanisms for anonymous communication (TOR, Nym, ANON) and can assess their effectivity

Content
Based on the content of the compulsory lecture "Informationssicherheit", this module deepens different topics of IT security. These include in particular:
• Elliptic curve cryptography
• Threshold cryptography
• Zero-knowledge proofs
• Secret sharing
• Secure multi-party computation and homomorphic encryption
• Methods of IT security (game-based analysis and the UC model)
• Crypto-currencies and consensus through proof-of-work/stake
• Anonymity on the Internet, anonymity with online payments
• Privacy-preserving machine learning
• Security of machine learning
• System security and exploits
• Threat modeling and quantification of IT security

Workload
Course workload:
1. Attendance time: 56 h
2. Self-study: 56 h
3. Preparation for the exam: 68 h

Recommendation
Students should be familiar with the content of the compulsory lecture "Informationssicherheit".
Literature

Literature:
- Katz/Lindell: Introduction to Modern Cryptography (Chapman & Hall)
- Schäfer/Roßberg: Netz sicherheit (dpunkt)
- Anderson: Security Engineering (Wiley, and online)
- Stallings/Brown: Computer Security (Pearson)
- Pfleeger, Pfleeger, Margulies: Security in Computing (Prentice Hall)
4.78 Module: Lab: Graph Visualization in Practice [M-INFO-103302]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Dorothea Wagner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Informatics</td>
</tr>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-106580</td>
<td>5</td>
<td>Irregular</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>Lab: Graph Visualization in Practice</td>
<td>5 CR</td>
<td>Wagner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
4.79 Module: Laboratory Course Algorithm Engineering [M-INFO-102072]

Responsible: Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-104374 | Laboratory Course Algorithm Engineering | 6 CR | Sanders, Ueckerdt, Wagner |
4.80 Module: Language Technology and Compiler [M-INFO-100806]

Responsible: Prof. Dr.-Ing. Gregor Snelting
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101343</th>
<th>Language Technology and Compiler</th>
<th>8 CR</th>
<th>Snelting</th>
</tr>
</thead>
</table>
4.81 Module: Machine Learning [M-WIWI-103356]

Responsibility: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106340</td>
<td>Machine Learning 1 - Basic Methods</td>
<td>4,5 CR</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106341</td>
<td>Machine Learning 2 – Advanced Methods</td>
<td>4,5 CR</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109985</td>
<td>Project Lab Cognitive Automobiles and Robots</td>
<td>5 CR</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109983</td>
<td>Project Lab Machine Learning</td>
<td>5 CR</td>
<td>Zöllner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination is carried out in the form of partial examinations on the selected courses of the module, with which the minimum requirement at creditpoints is fulfilled. The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with creditpoints and is cut off after the first comma point.

Prerequisites

None

Competence Goal

Students

- Gain knowledge of basic methods in the field of machine learning.
- Understand advanced machine learning concepts and their possible applications.
- Can classify, formally describe and evaluate machine learning methods.
- Can apply their knowledge for the selection of suitable models and methods for selected problems in the field of machine learning.

Content

The topic of machine learning considering real-world challenges of complex application domains is a rapidly expanding field of knowledge and the subject of numerous research and development projects. Large parts of modern AI methods are based on machine-learned models.

The Machine Learning 1 course introduces students to the rapidly evolving field of machine learning by providing a solid foundation that covers the major concepts and techniques in the field. Students will explore various methods of supervised, unsupervised, and reinforcement learning, as well as associated model types ranging from simple linear classifiers to more complex models, such as Deep Neural Networks.

The lecture "Machine Learning 2" covers advanced and modern machine learning methods. Modern learning methods like Self-Supervised-Learning and Contrastive Learning as well as model architectures like Diffusion Models, Transformers, Graph Neural Networks, are introduced.

In the practical courses, scientific tasks in the field of autonomous driving or robotics are solved with modern machine learning methods. There, the techniques of machine learning are practically oriented.

Workload

The total workload for this module is approximately 270 hours.

Responsible: Prof. Dr. Gerhard Neumann
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-111558 | Machine Learning - Foundations and Algorithms | 5 CR | Neumann |

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
- Students acquire knowledge of the basic methods of Machine Learning
- Students acquire the mathematical knowledge to understand the theoretical foundations of Machine Learning
- Students can categorize, formally describe and evaluate methods of Machine Learning
- Students can apply their knowledge to select appropriate models and methods for selected problems in the field of Machine Learning.

Content
The field of Machine Learning has made enormous progress in recent years and good knowledge of Machine Learning is becoming increasingly in demand on the job market. Machine Learning describes the acquisition of knowledge by an artificial system based on experience or data. Rules or certain calculations no longer have to be manually coded but can be extracted from data by intelligent systems.

This lecture provides an overview of essential and current methods of Machine Learning. After reviewing the necessary mathematical background, the lecture primarily deals with algorithms for classification, regression, and density estimation, with a focus on the mathematical understanding of probabilistic methods and neural networks.

Examples of topics include:
- Linear Regression and Classification
- Model Selection, Overfitting, and Regularization
- Bayesian Learning and Gaussian Processes
- Neural Networks, Backpropagation and Optimization
- Graphical Models and Sampling
- Expectation Maximization
- Variational Inference
- Variational Auto-Encoders and Diffusion Models
- Bayesian Neural Networks
- Transfer and Meta Learning
- Hyperparameter Tuning and Auto-ML

Workload
150h

Recommendation
See partial achievements (Teilleistung)
4.83 Module: Machine Vision [M-INFO-101239]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Optional Courses (Election: at least 1 item as well as at least 3 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101273</td>
<td>Introduction to Video Analysis</td>
<td>3 CR</td>
<td>Beyerer</td>
</tr>
<tr>
<td>T-INFO-101363</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>6 CR</td>
<td>Beyerer</td>
</tr>
<tr>
<td>T-INFO-111491</td>
<td>Deep Learning for Computer Vision I: Basics</td>
<td>3 CR</td>
<td>Stiefelhagen</td>
</tr>
</tbody>
</table>

Optional Courses (Election: at least 1 item as well as at least 6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101362</td>
<td>Pattern Recognition</td>
<td>6 CR</td>
<td>Beyerer, Zander</td>
</tr>
<tr>
<td>T-INFO-101297</td>
<td>Biometric Systems for Person Identification</td>
<td>3 CR</td>
<td>Stiefelhagen</td>
</tr>
<tr>
<td>T-INFO-105943</td>
<td>Practical Course Computer Vision for Human-Computer Interaction</td>
<td>6 CR</td>
<td>Stiefelhagen</td>
</tr>
<tr>
<td>T-INFO-111491</td>
<td>Deep Learning for Computer Vision I: Basics</td>
<td>3 CR</td>
<td>Stiefelhagen</td>
</tr>
</tbody>
</table>
4.84 Module: Management Accounting [M-WIWI-101498]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Marcus Wouters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>Economics and Management (Elective Modules in Economics and Management)</td>
</tr>
<tr>
<td></td>
<td>Economics and Management (Elective Modules in Business Administration)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102800</td>
<td>Management Accounting 1</td>
<td>4.5 CR</td>
</tr>
<tr>
<td>T-WIWI-102801</td>
<td>Management Accounting 2</td>
<td>4.5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 13 SPO) of the courses of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- are familiar with various management accounting methods,
- can apply these methods for cost estimation, profitability analysis, and product costing,
- are able to analyze short-term and long-decisions with these methods,
- have the capacity to devise instruments for organizational control.

Content

The module consists of two courses "Management Accounting 1" and "Management Accounting 2". The emphasis is on structured learning of management accounting techniques.

Annotation

The following courses are part of this module:

- The course Management Accounting 1, which is offered in every sommer semester
- The course Management Accounting 2, which is offered in every winter semester

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Market Engineering [M-WIWI-101446]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

Credits: 9
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German/English
Level: 4
Version: 8

Mandatory
T-WIWI-112823 Platform & Market Engineering: Commerce, Media, and Digital Democracy 4,5 CR Weinhardt

Supplementary Courses (Elective: 4,5 credits)
T-WIWI-102613 Auction Theory 4,5 CR Ehrhart
T-WIWI-108880 Blockchains & Cryptofinance 4,5 CR Schuster, Uhrig-Homburg
T-WIWI-113160 Digital Democracy 4,5 CR Fegert
T-WIWI-110797 eFinance: Information Systems for Securities Trading 4,5 CR Weinhardt
T-WIWI-107501 Energy Market Engineering 4,5 CR Weinhardt
T-WIWI-107503 Energy Networks and Regulation 4,5 CR Weinhardt
T-WIWI-102614 Experimental Economics 4,5 CR Weinhardt
T-WIWI-111109 KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics 4,5 CR Weinhardt
T-WIWI-107504 Smart Grid Applications 4,5 CR Weinhardt

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students
- know the design criterias of market mechanisms and the systematic approach to create new markets,
- understand the basics of the mechanism design and auction theory,
- analyze and evaluate existing markets regarding the missing incentives and the optimal solution of a given market mechanism, respectively,
- develop solutions in teams.

Content
This module explains the dependencies between the design von markets and their success. Markets are complex interaction of different institution and participants in a market behave strategically according to the market rules. The development and the design of markets or market mechanisms has a strong influence on the behavior of the participants. A systematic approach and a thorough analysis of existing markets is inevitable to design, create and operate a market place successfully. The approaches for a systematic analysis are explained in the mandatory course Market Engineering [2540460] by discussing theories about mechanism design and institutional economics. The student can deepen his knowledge about markets in a second course.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
4.86 Module: Marketing and Sales Management [M-WIWI-105312]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112693</td>
<td>Digital Marketing</td>
<td>4,5 CR</td>
<td>Kupfer</td>
</tr>
<tr>
<td>T-WIWI-111099</td>
<td>Judgement and Decision Making</td>
<td>4,5 CR</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-107720</td>
<td>Market Research</td>
<td>4,5 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-111848</td>
<td>Online Concepts for Karlsruhe City Retailers</td>
<td>3 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-109864</td>
<td>Product and Innovation Management</td>
<td>4,5 CR</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106981</td>
<td>Digital Marketing and Sales in B2B</td>
<td>1,5 CR</td>
</tr>
<tr>
<td>T-WIWI-110985</td>
<td>International Business Development and Sales</td>
<td>6 CR</td>
</tr>
<tr>
<td>T-WIWI-102835</td>
<td>Marketing Strategy Business Game</td>
<td>1,5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. For passing the module exam in every singled partial exam the respective minimum requirements has to be achieved.

When every singled examination is passed, the overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students
- have an advanced knowledge about central marketing contents
- have a fundamental understanding of the marketing instruments
- know and understand several strategic concepts and how to implement them
- are able to implement their extensive marketing knowledge in a practical context
- know several qualitative and quantitative approaches to prepare decisions in Marketing
- have the theoretical knowledge to write a master thesis in Marketing
- have the theoretical knowledge to work in/together with the Marketing department

Content

The aim of this module is to deepen central marketing contents in different areas.

Annotation

Please note that only one of the listed 1,5-ECTS courses can be chosen in the module.

Workload

The total workload for this module is approximately 270 hours.
Module: Mathematical Programming [M-WIWI-101473]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at most 2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102719</td>
<td>Mixed Integer Programming I</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Global Optimization I and II</td>
<td>9 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102856</td>
<td>Convex Analysis</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111587</td>
<td>Multicriteria Optimization</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nonlinear Optimization I and II</td>
<td>9 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102855</td>
<td>Parametric Optimization</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at most 2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106548</td>
<td>Advanced Stochastic Optimization</td>
<td>4,5 CR</td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Mixed Integer Programming II</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Global Optimization II</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models</td>
<td>4,5 CR</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimization</td>
<td>4,5 CR</td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111247</td>
<td>Mathematics for High Dimensional Statistics</td>
<td>4,5 CR</td>
<td>Grothe</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103124</td>
<td>Multivariate Statistical Methods</td>
<td>4,5 CR</td>
<td>Grothe</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nonlinear Optimization II</td>
<td>4,5 CR</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management</td>
<td>4,5 CR</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110162</td>
<td>Optimization Models and Applications</td>
<td>4,5 CR</td>
<td>Sudermann-Merx</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112109</td>
<td>Topics in Stochastic Optimization</td>
<td>4,5 CR</td>
<td>Rebennack</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

There is no compulsory course in the module.

Competence Goal

The student

- names and describes basic notions for advanced optimization methods, in particular from continuous and mixed integer programming,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions,
- identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

Content

The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous and mixed integer decision variables.
Annotation
The lectures are partly offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
For the lectures of Prof. Stein a grade of 30 % of the exercise course has to be fulfilled. The description of the particular lectures is more detailed.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Meshes and Point Clouds [M-INFO-100812]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101349 | Meshes and Point Clouds | 3 CR | Prautzsch |

Competence Certificate

See partial achievement.

Prerequisites

See partial achievement.

Competence Goal

Students of this course will have a basic understanding about discrete surface representations and are able to handle basic geometry processing problems for shape design.

Content

Thanks to various imaging techniques, discrete, i.e. piecewise constant or linear, representations of surfaces and solids are commonly used to represent surfaces and solids alongside established representations of higher degree and smoothness.

In this course, methods are presented (1) to represent surfaces by point clouds, octrees, hierarchical sphere clouds, triangle fans, Delaunay meshes, and meshes of planar quadrilaterals, (2) methods to obtain triangle meshes from point clouds and distance functions, (3) to simplify or compress meshes, (4) to smooth meshes and remove noise, (5) to segment meshes according to different criteria, (6) to subdivide and refine meshes, (7) to complete shape by neuronal nets, (8) to animate and deform meshes, and others.

Workload

- 90h of which about
- 30h for attending the lecture
- 30h for post-processing
- 30h for exam preparation
Module: Microeconomic Theory [M-WIWI-101500]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102861</td>
<td>Advanced Game Theory</td>
<td>4,5</td>
<td>Ehrhart, Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102859</td>
<td>Social Choice Theory</td>
<td>4,5</td>
<td>Puppe</td>
</tr>
<tr>
<td>T-WIWI-102613</td>
<td>Auction Theory</td>
<td>4,5</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-105781</td>
<td>Incentives in Organizations</td>
<td>4,5</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students

- are able to model practical microeconomic problems mathematically and to analyze them with respect to positive and normative questions,
- understand individual incentives and social outcomes of different institutional designs.

Here is an example of a positive question: what firm decisions does a specific regulatory policy result in under imperfect competition? An example of a normative question would be: which voting rule has appealing properties?

Content

The module teaches advanced concepts and content in microeconomic theory. Thematically, it offers a formally rigorous treatment of game theory and exemplary applications, such as strategic interaction on markets and non-/cooperative bargaining ("Advanced Game Theory"), as well as specialized courses dedicated to auctions ("Auktionstheorie") and incentive systems in organizations ("Incentives in Organizations"). Moreover, it offers the opportunity to delve deeper into the mathematical theory of voting and collective decision making, i.e. the systematic aggregation of preferences and judgments ("Social Choice Theory").

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
4.90 Module: Microservice-Based Web Applications [M-INFO-104061]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101271</td>
<td>Web Applications and Service-Oriented Architectures (II)</td>
<td>4</td>
<td>Abeck</td>
</tr>
<tr>
<td>T-INFO-103121</td>
<td>Practical Course: Web Applications and Service-Oriented Architectures (II)</td>
<td>5</td>
<td>Abeck</td>
</tr>
</tbody>
</table>
4.91 Module: Mobile Communication [M-INFO-100785]

Responsible: Prof. Dr. Oliver Waldhorst
Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101322 | Mobile Communication | 4 CR | Waldhorst, Zitterbart |
4.92 Module: Module Master's Thesis [M-WIWI-101656]

Responsible: Studiendekan der KIT-Fakultät für Informatik
Studiendekan des KIT-Studienganges

Organisation: KIT Department of Economics and Management

Part of: Master’s Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-WIWI-103142</th>
<th>Master’s Thesis</th>
<th>30 CR</th>
<th>Studiendekan der KIT-Fakultät für Informatik, Studiendekan des KIT-Studienganges</th>
</tr>
</thead>
</table>

Competence Certificate

Examination by two examiners from the two faculties. For details refer to examination regulation. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme.

Prerequisites

Regulated in §14 of the examination regulation.

The requirements for the examiner are described in §14 (2) of the examination regulation.

Competence Goal

The student can independently handle a complex and unfamiliar subject based on scientific criteria and the current state of research.

He/she is in a position to critically analyze and structure the researched information as well as derive principles and regularities. He/she knows how to apply the thereby achieved results to solve the task at hand. Taking into account this knowledge and his/her interdisciplinary knowledge, he/she can draw own conclusions, derive improvement potentials, propose and implement science-based decisions.

This is basically also done under consideration of social and/or ethical aspects.

He/she can interpret, evaluate and if required, graphically present the obtained results.

He/she is in a position to sensibly structure a research paper, document results and clearly communicate the results in scientific form.
Content

- The master thesis shows that the candidate can autonomously investigate a problem from his discipline with scientific methods according to the state-of-the-art of the discipline within a specified time period.
- The master thesis can be written in German or English.
- The topic of a master thesis can be accepted or chosen by each of the examiners according to examination regulation. The examiner accepting a topic for a master thesis acts as the first supervisor of this thesis.
- Writing a master thesis with a supervisor who is not a member of the two faculties participating in the degree programme (Departement of Informatics, Department of Economics and Management) requires acceptance by the examination board of the degree programme. The candidate must have an opportunity to make suggestions for the topic of the master thesis.
- Candidates can write a master thesis in teams. However, this requires that the contribution and performance of each candidate to the thesis is identifiable according to objective criteria which allow a unique delineation of each candidate’s contribution. The contribution of each candidate regarded in isolation must fulfill the requirements a individual master thesis.
- In exceptional cases and upon request of the candidate, the chairman of the examination board chooses a supervisor and requests that this supervisor provides the candidate with a topic for the master thesis within 4 weeks after the request. In this case, the candidate is informed by the chairman of the examination board about the topic selected.
- Topic, specification of research tasks and the volume of the master thesis should be limited by the supervisor, so that the master thesis can be written with the assigned workload of 30 credits (750-900h).
- The master thesis must contain the following declaration of the candidate: “I truthfully assure that I have autonomously written this master thesis. I have quoted all sources used precisely and completely. I have labelled everything which has been taken from the work of others with or without change.” A master thesis without this declaration will not be accepted.
- The date of the assignment of the topic to a candidate as well as the date of delivery of the master thesis should be registered at the examination board. The candidate can return a topic for the master thesis only one time and only within a period of two month after he has received the topic. Upon a request of the candidate with reasons supporting an extension, the examination board may extend the deadline for the delivery of the master thesis by a maximum of three months. A master thesis not delivered within time is graded as “fail” except when the candidate is not responsible for this delay (e.g. protection of motherhood).
- The master thesis is reviewed and graded by the supervisor and the additional examiner. The team of supervisor and examiner must represent both faculties participating in the degree programme (Department of Informatics, Department of Economics and Management). At least one of the two must be professor or junior professor. If the grades of the supervisor and the examiner differ, the examination board sets the mark within this limit.
- Reviewing and grading should be done within 8 weeks after delivery of the master thesis.

Workload
The total workload for this module is approximately 900 hours. For further information see German version.
4.93 Module: Network Economics [M-WIWI-101406]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale Grade to a tenth</th>
<th>Recurrence Each term</th>
<th>Duration 1 term</th>
<th>Language German/English</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4,5 CR</td>
<td>Mitusch</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transport Economics</td>
<td>4,5 CR</td>
<td>Mitusch, Szimba</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5 CR</td>
<td>Mitusch</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102712</td>
<td>Regulation Theory and Practice</td>
<td>4,5 CR</td>
<td>Mitusch</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-113147</td>
<td>Telecommunications and Internet – Economics and Policy</td>
<td>4,5 CR</td>
<td>Mitusch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The students
- have acquired the basic knowledge for a future job in a network company or in a regulatory agency, ministry etc.
- recognize the specific characterizations of network sectors, know fundamental methods for an economic analysis of network sectors and recognize the interfaces for an interdisciplinary cooperation of economists, engineers and lawyers
- understand the interactions between infrastructures, control systems, and the users of networks, especially concerning their implications on investments, price setting and competitive behavior, and they can model or simulate exemplary applications
- can assess the necessity of regulation of natural monopolies and identify regulatory measures that are important for networks.

Content
The module is concerned with network or infrastructure industries in the economy, e.g. telecommunication, traffic and energy sectors. These sectors are characterized by close interdependencies of operators and users of infrastructure as well as on states. States intervene in various forms, by the public and regulation authorities, due to the importance of network industries and due to limited abilities of markets to work properly in these industries. The students are supposed to develop a broad knowledge of these sectors and of the political options available.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Responsible: Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Zitterbart
4.95 Module: Networking [M-INFO-101206]

Responsible: Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Networking (Election: at least 1 item as well as at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101321</td>
<td>Next Generation Internet</td>
<td>4 CR</td>
<td>Bless, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-104386</td>
<td>Practical Course Protocol Engineering</td>
<td>4 CR</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101338</td>
<td>Telematics</td>
<td>6 CR</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Competence Goal

Each student should be able to:

- learn and use the concepts and principals of wired network design
- identify the flaws and benefits of wired communication systems
- judge the performance of protocols, wired networks and architectures
- master advanced protocols, architectures and algorithms of wired communication systems

Content

This module details selected aspects of wired communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.
4.96 Module: Networking Labs [M-INFO-101204]

Responsible: Prof. Dr. Hannes Hartenstein
Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Networking Labs (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101323</td>
<td>IT-Security Management for Networked Systems</td>
<td>5 CR</td>
<td>Hartenstein</td>
</tr>
</tbody>
</table>

Competence Goal

Each student should be able:

- to learn and apply the concepts and principals of wireless network design
- to identify the flaws and benefits of wireless communication systems
- to judge the performance of protocols, wireless networks and architectures
- master advanced protocols, architectures and algorithms of wireless communication systems

Content

This module details and applies selected aspects of communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Networking Security - Theory and Praxis (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101323</td>
<td>IT-Security Management for Networked Systems</td>
<td>5 CR</td>
<td>Hartenstein</td>
</tr>
<tr>
<td>T-INFO-101371</td>
<td>Security</td>
<td>6 CR</td>
<td>Hofheinz, Müller-Quade</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
Each student should be able

- to recall the basic security mechanisms and theoretical foundations of networking security and cryptography
- to read and understand actual academic papers
- to judge the security level of actual security solutions
- to identify possible attacks on security solutions

Content
This module details selected aspects of networking security and cryptography in theory and praxis.

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

Election notes
At least one of the courses "Operations Research in Supply Chain Management", "Graph Theory and Advanced Location Models", "Modeling and OR-Software: Advanced Topics" and "Special Topics of Stochastic Optimization (elective)" has to be taken. Students who choose the module in the field "compulsory elective modules" may select any two courses of the module.

Compulsory Elective Courses (Election: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102723</td>
<td>Graph Theory and Advanced Location Models</td>
<td>4,5 CR</td>
<td></td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106200</td>
<td>Modeling and OR-Software: Advanced Topics</td>
<td>4,5 CR</td>
<td></td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102715</td>
<td>Operations Research in Supply Chain Management</td>
<td>4,5 CR</td>
<td></td>
<td>Nickel</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-112213</td>
<td>Applied material flow simulation</td>
<td>4,5 CR</td>
<td></td>
<td>Baumann</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization</td>
<td>4,5 CR</td>
<td></td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102718</td>
<td>Discrete-Event Simulation in Production and Logistics</td>
<td>4,5 CR</td>
<td></td>
<td>Spieckermann</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102719</td>
<td>Mixed Integer Programming I</td>
<td>4,5 CR</td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102720</td>
<td>Mixed Integer Programming II</td>
<td>4,5 CR</td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110162</td>
<td>Optimization Models and Applications</td>
<td>4,5 CR</td>
<td></td>
<td>Sudermann-Merx</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-106549</td>
<td>Large-scale Optimization</td>
<td>4,5 CR</td>
<td></td>
<td>Rebennack</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111587</td>
<td>Multicriteria Optimization</td>
<td>4,5 CR</td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112109</td>
<td>Topics in Stochastic Optimization</td>
<td>4,5 CR</td>
<td></td>
<td>Rebennack</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.
The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
There is no compulsory course in the module.

Competence Goal
The student

- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of SCM and their respective optimization problems,
- is acquainted with classical location problem models (in planes, in networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.
Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of SCM. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of Supply Chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of supply chain management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Annotation
Some lectures and courses are offered irregularly.
The planned lectures and courses for the next three years are announced online.

Workload
Total effort for 9 credits: ca. 270 hours
- Presence time: 84 hours
- Preparation/Wrap-up: 112 hours
- Examination and examination preparation: 74 hours

Recommendation
Basic knowledge as conveyed in the module Introduction to Operations Research is assumed.
Module: Optimization under Uncertainty in Information Engineering and Management [M-WIWI-103243]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under Uncertainty</td>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites

None

Competence Goal

The students are familiar with the modern concepts of stochastic modeling and are in a position to describe and to analyse simple systems in an adequate way.

Content

Markov chains are no longer a nice theory but an important tool in order to model, analyse, and optimize a stochastic system as it evolves over time.

Topics overview: Markov chains, Poisson Processes.

Annotation

New module starting summer term 2017.

The planned lectures and courses for the next two years are announced online (http://www.ior.kit.edu/)

Workload

See German version.
Module: Parallel Algorithms [M-INFO-100796]

Responsible: Prof. Dr. Peter Sanders

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101333</td>
<td>Parallel Algorithms</td>
<td>4 CR</td>
<td>Sanders</td>
<td></td>
</tr>
<tr>
<td>T-INFO-111857</td>
<td>Parallel Algorithms Pass</td>
<td>1 CR</td>
<td>Sanders</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

See partial achievement.

Prerequisites

See partial achievement.

Competence Goal

The students acquire a systematic understanding for algorithmic problems and their solutions in the field of parallel algorithms, building on existing knowledge in algorithmics. Additionally, they are able to apply learned techniques to related problems and to interpret and comprehend current research topics.

After successful attendance of the course, the students are able to

- explain terms, structures, basic problem definitions and algorithms from the lecture;
- decide which algorithms and data structures are suitable for solving a given problem and, if necessary, adapt them to the requirements of specific problem;
- execute algorithms and data structures, conduct a mathematically precise analysis, and prove their algorithmic properties;
- explain machine models from the lecture and analyze algorithms and data structures in them;
- analyze new problems from application contexts, reduce them to their algorithmic core and design an abstract model; design own solutions in this model using concepts and techniques from the lecture, analyze them and prove the algorithmic properties.

Content

Models and their relation to real machines:
- shared memory - PRAM
- message passing - BSP
- circuits

Analysis: speedup, efficiency, scalability

Basic techniques:
- SPMD
- parallel divide-and-conquer
- collective communication
- load balancing

Concrete algorithms (examples):
- collective communication (including large data volumes): broadcast,
- reduce, prefix sums, all-to-all exchange
- matrix computations
- sorting
- list ranking
- minimum spanning trees
- load balancing: master worker with adaptive problem size, random
- polling, random distribution

Workload

Lecture and exercise with 3 semester hours per week. 5 ECTS correspond to approx. 150 working hours, consisting of

- approx. 30 h attendance of the lecture and exercise session / block seminar
- approx. 60 h preparation and follow-up work
- approx. 30 h working on exercise sheets / preparation of seminar presentation
- approx. 30 h exam preparation

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
Recommendation
The partial achievement **Parallel Algorithms Exercise** must be started before.
4.101 Module: Pattern Recognition [M-INFO-100825]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101362 | Pattern Recognition | 6 CR | Beyerer, Zander |
4.102 Module: Practical Course: Data Science [M-INFO-105632]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-111262</th>
<th>Practical Course: Data Science</th>
<th>6 CR</th>
<th>Böhm</th>
</tr>
</thead>
</table>
Module: Practical Course: Data Science for Scientific Data [M-INFO-106329]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-112844</td>
<td>Practical Course: Data Science for Scientific Data</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Böhm
Module: Practical Course: Database Systems [M-INFO-101662]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103201</td>
<td>Practical Course: Database Systems</td>
<td>4 CR</td>
<td>Böhm</td>
</tr>
</tbody>
</table>
Module: Practical Course: Geometric Modeling [M-INFO-101666]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103207</td>
<td>Practical Course: Geometric Modeling</td>
<td>3</td>
<td>Grade to a tenth</td>
<td>CR</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
See partial achievement.

Prerequisites
See partial achievement.

Competence Goal
The students of this course understand selected geometry modelling problems and are able to develop and implement algorithms for their solutions.

Content
Current CAD-techniques to design, represent, modify and analyze shapes given as solids or by their boundary surfaces.

Workload
90 h
Module: Practical Course: Smart Data Analytics [M-INFO-103235]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-106426</td>
<td>Practical Course: Smart Data Analytics</td>
<td>6</td>
<td>Beigl</td>
</tr>
</tbody>
</table>
Module: Private Business Law [M-INFO-101216]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Law

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Private Business Law (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-111405</td>
<td>Seminar: Commercial and Corporate Law in the IT Industry</td>
<td>3 CR</td>
<td>Dreier, Nolte</td>
</tr>
<tr>
<td>T-INFO-101288</td>
<td>Corporate Compliance</td>
<td>3 CR</td>
<td>Herzig</td>
</tr>
<tr>
<td>T-INFO-102036</td>
<td>Computer Contract Law</td>
<td>3 CR</td>
<td>Menk</td>
</tr>
<tr>
<td>T-INFO-111436</td>
<td>Employment Law</td>
<td>3 CR</td>
<td>Hoff</td>
</tr>
<tr>
<td>T-INFO-111437</td>
<td>Tax Law</td>
<td>3 CR</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal

The student

- has gained in-depth knowledge of German company law, commercial law and civil law;
- is able to analyze, evaluate and solve complex legal and economic relations and problems;
- is well grounded in individual labour law, collective labour law and commercial constitutional law, evaluates and critically assesses clauses in labour contracts;
- recognizes the significance of the parties to collective labour agreements within the economic system and has differentiated knowledge of labour disputes law and the law governing the supply of temporary workers and of social law;
- possesses detailed knowledge of national earnings and corporate tax law and is able to deal with provisions of tax law in a scientific manner and assesses the effect of these provisions on corporate decision-making.

Content
The module provides the student with knowledge in special matters in business law, like employment law, tax law and business law, which are essential for managerial decisions.
Module: Project Lab Applied Machine Learning [M-WIWI-106491]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election regulations
Elections in this module must be complete. Election is only possible until the lower bounds are reached.

Compulsory Elective Courses (Election:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109985</td>
<td>Project Lab Cognitive Automobiles and Robots</td>
<td>5 CR</td>
<td>Zöllner</td>
</tr>
<tr>
<td>T-WIWI-109983</td>
<td>Project Lab Machine Learning</td>
<td>5 CR</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Compétence Certificate
The module examination takes the form of an examination on the selected project lab. The control of success is described for each project lab.

Compétence Goal
Students
- Are able to solve real-world scientific problems using modern machine learning approaches.
- Are able to specify, adapt, and implement learning-based models to problems.
- Know advantages of learning-based algorithms over traditional solution strategies.

Content
The module is to be regarded as a practice-oriented supplement to theoretical lectures on machine learning.

In the practical course, groups of two to four students each are given scientific tasks in the field of autonomous driving or robotics to be solved using modern ML-based methods. The tasks are of applied nature and mostly additionally require an integrating of the learned methods into existing systems provided by the chair and scientific partners. Due to the application reference, additional conditions are imposed on the learned procedures.

Students analyze the task, research the current state of the art, specify, implement and evaluate their own learning-based methods and present their results in a lecture and final report.

Annotation
The main difference of the internships within the module differ by the rotation in which they are held.
- Project Lab Cognitive Automobile every winter semester.
- Project Lab Machine Learning every summer semester.

Workload
The workload of 5 credit points consists of attendance time at the experimental site for the practical implementation of the selected solution, as well as time for literature research and planning/specification of the selected solution. In addition, a short report and presentation of the work carried out will be prepared.

Recommendation
Theoretical knowledge about machine learning methods is necessary. This can be acquired e.g. by lectures "Machine Learning 1: Basic Methods", or "Machine Learning 2: Advanced Methods". Also lectures of other research groups like "Machine Learning - Basics and Algorithms", "Deep Learning for Computer Vision 1/2" or "Deep Learning and Neural Networks" lay good theoretical foundations for the project lab.

First experiences with deep learning frameworks in Python like PyTorch/Jax/Tensorflow are an advantage.
Module: Public Business Law [M-INFO-101217]

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: Law

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Public Business Law (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101309</td>
<td>Telecommunications Law</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-INFO-101312</td>
<td>European and International Law</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-INFO-111404</td>
<td>Seminar: IT-Security Law</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

see course description.
4.110 Module: Robotics I - Introduction to Robotics [M-INFO-100893]

- **Responsible:** Prof. Dr.-Ing. Tamim Asfour
- **Organisation:** KIT Department of Informatics
- **Part of:** Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

See partial achievements (Teilleistung)

Prerequisites

See partial achievements (Teilleistung)

Competence Goal

The student is able to apply the presented concepts to simple and realistic tasks from robotics. This includes mastering and deriving the mathematical concepts relevant for robot modeling. Furthermore, the student masters the kinematic and dynamic modeling of robot systems, as well as the modeling and design of simple controllers. The student knows the algorithmic basics of motion and grasp planning and can apply these algorithms to problems in robotics. He/she knows algorithms from the field of image processing and is able to apply them to problems in robotics. He/she masters the kinematic and dynamic modeling of robot systems, as well as the modeling and design of simple controllers. The student knows the algorithmic basics of motion and grasp planning and can apply these algorithms to problems in robotics. He/she knows algorithms from the field of image processing and is able to apply them to problems in robotics.

Content

The lecture provides an overview of the fundamentals of robotics using the examples of industrial robots, service robots and autonomous humanoid robots. An insight into all relevant topics is given. This includes methods and algorithms for robot modeling, control and motion planning, image processing and robot programming. First, mathematical basics and methods for kinematic and dynamic robot modeling, trajectory planning and control as well as algorithms for collision-free motion planning and grasp planning are covered. Subsequently, basics of image processing, intuitive robot programming especially by human demonstration and symbolic planning are presented.

In the exercise, the theoretical contents of the lecture are further illustrated with examples. Students deepen their knowledge of the methods and algorithms by independently working on problems and discussing them in the exercise. In particular, students can gain practical programming experience with tools and software libraries commonly used in robotics.

Workload

Lecture with 3 SWS + 1 SWS Tutorial, 6 LP

6 LP corresponds to 180 hours, including

- 15 * 3 = 45 hours attendance time (lecture)
- 15 * 1 = 15 hours attendance time (tutorial)
- 15 * 6 = 90 hours self-study and exercise sheets
- 30 hours preparation for the exam

Responsible: Studiendekan des KIT-Studienganges
Organisation: KIT Department of Economics and Management
Part of: Research Course

Compulsory Elective Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103474</td>
<td>Seminar in Business Administration A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103478</td>
<td>Seminar in Economics A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103481</td>
<td>Seminar in Operations Research A (Master)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103483</td>
<td>Seminar in Statistics A (Master)</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is done by a seminar with at least 3 CP.

The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

Prerequisites

None.

Competence Goal

- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
- They can solve the problems in a structured manner using their interdisciplinary know-how.
- They know how to validate the obtained results.
- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.
- Students are familiar with the DFG’s Code of Conduct "Guidelines for Safeguarding Good Research Practice" and base their scientific work on it.

Content

The module consists of a seminar, that is related to the research field of economic sciences. A complete list of available seminars is published in the internet.

The teaching of the DFG Code “Guidelines for Safeguarding Good Research Practice” takes place within the online course “Good Scientific Practice” of the KIT Library, which can be completed in self-study.

Annotation

The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.

Workload

The total workload for this module is approximately 90 hours.
Module: Seminar Module Informatics [M-INFO-102822]

Organisation:
KIT Department of Informatics
KIT Department of Economics and Management

Part of:
Research Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory Elective Seminar in Informatics (Election: 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-104336</td>
<td>Seminar Informatics A</td>
<td>3 CR</td>
<td>Abeck</td>
</tr>
<tr>
<td>T-WIWI-103480</td>
<td>Seminar in Informatics B (Master)</td>
<td>3 CR</td>
<td>Professorenschaft des</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Instituts AIFB</td>
</tr>
<tr>
<td>T-INFO-111205</td>
<td>Seminar Informatics Master</td>
<td>3 CR</td>
<td></td>
</tr>
</tbody>
</table>
4.113 Module: Seminar Module Law [M-INFO-101218]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Research Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101997 | Seminar: Legal Studies I | 3 CR | Dreier |
4.114 Module: Seminar: Computer Science TECO [M-INFO-105328]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Module Description</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-110808</td>
<td>Seminar: Computer Science TECO</td>
<td>3 CR</td>
<td>Beigl</td>
</tr>
</tbody>
</table>
4.115 Module: Service Analytics [M-WIWI-101506]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108715</td>
<td>Artificial Intelligence in Service Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111219</td>
<td>Artificial Intelligence in Service Systems - Applications in Computer Vision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-105777</td>
<td>Business Intelligence Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112152</td>
<td>Practical Seminar: Artificial Intelligence in Service Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elective: 9 credits)

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students

- knows the theoretical bases and the key components of Business Intelligence systems,
- acquires the basic skills to make use of business intelligence and analytics software in the service context
- are introduced into various application scenarios of analytics in the service context
- are able to distinguish different analytics methods and apply them in context
- learn how to apply analytics software in the service context
- are trained for the structured compilation and solution of practice relevant problems with the help of commercial business intelligence software packages as well as analytics methods and tools

Content

The importance of services in modern economies is most evident – nearly 70% of gross value added are achieved in the tertiary sector and a growing number of industrial enterprises add customer specific services to their material goods or transform their business models fundamentally. The growing availability of data “Big Data” and their intelligent processing by applying analytic methods and business intelligence systems plays a key role.

It is the goal of the module to give students a comprehensive overview on the subject Business Intelligence & Analytics focusing on service issues. Various scenarios illustrate how the methods and systems introduced help to improve existing services or create innovative data-based services.

Annotation

This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.krsi.kit.edu/teaching.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

The course Service Analytics A [2595501] should be taken.
4.116 Module: Service Design Thinking [M-WIWI-101503]

Responsible:
Prof. Dr. Gerhard Satzger
Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

Credits 3
Grading scale Grade to a tenth

Recurrence Each winter term

Duration 2 terms

Language English

Level 4

Version 1

| Mandatory | T-WIWI-102849 | Service Design Thinking | 12 CR | Satzger, Terzidis |

Competence Certificate
The assessment is carried out as a general exam (according to Section 4(2), 3 of the examination regulation). The overall grade of the module is the grade of the examination (according to Section 4(2), 3 of the examination regulation).

Prerequisites
None

Competence Goal
- Deep knowledge of the innovation method Design Thinking, as introduced and promoted by Stanford University
- Development of new, creative solutions through extensive observation of oneself and one's environment, in particular with regard to the relevant service users
- Know how to use prototyping and experimentation to visualize one's ideas, to test and iteratively develop them, and to converge on a solution
- Learn to apply the method to a real innovation projects issued by industry partners.

Content
- Paper Bike: Learning about the basic method elements by building a paper bike that has to fulfill a given set of challenges. The bikes will be tested in a race during an international Kick-Off event with other universities of the SUGAR network (intern. Design Thinking network).
- Design Space Exploration: Exploring the problem space through customer and user observation as well as desk research.
- Critical Function Prototype: Identification of critical features from the customer’s perspective that can contribute to the solution of the overarching problem. Building and testing prototypes that integrate these functionalities.
- Dark Horse Prototype: Inverting earlier assumptions and experiences, which leads to the inclusion of new features and solutions. Developing radically new ideas are in the focus of this phase.
- Funky Prototype: Integration of the individually tested and successful functions to several complete solution scenarios, which are further tested and developed.
- Functional Prototype: Selection of successful scenarios from the previous phase and building a higher resolution prototype. The final solution to the challenge is lade out in detail and tested with users.
- Final Prototype: Implementing the functional prototype and presenting it to the customer.

Annotation
Due to practical project work as a component of the program, access is limited. The module (as well as the module component) spans two semesters. It starts in September every year and runs until end of June in the subsequent year. Entering the program is only possible at its beginning - after prior application in May/June.
For more information on the application process and the program itself are provided in the module component description and the program’s website (http://sdt-karlsruhe.de).
Furthermore, the KSRI conducts an information event for applicants every year in May.
This module is part of the KSRI Teaching Program „Digital Service Systems”. For more information see the KSRI Teaching website: www.ksri.kit.edu/teaching.

Workload
The total amount of work for this module is approx. 270 hours (9 credits). The workload for this course is comparably high as the course runs in cooperation with partner universities from around the world as well as partner companies. This causes overhead.
Recommendation
This course is held in English – proficiency in writing and communication is required.
Our past students recommend to take this course at the beginning of the masters program.
4.117 Module: Service Economics and Management [M-WIWI-102754]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation:
KIT Department of Economics and Management

Part of:
- Economics and Management (Elective Modules in Economics and Management)
- Economics and Management (Elective Modules in Business Administration)

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112757</td>
<td>Digital Services: Innovation & Business Models</td>
<td>4,5 CR</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-112823</td>
<td>Platform & Market Engineering: Commerce, Media, and Digital Democracy</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

Students

- understand the scientific basics of the management of digital services and corresponding systems
- gain a comprehensive insight in the importance and the most important features of information systems as an central component of the digitalization of business processes, products and services
- know the most relevant concepts and theories to shape the digital transformation process of service systems successfully
- understand the OR methods in the sector of service management and apply them adequately
- are able to use large amounts of available data systematically for the planning, operation and improvement of complex service offers and to design and control information systems
- are able to develop market-oriented coordination mechanisms and apply service systems.

Content

This module provides the foundation for the management of digital services and corresponding systems. The courses in this module cover the major concepts for a successful management of service systems and their digital transformation. Current examples from the research and practice enhance the relevance of the discussed topics.

Annotation

This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

From summer semester 2023, the course Service Innovation will be offered with a revised course concept and content. The focus will be on the closer integration of the topics of service innovation and digitalization. Current foundational content (e.g., on service innovation challenges or human-centered innovation methods) will remain. New content will cover topics such as digital platforms and ecosystems, IoT and smart service innovation, and business models.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

None
4.118 Module: Service Innovation, Design & Engineering [M-WIWI-102806]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of:
Economics and Management (Elective Modules in Economics and Management)
Economics and Management (Elective Modules in Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elective: 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Grade</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-112757</td>
<td>Digital Services: Innovation & Business Models</td>
<td>4.5 CR</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-110877</td>
<td>Engineering Interactive Systems</td>
<td>4.5 CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-102639</td>
<td>Business Models in the Internet: Planning and Implementation</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-110887</td>
<td>Practical Seminar: Service Innovation</td>
<td>4.5 CR</td>
<td>Satzger</td>
</tr>
<tr>
<td>T-WIWI-108437</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>4.5 CR</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

Dependencies between courses:

The course Practical Seminar Service Innovation cannot be applied in combination with the course Practical Seminar Digital Service Design.

Competence Goal

Students

- know about the challenges, concepts, methods and tools of service innovation management and are able to use them successfully.
- have a profound comprehension of the development and design of innovative services and are able to apply suitable methods and tools on concrete and specific issues.
- are able to embed the concepts of innovation management, development and design of services into organisations.
- are aware of the strategic importance of services, are able to present value creation in the context of services systems and to strategically exploit the possibilities of their digital transformation.
- elaborate concrete and problem-solving solutions for practical tasks in teams.

Content

This module is designed to constitute the basis for the development of successful ICT supported innovations thus including the methods and tools for innovation management, for the design and the development of digital services and the implementation of new business models. Current examples from science and practice enhance the relevance of the topics addressed.

Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.kssi.kit.edu/teaching.

From summer semester 2023, the course Service Innovation will be offered with a revised course concept and content. The focus will be on the closer integration of the topics of service innovation and digitalization. Current foundational content (e.g., on service innovation challenges or human-centered innovation methods) will remain. New content will cover topics such as digital platforms and ecosystems, IoT and smart service innovation, and business models.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Recommendation
Attending the course Practical Seminar Service Innovation [2595477] is recommended in combination with the course Service Innovation [2595468].

Attending the course Practical Seminar Digital Service Design [new] is recommended in combination with the course Digital Service Design [new].
Module: Service Management [M-WIWI-101448]

Responsible: Prof. Dr. Gerhard Satzger
 Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Elective Modules in Economics and Management)
 Economics and Management (Elective Modules in Business Administration)

Credits: 9
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German/English
Level: 4
Version: 11

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108715</td>
<td>Artificial Intelligence in Service Systems</td>
<td>4,5 CR</td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111219</td>
<td>Artificial Intelligence in Service Systems - Applications in Computer Vision</td>
<td>4,5 CR</td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112757</td>
<td>Digital Services: Innovation & Business Models</td>
<td>4,5 CR</td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The students

- understand the basics of developing and managing IT-based services,
- understand and apply OR methods in service management,
- systematically use vast amounts of available data for planning, operation, personalization and improvement of complex service offerings, and
- understand and analyze innovation processes in corporations.

Content
The module service management addresses the basics of developing and managing IT-based services. The lectures contained in this module teach the basics of developing and managing IT-based services and the application of OR methods in the field of service management. Moreover, students learn to systematically analyze vast amounts of data for planning, operation and improvement for complex service offerings. These tools enhance operational and strategic decision support and help to analyze and understand the overall innovation processes in corporations. Current examples from research and industry demonstrate the relevance of the topics discussed in this module.

Annotation
From summer semester 2023, the course Service Innovation will be offered with a revised course concept and content. The focus will be on the closer integration of the topics of service innovation and digitalization. Current foundational content (e.g., on service innovation challenges or human-centered innovation methods) will remain. New content will cover topics such as digital platforms and ecosystems, IoT and smart service innovation, and business models.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
4.120 Module: Service Operations [M-WIWI-102805]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at most 2 items)

- **T-WIWI-102718** Discrete-Event Simulation in Production and Logistics
 4.5 CR
 Spieckermann
- **T-WIWI-102884** Operations Research in Health Care Management
 4.5 CR
 Nickel
- **T-WIWI-102715** Operations Research in Supply Chain Management
 4.5 CR
 Nickel
- **T-WIWI-102716** Practical Seminar: Health Care Management (with Case Studies)
 4.5 CR
 Nickel

Supplementary Courses (Election: at most 1 item)

- **T-MACH-112213** Applied material flow simulation
 4.5 CR
 Baumann
- **T-WIWI-102872** Challenges in Supply Chain Management
 4.5 CR
 Mohr
- **T-WIWI-110971** Demand-Driven Supply Chain Planning
 4.5 CR
 Packowski

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

There is no compulsory course in the module.

Competence Goal

Students

- knows the theoretical bases and the key components of Business Intelligence systems,
- acquires the basic skills to make use of business intelligence and analytics software in the service context
- are introduced into various application scenarios of analytics in the service context
- are able to distinguish different analytics methods and apply them in context
- learn how to apply analytics software in the service context
- are trained for the structured compilation and solution of practice relevant problems with the help of commercial business intelligence software packages as well as analytics methods and tools

Content

The importance of services in modern economies is most evident – nearly 70% of gross value added are achieved in the tertiary sector and a growing number of industrial enterprises add customer specific services to their material goods or transform their business models fundamentally. The growing availability of data "Big Data" and their intelligent processing by applying analytic methods and business intelligence systems plays a key role.

It is the goal of the module to give students a comprehensive overview on the subject Business Intelligence & Analytics focusing on service issues. Various scenarios illustrate how the methods and systems introduced help to improve existing services or create innovative data-based services.

Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.
Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
The course Practical Seminar Health Care should be combined with the course OR in Health Care Management.
4.121 Module: Software Methods [M-INFO-101202]

Responsible: Prof. Dr. Ralf Reussner
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Software Methods (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101381</td>
<td>Software Architecture and Quality</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-INFO-101256</td>
<td>Software-Evolution</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-INFO-101278</td>
<td>Model Driven Software Development</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
The students learn the foundations and advanced methods for systematic planning, design, implementation, evaluation and enhancement of software systems. By acquiring knowledge and capabilities to critically evaluate modern technologies, the students are enabled to use these technologies purposefully and effectively. Apart from functional viewpoints and software properties, extra-functional properties such as security and performance are taught. Additionally, an overview of current research topics and challenges are offered.

Content
The content is explained in the course descriptions.
4.122 Module: Software Systems [M-INFO-101201]

Responsible: Prof. Dr. Ralf Reussner
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Software Systems (Election: at least 1 item as well as at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101381</td>
<td>Software Architecture and Quality</td>
<td>3 CR</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101256</td>
<td>Software-Evolution</td>
<td>3 CR</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101278</td>
<td>Model Driven Software Development</td>
<td>3 CR</td>
<td>Reussner</td>
</tr>
<tr>
<td>T-INFO-101281</td>
<td>Formal Systems II: Application</td>
<td>5 CR</td>
<td>Beckert</td>
</tr>
<tr>
<td>T-INFO-101378</td>
<td>Formal Systems II: Theory</td>
<td>5 CR</td>
<td>Beckert</td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
In the courses that comprise this module, students learn different approaches and techniques for systematic and high-quality development of software systems, e.g. requirements engineering, implementing components and services, use of parallelism and multi-core platforms, as well as the verification of created software systems.

Content
The content will be explained in the course descriptions.
4.123 Module: Stochastic Optimization [M-WIWI-103289]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: between 1 and 2 items)

- T-WIWI-106546 Introduction to Stochastic Optimization 4,5 CR Rebennack
- T-WIWI-106548 Advanced Stochastic Optimization 4,5 CR Rebennack
- T-WIWI-106549 Large-scale Optimization 4,5 CR Rebennack

Supplementary Courses (Election: at most 1 item)

- T-WIWI-102723 Graph Theory and Advanced Location Models 4,5 CR Nickel
- T-WIWI-102719 Mixed Integer Programming I 4,5 CR Stein
- T-WIWI-102720 Mixed Integer Programming II 4,5 CR Stein
- T-WIWI-111247 Mathematics for High Dimensional Statistics 4,5 CR Grothe
- T-WIWI-111587 Multicriteria Optimization 4,5 CR Stein
- T-WIWI-103124 Multivariate Statistical Methods 4,5 CR Grothe
- T-WIWI-102715 Operations Research in Supply Chain Management 4,5 CR Nickel
- T-WIWI-106545 Optimization under Uncertainty 5 CR Rebennack
- T-WIWI-110162 Optimization Models and Applications 4,5 CR Sudermann-Merx
- T-WIWI-112109 Topics in Stochastic Optimization 4,5 CR Rebennack

Competence Certificate
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
There is no compulsory course in the module.

Competence Goal
The student

- names and describes basic notions for advanced stochastic optimization methods, in particular, ways to algorithmically exploit the special model structures,
- knows the indispensable methods and models for quantitative analysis of stochastic optimization problems,
- models and classifies stochastic optimization problems and chooses the appropriate solution methods to solve also challenging stochastic optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions,
- identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

Content
The module focuses on the modeling as well as the imparting of theoretical principles and solution methods for optimization problems with special structure, which occur for example in the stochastic optimization.

Annotation
The courses are sometimes offered irregularly. The curriculum, planned for three years in advance, can be found on the Internet at http://sop.ior.kit.edu/28.php.
Workload
The total workload for this module is approximately 270 hours (9 credits). The allocation is made according to the credit points of the courses of the module. The total number of hours per course is determined by the amount of time spent attending the lectures and exercises, as well as the exam times and the time required to achieve the module's learning objectives for an average student for an average performance.

Recommendation
It is recommended to listen to the lecture "Introduction to Stochastic Optimization" before the lecture "Advanced Stochastic Optimization" is visited.
4.124 Module: Telematics [M-INFO-100801]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101338 | Telematics | 6 CR | Zitterbart |

Competence Certificate
See partial achievement.

Prerequisites
See partial achievement.

Competence Goal
Students
- master protocols, architectures, and methods and algorithms that are used on the Internet for routing and for establishing a reliable end-to-end connection, as well as various media allocation procedures in local networks.
- have an understanding of the systems and the problems that appear in a global, dynamic network as well as the mechanisms used to remedy them.
- are familiar with current developments such as SDN and data center networking.
- know methods to manage and administrate networks.

Students master the basic protocol mechanisms for establishing reliable end-to-end communication. Students have detailed knowledge of the mechanisms used in TCP for congestion and flow control and can discuss the issue of fairness with multiple parallel transport streams. Students can analytically determine the performance of transport protocols and know methods that fulfill special requirements of TCP, such as high data rates and short latencies. Students are familiar with current topics such as problems introduced by utilization of middle boxes in the Internet, the use of TCP in data centers and multipath TCP. Students can use transport protocols in practice.

Students know the functions of routers in the Internet and can reproduce and apply common routing algorithms. Students can reproduce the architecture of a router and know different approaches to buffer placement as well as their advantages and disadvantages.

Students understand the distinction of routing protocols into interior and exterior gateway protocols and have detailed knowledge of the functionality and properties of common protocols such as RIP, OSPF and BGP. The students are familiar with current topics such as SDN.

Students know the function of media allocation and can classify and analytically evaluate media allocation processes. Students have in-depth knowledge of Ethernet and are familiar with various Ethernet forms and their differences, especially current developments such as real-time Ethernet and data center Ethernet. Students can reproduce and apply the spanning tree protocol.

Students can reproduce the technical characteristics of DSL. Students are familiar with the concept of label switching and can compare existing approaches such as MPLS.

Content
- Introduction
- End-to-end data transport
- Routing protocols and architectures
- Media allocation
- Bridges
- Data transmission
- Further selected examples
- Network management

Workload
180 hrs.
4.125 Module: Theory and Practice of Data Warehousing and Mining [M-INFO-101256]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Practical Course (Election: at most 1 item as well as at most 4 credits)

T-INFO-103201 Practical Course: Database Systems 4 CR Böhm
T-INFO-111262 Practical Course: Data Science 6 CR Böhm
T-INFO-112844 Practical Course: Data Science for Scientific Data 6 CR Böhm

Lecture (Election: at most 5 credits)

T-INFO-101317 Deployment of Database Systems 5 CR Böhm
T-INFO-108377 Data Privacy: From Anonymization to Access Control 3 CR Böhm
T-INFO-111400 Database as a Service 5 CR Böhm
T-INFO-113124 Data Science 8 CR Böhm

Prerequisites
None

Competence Goal
The students
- know the research area of information systems in its various facets and are able to do scientific work in this area,
- are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders,
- know the concepts, algorithms, techniques and selected tools in the areas of data warehousing and data mining,
- are familiar with the practical challenges of data analysis and are able to develop respective solutions on their own.

Content
This module aims at exposing students to modern information management, both, in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims. We achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications. In particular, we look at data warehousing and mining techniques not only from a theoretical point of view but deploy and realise such technologies in a practical course.

Annotation
The courses of this module are offered irregularly. Nonetheless, it is guaranteed that the module can be passed anytime.
4 MODULES

Module: Transport Infrastructure Policy and Regional Development [M-WIWI-101485]

4.126 Module: Transport Infrastructure Policy and Regional Development [M-WIWI-101485]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Elective Modules in Economics and Management)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 2 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103107</td>
<td>Spatial Economics</td>
<td>4.5 CR</td>
<td>Ott</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100007</td>
<td>Transport Economics</td>
<td>4.5 CR</td>
<td>Mitusch, Szimba</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The students
- understand the economic issues related to transport and regional development with a main focus on economic policy issues generated by the relationship of transport and regional development with the public sector
- are able to compare different considerations of politics, regulation and the private sector and to analyse and assess the respective decision problems both qualitatively and by applying appropriate methods from economic theory
- are prepared for careers in the public sector, particularly for public companies, politics, regulatory agencies, related consultancies, mayor construction companies or infrastructure project corporations

Content
The development infrastructure (e.g. transport, energy, telecommunications) has always been one of the most relevant factors for economic development and particularly influences the development of the regional economy. From the repertoire of state actions, investments into transport infrastructure are often regarded the most important measure to foster regional economic growth. Besides the direct effects of transport policy on passenger and freight transport, a variety of individual economic activities is significantly dependent on the available or potential transport options. Decisions on the planning, financing and realization of major infrastructure projects require a solid and far-reaching consideration of direct and indirect growth effects with the occurring costs.

Through its combination of lectures the module reflects the complex interdependencies between infrastructure policy, transport industry and regional policy and provides its participants with a comprehensive understanding of the functionalities of one of the most important sectors of the economy and its relevance for economic policy.

Annotation
The courses Assessment of Public Policies and Projects I (winter term) and Assessment of Public Policies and Projects II (summer term) will no longer be part of this module. Student who have already had exams in this courses can integrate these exams in this module.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Ubiquitous Computing [M-WIWI-101458]

Responsible:
N.N.
Prof. Dr. Hartmut Schmeck

Organisation:
KIT Department of Economics and Management

Part of:
Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101326</td>
<td>Ubiquitous Computing</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: between 4 and 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102761</td>
<td>Advanced Lab in Ubiquitous Computing</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-INFO-101323</td>
<td>IT-Security Management for Networked Systems</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites

See German version

Competence Goal

The student

- gets comprehensive knowledge about topics in the area of Ubiquitous Computing
- can design and evaluate ubiquitous systems in different application areas
- acquires appropriate knowledge for addressing specialized aspects in the area of ubiquitous computing

Content

Ubiquitous information technology (Ubiquitous Computing) addresses the ubiquitous (or pervasive) availability of information processing. The availability of these systems has the objective to facilitate the operational environment in technical scenarios or in daily life of humans and to enrich it with new capabilities. This module provides fundamentals of ubiquitous computing and further topics like network and Internet technologies, security aspects, the analysis of autonomously operating systems in Organic Computing and also the utilisation of information and communication technologies in highly decentralized energy systems.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
4.128 Module: Ubiquitous Computing [M-INFO-100789]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101326</td>
<td>Ubiquitous Computing</td>
<td>5 CR</td>
</tr>
</tbody>
</table>
Module: Wearable Robotic Technologies [M-INFO-103294]

Responsibility:
Prof. Dr.-Ing. Tamim Asfour
Prof. Dr.-Ing. Michael Beigl

Organisation:
KIT Department of Informatics

Part of:
Informatics

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 2

Mandatory
| T-INFO-106557 | Wearable Robotic Technologies | 4 CR | Asfour, Beigl |

Competence Certificate
See partial achievements (Teilleistung)

Prerequisites
See partial achievements (Teilleistung)

Competence Goal
The student has received fundamental knowledge about wearable robotic technologies and understands the requirements for the design, the interface to the human body and the control of wearable robots. He/she is able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The student understands the symbiotic human–machine interaction as a core topic of Anthropomatics and has knowledge of state-of-the-art examples of exoskeletons, orthoses and prostheses.

Content
The lecture provides an overview of wearable robot technologies (exoskeletons, prostheses and orthoses) and their potentials. It starts with the basics of wearable robotics and introduces different approaches to the design of wearable robots and their related actuator and sensor technology. The lecture focuses on modeling the neuromusculoskeletal system of the human body, the interfaces of wearable robots to the human body and the physical and cognitive human-robot interaction for tightly-coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.

Workload
Lecture with 2 SWS, 4 LP
4 LP corresponds to 120 hours, including
15 * 2 = 30 hours attendance time
15 * 3 = 45 self-study
45 hours preparation for the exam

Recommendation
Attending the lecture Mechano-Informatics and Robotics is recommended.
Module: Web and Data Science [M-WIWI-105368]

Responsible: Dr.-Ing. Michael Färber
Organisation: KIT Department of Economics and Management
Part of: Informatics

Credits: 9 Grading scale: Grade to a tenth
Recurrence: Each term Duration: 2 terms
Language: German/English Level: 4 Version: 2

Compulsory Elective Courses (Election: at least 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102666</td>
<td>Knowledge Discovery</td>
<td>4.5 CR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4.5 CR</td>
<td></td>
<td>Professorenchaft des Instituts AIFB</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
The student
- know the basics of machine learning, data mining and knowledge discovery
- can design, train and evaluate systems that are capable of learning
- carry out knowledge discovery projects, taking into account algorithms, representations and applications.
- will look at current research topics in the field of Web Science and
- learn about the topics Small World Problem, Network Theory, Social Network Analysis, Bibliometrics, Link Analysis and Search,
- apply interdisciplinary thinking and
- apply technological approaches to social science problems.

Content
The module focuses on machine learning and data mining methods for knowledge acquisition from large databases as well as web phenomena and the available technologies.

The lecture Knowledge Discovery gives an overview of approaches of machine learning and data mining for knowledge acquisition from large data sets. These are examined especially with respect to algorithms, applicability to different data representations and the use in real application scenarios.

Knowledge Discovery is an established research area with a large community that investigates methods for discovering patterns and regularities in large amounts of data, including unstructured text. A variety of methods exist to extract patterns and provide previously unknown insights. This information can be predictive or descriptive.

The lecture gives an overview of Knowledge Discovery. Specific techniques and methods, challenges and current and future research topics in this research area will be taught.

Contents of the lecture cover the entire machine learning and data mining process with topics on supervised and unsupervised learning and empirical evaluation. Covered learning methods range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.

The lecture "Web Science" offers an insight into the analysis of social networks and the metrics used in this context. Thereby especially web phenomena and the available technologies.

Web Science is the emerging study of the people and technologies, applications, processes and practices that make the world Wide Web and are shaped and embossed. Web Science aims to develop theories, methods and findings from the entire academic disciplines and work with industry, business, politics and civil society to create an understanding of the Web: The largest socio-technical infrastructure in the history of mankind.

The lecture gives an introduction to the basic concepts of Web Science. Essential theoretical foundations, Phenomena and methods are presented and explained. This lecture aims to give students a basic knowledge and understanding of the structure and analysis of selected web phenomena and technologies. The topics include the small world problem, Network theory, social network analysis, graph-based search and technologies / standards / architectures.

Workload
The total workload for this module is approximately 270 hours.
4.131 Module: Web Data Management [M-WIWI-101455]

Responsible:	Dr.-Ing. Michael Färber
Organisation:	KIT Department of Economics and Management
Part of:	Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4,5 CR</td>
</tr>
<tr>
<td>T-WIWI-110548</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4,5 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- develop ontologies for semantic web technologies and choose suitable representation languages,
- are able to provide data and applications via a cloud-based infrastructure,
- transfer the methods and technologies of semantic web technologies and cloud computing to new application sectors,
- evaluate the potential of semantic web technologies and the cloud computing approaches for new application sectors.

Content

The module Web Data Management covers the basic principles, methods and applications for intelligent systems in the World Wide Web. Cloud Services are essential for the decentralized, scalable provision of data and applications as well as the methods of semantic web based on the description of data and services via metadata in form of so called ontologies.

Formal principles and practical aspects such as knowledge modeling and available representation language tools for ontologies are covered in detail. Methods for the realization of intelligent systems within the World Wide Web are treated and applications as in Web 2.0 or Service Science are discussed and evaluated.

Furthermore the application of modern Cloud technologies for the use of software and hardware as a service via internet is introduced. Cloud technologies allow the efficient implementation of applications on distributed computer clusters and permit a high scalability as well as new business models in the internet.

Workload

The total workload for this module is approximately 270 hours (9 credits). The allocation is based on the credits of the courses of the module. The workload for courses with 4.5 credits is about 135 hours.

The total number of hours per course results from the effort required to attend the lectures and exercises as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Wireless Networking (Election: at least 1 item as well as at least 8 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101337</td>
<td>Internet of Everything</td>
<td>4 CR</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101322</td>
<td>Mobile Communication</td>
<td>4 CR</td>
<td>Waldhorst, Zitterbart</td>
</tr>
<tr>
<td>T-INFO-101326</td>
<td>Ubiquitous Computing</td>
<td>5 CR</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Competence Goal

Each student should be able

- to learn and use the concepts and principals of wireless network design
- to identify the flaws and benefits of wireless communication systems
- to judge the performance of protocols, wireless networks and architectures
- master advanced protocols, architectures and algorithms of wireless communication systems

Content

This module details selected aspects of wireless communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.
5 Courses

5.1 Course: Advanced Empirical Asset Pricing [T-WIWI-110513]

Responsible: TT-Prof. Dr. Julian Thimme

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2530569</td>
<td>Advanced Empirical Asset Pricing</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2530570</td>
<td>Übung zu Advanced Empirical Asset Pricing</td>
<td>1 SWS</td>
<td>Practice / 🧩</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900321</td>
<td>Advanced Empirical Asset Pricing</td>
<td></td>
<td>Thimme</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900319</td>
<td>Advanced Empirical Asset Pricing</td>
<td></td>
<td>Thimme</td>
</tr>
</tbody>
</table>

Legend: Online, 🧩 Blended (On-Site/Online), 👀 On-Site, ✗ Canceled

Competence Certificate

The success control takes place in form of a written examination (60 min) during the semester break. If the number of participants is low, an oral examination may also be offered. The examination is offered every semester and can be repeated at any regular examination date.

A bonus can be acquired by submitting exercise solutions to 80% of the assigned exercise tasks. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Recommendation

We strongly recommend knowledge of the basic topics in investments (bachelor course), which will be necessary to be able to follow the course. In addition, prior participation in the Asset Pricing Master course is strongly recommended.

Annotation

New course from winter semester 2019/2020.

Below you will find excerpts from events related to this course:

Advanced Empirical Asset Pricing
2530569, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)
Lecture (V)
Blended (On-Site/Online)

Content

In this course we will discuss the fundamentals of Asset Pricing and how to test them. Although this is an Empirical Asset Pricing course, we deal with some concepts from Asset Pricing Theory that we can test afterwards (CAPM, ICAPM, CCAPM, recursive utility). Besides, the course will cover the most important empirical methods to do so. For that purpose, we will discuss the overarching tool Generalized Method of Moments, and the special cases of OLS and FMB regressions. Every second week, we will meet for a programing session, in which we will look at the data to draw our own conclusions. An introduction to the software MATLAB will be given at the beginning of the course. Students should bring a laptop to these sessions. Programing skills are not required but helpful.

We start with a review of the Stochastic Discount Factor, which is already known from the course „Asset Pricing“. We then derive the CAPM and the Consumption-CAPM as special cases from the general consumption-savings optimization problem of the rational investor. In the first part of the course we discuss the CAPM and, as natural extensions, models with multiple factors. Prominent phenomena such as the value premium and momentum are discussed. In the second part of the lecture we will study extensions of Consumption-CAPM and study the implications of exotic preferences.
Organizational issues
Die Veranstaltung findet montags um 9:45-11:15 im Raum 209 am Campus B (Geb. 09.21) statt und endet nach ersten Semesterhälfte.

Literature
Basisliteratur

zur Vertiefung/ Wiederholung
5.2 Course: Advanced Game Theory [T-WIWI-102861]

- **Responsible:** Prof. Dr. Karl-Martin Ehrhart
 - Prof. Dr. Clemens Puppe
 - Prof. Dr. Johannes Philipp Reiß
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101453 - Applied Strategic Decisions
 - M-WIWI-101500 - Microeconomic Theory
 - M-WIWI-101502 - Economic Theory and its Application in Finance

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2521533</td>
<td>Advanced Game Theory</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Reiß</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2521534</td>
<td>Übung zu Advanced Game Theory</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Reiß, Peters</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900126</td>
<td>Advanced Game Theory</td>
<td>Lecture</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

Basic knowledge of mathematics and statistics is assumed.

Below you will find excerpts from events related to this course:

Advanced Game Theory

- **Code:** 2521533
- **Type:** Lecture (V)
- **WS:** 23/24
- **Language:** English
- **Open in study portal**
5.3 Course: Advanced Information Systems [T-WIWI-110373]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101443 - Information Engineering and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Please note that the lecture will no longer be offered as of summer semester 2020. The last opportunity to take an examination is in the winter semester 2020/2021.

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulation).

Recommendation
None

Annotation
The course starts with a short summary of Information Systems I and II. The course is held in English.
5.4 Course: Advanced Lab Blockchain Hackathon (Master) [T-WIWI-111126]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2512403</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical course / 🖥 Sunyaev, Kannengießer, Sturm, Beyene</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900172</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites
None
5.5 Course: Advanced Lab in Ubiquitous Computing [T-WIWI-102761]

- **Responsible:** Prof. Dr.-Ing. Michael Beigl, Prof. Dr. Hartmut Schmeck
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101458 - Ubiquitous Computing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
See German version

Prerequisites
None

Annotation
See German Version
5 COURSES

Course: Advanced Lab Informatics (Master) [T-WIWI-110548]

5.6 Course: Advanced Lab Informatics (Master) [T-WIWI-110548]

Responsibility: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101455 - Web Data Management
- M-WIWI-101456 - Intelligent Systems and Services
- M-WIWI-101477 - Development of Business Information Systems
- M-WIWI-105366 - Artificial Intelligence
- M-WIWI-105368 - Web and Data Science

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2512205</td>
<td>Lab Realisation of innovative services (Master)</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 2512207</td>
<td>Lab Automation in Everyday Life (Master)</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 2512401</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Master)</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 2512403</td>
<td>Advanced Lab Blockchain Hackathon (Master)</td>
<td></td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 2512500</td>
<td>Project Lab Machine Learning</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2512205</td>
<td>Lab Realisation of innovative services (Master)</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2512401</td>
<td>Practical Course Sociotechnical Information Systems Development (Master)</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2512403</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2512501</td>
<td>Practical Course Cognitive automobiles and robots (Master)</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2512600</td>
<td>Project lab Information Service Engineering (Master)</td>
<td>3 SWS</td>
<td>Practical course /</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900020</td>
<td>Lab Automation in Everyday Life (Master)</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900086</td>
<td>Project Lab Machine Learning</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900148</td>
<td>Advanced Lab Realization of innovative services (Master)</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900172</td>
<td>Lab Blockchain Hackathon (Master)</td>
<td>Sunyaev</td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900173</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Master)</td>
<td>Sunyaev</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The alternative exam assessment consists of:
- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites
None
Annotation
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Lab Realisation of innovative services (Master)
2512205, SS 2023, 3 SWS, Language: German, Open in study portal
Practical course (P) Blended (On-Site/Online)

Content
As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students). Further information can be found on the ILIAS page of the lab.

Organizational issues
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Lab Automation in Everyday Life (Master)
2512207, SS 2023, 3 SWS, Language: German, Open in study portal
Practical course (P) Blended (On-Site/Online)

Content
As part of the lab, various topics on everyday automation are offered. During the lab, the participants will gain an insight into problem-solving oriented project work and work on a project together in small groups. Further information can be found on the ILIAS page of the lab.

Organizational issues
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Advanced Lab Development of Sociotechnical Information Systems (Master)
2512401, SS 2023, 3 SWS, Language: German/English, Open in study portal
Practical course (P) Online

Content
The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact. Registration information will be announced on the course page.

Project Lab Machine Learning
2512500, SS 2023, 3 SWS, Language: German/English, Open in study portal
Practical course (P) Blended (On-Site/Online)
Content
The lab is intended as a practical supplement to lectures such as “Machine Learning”. The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.
In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.
The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:
The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.

Lab Realisation of innovative services (Master)
2512205, WS 23/24, 3 SWS, Language: German, Open in study portal
Practical course (P) Blended (On-Site/Online)

Content
As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students).
Further information can be found on the ILIAS page of the lab.

Organizational issues
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Practical Course Cognitive automobiles and robots (Master)
2512501, WS 23/24, 3 SWS, Language: German/English, Open in study portal
Practical course (P) Blended (On-Site/Online)
Content
The lab is intended as a practical supplement to courses such as "Machine Learning 1/2". Scientific topics, mostly in the area of autonomous driving and robotics, will be addressed in joint work with ML/KI methods. The goal of the internship is for participants to design, develop, and evaluate ML Software system.

In addition to the scientific goals, such as the study and application of methods, the aspects of project-specific teamwork in research (from specification to presentation of results) are also worked on in this internship.

The individual projects require the analysis of the set task, selection of appropriate methods, specification and implementation and evaluation of the solution approach. Finally, the selected solution is to be documented and presented in a short lecture.

Learning Objectives:
- Students will be able to practically apply theoretical knowledge from lectures on machine learning to a selected area of current research.
- Students will be proficient in analyzing and solving thematic problems.
- Students will be able to evaluate, document, and present their concepts and results.

Recommendations:
- Theoretical knowledge of machine learning and/or AI.
- Python knowledge
- Initial experience with deep learning frameworks such as PyTorch/Jax/Tensorflow may be beneficial.

Workload:
The workload of 5 credit points consists of practical implementation of the selected solution, as well as time for literature research and planning/specification of the selected solution. In addition, a short report and presentation of the work performed will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.
Content
The ISE project lab is based on the summer semester lecture "Information Service Engineering". Goal of the course is to work on a given research problem in small groups (3-4 students) related to the ISE lecture topics, i.e. Natural Language Processing, Knowledge Graphs, and Machine Learning. The solution of the given research problem requires the development of a software implementation.

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

Required coursework includes:

- Mid term presentation (5-10 min)
- Final presentation (10-15 min)
- Course report (c. 20 pages)
- Participation and contribution of the students during the course
- Software development and delivery

Notes:
The ISE project lab can also be credited as a seminar (if necessary).

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

Participation will be restricted to 16 students.

Participation in the lecture "Information Service Engineering" (summer semester) is required. There are video recordings on our youtube channel.

ISE Tutor Team:

- Dr. Genet Asefa Gesese
- M. Sc. Mirza Mohtasim Alam
- M. Sc. Oleksandra Bruns
- M. Sc. Ebrahim Norouzi
- M. Sc. Mary Ann Tan
- B. Sc. Tabea Tietz
- M. Sc. Mahsa Vafaie

WS 2023/24 Tasks List:

- **Task 1: Zero-shot Ultrafine Typing of Named Entities.** Use Pre-trained Language Models to assign predefined labels to entity mentions in a given context. Evaluate approaches which require no training data on a standard benchmark, i.e. UFET
- **Task 2: Object Detection on Historical Theatre Photographs.** Use Pre-trained DL models to detect and identify objects in historical theatre photographs and integrate the results into an existing Knowledge Graph.
- **Task 3: Automatically Generate Ontologies from Competency Questions using Language Models.** Competency questions (CQs) define the scope of knowledge represented in an ontology and are used to evaluate an ontology based on its ability to answer each question. In this task, we are investigating the benefit of Large Language Models to generate and evaluate ontologies from a set of competency questions.
- **Task 4: Boosting the Performance of Large Language Models for Question Answering with Knowledge Graph Integration.** Often, large language models hallucinate users with wrong or confusing answers. In order to generate relevant answers, knowledge graphs can help in many ways. The goal of this task is to utilize a knowledge graph to provide context and factual information to a language model, thereby improving the relevance and accuracy of its responses.
- **Task 5: Information Extraction and Knowledge Graph Engineering on the Use Case of Historical Political Flyers** Information extraction and Knowledge Graph construction from digitized political leaflets of the Weimar Republic.
- **Task 6: Sentiment Analysis on Multilingual Wikipedia.** Analyse how different language Versions of Wikipedia differ in terms of Sentiment Bias.
 - of a Knowledge Graph from 1.3 Mio Archival Objects from the German Digital Library

Literature
ISE video channel on youtube: https://www.youtube.com/channel/UCjkkhNSNuXrJpMYZoeSBw6Q/
Course: Advanced Lab Realization of Innovative Services (Master) [T-WIWI-112914]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101477 - Development of Business Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2512205 | Lab Realisation of innovative services (Master) | 3 SWS | Practical course / 🧩 | Schieber, Schüler, Toussaint |

| ST 2023 | 7900148 | Advanced Lab Realization of innovative services (Master) | Oberweis |

Exams

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Canceled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Annotation

As part of the lab, the participants should work together in small groups to produce innovative services (mainly for students).

Further information can be found on the ILIAS page of the lab.

Below you will find excerpts from events related to this course:

Lab Realisation of innovative services (Master)

2512205, SS 2023, 3 SWS, Language: German, [Open in study portal](#)

Content

As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students).

Further information can be found on the ILIAS page of the lab.

Organizational issues

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
5.8 Course: Advanced Lab Security, Usability and Society [T-WIWI-108439]

Responsible: Prof. Dr. Melanie Volkamer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104520 - Human Factors in Security and Privacy

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Exam Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2512554</td>
<td>Praktikum Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🖥️</td>
<td></td>
<td>Volkamer, Mayer, Berens, Mossano, Ballreich</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2512555</td>
<td>Praktikum Security, Usability and Society (Master)</td>
<td>3 SWS</td>
<td>Practical course / 🖥️</td>
<td></td>
<td>Volkamer, Mayer, Berens, Mossano, Ballreich</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 📺 On-Site, 🗙 Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Recommendation

Knowledge from the lecture "Information Security" is recommended.

Annotation

The course will not be offered in the summer semester 2023.

Below you will find excerpts from events related to this course:

Praktikum Security, Usability and Society (Bachelor)

- **Code:** 2512554, **WS 23/24**, **3 SWS**, Language: German/English, [Open in study portal](#)
Content
The Praktikum "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a backup one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. The deadline for the first round is 18.07.2022. Topics in italics have been already assigned.

Important dates:
Kick-off: 13.10.2022, 10:00 AM CET in Big Blue Button - Link
Report + code submission: 30.01.2023 23:59 CET
Presentation deadline: 30.01.2023, 23:59 CET
Presentation day: 01.02.2023

Topics:
Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

Title: Portfolio Graphical Recognition-Based PWDs with Gamepads
Number of students: 2 Bachelor or Master level
Description: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Title: Development of a secure web interface with a ticket system for the Hashcat Password Cracker
Number of students: 2 Bachelor or Master level
Description: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User studies
These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

Title: NoPhish Cardgame
Number of students: 1/2 Bachelor level
Description: Das NoPhish Konzept findet bereits in vielen Formen Anwendung. Es hilft dabei betrügerische Nachrichten von legitiemen zu Unterscheiden. Die neueste Form ist ein Cardgame bei dem man spielerisch lernen kann Phishing zu erkennen. Hierbei wird sowohl grundlegendes Wissen, als auch konkretes Wissen vermittelt. Aufgabe: Erheben von Daten (Studiendesign ist bereits vorhanden) und Auswertung bestehender Daten mit neu erhobenen Daten

Title: Analysing the perceptions on email subject extensions like 'Caution' - This e-mail is sent from someone outside the company'
Number of students: 1/2 Bachelor or Master level
Description: Email subject extensions are used in myn organisations to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develop the study protocol and to collect first data which should be analysed.

Title: Benutzeroberstellung zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten
Number of students: 2 Bachelor or Master level

Title: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users (https://secuso.aifb.kit.edu/english/105.php). One of these apps is "Sudoku", available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by reumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., https://idarinstitute.com/products/arthritism-simulation-gloves). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.
Title: Replication and extension of "What is this URL's destination?" (English only)
Number of students: 1 Bachelor level
Description: Replication of studies is a fundamental part of the scientific process: it allows to confirm or deny experimental results and can open new lines of research. This topic is a replication of the study presented in Albakry, S., Vanlea, K. & Wolters, M.K. (2020) What is this URL's destination? Empirical Evaluation of Users' URL Reading (https://doi.org/10.1145/3313831.3376168). The student will re-implement the study following the precise description from the original authors, run it and then compare the results with the previous iteration.

Title: Password Generator Defaults
Number of students: 2 Bachelor or Master level
Description: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular website, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds: (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Title: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Number of students: 1/2 Bachelor or Master level

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.
Content
The Praktikum "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to mattia.mossano@kit.edu. Topics are assigned first-come-first-served until all of them are filled. The deadline for the first round is 18.07.2022. Topics in italics have been already assigned.

WiWi portal: https://portal.wiwi.kit.edu/ys/6273

Important dates:
Kick-off: 13.10.2022, 10:00 AM CET in Big Blue Button - Link
Report + code submission: 30.01.2023 23:59 CET
Presentation deadline: 30.01.2023, 23:59 CET
Presentation day: 01.02.2023

Topics:

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, e.g. as an extension. E.g. TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

Title: Portfolio Graphical Recognition-Based PWDs with Gamepads
Number of students: 2 Bachelor or Master level
Description: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Title: Development of a secure web interface with a ticket system for the Hashcat Password Cracker
Number of students: 2 Bachelor or Master level
Description: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User studies
These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

Title: Analysing the perceptions on email subject extensions like 'Caution - This e-mail is sent from someone outside the company'
Number of students: 1/2 Bachelor or Master level
Description: Email subject extensions are used in many organizations to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develop the study protocol and to collect first data which should be analysed.

Title: Benutzerstudie zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten
Number of students: 2 Bachelor or Master level

Title: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users (https://secuso.aifb.kit.edu/english/105.php). One of these apps is "Sudoku", available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by rheumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., https://idarinstitute.com/products/arthritis-simulation-gloves). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.
Title: Password Generator Defaults
Number of students: 2 Bachelor or Master level
Description: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular websites, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds: (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Title: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Number of students: 1/2 Bachelor or Master level

Title: User study on user’s knowledge about brainwaves verification
Number of students: 1 Master level
Description: Brainwaves can be used to authenticate users. However, several questions are left unanswered regarding the users’ stance on this: What is the prior knowledge of users about verification and brainwaves? Are they comfortable wearing a device to record their brainwaves? How are they feeling regarding storing their brainwaves samples? Which kind of information can be extracted from the samples? How secure would such an authentication scheme be? The task of the student is to design, implement an pre-test a user study investigating these questions.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website [https://secuso.aifb.kit.edu/Studium_und_Lehre.php].
5.9 Course: Advanced Machine Learning [T-WIWI-109921]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Dr. Abdolreza Nazemi

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 23</td>
<td>2540535</td>
<td>Advanced Machine Learning</td>
<td>2</td>
<td>Lecture</td>
<td>Nazemi</td>
</tr>
<tr>
<td>ST 23</td>
<td>2540536</td>
<td>Exercise Advanced Machine Learning</td>
<td>1</td>
<td>Practice</td>
<td>Nazemi</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 23</td>
<td>7900227</td>
<td>Advanced Machine Learning</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900253</td>
<td>Advanced Machine Learning (Nachklausur SoSe 2023)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Below you will find excerpts from events related to this course:

Advanced Machine Learning

2540535, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V)
Content
In recent years, the volume, variety, velocity, veracity, and variability of available data have increased due to improvements in computational and storage power. The rise of the Internet has made available large sets of data that allow us to use and merge them for different purposes. Data science helps us to extract knowledge from the continually-increasing large datasets. This course will introduce students to a wide range of machine learning and statistical techniques such as deep learning, LASSO, and support vector machine. You will get familiar with text mining, and the tools you need to analyze the various facets of data sets in practice. Students will learn theory and concepts with real data sets from different disciplines such as marketing, finance, and business.

Tentative Course Outline:
- Introduction
- Statistical Inference
- Shrinkage Methods
- Model Assessment and Selection
- Tree-based Machine Learning Algorithms
- Dimensionality Reduction
- Neural Networks and Deep Learning
- Natural Language Processing with Deep Learning
- Support Vector Machine

Time of attendance
- Attending the lecture: 13 x 90min = 19h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m

The student will learn
- A wide range of machine learning algorithms and their weaknesses.
- The fundamental issues and challenges: data, high-dimension, train, model selection, etc.
- How to imply machine learning algorithms for real-world applications.
- The fundamentals of deep learning, main research activities, and on-going research in this field.

Literature
5.10 Course: Advanced Machine Learning and Data Science [T-WIWI-111305]

Responsible: Prof. Dr. Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105659 - Advanced Machine Learning and Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900378</td>
<td>Advanced Machine Learning and Data Science</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Competence Certificate
Due to the professor's research sabbatical, the BSc module "Financial Data Science" and MSc module "Foundations for Advanced Financial -Quant and -Machine Learning Research" and the MSc module "Advanced Machine Learning and Data Science" along with the respective examinations will not be offered in SS2023. Bachelor and Master thesis projects are not affected and will be supervised.

The assessment is carried out in form of a written thesis based on the course "Advanced Machine Learning and Data Science".

Annotation
The course is targeted to students with a major in Data Science and/or Machine Learning. It offers students the opportunity to develop hands-on knowledge on new developments in data science and machine learning. Please apply via the link: https://portal.wiwi.kit.edu/forms/form/fbv-ulrich-msc-project.

An online meetup will be offered at 14:00 on Tuesday of the first week of summer semester 2022 (i.e., 19.04.2022).
5.11 Course: Advanced Management Accounting [T-WIWI-102885]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Advanced Management Accounting</td>
<td>4 SWS</td>
<td>Lecture / On-Site</td>
<td>Wouters, Dickemann, Letmathe</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Advanced Management Accounting</td>
<td></td>
<td>Wouters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📱 Online, Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of an oral exam (30 min) (according to §4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None.

Recommendation

The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Annotation

This course is held in English. Lectures and tutorials are integrated.

The course is compulsory and must be examined.

Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters@kit.edu).

Below you will find excerpts from events related to this course:

Advanced Management Accounting

2579907, WS 23/24, 4 SWS, Language: English, Open in study portal

Lecture (V)
On-Site
Content
This course is held in English. Students who are interested in attending this course should send an e-mail to Professor Wouters (marc.wouters@kit.edu).

Inhalt:
- The course addresses several topics where management accounting is strongly related to marketing, finance, or organization and strategy, such as customer value propositions, financial performance measures, managing new product development, and technology investment decisions.

Learning objectives:
- Students will be able to consider advanced management accounting methods in an interdisciplinary way and to apply these to managerial decision-making problems in operations and innovation.
- They will also be able to identify relevant research results on such methods.

Examination:
- The assessment consists of an oral exam (30 min) taking place in the recess period (according to § 4 (2) No. 2 of the examination regulation).
- The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Required prior Courses:
- The course is compulsory and must be examined.

Recommendations:
- The course requires significant prior knowledge of Management Accounting, similar to the content of the courses MA 1 and 2, although completion of these particular courses is not a formal requirement.

Workload:
- The total workload for this course is approximately 135 hours. For further information see German version.

Literature
Literature is mostly made available via ILIAS.
5.12 Course: Advanced Statistics [T-WIWI-103123]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101637 - Analytics and Statistics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900037</td>
<td>Advanced Statistics</td>
<td>Grothe</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites
None
T 5.13 Course: Advanced Stochastic Optimization [T-WIWI-106548]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900034 | Advanced Stochastic Optimization | Rebennack |

Competence Certificate
The assessment consists of an oral exam (20 minutes). The exam is offered every semester.

Prerequisites
None.
5.14 Course: Advanced Topics in Digital Management [T-WIWI-111912]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2573016 | Advanced Topics in Digital Management | 2 SWS | Colloquium | Nieken, Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔉 On-Site, ❌ Cancelled

Competence Certificate
Alternative exam assessment. The following aspects are included:

- Regular and active participation in the course dates
- Presentation of a given research topic.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Recommendation
We recommend visiting the course Incentives in Organization before taking this course.
The course is strongly recommended for students interested in empirical research in the areas digital HRM, personnel economics, and leadership and those who are interest in an academic career path.

Below you will find excerpts from events related to this course:

Advanced Topics in Digital Management
2573016, SS 2023, 2 SWS, Language: English, Open in study portal

Colloquium (KOL)
On-Site
Content
The students will discuss and analyze selected research papers in the areas digital HRM, personnel economics, and leadership with a focus on digital management. The students will present research papers and discuss research methods and designs as well as content. They will develop an own research design on a predefined topic.

Aim
The student

- Looks into current research topics in the areas HRM, personnel economics, and leadership with a focus on digital management and AI.
- Analyzes research papers in detail and evaluates the research outcomes.
- Trains their presentation skills and discussion skills.
- Practices scientific debating.
- Learns to critically evaluate research methods and trains the scientific discussion culture.
- Gains deeper knowledge in the area of digital HRM and management.
- Learns to evaluate research designs and takes into account the ethical dimension of research.
- Learns how to develop an own research design and idea.

Notes
Due to the interactive nature of the course, the number of participants is limited. If you are interested, please contact Prof. Nieken by email.

Workload
The total workload for this course is approximately 90 hours.
- Lecture: 30 hours
- Preparation: 45 hours
- Exam preparation: 15 hours

Literature
Selected research papers

Organizational issues
Geb. 05.20, Raum 2A-25, Termine werden bekannt gegeben
5.15 Course: Advanced Topics in Economic Theory [T-WIWI-102609]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101406 - Network Economics
- M-WIWI-101500 - Microeconomic Theory
- M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the end of the lecture period or at the beginning of the following semester.

Prerequisites
None

Recommendation
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.
5.16 Course: Advanced Topics in Human Resource Management [T-WIWI-111913]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Colloquium /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2573014</td>
<td></td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Alternative exam assessment. The following aspects are included:

- Regular and active participation in the course dates
- Presentation of a given research topic.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Recommendation
We recommend visiting the course Incentives in Organization before taking this course. The course is strongly recommended for students interested in empirical research in the areas HRM, personnel economics, and leadership and those who are interest in an academic career path.

Below you will find excerpts from events related to this course:

Advanced Topics in Human Resource Management
2573014, SS 2023, 2 SWS, Language: English, Open in study portal
Colloquium (KOL)
On-Site
Content
The students will discuss and analyze selected research papers in the areas HRM, personnel economics, and leadership. The students will present research papers and discuss research methods and designs as well as content. They will develop an own research design on a predefined topic.

Aim
The student
- Looks into current research topics in the areas HRM, personnel economics, and leadership.
- Analyzes research papers in detail and evaluates the research outcomes.
- Trains their presentation skills and discussion skills.
- Practices scientific debating.
- Learns to critically evaluate research methods and trains the scientific discussion culture.
- Gains deeper knowledge in the area of HRM.
- Learns to evaluate research designs and takes into account the ethical dimension of research.
- Learns how to develop an own research design and idea.

Notes
Due to the interactive nature of the course, the number of participants is limited. If you are interested, please contact Prof. Nieken by email.

Workload
The total workload for this course is approximately 90 hours.
Lecture: 30 hours
Preparation: 45 hours
Exam preparation: 15 hours

Literature
Selected research papers

Organizational issues
Geb. 05.20, Raum 2A-25, Termine werden bekannt gegeben
5.17 Course: Algorithm Engineering [T-INFO-101332]

Responsible: Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Organisation:
KIT Department of Informatics

Part of:
M-INFO-100795 - Algorithm Engineering
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2400021 | Algorithm Engineering | 2/1 SWS | Lecture / Sanders, Seemaier |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Competence Certificate

There are two partial achievements Algorithm Engineering (4 ECTS) and Algorithm Engineering Exercises (1 ECTS):

Algorithm Engineering:
The assessment is carried out as an oral examination lasting 20 minutes. § 4 Abs. 2 Nr. 2 SPO

Algorithm Engineering Exercises:
The assessment is carried out as an examination of another type.
The exercise can be evidenced by various performance records. This is determined individually during the lecture. Usually, the student prepares a seminar presentation and/or works on a practical tasks with written elaboration and evaluation (the main performance consists of the programming, documented by the source code that is to be handed in and supplemented by a short written report).
Students may redraw from the examination during the first XXX?? weeks after they have been assigned a task.

Prerequisites
none.
Course: Algorithm Engineering Pass [T-INFO-111856]

5.18 Course: Algorithm Engineering Pass [T-INFO-111856]

Responsible: Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of:
M-INFO-100795 - Algorithm Engineering
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

There are two partial achievements Algorithm Engineering (4 ECTS) and Algorithm Engineering Exercises (1 ECTS):

Algorithm Engineering:

The assessment is carried out as an oral examination lasting 20 minutes.

Algorithm Engineering Exercises:

The assessment is carried out as an examination of another type. § 2 Abs. 2 Nr. 3

The exercise can be evidenced by various performance records. This is determined individually during the lecture. Usually, the student prepares a seminar presentation and/or works on a practical tasks with written elaboration and evaluation (the main performance consists of the programming, documented by the source code that is to be handed in and supplemented by a short written report). Students may redraw from the examination during the first XXX?? weeks after they have been assigned a task.

Prerequisites

none.
5.19 Course: Algorithmic Methods for Hard Optimization Problems [T-INFO-103334]

Responsible: Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of:
- M-INFO-101199 - Advanced Algorithms: Design and Analysis
- M-INFO-101200 - Advanced Algorithms: Engineering and Applications
- M-INFO-101237 - Algorithmic Methods for Hard Optimization Problems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>
5.20 Course: Algorithmic Methods for Network Analysis [T-INFO-104759]

Responsible: Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: M-INFO-102400 - Algorithmic Methods for Network Analysis

Type: Oral examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Irregular
Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Type</th>
<th>Course</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2400007</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>Oral examination</td>
<td>Algorithmic Methods for Network Analysis</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
5.21 Course: Algorithms for Routing [T-INFO-100002]

| Responsible: | Prof. Dr. Dorothea Wagner |
| Organisation: | KIT Department of Informatics |
| Part of: | M-INFO-100031 - Algorithms for Routing
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications |

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2424638 | Algorithmen für Routenplanung (mit Übungen) | 3 SWS | Lecture / Practice / 🗣️ | Sauer, Feihauer, Wagner, Zündorf |

Exams

| ST 2023 | 7500019 | Algorithms for Routing | Ueckerdt |

Legend: 🖥 Online, 🕯 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled
5.22 Course: Algorithms for Visualization of Graphs [T-INFO-104390]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of:
- M-INFO-101199 - Advanced Algorithms: Design and Analysis
- M-INFO-101200 - Advanced Algorithms: Engineering and Applications
- M-INFO-102094 - Algorithms for Visualization of Graphs

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2424118</td>
<td>Algorithmen zur Visualisierung von Graphen</td>
<td>Lecture / Practice / 🗣</td>
<td>2+1 SWS</td>
<td></td>
<td></td>
<td>Wagner, Ueckerdt, Merker</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500222</td>
<td>Algorithms for Visualization of Graphs</td>
<td>Ueckerdt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⏰ Blended (On-Site/Online), 🗣 On-Site, ❌ Canceled
5.23 Course: Algorithms II [T-INFO-102020]

Responsible: Prof. Dr. Peter Sanders
Organisation: KIT Department of Informatics
Part of: M-INFO-101173 - Algorithms II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td>Sanders, Laupichler, Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4 SWS</td>
<td>Sanders</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td>Sanders, Laupichler, Maas</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4 SWS</td>
<td>Sanders</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 120 minutes.

Prerequisites

none.
5.24 Course: Algorithms in Cellular Automata [T-INFO-101334]

Responsible: Thomas Worsch
Organisation: KIT Department of Informatics
Part of: M-INFO-101199 - Advanced Algorithms: Design and Analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>24622</th>
<th>Algorithms for Cellular Automata</th>
<th>3 SWS</th>
<th>Lecture / 🗣️</th>
<th>Worsch, Vollmar</th>
</tr>
</thead>
</table>

Exams

| ST 2023 | 75400001 | Algorithms in Cellular Automata | Worsch |

Legend: 🖥 Online, Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled
5.25 Course: Applied Econometrics [T-WIWI-111388]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101638 - Econometrics and Statistics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Credits</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2520020</td>
<td>Applied Econometrics</td>
<td>2</td>
<td>2 SWS</td>
<td>Krüger, Eberl</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2520021</td>
<td>Tutorial in Applied Econometrics</td>
<td>2</td>
<td>2 SWS</td>
<td>Eberl, Koster</td>
</tr>
</tbody>
</table>

Legend: 📥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment of this course is a written examination (90 min) according to §4(2), 1 of the examination regulation. A bonus can be acquired by successful completion of an assignment (written report + short in-class presentation) during the semester. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4).

Prerequisites

None

Below you will find excerpts from events related to this course:

Applied Econometrics

2520020, WS 23/24, 2 SWS, Language: English, Open in study portal

Lecture (V)
On-Site

Content

Content:

The course covers two econometric topics: (1) Conditional expectation and regression, and (2) Causal inference. Part (1) reviews foundations like the best linear predictor, least squares estimation, and robust covariance estimation. Part (2) introduces the potential outcomes framework for studying causal, what-if type questions such as "How does an internship affect a person's future wage?". It then presents research strategies like randomized trials, instrumental variables, and regression discontinuity.

For each part, we discuss econometric methods and theory, empirical examples (including recent research papers), and R implementation.

Learning goal:

Students are able to assess the properties of various econometric estimators and research designs, and to implement econometric estimators using R software.

Workload:

Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Independent Study: 105 hours

Literature

5.26 Course: Applied material flow simulation [T-MACH-112213]

Responsible: Dr.-Ing. Marion Baumann
Organisation: KIT Department of Mechanical Engineering

Part of:
M-WIWI-102805 - Service Operations
M-WIWI-102832 - Operations Research in Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Code</th>
<th>Event Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2117054</td>
<td>Applied material flow simulation</td>
<td>Lecture / Practice /</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
<td>Baumann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Event Code</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>76-T-MACH-112213</td>
<td>Baumann</td>
</tr>
</tbody>
</table>

Legend: 🛥 Online, 🕰 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulation.

Prerequisites
None

Recommendation
- Basic statistical knowledge and understanding
- Knowledge of a common programming language (Java, Python, ...)
- Recommended course: T-WIWI-102718 - Discrete Event Simulation in Production and Logistics

Below you will find excerpts from events related to this course:
Content

Learning Content:

- Methods of modeling a simulation such as:
 - Discrete-event simulation
 - Agent based simulation
- Design of a simulation model of a material flow system
- Data exchange in simulation models
- Verification and validation of simulation models
- Execution of simulation studies
- Statistical evaluation and parameter study

This is an application-oriented course in which the course contents are applied and deepened using the Anylogic software.

Learning Goals:

Students are able to:

- select the appropriate simulation modeling method depending on a modeling objective and build a suitable simulation model for material flow systems,
- extend a simulation model in a meaningful way with data import and export,
- verify and validate a simulation model,
- conduct a simulation study efficiently and with meaningful results, and
- design and conduct a parameter study and statistically analyze and evaluate the results.

Recommendations:

- Basic statistical skills
- Prior knowledge of a common programming language (Java, Python, ...).
- Recommended course: T-WIWI-102718 - Discrete Event Simulation in Production and Logistics

Workload for 4.5 ECTS (135 h):

- regular attendance: 21 hours
- self-study: 114 hours

Organizational issues

- Im Wintersemester 2023/2024 ist die Veranstaltung auf maximal 30 Teilnehmer beschränkt.
- Die Anmeldung ist durch Beitritt zum ILIAS-Kurs und Ausfüllen des Anmeldungsformulars (erforderliche Felder beim Beitritt zum ILIAS-Kurs) möglich.
- Die Anmeldung ist vom 01.09.2023 bis zum 30.09.2023 möglich.

Literature

5.27 Course: Artificial Intelligence in Service Systems [T-WIWI-108715]

Responsible: Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101448 - Service Management
- M-WIWI-101506 - Service Analytics
- M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2595650</td>
<td>Artificial Intelligence in Service Systems</td>
<td>1.5 SWS</td>
<td>Lecture / 📅 Kühl, Vössing</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2595651</td>
<td>Übung zu Artificial Intelligence in Service Systems</td>
<td>1.5 SWS</td>
<td>Practice / 🕒 Kühl, Schemmer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900104</td>
<td>Artificial Intelligence in Service Systems</td>
<td>Satzger</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900118</td>
<td>Artificial Intelligence in Service Systems</td>
<td>Satzger</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📖 Online, 📅 Blended (On-Site/Online), 🕒 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min). Successful completion of the exercises is a prerequisite for admission to the written exam.

Prerequisites
None

Annotation
The course will be offered in the form of a flipped classroom concept starting in winter semester 2022/2023. The lecture will be recorded in advance and made available online. During the exercise classes, the contents of the lecture will be discussed and applied as part of programming exercises.

Below you will find excerpts from events related to this course:

Artificial Intelligence in Service Systems

| 2595650, WS 23/24, 1.5 SWS, Language: English, Open in study portal | Lecture (V) Blended (On-Site/Online) |

Content
Artificial Intelligence (AI) and the application of machine learning is becoming more and more popular to solve relevant business challenges — both within isolated entities but also within co-creating systems (like value chains). However, it is not only essential to be familiar with precise algorithms but rather a general understanding of the necessary steps with a holistic view—from real-world challenges to the successful deployment of an AI-based solution. As part of this course, we teach the complete lifecycle of an AI project focusing on supervised machine learning challenges. We do so by also introducing the use of Python and the required packages like scikit-learn with exemplary data and use cases. We then take this knowledge to the more complex case of service systems with different entities (e.g., companies) who interact with each other and show possibilities on how to derive holistic insights. Apart from the technical aspects necessary when developing AI within service systems, we also shed light on the collaboration of humans and AI in such systems (e.g., with the support of XAI), topics of ethics and bias in AI, as well as AI’s capabilities on being creative.

Students of this course will be able to understand and implement the complete lifecycle of a typical Artificial Intelligence use case with supervised machine learning. Furthermore, they understand the importance and the means of applying AI and Machine Learning within service systems, which allows multiple, independent entities to collaborate and derive insights. Besides technical aspects, they will gain an understanding of the broader challenges and aspects when dealing with AI. Students will be proficient with typical Python code for AI challenges.
Organizational issues
The course will be offered in the form of a flipped classroom concept starting in winter semester 2022/2023. The lecture will be recorded in advance and made available online. During the exercise classes, the contents of the lecture will be discussed and applied as part of programming exercises.

Literature

5.28 Course: Artificial Intelligence in Service Systems - Applications in Computer Vision [T-WIWI-111219]

Responsible: Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101448 - Service Management
- M-WIWI-101506 - Service Analytics
- M-WIWI-103117 - Data Science: Data-Driven Information Systems
- M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2595501 | Artificial Intelligence in Service Systems - Applications in Computer Vision | 3 SWS | Lecture / 🔴 | Satzger, Schmitz |

Exams

| ST 2023 | 7900271 | Artificial Intelligence in Service Systems - Applications in Computer Vision | Satzger |

Competence Certificate
Alternative exam assessment.

Annotation
This course is admission restricted (see http://dsi.iism.kit.edu).
The course replaces "Service Analytics A" as of summer semester 2021.

Below you will find excerpts from events related to this course:

V Artificial Intelligence in Service Systems - Applications in Computer Vision
2595501, SS 2023, 3 SWS, Language: English, [Open in study portal](#)

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🔴 On-Site, ☑️ Cancelled
Content
---We renamed this course from "Service Analytics A" to "Artificial Intelligence in Service Systems - Applications in Computer Vision" ---

Learning objectives
This course teaches students how to apply machine learning concepts to develop predictive models that form the basis of many innovative service offerings and business models today. Using a selected use case each term, students learn the foundations of selected algorithms and development frameworks and apply them to build a functioning prototype of an analytics-based service. Students will become proficient in writing code in Python to implement a data science use case over the course period.

Description
Data-driven services have become a key differentiator for many companies. Their development is based on the increasing availability of structured and unstructured data and their analysis through methods from data science and machine learning. Examples comprise highly innovative service offerings based on technologies such as natural language processing, computer vision or reinforcement learning.

Using a selected use case, this lecture will teach students how to develop analytics-based services in an applied setting. We teach the theoretical foundations of selected machine learning algorithms (e.g., convolutional neural networks) and development concepts (e.g., developing modeling, training, inference pipelines) and teach how to apply these concepts to build a functioning prototype of an analytics-based service (e.g., inference running on a device). During the course, students will work in small groups to apply the learned concepts in the programming language Python using packages such as Keras, Tensorflow or Scikit-Learn. For more information on recent projects as part of the course, please visit the website of our lecture: https://www.aiss-cv.com.

Recommendations
The course is aimed at students in the Master’s program with basic knowledge in statistics and applied programming in Python. Knowledge from the lecture Artificial Intelligence in Service Systems may be beneficial.

Additional information
The lecture will be held as part of 7 blocks within the summer semester. Due to the practical group sessions in the course, the number of participants is limited. The official application period in the WiWi portal will open mid of February. Please apply here until April, 3rd: https://go.wiwi.kit.edu/aiss-cv. The course will be held mainly online via Zoom. For interim and final presentation, we will meet in person in building 05.20, room 1C-03. Further information on the dates of interim and final presentation will be announced via Ilias and mail.

Literature
5.29 Course: Asset Pricing [T-WIWI-102647]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101482 - Finance 1
- M-WIWI-101483 - Finance 2
- M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2530555</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Uhrig-Homburg, Böll, Müller</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2530556</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Uhrig-Homburg, Müller</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900110</td>
<td></td>
<td>Asset Pricing</td>
<td>Uhrig-Homburg, Thimme</td>
</tr>
<tr>
<td>WT 23/24 7900056</td>
<td></td>
<td>Asset Pricing</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination or as an open-book examination (alternative exam assessment).

A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

We strongly recommend knowledge of the basic topics in investments (bachelor course), which will be necessary to be able to follow the course.

Below you will find excerpts from events related to this course:

Literature

5.30 Course: Asymmetric Encryption Schemes [T-INFO-101260]

Responsible: Prof. Dr. Jörn Müller-Quade
Organisation: KIT Department of Informatics
Part of: M-INFO-101198 - Advanced Topics in Cryptography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
5.31 Course: Auction Theory [T-WIWI-102613]

Responsible: Prof. Dr. Karl-Martin Ehrhart

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101500 - Microeconomic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2520408</td>
<td>Auktionstheorie</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Ehrhart</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2520409</td>
<td>Übungen zu Auktionstheorie</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ehrhart</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900255</td>
<td>Auction Theory</td>
<td></td>
<td></td>
<td>Ehrhart</td>
</tr>
<tr>
<td>WT 23/24 7900039</td>
<td>Auction Theory</td>
<td></td>
<td></td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Below you will find excerpts from events related to this course:

Auktionstheorie

2520408, WS 23/24, 2 SWS, Open in study portal

Literature

- Ehrhart, K.-M. und S. Seifert: Auktionstheorie, Skript zur Vorlesung, KIT, 2011
- Ausubel, L.M. und P. Cramton: Demand Reduction and Inefficiency in Multi-Unit Auctions, University of Maryland, 1999
5.32 Course: Automated Planning and Scheduling [T-INFO-109085]

Responsible: Prof. Dr. Peter Sanders
Organisation: KIT Department of Informatics
Part of: M-INFO-104447 - Automated Planning and Scheduling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
5.33 Course: Automated Visual Inspection and Image Processing [T-INFO-101363]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of: M-INFO-100826 - Automated Visual Inspection and Image Processing
M-INFO-101239 - Machine Vision

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>WS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24169</td>
<td>Automated Visual Inspection and Image Processing</td>
<td>4 SWS</td>
<td>German</td>
<td>Open</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500003</td>
<td>Automated Visual Inspection and Image Processing</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500008</td>
<td>Automated Visual Inspection and Image Processing</td>
<td></td>
</tr>
</tbody>
</table>

Content

Topics covered:

- sensors and concepts for image acquisition
- light and colour
- image signals (system theory, Fourier transformation, stochastic processes)
- excursion to wave optics
- pre-processing and image enhancement
- image restoration
- segmentation
- morphological image processing
- texture analysis
- detection
- image pyramids, multi-scale analysis and wavelet-transform

Educational objective:

- Students have a sound knowledge regarding the basic concepts and methods of image processing (pre-processing and image enhancement, image restoration, image segmentation, morphological filtering, texture analysis, detection, image pyramids, multi-scale analysis and the wavelet transform)
- Students are in the position to work out and to evaluate solution concepts for problems of automated visual inspection
- Students have a sound knowledge of the different sensors and methods for the acquisition of image data as well as of the relevant optical principles
- Students know different concepts to describe image data and they know the essential system theoretical concepts and interrelations

Organizational issues

Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Empfehlungen:

Grundkenntnisse der Optik und der Signalverarbeitung sind hilfreich.

Literature

Weiterführende Literatur

5.34 Course: Basics of German Company Tax Law and Tax Planning [T-WIWI-108711]

Responsible: Dr. Gerd Gutekunst
Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Wigger, Gutekunst</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5 h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course “Öffentliche Einnahmen” beforehand.

Below you will find excerpts from events related to this course:

Basics of German Company Tax Law and Tax Planning
2560134, WS 23/24, 3 SWS, Language: German, Open in study portal

Content

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.
5.35 Course: Behavioral Lab Exercise [T-WIWI-111806]

Responsible: Prof. Dr. Petra Nieken
Prof. Dr. Benjamin Scheibehenne

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment.

Recommendation
This class caters towards Master students who are interested in empirical research and in running lab experiments.

Annotation
The course will be offered for the first time in the winter semester 21/22.
Due to the interactive nature of the class, the number of participants is limited. If you are interested, please contact the teachers directly via email.
5.36 Course: Biologically Inspired Robots [T-INFO-101351]

Responsible: Dr.-Ing. Arne Rönnau
Organisation: KIT Department of Informatics
Part of: M-INFO-101251 - Autonomous Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Course Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24619</td>
<td>Biologisch Motivierte Roboter</td>
<td>Lecture</td>
<td>Rönnau</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Course Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500237</td>
<td>Biologically Inspired Robot</td>
<td></td>
<td>Rönnau</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online,🧩 Blended (On-Site/Online),🗣 On-Site,🗙 Cancelled
5.37 Course: Biometric Systems for Person Identification [T-INFO-101297]

Course: Biometric Systems for Person Identification [T-INFO-101297]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen

Organisation: KIT Department of Informatics

Part of: M-INFO-101239 - Machine Vision

Type	**Credits**	**Grading scale**	**Version**
Oral examination | 3 | Grade to a third | 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2403011</td>
<td>Biometric Systems for Person Identification</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Sarfraz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500043</td>
<td>Biometric Systems for Person Identification</td>
<td>Lecture (V) On-Site</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Content

Biometrics deals with the science of recognizing and identifying humans based on their biometrics traits, such as finger prints, face, iris, gait etc. With the increasing demands put on security and surveillance e.g. safer access control, border control/passports and identifying criminals /law enforcement, biometrics becomes more and more essential and technologies are being developed to solve many issues in this demanding area of research. In this course, the students will learn the fundamental concepts of underlying biometrics technologies, understanding of various techniques for different topics/technologies used in biometrics.

The topics include
- Introduction: Biometrics acquisitions and image processing, basic introduction to the area of computer vision/machine learning applied to biometrics
- Biometrics system: requirements, enrollment, identification/verification, performance metrics
- Biometrics technologies: Overview of different biometrics technologies
- Finger print recognition: image enhancement, state-of-the-art techniques, challenges
- Iris recognition: image acquisitions, feature extraction, state-of-the-art techniques, challenges
- Face recognition: introduction, current methods, applications
- Palm print recognition: current methods
- Gait recognition: emerging methods
- Multi-Biometrics: multiple modes of biometrics, fusion strategies
- Risk analysis: attacks, liveness detection, fraud prevention
5.38 Course: Blockchains & Cryptofinance [T-WIWI-108880]

Responsible: Dr. Philipp Schuster
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101409 - Electronic Markets
- M-WIWI-101446 - Market Engineering
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The examination is offered for the last time in winter semester 20/21 for first-time writers and then again for second attempts. The assessment consists of a written exam (75 min).

A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Depending on further pandemic developments, the examination will be offered as an open-book examination (alternative exam assessment).

Prerequisites
None

Recommendation
None

Annotation
The lecture is currently not offered.
5.39 Course: Bond Markets [T-WIWI-110995]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>2530560</td>
<td>Bond Markets</td>
<td>3 SWS</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td></td>
<td>7900280</td>
<td>Bond Markets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td></td>
<td>7900311</td>
<td>Bond Markets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (75min.)
A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one level (0.3 or 0.4). The examination is offered in each semester and can be repeated at any regular examination date.
Depending on further pandemic developments, the examination will be offered as an open-book examination (alternative exam assessment).

Annotation
This course will be held in English.

Below you will find excerpts from events related to this course:

Bond Markets
2530560, WS 23/24, 3 SWS, Language: English, [Open in study portal](#)
Lecture / Practice (VÜ)
On-Site

Content
The lecture "Bond Markets" deals with the national and international bond markets, which are an important source of financing for companies, as well as for the public sector. After an overview of the most important bond markets, different yield definitions are discussed. Based on this, the concept of the yield curve is presented. In addition, the theoretical and empirical relationships between ratings, default probabilities and spreads are analyzed. The focus will then be on questions regarding the valuation, measurement, management and control of credit risks.
The total workload for this course is approximately 135 hours (4.5 credits).
The assessment consists of a written exam (75min.) (according to §4(2), 1 SPO). A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one level (0.3 or 0.4). The examination is offered in each semester and can be repeated at any regular examination date.
Students deepen their knowledge of national and international bond markets. They gain knowledge of the traded instruments and their key figures for describing default risk such as ratings, default probabilities or credit spreads.

Organizational issues
Die Veranstaltung wird in der ersten Semesterhälfte an sechs Freitagen am Campus B (Geb. 09.21) im Raum 124 angeboten. Die Klausur findet dann direkt im Anschluss statt.
Competence Certificate
The assessment of success consists in equal parts of a written thesis and an oral exam including a discussion of one’s own work. The main examination is offered once a year, re-examinations every semester.

Recommendation
Knowledge of "Bond Markets" and "Derivatives" courses is very helpful.

Annotation
This course will be held in English.

Below you will find excerpts from events related to this course:

Bond Markets - Models & Derivatives
2530565, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Content
- **Competence Certificate:** The assessment of success consists in equal parts of a written thesis and an oral exam (according to §4(2), 3 SPO) including a discussion of one’s own work. The main examination is offered once a year, re-examinations every semester.
- **Competence Goal:** Students deepen their knowledge of national and international bond markets. They are able to apply the knowledge they have gained about traded instruments and common valuation models for pricing derivative financial instruments.
- **Prerequisites:**
- **Content:** The lecture "Bond Markets – Models & Derivatives" deepens the content of the lecture "Bond Markets". The modelling of the dynamics of yield curves and the management of credit risks forms the theoretical foundation for the valuation of interest rate and credit derivatives to be discussed. In this course, students deal intensively with selected topics and acquire the relevant knowledge on their own.
- **Recommendation:** Knowledge of "Bond Markets" and "Derivatives" courses is very helpful.
- **Workload:** The total workload for this course is approximately 90 hours (3.0 credits).

Organizational issues
Die Veranstaltung startet in der zweiten Semesterhälfte (Kickoff am 08.12.23) und hat Seminarcharakter - mit dem Ziel, ein selbstgewähltes Themenfeld in Form einer schriftlichen Ausarbeitung eigenständig zu erarbeiten.
5.41 Course: Bond Markets - Tools & Applications [T-WIWI-110996]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2530562 | Bond Markets - Tools & Applications | 1 SWS | Block / 🗣 Uhrig-Homburg, Grauer |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, x Cancelled

Competence Certificate

The assessment consists of an empirical case study with written elaboration and presentation. The main examination is offered once a year, re-examinations every semester.

Recommendation

Knowledge of the "Bond Markets" course is very helpful.

Annotation

This course will be held in English.

Below you will find excerpts from events related to this course:

Content

- **Competence Certificate:** The assessment consists of an empirical case study with written elaboration and presentation (according to §4(2), 3 SPO). The main examination is offered once a year, re-examinations every semester.
- **Competence Goal:** The students apply various methods in practice within the framework of a project-related case study. They are able to deal with empirical data and analyze them in a targeted manner.
- **Content:** The course "Bond Markets – Tools & Applications" includes a hands-on project in the field of national and international bond markets. Using empirical datasets, the students have to apply practical methods in order to analyze the data in a targeted manner.
- **Recommendation:** Knowledge of the "Bond Markets" course is very helpful.
- **Workload:** The total workload for this course is approximately 45 hours (1.5 credits).

Organizational issues

Die Veranstaltung findet in der ersten Semesterhälfte statt (Kickoff am 10.11.23) und beinhaltet eine eigenständige Projektarbeit im Umgang mit realen Bond Daten. Die Erfolgskontrolle erfolgt anhand einer schriftlichen Ausarbeitung und einer kurzen Präsentation.
5.42 Course: Business Administration in Information Engineering and Management [T-WIWI-102886]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101443 - Information Engineering and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The lecture is no longer offered.

Prerequisites
None

Recommendation
Basic knowledge from Operations Research (linear programming) and from decision theory are expected.
5.43 Course: Business Data Analytics: Application and Tools [T-WIWI-109863]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-103117 - Data Science: Data-Driven Information Systems
M-WIWI-103118 - Data Science: Data-Driven User Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2540466 | Business Data Analytics: Application and Tools | 2 SWS | Lecture / On-Site | Knierim, Badewitz |
| ST 2023 | 2540467 | Exercise Business Data Analytics: Application and Tools | 1 SWS | Practice / On-Site | Badewitz, Grote, Sterk, Bezzaoui, Nikolajevic |

Exams

| ST 2023 | 7900183 | Business Data Analytics: Application and Tools | Weinhardt |

Competence Certificate
Success is monitored through ongoing elaborations and presentations of tasks and a written exam (60 minutes) at the end of the lecture period. Successful participation in the exercises is a prerequisite for admission to the written examination. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

The number of participants is limited to 50, as this is the only way to ensure conscientious support for the case study. The selection of participants is based on a short letter of motivation (max. 2000 characters including spaces) in the faculty’s portal.

Prerequisites
None

Recommendation
Knowledge of (object-oriented) programming and statistics is helpful.

Annotation
The lecture is read in block sessions at the beginning of the semester. The dates will be communicated in the Wiwi-Portal.

Below you will find excerpts from events related to this course:

Business Data Analytics: Application and Tools
2540466, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Organizational issues
als Blockveranstaltung an 3 Terminen:

- Montag, 17.04.23 - 09:00 - 17:30 Uhr, 01.85 Teamraum A&B
- Dienstag, 18.04.23 - 09:00 - 17:30 Uhr, 10.50 Raum 604
- Mittwoch, 19.04.23 - 09:00 - 17:30 Uhr, 01.85 Teamraum A&B
5.44 Course: Business Data Strategy [T-WIWI-106187]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Business Data Strategy</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Weinhardt, Badewitz</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Übung zu Business Data Strategy</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Weinhardt, Badewitz, Schulz</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🗣️ Online, Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation and an alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation. The grade is determined by 2/3 through the written exam and by 1/3 through the alternative exam assessment (e.g., presentation).

Prerequisites
None

Recommendation
Students should be familiar with basic concepts of business organisations, information systems, and programming. However, all material will be introduced, so no formal pre-conditions are applied.

Annotation
Limited number of participants.

Below you will find excerpts from events related to this course:

Business Data Strategy
2540484, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
With new methods for capturing and using different types of data and industry’s recognition of society’s use of data is less than optimal, the need for comprehensive strategies is more important than ever before. Advances in cybersecurity and information sharing and the use of data in its raw form for decision making add all to the complexity of integrated processes, ownership, stewardship, and sharing. The life cycle of data in its entirety spans the infrastructure, system design, development, integration, and implementation of information-enabling solutions. This lecture focuses on teaching about these dynamics and tools to comprehend and manage them in organisational contexts. Given the increasing size and complexity of data, methods for the transformation and structured preparation are an important tool in the process of sense-making. Modern software solutions and programming languages provide frameworks for such tasks that form another part of this course ranging from conceptual systems modelling to data manipulation to automated generation of HTML reports and web-applications.

Organizational issues
Application/Registration
Attendance will be limited to 20-25 participants. Application/registration is therefore preliminary. After the application deadline has passed, positions will be allocated, based on evaluation of the previous study records. Applications are accepted only through the Wiwi-Portal: https://portal.wiwi.kit.edu/ys/5254

Anmeldung

Module Handbook as of 04/09/2023

Information Engineering and Management M.Sc.

232
5 COURSES

Course: Business Dynamics [T-WIWI-102762]

5.45 Course: Business Dynamics [T-WIWI-102762]

| Responsible | Prof. Dr. Andreas Geyer-Schulz
| | Dr Paul Glenn |
| Organisation: | KIT Department of Economics and Management |
| Part of: | M-WIWI-101409 - Electronic Markets
| | M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services |

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2540531</td>
<td>2 SWS</td>
<td>Business Dynamics</td>
</tr>
<tr>
<td>WT 23/24 2540532</td>
<td>1 SWS</td>
<td>Exercise Business Dynamics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900065</td>
<td></td>
<td>Business Dynamics (Nachklausur WS 2022/2023)</td>
</tr>
<tr>
<td>WT 23/24 7979777</td>
<td></td>
<td>Business Dynamics (WS 2023/2024)</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚪ On-Site, ❌ Cancelled

Competence Certificate
Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

V Business Dynamics
2540531, WS 23/24, 2 SWS, Language: German, Open in study portal

Literature
5.46 Course: Business Intelligence Systems [T-WIWI-105777]

| Responsible | Prof. Dr. Alexander Mädche
| | Mario Nadj
| | Dr. Peyman Toreini
| Organisation | KIT Department of Economics and Management
| Part of | M-WIWI-101506 - Service Analytics
| | M-WIWI-101510 - Cross-Functional Management Accounting
| | M-WIWI-103117 - Data Science: Data-Driven Information Systems
| | M-WIWI-104068 - Information Systems in Organizations
| Type | Examination of another type
| Credits | 4,5
| Grading scale | Grade to a third
| Recurrence | Each winter term
| Version | 2

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment. The assessment consists of a one-hour exam and the implementation of a Capstone project. Details will be announced at the beginning of the course.

Prerequisites
None

Recommendation
Basic knowledge on database systems is helpful.

Below you will find excerpts from events related to this course:

Business Intelligence Systems
2540422, WS 23/24, 3 SWS, Language: English, Open in study portal

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Business Intelligence Systems</td>
<td>Lecture (V)</td>
<td>Blended (On-Site/Online)</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>
Content
In most modern enterprises, Business Intelligence & Analytics (BI&A) Systems represent a core enabler of decision-making in that they are supplying up-to-date and accurate information about all relevant aspects of a company’s planning and operations: from stock levels to sales volumes, from process cycle times to key indicators of corporate performance. Modern BI&A systems leverage beyond reporting and dashboards also advanced analytical functions. Thus, today they also play a major role in enabling data-driven products and services. The aim of this course is to introduce theoretical foundations, concepts, tools, and current practice of BI&A Systems from a managerial and technical perspective.

The course is complemented with an engineering capstone project, where students work in a team with real-world use cases and data in order to create running Business intelligence & Analytics system prototypes.

Learning objectives
- Understand the theoretical foundations of key Business Intelligence & Analytics concepts supporting decision-making
- Explore key capabilities of state-of-the-art Business Intelligence & Analytics Systems
- Learn how to successfully implement and run Business Intelligence & Analytics Systems from multiple perspectives, e.g. architecture, data management, consumption, analytics
- Get hands-on experience by working with Business Intelligence & Analytics Systems with real-world use cases and data

Prerequisites
This course is limited to a capacity of 50 places. The capacity limitation is due to the attractive format of the accompanying engineering capstone project. Strong analytical abilities and profound skills in SQL as well as Python and/or R are required. Students have to apply with their CV and transcript of records. All organizational details and the underlying registration process of the lecture and the capstone project will be presented in the first lecture. The teaching language is English.

Literature
- Economist Intelligence Unit. 2015 "Big data evolution:Forging new corporate capabilities for the long term”

Further literature will be made available in the lecture.
Course: Business Models in the Internet: Planning and Implementation [T-WWI-102639]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Christof Weinhardt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WWI-102806 - Service Innovation, Design & Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

As of summer semester 2022, the course "Business Models in the Internet: Planning and Implementation" can no longer be taken. The exam will be offered in summer semester 2022 and winter semester 2022/23 for repeaters.

Prerequisites

None

Recommendation

None
Course: Business Planning [T-WIWI-102865]

5.48 Course: Business Planning [T-WIWI-102865]

- **Responsible:** Prof. Dr. Orestis Terzidis
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Examination of another type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
</tr>
<tr>
<td>WT 23/24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
</tr>
<tr>
<td>WT 23/24</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

V Business Planning for Founders

2545109, SS 2023, 2 SWS, Language: English, [Open in study portal]

Content

Content

In the course Business Planning for Founders, you will be working in interdisciplinary teams on a real-world challenge presented by an industry partner (former partners have been e.g., EnBW and WIBU-Systems). To solve the case, you will learn about human-centered design using design thinking methods. These methods will help you develop your own business idea. Building on your idea, you will deploy a business plan and finally present, as a team, the results on the pitch day in front of the seminar participants and the industry partner.

Learning Objectives

After completing this course, the course participants will be able to:

- Follow a Design Thinking Process
- Understand how Prototypes are being developed
- Develop a sound Value Proposition for a target customer
- Create Business Ideas based on real life Use Cases in the field of IT-Security
- Develop a Business Model using the Tool Business Model Canvas
- Pitch your Business Ideas

Credentials:

ONLY ONE of the two options - Business Planning for founders OR Business Planning for founders in the field of IT-Security - can be taken and credited under the in CAS mentioned partial credit, as they cover similar content. Registration must take place in the CAS for the respective examination.
Organizational issues
Tuesday, 18.04.2023
Tuesday, 02.05.2023
Tuesday, 16.05.2023
Registration is via the Wiwi-Portal.
In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation. The seminars will be held in English.

Content
Course Content:
In the course Business Planning for Founders, you will be working in interdisciplinary teams on a real-world challenge. The challenge for this semester will be about Chatbots and in the context of privacy risks. To solve the case, you will learn about human-centered design using design thinking methods. These methods will help you develop your own business idea. Building on your idea, you will deploy a business plan and finally present, as a team, the results on the pitch day in front of the seminar participants and a jury.

Information about the seminar:
ONLY ONE of the two options - Business Planning for founders OR Business Planning for founders in the field of IT-Security - can be taken and credited under the in CAS mentioned partial credit, as they cover similar content. Registration must take place in the CAS for the respective examination.

Target group: Master Student

Organizational issues
Registration is via the Wiwi-Portal.
In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation. The seminars will be held in English.
5.49 Course: Business Strategies of Banks [T-WIWI-102626]

- **Responsible:** Prof. Dr. Wolfgang Müller
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101480 - Finance 3
 - M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The lecture will be offered for the last time in the winter semester 2021/22. The exam will take place for the last time in the summer semester 2022 (only for repeaters).

Prerequisites
None

Recommendation
None

Annotation
The lecture will be offered for the last time in the winter semester 2021/22.
5.50 Course: Case Studies Seminar: Innovation Management [T-WIWI-102852]

Responsible: Prof. Dr. Marion Weissenberger-Eibl

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101507 - Innovation Management
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2545105</td>
<td>Case studies seminar: Innovation management</td>
<td>2</td>
<td>Seminar / 🗣</td>
<td>Weissenberger-Eibl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900237</td>
<td>Case Studies Seminar: Innovation Management</td>
<td>Seminar ($)</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate

Alternative exam assessments (§4(2), 3 SPO).

Prerequisites

None

Recommendation

Prior attendance of the course Innovation Management is recommended.

Below you will find excerpts from events related to this course:

Case studies seminar: Innovation management

- Code: 2545105, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Content

The objective of the seminar is to master selected concepts and methods of innovation management and then to apply these practically. Working in groups, the students apply the described concepts and methods of innovation management to a case study from the industry to answer specific questions. Accordingly, the block seminar involves a switch from input to the application of this input. At the end, the results of the group work are presented in the form of a seminar paper and discussed by the whole course. A short introduction to presentation techniques is planned to help students prepare the seminar papers.

Literature

Werden in der ersten Veranstaltung bekannt gegeben.
5.51 Course: Challenges in Supply Chain Management [T-WIWI-102872]

Responsible: Esther Mohr

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102805 - Service Operations
- M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Graduation</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2550494 Challenges in Supply Chain Management</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 00030 Challenges in Supply Chain Management</td>
<td></td>
<td></td>
<td></td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written paper and an oral exam of ca. 30-40 min.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation
The number of course participants is limited to 12 participants due to joint work in BASF project teams. Due to these capacity restrictions, registration before course start is required. For further information see the webpage of the course.

The course is offered irregularly. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Challenges in Supply Chain Management
2550494, SS 2023, 3 SWS, Language: German, [Open in study portal](http://go.wiwi.kit.edu/ChallengesSCM)

Content
The course consists of case studies of BASF which cover future challenges of supply chain management. Thus, the course aims at a case-study based presentation, critical evaluation and exemplary discussion of recent questions in supply chain management. The focus lies on future challenges and trends, also with regard to their applicability in practical cases (especially in the chemical industry).

The main part of the course is working on a project together with BASF in Ludwigshafen. The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the project topic.

This course will include working on cutting edge supply chain topics like Industry 4.0 / "Internet of Everything in production", supply chain analytics, risk management, procurement and production in SCM. The team essays / project reports will be linked to industry-related challenges as well as to upcoming theoretical concepts. The topics of the seminar will be announced at the beginning of the term in a preliminary meeting.

Organizational issues
Bewerfung über das Wiwi-Portal möglich:

http://go.wiwi.kit.edu/ChallengesSCM

Literature
Wird in Abhängigkeit vom Thema in den Projektteams bekanntgegeben.
Course: Competition in Networks [T-WIWI-100005]

- **Responsible:** Prof. Dr. Kay Mitusch
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101406 - Network Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2561204</td>
<td>Competition in Networks</td>
<td>Lecture / 📥</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Mitusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2561205</td>
<td>Übung zu Wettbewerb in Netzen</td>
<td>Practice / 📥</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td>Wisotzky, Mitusch, Corbo</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900274</td>
<td>Competition in Networks</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Competence Certificate

Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites

None.

Recommendation

Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Below you will find excerpts from events related to this course:

- **Competition in Networks**
 - 2561204, WS 23/24, 2 SWS, Language: German, Open in study portal
 - Lecture (V)
 - Blended (On-Site/Online)

Content

Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies - competition or cooperation or both - are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Literature

Literatur und Skripte werden in der Veranstaltung angegeben.
5.53 Course: Computational Complexity Theory, with a View Towards Cryptography
[T-INFO-103014]

Responsible: Prof. Dr. Dennis Hofheinz
Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics
Part of: M-INFO-101575 - Computational Complexity Theory, with a View Towards Cryptography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2400124 | Computational Complexity Theory, with a View Towards Cryptography | 4 SWS | Lecture | Müller-Quade, Benz, Berger |

Exams

| ST 2023 | 7500183 | Computational Complexity Theory, with a View Towards Cryptography | Geiselmann, Müller-Quade |

Below you will find excerpts from events related to this course:

V Computational Complexity Theory, with a View Towards Cryptography
2400124, SS 2023, 4 SWS, Language: German, Open in study portal
5.54 Course: Computational Geometry [T-INFO-104429]

Responsible: Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: M-INFO-102110 - Computational Geometry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2400083</th>
<th>Computational Geometry</th>
<th>4 SWS</th>
<th>Lecture / Practice /</th>
<th>Bläsius, Yi</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), ☑ On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Computational Geometry
2400083, WS 23/24, 4 SWS, Language: German, Open in study portal

Organizational issues

nur Masterstudiengang Informatik
5.55 Course: Computer Contract Law [T-INFO-102036]

- **Responsible:** Michael Menk
- **Organisation:** KIT Department of Informatics
- **Part of:** M-INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT 23/24</td>
<td>2411604, WS 23/24</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Menk</td>
</tr>
<tr>
<td></td>
<td>ST 2023</td>
<td>7500066, Computer Contract Law</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WT 23/24</td>
<td>7500065, Computer Contract Law</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

- **ST 2023:** 7500066
- **WT 23/24:** 7500065

Content

The course deals with contracts from the following areas:

- Contracts of programming, licencing and maintaining software
- Contracts in the field of IT employment law
- IT projects and IT Outsourcing
- Internet Contracts

From these areas single contracts will be chosen and discussed (e.g. software maintenance, employment contract with a software engineer). Concerning the respective contract the technical features, the economic background and the subsumption in the national law of obligation (BGB-Schuldrecht) will be discussed. As a result different contractual clauses will be developed by the students. Afterwards typical contracts and conditions will be analysed with regard to their legitimacy as standard business terms (AGB). It is the aim to show the effects of the german law of standard business terms (AGB-Recht) and to point out that contracts are a means of drafting business concepts and market appearance.

It is the aim of this course to provide students with knowledge in the area of contract formation and formulation in practice that builds upon the knowledge the students have already acquired concerning the legal protection of computer programs. Students shall understand how the legal rules depend upon, and interact with, the economic background and the technical features of the subject. The contract drafts shall be prepared by the students and will be corporately completed during the lecture. It is the aim of the course that students will be able to formulate contracts by themselves.

Literature

- Langenfeld, Gerrit Vertragsgestaltung Verlag C.H.Beck, III. Aufl. 2004
- Heussen, Benno Handbuch Vertragsverhandlung und Vertragsmanagement Verlag C.H.Beck, II. Aufl. 2002
- Schneider, Jochen Handbuch des EDV-Rechts Verlag Dr. Otto Schmidt KG, III. Aufl. 2002

Weiterführende Literatur

Ergänzende Literatur wird in den Vorlesungsfolien angegeben.
5.56 Course: Consulting in Practice [T-INFO-101975]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-101208 - Innovative Concepts of Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1.5</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WK 23/24</th>
<th>24664</th>
<th>Praxis der Unternehmensberatung</th>
<th>2 SWS</th>
<th>Lecture / Böhm, Lang</th>
</tr>
</thead>
</table>

Below you will find excerpts from events related to this course:

Praxis der Unternehmensberatung

24664, WS 23/24, 2 SWS, Open in study portal

Lecture (V) On-Site

Content

The market for consulting services grows annually by 20% and is therefore one of the leading growth sectors and professional fields in the future. This trend is in particular driven by the IT industry. Here, widely used standard software moves the focus of the future professional field from software development to consulting. In this context, consulting services have usually a broad definition, reaching from pure IT-focused consulting (e.g., deployment of SAP) to strategic consulting (strategy, organisation etc). In contrast to common rumors, a qualification in business studies is not a must. This opens up a diversified and exciting field with exceptional development perspectives for computer science students. The course deals thematically with the two fields consulting in general and function-specific consulting (with IT consulting as an example).

The structure of the course is oriented along the phases of a consulting project:

- **Diagnosis:** The consultant as an analytic problem solver.
- **Strategic adjustment/redesign of the core processes:** Optimisation/redesign of essential business functionality to solve the diagnosed problems in cooperation with the client.
- **Implementation:** Installation of the solutions in the client’s organisation for assuring the implementation.

Emphasised topics in the course are:

- Elementary problem solving: Problem definition, structuring of problems and focussing through the usage of tools (e.g., logic and hypothesis trees), creative techniques, solution systems etc.
- Obtaining information effectively: Access of information sources, interview techniques etc.
- Effective communication of findings/recommendations: Analysis/planning of communication (media, audience, formats), communication styles (e.g., top-down vs. bottom-up), special topics (e.g., arrangement of complex information) etc.
- Efficient teamwork: Tools for optimising efficient work, collaboration with clients, intellectual and process leadership in the team etc.

At the end of the course, the participants

- have gained knowledge and understanding for the activities of the consulting process in general,
- have gained function-specific knowledge and understanding of IT consulting,
- have an overview about consulting companies,
- know concrete consulting examples,
- have experienced how effective teams work and
- have got an insight into the professional field “consulting”.

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
246
5.57 Course: Context Sensitive Systems [T-INFO-107499]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100728 - Context Sensitive Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Date</th>
<th>Type</th>
<th>SWS</th>
<th>Type/Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400099</td>
<td>Context Sensitive Systems</td>
<td>1 SWS</td>
<td>Practice / 🖥️</td>
<td>Riedel</td>
</tr>
<tr>
<td>ST 2023</td>
<td>24658</td>
<td>Context Sensitive Systems</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Riedel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Date</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500305_25.09.23</td>
<td>Context Sensitive Systems</td>
<td>Riedel</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500305_28.07.23</td>
<td>Context Sensitive Systems</td>
<td>Riedel</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500305_31.08.23</td>
<td>Context Sensitive Systems</td>
<td>Riedel</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Canceled
5.58 Course: Convex Analysis [T-WIWI-102856]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101473 - Mathematical Programming

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Irregular

Version
- 1

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Start</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2550120</td>
<td>Convex Analysis</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Start</th>
<th>Title</th>
<th>Type</th>
<th>Grade to a third</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900208_SS2023_HK</td>
<td>Convex Analysis</td>
<td>Lecture / 🗣️</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣️ On-Site
- ❌ Canceled

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).

Below you will find excerpts from events related to this course:

Convex Analysis

2550120, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

On-Site

Content

Convex Analysis deals with properties of convex functions and convex sets, amongst others with respect to the minimization of convex functions over convex sets. That the involved functions are not necessarily assumed to be differentiable allows a number of applications which are not covered by techniques from smooth optimization, e.g. approximation problems with respect to the Manhattan or maximum norms, classification problems or the theory of statistical estimates. The lecture develops along another, geometrically intuitive example, where a nonsmooth obstacle set is to be described by a single smooth convex constraint such that minimal and maximal distances to the obstacle can be computed. The lecture is structured as follows:

- Introduction to entropic smoothing and convexity
- Global error bounds
- Smoothness properties of convex functions
- The convex subdifferential
- Global Lipschitz continuity
- Descent directions and stationarity conditions

Remark

Prior to the attendance of this lecture, it is strongly recommend to acquire basic knowledge on optimization problems in one of the lectures "Global Optimization I and II" and "Nonlinear Optimization I and II".

Learning objectives:

The student

- knows and understands the fundamentals of convex analysis,
- is able to choose, design and apply modern techniques of convex analysis in practice.
Literature

5.59 Course: Cooperative Autonomous Vehicles [T-WIWI-112690]

Responsible: Prof. Dr. Alexey Vinel

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2511450</td>
<td>Cooperative Autonomous Vehicles</td>
<td>2</td>
<td>Lecture /♀</td>
<td>Vinel</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2511451</td>
<td>Exercise Cooperative Autonomous Vehicles</td>
<td>1</td>
<td>Practice /♀</td>
<td>Vinel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>79AIFB_CAV_B5</td>
<td>Cooperative Autonomous Vehicles (Registration until 17 July 2023)</td>
<td>Vinel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79AIFB_CAV_A3</td>
<td>Cooperative Autonomous Vehicles</td>
<td>Vinel</td>
</tr>
</tbody>
</table>

Legend: Online, ☑ Blended (On-Site/Online), ☑ On-Site, ☑ Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) or an oral exam (20 min).

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None
<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>750064</td>
<td>Copyright</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>750064</td>
<td>Copyright</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.61 Course: Corporate Compliance [T-INFO-101288]

Responsible: Andreas Herzig
Organisation: KIT Department of Informatics
Part of: M-INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2400087</td>
<td>Corporate Compliance</td>
<td>2 SWS</td>
<td>Herzig, Siddiq</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500063</td>
<td>Corporate Compliance</td>
<td></td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500063</td>
<td>Corporate Compliance</td>
<td></td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
course: Corporate Financial Policy [T-WIWI-102622]

- **Responsible:** Prof. Dr. Martin Ruckes
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101453 - Applied Strategic Decisions
 - M-WIWI-101480 - Finance 3
 - M-WIWI-101483 - Finance 2
 - M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2530214</td>
<td>Corporate Financial Policy</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2530215</td>
<td>Übungen zu Corporate Financial Policy</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ruckes, Hoang</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900073</td>
<td>Corporate Financial Policy</td>
<td>Ruckes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 7900058</td>
<td>Corporate Financial Policy</td>
<td>Ruckes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites
None

Below you will find excerpts from events related to this course:

Corporate Financial Policy

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530214, SS 2023</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Content
The course develops the foundations for the management and financing of firms in imperfect markets. The course covers the following topics:

- Measures of good corporate governance
- Corporate finance
- Liquidity management
- Executive compensation and incentives
- Corporate takeovers

Learning outcomes:
The students

- are able to explain the importance of information asymmetry for the contract design of firms,
- are capable to evaluate measures for the reduction of information asymmetry,
- are in the position to analyze contracts with regard to their incentive and communication effects.
5.63 Course: Corporate Risk Management [T-WIWI-109050]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2
- M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900259</td>
<td>Corporate Risk Management</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900136</td>
<td>Corporate Risk Management</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Please note that the exam is only offered in the semester of the lecture as well as in the following semester.

Prerequisites

None

Recommendation

None

Annotation

The course will be held again in the summer term 2023 at the earliest. Please pay attention to the announcements on our website.
5.64 Course: Critical Information Infrastructures [T-WIWI-109248]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Critical Information Infrastructures</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises to Critical Information Infrastructures</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Type
Examination of another type

Credits
4,5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
4

Competence Certificate

The alternative exam assessment consists of

- the preparation of a written elaboration as well as
- an oral examination as part of a presentation of the work.

Details of the grades will be announced at the beginning of the course.

The examination is only offered to first-time students in the winter semester, but can be repeated in the following summer semester.

Prerequisites

None.

Annotation

5.65 Course: Cryptographic Voting Schemes [T-INFO-101279]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Jörn Müller-Quade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-101198 - Advanced Topics in Cryptography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
5.66 Course: Data and Storage Management [T-INFO-101276]

Responsible: Prof. Dr. Bernhard Neumair

Organisation: KIT Department of Informatics

Part of: M-INFO-101210 - Dynamic IT-Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2 SWS</td>
<td>Data and Storage Management</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>4</td>
<td>Data and Storage Management</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.67 Course: Data Privacy: From Anonymization to Access Control [T-INFO-108377]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Klemens Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-101208 - Innovative Concepts of Data and Information Management</td>
</tr>
<tr>
<td></td>
<td>M-INFO-101256 - Theory and Practice of Data Warehousing and Mining</td>
</tr>
<tr>
<td></td>
<td>M-INFO-104045 - Data Privacy: From Anonymization to Access Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2400132 | Data Privacy: From Anonymization to Access Control | 2 SWS | / | Buchmann |

Exams

| ST 2023 | 7500209 | Data Privacy: From Anonymization to Access Control | Böhm |

Legend: 💻 Online, ⚡ Blended (On-Site/Online), 🔊 On-Site, 🗑 Cancelled
5.68 Course: Data Science [T-INFO-113124]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of:
- M-INFO-101208 - Innovative Concepts of Data and Information Management
- M-INFO-101256 - Theory and Practice of Data Warehousing and Mining
- M-INFO-106505 - Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>24114</th>
<th>Data Science 1</th>
<th>3 SWS</th>
<th>Lecture / On-Site</th>
<th>Böhm</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

Prerequisites

None.
5.69 Course: Database as a Service [T-INFO-111400]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of:
- M-INFO-101208 - Innovative Concepts of Data and Information Management
- M-INFO-101256 - Theory and Practice of Data Warehousing and Mining
- M-INFO-105724 - Database as a Service

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7500056 | Database as a Service | Böhm |

Prerequisites

none
5.70 Course: Database Systems [T-INFO-101497]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-101178 - Communication and Database Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 24516 | Datenbanksysteme | 2 SWS | Lecture / Böhm |
| ST 2023 | 24522 | Übungen zu Datenbanksysteme | 1 SWS | Practice / Böhm, Kalinke |

Exams

| ST 2023 | 7500166 | Database Systems | Böhm |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled
5.71 Course: Database Systems and XML [T-WIWI-102661]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101456 - Intelligent Systems and Services
- M-WIWI-101477 - Development of Business Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511202</td>
<td>Database Systems and XML</td>
<td>2</td>
<td>Lecture / 📔</td>
<td>Oberweis</td>
</tr>
<tr>
<td>2511203</td>
<td>Exercises Database Systems and XML</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Oberweis, Fritsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>Course</th>
<th>Notes</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>79AIFB_DBX_A3</td>
<td>Database Systems and XML (Registration until 17 July 2023)</td>
<td></td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Database Systems and XML</td>
<td></td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Canceled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Below you will find excerpts from events related to this course:

Database Systems and XML

2511202, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

Databases are a proven technology for managing large amounts of data. The oldest database model, the hierarchical model, was replaced by different models such as the relational or the object-oriented data model. The hierarchical model became particularly more important with the emergence of the extensible Markup Language XML. XML is a data format for structured, semi-structured, and unstructured data. In order to store XML documents consistently and reliably, databases or extensions of existing database systems are required. Among other things, this lecture covers the data model of XML, concepts of XML query languages, aspects of storage of XML documents, and XML-oriented database systems.

Note on the event format:

The course Database Systems and XML will be held in WS 23/24 in a "Flipped Classroom" format. Videos and supporting materials are provided for the lecture content, which students can work through independently and at their own pace. During the semester, interactive classroom sessions are held at regular intervals to practice and reinforce the lecture content.

Learning objectives:

Students

- know the basics of XML and generate XML documents,
- are able to use XML database systems and to formulate queries to XML documents,
- know to assess the use of XML in operational practice in different application contexts.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
Literature

- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2008

Weitere Literatur wird in der Vorlesung bekannt gegeben.
5.72 Course: Deep Learning and Neural Networks [T-INFO-109124]

Responsible: Prof. Dr. Alexander Waibel
Organisation: KIT Department of Informatics
Part of: M-INFO-104460 - Deep Learning and Neural Networks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2400024 | Deep Learning and Neural Networks | 4 SWS | Lecture / 🗣 | Waibel, Nguyen |

Exams

| ST 2023 | 7500044 | Deep Learning and Neural Networks | Waibel |

Legend: 🖥 Online, ⚡ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.73 Course: Deep Learning for Computer Vision I: Basics [T-INFO-111491]

Responsible: Prof. Dr.-Ing. Rainer Stiefelhagen
Organisation: KIT Department of Informatics
Part of:
- M-INFO-101239 - Machine Vision
- M-INFO-101239 - Machine Vision

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400007</td>
<td>Deep Learning for Computer Vision I: Basics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Stiefelhagen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500122</td>
<td>Deep Learning for Computer Vision I: Basics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Stiefelhagen</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500258</td>
<td>Deep Learning for Computer Vision I: Basics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Stiefelhagen</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- ➡️ On-Site
- ☠️ Cancelled

Recommendation

Basic knowledge of pattern recognition as taught in the module Cognitive Systems, is expected.

Annotation

The course is partially given in German and English.
5.74 Course: Demand-Driven Supply Chain Planning [T-WIWI-110971]

Responsible:	Dr. Josef Packowski
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-102805 - Service Operations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2550510 | Demand-Driven Supply Chain Planning | Lecture / 🗣 | Packowski |

Exams

| ST 2023 | 7900163 | Demand-Driven Supply Chain Planning | Packowski |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written exam.

Annotation

Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The course is planned to be held every winter term. The planned lectures and courses for the next three years are announced online.
Course: Deployment of Database Systems [T-INFO-101317]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Klemens Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-100780 - Deployment of Database Systems</td>
</tr>
<tr>
<td></td>
<td>M-INFO-101208 - Innovative Concepts of Data and Information Management</td>
</tr>
<tr>
<td></td>
<td>M-INFO-101256 - Theory and Practice of Data Warehousing and Mining</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2400111 | Datenbankeinsatz | 3 SWS | Lecture / 🗣️ | Böhm |

Exams

| ST 2023 | 7500090 | Deployment of Database Systems | Böhm |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
5.76 Course: Derivatives [T-WIWI-102643]

Responsible: Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101482 - Finance 1
- M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Derivatives</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>Übung zu Derivate</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Eska, Uhrig-Homburg</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Derivatives</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Derivatives</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination or as an open-book examination (alternative exam assessment).

A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Derivatives

2530550, SS 2023, 2 SWS, Language: German, Open in study portal

Literature

Weiterführende Literatur:

5.77 Course: Design Thinking [T-WIWI-102866]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Format</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2545008</td>
<td>Design Thinking (Track 1)</td>
<td>2</td>
<td>Seminar / 🗣</td>
<td>Jochem, Terzidis</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2545008</td>
<td>Design Thinking (Track 1)</td>
<td>2</td>
<td>Seminar / 💻</td>
<td>Jochem, Terzidis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⬻ Cancelled

Competence Certificate

Alternative exam assessments (§4(2), 3 SPO).

Prerequisites

None

Recommendation

None

Annotation

The seminar content will be published on the website of the institute.

Below you will find excerpts from events related to this course:

V Design Thinking (Track 1)

2545008, SS 2023, 2 SWS, Language: English, Open in study portal

Content

Content

Design Thinking is a user-centric innovation management method. The iterative process first analyzes the problem space and builds a sound understanding of the future users. Subsequently, ideas for the solution are generated, prototypes are created and tested by the user group. The result is a proven and validated product.

Learning Objectives

During the seminar, the students learn basic procedures for achieving user-centric innovations. These are concrete methods that start with the potential user of certain products and services. The method is problem-oriented and emphasizes the specific customer situation. After attending the seminar, the students have a clear understanding of the need to explore end-user needs and are able to independently apply the methods of Design Thinking for developing market-driven innovations at a basic level.

Credentials:

ATTENTION: Creditability in the seminar module: The seminar is NOT credited in the seminar module! Crediting is only possible in the EXPERT MODULE ENTREPRENEURSHIP.

Organizational issues

Registration is via the Wiwi-Portal.

V Design Thinking (Track 1)

2545008, WS 23/24, 2 SWS, Language: English, Open in study portal

Seminar (S)

On-Site

Blended (On-Site/Online)
Content

Course Content:
Design Thinking is a user-centric innovation management method. The iterative process first analyzes the problem space and builds a sound understanding of the future users. Subsequently, ideas for the solution are generated, prototypes are created and tested by the user group. The result is a proven and validated product.

Learning Objectives
During the seminar, the students learn basic procedures for achieving user-centric innovations. These are concrete methods that start with the potential user of certain products and services. The method is problem-oriented and emphasizes the specific customer situation. After attending the seminar, the students have a clear understanding of the need to explore end-user needs and are able to independently apply the methods of Design Thinking for developing market-driven innovations at a basic level.

Credentials:
Registration is via the Wiwi portal.

ATTENTION: Creditability in the seminar module: The seminar is NOT credited in the seminar module! Crediting is only possible in the EXPERT MODULE ENTREPRENEURSHIP.

Organizational issues
Registration is via the Wiwi portal.

In the seminar you will work on a project in teams of 4-5 persons. The groups are formed in the seminar.
5.78 Course: Designing Interactive Systems [T-WIWI-110851]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-104068 - Information Systems in Organizations
- M-WIWI-104080 - Designing Interactive Information Systems
- M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2540558 | Designing Interactive Systems | 3 SWS | Lecture / 🧩 | Mädche, Gnewuch |

Exams

| ST 2023 | 00009 | Designing Interactive Systems | Mädche |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

Alternative exam assessment. The assessment consists of a one-hour exam and the implementation of a Capstone project. Details will be announced at the beginning of the course.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-WIWI-108461 - Interactive Information Systems must not have been started.

Annotation

The course is held in English.

Below you will find excerpts from events related to this course:

V Designing Interactive Systems

2540558, SS 2023, 3 SWS, Language: English, Open in study portal

Lecture (V) Blended (On-Site/Online)
Content Description
Computers have evolved from batch processors towards highly interactive systems. This offers new possibilities but also challenges for the successful design of the interaction between human and computer. Interactive system are socio-technical systems in which users perform tasks by interacting with technology in a specific context in order to achieve specified goals and outcomes.

The aim of this course is to introduce advanced concepts and theories, interaction technologies as well as current practice of contemporary interactive systems.

The course is complemented with a design capstone project, where students in a team select and apply design methods & techniques in order to create an interactive prototype.

Learning objectives
- Get an advanced understanding of conceptual foundations of interactive systems from a human and computer perspective
- explore the theoretical grounding of Interactive Systems leveraging theories from reference disciplines such as psychology
- know specific design principles for the design of advanced interactive systems
- get hands-on experience in conceptualizing and designing advanced Interactive Systems to solve a real-world challenge from an industry partner by applying the lecture contents.

Prerequisites
No specific prerequisites are required for the lecture.

Literature
Die Vorlesung basiert zu einem großen Teil auf
Weiterführende Literatur wird in der Vorlesung bereitgestellt.
5.79 Course: Development of Sustainable Business Models [T-WIWI-112143]

Responsible: Prof. Dr. Marion Weissenberger-Eibl
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2500043</td>
<td>Development of Sustainable Business Models</td>
<td>3</td>
<td>Seminar / 🗣</td>
<td>Duwe</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕭 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Non exam assessment. The final grade is composed 50% of the grade of the written paper (ca. 5 Pages /Person) and 50% of the presentation of the results.

Prerequisites
None

Recommendation
Prior attendance of the course Innovation Management is recommended.
5.80 Course: Digital Circuits Design [T-INFO-103469]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-102978 - Digital Circuits Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>24007</th>
<th>Digital Circuits Design</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Hanebeck</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7500254</th>
<th>Digital Circuits Design</th>
<th>Hanebeck</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500254</td>
<td>Digital Circuits Design</td>
<td>Karl, Tahoori</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💼 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled
5.81 Course: Digital Democracy [T-WIWI-113160]

Responsible: Jonas Fegert
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-101446 - Market Engineering
- M-WIWI-103117 - Data Science: Data-Driven Information Systems
- M-WIWI-103118 - Data Science: Data-Driven User Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>00052</th>
<th>Digital Democracy</th>
<th>2 SWS</th>
<th>Lecture / Fegert</th>
</tr>
</thead>
</table>

Legend: 🌐 Online, 🕒 Blended (On-Site/Online), 🕒 On-Site, ❌ Canceled

Competence Certificate

Alternative exam assessment. The examination consists of two parts (presentation and oral exam). Details on the design of the exam will be announced at the beginning of the course.

Annotation

Limited to 25 students. Application (cover letter) via the Wiwi-portal.

Below you will find excerpts from events related to this course:

Digital Democracy
00052, WS 23/24, 2 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

The "Digital Democracy" Lecture deals with opportunities and challenges of democracy and participation in a digitalized world. Social networks and other platforms have become a central place for human interaction.

These technologies open up many possibilities to connect people, promote societal discourse, and organize social movements. On the other hand, they are also used to undermine democracy by extremist forces.

One example is the spread of disinformation through social media, which can undermine trust in democratic institutions and exacerbate divisions in society. Big tech actors pursue their own economically driven interests, some of which run counter to societal ones.

So to what extent can Internet platforms help strengthen social discourse? And what measures can be taken to promote the quality and diversity of discourse in the digital world? What role do big tech players play in digital democracy and how can their interests be reconciled with democratic principles? These and many more questions will be explored in the lecture. The lecture introduces theoretical foundations and evidence-based research on digital democracy. It will address the following questions: What characterizes deliberative democracies, how do democracies change, and what can damage them? How does social polarization emerge and what drives it - off- and online. Accordingly, different platform types and phenomena of disinformation, such as clickbait, will be presented. The last part of the lecture series will deal with the search for approaches and alternatives to these problems.

Organizational issues

Beschränkung auf 25 Plätze mit Bewerbung per kurzem Motivationsschreiben (ab Anfang/Mitte September über das Wiki-Portal)
5.82 Course: Digital Health [T-WIWI-109246]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture /</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2511402</td>
<td>Digital Health</td>
<td>2 SWS</td>
<td>🧩</td>
<td>Sunyaev, Thiebes, Schmidt-Kraepelin</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Alternative exam assessment (written elaboration, presentation, peer review, oral participation) according to §4(2).3 of the examination regulation. Details of the grading will be announced at the beginning of the course. The examination is only offered to first-time writers in the winter semester, but can be repeated in the following summer semester.

Prerequisites

None.
5.83 Course: Digital Marketing [T-WIWI-112693]

Responsible: Prof. Dr. Ann-Kristin Kupfer

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105312 - Marketing and Sales Management
M-WIWI-106258 - Digital Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2571185</td>
<td>Digital Marketing</td>
<td>2</td>
<td>Lecture</td>
<td>Kupfer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2571186</td>
<td>Digital Marketing Exercise</td>
<td>1</td>
<td>Practice</td>
<td>Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900064</td>
<td>Digital Marketing</td>
<td></td>
<td>Kupfer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900070</td>
<td>Digital Marketing</td>
<td></td>
<td>Kupfer</td>
</tr>
</tbody>
</table>

Competence Certificate

The control of success is done by the elaboration and presentation of a group task as well as a written exam. Further details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Students are highly encouraged to actively participate in class.

Below you will find excerpts from events related to this course:

Digital Marketing

2571185, SS 2023, 2 SWS, Language: English

Content

Students learn the theoretical foundations of digital marketing and its most important concepts. They develop an understanding both for the digital consumer and the digital environment. Special emphasis will be given to digital marketing strategies and practices, such as content marketing and influencer marketing. A tutorial offers the opportunity to apply the key learnings of the lecture as part of a group work.

The learning objectives are as follows:

- Getting to know the theoretical foundations of digital marketing
- Evaluating digital marketing strategies and practices (e.g., in the context of content marketing and influencer marketing)
- Fostering critical and analytical thinking skills and the application of knowledge to marketing problems
- Improving English skills

Total time required for 4.5 credit points: approx. 135 hours

Attendance time: 30 hours
Self-study: 105 hours

Organizational issues

Termine werden bekannt gegeben.
Course: Digital Marketing and Sales in B2B [T-WIWI-106981]

Responsible: Prof. Dr. Martin Klarmann
Anja Konhäuser

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105312 - Marketing and Sales Management
M-WIWI-106258 - Digital Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment according to § 4 paragraph 2 Nr. 3 of the examination regulation. (team presentation of a case study with subsequent discussion totalling 30 minutes).

Prerequisites
None.

Annotation
This course will not take place in the summer term 2023, but is expected to be offered again on a regular basis starting in the summer term 2024.
Participation requires an application. The application period starts at the beginning of the semester. More information can be obtained on the website of the research group Marketing and Sales (marketing.iism.kit.edu). Access to this course is restricted. Typically all students will be granted the attendance of one course with 1.5 ECTS. Nevertheless attendance can not be guaranteed. For further information please contact Marketing and Sales Research Group (marketing.iism.kit.edu). Please note that only one of the 1.5-ECTS courses can be attended in this module.
Course: Digital Services: Innovation & Business Models [T-WIWI-112757]

5.85

Responsible: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101410 - Business & Service Engineering
M-WIWI-101448 - Service Management
M-WIWI-102754 - Service Economics and Management
M-WIWI-102806 - Service Innovation, Design & Engineering

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>1.5 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.).

Prerequisites

None

Recommendation

None

Annotation

The course Digital Services: Innovation & Business Models replaces the course Service Innovation based on a revised course concept and content. The focus will be on the closer integration of the topics of service innovation and digitalization. Previous foundational content (e.g., on service innovation challenges or human-centered innovation methods) will remain. New content will cover topics such as digital platforms and ecosystems, IoT and smart service innovation, and business models.

Below you will find excerpts from events related to this course:

V Digital Services: Innovation & Business Models
2595468, SS 2023, 1.5 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content

Leveraging data and digital technologies for business success is a key challenge for organizations as they need to

- get aware of the newly arising potential
- develop suitable digital services that are user-centric and individualized
- "servitize" their offering portfolio and business model
- transform their organizations

This course will equip students with concepts and methods to tackle this challenge along two dimensions: First, we will cover innovation as a concept as well as apply contemporary innovation methods (like Design Thinking, Open Innovation) to the services space. Second, we deal with leveraging innovation to develop new business models (including multi-partner concepts in platforms or ecosystems), to servitize existing business models (e.g., via product-service-systems), and to accordingly transform the organization.

The course links innovation and business model theories with practical examples and exercises. Students are asked to actively engage in the discussion.
Organizational issues
The course will be offered in the form of a flipped classroom concept starting in summer semester 2023. The lecture will be recorded in advance and made available online. During the “in presence” sessions, the contents of the lecture will be applied and expanded on.

Literature

5.86 Course: Digital Signatures [T-INFO-101280]

Responsible: Prof. Dr. Dennis Hofheinz

Organisation: KIT Department of Informatics

Part of: M-INFO-101198 - Advanced Topics in Cryptography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
5.87 Course: Digital Transformation and Business Models [T-WIWI-108875]

Responsible: Dr. Daniel Jeffrey Koch
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>2545103</td>
<td>Digital Transformation and Business Models</td>
<td>2 SWS</td>
<td>Koch</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900284</td>
<td>Digital Transformation and Business Models</td>
<td>Weissenberger-Eibl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Non exam assessment (following §4(2) 3 of the examination regulation). The final grade is composed 75% of the grade of the written paper and 25% of the presentation.

Prerequisites
None

Recommendation
Prior attendance of the course Innovation Management is recommended.

Below you will find excerpts from events related to this course:

Digital Transformation and Business Models
2545103, SS 2023, 2 SWS, Language: German, Open in study portal

Content
The seminar "Digital Transformation and Business Models" aims at the development of thematic aspects of digital transformation with simultaneous application of different business model methodologies. Established companies face the challenge of digital transformation. The digital transformation is particularly relevant for the business models of industrial enterprises. As part of innovation management, the examination of business model changes against the background of digital transformation is one of the main challenges facing the German economy. At the beginning, seminar topics will be assigned. These will be presented and discussed at the end of the seminar. In the first seminar date impulses to business model methodologies and the digital transformation take place, which are to be discussed then, in order to provide an understanding for the topic complex and to ensure the purposeful development of the seminar topics.
Course: Discrete-Event Simulation in Production and Logistics [T-WIWI-102718]

Responsible: Hon.-Prof. Dr. Sven Spieckermann

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102805 - Service Operations
- M-WIWI-102832 - Operations Research in Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2550488 | Ereignisdiskrete Simulation in Produktion und Logistik | 3 SWS | Lecture / 🗣 | Spiereckermann |

Exams

| ST 2023 | 7900244 | Discrete-Event Simulation in Production and Logistics | Spiereckermann |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written paper and an oral exam of about 30-40 min (alternative exam assessment).

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course.
The course is planned to be held every summer term.
The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Ereignisdiskrete Simulation in Produktion und Logistik
2550488, SS 2023, 3 SWS, Language: German, [Open in study portal]

Content
Simulation of production and logistics systems is an interdisciplinary subject connecting expert knowledge from production management and operations research with mathematics/statistics as well as computer science and software engineering. With completion of this course, students know statistical foundations of discrete simulation, are able to classify and apply related software applications, and know the relation between simulation and optimization as well as a number of application examples. Furthermore, students are enabled to structure simulation studies and are aware of specific project scheduling issues.

Organizational issues
Den Bewerbungszeitraum finden Sie auf der Veranstaltungswebseite im Lehre-Bereich unter dol.ior.kit.edu
Literature

5.89 Course: Distributed Computing [T-INFO-101298]

Responsible: Prof. Dr. Achim Streit
Organisation: KIT Department of Informatics
Part of: M-INFO-101210 - Dynamic IT-Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Week</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2600050</td>
<td>Distributed Computing</td>
<td>2 SWS</td>
<td>Streit, Krauß, Fischer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Week</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500282</td>
<td>Distributed Computing</td>
<td></td>
<td>Streit</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🦈 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes. Depending on the number of participants it will be announced six weeks before the assessment (§3 Abs. 3 SPO) if the assessment is done
- as an oral examination according to § 4 Abs. 2 No. 2 SPO or
- as a written examination according to § 4 Abs. 2 No. 1 SPO.

Prerequisites
none.

Recommendation
Knowledge in the area of computer networks helpful.
5.90 Course: Dynamic Macroeconomics [T-WIWI-109194]

Responsible: Prof. Dr. Johannes Brumm
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101478 - Innovation and Growth
- M-WIWI-101496 - Growth and Agglomeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Brumm</td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>1 SWS</td>
<td></td>
<td>Hußmann</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ST 2023</td>
<td></td>
</tr>
</tbody>
</table>

Literature and Skripte werden in der Veranstaltung angegeben.

Competence Certificate
The assessment is a written exam (60 min.).

Prerequisites
None.

Below you will find excerpts from events related to this course:

Dynamic Macroeconomics
2560402, WS 23/24, 2 SWS, Language: English, Open in study portal
Lecture (V), Blended (On-Site/Online)

Content
This course addresses macroeconomic questions on an advanced level. The main focus of this course is on dynamic programming and its fundamental role in modern macroeconomics. In the first part of the course, the necessary mathematical tools are introduced as well as basic applications in labor economics, economic growth and business cycle analysis. In the second part of the course, these basic models are expanded to incorporate household heterogeneity in various forms: Models of economic inequality to analyze the distributional impact of tax policies and models of overlapping generations to analyze the impact of social security reforms or changes in government debt. Finally, advanced methods based on sparse grids or neural nets are introduced to solve high-dimensional models. The course pursues a hands-on approach so that students not only gain theoretical insights but also learn numerical tools to solve dynamic economic models using the programming language Python.

Literature
Literatur und Skripte werden in der Veranstaltung angegeben.
5.91 Course: Economics of Innovation [T-WIWI-112822]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101478 - Innovation and Growth
- M-WIWI-101514 - Innovation Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2560236 | Economics of Innovation | 2 SWS | Lecture / On-Site | Ott |
| ST 2023 | 2560237 | Exercises of Economics of Innovation | 1 SWS | Practice / On-Site | Ott, Mirzoyan |

Exams

| ST 2023 | 7900107 | Economics of Innovation | Ott |

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Below you will find excerpts from events related to this course:

Economics of Innovation

2560236, SS 2023, 2 SWS, Language: English, [Open in study portal]

Lecture (V)

On-Site
Content

Learning objectives:

Students shall be given the ability to

- identify the importance of alternative incentive mechanisms for the emergence and dissemination of innovations
- understand the relationships between market structure and the development of innovation
- explain, in which situations market interventions by the state, for example taxes and subsidies, can be legitimized, and evaluate them in the light of economic welfare

Course content:

The course covers the following topics:

- Incentives for the emergence of innovations
- Patents
- Diffusion
- Impact of technological progress
- Innovation Policy

Recommendations:

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Exam description:

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Literature

Auszug:

5.92 Course: Efficient Energy Systems and Electric Mobility [T-WIWI-102793]

Responsible: PD Dr. Patrick Jochem

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2581006</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td>2</td>
<td>Lecture</td>
<td>/</td>
<td>Jochem</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Grading</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7981006</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td></td>
<td></td>
<td></td>
<td>Fichtner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7981006</td>
<td>Efficient Energy Systems and Electric Mobility</td>
<td></td>
<td></td>
<td></td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Efficient Energy Systems and Electric Mobility

2581006, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V)

On-Site

Content

This lecture series combines two of the most central topics in the field of energy economics at present, namely energy efficiency and electric mobility. The objective of the lecture is to provide an introduction and overview to these two subject areas, including theoretical as well as practical aspects, such as the technologies, political framework conditions and broader implications of these for national and international energy systems.

- Understand the concept of energy efficiency as applied to specific systems
- Obtain an overview of the current trends in energy efficiency
- Be able to determine and evaluate alternative methods of energy efficiency improvement
- Overview of technical and economical stylized facts on electric mobility
- Judging economical, ecological and social impacts through electric mobility

Organizational Issues

s. Institutsausgang

Literature

Wird in der Vorlesung bekanntgegeben.
5.93 Course: eFinance: Information Systems for Securities Trading [T-WIWI-110797]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2540454</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Weinhardt, Jaquart</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2540455</td>
<td>Übungen zu eFinance: Information Systems for Securities Trading</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Motz</td>
</tr>
</tbody>
</table>

Competence Certificate

Success is monitored by means of ongoing elaborations and presentations of tasks and an examination (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Annotation

The course "eFinance: Information Systems for Securities Trading" covers different actors and their function in the securities industry in-depth, highlighting key trends in modern financial markets, such as Distributed Ledger Technology, Sustainable Finance, and Artificial Intelligence. Security prices evolve through a large number of bilateral trades, performed by market participants that have specific, well-regulated and institutionalized roles. Market microstructure is the subfield of financial economics that studies the price formation process. This process is significantly impacted by regulation and driven by technological innovation. Using the lens of theoretical economic models, this course reviews insights concerning the strategic trading behaviour of individual market participants, and models are brought market data. Analytical tools and empirical methods of market microstructure help to understand many puzzling phenomena in securities markets.

Below you will find excerpts from events related to this course:

Literature

Weiterführende Literatur:

5.94 Course: Emerging Trends in Digital Health [T-WIWI-110144]

Responsible: Prof. Dr. Ali Sunyaev

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2513404</td>
<td>2 SWS</td>
<td>Seminar Emerging Trends in Digital Health (Bachelor)</td>
<td>Seminar / Online</td>
<td>Sunyaev, Toussaint, Brecker, Danylak</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2513405</td>
<td>2 SWS</td>
<td>Seminar Emerging Trends in Digital Health (Master)</td>
<td>Seminar / Online</td>
<td>Sunyaev, Toussaint, Brecker, Danylak</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900146</td>
<td></td>
<td>Seminar Emerging Trends in Digital Health (Master)</td>
<td></td>
<td>Sunyaev</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The alternative exam assessment consists of a final thesis.

Prerequisites

None.

Annotation

The course is usually held as a block course.
5.95 Course: Emerging Trends in Internet Technologies [T-WIWI-110143]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2513402 | Seminar Emerging Trends in Internet Technologies (Bachelor) | 2 SWS | Seminar / Online | Sunyaev, Toussaint, Brecker, Danylak |
| ST 2023 | 2513403 | Seminar Emerging Trends in Internet Technologies (Master) | 2 SWS | Seminar / Online | Sunyaev, Toussaint, Brecker, Danylak |

Exams

| ST 2023 | 7900128 | Seminar Emerging Trends in Internet Technologies (Master) | Sunyaev |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The alternative exam assessment consists of a final thesis.

Prerequisites
None.

Annotation
The course is usually held as a block course.
5.96 Course: Emissions into the Environment [T-WIWI-102634]

Responsible: Ute Karl
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Written examination</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>2581962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Written examination</td>
<td>Grade to a third</td>
<td>Karl</td>
<td></td>
</tr>
<tr>
<td>7981962</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Recommendation
None

Below you will find excerpts from events related to this course:

Emissions into the Environment
2581962, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
Emission sources/emission monitoring/emission reduction: The lecture gives an overview of relevant emissions of air pollutants and greenhouse gases, emission monitoring and pollutant abatement options together with relevant legal regulations at national and international level. In addition, the fundamentals of circular economy, waste management and recycling are explained.

Structure:
Air pollution control
- Introduction, terms and definitions
- Sources of air pollutants
- Legal framework of air quality control
- Technical measures to reduce air pollutant emissions

Circular economy, recycling and waste management
- Waste collection and logistics
- Dual systems for packaging waste
- Recycling
- Thermal and biological waste treatment
- Final waste disposal

Literature
Wird in der Veranstaltung bekannt gegeben.
5.97 Course: Employment Law [T-INFO-111436]

- **Responsible:** Dr. Alexander Hoff
- **Organisation:** KIT Department of Informatics
- **Part of:** M-INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Event Code</th>
<th>Course</th>
<th>Semester</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24668</td>
<td>Employment Law</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Hoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500082</td>
<td>Employment Law</td>
<td></td>
<td></td>
<td>Dreier, Matz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500001</td>
<td>Employment Law</td>
<td></td>
<td></td>
<td>Matz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, x Cancelled
5.98 Course: Energy and Environment [T-WIWI-102650]

Responsible: Ute Karl
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101452 - Energy Economics and Technology
M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2581003 | Energy and Environment | 2 SWS | Lecture / 🗣 | Karl |
| ST 2023 | 2581004 | Übungen zu Energie und Umwelt | 1 SWS | Practice / 🗣 | Langenmayr, Fichtner, Kraft |

Exams

| ST 2023 | 7981003 | Energy and Environment | Fichtner |
| WT 23/24 | 7981003 | Energy and Environment | Fichtner |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None.

Below you will find excerpts from events related to this course:

Energy and Environment
2581003, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
The lecture focuses on the environmental impacts arising from fossil fuels use and on the methods for the evaluation of such impacts. The first part of the lecture describes the environmental impacts of air pollutants and greenhouse gases as well as technical measures for emission control. The second part covers methods of impact assessment and their use in environmental communication as well as methods for the scientific support of emission control strategies.

The topics include:

- Fundamentals of energy conversion
- Formation of air pollutants during combustion
- Technical measures to control emissions from fossil-fuel combustion processes
- External effects of energy supply (life cycle analyses of selected energy systems)
- Environmental communication on energy services (e.g. electricity labelling, carbon footprint)
- Integrated Assessment Modelling to support the European Clean Air Strategy
- Cost-effectiveness analyses and cost-benefit analyses for emission control strategies
- Monetary valuation of external effects (external costs)

Literature
Die Literaturhinweise sind in den Vorlesungsunterlagen enthalten (vgl. ILIAS)
Course: Energy Market Engineering [T-WIWI-107501]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-103720 - eEnergy: Markets, Services and Systems

Type: Written examination
Credits: 4.5
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4 (2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Recommendation
None

Annotation
Former course title until summer term 2017: T-WIWI-102794 "eEnergy: Markets, Services, Systems".
The lecture has also been added in the IIP Module Basics of Liberalised Energy Markets.

Below you will find excerpts from events related to this course:

Energy Market Engineering
2540464, SS 2023, 2 SWS, Language: German, Open in study portal

Literature

5.100 Course: Energy Networks and Regulation [T-WIWI-107503]

- **Responsible:** Prof. Dr. Christof Weinhardt
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101446 - Market Engineering
 - M-WIWI-103720 - eEnergy: Markets, Services and Systems

Type
- **Written examination**

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2540494</th>
<th>Energy Networks and Regulation</th>
<th>2 SWS</th>
<th>Lecture / 🔴</th>
<th>Rogat, Miskiw</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2540495</td>
<td>Übung zu Energy Networks and Regulation</td>
<td>1 SWS</td>
<td>Practice / 🔴</td>
<td>Rogat, Miskiw</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎤 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered on every ordinary examination date.

Prerequisites

None

Recommendation

None

Annotation

Former course title until summer term 2017: T-WIWI-103131 "Regulatory Management and Grid Management - Economic Efficiency of Network Operation"

Below you will find excerpts from events related to this course:

- **Energy Networks and Regulation**
 - 2540494, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)
Content

Learning Goals

The student,

- understands the business model of a network operator and knows its central tasks in the energy supply system,
- has a holistic overview of the interrelationships in the network economy,
- understands the regulatory and business interactions,
- is in particular familiar with the current model of incentive regulation with its essential components and understands its implications for the decisions of a network operator
- is able to analyse and assess controversial issues from the perspective of different stakeholders.

Content of teaching

The lecture “Energy Networks and Regulation” provides insights into the regulatory framework of electricity and gas. It touches upon the way the grids are operated and how regulation affects almost all grid activities. The lecture also addresses approaches of grid companies to cope with regulation on a managerial level. We analyze how the system influences managerial decisions and strategies such as investment or maintenance. Furthermore, we discuss how the system affects the operator’s abilities to deal with the massive challenges lying ahead ("Energiewende", redispatch, European grid integration, electric vehicles etc.). Finally, we look at current developments and major upcoming challenges, e.g., the smart meter rollout. Covered topics include:

- Grid operation as a heterogeneous landscape: big vs. small, urban vs. rural, TSO vs. DSO
- Objectives of regulation: Fair price calculation and high standard access conditions
- The functioning of incentive regulation
- First major amendment to the incentive regulation: its merits, its flaws
- The revenue cap and how it is adjusted according to certain exogenous factors
- Grid tariffs: How are they calculated, what is the underlying rationale, do we need a reform (and which)?
- Exogenous costs shifted (arbitrarily?) into the grid, e.g. feed-in tariffs for renewable energy or decentralized supply.

Literature

5.101 Course: Energy Systems Analysis [T-WIWI-102830]

Responsible: Dr. Armin Ardone
Prof. Dr. Wolf Fichtner

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7981002 | Energy Systems Analysis | Fichtner |
| WT 23/24 | 7981002 | Energy Systems Analysis | Fichtner |

Competence Certificate
As of winter semester 2023/24, the lecture will no longer be offered.

Examination offer for the lecture: last first attempt in winter semester 2023/24; last examination date for repeaters in summer semester 2024.

The assessment of success will take the form of a written examination (60 minutes).

Prerequisites
None

Recommendation
None

Annotation
As of the winter semester 2023/24, the lecture will no longer be offered.
Course: Energy Trading and Risk Management [T-WIWI-112151]

Responsible: N.N.
Organisation: KIT Department of Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture</th>
<th>Language</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2581020</td>
<td>Energy Trading and Risk Management</td>
<td>English</td>
<td>2 SWS</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture</th>
<th>Language</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7981020</td>
<td>Energy Trade and Risk Management</td>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7981020</td>
<td>Energy Trading and Risk Management</td>
<td>English</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The lecture "Energiehandel und Risikomanagement" will be held in English under the title "Energy Trading and Risk Management" from the summer semester 2022. The examination for the English-language lecture will be offered in English from the summer semester 2022.

The assessment consists of a written exam (60 minutes). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Energy Trading and Risk Management

Introduction to Markets, Mechanisms and Interaction
Electricity Trading (platforms, products, mechanisms)
Balancing Energy Markets and Congestion Management
Coal Markets (reserves, supply, demand, and transport)
Investments and Capacity Markets
Oil and Gas Markets (supply, demand, trade, and players)
Trading Game
Risk Management in Energy Trading
Literature
Weiterführende Literatur:
www.riskglossary.com
5.103 Course: Engineering Interactive Systems [T-WIWI-110877]

Responsible: Prof. Dr. Alexander Mädche
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102806 - Service Innovation, Design & Engineering
M-WIWI-104080 - Designing Interactive Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Course Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>00006</td>
<td>Engineering Interactive Systems</td>
<td>Mädche</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900195</td>
<td>Engineering Interactive Systems: AI & Wearables</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment. The assessment consists of a one-hour exam and the implementation of a Capstone project. Details will be announced at the beginning of the course.

Prerequisites

None

Recommendation

None

Annotation

The course is held in English.
Course: Entrepreneurial Leadership & Innovation Management [T-WIWI-102833]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

Please note: The seminar cannot be offered in the winter semester 2019/2020 due to organizational reasons. Alternative exam assessment.

Prerequisites

None

Recommendation

None
5.105 Course: Entrepreneurship [T-WIWI-102864]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2545001 Entrepreneurship 2 SWS Lecture / Blended (On-Site/Online) Terzidis, Dang</td>
</tr>
<tr>
<td>WT 23/24 2545001 Entrepreneurship 2 SWS Lecture / Blended (On-Site/Online) Terzidis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900002 Entrepreneurship Terzidis</td>
</tr>
<tr>
<td>ST 2023 7900192 Entrepreneurship Terzidis</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). Students are offered the opportunity to earn a grade bonus through separate assignments. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by a maximum of one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the lecture.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Entrepreneurship
2545001, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Lecture (V) Blended (On-Site/Online)
Content
The lecture as a compulsory part of the module "Entrepreneurship" introduces the basic concepts of entrepreneurship. Important concepts and empirical facts are introduced, which relate to the conception and implementation of newly founded companies. The focus here is on introducing methods for generating innovative business ideas, translating patents into business concepts, and general principles of business modeling and business planning. In particular, approaches such as Lean-Startup and Effectuation as well as concepts for financing young companies are covered.
A "KIT Entrepreneurship Talk" is part of each session, in which experienced founder and entrepreneur personalities report on their experiences in the practice of the establishment of an enterprise. Dates and speakers will be announced on the EnTechnon homepage.

Learning objectives:
The students will be introduced to the topic of entrepreneurship. After successful attendance of the course they should have an overview of the sub-areas of entrepreneurship and be able to understand basic concepts of entrepreneurship and apply key concepts.

Workload:
The total effort with 3 credit points: approx. 90 hours
Presence time: 30 hours
Pre- and postprocessing of the LV: 45.0 hours
Exam and exam preparation: 15.0 hours

Examination:
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation)
A grade bonus can be earned by successfully participating in a case study as part of the Entrepreneurship lecture. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by up to 0.3 or 0.4. The bonus only applies if you have passed the exam with at least a 4.0. More details will be provided in the lecture. Participation in the case study is voluntary.
Exam dates: tbd, probably 22.06.2023, 6pm - 7.10pm

Organizational issues
VL findet jeweils Di, 15:45 - 19:00 an folgenden Terminen statt:
18.04.2023
25.04.2023
02.05.2023
09.05.2023
16.05.2023
23.05.2023
06.06.2023
13.06.2023 (Prep Session)
22.06.2023 (Klausur, 18.00 - 19.10 Uhr)

Literature
Füglistaller, Urs; Müller, Christoph und Volery, Thierry (2008): Entrepreneurship
Ries, Eric (2011): The Lean Startup
Content
The lecture as an obligatory part of the module "Entrepreneurship" introduces the basic concepts of entrepreneurship. Important concepts and empirical facts are presented that relate to the conception and implementation of newly founded companies. The focus here is on the introduction to methods for generating innovative business ideas, for transferring patents into business concepts and general principles of business modelling and business planning. In particular approaches such as Lean Startup and Effectuation as well as concepts for the financing of young enterprises are treated.

A "KIT Entrepreneurship Talk" is part of each session, in which experienced founder and entrepreneur personalities report on their experiences in practice of the establishment of an enterprise. Dates and speakers will be announced on the EnTechnon homepage.

Learning objectives:
The students are introduced to the topic Entrepreneurship. After successful attendance of the meeting they are to have an overview of the subranges of the Entrepreneurships and be able to understand basic concepts of the Entrepreneurships and apply key concepts.

Workload:
Total effort with 3 credit points: approx. 90 hours
Presence time: 30 hours
Pre- and postprocessing of the LV: 45.0 hours
Exam and exam preparation: 15.0 hours

Examination:
The assessment of success takes place in the form of a written examination (60 min.) (according to §4(2), 1 SPO). The grade is the grade of the written exam.

A grade bonus can be earned through successful participation in a case study in the Entrepreneurship lecture. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by up to 0.3 or 0.4. The bonus only applies if you have passed the exam with at least a 4.0. More details will be provided in the lecture. Participation in the case study is voluntary.

Exam date: tba

Organizational issues
VL findet jeweils Mo, 15:45 - 19:00 an folgenden Terminen statt:
23.10.2023
30.10.2023
06.11.2023
13.11.2023
20.11.2023
27.11.2023
04.12.2023
11.12.2023 (Prep Session)

Literature
Füglistaller, Urs, Müller, Christoph and Volery, Thierry (2008): Entrepreneurship
5.106 Course: Entrepreneurship Research [T-WIWI-102894]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Entrepreneurship Research</td>
<td>Seminar / 🗣️ Terzidis</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Entrepreneurship Research</td>
<td>Terzidis</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, × Cancelled

Competence Certificate

The performance review is done via a so called other methods of performance review (term paper) (alternative exam assessment). The final grade is a result from both, the grade of the term paper and its presentation, as well as active participation during the seminar.

Prerequisites

None

Recommendation

None

Annotation

The topics will be prepared in groups. The presentation of the results is done during a a block period seminar at the end of the semester. Students have to be present all day long during the seminar.

Below you will find excerpts from events related to this course:

Entrepreneurship Research

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>2545002</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>On-Site</td>
<td></td>
</tr>
</tbody>
</table>

Content

Content

The students independently develop a topic from entrepreneurship research in an international setting as a tandem with a partner. At first, there will be an introduction to the methodologies used such as systematic literature review, design science, qualitative and quantitative data analysis and more. As part of a written elaboration, the seminar topic must be presented scientifically on 15-20 pages. The results of the seminar paper will be presented in a block event at the end of the semester (20 min + 10 min open discussion).

Learning Objectives

As part of the written elaboration, the basics of independent scientific work (literature research, argumentation + discussion, citing literature sources, application of qualitative, quantitative and simulative methods) are trained. The skills acquired in the seminar are used to prepare for a potential master thesis. The course is therefore particularly aimed at students who want to write their thesis at the Chair for Entrepreneurship and Technology Management.

Organizational issues

The dates will be announced.
Registration is via the Wiwi-Portal.

Literature

Will be announced in the seminar.

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
5 COURSES

Course: Entrepreneurship Seasonal School [T-WIWI-113151]

5.107 Course: Entrepreneurship Seasonal School [T-WIWI-113151]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2500215</td>
<td>Entrepreneurship Seasonal School</td>
<td>English</td>
<td>Weimar, Terzidis</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900146</td>
<td>Entrepreneurship Seasonal School</td>
<td>English</td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Alternative exam assessment. The grade is composed of the presentation and the written elaboration. Details on the design of the examination will be announced in the course.

Prerequisites

The Seasonal School is intended for advanced bachelor’s and all master’s students (all disciplines). Participation in the selection process is a prerequisite.

Recommendation

Basic knowledge of business administration, attendance of the lecture Entrepreneurship as well as openness and interest in intercultural exchange are recommended. Solid knowledge of the English language is an advantage.

Annotation

Entrepreneurship Seasonal School

Below you will find excerpts from events related to this course:

V Entrepreneurship Seasonal School

2500215, WS 23/24, 2 SWS, Language: English, Open in study portal
Content
During the Entrepreneurship Seasonal School, students develop a business model based on innovative technologies and social problems in workshops in international teams for one week.

Course Content:
The Entrepreneurship Seasonal School brings together students from different universities to spend a week strengthening their knowledge of digital entrepreneurship in healthcare. Experience the life of an entrepreneur and learn how to attain resources to realize a product vision. During one week, you will develop a range of entrepreneurial competences crucial for establishing a successful venture. Our primary focus is on digital healthcare ventures, granting you the opportunity to delve into the realm of entrepreneurship within the healthcare system. By gaining a deep understanding of healthcare needs, you will utilize creativity techniques to uncover potential business ideas that provide value for patients and doctors. Additionally, you will learn how to create viable business models, dive into health regulations, and pitch your idea to a jury.

In WS 2023/24 the one-week program is being hosted by the Karlsruhe Institute of Technology, with co-teaching support from the Eucor partners University of Basel and the University of Strasbourg.

In the seminar you will work on a project in teams of max. 5 persons.

Learning Objectives:
After attending the event, you will be able to...

- describe the role of entrepreneurship
- develop innovative and technology-based solutions for societal problems,
- develop a viable business model for a problem,
- present a business idea to a panel of judges,
- and be empowered to work independently in multidisciplinary and multicultural teams

Organizational issues
19.02.24 – 23.02.24, Details will be announced later. Registration via wiwi portal.
5.108 Course: Environmental and Resource Policy [T-WIWI-102616]

Responsible: Rainer Walz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2560548 | Environmental and Resource Policy | 2 SWS | Lecture / Practice | Walz |

Exams

| ST 2023 | 7900277 | Environmental and Resource Policy | Mitusch, Walz |

Competence Certificate

See German version

Recommendation

It is recommended to already have knowledge in the area of industrial organization and economic policy. This knowledge may be acquired in the courses *Introduction to Industrial Organization* [2520371] and *Economic Policy* [2560280].

Below you will find excerpts from events related to this course:

Environmental and Resource Policy

2560548, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
Lecture / Practice (VÜ)

Literature

Weiterführende Literatur:

Michaelis, P.: Ökonomische Instrumente in der Umweltpolitik. Eine anwendungsorientierte Einführung, Heidelberg
OECD: Environmental Performance Review Germany, Paris
5 COURSES

Course: Environmental Economics and Sustainability [T-WIWI-102615]

5.109 Course: Environmental Economics and Sustainability [T-WIWI-102615]

Responsible: Prof. Dr. Rainer Walz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Umweltökonomik und Nachhaltigkeit (mit Übung)</td>
<td>Each winter term</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Environmental Economics and Sustainability</td>
<td>Each winter term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture / Practice</td>
<td>2 SWS</td>
<td>Environmental Economics and Sustainability</td>
<td>Each winter term</td>
</tr>
</tbody>
</table>

Competence Certificate

See German version

Prerequisites

None

Recommendation

It is recommended to already have knowledge in the area of macro- and microeconomics. This knowledge may be acquired in the courses Economics I: Microeconomics [2600012] and Economics II: Macroeconomics [2600014].
5.110 Course: Environmental Law [T-BGU-111102]

Responsible: Dr. Urich Smeddinck
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-WIWI-101468 - Environmental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 6111177 | Environmental Law | Lecture / Smeddinck |

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Competence Certificate
Written exam with 120 min

Prerequisites
None

Annotation
None
5.111 Course: European and International Law [T-INFO-101312]

Responsible: Ulf Brühann

Organisation: KIT Department of Informatics

Part of: M-INFO-101217 - Public Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24666</td>
<td>Europäisches und Internationales Recht</td>
<td>2</td>
<td>Lecture</td>
<td>Brühann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Grading</th>
<th>Type</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500084</td>
<td>European and International Law</td>
<td>Dreier</td>
<td>On-Site</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500048</td>
<td>European and International Law</td>
<td>Zufall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5 COURSES

5.112 Course: Experimental Economics [T-WIWI-102614]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101505 - Experimental Economics
- M-WIWI-103118 - Data Science: Data-Driven User Modeling
- M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/4</td>
<td>2540489</td>
<td>Experimental Economics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Each winter term</td>
<td>Knierim</td>
</tr>
<tr>
<td>23/4</td>
<td>2540493</td>
<td>Übung zu Experimental Economics</td>
<td>Practice</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td>Greif-Winzrieth, Knierim</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written exam (60 min).

By successful completion of 70% of the maximum number of points in the exercise(s) a bonus can be obtained.

If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4). The exact criteria for the award of a bonus will be announced at the beginning of the lecture.

Prerequisites

None

Below you will find excerpts from events related to this course:

Experimental Economics

2540489, WS 23/24, 2 SWS, Language: German, Open in study portal

Literature

- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag; 2. Aufl. 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.
5.113 Course: Extraordinary Additional Course in the Module Cross-Functional Management Accounting [T-WIWI-108651]

Responsible: Prof. Dr. Marcus Wouters

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment depends on which extraordinary course becomes part of the module "Cross-Functional Management Accounting".

Prerequisites
None

Annotation
The purpose of this placeholder is to make it possible to include an extraordinary course in the module "Cross-Functional Management Accounting". Proposals for specific courses have to be approved in advance by the module coordinator.
5.114 Course: Financial Analysis [T-WIWI-102900]

Responsible: Dr. Torsten Luedecke
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101480 - Finance 3
M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2530205</th>
<th>Financial Analysis</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Luedecke</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2530206</td>
<td>Übungen zu Financial Analysis</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7900075</th>
<th>Financial Analysis</th>
<th>Luedecke</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900059</td>
<td>Financial Analysis</td>
<td>Ruckes, Luedecke</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
See German version.

Prerequisites
None

Recommendation
Basic knowledge in corporate finance, accounting, and valuation is required.

Below you will find excerpts from events related to this course:

Financial Analysis
2530205, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Literature

Course: Financial Econometrics [T-WIWI-103064]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
<tr>
<td>2520022 Financial Econometrics I</td>
<td>2 SWS</td>
<td>Lecture /oston-site</td>
<td>Schienle, Buse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2520023 Übungen zu Financial Econometrics I</td>
<td>2 SWS</td>
<td>Practice /oston-site</td>
<td>Schienle, Buse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Schienle</td>
<td></td>
</tr>
<tr>
<td>7900223 Financial Econometrics</td>
<td>2 SWS</td>
<td>Lecture /oston-site</td>
<td>Schienle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7900123 Financial Econometrics II</td>
<td>2 SWS</td>
<td>Lecture /oston-site</td>
<td>Schienle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7900126 Financial Econometrics</td>
<td>2 SWS</td>
<td>Lecture /oston-site</td>
<td>Schienle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course “Economics III: Introduction in Econometrics” [2520016]

Annotation
The next lecture will take place in the winter semester 2022/23.

Below you will find excerpts from events related to this course:

Content
Learning objectives:
The student
- shows a broad knowledge of financial econometric estimation and testing techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content:
ARMA, ARIMA, ARFIMA, (non)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer based exercises

Requirements:
It is recommended to attend the course Economics III: Introduction to Econometrics [2520016] prior to this course.

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023 317
Literature
Additional literature will be discussed in the lecture.
5.116 Course: Financial Econometrics II [T-WIWI-110939]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Financial Econometrics II</td>
<td>Each summer term</td>
<td>Schienle, Buse</td>
</tr>
<tr>
<td>ST 2023</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Übung zu Financial Econometrics II</td>
<td>Each summer term</td>
<td>Buse, Schienle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td></td>
<td>Financial Econometrics II</td>
<td></td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Competence Certificate
Written examination (90 minutes). If the number of participants is low, an oral examination will be held instead.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Financial Econometrics"

Annotation
Course language is English
The next lecture will take place in the summer semester of 2023.
5.117 Course: Financial Intermediation [T-WIWI-102623]

- **Responsible:** Prof. Dr. Martin Ruckes
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101453 - Applied Strategic Decisions
 - M-WIWI-101480 - Finance 3
 - M-WIWI-101483 - Finance 2
 - M-WIWI-101502 - Economic Theory and its Application in Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

- WT 23/24 2530232: Financial Intermediation (2 SWS, Lecture / On-Site, Ruckes)
- WT 23/24 2530233: Übung zu Finanzintermediation (1 SWS, Practice / On-Site, Ruckes, Benz)

Exams

- ST 2023 7900078: Financial Intermediation (Ruckes)
- WT 23/24 7900063: Financial Intermediation (Ruckes)

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Financial Intermediation

2530232, WS 23/24, 2 SWS, Language: German, [Open in study portal](#)

Literature

Weiterführende Literatur:

5.118 Course: Firm creation in IT security [T-WIWI-110374]

Responsible: Prof. Dr. Orestis Terzidis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment. The grade consists of the presentation and the written elaboration.

Prerequisites
None
5.119 Course: Formal Systems [T-INFO-101336]

Responsible: Prof. Dr. Bernhard Beckert

Organisation: KIT Department of Informatics

Part of: M-INFO-100799 - Formal Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24086</td>
<td>Formale Systeme</td>
<td>4</td>
<td>Lecture / Practice</td>
<td>Beckert, Ulbrich, Weigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500009</td>
<td>Formal Systems</td>
<td>Beckert</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500036</td>
<td>Formal Systems</td>
<td>Beckert</td>
</tr>
</tbody>
</table>
5.120 Course: Formal Systems II: Application [T-INFO-101281]

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of:
- M-INFO-100744 - Formal Systems II: Application
- M-INFO-101201 - Software Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type/On-Site</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400093</td>
<td>Formal Systems II: Application</td>
<td>3</td>
<td>Lecture/On-Site</td>
<td>Ulbrich, Beckert</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500006</td>
<td>Formale Systeme II: Anwendung</td>
<td>Beckert</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⬠ Cancelled
5.121 Course: Formal Systems II: Theory [T-INFO-101378]

Responsible: Prof. Dr. Bernhard Beckert

Organisation: KIT Department of Informatics

Part of:
- M-INFO-100841 - Formal Systems II: Theory
- M-INFO-101201 - Software Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Maxim Ulrich
Organisation: KIT Department of Economics and Management

Competence Certificate
Due to the professor’s research sabbatical, the BSc module "Financial Data Science" and MSc module "Foundations for Advanced Financial -Quant and -Machine Learning Research" and the MSc module "Advanced Machine Learning and Data Science" along with the respective examinations will not be offered in SS2023. Bachelor and Master thesis projects are not affected and will be supervised.

The module examination is an alternative exam assessment with a maximum score of 100 points to be achieved. These points are distributed over 4 worksheets to be submitted during the semester. The worksheets cover the respective material of the module and are handed out, worked on and assessed in lecture weeks 3 (10 points), 6 (20 points), 9 (30 points) and 12 (40 points).

The module-wide exam (all 4 worksheets) must be taken in the same semester.

The worksheets are a mixture of analytical tasks and programming tasks with financial data.

Recommendation

- Strongly recommended to have good knowledge in financial econometrics (MLE, OLS, GLS, ARMA-GARCH), mathematics (differential equations, difference equations and optimization), investments (CAPM, factor models), asset pricing (SDF, SDF pricing), derivatives (Black-Scholes, risk-neutral pricing), and programming of statistical concepts (Java or R or Python or Matlab or C or ...).
- Strongly recommended to have a strong interest for interdisciplinary research work in statistics, programming, applied math and financial economics.
- Students lacking the prior knowledge might find the resources of the Chair helpful: www.youtube.com/c/cram-kit.

Annotation
The course is offered every second year.
Course: Fundamentals of National and International Group Taxation [T-WIWI-111304]

Responsible: Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2560133</td>
<td>Fundamentals of National and International Group Taxation</td>
<td>3</td>
<td>Lecture / 🗣</td>
<td>Wigger, Gutekunst</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>790kobe</td>
<td>Fundamentals of National and International Group Taxation</td>
<td>Wigger</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>790kobe</td>
<td>Fundamentals of National and International Group Taxation</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

It is recommended to attend the course “Basics of German Company Tax Law and Tax Planning” beforehand.
5.124 Course: Geometric Optimization [T-INFO-101267]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: M-INFO-100730 - Geometric Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7500230</th>
<th>Geometric Optimization</th>
<th>Prautzsch</th>
</tr>
</thead>
</table>
5.125 Course: Global Manufacturing [T-WIWI-112103]

Responsible: Dr. Henning Sasse
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2581956</td>
<td>Global Manufacturing</td>
<td>Lecture / Blended (On-Site/Online)</td>
<td>2 SWS</td>
<td>Sasse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>ST 2023</td>
<td>7981956</td>
<td>Global Manufacturing</td>
<td>Lecture</td>
<td>Schultmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None

Recommendation
None

Annotation
The lecture will be held for the first time in the winter semester 2022/23.

Below you will find excerpts from events related to this course:

Global Manufacturing

2581956, WS 23/24, 2 SWS, Language: English, [Open in study portal]

Content

- Fundamentals of international business
- Forms of international cooperation and value creation
- Site selection
- Cost driven internationalization and site selection
- Sales and customer driven internationalization and site selection
- Challenges, risks and risk mitigation
- Management of international production sites
- Types and case studies of international production

Organizational issues
Blockveranstaltung, siehe Homepage

Literature
Wird in der Veranstaltung bekannt gegeben.
5.126 Course: Global Optimization I [T-WIWI-102726]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2550134</td>
<td>Global Optimization I</td>
<td>Lecture / On-Site</td>
<td>2 SWS</td>
<td>Stein</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900205_SS2023_HK</td>
<td>Global Optimization I</td>
<td>Lecture / On-Site</td>
<td>2 SWS</td>
<td>Stein</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900004_WS2324_NK</td>
<td>Global Optimization I</td>
<td>Lecture / On-Site</td>
<td>2 SWS</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Competence Certificate

Success is in the form of a written examination (60 min.) (according to § 4(2), 1 SPO). The successful completion of the exercises is required for admission to the written exam. The exam is offered in the lecture of semester and the following semester. The success check can be done also with the success control for “Global optimization II”. In this case, the duration of the written exam is 120 min.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:
Content

In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley’s cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
5.127 Course: Global Optimization I and II [T-WIWI-103638]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Description</th>
<th>Weeks</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2550134</td>
<td>Global Optimization I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2550135</td>
<td>Exercise to Global Optimization I and II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Stein, Beck</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2550136</td>
<td>Global Optimization II</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900207_SS2023_HK</td>
<td>Global Optimization I and II</td>
<td>Stein</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900006_WS2324_NK</td>
<td>Global Optimization I and II</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the lecture is a written examination (120 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Global Optimization I

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Description</th>
<th>Language</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550134, SS 2023</td>
<td>Global Optimization I</td>
<td>German</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Open in study portal
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley's cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
5.128 Course: Global Optimization II [T-WIWI-102727]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2550136</th>
<th>Global Optimization II</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Stein</th>
</tr>
</thead>
</table>

Exams

| ST 2023 | 7900206_SS2023_HK | Global Optimization II | Stein |
| WT 23/24 | 7900005_WS2324_NK | Global Optimization II | Stein |

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 🗣 On-Site, 🗓 Cancelled

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of “Global optimization I”. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

V Global Optimization II

2550136, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of convex optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
5.129 Course: Graph Theory and Advanced Location Models [T-WIWI-102723]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Exam</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>WT 23/24</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following lecture.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation
The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.
Course: Growth and Development [T-WIWI-112816]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101478 - Innovation and Growth
M-WIWI-101496 - Growth and Agglomeration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2561503</td>
<td>Growth and Development</td>
<td>2 SWS</td>
<td>Lecture /OTTOM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2561504</td>
<td>Exercise for Growth and Development</td>
<td>1 SWS</td>
<td>Practice /OTTOM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

| ST 2023 7900105 | Growth and Development| Ott | | |

Legends:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⬇️ Cancelled

Competence Certificate
Depending on further pandemic developments, the examination will be offered either as an open-book examination or as a 60-minute written examination.

Prerequisites
None

Recommendation
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Growth and Development</th>
</tr>
</thead>
</table>
| 2561503, WS 23/24, 2 SWS, Language: German/English, Open in study portal | Lecture (V)
| On-Site |
Content
This course is intended as an introduction to the field of advanced macroeconomics with a special focus on economic growth. Lectures aim to deal with the theoretical foundations of exogenous and endogenous growth models. The importance of growth for nations and discussion of some (well-known) growth theories together with the role of innovation, human capital and environment will therefore be primary focuses of this course.

Learning objective:
Students shall be given the ability to understand, analyze and evaluate selected models of endogenous growth theory.

Course content:
- Intertemporal consumption decision
- Growth models with exogenous saving rates: Solow
- Growth models with endogenous saving rates: Ramsey
- Growth and environmental resources
- Basic models of endogenous growth
- Human capital and economic growth
- Modelling of technological progress
- Diversity Models
- Schumpeterian growth
- Directional technological progress
- Diffusion of technologies

Recommendations:
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. In addition, an interest in quantitative-mathematical modeling is required.

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.

Exam description:
The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Students will be given the opportunity of writing and presenting a short paper during the lecture time to achieve a bonus on the exam grade. If the mandatory credit point exam is passed, the awarded bonus points will be added to the regular exam points. A deterioration is not possible by definition, and a grade does not necessarily improve, but is very likely to (not every additional point improves the total number of points, since a grade can not become better than 1). The voluntary elaboration of such a paper can not countervail a fail in the exam.

Literature
Auszug:
5.131 Course: Heat Economy [T-WIWI-102695]

- **Responsible:** Prof. Dr. Wolf Fichtner
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Organisational issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2581001</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>On-Site</td>
<td>Block, Seminarraum Standort West - siehe Institutsauflistung</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Exam Type</th>
<th>Organisational issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7981001</td>
<td>Heat Economy</td>
<td>Fichtner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7981001</td>
<td>Heat Economy</td>
<td>Fichtner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written (60 minutes) or oral exam (30 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Recommendation
None

Annotation
See German version.

Below you will find excerpts from events related to this course:

- **Heat Economy**
 - 2581001, SS 2023, 2 SWS, Language: German, Open in study portal

Organizational issues
Block, Seminarraum Standort West - siehe Institutsauflistung

Responsible: Prof. Dr.-Ing. Tamim Asfour
Hon.-Prof. Dr. Uwe Spetzger

Organisation: KIT Department of Informatics

Part of: M-INFO-100725 - Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24678</td>
<td>Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy</td>
<td>2</td>
<td>Lecture</td>
<td>Spetzger</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>24139</td>
<td>Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy</td>
<td>2</td>
<td>Lecture</td>
<td>Spetzger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500145</td>
<td>Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy</td>
<td>Spetzger</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500118</td>
<td>Human Brain and Central Nervous System: Anatomy, Information Transfer, Signal Processing, Neurophysiology and Therapy</td>
<td>Spetzger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled
5.133 Course: Human Factors in Security and Privacy [T-WIWI-109270]

Responsible: Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104520 - Human Factors in Security and Privacy

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (30 min) following §4, Abs. 2, 2 of the examination regulation. Only those who have successfully participated in the exercises and the lecture will be admitted to the examination.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

Both need to be done:

- Pass Quiz on Paper for Graphical Passwords
- Presentation of Results Exercise 2

+ 9 of the following 11 need to be done:

- Submit ILIAS certificate until Oct 24
- Pass Quiz on InfoSec Lecture
- Active participation exercise 1 Part 1 - Evaluation and analyses methods
- Pass Quiz Paper Discussion 1 - User Behaviour and motivation theories
- Active participation exercise 1 Part 2
- Pass Quiz Paper Discussion 2 - User Behaviour and motivation theories
- Pass Quiz Paper Discussion 3 - Security Awareness
- Active participation exercise 1 Part 3
- Pass Quiz Paper Discussion 4 - Graphical Authentication
- Pass Quiz Paper Discussion 5 - Shoulder Surfing Authentication
- Active participation exercise 2

Recommendation

The prior attendance of the lecture “Information Security” is strongly recommended.

Annotation

The lecture will not be offered in winter semester 2020/21.

Some lectures are in English, some in German.
5.134 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>24659</th>
<th>Human-Computer-Interaction</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Beigl, Lee</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7500048</th>
<th>Human-Machine-Interaction</th>
<th>Beigl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500076</td>
<td>Human-Machine-Interaction</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.135 Course: Human-Machine-Interaction Pass [T-INFO-106257]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2400095</td>
<td></td>
<td>Human-Computer-Interaction</td>
<td>1</td>
<td></td>
<td>Beigl, Lee</td>
</tr>
<tr>
<td>ST 2023 24659</td>
<td></td>
<td>Human-Computer-Interaction</td>
<td>2</td>
<td></td>
<td>Beigl, Lee</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled
5.136 Course: Incentives in Organizations [T-WIWI-105781]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101453 - Applied Strategic Decisions
M-WIWI-101500 - Microeconomic Theory
M-WIWI-101505 - Experimental Economics
M-WIWI-101510 - Cross-Functional Management Accounting
M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Course</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2573003</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Incentives in Organizations</td>
<td>Nieken</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2573004</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Übung zu Incentives in Organizations</td>
<td>Nieken, Mitarbeiter, Walther, Gorny</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Course</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900132</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Incentives in Organizations</td>
<td>Nieken</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900201</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Incentives in Organizations</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Canceled

Competence Certificate

The assessment of this course is a written examination (60 min). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites

None

Recommendation

Knowledge of microeconomics, game theory, and statistics is assumed.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Course</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentives in Organizations</td>
<td>2573003, SS 2023</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Language: English</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
Content
The students acquire profound knowledge about the design and the impact of different incentive and compensation systems. Topics covered are, for instance, performance based compensation, team work, intrinsic motivation, multitasking, and subjective performance evaluations. We will use microeconomic or behavioral models as well as empirical data to analyze incentive systems. We will investigate several widely used compensation schemes and their relationship with corporate strategy. Students will learn to develop practical implications which are based on the acquired knowledge of this course.

Aim
The student
- develops a strategic understanding about incentives systems and how they work.
- analyzes models from personnel economics.
- understands how econometric methods can be used to analyze performance and compensation data.
- knows incentive schemes that are used in companies and is able to evaluate them critically.
- can develop practical implications which are based on theoretical models and empirical data from companies.
- understands the challenges of managing incentive and compensation systems and their relationship with corporate strategy.

Workload
The total workload for this course is: approximately 135 hours.
Lecture: 32 hours
Preparation of lecture: 52 hours
Exam preparation: 51 hours

Literature
Slides, Additional case studies and research papers will be announced in the lecture.
Literature (complementary):
Behavioral Game Theory, Camerer, Russel Sage Foundation, 2003
Introduction to Econometrics, Wooldridge, Andover, 2014
Econometric Analysis of Cross Section and Panel Data, Wooldridge, MIT Press, 2010
5.137 Course: Information Service Engineering [T-WIWI-106423]

Responsible: Prof. Dr. Harald Sack
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101456 - Intelligent Systems and Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2511606</td>
<td>Information Service Engineering</td>
<td>2</td>
<td>Lecture /🗣</td>
<td>Sack, Tan, Vafaie</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2511607</td>
<td>Exercises to Information Service Engineering</td>
<td>1</td>
<td>Practice /🗣</td>
<td>Sack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>79AIFB_ISE_B3</td>
<td>Information Service Engineering (Registration until 17 July 2023)</td>
<td>2</td>
<td>Lecture /🗣</td>
<td>Sack</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79AIFB_ISE_B2</td>
<td>Information Service Engineering</td>
<td>2</td>
<td>Lecture /🗣</td>
<td>Sack</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Information Service Engineering

2511606, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Content

- The Art of Understanding
 - Data, Information, Knowledge and Wisdom
 - Syntax, Semantics, Context, Pragmatics, and Experience

- Natural Language Processing
 - NLP and Basic Linguistic Knowledge
 - NLP Applications, Techniques & Challenges
 - Evaluation, Precision and Recall
 - Regular Expressions and Automata
 - Tokenization
 - Language Model and N-Grams
 - Part-of-Speech Tagging
 - Distributional Semantics & Word Embeddings

- Knowledge Graphs
 - Knowledge Representations and Ontologies
 - Resource Description Framework (RDF) as simple Data Model
 - Creating new Models with RDFS
 - Querying RDF(S) with SPARQL
 - More Expressivity via Web Ontology Language (OWL)
 - From Linked Data to Knowledge Graphs
 - Wikipedia, DBpedia, and Wikidata
 - Knowledge Graph Quality Assurance with SHACL

- Basic Machine Learning
 - Machine Learning Fundamentals
 - Evaluation and Generalization Problems
 - Linear Regression
 - Decision Trees
 - Unsupervised Learning
 - Neural Networks and Deep Learning

- ISE Applications
 - Knowledge Graph Embeddings
 - Knowledge Graph Completion
 - Knowledge Graphs and Large Language Models
 - Semantic Search
 - Exploratory Search and Recommender Systems

Learning objectives:

- The students know the fundamentals and measures of information theory and are able to apply those in the context of Information Service Engineering.
- The students have basic skills of natural language processing and are enabled to apply natural language processing technology to solve and evaluate simple text analysis tasks.
- The students have fundamental skills of knowledge representation with ontologies as well as basic knowledge of Semantic Web and Linked Data technologies. The students are able to apply these skills for simple representation and analysis tasks.
- The students have fundamental skills of information retrieval and are enabled to conduct and to evaluate simple information retrieval tasks.
- The students apply their skills of natural language processing, Linked Data engineering, and Information Retrieval to conduct and evaluate simple knowledge mining tasks.
- The students know the fundamentals of recommender systems as well as of semantic and exploratory search.

Literature

Responsibility: Prof. Dr. Marion Weissenberger-Eibl

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-101507 - Innovation Management

Type: Written examination

Credits: 3

Grading scale: Grade to a third

Recurrence: Each summer term

Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2</td>
<td>Written examination</td>
<td>2 SWS</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2545100</td>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weissenberger-Eibl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900144</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weissenberger-Eibl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900145</td>
<td>Innovation Management: Concepts, Strategies and Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weissenberger-Eibl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes). The exam takes place in every summer semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Innovation Management: Concepts, Strategies and Methods

2545100, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

Blended (On-Site/Online)

Content

The course 'Innovation Management: Concepts, Strategies and Methods' offers scientific concepts which facilitate the understanding of the different phases of the innovation process and resulting strategies and appropriate methodologies suitable for application. The concepts refer to the entire innovation process so that an integrated perspective is made possible. This is the basis for the teaching of strategies and methods which fulfil the diverse demands of the complex innovation process. The course focuses particularly on the creation of interfaces between departments and between various actors in a company’s environment and the organisation of a company’s internal procedures. In this context a basic understanding of knowledge and communication is taught in addition to the specific characteristics of the respective actors. Subsequently methods are shown which are suitable for the profitable and innovation-led implementation of integrated knowledge.

Aim: Students develop a differentiated understanding of the different phases and concepts of the innovation process, different strategies and methods in innovation management.

Organizational issues

Wichtig! Bitte treten Sie dem ILLAS-Kurs zur Vorlesung bei, damit wir Ihnen weitere Informationen mitteilen können.

Literature

Eine ausführliche Literaturliste wird mit den Vorlesungsunterlagen zur Verfügung gestellt.

5.139 Course: Integrated Network and Systems Management [T-INFO-101284]

Responsible: Prof. Dr. Bernhard Neumair
Organisation: KIT Department of Informatics
Part of: M-INFO-101210 - Dynamic IT-Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Course Description</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400004</td>
<td>Integrated Network and Systems Management</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500144</td>
<td>Integrated Network and Systems Management</td>
<td>Neumair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500051</td>
<td>Integrated Network and Systems Management</td>
<td>Neumair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled
5.140 Course: Intelligent Agent Architectures [T-WIWI-111267]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2540525</td>
<td>Intelligent Agent Architectures</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2540526</td>
<td>Übung zu Intelligent Agent Architectures</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900069</td>
<td>Intelligent Agent Architectures (Nachklausur WS 2022/2023)</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79011480</td>
<td>Intelligent Agent Architectures (WS 2023/2024)</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

It is recommended to additionally review the Bachelor-level lecture “Customer Relationship Management” from the module "CRM and Servicemanagement".

Below you will find excerpts from events related to this course:

Intelligent Agent Architectures
2540525, WS 23/24, 2 SWS, Language: English, Open in study portal
Content
Course content:
The lecture is structured in three parts:
In the first part the methods used for architecture design are introduced (system analysis, UML, formal specification of interfaces, software and analysis patterns, and the separation in conceptual and IT-architectures. The second part is dedicated to learning architectures and machine learning methods. The third part presents examples of learning CRM-Architectures.

Workload:
The total workload for this course is approximately 135 hours (4.5 credits):
Time of attendance
- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study
- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Learning Goals:
Students have special knowledge of software architectures and of the methods which are used in their development (Systems analysis, formal methods for the specification of interfaces and algebraic semantic, UML, and, last but not least, the mapping of conceptual architectures to IT architectures.

Students know important architectural patterns and they can – based on their CRM knowledge – combine these patterns for innovative CRM applications.

Assessment:
The assessment consists of a written exam of 1-hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added.

Grade: Minimum points
- 1.0: 95
- 1.3: 90
- 1.7: 85
- 2.0: 80
- 2.3: 75
- 2.7: 70
- 3.0: 65
- 3.3: 60
- 3.7: 55
- 4.0: 50
- 5.0: 0

Literature
5.141 Course: Intelligent Agents and Decision Theory [T-WIWI-110915]

Responsible: Prof. Dr. Andreas Geyer-Schulz

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2540537</td>
<td>Intelligent Agents and Decision Theory</td>
<td>2</td>
<td>Lecture</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540538</td>
<td>Übung zu Intelligent Agents and Decision Theory</td>
<td>1</td>
<td>Practice</td>
<td>Schweizer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900306</td>
<td>Intelligent Agents and Decision Theory</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900294</td>
<td>Intelligent Agents and Decision Theory (Nachklausur SS 2023)</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral (30 minutes) or written examination (60 minutes). The exam is held in each semester and can be repeated at any regular examination date. Details of the grading system and any exam bonus that may be achieved from the practice are announced in the course.

Prerequisites

None

Recommendation

We assume knowledge in statistics, operations research and microeconomics as taught in the Bachelor program (VWL I, Operations Research I + II, Statistics I + II) and a familiarity with preferably the Python programming language.

Annotation

new lecture starting summer semester 2020

Below you will find excerpts from events related to this course:

Intelligent Agents and Decision Theory

2540537, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Content
The key assumption of this lecture is that the concept of artificial intelligence is inseparably linked to the economic concept of rationality of agents. We consider different classes of decision problems - decisions under certainty, risk and uncertainty - from an economic, managerial and AI-engineering perspective:

From an economic point of view, we analyze how to act rationally in these situations based on classic utility theory. In this regard, the course also introduces the relevant parts of decision theory for dealing with

- multiple conflicting objectives,
- incomplete, risky and uncertain information about the world,
- assessing utility functions, and
- quantifying the value of information ...

From an engineering perspective, we discuss how to develop practical solutions for these decision problems, using appropriate AI components. We introduce

- a general, agent-based design framework for AI systems,

as well as AI methods from the fields of

- search (for decisions under certainty),
- inference (for decisions under risk) and
- learning (for decisions under uncertainty).

Where applicable, the course highlights the theoretical ties of these methods with decision theory.

We conclude with a discussion of ethical and philosophical issues concerning the development and use of AI.

Learning objectives
Students are able to design, analyze, implement, and evaluate intelligent agents.

Lecture Outline

1. Introduction: Artificial intelligence and the economic concept of rationality
2. Intelligent Agents: A general, agent-based design framework for AI systems
3. Decision under certainty: Assessing utility functions for decisions with multiple objectives
4. Search: Linear programming for decisions under certainty
5. Decisions under risk: The expected utility principle
6. Information systems: Improving economic decisions under risk
7. Inference: Bayesian networks for decisions under risk
8. Information Learning objectives value: When should an agent gather new information?
9. Decisions under uncertainty: Complete lack of information
10. Learning: Statistical learning of bayesian networks
11. Learning: Supervised learning with neural networks
12. Learning: Reinforcement learning
13. Learning: Preference-based reinforcement learning
14. Discussion: Ethical and philosophical issues

Note: This rough outline may be subject to change.
Literature

Basic literature (by lecture):

1. Russell & Norvig (2016, chapter 1), Bamberg et al. (2019, chapters 1 & 2)
2. Russell & Norvig (2016, chapter 2)
4. Nickel et al. (2014, chapter 1) [German], Russell & Norvig (2016, chapter 3)
6. Bamberg et al. (2019, chapter 6)
7. Russell & Norvig (2016, chapters 13, 14, 16)
8. Russell & Norvig (2016, chapter 16), Bamberg et al. (2019, chapter 6)
9. Bamberg et al. (2019, chapter 5)
10. Russell & Norvig (2016, chapter 20)
11. Goodfellow et al. (2016, chapter 6)
13. Wirth et al. (2017)

Detailed references:
5.142 Course: International Business Development and Sales [T-WIWI-110985]

Responsible: Erice Casenave
Prof. Dr. Martin Klarmann
Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101488 - Entrepreneurship (EnTechnon)
M-WIWI-105312 - Marketing and Sales Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2572189</td>
<td>International Business Development and Sales</td>
<td>4 SWS</td>
<td>Block / ☑️</td>
<td>Klarmann, Terzidis, Schmitt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), ☑️ On-Site, ✗ Cancelled

Competence Certificate

Non exam assessment. The grade is based on the presentation, the subsequent discussion and the written elaboration.

Annotation

Please note that currently it cannot be guaranteed that the course will take place in the winter term 22/23. Please contact the Marketing and Sales Research Group for further information.

Below you will find excerpts from events related to this course:

Content

This course is offered as part of the EUCOR programme in cooperation with EM Strasbourg. Max. 10 students of KIT and max. 10 students of EM Strasbourg will develop a sales presentation in tandems (teams of 2). This is based on the value proposition of a business model.

- An application is required to participate in this event. The application phase usually takes place at the beginning of the lecture period. Further information on the application process can be found on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the start of the lecture period.

Total workload for 6 ECTS: about 180 hours.
Course: International Finance [T-WIWI-102646]

Responsible: Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecture</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2530570</td>
<td>International Finance</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>15:45 - 19:00 Uhr</td>
<td>Raum 320 im Geb. 09.21 (Blücherstr. 17)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900097</td>
<td>International Finance</td>
<td>2 SWS</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900052</td>
<td>International Finance</td>
<td>2 SWS</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

None

Annotation

The course is offered as a 14-day or block course.

Below you will find excerpts from events related to this course:

- **International Finance**
 - Code: 2530570, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
 - Lecture (V)
 - On-Site

Organizational issues

Kickoff am Mittwoch, 26.04.23, 15:45 - 19:00 Uhr im Raum 320 im Geb. 09.21 (Blücherstr. 17). Die Veranstaltung wird samstags als Blockveranstaltung angeboten, nach dem Kickoff nach Absprache.

Literature

Weiterführende Literatur:

5.144 Course: Internet Law [T-INFO-101307]

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Teaching Format</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24354</td>
<td>Internet Law</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Sattler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500057</td>
<td>Internet Law</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500060</td>
<td>Internet Law</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.145 Course: Internet of Everything [T-INFO-101337]

- **Responsible:** Prof. Dr. Martina Zitterbart
- **Organisation:** KIT Department of Informatics
- **Part of:**
 - M-INFO-101203 - Wireless Networking
 - M-INFO-101205 - Future Networking

Type, Credits, Grading scale, Recurrence, Version

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Topic</th>
<th>Type</th>
<th>Time</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24104</td>
<td>Internet of Everything</td>
<td>Lecture / Online</td>
<td>Zitterbart, Mahrt, Neumeister</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Topic</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500071</td>
<td>Internet of Everything</td>
<td>Zitterbart</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500009</td>
<td>Internet of Everything</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>
5.146 Course: Introduction in Computer Networks [T-INFO-102015]

Responsible:	Prof. Dr. Martina Zitterbart
Organisation:	KIT Department of Informatics
Part of:	M-INFO-101178 - Communication and Database Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 24519</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Kopmann, Neumeister, Schneider, Zitterbart</td>
<td></td>
</tr>
<tr>
<td>ST 2023 24521</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Kopmann, Neumeister, Schneider, Zitterbart</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7500116</td>
<td></td>
<td></td>
<td>Zitterbart</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
Course: Introduction to Bayesian Statistics for Analyzing Data [T-WIWI-110918]

Responsible: Prof. Dr. Benjamin Scheibehenne
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Grades will be based on active participation (50%) and homework assignments (50%).

Prerequisites
Participants should already have a basic knowledge of R and standard frequentist statistical tests. Please bring your own Laptop with you as we will be using R for several hands-on examples and exercises during the class. We will mainly work with the book “Statistical Rethinking. A Bayesian Course with Examples in R and Stan” by Richard McElrath. Students are advised to obtain the book before the class starts.

Annotation
Due to its interactive nature, the number of participants will be limited.
5.148 Course: Introduction to Stochastic Optimization [T-WIWI-106546]

Responsible: Prof. Dr. Steffen Rebennack

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

ST 2023	2550470	Introduction to Stochastic Optimization	2 SWS	Lecture / 🖥	Rebennack
ST 2023	2550471	Übung zur Einführung in die Stochastische Optimierung	1 SWS	Practice / 🧩	Rebennack, Füllner
ST 2023	2550474	Rechnerübung zur Einführung in die Stochastische Optimierung	2 SWS	Others	Rebennack, Füllner

Exams

| ST 2023 | 7900311 | Introduction to Stochastic Optimization | Rebennack |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes). The exam takes place in every semester.

Prerequisites
None.
5.149 Course: Introduction to Video Analysis [T-INFO-101273]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Organisation: KIT Department of Informatics
Part of:
- M-INFO-100736 - Introduction to Video Analysis
- M-INFO-101239 - Machine Vision

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>24684</th>
<th>Introduction to Video Analysis</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Arens</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7500031</th>
<th>Introduction to Video Analysis</th>
<th>Beyerer, Arens</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500099</td>
<td>Introduction to Video Analysis</td>
<td>Beyerer, Arens</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
Page 362
5.150 Course: IT Security [T-INFO-112818]

Responsible:
Prof. Dr. Hannes Hartenstein
Prof. Dr. Jörn Müller-Quade
Prof. Dr. Thorsten Strufe
TT-Prof. Dr. Christian Wressnegger

Organisation:
KIT Department of Informatics

Part of:
M-INFO-106315 - IT Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events
<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4 SWS</td>
<td></td>
<td></td>
<td>Müller-Quade, Strufe, Wressnegger, Hartenstein</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 90 minutes.

Prerequisites
None.

Recommendation
Students should be familiar with the content of the compulsory lecture "Informationssicherheit".
5.151 Course: IT-Security Management for Networked Systems [T-INFO-101323]

Responsible: Prof. Dr. Hannes Hartenstein
Organisation: KIT Department of Informatics
Part of:
- M-INFO-101204 - Networking Labs
- M-INFO-101210 - Dynamic IT-Infrastructures
- M-WIWI-101458 - Ubiquitous Computing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Event Name</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24149</td>
<td>IT-Security Management for Networked Systems</td>
<td>3 SWS</td>
<td>Lecture / Practice / 🗣</td>
<td>Hartenstein, Grundmann, Stengele</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500599</td>
<td>IT-Security Management for Networked Systems</td>
<td>Hartenstein</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500599</td>
<td>IT-Security Management for Networked Systems</td>
<td>Hartenstein</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.152 Course: Joint Entrepreneurship Summer School [T-WIWI-109064]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2545021</th>
<th>Joint Entrepreneurship School</th>
<th>4 SWS</th>
<th>Seminar / 🖥</th>
<th>Kleinn, Terzidis</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7900346</th>
<th>Joint Entrepreneurship Summer School</th>
<th>Terzidis</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ✗ Canceled

Competence Certificate

The learning control of the program (Summer School) consists of two parts:

A) Investor Pitch:
Based on a presentation (investor pitch) in front of a jury, the insights gained and developed during the course of the event are presented and the business idea presented. Among other things, the presentation performance of the team, the structured content and the logical consistency of the business idea are evaluated. The exact evaluation criteria will be announced in the course.

B) Written elaboration:
The second part of the assessment is a written report. The iterative knowledge gain of the entire event is systematically logged and can be further supplemented by the contents of the presentation. The report documents key action steps, applied methods, findings, market analyzes and interviews and prepares them in writing. The exact structure and requirements will be announced in the course.

The grade consists of 50% presentation performance and 50% written preparation.

Prerequisites
The Summer School is aimed at master students of KIT. Prerequisite is the participation in the selection process.

Recommendation
We recommend basic business knowledge, the lecture Entrepreneurship as well as openness and interest in intercultural exchange. Solid knowledge of the English language is an advantage.

Annotation
The working language during the Summer School is English. A one-week stay in China is part of the Summer School.

Below you will find excerpts from events related to this course:

Joint Entrepreneurship School

| 2545021, SS 2023, 4 SWS, Language: English | Open in study portal |

Content

During the Summer School in Shanghai and Karlsruhe, students develop a business model of technologies and patents developed at KIT in workshops in German-Chinese tandems over the period of two weeks. Click on our website for detailed information and a video: https://etm.entechnon.kit.edu/english/1095.php

Organizational issues

Preparation dates: Dates will be announced.

JES: Dates will be announced, expected to be in July and/or September
5.153 Course: Judgement and Decision Making [T-WIWI-111099]

Responsible: Prof. Dr. Benjamin Scheibehenne

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-105312 - Marketing and Sales Management
- M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations
- M-WIWI-106258 - Digital Marketing

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2540440</th>
<th>Judgment and Decision Making</th>
<th>3 SWS</th>
<th>Lecture / 📚</th>
<th>Scheibehenne, Seidler</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900001</td>
<td>Judgement and Decision Making</td>
<td></td>
<td></td>
<td>Scheibehenne</td>
</tr>
</tbody>
</table>

Exams

- **Credit:** 4.5
- **Grading scale:** Grade to a third
- **Recurrence:** Each winter term
- **Expansion:** 1 terms
- **Version:** 2

Competence Certificate

Alternative exam assessment. The grading includes the following aspects:

- a written exam (60 minutes)
- a presentation during the exercise.

The scoring system for the grading will be announced at the beginning of the course.

Prerequisites

Registration via the WIWI-Portal is required for participation in the Übung. The Übung is a prerequisite for the exam.

Annotation

The judgments and decisions that we make can have long ranging and important consequences for our (financial) well-being and individual health. Hence, the goal of this lecture is to gain a better understanding of how people make judgments and decisions and the factors that influence their behavior. We will look into simple heuristics and mental shortcuts that decision makers use to navigate their environment, in particular so in an economic context. Following this the lecture will provide an overview into social and emotional influences on decision making. In the second half of the semester we will look into some more specific topics including self-control, nudging, and food choice. The last part of the lecture will focus on risk communication and risk perception. We will address these questions from an interdisciplinary perspective at the intersection of Psychology, Behavioral Economics, Marketing, Cognitive Science, and Biology. Across all topics covered in class, we will engage with basic theoretical work as well as with groundbreaking empirical research and current scientific debates.

The workload of the class is 4.5 ECTS. This consists of 3 ECTS for the lecture and 1.5 ECTS for the Übung. Details about the Übung will be communicated at the first day of the class.

Below you will find excerpts from events related to this course:

Judgment and Decision Making

| 2540440, WS 23/24, 3 SWS, Language: English, Open in study portal |
| Lecture (V) Blended (On-Site/Online) |

Content

In this lecture, students will be introduced to fundamental theories and key insights on human judgment and decision making. Topics include decision making under uncertainty, choice biases, simple heuristics, risk perception and -communication, as well as social and emotional influences on decision making, to name but a few. In the Wintersemester 20/21 this class will be held online. The lecture videos will be available for download and there will be regular online meetings to discuss the topics. The lecture will be held in English.
5.154 Course: KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics [T-WIWI-111109]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101446 - Market Engineering
M-WIWI-103118 - Data Science: Data-Driven User Modeling
M-WIWI-104080 - Designing Interactive Information Systems
M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900368 | KD²Lab Hands-On Research Course: New Ways and Tools in Experimental Economics | Weinhardt |

Competence Certificate

Non exam assessment. Grading will be based on a continuous basis throughout the semester. The assessment consists of:

- A written paper, and
- a group presentation with subsequent discussion and question and answer session of 30 minutes.

For particularly active and constructive participation in the discussions of other papers during the final presentation, a bonus of one grade level (0.3 or 0.4) can be achieved on the passed exam. Details on the grading will be announced at the beginning of the event.

Annotation

Due to the laboratory capacity and in order to ensure an optimal supervision of the project groups, the number of participants is limited. Places are allocated according to preferences and suitability for the topics. In particular, previous knowledge in the field of experimental economics plays a role.

The course will be offered starting in the summer semester 2021.
5.155 Course: Knowledge Discovery [T-WIWI-102666]

Responsible: Dr.-Ing. Michael Färber

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101456 - Intelligent Systems and Services
M-WIWI-105366 - Artificial Intelligence
M-WIWI-105368 - Web and Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Type: Written examination
Credits: 4.5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Discovery and Graph Representation Learning</td>
<td>2 SWS</td>
<td>Lecture / Färber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises to Knowledge Discovery and Graph Representation Learning</td>
<td>1 SWS</td>
<td>Practice / Färber, Saier, Shao</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge Discovery (Registration until 17 July 2023)</td>
<td></td>
<td>Färber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge Discovery</td>
<td></td>
<td>Färber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is a written exam (60 minutes).

1. Successful participation in the exercises can earn a grade bonus in two ways:
 By handing in the answers to an exercise sheet and reaching or exceeding 80% correct answers.
 2. By handing in the results of an implementation task related to machine learning, which reaches or exceeds a given evaluation value.

If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by a maximum of one grade level (0.3 or 0.4).

Prerequisites

None

Below you will find excerpts from events related to this course:

Knowledge Discovery and Graph Representation Learning

<table>
<thead>
<tr>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511302</td>
<td>Knowledge Discovery and Graph Representation Learning</td>
</tr>
<tr>
<td>2511303</td>
<td>Exercises to Knowledge Discovery and Graph Representation Learning</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>79AIFB_KD_C3</td>
<td>Knowledge Discovery (Registration until 17 July 2023)</td>
</tr>
<tr>
<td>79AIFB_KD_B3</td>
<td>Knowledge Discovery</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
Content
The lecture provides a comprehensive overview of various approaches in machine learning and data mining for knowledge extraction. It explores multiple fields, including machine learning, natural language processing, and knowledge representation. The main focus is on discovering patterns and regularities in extensive data sets, particularly unstructured text found in news articles, publications, and social media. This process is known as knowledge discovery. The lecture delves into specific techniques, methods, challenges, as well as current and future research topics within this field.

One part of the lecture is dedicated to understanding large language models (LLMs), such as ChatGPT, by exploring their underlying principles, training methods, and applications. Additionally, the lecture dives into graph representation learning, which involves extracting meaningful representations from graph data. It covers the mathematical foundations of graph and geometric deep learning, highlighting the latest applications in areas like explainable recommender systems.

Moreover, the lecture highlights the integration of knowledge graphs with large language models, known as neurosymbolic AI. This integration aims to combine structured and unstructured data to enhance knowledge extraction and representation. The content of the lecture encompasses the entire machine learning and data mining process. It covers topics on supervised and unsupervised learning techniques, as well as empirical evaluation. Various learning methods are explored, ranging from classical approaches like decision trees, support vector machines, and neural networks to more recent advancements such as graph neural networks.

Learning objectives:
Students
- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery.
- are able to design, train and evaluate adaptive systems.
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.

Workload:
- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Literature
- M. Berhold, D. Hand (eds). Intelligent Data Analysis - An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley

Exercises to Knowledge Discovery and Graph Representation Learning
2511303, WS 23/24, 1 SWS, Language: English, Open in study portal

Content
The exercises are based on the lecture Knowledge Discovery. Several exercises are covered, which take up and discuss in detail the topics covered in the lecture Knowledge Discovery. Practical examples are demonstrated to the students to enable a knowledge transfer of the theoretical aspects learned into practical application.

Contents of the lecture cover the entire machine learning and data mining process with topics on monitored and unsupervised learning processes and empirical evaluation. The learning methods covered range from classical approaches like decision trees, support vector machines and neural networks to selected approaches from current research. Learning problems considered include feature vector-based learning and text mining.

Learning objectives:
Students
- know fundamentals of Machine Learning, Data Mining and Knowledge Discovery.
- are able to design, train and evaluate adaptive systems.
- conduct Knowledge Discovery projects in regards to algorithms, representations and applications.

Literature
- M. Berhold, D. Hand (eds). Intelligent Data Analysis - An Introduction. 2003
- P. Tan, M. Steinbach, V. Kumar: Introduction to Data Mining, 2005, Addison Wesley
5.156 Course: Lab: Graph Visualization in Practice [T-INFO-106580]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: M-INFO-103302 - Lab: Graph Visualization in Practice

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2400117</th>
<th>Graphenvisualisierung in der Praxis</th>
<th>Practical course / 🗣</th>
<th>Wagner, Jungeblut</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7500347</th>
<th>Lab: Graph Visualization in Practice</th>
<th>Wagner</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.157 Course: Laboratory Course Algorithm Engineering [T-INFO-104374]

Responsible: Prof. Dr. Peter Sanders
Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of:
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications
M-INFO-102072 - Laboratory Course Algorithm Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Practical Course in Algorithm Design</td>
<td>4 SWS</td>
<td>Practical course / 🗣️</td>
<td>Wagner, Sauer, Ueckerdt, Feilhauer, Bläsius, Zündorf</td>
<td></td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Practical Course in Algorithm Design
2424305, WS 23/24, 4 SWS, Language: German, Open in study portal

Practical course (P)
On-Site

Content
In the practical course Algorithm Engineering the students are given miscellaneous questions from algorithmics, which they have to implement independently in small working groups. The main focus lies on object oriented programming with Java or C++. Linear programming may also occur.

Prerequisites: Knowledge of the lecture Algorithms II is recommended.

Learning Goals:
The purpose of the practical course in algorithm design is to make learned knowledge work. The students are given varying topics from algorithmics, which they have to implement in small working groups. Possible Topics are, for example, algorithms for flow problems, shortest path problems, or clustering techniques. In this way students learn to write efficient code.

Workload: Praktikum mit 4SWS, 6 LP
6 LP entspricht ca. 180 Arbeitsstunden
Course: Language Technology and Compiler [T-INFO-101343]

Responsible: Prof. Dr.-Ing. Gregor Snelting
Organisation: KIT Department of Informatics
Part of: M-INFO-100806 - Language Technology and Compiler

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>24661</th>
<th>Language Technology and Compiler</th>
<th>4 SWS</th>
<th>Lecture / Snelting</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7500068</th>
<th>Language Technology and Compiler</th>
<th>Snelting</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Language Technology and Compiler
24661, SS 2023, 4 SWS, Language: German, [Open in study portal](#)
Lecture (V) On-Site
5.159 Course: Large-scale Optimization [T-WIWI-106549]

Responsible: Prof. Dr. Steffen Rebennack

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes). The exam takes place in every semester.

Prerequisites
None.
5.160 Course: Liberalised Power Markets [T-WIWI-107043]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2581998</td>
<td>Liberalised Power Markets</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2581999</td>
<td>Übungen zu Liberalised Power Markets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900253</td>
<td>Liberalised Power Markets</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900160</td>
<td>Liberalised Power Markets NEW</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900193</td>
<td>Liberalised Power Markets</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Recommendation
None

Below you will find excerpts from events related to this course:

Liberalised Power Markets

2581998, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)
Content
1. Power markets in the past, now and in future
2. Designing liberalised power markets
 2.1. Unbundling Dimensions of liberalised power markets
 2.2. Central dispatch versus markets without central dispatch
 2.3. The short-term market model
 2.4. The long-term market model
 2.5. Market flaws and market failure
 2.6. Regulation in liberalised markets
3. The power (sub)markets
 3.1 Day-ahead market
 3.2 Intraday market
 3.3 (Long-term) Forwards and futures markets
 3.4 Emission rights market
 3.5 Market for ancillary services
 3.6 The "market" for renewable energies
 3.7 Future market segments
4. Grid operation and congestion management
 4.1. Grid operation
 4.2. Congestion management
5. Market power
 5.1. Defining market power
 5.2. Indicators of market power
 5.3. Reducing market power
6. Future market structures in the electricity value chain
Literature
Weiterführende Literatur:
5.161 Course: Life Cycle Assessment – Basics and Application Possibilities in an Industrial Context [T-WIWI-113107]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101412 - Industrial Production III
- M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2581995</td>
<td>Life Cycle Assessment - Basics and Application Possibilities in an Industrial Context</td>
<td>2 SWS</td>
<td>Lecture /🗣</td>
<td>Steffl, Treml</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- Blended (On-Site/Online)
- 🗣 On-Site
- ✗ Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

Recommendation

None.

Below you will find excerpts from events related to this course:

Content

The lecture focuses on the analysis of the environmental impacts of products and processes using Life Cycle Assessment (short: LCA). Structure and steps are conveyed in detail and selected further developments are shown. In order to record the methodology and classify potential environmental impacts, the practical development of what has been learned is also focused on using LCA software and interactive formats.

Topics include:

- Significance and areas of application
- Calculation models
- Attributional/Consequential LCA
- Life Cycle Sustainability Assessment, Social LCA and Life Cycle Costing
- Limitations
- Development of a Case Study

Literature

werden in der Veranstaltung bekannt gegeben
Course: Machine Learning - Foundations and Algorithms [T-INFO-111558]

5.162 Course: Machine Learning - Foundations and Algorithms [T-INFO-111558]

Responsible: Prof. Dr. Gerhard Neumann

Organisation: KIT Department of Informatics

Part of: M-INFO-105778 - Machine Learning - Foundations and Algorithms

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400018</td>
<td>Machine Learning – Foundations and Algorithms</td>
<td>Neumann</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500292</td>
<td>Machine Learning - Foundations and Algorithms</td>
<td>Neumann</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500215</td>
<td>Machine Learning - Foundations and Algorithms</td>
<td>Neumann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The success control takes place in the form of a written exam, usually 90 minutes in length, according to § 4 Abs. 2 Nr. 1 SPO.

A *bonus can be acquired through successful participation in the exercise as a success control of a different kind* (§4(2), 3 SPO 2008) or *study performance* (§4(3) SPO 2015). The exact criteria for awarding a bonus will be announced at the beginning of the lecture. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The bonus is only valid for the main and post exams of the semester in which it was earned. After that, the grade bonus expires.

Prerequisites

none.

Recommendation

- Attendance of the lecture "Foundations of Artificial Intelligence" ("Grundlagen der Künstlichen Intelligenz")
- Knowledge in python
- Mathematics-heavy lecture. The basics will be reviewed, but mathematical proficiency is helpful
5.163 Course: Machine Learning 1 - Basic Methods [T-WIWI-106340]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103356 - Machine Learning

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

- **WT 23/24**: 2511500 - Machine Learning 1 - Fundamental Methods (2 SWS, Lecture / Online, Zöllner)
- **WT 23/24**: 2511501 - Exercises to Machine Learning 1 - Fundamental Methods (1 SWS, Practice / Online, Zöllner, Polley, Fechner, Daaboul)

Exams

- **ST 2023**: 79AIFB_ML1_C4 - Machine Learning 1 - Basic Methods (Registration until 17 July 2023) (Zöllner)
- **WT 23/24**: 79AIFB_ML1_C5 - Machine Learning 1 - Basic Methods (Zöllner)

Competence Certificate

Depending on further pandemic developments, the exam will be offered either as an open-book exam, or as a written exam (60 min):

The exam takes place every semester and can be repeated at every regular examination date.

A grade bonus can be earned by successfully completing practice exercises. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites

The course T-INFO-101354 "Machine Learning 1 - Basic Methods" must not be chosen.

Below you will find excerpts from events related to this course:

- **Machine Learning 1 - Fundamental Methods**
 - 2511500, WS 23/24, 2 SWS, Language: German, [Open in study portal](link)

Content

The course prepares students for the rapidly evolving field of machine learning by providing a solid foundation, covering core concepts and techniques to get started in the field. Students delve into different methods in supervised, unsupervised, and reinforcement learning, as well as various model types, ranging from basic linear classifiers to more complex methods, such as deep neural networks. Topics include general learning theory, support vector machines, decision trees, neural network fundamentals, convolutional neural networks, recurrent neural networks, unsupervised learning, reinforcement learning, and Bayesian learning.

The course is accompanied by a corresponding exercise, where students gain hands-on experience by implementing and experimenting with different machine learning algorithms, helping them to apply machine learning algorithms on real world problems.

By the end of the course, students will have acquired a solid foundation in machine learning, enabling them to apply state-of-the-art algorithms to solve complex problems, contribute to research efforts, and explore advanced topics in the field.

Learning objectives:

- Students acquire knowledge of the fundamental methods in the field of machine learning.
- Students can classify, formally describe and evaluate methods of machine learning.
- Students can use their knowledge to select suitable models and methods for selected problems in the field of machine learning.
Literatur
Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

- Machine Learning - Tom Mitchell
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
5.164 Course: Machine Learning 2 – Advanced Methods [T-WIWI-106341]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101637 - Analytics and Statistics
- M-WIWI-103356 - Machine Learning

Type: Written examination

Credits: 4,5

Grading scale: Grade to a third

Recurrence: Each summer term

Version: 4

Events

| ST 2023 | 2511502 | Machine Learning 2 - Advanced methods | 2 SWS | Lecture / 🗣 | Zöllner |
| ST 2023 | 2511503 | Exercises for Machine Learning 2 - Advanced Methods | 1 SWS | Practice / 🗣 | Zöllner |

Exams

| ST 2023 | 79AIFB_ML2_B1 | Machine Learning 2 – Advanced Methods (Registration until 17 July 2023) | Zöllner |
| WT 23/24 | 79AIFB_ML2_B8 | Machine Learning 2 – Advanced Methods | Zöllner |

Competence Certificate

Depending on further pandemic developments, the exam will be offered either as an open-book exam, or as a written exam (60 min).

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

The course T-INFO-101392 "Machine Learning 2 – Advanced Methods" must not be chosen.

Below you will find excerpts from events related to this course:

Course: Machine Learning 2 - Advanced methods

2511502, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content

The subject area of machine intelligence and, in particular, machine learning, taking into account real challenges of complex application domains, is a rapidly expanding field of knowledge and the subject of numerous research and development projects.

The lecture "Machine Learning 2" deals with modern advanced methods of machine learning such as semi-supervised and active learning, deep neural networks (deep learning, CNNs, GANs, diffusion models, transformer, adversarial attacks) and hierarchical approaches, e.g. reinforcement learning. Another focus is the embedding and application of machine learning methods in real systems.

The lecture introduces the latest basic principles as well as extended basic structures and elucidates previously developed algorithms. The structure and the mode of operation of the methods and methods are presented and explained by means of some application scenarios, especially in the field of technical (sub) autonomous systems (vehicles, robotics, neurorobotics, image processing, etc.).

Learning objectives:

- Students understand extended concepts of machine learning and their possible applications.
- Students can classify, formally describe and evaluate methods of machine learning.
- In detail, methods of machine learning can be embedded and applied in complex decision and inference systems.
- Students can use their knowledge to select suitable models and methods of machine learning for existing problems in the field of machine intelligence.

Recommendations:

Attending the lecture **Machine Learning 1** or a comparable lecture is very helpful in understanding this lecture.

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
Literatur
Die Foliensätze sind als PDF verfügbar

Weiterführende Literatur

- Deep Learning - Ian Goodfellow
- Artificial Intelligence: A Modern Approach - Peter Norvig and Stuart J. Russell
- Machine Learning - Tom Mitchell
- Pattern Recognition and Machine Learning - Christopher M. Bishop
- Reinforcement Learning: An Introduction - Richard S. Sutton and Andrew G. Barto
- Deep Learning - Ian Goodfellow, Yoshua Bengio, Aaron Courville

Weitere (spezifische) Literatur zu einzelnen Themen wird in der Vorlesung angegeben.
5.165 Course: Machine Learning and Optimization in Energy Systems [T-WIWI-113073]

Responsible: Dr.-Ing. Hasan Ümitcan Yilmaz

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101452 - Energy Economics and Technology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2581050</th>
<th>Machine Learning and Optimization in Energy Systems</th>
<th>3 SWS</th>
<th>Lecture / Practice</th>
<th>Dengiz, Yilmaz, Perau</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7900179</th>
<th>Machine Learning and Optimization in Energy Systems</th>
<th>Fichtner</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🗪 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) or an oral exam (30 min) depending on the number of participants.
5.166 Course: Management Accounting 1 [T-WIWI-102800]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101498 - Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Mode</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2579900</td>
<td>Management Accounting 1</td>
<td>2</td>
<td>Lecture</td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2579901</td>
<td>Tutorial Management Accounting 1 (Bachelor)</td>
<td>2</td>
<td>Practice</td>
<td>Dickemann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2579902</td>
<td>Tutorial Management Accounting 1 (Master)</td>
<td>2</td>
<td>Practice</td>
<td>Dickemann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Description</th>
<th>Mode</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>79-2579900-B</td>
<td>Management Accounting 1 (Bachelor)</td>
<td></td>
<td>Wouters</td>
</tr>
<tr>
<td>ST 2023</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td></td>
<td>Wouters</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79-2579900-B</td>
<td>Management Accounting 1 (Bachelor)</td>
<td></td>
<td>Wouters</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79-2579900-M</td>
<td>Management Accounting 1 (Mastervorzug und Master)</td>
<td></td>
<td>Wouters</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written exam (120 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Recommendation

We recommend that you take part in our exercise for the lecture.

Annotation

The exercise is offered separately for Bachelor's students as well as for students in the Master's transfer and Master's program.

Note for exam registration:

- Bachelor students: 79-2579900-B Management Accounting 1 (Bachelor)
- Students in the Master's transfer and Master's program: 79-2579900-M Management Accounting 1 (Master's transfer and Master)

Below you will find excerpts from events related to this course:

Management Accounting 1
2579900, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA1 are: short-term planning, investment decisions, budgeting and activity-based costing.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:

- Students have an understanding of theory and applications of management accounting topics.
- They can use financial information for various purposes in organizations.

Examination:

- The assessment consists of a written exam (120 minutes) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:

- The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

- In addition, several papers that will be available on ILIAS.

Tutorial Management Accounting 1 (Bachelor)
2579901, SS 2023, 2 SWS, Language: English, Open in study portal

Tutorial Management Accounting 1 (Master)
2579902, SS 2023, 2 SWS, Language: English, Open in study portal

Content
see Module Handbook
5.167 Course: Management Accounting 2 [T-WIWI-102801]

Responsible: Prof. Dr. Marcus Wouters
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101498 - Management Accounting

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2579903</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Accounting 2</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture / Online</td>
<td>Wouters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2579904</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial Management Accounting 2</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bachelor)</td>
<td>Practice / Online</td>
<td>Letmathe</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2579905</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial Management Accounting 2</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Master)</td>
<td>Practice / Online</td>
<td>Letmathe</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 79-2579903-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Accounting 2 (Bachelor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wouters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 79-2579903-M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Accounting 2 (Mastervorzug und Master)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wouters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 79-2579903-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Accounting 2 (Bachelor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wouters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 79-2579903-M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Accounting 2 (Mastervorzug und Master)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wouters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (120 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None

Recommendation
It is recommended:

- to take part in the course "Management Accounting1" before this course
- participation in the exercise for the lecture "Management Accounting 2"

Annotation
The exercise for the lecture is offered separately for Bachelor's students as well as for students in the Master's transfer and Master's program.

Note for exam registration: Bachelor students:

- 79-2579903-B Management Accounting 2 (Bachelor)
- Students in the Master's transfer and Master's program: 79-2579903-M Management Accounting 2 (Master's transfer and Master)

Below you will find excerpts from events related to this course:
Content
The course covers topics in management accounting in a decision-making framework. Some of these topics in the course MA2 are: cost estimation, product costing and cost allocation, financial performance measures, transfer pricing, strategic performance measurement systems.

We will use international material written in English.

We will approach these topics primarily from the perspective of the users of financial information (not so much from the controller who prepares the information).

The course builds on an introductory level of understanding of accounting concepts from Business Administration courses in the core program. The course is intended for students in Industrial Engineering.

Learning objectives:
- Students have an understanding of theory and applications of management accounting topics. They can use financial information for various purposes in organizations.

Recommendations:
- It is recommended to take part in the course "Management Accounting 1" before this course.

Examination:
- The assessment consists of a written exam (120 min) at the end of each semester (following § 4 (2) No. 1 of the examination regulation).

Workload:
- The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature
- Zusätzlich werden Artikel auf ILIAS zur Vergütung gestellt.

Tutorial Management Accounting 2 (Bachelor)
2579904, WS 23/24, 2 SWS, Language: English, Open in study portal

Tutorial Management Accounting 2 (Master)
2579905, WS 23/24, 2 SWS, Language: English, Open in study portal
5.168 Course: Management of IT-Projects [T-WIWI-112599]

Responsible: Dr. Roland Schätzle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101477 - Development of Business Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2511214</td>
<td>Management of IT-Projects</td>
<td>Lecture / On-Site</td>
<td>Schätzle</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2511215</td>
<td>Übungen zu Management von IT-Projekten</td>
<td>Practice / On-Site</td>
<td>Schätzle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Organizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>79AIFB_MvIP_A1 Management of IT-Projects (Registration until 17 July 2023)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79AIFB_MvIP_C3 Management of IT-Projects</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment takes place in the form of a written examination (exam) in the amount of 60 minutes. The examination is offered every semester and can be repeated at any regular examination date.

Prerequisites

Prerequisite for the participation in the examination is the successful participation in the exercise, which takes place in the summer semester, starting from summer semester 2020. The number of participants in the exercise is limited.

Below you will find excerpts from events related to this course:

Management of IT-Projects

2511214, SS 2023, 2 SWS, Language: German, Open in study portal
Content
The lecture deals with the general framework, impact factors and methods for planning, handling, and controlling of IT projects. Especially following topics are addressed:

- project environment
- project organisation
- project planning including the following items:
 - plan of the project structure
 - flow chart
 - project schedule
 - plan of resources
- effort estimation
- project infrastructure
- project controlling
- risk management
- feasibility studies
- decision processes, conduct of negotiations, time management.

Learning objectives:
Students

- explain the terminology of IT project management and typical used methods for planning, handling and controlling,
- apply methods appropriate to current project phases and project contexts,
- consider organisational and social impact factors.

Recommendations:
Knowledge from the lecture Software Engineering is helpful.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Literature

- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004

Übungen zu Management von IT-Projekten
2511215, SS 2023, 1 SWS, Language: German, Open in study portal

Content
The general conditions, influencing factors and methods in the planning, execution and control of IT projects are dealt with. In particular, the following topics will be dealt with: Project environment, project organization, project structure plan, effort estimation, project infrastructure, project control, decision-making processes, negotiation, time management. The lecture is accompanied by exercises in the form of tutorials. The date of the exercise will be announced later.
Course: Managing New Technologies [T-WIWI-102612]

Responsible: Dr. Thomas Reiß

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reiß</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written exam 100% following §4, Abs. 2.

Prerequisites

None

Recommendation

None

Annotation

The credit points for T-WIWI-102612 "Management of New Technologies" were reduced to 3 credit points in the 2019 summer semester.

Below you will find excerpts from events related to this course:

Managing New Technologies

2545003, SS 2023, 2 SWS, Language: German, [Open in study portal]

Organizational issues

Bitte melden Sie sich für die Prüfung Nr. 7900169 an, das ist die Prüfungs-Nr. für die schriftliche Prüfung.

(Die Prüfungs-Nr. 7900235 ist eine mündliche Prüfung, zu der sich Studierende nur nach Aufforderung durch das EnTechnon Sekretariat anmelden sollen, wenn Studierende eine mündliche Prüfung haben.)

Literature

- Hausschildt/Salomo: Innovationsmanagement; Borchert et al.: Innovations- und Technologiemanagement;
- Specht/Möhrle; Gabler Lexikon Technologiemanagement

Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.
5.170 Course: Market Research [T-WIWI-107720]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-101647 - Data Science: Evidence-based Marketing
- M-WIWI-105312 - Marketing and Sales Management
- M-WIWI-106258 - Digital Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2571150 | Market Research | 2 SWS | Lecture / 🗣 | Klarmann |
| ST 2023 | 2571151 | Market Research Tutorial | 1 SWS | Practice / 🗣 | Pade |

Exams

| ST 2023 | 7900015 | Market Research | Klarman |
| WT 23/24 | 7900053 | Market Research | Klarman |

Competence Certificate

The assessment of success takes place through a written exam with additional aids in the sense of an open book exam. Further details will be announced during the lecture.

Prerequisites

None

Recommendation

None

Annotation

Please note that this course has to be completed successfully by students interested in master thesis positions at the Marketing & Sales Research Group.

Below you will find excerpts from events related to this course:

Market Research

2571150, SS 2023, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V)
On-Site
Content
Within the lecture, essential statistical methods for measuring customer attitudes (e.g. satisfaction measurement), understanding customer behavior and making strategic decisions will be discussed. The practical use as well as the correct handling of different survey methods will be taught, such as experiments and surveys. To analyze the collected data, various analysis methods are presented, including hypothesis tests, factor analyses, cluster analyses, variance and regression analyses. Building on this, the interpretation of the results will be discussed.

Topics addressed in this course are for example:

- Theoretical foundations of market research
- Statistical foundations of market research
- Measuring customer attitudes
- Understanding customer reactions
- Strategical decision making

The aim of this lecture is to give an overview of essential statistical methods. In the lecture students learn the practical use as well as the correct handling of different statistical survey methods and analysis procedures. In addition, emphasis is put on the interpretation of the results after the application of an empirical survey. The derivation of strategic options is an important competence that is required in many companies in order to react optimally to customer needs.

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.

The total workload for this course is approximately 135.0 hours.

Presence time: 30 hours
Preparation and wrap-up of the course: 45.0 hours
Exam and exam preparation: 60.0 hours

Please note that this course has to be completed successfully by students interested in master thesis positions at the chair of marketing.

Literature

Content

In this course various relevant market research questions are addressed, as for example measuring and understanding customer attitudes, preparing strategic decisions and sales forecasting. In order to analyze these questions, students learn to handle social media data, panel data, nested observations and experimental design. To analyze the data, advanced methods, as for example multilevel modeling and return on marketing models are taught. Also, problems of causality are addressed in-depth. The lecture is accompanied by a computer-based exercise, in the course of which the methods are applied practically.

Students

- receive based on the course market research an overview of advanced empirical methods
- learn in the course of the lecture to handle advanced data collection and data analysis methods
- are based on the acquired knowledge able to interpret results and derive strategic implications

Total workload for 4.5 ECTS: ca. 135 hours.

In order to attend Marketing Analytics, students are required to have passed the course Market Research.

Exchange students can bypass the requirement of passing Market Research if they can prove that they possess sufficient statistical knowledge based on courses attended at their home institution. This will be examined individually by the Marketing & Sales Research Group.

For further information please contact the Marketing and Sales Research Group (marketing.iism.kit.edu).
Literature

- Cameron, A. Colin, Trivedi, Pravin K. (2005), Microeconometrics: methods and applications, New York.
- Chapman, Christopher, Feit, Elea M. (2015), R for Marketing Research and Analytics, Cham.

Content

Tasks parallel to the lecture to work on in a group of students.

Organizational issues

Blockveranstaltung: genaue Uhrzeiten und Raum werden noch bekannt gegeben.
5.172 Course: Marketing Strategy Business Game [T-WIWI-102835]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-105312 - Marketing and Sales Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment (alternative exam assessment) consists of a group presentation and a subsequent round of questions totalling 20 minutes.

Prerequisites
None

Recommendation
None

Annotation
Please note that only one of the courses from the election block can be chosen in the module.

Please note: The number of participants for this course is limited. The Marketing and Sales Research Group typically provides the possibility to attend a course with 1.5 ECTS points in the respective module to all students. Participation in a specific course cannot be guaranteed.

In order to participate in this course, you need to apply. Applications are usually accepted at the start of the lecture period in summer term. Detailed information on the application process is usually provided on the website of the Marketing and Sales Research Group (marketing.iism.kit.edu) shortly before the lecture period in summer term starts.
5.173 Course: Master's Thesis [T-WIWI-103142]

|负责者 | Studiendekan der KIT-Fakultät für Informatik
	Studiendekan des KIT-Studienganges
组织	KIT Department of Economics and Management
所属	M-WIWI-101656 - Module Master's Thesis

类型	Final Thesis
学分	30
成绩等级	Grade to a third
版本	1

竞争证书
see module description

先修课程
see module description

最终论文
This course represents a final thesis. The following periods have been supplied:

截止日期	6 months
最长延期期限	3 months
改正期限	8 weeks
5.174 Course: Mathematics for High Dimensional Statistics [T-WIWI-111247]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-101637 - Analytics and Statistics
- M-WIWI-103289 - Stochastic Optimization

Type: Oral examination
Credits: 4,5
Grading scale: Grade to a third
Recurrence: Irregular
Version: 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>Credit</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2550562</td>
<td>Mathematische Grundlagen hochdimensionaler Statistik</td>
<td>2 SWS</td>
<td>Lecture / Grothe</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2550563</td>
<td>Übung zu Mathematische Grundlagen hochdimensionaler Statistik</td>
<td>2 SWS</td>
<td>Practice / Grothe, Rieger</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900362</td>
<td>Mathematics for High Dimensional Statistics</td>
<td>Lecture (V)</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate
The assessment consists of an oral exam (30 min.) taking place in the recess period.

Prerequisites
None

Recommendation
Basic knowledge of mathematics and statistics is assumed. Knowledge in multivariate statistics is an advantage, but not necessary for the course.

Below you will find excerpts from events related to this course:

Mathematische Grundlagen hochdimensionaler Statistik
2550562, SS 2023, 2 SWS, Open in study portal

Content

Content:
The lecture focuses on modelling statistical objects (random vectors, random matrices and random graphs) in high dimensions. It deals with concentration inequalities that limit the fluctuations of such objects as well as complexity measures for quantities and functions. The theory is transferred to well-known and widespread applications such as neighbourhood detection in networks, statistical learning theory and LASSO.

Learning objectives:

Students are able to

- name and justify statistical properties of high-dimensional objects (vectors, matrices, functions).
- describe and explain differences in the behaviour between low- and high-dimensional random objects.
- name procedures for assess uncertainties in statistical models and apply them in simple examples.
- decide well-founded which modeling of high-dimensional structures is best suited in a specific situation.
- transform data into lower dimensions and quantify approximation errors.
- understand basic proofs in high-dimensional statistics using examples.
- develop, implement and evaluate smaller simulations in a programming language of their choice.
5.175 Course: Media Management [T-WIWI-112711]

Responsible: Prof. Dr. Ann-Kristin Kupfer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-106258 - Digital Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2572192</td>
<td>Media Management</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2572193</td>
<td>Media Management Exercise</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900135</td>
<td>Media Management</td>
<td></td>
<td>Kupfer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ CANCELLED

Competence Certificate

The control of success is done by the elaboration and presentation of a group task as well as a written exam. Further details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Students are highly encouraged to actively participate in class.

Annotation

The course will take place in the winter term 23/24 for the first time.

Below you will find excerpts from events related to this course:

Media Management

2572192, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Content

Students learn the theoretical foundations of media management and its most important concepts. They learn both about the key characteristics of both media products and media markets. They further get to know essential business models of media markets. Special emphasis will be given to understanding media consumers and the marketing mix of media products. A tutorial offers the opportunity to apply the key learnings of the lecture.

The learning objectives are as follows:

- Getting to know the theoretical foundations of media management
- Evaluating strategies for media products and services as media-specific marketing mix instruments
- Fostering critical and analytical thinking skills and the application of knowledge to marketing problems
- Improvement of skills and competences in the area of project management within the framework of group work
- Improvement of foreign language skills (business English)

Total time required for 4.5 credit points: approx. 135 hours

Attendance time: 30 hours
Self-study: 105 hours

Organizational issues

Appointments to be announced.
5.176 Course: Meshes and Point Clouds [T-INFO-101349]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: M-INFO-100812 - Meshes and Point Clouds

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7500317 | Meshes and Point Clouds | Prautzsch |

Competence Certificate

The assessment is carried out as an oral examination (§ 4 Abs. 2 Nr. 2 SPO) lasting 20 minutes.

Prerequisites

None.
5.177 Course: Methods in Economic Dynamics [T-WIWI-102906]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101514 - Innovation Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2560240</th>
<th>Methods in Economic Dynamics</th>
<th>1 SWS</th>
<th>Lecture / 🗣</th>
<th>Ott</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7900108</th>
<th>Methods in Economic Dynamics</th>
<th>Ott</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Alternative exam assessment.

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012] and Economics II [2600014]. Further, it is assumed that students have interest in using quantitative-mathematical methods.

Below you will find excerpts from events related to this course:

Content

The economic exploitation of inventions is an important part of innovation economics. Intellectual property rights such as patents or trademarks play a central role. Within this workshop, the recording, processing and analysis of such intellectual property rights will be deepened, e.g. considering specific technologies. Students will learn how to work with relational databases, the econometric evaluation of recorded data, and methods for visualising them.

Learning objectives:

The student

- learns to query data sources.
- is able to analyse data with statistical methods.
- visualises and interprets data evaluations (e.g. using dashboards or methods of network analysis).

Recommendations:

An interest in working with data, basic knowledge on databases as well as basic knowledge in economics and statistics are advantageous.

Workload:

The total workload for this course is approximately 45 hours.

- Classes: ca. 5 h
- Self-study: ca. 40 h

Assessment:

Non exam assessment according to § 4 paragraph 3 of the examination regulation (SPO 2015).
Organizational issues
The course is structured along two assignments, the first of which is an individual assignment, whereas the second assignment is a group project. Assignment 1 will be completed within one month’s time, whereas assignment 2 will take place on a different date.

Assignment 1 will take place on 03.05.2023 in Building 01.87, B5.25. Assignment 2 will take place on 23.06.2023 in Building 01.87, B5.25. The exact time will be announced later.

Students are offered the opportunity to participate in this course jointly with the course “Seminar in Economic Policy”, within the module “Economics of Innovation”. The work in both courses will be strongly related to each other, as students will work on the same topic from two different perspectives. Students in the course “Seminar in Economic Policy” will be provided with the opportunity to write a paper that addresses the results found by the students in the course “Methods in Economic Dynamics”. Taking both courses together will enable the students to earn 4.5 ECTS.

Literature
Relevante Literatur wird in der Vorlesung bekanntgegeben.
(Relevant literature will be announced in the lecture.)
5.178 Course: Methods in Innovation Management [T-WIWI-110263]

Responsible: Dr. Daniel Jeffrey Koch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101507 - Innovation Management
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessments (§4(2), 3 SPO). The final grade is composed 75% of the grade of the written paper and 25% of the grade of the presentation.

Prerequisites
None.

Recommendation
Prior attendance of the course "Innovation Management: Concepts, Strategies and Methods" is recommended.
Course: Mixed Integer Programming I [T-WIWI-102719]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2550138</td>
<td>Mixed-integer Programming I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Stein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2550139</td>
<td>Exercises Mixed Integer Programming I</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Stein, Beck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900180_WS2324_HK</td>
<td>Mixed Integer Programming I</td>
<td></td>
<td>Stein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The examination is held in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of Mixed Integer Programming II [25140]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites
None

Recommendation
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation
The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).

Below you will find excerpts from events related to this course:

Mixed-integer Programming I

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550138, WS 23/24, 2 SWS, Language: German</td>
<td></td>
<td>Open in study portal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
Many optimization problems from economics, engineering and natural sciences are modeled with continuous as well as with discrete variables. Examples are the energy minimal design of a chemical process in which several reactors may be switched on or off, and portfolio optimization with limitations on the number of securities. For the algorithmic identification of optimal points of such problems an interaction of ideas from discrete as well as continuous optimization is necessary.

The lecture focusses on mixed-integer linear optimization problems and is structured as follows:

- Introduction, solvability, and basic concepts
- LP relaxation and error bounds for roundings
- Branch-and-bound method
- Gomory’s cutting plane method
- Benders decomposition

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of mixed-integer nonlinear optimization problems forms the contents of the lecture "Mixed-integer Programming II".

Learning objectives:
The student

- knows and understands the fundamentals of linear mixed integer programming,
- is able to choose, design and apply modern techniques of linear mixed integer programming in practice.

Literature

- J. Kallrath: Gemischte-ganzzahlige Optimierung, Vieweg, 2002
- D. Li, X. Sun: Nonlinear Integer Programming, Springer, 2006
5.180 Course: Mixed Integer Programming II [T-WIWI-102720]

Responsibility: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of Mixed Integer Programming I [2550138]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites
None

Recommendation
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation
The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).
5.181 Course: Mobile Communication [T-INFO-101322]

Responsible: Prof. Dr. Oliver Waldhorst
Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of:
- M-INFO-100785 - Mobile Communication
- M-INFO-101203 - Wireless Networking
- M-INFO-101205 - Future Networking

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24643</td>
<td>Mobile Communications</td>
<td>2</td>
<td>Lecture</td>
<td>Waldhorst, Mahrt</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500073</td>
<td>Mobile Communication</td>
<td>Waldhorst, Zitterbart</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500015</td>
<td>Mobile Communication</td>
<td>Waldhorst, Zitterbart</td>
</tr>
</tbody>
</table>
5.182 Course: Model Driven Software Development [T-INFO-101278]

Responsible: Prof. Dr. Ralf Reussner
Organisation: KIT Department of Informatics
Part of:
M-INFO-101201 - Software Systems
M-INFO-101202 - Software Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24657</td>
<td>Model-Driven Software Engineering</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Burger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500016</td>
<td>Model Driven Software Development</td>
<td>Burger, Reussner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.183 Course: Modeling and OR-Software: Advanced Topics [T-WIWI-106200]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102808 - Digital Service Systems in Industry
- M-WIWI-102832 - Operations Research in Supply Chain Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2550490</td>
<td>Modellieren und OR-Software: Fortgeschrittene Themen</td>
<td>Practical course / Blended (On-Site/Online) Pomes, Linner, Nickel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900035</td>
<td>Modeling and OR-Software: Advanced Topics</td>
<td>Nickel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900071</td>
<td>Modeling and OR-Software: Advanced Topics</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is a written examination. The examination is held in every semester. The prerequisite can only be obtained in semesters in which the course exercises are offered.

Prerequisites
Prerequisite for admission to the exam is the successful participation in the exercises. This includes the processing and presentation of exercises.

Recommendation
Basic knowledge as conveyed in the module Introduction to Operations Research is assumed. Successful completion of the course Modeling and OR-Software: Introduction.

Annotation
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The lecture is held in every term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Modellieren und OR-Software: Fortgeschrittene Themen

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550490</td>
<td>WS 23/24</td>
<td>Modellieren und OR-Software: Fortgeschrittene Themen</td>
<td>Practical course (P) Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Content
The advanced course is designated for Master students that already attended the introductory course or gained equivalent experience elsewhere, e.g. during a seminar or bachelor thesis. We will work on advanced topics and methods in OR, among others cutting planes, column generation and constraint programming. The Software used for the exercises is IBM ILOG CPLEX Optimization Studio. The associated modelling programing languages are OPL and ILOG Script.

Organizational issues
Link zur Bewerbung:
http://go.wiwi.kit.edu/OR_Bewerbung

Bewerberzeitraum:
01.09.2023 00:00 - 12.10.2023 23:55
Course: Modeling and Simulation [T-WIWI-112685]

Responsible: Prof. Dr. Sanja Lazarova-Molnar
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101456 - Intelligent Systems and Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2511100</td>
<td>Modeling and Simulation</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Lazarova-Molnar</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2511101</td>
<td>Exercises Modeling and Simulation</td>
<td>Practice</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td>Lazarova-Molnar</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>79AIFB_MaS_C6</td>
<td>Modeling and Simulation (Registration until 17 July 2023)</td>
<td>Lecture</td>
<td>Lazarova-Molnar</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79AIFB_MaS_A6</td>
<td>Modeling and Simulation</td>
<td>Lecture</td>
<td>Lazarova-Molnar</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on the number of participants in the course, the exam will be offered either as an oral exam (20 min), or as a written exam (60 min).

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Recommendation

Some experience in programming and knowledge of basic mathematics and statistics.

Annotation

Instruction is in the form of lectures and exercises. A detailed course schedule will be published before the start of the semester.

Below you will find excerpts from events related to this course:

Modeling and Simulation

2511100, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Content
Modeling and Simulation is the most widely used operations research / systems engineering technique for designing new systems and optimizing the performance of existing systems. In one way or another, just about every engineering or scientific field uses simulation as an exploration, modeling, or analysis technique. The course is designed to provide students with basic knowledge of modeling and simulation approaches and to provide them with first experience of using a simulation package. The course will focus on modeling and simulation of real-world discrete event systems. Examples of discrete events are customer arrivals at a queue of a service desk, machine failures in manufacturing systems, telephone calls in a call center, etc. Moreover, continuous and hybrid models will be also discussed. Topics include Discrete-Event Simulation, Input Modeling, Output Analysis, Random Number Generation, Verification and Validation, Stochastic Petri Nets and Markov Chains.

Competence Certificate
Depending on the number of participants in the course, the exam will be offered either as an oral exam (20 min), or as a written exam (60 min).

The exam takes place every semester and can be repeated at every regular examination date.

Learning Objectives
Knowledge:
- Demonstrate knowledge about general and specific theories, challenges, algorithms, methods, technologies, and tools related to modelling and simulation
- Demonstrate knowledge of two important classes of simulation:
 - Discrete-event Monte-Carlo simulation,
 - Continuous simulation with ODEs
- Demonstrate knowledge of algorithms necessary to build a simulator

Skills:
- Analyse suitability of an approach/tool for a given modelling problem
- Understand simulation models of various types
- Demonstrate methods and techniques to overcome common challenges in modelling and simulation
- Model simulation input data
- Analyse and model discrete stochastic systems
- Analyse and interpret simulation results

Competences:
- Use different methods to conduct simulation-based analysis of real-world data
- Build and simulate stochastic models
- Use simulation software

Prerequisites
Some experience in programming and knowledge of basic mathematics and statistics

Form of instruction
Lectures and exercises. A detailed course plan will be published before the semester start.

Literature
Discrete-Event System Simulation, 5th Edition
Jerry Banks, John S. Carson, II, Barry L. Nelson and David M. Nicol
5.185 Course: Multicriteria Optimization [T-WIWI-111587]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900209_SS2023_NK | Multicriteria Optimization | Stein |

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation

The course is offered every second winter semester (starting WiSe 22/23). The curriculum of the next three years is available online (www.ior.kit.edu).

Contents:

Multicriteria optimization deals with optimization problems with multiple objective functions. In practice, the minimization or maximization of several objectives often conflict with each other, such as weight and stability of mechanical components, return and risk of stock portfolios, or cost and duration of transports. Various scalarization approaches allow one to formulate single-objective problems that can be solved using nonlinear or global optimization techniques, and whose optimal points have a reasonable interpretation for the underlying multicriteria problem.

However, some seemingly obvious scalarization approaches suffer from various drawbacks, so that regardless of scalarization approaches, it is necessary to clarify what is meant by the solution of a multicriteria optimization problem in the first place. For such Pareto-optimal points, optimality conditions and solution procedures based on them can be formulated. From the usually non-unique Pareto set, decision makers finally choose an alternative based on their subjective preferences.

The lecture gives a mathematically sound introduction to multicriteria optimization and is structured as follows:

- Introductory examples and terminology
- Solution concepts
- Methods for the determination of the Pareto set
- Selection of Pareto-optimal points under subjective preferences
5.186 Course: Multivariate Statistical Methods [T-WIWI-103124]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-101637 - Analytics and Statistics
- M-WIWI-101639 - Econometrics and Statistics II
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2550554 | Analysis of Multivariate Data | 2 SWS | Lecture / 🗣 | Grothe |
| ST 2023 | 2550555 | Übung zu Multivariate Verfahren | 2 SWS | Practice / 🗣 | Kächele |

Exams

| ST 2023 | 7900351 | Multivariate Statistical Methods | Grothe |

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites

None

Recommendation

The course covers highly advanced statistical methods with a quantitative focus. Hence, participants are necessarily expected to have advanced statistical knowledge, e.g. acquired in the course "Advanced Statistics". Without this, participation in the course is not advised.

Previous attendance of the course Analysis of Multivariate Data is recommended. Alternatively, the script can be provided to interested students.

Below you will find excerpts from events related to this course:

Analysis of Multivariate Data

2550554, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Literature

Skript zur Vorlesung

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of:
- M-INFO-101203 - Wireless Networking
- M-INFO-101204 - Networking Labs
- M-INFO-101206 - Networking

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24601</td>
<td>Netzsicherheit: Architekturen und Protokolle</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Baumgart, Bless, Heseding, Zitterbart</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled
5.188 Course: Next Generation Internet [T-INFO-101321]

Responsible: Dr.-Ing. Roland Bless
Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of: M-INFO-101205 - Future Networking
M-INFO-101206 - Networking

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 24674 | Next Generation Internet | 2 SWS | Lecture / 🗣 | Bless |

Exams

| ST 2023 | 7500074 | Next Generation Internet | Bress, Zitterbart |
| WT 23/24 | 7500016 | Next Generation Internet | Bress, Zitterbart |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Next Generation Internet
24674, SS 2023, 2 SWS, Language: German, Open in study portal

Content
The lecture focuses on current developments in Internet-based network technologies. First, architectural principles of today’s Internet are presented and discussed, subsequently nowadays and future challenges are motivated. Methods for quality-of-service support and transport of multi-media stream as well as newer transport protocols and group communication support are presented. Deployment of the presented technologies in IP-based networks are discussed. The lecture presents advanced approaches such as programmable networks and network virtualization as well as newer approaches and protocols for routing, satellite networking, and peer-to-peer networks.

Literature

Weiterführende Literatur
wird in der Vorlesung bekanntgegeben.
5.189 Course: Non- and Semiparametrics [T-WIWI-103126]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2521300</td>
<td>Non- and Semiparametrics</td>
<td>2 SWS</td>
<td>Lecture, Schienle</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2521301</td>
<td>Non- and Semiparametrics</td>
<td>2 SWS</td>
<td>Practice, Schienle, Rüter, Wolfram</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900009</td>
<td>Non- and Semiparametrics</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course “Applied Econometrics” [2520020]

Annotation
The course takes place every second winter semester: 2018/19 then 2020/21

Below you will find excerpts from events related to this course:

V Non- and Semiparametrics
2521300, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

Learning objectives:
The student

- has profound knowledge of non- and semiparametric estimation methods
- is capable of implementing these methods using statistical software and using them to assess empirical problems

Content:
Kernel density estimation, local constant and local linear regression, bandwidth choice, series and sieve estimators, additive models, semiparametric models

Requirements:
It is recommended to attend the course Applied Econometrics prior to this course.

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours

Literature
5.190 Course: Nonlinear Optimization I [T-WIWI-102724]

 Responsible: Prof. Dr. Oliver Stein
 Organisation: KIT Department of Economics and Management
 Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Nonlinear Optimization I</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Stein, Schwarz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Nonlinear Optimization I</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Nonlinear Optimization I</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

The module component exam T-WIWI-103637 "Nonlinear Optimization I and II" may not be selected.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

2550111, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Literature

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
5.191 Course: Nonlinear Optimization I and II [T-WIWI-103637]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>6</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Language</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2550111</td>
<td>Nonlinear Optimization I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>German</td>
<td>On-Site</td>
<td>Stein</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2550112</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>Practice</td>
<td>2 SWS</td>
<td>German</td>
<td>On-Site</td>
<td>Stein, Schwarze</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2550113</td>
<td>Nonlinear Optimization II</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>German</td>
<td>On-Site</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900204_SS2023_NK</td>
<td>Nonlinear Optimization I and II</td>
<td>Lecture</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900003_WS2324_HK</td>
<td>Nonlinear Optimization I and II</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The exam takes place in the semester of the lecture and in the following semester.

Prerequisites

None.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

2550111, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Literature

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Literature

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
5.192 Course: Nonlinear Optimization II [T-WIWI-102725]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2550112</td>
<td>Practice</td>
<td></td>
<td></td>
<td>Stein, Schwarze</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2550113</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900011</td>
<td>Lecture</td>
<td></td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7900012</td>
<td>Practice</td>
<td></td>
<td></td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester. The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Prerequisites

None.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization II

2550113, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.
Literature

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
5.193 Course: Online Concepts for Karlsruhe City Retailers [T-WIWI-111848]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101510 - Cross-Functional Management Accounting
M-WIWI-105312 - Marketing and Sales Management
M-WIWI-106258 - Digital Marketing

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Online Concepts for Karlsruhe City Retailers</td>
<td>2 SWS</td>
<td>Others / 📢</td>
<td>Klarmann, Kupfer, Weber, Gerlach</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment:

- presentations in teams (in each case to the extent of approx. 15 minutes per team with subsequent discussion)
- delivery of a written elaboration per team.

Annotation

Please note that an application is required to participate in this workshop. The application phase usually takes place at the beginning of the lecture period in the summer semester. More information on the application process is usually available on the Marketing and Sales Research Group website (marketing.ism.kit.edu) shortly before the start of the lecture period in the summer semester.

Below you will find excerpts from events related to this course:

Online concepts for Karlsruhe city retailers

2571184, SS 2023, 2 SWS, Language: German, Open in study portal

Online Concepts for Karlsruhe City Retailers

2571184, SS 2023, 2 SWS

Content

As part of a practical project in cooperation with the city marketing department of KME Karlsruhe Marketing und Event GmbH, students will have the opportunity to directly interact with retailers in Karlsruhe. Challenges of the digitalization of brick-and-mortar retailing will be analyzed and solutions will be developed and implemented.

In a theoretical part at the beginning of the event, students will gain an insight into the theoretical foundations of specific online marketing instruments. In cooperation with Karlsruhe City Marketing, students are taught application-oriented skills in online marketing tools, such as content management systems, social media platforms, search engine optimization or Google Ads campaigns.

In the practical part of the course, student teams cooperate with a real retailer in Karlsruhe's city center and learn how to analyze and optimize online presences and digital solutions based on key performance indicators. Possible use cases range from social media communication and website optimization to the introduction of innovative pricing and payment methods. In this way, students are given the tools for developing, maintaining and optimizing individual websites and digital solutions in stationary retailing.

Learning objectives result accordingly as follows:

- Learning of theoretical basics of central, application-oriented tools of online marketing
- Application and practical deep-dive of the acquired knowledge in a real case
- Concise and structured presentation of results

Total time required for 3 credit points: approx. 90.0 hours

Attendance time: 12 hours
Preparation and wrap-up of the course: 58 hours
Exam and exam preparation: 20 hours
5.194 Course: Operations Research in Health Care Management [T-WIWI-102884]

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation).

The examination is held in the term of the lecture and the following lecture.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the module "Introduction to Operations Research" is assumed.

Annotation
The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ioi.kit.edu/english/Courses.php.
5 COURSES

Course: Operations Research in Supply Chain Management [T-WIWI-102715]

5.195 Course: Operations Research in Supply Chain Management [T-WIWI-102715]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102805 - Service Operations
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

Type: Written examination Credits: 4.5 Grading scale: Grade to a third
Recurrence: Irregular Version: 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2550480</td>
<td>Operations Research in Supply Chain Management</td>
<td>2</td>
<td>Lecture / 🎤</td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2550481</td>
<td>Übungen zu OR in Supply Chain Management</td>
<td>1</td>
<td>Practice / 🎤</td>
<td>Hoffmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>00013</td>
<td>Operations Research in Supply Chain Management</td>
<td></td>
<td>Nickel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900076</td>
<td>Operations Research in Supply Chain Management</td>
<td></td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🎤 On-Site, ✗ Canceled

Competence Certificate

The assessment is a 60 minutes written examination (according to §4(2), 1 of the examination regulation). The examination is held in the term of the lecture and the following lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the module Introduction to Operations Research and in the lectures Facility Location and Strategic SCM, Tactical and operational SCMs assumed.

Annotation

The course is offered irregularly. Planned lectures for the next three years can be found in the internet at http://dol.ior.kit.edu/english/Courses.php.

Below you will find excerpts from events related to this course:

Operations Research in Supply Chain Management

2550480, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content

Supply Chain Management constitutes a general tool for logistics process planning in supply networks. To an increasing degree quantitative decision support is provided by methods and models from Operations Research. The lecture "OR in Supply Chain Management" conveys concepts and approaches for solving practical problems and presents an insight to current research topics. The lecture's focus is set on modeling and solution methods for applications originating in different domains of a supply chain. The emphasis is put on mathematical methods like mixed integer programming, valid inequalities or column generation, and the derivation of optimal solution strategies.

In form and content, the lecture addresses multiple areas of Supply Chain Management: After a short introduction, inventory models, scheduling, assembly line balancing as well as cutting and packing will be discussed. Another main focus of the lecture is the application of methods from online optimization. This optimization discipline has gained more and more importance in the optimization of supply chains over the several past years due to an increasing amount of dynamic data flows.
Literature

- Dyckhoff, H.; Finke, U.: Cutting and Packing in Production and Distribution - A Typology and Bibliography, Physica-Verlag, 1992
5.196 Course: Optimization Models and Applications [T-WIWI-110162]

Responsibility: Dr. Nathan Sudermann-Merx
Organization: KIT Department of Economics and Management

Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The examination will take place for the last time in the winter semester 2020/2021.
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.
The prerequisite for participation in the exam is the achievement of a minimum number of points in delivery sheets. Details will be announced at the beginning of the course.

Prerequisites
None.

Annotation
The course will take place for the last time in the winter semester 20/21.
5.197 Course: Optimization under Uncertainty [T-WIWI-106545]

Responsible: Prof. Dr. Steffen Rebennack

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-103243 - Optimization under Uncertainty in Information Engineering and Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Type</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type/Format</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2550464</td>
<td>Optimization Under Uncertainty</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Rebennack</td>
</tr>
<tr>
<td>Practice</td>
<td>2550465</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Rebennack</td>
</tr>
<tr>
<td>Others</td>
<td>2550466</td>
<td></td>
<td>2 SWS</td>
<td>Others</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900309</td>
<td>Optimization under Uncertainty</td>
<td>Rebennack</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900322</td>
<td>Optimization under Uncertainty</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites

None.
Course: Panel Data [T-WIWI-103127]

Responsible: apl. Prof. Dr. Wolf-Dieter Heller
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Hours</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2520320</td>
<td>2 SWS</td>
<td>Panel Data</td>
<td>2 SWS</td>
<td>Heller</td>
</tr>
<tr>
<td>ST 2023 2520321</td>
<td>2 SWS</td>
<td>Übungen zu Paneldaten</td>
<td>2 SWS</td>
<td>Heller</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Hours</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900115</td>
<td>Panel Data</td>
<td></td>
<td></td>
<td>Heller</td>
</tr>
</tbody>
</table>

Prerequisites
None

Below you will find excerpts from events related to this course:

Panel Data
2520320, SS 2023, 2 SWS, Language: German, Open in study portal

Content

Content:
Fixed-Effects-Models, Random-Effects-Models, Time-Demeaning

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours
Exam preparation: 40 hours

Literature

5.199 Course: Parallel Algorithms [T-INFO-101333]

Responsible: Prof. Dr. Peter Sanders

Organisation: KIT Department of Informatics

Part of:
- M-INFO-100796 - Parallel Algorithms
- M-INFO-101199 - Advanced Algorithms: Design and Analysis
- M-INFO-101200 - Advanced Algorithms: Engineering and Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2400053</td>
<td>Parallel Algorithms</td>
<td>2/1 SWS</td>
<td>Lecture / 🗣</td>
<td>Sanders, Hübner, Uhl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The lecture consists of two partial achievements:
- an oral examination lasting 20 minutes.
- an exercise carried out as an examination of another type.

Final grade: 80% oral examination, 20% exercise

Recommendation

Knowledge from lectures such as Algorithms I/II is recommended.
5.200 Course: Parallel Algorithms Pass [T-INFO-111857]

Responsible: Prof. Dr. Peter Sanders
Organisation: KIT Department of Informatics
Part of:
M-INFO-100796 - Parallel Algorithms
M-INFO-101199 - Advanced Algorithms: Design and Analysis
M-INFO-101200 - Advanced Algorithms: Engineering and Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The lecture consists of two partial achievements:
- an oral examination lasting 20 minutes.
- an exercise carried out as an examination of another type.
Final grade: 80% oral examination, 20% exercise

Recommendation
Knowledge from lectures such as Algorithms I/II is recommended.
5.201 Course: Parallel Computer Systems and Parallel Programming [T-INFO-101345]

Responsible: Prof. Dr. Achim Streit
Organisation: KIT Department of Informatics
Part of: M-INFO-101210 - Dynamic IT-Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24617</td>
<td>Parallel computer systems and parallel programming</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Streit, Raffeiner, Barthel</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2023</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7500141</td>
<td>Parallel computer systems and parallel programming</td>
<td>Streit</td>
<td></td>
</tr>
</tbody>
</table>
5.202 Course: Parametric Optimization [T-WIWI-102855]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101473 - Mathematical Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester.

Prerequisites
None

Recommendation
It is strongly recommended to visit at least one lecture from the Bachelor program of this chair before attending this course.

Annotation
The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
5.203 Course: Patent Law [T-INFO-101310]

Responsible: Patric Werner
Organisation: KIT Department of Informatics
Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24656</td>
<td>Patent Law</td>
<td>2 SWS</td>
<td>Werner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500109</td>
<td>Patent Law</td>
<td></td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500006</td>
<td>Patent Law</td>
<td></td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎫 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled
5.204 Course: Pattern Recognition [T-INFO-101362]

Responsible: Prof. Dr.-Ing. Jürgen Beyerer
Tim Zander

Organisation: KIT Department of Informatics

Part of:
- M-INFO-100825 - Pattern Recognition
- M-INFO-101239 - Machine Vision

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Pattern Recognition</td>
<td>4</td>
<td>Lecture / Practice / Online</td>
<td>Beyerer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>SWS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Pattern Recognition</td>
<td></td>
<td>Beyerer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Pattern Recognition</td>
<td></td>
<td>Beyerer</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Pattern Recognition

24675, SS 2023, 4 SWS, Language: German, [Open in study portal](#)

Organizational issues

Vorlesung: montags 15:45 bis 16:30 Uhr und mittwochs 14:00 bis 15:30 Uhr

Übung: montags 16:30 bis 17:15 Uhr

Literature

Weiterführende Literatur

5 Courses

Course: Planning and Management of Industrial Plants [T-WIWI-102631]

5.205 Course: Planning and Management of Industrial Plants [T-WIWI-102631]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Content</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Planning and Management of Industrial Plants</td>
<td>Schultmann, Rudi</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Übungen Anlagenwirtschaft</td>
<td>Heck, Heinzmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Content</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td></td>
<td>Lecture V</td>
<td>Planning and Management of Industrial Plants</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, X Cancelled

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Planning and Management of Industrial Plants
2581952, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

Industrial plant management incorporates a complex set of tasks along the entire life cycle of an industrial plant, starting with the initiation and erection up to operating and dismantling.

During this course students will get to know special characteristics of industrial plant management. Students will learn important methods to plan, realize and supervise the supply, start-up, maintenance, optimisation and shut-down of industrial plants. Alongside, students will have to handle the inherent question of choosing between technologies and evaluating each of them. This course pays special attention to the specific characteristics of plant engineering, commissioning and investment.

Literature

Wird in der Veranstaltung bekannt gegeben.

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101409 - Electronic Markets
- M-WIWI-101446 - Market Engineering
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-102754 - Service Economics and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2540460</th>
<th>Platform & Market Engineering: Commerce, Media, and Digital Democracy</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Fegert, Weinhardt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2540461</td>
<td>Übungen zu Platform & Market Engineering: Commerce, Media, and Digital Democracy</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Jachimowicz, Stein, Bezzaoui, Fegert</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7979235 | Platform & Market Engineering: Commerce, Media, and Digital Democracy | Weinhardt |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) up to 6 bonus points can be obtained. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by max. one grade level (0.3 or 0.4).

Prerequisites

None

Below you will find excerpts from events related to this course:

Platform & Market Engineering: Commerce, Media, and Digital Democracy

Lecture (V) On-Site

2540460, SS 2023, 2 SWS, Language: English, Open in study portal

Organizational issues

ehemals: "Market Engineering: Information in Institutions"

Literature

Course: Portfolio and Asset Liability Management [T-WIWI-103128]

5.207 Course: Portfolio and Asset Liability Management [T-WIWI-103128]

Responsible: Dr. Mher Safarian
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2520357</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Safarian</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2520358</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Safarian</td>
<td></td>
</tr>
<tr>
<td>Exams ST 2023</td>
<td>7900116</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course consists of a written examination (following §4(2), 1 SPOs, 180 min.).

Prerequisites
None

Below you will find excerpts from events related to this course:

V Portfolio and Asset Liability Management
2520357, SS 2023, 2 SWS, Language: English, [Open in study portal]
Lecture (V)

Content
Learning objectives:
Knowledge of various portfolio management techniques in the financial industry.

Content:
Portfolio theory: principles of investment, Markowitz-portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitrage pricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment
Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours
Exam preparation: 40 hours

Organizational issues
Blockveranstaltung, Termine werden über Ilias bekanntgegeben

Literature
To be announced in the lecture
5.208 Course: Practical Course Computer Vision for Human-Computer Interaction [T-INFO-105943]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Rainer Stiefelhagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-101239 - Machine Vision</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2400123 | Practical Course Computer Vision for Human-Computer Interaction | 2 SWS | Practical course / 🖥 | Stiefelhagen |

Exams

| ST 2023 | 7500279 | Practical Course Computer Vision for Human-Computer Interaction | Stiefelhagen |

Legend: 🖥 Online, Blended (On-Site/Online), 🔊 On-Site, ✗ Cancelled
5.209 Course: Practical Course Protocol Engineering [T-INFO-104386]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: M-INFO-101206 - Networking

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Protocol Engineering</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>König, Mahrt, Zitterbart</td>
<td></td>
</tr>
</tbody>
</table>
5.210 Course: Practical Course: Data Science [T-INFO-111262]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of:
- M-INFO-101256 - Theory and Practice of Data Warehousing and Mining
- M-INFO-105632 - Practical Course: Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework (written)</td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Exam Code</th>
<th>Title</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500091</td>
<td>Data Science - Laboratory Course</td>
<td>Böhm</td>
</tr>
</tbody>
</table>
5.211 Course: Practical Course: Data Science for Scientific Data [T-INFO-112844]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of:
- M-INFO-101256 - Theory and Practice of Data Warehousing and Mining
- M-INFO-106329 - Practical Course: Data Science for Scientific Data

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>242424</th>
<th>Data Science for Scientific Data</th>
<th>2 SWS</th>
<th>Practical course / 🔴</th>
<th>Böhm</th>
</tr>
</thead>
</table>

Exams

| ST 2023 | 75751 | Practical Course: Data Science for Scientific Data | Böhm |

Legend: 💻 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 24286 | **Datenbankpraktikum** | 2 SWS | Practical course / 🗣 | Böhm, Richter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Practical Course: Geometric Modeling [T-INFO-103207]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: M-INFO-101666 - Practical Course: Geometric Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400107</td>
<td>Praktikum Geometrisches Modellieren</td>
<td>2 SWS</td>
<td>Practical course / 🤖</td>
<td>Xu, Prautzsch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2400024</td>
<td>Geometric Modelling</td>
<td></td>
<td>Practical course / 🤖</td>
<td>Prautzsch, Xu</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500212</td>
<td>Practical course: Geometric Modeling</td>
<td></td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment is carried out as an examination of another type (§ 4 Abs. 2 No. 3 SPO).

The overall impression is evaluated. Solutions to assignments and their presentations will be included in the grading.
5.214 Course: Practical Course: Smart Data Analytics [T-INFO-106426]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-103235 - Practical Course: Smart Data Analytics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Weekly Contacts</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24895</td>
<td>Practical Course: Smart Data Analytics</td>
<td>4 SWS</td>
<td>Beigl, Riedel, Zhou, Huang</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500088</td>
<td>Practical Course: Smart Data Analytics</td>
<td>Beigl, Riedel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.215 Course: Practical Course: Web Applications and Service-Oriented Architectures (II) [T-INFO-103121]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: M-INFO-104061 - Microservice-Based Web Applications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24873</td>
<td>Practical Course: Web Applications and Service-Oriented Architectures (II)</td>
<td>Abeck, Schneider, Sänger, Throner</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Practical Course: Web Applications and Service-Oriented Architectures (II)</td>
<td>Abeck</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Practical Seminar Digital Service Systems [T-WIWI-106563]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-102808 - Digital Service Systems in Industry

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2540554</td>
<td>Practical Seminar: Information Systems & Service Design (Master)</td>
<td>Lecture / 📥</td>
<td>3 SWS</td>
<td></td>
<td>Irregular</td>
<td>Mädche</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2540554</td>
<td>Practical Seminar: Information Systems & Service Design</td>
<td>Lecture / 📥</td>
<td>3 SWS</td>
<td></td>
<td>Irregular</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900293</td>
<td>Service Design Thinking</td>
<td>Lecture / 📥</td>
<td>Satzger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900301</td>
<td>Practical Seminar Service Innovation</td>
<td>Lecture / 📥</td>
<td>Satzger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900314</td>
<td>Practical Seminar Digital Service Systems</td>
<td>Lecture / 📥</td>
<td>Satzger</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900341</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>Lecture / 📥</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites

None

Recommendation

None

Annotation

New course title starting summer term 2017: "Practical Seminar Digital Service Systems".
The current range of seminar topics is announced on the KSRI website www.ksri.kit.edu.

Below you will find excerpts from events related to this course:

Practical Seminar: Information Systems & Service Design (Master)

2540554, SS 2023, 3 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content

In this practical seminar, students get an individual assignment and develop a running software prototype. Beside the software prototype, the students also deliver a written documentation.

Prerequisites

Profound skills in software development are required

Literature

Further literature will be made available in the seminar.

Practical Seminar: Information Systems & Service Design

2540554, WS 23/24, 3 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)
5.217 Course: Practical Seminar: Advanced Analytics [T-WIWI-108765]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-103118 - Data Science: Data-Driven User Modeling

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of practical work in the field of advanced analytics, a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites

None

Recommendation

At least one module offered by the institute should have been chosen before attending this seminar.

Annotation

The course is held in English. The course is not offered regularly.
5.218 Course: Practical Seminar: Artificial Intelligence in Service Systems [T-WIWI-112152]

Responsible: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101506 - Service Analytics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900301</td>
<td>Practical Seminar Service Innovation</td>
<td>Satzger</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.
Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites

None.

Recommendation

Knowledge in the field of Artificial Intelligence in Service Systems is assumed. Therefore, it is recommended to attend the course Artificial Intelligence in Service Systems [2595650] beforehand.
5.219 Course: Practical Seminar: Data-Driven Information Systems [T-WIWI-106207]

| Responsible: | Prof. Dr. Alexander Mädche
| | Prof. Dr. Gerhard Satzger
| | Prof. Dr. Thomas Setzer
	Prof. Dr. Christof Weinhardt
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-103117 - Data Science: Data-Driven Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900165 | Practical Seminar: Data Science for Industrial Applications | Satzger |

Competence Certificate
The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites
None

Recommendation
At least one module offered by the institute should have been chosen before attending this seminar.

Annotation
The course is held in english. The course is not offered regularly.
Course: Practical Seminar: Health Care Management (with Case Studies) [T-WIWI-102716]

5.220 Course: Practical Seminar: Health Care Management (with Case Studies) [T-WIWI-102716]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-102805 - Service Operations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2550498</td>
<td>Practical seminar: Health Care Management</td>
<td>3 SWS</td>
<td>Seminar / 🧩</td>
<td>Nickel, Mitarbeiter</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500008</td>
<td>Practical seminar: Health Care Management</td>
<td>3 SWS</td>
<td>Others / 🗣️</td>
<td>Nickel, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900312</td>
<td>Practical Seminar: Health Care Management (with Case Studies)</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate

Due to a research semester of Professor Nickel in WS 19/20, the courses Location Planning and Strategic SCM and Practice Seminar: Health Care Management do NOT take place in WS 19/20. Please also refer to the information at https://doi.io/kit.edu/Lehrveranstaltungen.php for further details.

The assessment consists in a case study, the writing of a corresponding paper, and an oral exam (according to §4(2), 2 of the examination regulation).

Prerequisites

None.

Recommendation

Basic knowledge as conveyed in the module Introduction to Operations Research is assumed.

Annotation

The credits have been reduced to 4,5 starting summer term 2016.

The lecture is offered every term.

The planned lectures and courses for the next three years are announced online.
5.221 Course: Practical Seminar: Information Systems and Service Design [T-WIWI-108437]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102806 - Service Innovation, Design & Engineering
- M-WIWI-104068 - Information Systems in Organizations
- M-WIWI-104080 - Designing Interactive Information Systems

Type
Examination of another type

Credits
4.5

Grading scale
Grade to a third

Recurrence
Each term

Version
2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture (V)</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2540554</td>
<td>Practical Seminar: Information Systems & Service Design (Master)</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Lecture (V)</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7900341</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class). In the winter terms, the course is only offered as a seminar.

Prerequisites
None.

Recommendation
Attending the course „Digital Service Design“ is recommended, but not mandatory.

Annotation
The course is held in English.

Below you will find excerpts from events related to this course:

Practical Seminar: Information Systems & Service Design (Master)

2540554, SS 2023, 3 SWS, Language: English, [Open in study portal](#)

Lecture (V)

Blended (On-Site/Online)

Content
In this practical seminar, students get an individual assignment and develop a running software prototype. Beside the software prototype, the students also deliver a written documentation.

Prerequisites
Profound skills in software development are required

Literature
Further literature will be made available in the seminar.
5.222 Course: Practical Seminar: Service Innovation [T-WIWI-110887]

Responsible: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-102806 - Service Innovation, Design & Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900293 | Service Design Thinking | Satzger |
| ST 2023 | 7900301 | Practical Seminar Service Innovation | Satzger |

Competence Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites

None

Recommendation

Knowledge of Service Innovation Methods is assumed. Therefore it is recommended to attend the course Service Innovation [2540468] beforehand.

Annotation

Due to the project work, the number of participants is limited and participation requires knowledge about models, concepts and approaches that are taught in the Service Innovation lecture. Having taken the Service Innovation lecture or demonstrating equivalent knowledge is a prerequisite for participating in this Practical Seminar. Details for registration will be announced on the web pages for this course.

The seminar is not offered regularly.
5.223 Course: Predictive Mechanism and Market Design [T-WIWI-102862]

Responsible: Prof. Dr. Johannes Philipp Reiß
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101453 - Applied Strategic Decisions
- M-WIWI-101505 - Experimental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Annotation
The course is given every second fall term, e.g., WS2017/18, WS2019/20, ...
The retake exam is given in the summer term subsequent to the fall term where the course (lecture and final exam) is given.
5.224 Course: Predictive Modeling [T-WIWI-110868]

Responsible: Prof. Dr. Fabian Krüger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101638 - Econometrics and Statistics I
- M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2521311 | Predictive Modeling | 2 SWS | Lecture / 🗣 | Krüger, Eberl, Koster |
| ST 2023 | 2521312 | Predictive Modeling (Tutorial) | 2 SWS | Practice / 🗣 | Koster, Eberl |

Exams

| ST 2023 | 7900298 | Predictive Modeling | Krüger |
| WT 23/24 | 7900014 | Predictive Modeling | Krüger |

Competence Certificate

The assessment of this course is a written examination (90 minutes) according to §4(2), 1 of the examination regulation. A bonus can be acquired by successful completion of an assignment (written report + short in-class presentation) during the semester. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4).

Prerequisites

None

Below you will find excerpts from events related to this course:

Predictive Modeling

Lecture (V)

2521311, SS 2023, 2 SWS, Language: English,

Open in study portal

Content

Contents

This course presents methods for making and evaluating statistical predictions based on data. We consider various types of predictions (mean, probability, quantile, and full distribution), all of which are practically relevant. In each case, we discuss selected modeling approaches and their implementation using R software. We consider various economic case studies. Furthermore, we present methods for absolute evaluation (assessing whether a given model is compatible with the data) and relative evaluation (comparing the predictive performance of alternative models).

Learning objectives

Students have a good conceptual understanding of statistical prediction methods. They are able to implement these methods using statistical software, and can assess which method is suitable in a given situation.

Prerequisites

Students should know econometrics on the level of the course 'Applied Econometrics' [2520020]

Literature

- Weitere Literatur wird in der Vorlesung bekanntgegeben.
Course: Price Management [T-WIWI-105946]

5.225 Course: Price Management [T-WIWI-105946]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Dr Paul Glenn

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101409 - Electronic Markets

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2540529</td>
<td>Price Management</td>
<td>2 SWS</td>
<td>Glenn</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900139</td>
<td>Price Management</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900170</td>
<td>Price Management (Nachklausur SS 2023)</td>
<td></td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate

Lecture and exam will not be offered in summer semester 2019. The next examination is in the summer semester 2020.

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

None

Annotation

The lecture is offered for the first time in summer term 2016.

Below you will find excerpts from events related to this course:

Price Management

2540529, SS 2023, 2 SWS, Language: German, Open in study portal

Organizational issues

Termine:

Samstags von 9:00 - 19:00 Uhr

29.04.2023 => (verschoben auf 06.05.2023) - Termin 1

20.05.2023 => (verschoben auf 03.06.2023) - Termin 2

17.06.2023 - Termin 3

08.07.2023 - Termin 4

Literature

5.226 Course: Pricing [T-WIWI-102883]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105312 - Marketing and Sales Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2572199</td>
<td>Pricing</td>
<td>3</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚙ On-Site, ❌ Cancelled

Competence Certificate

Alternative exam assessment. The examination (and thus the grade) is composed of three parts:

1. The design and execution of your own small experimental study around the topic of behavioral pricing (as group work).
2. The processing and presentation of a case study on pricing (as group work).
3. The execution of a simulated price negotiation based on a systematic preparation (usually in teams of two).

Prerequisites

Since the earlier course (a) "Pricing Excellence" and (b) "Price Negotiations and Sales Presentations" become parts of the Pricing course, Pricing cannot be taken if (a) and/or (b) have already been completed.

Recommendation

Students are highly encouraged to actively participate in class.

Annotation

A small application is required for participation in this class. The application phase usually takes place at the beginning of the lecture period in the winter semester. More information on the application process will be made available on the Marketing and Sales Research Group website (marketing.iism.kit.edu) shortly before the start of the winter semester lecture period. This course is limited to 24 participants.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>2572199</td>
<td>Pricing</td>
<td>3</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

2572199, WS 23/24, 3 SWS, Language: English, Open in study portal
Content
At the Pricing lecture, students learn about current research and best practices in price management. Delivered in workshop format, the lecture has three key elements:

1. "Behavioral Pricing" workshop
 In this part of the course, central concepts and findings from behavioral pricing research (e.g. price information processing, reference prices, price fairness and mental accounting) are presented and discussed on the basis of important behavioral theories (e.g. prospect theory and information economics). After a brief introduction to experimental research, participants will then conduct their own small experimental study in the form of group work on a hypothesis they have developed on pricing behavior, analyze the data, and present it.

2. "Pricing Excellence" workshop
 In a theory section at the beginning of the course, students are taught theoretical principles of pricing. This includes an introduction to (1) pricing of product prices as well as (2) pricing of net customer prices (development of discount systems). Furthermore, theoretical basics of price enforcement and price monitoring are discussed. This will be followed by a practical application of what has been learned by working on a case study in small groups with a concluding presentation.

3. "Price Negotiation" workshop
 After an introduction to key theories and concepts of negotiation, students prepare and then conduct a simulated price negotiation in small groups with guidance.

Learning Objectives:
Students...

- are familiar with central theories explaining behavioral phenomena regarding consumers dealing with prices
- are able to describe and explain central phenomena of behavioral science with regard to price behavior and derive implications from them
- can formulate their own hypotheses on price behavior and design, conduct and evaluate a suitable experimental study for this purpose
- learn theoretical basics of pricing behavior
- learn the theoretical basics of price enforcement and price monitoring
- apply the acquired knowledge in a practical case study
- know important conceptual basics on the subject of price negotiations
- can prepare and competently conduct price negotiations
- present the results of their group work in a concise and structured manner

All events will take place in presence with compulsory attendance at all dates.

Total time required for 4.5 credit points: approx. 135 hours

Attendance time: 30 hours
Self-study: 105 hours

Organizational issues
Dates will be announced.
5.277 Course: Probabilistic Time Series Forecasting Challenge [T-WIWI-111387]

Responsible: Prof. Dr. Fabian Krüger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101638 - Econometrics and Statistics I
- M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Event Code</th>
<th>Description</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2500080</td>
<td>Probabilistic Time Series Forecasting Challenge</td>
<td>2 SWS</td>
<td>Practice / 📱</td>
<td>Bracher, Koster, Lerch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500081</td>
<td>Probabilistic Time Series Forecasting Challenge</td>
<td>Project / 🧩</td>
<td>Bracher, Koster, Lerch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment. Necessary conditions to pass the course:

1. Weekly submission of statistical forecasts during the semester (excluding the Christmas break).
2. Submission of a final report (10-15 pages) at the end of the semester, describing the forecasting methods and their statistical evaluation.

Grading is based on the final report.

Prerequisites
Good methodological knowledge in statistics and data science.
Good knowledge in applied data analysis, incl. programming skills in R, Python or similar.
Knowledge of time series analysis is helpful, but not required.

Annotation
The course is limited in participation. Participants will be selected via the WIWI portal.

Below you will find excerpts from events related to this course:

Probabilistic Time Series Forecasting Challenge
2500081, WS 23/24, SWS, Language: English, Open in study portal

Project (PRO)
Blended (On-Site/Online)

Content
Statistical forecasts are relevant across all fields of society. In this data science project, students make, evaluate and communicate their own statistical forecasts in a real-time setting. We consider probabilistic forecasts that involve a measure of uncertainty in addition to a point forecast. Students are asked to make forecasts of several real-world time series (including weather variables and the DAX stock market index). Historical data on all series are available from public sources that are updated as time proceeds. While the time series differ from each other in important ways, statistical methods can meaningfully be used for prediction in all cases. We focus on quantile forecasts which are useful to measure forecast uncertainty in a relatively simple way.
Organizational issues

Short description

In this data science project, students make and evaluate statistical forecasts in a realistic setup (involving real-time predictions and real-world time series data). A kick-off meeting will take place in mid October. During the semester, there will be a weekly meeting in which students and instructors discuss the current state of the forecasting challenge.

Prerequisites

Students should have a good working knowledge of statistics and data science, including proficiency in a programming language like R, Python, or Matlab. Knowledge of time series analysis is helpful but not strictly required. Motivation and curiosity are particularly important in this course format that requires regular, active participation over the whole semester.

Please note that the number of participants is limited due to the interactive course format. Application takes place via the Wiwi portal, where further information is available.

Examination rules

The project seminar counts for 4.5 credit points (Leistungspunkte). Examination is via an alternative exam assessment (§4(2), 3 SPO). Necessary conditions to pass the course: 1) Weekly submission of statistical forecasts during the semester (excluding the Christmas break), 2) Submission of a final report (10-15 pages) at the end of the semester, describing the forecasting methods and their statistical evaluation. Grading is based on the final report.
5.228 Course: Product and Innovation Management [T-WIWI-109864]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101510 - Cross-Functional Management Accounting
- M-WIWI-101514 - Innovation Economics
- M-WIWI-105312 - Marketing and Sales Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2571154</td>
<td>Product and Innovation Management</td>
<td>2</td>
<td>Lecture</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900024</td>
<td>Product and Innovation Management</td>
<td></td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900055</td>
<td>Product and Innovation Management</td>
<td></td>
<td>Lecture</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of success takes place through a written exam with additional aids in the sense of an open book exam. Further details will be announced during the lecture.

Prerequisites
None

Annotation
Please note that Product and Innovation Management will not be offered again until summer semester 2026. The course will not take place in the summer semester 2024 and 2025.
For further information, please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

V Product and Innovation Management
2571154, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V)
On-Site
Content
This course addresses topics around the management of new as well as existing products. After the foundations of product management, especially the product choice behavior of customers, students get to know in detail different steps of the innovation process. Another section regards the management of the existing product portfolio.

Students
- know the most important terms of the product and innovation concept
- understand the models of product choice behavior (e.g., the Markov model, the Luce model)
- are familiar with the basics of network theory (e.g., the Triadic Closure concept)
- know the central strategic concepts of innovation management (especially the market driving approach, pioneer and successor, Miles/Snow typology, blockbuster strategy)
- master the most important methods and sources of idea generation (e.g., open innovation, lead user method, crowdsourcing, creativity techniques, voice of the customer, innovation games, conjoint analysis, quality function deployment, online toolkits)
- are capable of defining and evaluating new product concepts and know the associated instruments like focus groups, product testing, speculative sales, test market simulation Assessor, electronic micro test market
- have advanced knowledge about market introduction (e.g., adoption and diffusion models Bass, Fourt/Woodlock, Mansfield)
- understand important connections of the innovation process (cluster formation, innovation culture, teams, stage-gate process)

The assessment is carried out (according to §4(2), 3 SPO) in the form of a written open book exam.

Total effort for 3 credit points: approx. 90 hours
Presence time: 30 hours
Preparation and wrap-up of LV: 45.0 hours
Exam and exam preparation: 15.0 hours
For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Literature
5.229 Course: Production and Logistics Management [T-WIWI-102632]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101412 - Industrial Production III

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>WS</th>
<th>Lecture Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2581954</td>
<td>Production and Logistics Management</td>
<td>2</td>
<td>Lecture / 📖</td>
<td>Schultmann, Rudi</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2581955</td>
<td>Production and Logistics Management</td>
<td>2</td>
<td>Practice / 📖</td>
<td>Huster, Treml</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7981954</td>
<td>Production and Logistics Management</td>
<td>2</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Production and Logistics Management

2581954, SS 2023, 2 SWS, Language: German, [Open in study portal](#)

Content

This course covers central tasks and challenges of operative production and logistics management. Students get to know the set-up and mode of planning systems such as production planning and control systems, enterprise resource planning systems and advanced planning systems to cope with the accompanying planning tasks in supply chain management. Methods to solve these tasks from the field of operational research will be explored with respect to manufacturing program planning, material requirement planning, lot size problems and scheduling. Alongside MRP II (Manufacturing Resources Planning), students will be introduced to integrated supply chain management approaches. Finally, commercially available planning systems will be presented and discussed.

Literature

Wird in der Veranstaltung bekannt gegeben.
5.230 Course: Project Lab Cognitive Automobiles and Robots [T-WIWI-109985]

Responsible: Prof. Dr.-Ing. Johann Marius Zöllner
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-103356 - Machine Learning
M-WIWI-106491 - Project Lab Applied Machine Learning

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Type
Examination of another type

Prerequisites
None

Competence Certificate
The alternative exam assessment consists of:
- a practical work
- a presentation and
- a written seminar thesis

Details of the grade formation will be announced at the beginning of the course.

Recommendations:
- Theoretical knowledge of machine learning and/or AI.
- Python knowledge
- Initial experience with deep learning frameworks such as PyTorch/Jax/Tensorflow may be beneficial.

Workload:
The workload of 5 credit points consists of practical implementation of the selected solution, as well as time for literature research and planning/specification of the selected solution. In addition, a short report and presentation of the work performed will be prepared.

Content
The lab is intended as a practical supplement to courses such as "Machine Learning 1/2". Scientific topics, mostly in the area of autonomous driving and robotics, will be addressed in joint work with ML/KI methods. The goal of the internship is for participants to design, develop, and evaluate ML Software system.

In addition to the scientific goals, such as the study and application of methods, the aspects of project-specific teamwork in research (from specification to presentation of results) are also worked on in this internship.

The individual projects require the analysis of the set task, selection of appropriate methods, specification and implementation and evaluation of the solution approach. Finally, the selected solution is to be documented and presented in a short lecture.

Learning Objectives:
- Students will be able to practically apply theoretical knowledge from lectures on machine learning to a selected area of current research.
- Students will be proficient in analyzing and solving thematic problems.
- Students will be able to evaluate, document, and present their concepts and results.

Below you will find excerpts from events related to this course:

Practical Course Cognitive automobiles and robots (Master)
2512501, WS 23/24, 3 SWS, Language: German/English, [Open in study portal](#)
Practical course (P)
Blended (On-Site/Online)
Zöllner, Daaboul
Organizational issues
Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.
5.231 Course: Project Lab Machine Learning [T-WIWI-109983]

Responsibility:
Prof. Dr.-Ing. Johann Marius Zöllner

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-103356 - Machine Learning
M-WIWI-106491 - Project Lab Applied Machine Learning

Type
Examination of another type

Credits
5

Grading scale
Grade to a third

Recurrence
Each summer term

Version
3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2512500</td>
<td>Practical course</td>
<td>Zöllner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900086</td>
<td>Practical course</td>
<td>Zöllner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The alternative exam assessment consists of:
- a practical work
- a presentation and
- a written seminar thesis

Details of the grade formation will be announced at the beginning of the course.

Prerequisites
None

Below you will find excerpts from events related to this course:

Project Lab Machine Learning
2512500, SS 2023, 3 SWS, Language: German/English, Open in study portal

Content
The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
- Students master the analysis and solution of corresponding problems in a team.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:
The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.
5.232 Course: Project Management [T-WIWI-103134]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101412 - Industrial Production III
- M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2581963</td>
<td>Project Management</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Schultmann, Volk</td>
</tr>
<tr>
<td>Exams</td>
<td>ST 2023</td>
<td>7981963</td>
<td>Project Management</td>
<td></td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (examination of another type, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Project Management

2581963, WS 23/24, 2 SWS, Language: English, [Open in study portal](#)

Content

1. Introduction
2. Principles of Project Management
3. Project Scope Management
4. Time Management and Resource Scheduling
5. Cost Management
6. Quality Management
7. Risk Management
8. Stakeholder
9. Communication, Negotiation and Leadership
10. Project Controlling
11. Agile Project Management

Literature

Wird in der Veranstaltung bekannt gegeben.
<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1.5</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-101208 - Innovative Concepts of Data and Information Management
5.234 Course: Provable Security in Cryptography [T-INFO-101259]

Responsible: Prof. Dr. Dennis Hofheinz

Organisation: KIT Department of Informatics

Part of: M-INFO-101198 - Advanced Topics in Cryptography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
5.235 Course: Public Management [T-WIWI-102740]

Responsible: Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101504 - Collective Decision Making
- M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2561127</td>
<td>Public Management 3 SWS Lecture / Practice / 🖥</td>
</tr>
</tbody>
</table>

Exams

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>790puma</td>
<td>Public Management Wigger</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>790puma</td>
<td>Public Management Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Management 2561127, WS 23/24, 3 SWS, Language: German, Open in study portal</td>
<td>Lecture / Practice (VÜ) Online</td>
<td></td>
</tr>
</tbody>
</table>

Literature

Weiterführende Literatur:

5 COURSES

5.236 Course: Public Revenues [T-WIWI-102739]

- **Responsible:** Prof. Dr. Berthold Wigger
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101511 - Advanced Topics in Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2560120 | Public Revenues | 2 SWS | Lecture / 🗣 | Wigger |
| ST 2023 | 2560121 | Übung zu Öffentliche Einnahmen | 1 SWS | Practice / 🗣 | Wigger, Schmelzer |

Exams

| ST 2023 | 790oeff | Public Revenues | Wigger |
| WT 23/24 | 790oeff | Public Revenues | Wigger |

Competence Certificate
Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites
None

Recommendation
Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

Public Revenues

- **2560120, SS 2023, 2 SWS, Language: German, Open in study portal**
- **Lecture (V)**
 - **On-Site**

Content
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Learning goals:
See German version.

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Responsible: Dr. Patrick Plötz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101451 - Energy Economics and Energy Markets

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2581007</td>
<td>Quantitative Methods in Energy Economics</td>
<td>2</td>
<td>Lecture /🗣</td>
<td>Plötz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2581008</td>
<td>Übungen zu Quantitative Methods in Energy Economics</td>
<td>1</td>
<td>Practice /🗣</td>
<td>Plötz, Britto</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7981007</td>
<td>Quantitative Methods in Energy Economics</td>
<td>1</td>
<td>Lecture (V) Open in study portal</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral (30 minutes) exam (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Quantitative Methods in Energy Economics

<table>
<thead>
<tr>
<th>Code</th>
<th>WS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581007</td>
<td>23/24</td>
<td>English</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Content
Energy economics makes use of many quantitative methods in exploration and analysis of data as well as in simulations and modelling. This lecture course aims at introducing students of energy economics into the application of quantitative methods and techniques as taught in elementary courses to real problems in energy economics. The focus is mainly on regression, simulation, time series analysis and related statistical methods as applied in energy economics.

Learning Goals:
The student

- knows and understands selected quantitative methods of energy economics
- is able to use selected quantitative methods of energy economics
- understands they range of usage, limits and is autonomously able to adress new problems by them.

Literature
Wird in der Vorlesung bekannt gegeben.
T 5.238 Course: Randomized Algorithms [T-INFO-101331]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Thomas Worsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
</tbody>
</table>
| Part of | M-INFO-101199 - Advanced Algorithms: Design and Analysis
 | M-INFO-101200 - Advanced Algorithms: Engineering and Applications |
| **Type** | Oral examination |
| **Credits** | 5 |
| **Grading scale** | Grade to a third |
| **Recurrence** | Each winter term |
| **Version** | 1 |

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>75400002</td>
<td>Randomized Algorithms</td>
<td>Worsch</td>
</tr>
</tbody>
</table>
5.239 Course: Recommender Systems [T-WIWI-102847]

Responsible: Prof. Dr. Andreas Geyer-Schulz

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-105661 - Data Science: Intelligent, Adaptive, and Learning Information Services

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

- **WT 23/24** 2540506 Recommender Systems 2 SWS Lecture / Geyer-Schulz
- **WT 23/24** 2540507 Exercise Recommender Systems 1 SWS Practice / Geyer-Schulz, Nazemi

Exams

- **ST 2023** 7900138 Recommender Systems Geyer-Schulz
- **WT 23/24** 7900310 Recommender Systems (WS 2023/2024) Geyer-Schulz

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Recommender Systems

2540506, WS 23/24, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site
Content
At first, an overview of general aspects and concepts of recommender systems and its relevance for service providers and customers is given. Next, different categories of recommender systems are discussed. This includes explicit recommendations like customer reviews as well as implicit services based on behavioral data. Furthermore, the course gives a detailed view of the current research on recommender systems at the Chair of Information Services and Electronic Markets.

Learning objectives:
The student
- is proficient in different statistical, data-mining, and game theory methods of computing implicit and explicit recommendations
- evaluates recommender systems and compares these with related services

Workload:
The total workload for this course is approximately 135 hours (4.5 credits):

Time of attendance
- Attending the lecture: 15 x 90min = 22h 30m
- Attending the exercise classes: 7 x 90min = 10h 30m
- Examination: 1h 00m

Self-study
- Preparation and wrap-up of the lecture: 15 x 180min = 45h 00m
- Preparing the exercises: 25h 00m
- Preparation of the examination: 31h 00m

Sum: 135h 00m

Exam:
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 10) from exercise work will be added.

Grade: Minimum points
- 1.0: 95
- 1.3: 90
- 1.7: 85
- 2.0: 80
- 2.3: 75
- 2.7: 70
- 3.0: 65
- 3.3: 60
- 3.7: 55
- 4.0: 50
- 5.0: 0
Literature

Weiterführende Literatur:
5.240 Course: Regulation Theory and Practice [T-WIWI-102712]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101406 - Network Economics

Competence Certificate
The lecture is not offered for an indefinite period of time. Result of success is made by a 20-30 minutes oral examination. Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
None

Recommendation
Basic knowledge and skills of microeconomics from undergraduate studies (bachelor’s degree) are expected. Particularly helpful but not necessary: Industrial Economics and Principal-Agent- or Contract theories. Prior attendance of the lecture *Competition in Networks* [26240] is helpful in any case but not considered a formal precondition.

Annotation
The lecture is not offered for an indefinite period of time.
5.241 Course: Responsible Artificial Intelligence [T-WIWI-111385]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-103117 - Data Science: Data-Driven Information Systems
- M-WIWI-103118 - Data Science: Data-Driven User Modeling
- M-WIWI-105923 - Incentives, Interactivity & Decisions in Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2545164</td>
<td>Responsible Artificial Intelligence</td>
<td>2 SWS</td>
<td>Lecture /</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏭 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The final grade is based on an examination of other type according to § 4 Par. 2 No. 3. It consists of:

- The completion of an exercise including a short presentation (15 min) (max. 30 points)
- The completion of a case study including an oral exam (max. 60 points).

Further details are explained during the lecture.

Prerequisites
Prior to the start of the lecture, introductory materials will be provided for self-study. The lecture has a limitation of participants. Therefore, prior registration via the Wiwi-Portal is mandatory.
5.242 Course: Risk Management in Industrial Supply Networks [T-WIWI-102826]

| Responsible: | Prof. Dr. Frank Schultmann |
| Organisation: | KIT Department of Economics and Management |
| Part of: | M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II |

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>Lecture</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (examination of another type, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Risk Management in Industrial Supply Networks

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2581992, WS 23/24</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Schultmann, Kaiser</td>
<td></td>
</tr>
</tbody>
</table>

Content

Students learn methods and tools to manage risks in complex and dynamically evolving supply chain networks. Students learn the key terms and concepts of risk management and decision theory, in particular expected utility theory. Based on the theoretic prerequisites, students are able to determine and analyze risk diversification, risk pooling, insurance mechanisms and get an overview on statistical risk measures and real options. These approaches are adapted to analyze supply chain risks in a network context. In this manner, students gain knowledge in basic notions of network theory, network metrics and network-strategies for supply chain decisions.

- Introduction
- Risks in decisions under uncertainty: Expected Utility Theory & risk preferences
- The newsvendor model; multivariate risks and insurance
- Risk measures & evaluation techniques: Value-at-Risk, Conditional Value at Risk, Monte Carlo and Real Options
- Transparency in complex supply chains
- Network risk: network basics and criticality
- Risk in supply networks: empirical approaches and insights

Literature

Wird in der Veranstaltung bekannt gegeben.
5.243 Course: Roadmapping [T-WIWI-102853]

Responsible: Dr. Daniel Jeffrey Koch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101488 - Entrepreneurship (EnTechnon)
- M-WIWI-101507 - Innovation Management
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisites
None

Recommendation
Prior attendance of the course Innovation Management is recommended.

Annotation
See German version.
Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-100893 - Robotics I - Introduction to Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2424152</td>
<td>Robotics I - Introduction to Robotics</td>
<td>3/1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Asfour</td>
</tr>
<tr>
<td>Exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td></td>
<td></td>
<td>Asfour</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500106</td>
<td>Robotics I - Introduction to Robotics</td>
<td></td>
<td></td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites
none.
5.245 Course: Robotics II - Humanoid Robotics [T-INFO-105723]

Responsibility: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: M-INFO-101251 - Autonomous Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400074</td>
<td>Robotics II: Humanoid Robotics</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>3</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500086</td>
<td>Robotics II: Humanoid Robotics</td>
<td></td>
<td>Asfour</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500211</td>
<td>Robotics II: Humanoid Robotics</td>
<td></td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Recommendation

Attending the lectures Robotics I – Introduction to Robotics and Mechano-Informatics and Robotics is recommended.

Below you will find excerpts from events related to this course:

Content

The lecture presents current work in the field of humanoid robotics that deals with the implementation of complex sensorimotor and cognitive abilities. In the individual topics different methods and algorithms, their advantages and disadvantages, as well as the current state of research are discussed.

The topics addressed are: Applications and real world examples of humanoid robots; biomechanical models of the human body, biologically inspired and data-driven methods of grasping, imitation learning and programming by demonstration; semantic representations of sensorimotor experience as well as cognitive software architectures of humanoid robots.

Learning Objectives:

The students have an overview of current research topics in autonomous learning robot systems using the example of humanoid robotics. They are able to classify and evaluate current developments in the field of cognitive humanoid robotics.

The students know the essential problems of humanoid robotics and are able to develop solutions on the basis of existing research.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand: 90 h

Zielgruppe: Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Literature

Weiterführende Literatur

Wissenschaftliche Veröffentlichungen zum Thema, werden auf der VL-Website bereitgestellt.
5.246 Course: Robotics III - Sensors and Perception in Robotics [T-INFO-109931]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-101251 - Autonomous Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400067</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500242</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>Asfour</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500207</td>
<td>Robotics III - Sensors and Perception in Robotics</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

none.

Recommendation

Attending the lecture Robotics I – Introduction to Robotics is recommended.

Below you will find excerpts from events related to this course:

Robotics III - Sensors and Perception in Robotics

2400067, SS 2023, 2 SWS, Language: German/English, Open in study portal

Lecture (V)
On-Site

Content

The lecture supplements the lecture Robotics I with a broad overview of sensors used in robotics. The lecture focuses on visual perception, object recognition, simultaneous localization and mapping (SLAM) and semantic scene interpretation. The lecture is divided into two parts:

In the first part a comprehensive overview of current sensor technologies is given. A basic distinction is made between sensors for the perception of the environment (exteroceptive) and sensors for the perception of the internal state (proprioceptive).

The second part of the lecture concentrates on the use of exteroceptive sensors in robotics. The topics covered include tactile exploration and visual data processing, including advanced topics such as feature extraction, object localization, simultaneous localization and mapping (SLAM) and semantic scene interpretation.

Learning Objectives:

Students know the main sensor principles used in robotics and understand the data flow from physical measurement through digitization to the use of the recorded data for feature extraction, state estimation and environmental modeling.

Students are able to propose and justify suitable sensor concepts for common tasks in robotics.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik

Empfehlungen: Der Besuch der Vorlesung Robotik I – Einführung in die Robotik wird empfohlen

Zielgruppe: Die Vorlesung richtet sich an Studierende der Informatik, der Elektrotechnik und des Maschinenbaus sowie an alle Interessenten an der Robotik.

Arbeitsaufwand: 90 h
Literature
Eine Foliensammlung wird im Laufe der Vorlesung angeboten.
Begleitende Literatur wird zu den einzelnen Themen in der Vorlesung bekannt gegeben.
5.247 Course: Security [T-INFO-101371]

Responsible: Prof. Dr. Dennis Hofheinz
Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics

Part of: M-INFO-101207 - Networking Security - Theory and Praxis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7524941 | Security | Müller-Quade, Strufe, Wressnegger |
|---------|---------|----------|----------------------------------|---------|
5.248 Course: Selected Legal Issues of Internet Law [T-INFO-108462]

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24821</td>
<td>Selected legal issues of Internet law</td>
<td>2</td>
<td>Colloquium / 🗣️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500099</td>
<td>Selected Legal Issues of Internet Law</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.249 Course: Selected Topics in Cryptography [T-INFO-101373]

Responsible: Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics

Part of: M-INFO-101198 - Advanced Topics in Cryptography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
5.250 Course: Selling IT-Solutions Professionally [T-INFO-101977]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-101208 - Innovative Concepts of Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1.5</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
5.251 Course: Semantic Web Technologies [T-WIWI-110848]

Responsible: Dr.-Ing. Tobias Christof Käfer
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101455 - Web Data Management
- M-WIWI-101456 - Intelligent Systems and Services
- M-WIWI-105366 - Artificial Intelligence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Semester</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2511310</td>
<td>Semantic Web Technologies</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Färber, Käfer, Braun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2511311</td>
<td>Exercises to Semantic Web Technologies</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Färber, Käfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>79AIFB_SWebT_A4</td>
<td>Semantic Web Technologies (Registration until 17 July 2023)</td>
<td>Färber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79AIFB_SWebT_A2</td>
<td>Semantic Web Technologies</td>
<td>Käfer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Recommendation

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>V</td>
<td>Semantic Web Technologies</td>
<td></td>
</tr>
<tr>
<td>On-Site</td>
<td></td>
<td>2511310, SS 2023, 2 SWS</td>
<td></td>
</tr>
<tr>
<td>Language:</td>
<td></td>
<td>English, Open in study portal</td>
<td></td>
</tr>
</tbody>
</table>
Content
The aim of the Semantic Web is to make the meaning (semantics) of data on the web usable in intelligent systems, e.g. in e-commerce and internet portals.

Central concepts are the representation of knowledge in form of RDF and ontologies, the access via Linked Data, as well as querying the data by using SPARQL. This lecture provides the foundations of knowledge representation and processing for the corresponding technologies and presents example applications.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:

The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Literature

Weitere Literatur

Exercises to Semantic Web Technologies

2511311, SS 2023, 1 SWS, Language: English, Open in study portal
Content

The exercises are related to the lecture Semantic Web Technologies. Multiple exercises are held that capture the topics, held in the lecture Semantic Web Technologies, and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:

The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Organizational issues

Die Übungen finden im Rahmen der Termine der Blockvorlesung statt.

Literature

Weitere Literatur

5.252 Course: Seminar in Business Administration A (Master) [T-WIWI-103474]

Responsible: Professorenschaft des Fachbereichs Betriebswirtschaftslehre
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102736 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400121</td>
<td>Interactive Analytics Seminar</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Beigl, Mädche</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2500018</td>
<td>Successful transformation through innovation</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Busch</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2500027</td>
<td>Design Seminar: Digital Citizen Science</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
<td>Mädche</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>3 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Mädche</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2530580</td>
<td>Seminar in Finance (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Uhrig-Homburg, Müller, Thimme</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540472</td>
<td>Digital Citizen Science</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
<td>Weinhardt, Knierim, Mädche</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540475</td>
<td>Positive Information Systems</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
<td>Knierim, del Pupo, Bartholomeyczik</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540477</td>
<td>Digital Experience & Participation</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
<td>Peukert, Fegert</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540478</td>
<td>Smart Grid Economics & Energy Markets</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
<td>Henni, Semmelmann, Bluhm, Golla</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540510</td>
<td>Master Seminar in Data Science and Machine Learning</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540553</td>
<td>User-Adaptive Systems Seminar</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Mädche, Beigl</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540557</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>3 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Mädche</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2545002</td>
<td>Entrepreneurship Research</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Terzidis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2550493</td>
<td>Hospital Management</td>
<td>2 SWS</td>
<td>Block / 🕙</td>
<td></td>
<td></td>
<td>Hansis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2571180</td>
<td>Seminar in Marketing and Sales (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Klarmann, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2571182</td>
<td>Seminar “The Future of Marketing” (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Kupfer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2573012</td>
<td>Seminar Human Resource Management (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Nieken, Mitarbeiter, Gorny</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2573013</td>
<td>Seminar Human Resources and Organizations (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Nieken, Mitarbeiter, Walther</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2579909</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Wouters, Jaedeke, Kepl</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2579910</td>
<td>Entrepreneurial Strategy and Financing of Start-Ups</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Burkardt</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2579919</td>
<td>Seminar Management Accounting - Sustainability Topics</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Letmathe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2581030</td>
<td>Seminar Energiewirtschaft IV</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Fichtner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2581977</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Volk, Schultmann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Kraft, Fichtner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>2 SWS</td>
<td>Seminar / 🕙</td>
<td>Each term</td>
<td>1</td>
<td>Mädche</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>SWS</td>
<td>Type</td>
<td>Tutors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2530293</td>
<td>Seminar in Business Administration A (Master)</td>
<td>2</td>
<td>Seminar</td>
<td>Ruckes, Hoang, Benz, Ludecke, Silbereis, Wiegratz, Kohl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2540473</td>
<td>Business Data Analytics</td>
<td>2</td>
<td>Seminar</td>
<td>Badewitz, Grote, Schulz, Motz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2540475</td>
<td>Digital Platforms, Markets & Work</td>
<td>2</td>
<td>Seminar</td>
<td>Knierim, del Puppo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2540478</td>
<td>Smart Grids and Energy Markets</td>
<td>2</td>
<td>Seminar</td>
<td>Weinhardt, Semmelmann, Miskiw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2540510</td>
<td>Master Seminar in Data Science and Machine Learning</td>
<td>2</td>
<td>Seminar</td>
<td>Geyer-Schulz, Nazemi, Schweizer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2540557</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>2</td>
<td>Seminar</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2571181</td>
<td>Seminar Digital Marketing (Master)</td>
<td>2</td>
<td>Seminar</td>
<td>Kupfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2573012</td>
<td>Seminar Human Resource Management (Master)</td>
<td>2</td>
<td>Seminar</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2573013</td>
<td>Seminar Human Resources and Organizations (Master)</td>
<td>2</td>
<td>Seminar</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2579911</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2</td>
<td>Seminar</td>
<td>Wouters, Dickemann, Letmathe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2579919</td>
<td>Seminar Management Accounting - Sustainability Topics</td>
<td>2</td>
<td>Seminar</td>
<td>Wouters, Dickemann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2581030</td>
<td>Seminar in Energy Economics</td>
<td>2</td>
<td>Seminar</td>
<td>Fichtner, Sloot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2581976</td>
<td>Seminar in Production and Operations Management I</td>
<td>2</td>
<td>Seminar</td>
<td>Schultzmann, Rudi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2581977</td>
<td>Seminar in Production and Operations Management II</td>
<td>2</td>
<td>Seminar</td>
<td>Volk, Schultzmann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2581980</td>
<td>Seminar in Energy Economics</td>
<td>2</td>
<td>Seminar</td>
<td>Fichtner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2581981</td>
<td>Seminar in Energy Economics</td>
<td>2</td>
<td>Seminar</td>
<td>Ardone, Fichtner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 00018</td>
<td>Seminar Digital Democracy – Challenges and Opportunities of the Digital Society</td>
<td></td>
<td></td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900008</td>
<td>Hospital Management</td>
<td></td>
<td></td>
<td>Nickel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900019</td>
<td>Master Seminar in Data Science and Machine Learning</td>
<td></td>
<td></td>
<td>Geyer-Schulz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900025</td>
<td>Successful Transformation Through Innovation</td>
<td></td>
<td></td>
<td>Busch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900052</td>
<td>Entrepreneurship Research</td>
<td></td>
<td></td>
<td>Terzidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900093</td>
<td>Seminar in Business Administration A</td>
<td></td>
<td></td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900101</td>
<td>Seminar Human Resource Management (Master)</td>
<td></td>
<td></td>
<td>Nieken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900127</td>
<td>Seminar in Finance (Master)</td>
<td></td>
<td></td>
<td>Uhrig-Homburg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900165</td>
<td>Practical Seminar: Data Science for Industrial Applications</td>
<td></td>
<td></td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900166</td>
<td>Home Office Design Seminar: Digital Citizen Science</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900167</td>
<td>Design Seminar: Digital Citizen Science</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900180</td>
<td>Seminar in Business Administration</td>
<td></td>
<td></td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900190</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900214</td>
<td>Seminar Business Data Analytics</td>
<td></td>
<td></td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900231</td>
<td>Seminar Human Resources and Organizations (Master)</td>
<td></td>
<td></td>
<td>Nieken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900233</td>
<td>Seminar in Marketing and Sales (Master)</td>
<td></td>
<td></td>
<td>Klarmann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900238</td>
<td>Technology Assessment</td>
<td></td>
<td></td>
<td>Weissenberger-Eibl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900240</td>
<td>Seminar “The Future of Marketing” (Master)</td>
<td></td>
<td></td>
<td>Kupfer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900256</td>
<td>Seminar Positive Information Systems</td>
<td></td>
<td></td>
<td>Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900261</td>
<td>Research Seminar: Human-Centered Systems</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900265</td>
<td>User-adaptive Systems Seminar</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900284</td>
<td>Digital Transformation and Business Models</td>
<td></td>
<td></td>
<td>Weissenberger-Eibl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900293</td>
<td>Service Design Thinking</td>
<td></td>
<td></td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023 7900301</td>
<td>Practical Seminar Service Innovation</td>
<td></td>
<td></td>
<td>Satzger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Interactive Analytics Seminar
2400121, SS 2023, 2 SWS, Language: English, Open in study portal

Online
Content
Providing new and innovative ways for interacting with data is becoming increasingly important. In this seminar, an interdisciplinary team of students engineers a running software prototype of an advanced interactive system leveraging state-of-the-art hardware and software focusing on an analytical use case. The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). This seminar follows an interdisciplinary approach. Students the fields of computer science, information systems and industrial engineering work together in teams.

Learning Objectives
- Explore and specify a data-driven interaction challenge
- Suggest and evaluate different design solutions for addressing the identified problem
- Build interactive analytics prototypes using advanced interaction concepts and pervasive computing technologies

Prerequisites
Strong analytic abilities and profound skills in SQL as well as Python and/or R are required.

Literature
Further literature will be made available in the seminar.

Organizational issues
nach Vereinbarung

Successful transformation through innovation
2500018, SS 2023, 2 SWS, Language: German, [Open in study portal](https://itm.entechnon.kit.edu/192_1281.php)

Content
This seminar uses strategic innovation management theory and concepts such as organisational ambidexterity, boundary spanning and stakeholder approaches how companies can increase their innovative increase their innovative capacity through innovation. The students will use a core paper to illustrate the steps towards becoming an innovative organisation. The aim is to understand how -with the help of the concepts mentioned above - medium-sized companies, in the context of organisational inertia and path dependency, may become innovation-driven organisations. The seminar will analyse the role of different stakeholders, which role the different stakeholders play and how companies may become part of an innovation ecosystems. Based on the core paper, the students will apply the concepts they have learned to selected companies and present the results in class. In addition to a presentation, the students will submit the results in seminar papers.

Organizational issues
Weblink: https://itm.entechnon.kit.edu/192_1281.php

Design Seminar: Digital Citizen Science
2500027, SS 2023, 2 SWS, [Open in study portal](https://itm.entechnon.kit.edu/192_1281.php)

Content
TBA

Master Seminar in Data Science and Machine Learning
2540510, SS 2023, 2 SWS, Language: German/English, [Open in study portal](https://itm.entechnon.kit.edu/192_1281.php)

User-Adaptive Systems Seminar
2540553, SS 2023, 2 SWS, Language: English, [Open in study portal](https://itm.entechnon.kit.edu/192_1281.php)

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school “KD2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.
Content
Formerly known as "Information Systems and Service Design Seminar"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group IS I (Prof. Mädche). The research group "Information Systems I" (IS I) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives
- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites
No specific prerequisites are required for the seminar.

Literature
Further literature will be made available in the seminar.

Organizational issues
Termine werden bekannt gegeben

Entrepreneurship Research
2545002, SS 2023, 2 SWS, Language: English, [Open in study portal](#)

Hospital Management
2550493, SS 2023, 2 SWS, Language: German, [Open in study portal](#)
Content
The seminar 'Hospital Management' presents internal organization structures, work conditions and work environments at the example of hospitals and relates this to common and expected conditions of other service industries. Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. The course consists of two full-day sessions. The assessment consists of attendance and a presentation or a case study.

Organizational issues
Das Seminar wird als Blockveranstaltung vom 08.05.-12.05. (jeweils 8-10:30 Uhr) stattfinden mit Eigenstudiumphasen an den Nachmittagen. Zusätzlich wird eine Vorbesprechung am Freitag, 5. Mai um 16 Uhr stattfinden.

Seminar Human Resource Management (Master)
2573012, SS 2023, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on the basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his/her presentation skills.
- learns to get his/her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Human Resources and Organizations (Master)
2573013, SS 2023, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on the basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his/her presentation skills.
- learns to get his/her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.
Organizational issues
Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Management Accounting - Special Topics
2579909, SS 2023, 2 SWS, Language: English, Open in study portal

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting.
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information.
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:
- Maximum of 16 students.

Organizational issues
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature
Will be announced in the course.

Seminar Management Accounting - Sustainability Topics
2579919, SS 2023, 2 SWS, Language: English, Open in study portal

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting.
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information.
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:
- Maximum of 16 students.
Organizational issues
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature
Will be announced in the course.

Business Data Analytics
2540473, WS 23/24, 2 SWS, Language: German/English, Open in study portal

Content
wird auf deutsch und englisch gehalten

Organizational issues
Blockveranstaltung, siehe WWW

Master Seminar in Data Science and Machine Learning
2540510, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Blockveranstaltung siehe Homepage

Seminar Human Resource Management (Master)
2573012, WS 23/24, 2 SWS, Language: German, Open in study portal

Seminar Human Resources and Organizations (Master)
2573013, WS 23/24, 2 SWS, Language: German, Open in study portal
Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Blockveranstaltung siehe Homepage

Seminar Management Accounting - Special Topics
2579911, WS 23/24, 2 SWS, Language: English, Open in study portal

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Note:
- Maximum of 12 students.

Organizational issues
Ort und Zeit werden noch bekannt gegeben bzw. über ILIAS

Literature
Will be announced in the course.
Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:

- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Examination:

- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:

- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Workload:

- The total workload for this course is approximately 90 hours. For further information see German version.

Note:

- Maximum of 8 students.

Organizational issues
Ort und Zeit werden noch bekannt gegeben bzw. über ILLIAS

Literature
Will be announced in the course.
5.253 Course: Seminar in Economic Policy [T-WIWI-102789]

- **Responsible:** Prof. Dr. Ingrid Ott
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101514 - Innovation Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900051</td>
<td>Seminar in Economic Policy</td>
<td>Ott</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900212</td>
<td>Seminar in Economic Policy</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out through a term paper within the range of 12 to 15 pages, a presentation of the results of the work in a seminar meeting, and active participation in the discussions of the seminar meeting (§ 4 (2), 3 SPO).

The final grade is composed of the weighted scored examinations (Essay 50%, 40% oral presentation, active participation 10%).

Prerequisites
None

Recommendation
At least one of the lectures “Theory of Endogenous Growth” or “Innovation Theory and Policy” should be attended in advance, if possible.
5.254 Course: Seminar in Economics A (Master) [T-WIWI-103478]

Responsible: Professorenschaft des Fachbereichs Volkswirtschaftslehre

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-102736 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2500004</td>
<td>Predictive Data Analytics - An Introduction to Statistical Machine Learning</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2520367</td>
<td>Strategische Entscheidungen</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2520536</td>
<td>Seminar in Economic Theory II</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2520563</td>
<td>Wirtschaftstheoretisches Seminar III</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2521310</td>
<td>Advanced Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2560282</td>
<td>Seminar in economic policy</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2560552</td>
<td>Shaping AI and Digitalization for Society (Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2560555</td>
<td>Bounded Rationality - Theory and Experiments (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2560557</td>
<td>Law and Economics (Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2560560</td>
<td>Co-Opetiton: A practical perspective to game theory in the game of business (Bachelor & Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500024</td>
<td>Wirtschaftstheoretisches Seminar IV (Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500032</td>
<td>Disruption and the Digital Economy: Markets, Strategies, and Society (Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500051</td>
<td>Die Herausforderungen der Mobilitätswende im urbanen Bereich - welche Beiträge kann das Serious Game "MobileCityGame" liefern?</td>
<td>2 SWS</td>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2520405</td>
<td>Topics in Experimental Economics</td>
<td></td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2520563</td>
<td>Wirtschaftstheoretisches Seminar III (Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2560142</td>
<td>Lying and Cheating in Economic Experiments (Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2560143</td>
<td>AI and Digitization for Society (Master)</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2560282</td>
<td>Seminar in Economic Policy</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2560400</td>
<td>Seminar in Macroeconomics I</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2560401</td>
<td>Seminar in Macroeconomics II</td>
<td>2 SWS</td>
<td>Seminar/🧩</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2561208</td>
<td>Selected aspects of European transport planning and -modelling</td>
<td>2 SWS</td>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exams

ST 2023	7900051	Seminar in Economic Policy	Ott
ST 2023	7900059	Bounded Rationality - Theory and Experiments (Master)	Szech
ST 2023	7900131	Shaping AI and Digitization for Society (Master)	Szech
ST 2023	7900204	Predictive Data Analytics - An Introduction to Statistical Machine Learning	Lerch
ST 2023	7900205	Law and Economics (Master)	Szech
ST 2023	7900222	Co-Opetition (Bachelor & Master)	Szech
ST 2023	7900226	What's up Inflation? Recent Advances in Theory and Empirics	Brumm
ST 2023	7900228	Digitalization, AI, and the Future Economy	Brumm
ST 2023	7900260	Seminar: Capital in the Twenty-First Century	Puppe
ST 2023	7900266	Seminar: Market Design	Puppe
ST 2023	7900285	Strategic Decision (Master)	Ehrhart
ST 2023	79100003	Seminar Topics in Applied Microeconomics	Reiß
ST 2023	79100005	Seminar on Topics in Experimental Economics	Reiß
ST 2023	79sefi2	Seminar Public Finance A (Master)	Wigger
WT 23/24	7900212	Seminar in Economic Policy	Ott

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

![Predictive Data Analytics - An Introduction to Statistical Machine Learning](2500004, SS 2023, 2 SWS, Language: German/English, Open in study portal)

Organizational issues
Blockveranstaltung, Termine werden bekannt gegeben

![Advanced Topics in Econometrics](2521310, SS 2023, 2 SWS, Language: German/English, Open in study portal)

Organizational issues
Blockveranstaltung, Termine werden bekannt gegeben

![Shaping AI and Digitization for Society (Master)](2560552, SS 2023, 2 SWS, Language: English, Open in study portal)
Course: Seminar in Economics A (Master) [T-WIWI-103478]

Content
Participation will be limited to 12 students.

For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Students' grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with different lengths (20%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Blockveranstaltung:
Introductory Meeting April 19, 11.00 - 12.00 Uhr (online)
Seminar Presentations June 7, 2023, 14.00 - 18.30 Uhr (in person)

Bounded Rationality - Theory and Experiments (Bachelor)
2560555, SS 2023, 2 SWS, Language: English, Open in study portal

Content
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Students' grades will be based on the quality of presentations in the seminar (40%) and the seminar paper + individual abstract (60%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Blockveranstaltung:
Introductory Meeting April 18 at 2pm (in person)
Seminar Presentations June 5 (in person)

Law and Economics (Master)
2560557, SS 2023, 2 SWS, Language: English, Open in study portal
Content
Participation will be limited to 12 students.

For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Students’ grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with different lengths (20%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Blockveranstaltung

Kick-off 19.04.2023, 10.45 - 11.30 (online)

Presentations 26.05.2023, 14.00 - 18.30 Uhr

Co-Opetition: A practical perspective to game theory in the game of business (Bachelor & Master)
2560560, SS 2023, 2 SWS, Language: English, Open in study portal

Content
Participation will be limited to 12 students.

For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Students’ grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with different lengths (20%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Blockseminar:

Kick-off 19.04.2023

Präsentation 22.05.2023, 14.00 - 18.30 Uhr, Geb. 10.50, Raum 604

Disruption and the Digital Economy: Markets, Strategies, and Society (Master)
2500032, WS 23/24, 2 SWS, Language: English, Open in study portal

Content
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering, Economathematics or Digital Economics.

Objective: The student investigates a market that was (or might be) disrupted from a strategic perspective. Students work in groups. For more information, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of microeconomics and game theory may be helpful.
Organizational issues
Application is possible via https://portal.wiwi.kit.edu/Seminare
Kick-off: 27.10.2023, 14.00 - 15.30 Uhr, Geb. 01.85, KD2Lab (1. OG über Außentrepppe), Teamraum
Präsentationen: 15.01.2024 14.00 - 18.00 Uhr, Geb. 01.85, KD2Lab (1. OG über Außentrepppe), Teamraum

Topics in Experimental Economics
2520405, WS 23/24, SWS, Language: English, Open in study portal

Organizational issues
(im WS2021/22 online; sonst Blockseminar; Blücherstraße 17); Termine werden separat bekannt gegeben

Literature
Als Pflichtliteratur dienen ausgewählte Paper.

Topics in Econometrics
2521310, WS 23/24, 2 SWS, Language: German, Open in study portal

Organizational issues
Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben

Lying and Cheating in Economic Experiments (Master)
2560142, WS 23/24, 2 SWS, Language: English, Open in study portal

Content
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups.

Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Application is possible via https://portal.wiwi.kit.edu/Seminare
Kick-off: 24.10.23, 14.00 - 15.30 h, Geb. 01.85, KD2Lab (1. OG über Außentrepppe), Teamraum
Präsentationen: 08.01.2024, 14.00 - 18.00 h, Geb. 01.85, KD2Lab (1. OG über Außentrepppe), Teamraum

AI and Digitization for Society (Master)
2560143, WS 23/24, 2 SWS, Language: English, Open in study portal

Content
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Application is possible via https://portal.wiwi.kit.edu/Seminare
Kick-off: 25.10.2023, 11.00 - 12.00 (online)
Presentations: 12.01.2024, 14.00 - 18.00, Geb. 01.85, KD2Lab (1. OG über Außentrepppe), Teamraum
5.255 Course: Seminar in Informatics B (Master) [T-WIWI-103480]

Responsible: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Economics and Management
Part of: M-INFO-102822 - Seminar Module Informatics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Examination of another type</td>
<td>Credits</td>
<td>Grade to a third</td>
<td>Each term</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513211</td>
<td>Seminar Business Information Systems (Master)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513309</td>
<td>Seminar Knowledge Discovery and Data Mining (Master)</td>
<td>3 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513311</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Master)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513317</td>
<td>Seminar Anwendungen von Semantic MediaWiki (Master)</td>
<td>3 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513319</td>
<td>Seminar Graph Representation Learning (Master)</td>
<td>3 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513403</td>
<td>Seminar Emerging Trends in Internet Technologies (Master)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513405</td>
<td>Seminar Emerging Trends in Digital Health (Master)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2513500</td>
<td>Cognitive Automobiles and Robots</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2513313</td>
<td>Seminar Linked Data and the Semantic Web (Master)</td>
<td>3 SWS</td>
<td>Seminar / 📚</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2513314</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</td>
<td>3 SWS</td>
<td>/ 📚</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2513315</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Master)</td>
<td>3 SWS</td>
<td>/ 📚</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2513500</td>
<td>Seminar Cognitive Automobiles and Robots (Master)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
</tr>
</tbody>
</table>

Exams:

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900031</td>
<td>Seminar Selected Issues in Critical Information Infrastructures (Master)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900088</td>
<td>Seminar Business Information Systems (Master)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900128</td>
<td>Seminar Emerging Trends in Internet Technologies (Master)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900146</td>
<td>Seminar Emerging Trends in Digital Health (Master)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900147</td>
<td>Cognitive Automobiles and Robots</td>
<td>Zöllner</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900191</td>
<td>Seminar Applications of Semantic MediaWiki (Master)</td>
<td>Färber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900198</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Master)</td>
<td>Färber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900202</td>
<td>Seminar Knowledge Discovery and Data Mining (Master)</td>
<td>Färber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900203</td>
<td>Seminar Graph Representation Learning (Master)</td>
<td>Färber</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 📚 Blended (On-Site/Online), 📚 On-Site, ❌ Cancelled
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
Placeholder for seminars offered by the Institute AIFB.

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Seminar Knowledge Discovery and Data Mining (Master)
2513309, SS 2023, 3 SWS, Language: English, Open in study portal

Content
In this seminar different machine learning and data mining methods are implemented.

The seminar includes different methods of machine learning and data mining. Participants of the seminar should have basic knowledge of machine learning and programming skills.

Domains of interest include, but are not limited to:

- Medicine
- Social Media
- Finance Market
- Scientific Publications

Further Information: https://aifb.kit.edu/web/Lehre/Praktikum_Knowledge_Discovery_and_Data_Science

The exact dates and information for registration will be announced at the event page.

Organizational issues
Die Anmeldung erfolgt über das WiWi Portal https://portal.wiwi.kit.edu/.

Für weitere Fragen bezüglich des Seminar und der behandelten Themen wenden Sie sich bitte an die entsprechenden Verantwortlichen.

Literature
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B. aus den folgenden Lehrbüchern:

- Mitchell, T.: Machine Learning
Content
In this seminar, students will design applications in teams that use meaningful and creative Event Processing methods. Thereby, students have access to an existing record.

Event processing and real-time data are everywhere: financial market data, sensors, business intelligence, social media analytics, logistics. Many applications collect large volumes of data in real time and are increasingly faced with the challenge of being able to process them quickly and react promptly. The challenges of this real-time processing are currently also receiving a great deal of attention under the term "Big Data". The complex processing of real-time data requires both knowledge of methods for data analysis (data science) and their processing (real-time analytics). Seminar papers are offered on both of these areas as well as on interface topics, the input of own ideas is explicitly desired.

Further information to the practical seminar is given under the following Link:
http://seminar-cep.fzi.de

Questions are answered via the e-mail address sem-ep@fzi.de.

Organizational issues
Further information as well as the registration form can be found under the following link:
http://seminar-cep.fzi.de

Questions are answered via the e-mail address sem-ep@fzi.de.

Seminar Graph Representation Learning (Master)
2513319, SS 2023, 3 SWS, Language: English, Open in study portal

Content
Graphs are a natural way to represent the information of objects and the topological relationship between them. They are the basis for various applications ranging from recommender systems, finance, social networks, and personal assistants (e.g., Alexa).

In this seminar, students will read, discuss, and work on graph algorithms based on scientific literature, including most recent methods for analyzing and creating large graphs (e.g., link prediction on knowledge graphs using graph neural networks), and methods for making the behavior of neural networks based on graphs explainable (e.g., generating text based on a subgraph).

Cognitive Automobiles and Robots
2513500, SS 2023, 2 SWS, Language: German/English, Open in study portal

Content
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.
Content
Within the framework of this interdisciplinary seminar, the topics security awareness and privacy awareness are to be considered from different perspectives. It deals with legal, information technology, psychological, social as well as philosophical aspects.

Note: The link to enrol is for every student, regardless of the study background!

Dates:
- Kick-Off: 23.10.23 14:00 o'clock, Room 1C-03, building 5.20
- First version: 07.01.24
- Final version: 17.02.24
- Presentation: CW 12

Topics will be assigned after the kick-off.

Consider that legal-focused topics require you to speak and understand German legal texts.

Topics:
1: Literature review on reporting obligations / information security incidents (literature - seminar
2: Privacy Awareness with electronic patient file
4: Ethical analysis of so-called attacker studies that gather security awareness data in public space.
5: Collecting data: The boundaries of consent

Further Topics TBA!

ATTENTION: The seminar is only for MASTER students!

Seminar Linked Data and the Semantic Web (Master)
2513313, WS 23/24, 3 SWS, Language: German/English, Open in study portal

Content
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this practical seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this practical seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as ‘Block-Seminar’.

Topics of interest include, but are not limited to:
- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Seminar Real-World Challenges in Data Science and Analytics (Bachelor)
2513314, WS 23/24, 3 SWS, Language: German/English, Open in study portal

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master’s programs.

The exact dates and information for registration will be announced at the course page.
Seminar Real-World Challenges in Data Science and Analytics (Master)
2513315, WS 23/24, 3 SWS, Language: German/English, Open in study portal
On-Site

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on. During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results. During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar “Real-World Challenges in Data Science and Analytics” is aimed at students in master’s programs. The exact dates and information for registration will be announced at the course page.

Seminar Cognitive Automobiles and Robots (Master)
2513500, WS 23/24, 2 SWS, Language: German/English, Open in study portal
Seminar (S) Blended (On-Site/Online)

Content
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML. The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.
5.256 Course: Seminar in Operations Research A (Master) [T-WIWI-103481]

Responsible:
- Prof. Dr. Stefan Nickel
- Prof. Dr. Steffen Rebennack
- Prof. Dr. Oliver Stein

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-102736 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2550131</td>
<td>Seminar on Methodical Foundations of Operations Research (B)</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2550132</td>
<td>Seminar on Mathematical Optimization (MA)</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2550462</td>
<td>Seminar: Trending Topics in Machine Learning and Optimization (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🐜</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2550473</td>
<td>Seminar: Energy and Power Systems Optimization (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🐜</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>ST 2023 2550491</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Seminar / 🐜</td>
<td>Nickel, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2550131</td>
<td>Seminar on Methodical Foundations of Operations Research (B)</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2550462</td>
<td>Seminar on Trending Topics in Optimization and Machine Learning (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🐜</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2550473</td>
<td>Seminar on Energy and Power Systems Optimization (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🐜</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2550491</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Seminar / 🐜</td>
<td>Nickel, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900026</td>
</tr>
<tr>
<td>ST 2023 7900200_SS2023</td>
</tr>
<tr>
<td>ST 2023 7900201_SS2023</td>
</tr>
<tr>
<td>ST 2023 7900267</td>
</tr>
<tr>
<td>ST 2023 7900295</td>
</tr>
<tr>
<td>ST 2023 7900349</td>
</tr>
<tr>
<td>WT 23/24 7900342</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.
Seminar on Methodical Foundations of Operations Research (B)
2550131, SS 2023, 2 SWS, Language: German, Open in study portal

Content
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.

Bachelor students are introduced to the style of scientific work. By focussed treatment of a scientific topic they deal with the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetorical abilities may be improved.

Remarks:
Attendance at all oral presentations is compulsory.
Preferably at least one module offered by the Institute of Operations Research should have been chosen before attending this seminar.

Assessment:
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation. The grade is composed of the equally weighted assessments of the paper and the oral presentation.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the oral presentation.

Workload:
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbereitung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preparatory meeting.

Seminar: Modern OR and Innovative Logistics
2550491, SS 2023, 2 SWS, Language: German, Open in study portal

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.
The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:
Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Attendance is compulsory for the preliminary meeting as well for all seminar presentations.

Exam:
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 35-40 minutes (according to §4(2), 3 of the examination regulation).

The final mark for the seminar consists of the seminar thesis, the seminar presentation, the handout, and if applicable further material such as programming code.

The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Requirements:
If possible, at least one module of the institute should be taken before attending the seminar.

Objectives:
The student

- illustrates and evaluates classic and current research questions in discrete optimization,
- applies optimization models and algorithms in discrete optimization, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management),
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Organizational issues
wird auf der Homepage dol.ior.kit.edu bzw. auf dem WiWi-Portal bekannt gegeben

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar on Methodical Foundations of Operations Research (B)
2550131, WS 23/24, 2 SWS, Language: German, Open in study portal

5 COURSES Course: Seminar in Operations Research A (Master) [T-WIWI-103481]

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023 516
Literature
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbereitung bekannt gegeben.
References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preparatory meeting.

Seminar: Modern OR and Innovative Logistics
2550491, WS 23/24, 2 SWS, Language: German, Open in study portal
Seminar (S)
Blended (On-Site/Online)

Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Organizational issues
Anmeldezeitraum: 11.09.23 bis 30.09.23 im Wiwi Portal

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.
5.257 Course: Seminar in Statistics A (Master) [T-WIWI-103483]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-102736 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2500004</th>
<th>Predictive Data Analytics - An Introduction to Statistical Machine Learning</th>
<th>2 SWS</th>
<th>Seminar / 🌐</th>
<th>Schienle, Lerch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2521310</td>
<td>Advanced Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Schienle, Krüger, Buse, Rüter, Pavlova, Bracher</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2550561</td>
<td>Spezielle fortgeschrittene Themen der Datenanalyse und Statistik</td>
<td>2 SWS</td>
<td>Seminar / 🗤</td>
<td>Grothe, Kaplan, Kächele</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Schienle, Rüter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>00010</th>
<th>Seminar in Statistics A (Master)</th>
<th>Grothe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900204</td>
<td>Predictive Data Analytics - An Introduction to Statistical Machine Learning</td>
<td>Lerch</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Predictive Data Analytics - An Introduction to Statistical Machine Learning

2500004, SS 2023, 2 SWS, Language: German/English, [Open in study portal](#)

Organizational issues

Blockveranstaltung. Termine werden bekannt gegeben
5 Courses

Course: Seminar in Statistics A (Master) [T-WIWI-103483]

Advanced Topics in Econometrics
2521310, SS 2023, 2 SWS, Language: German/English, [Open in study portal]

Organizational issues
Blockveranstaltung, Termine werden bekannt gegeben

Topics in Econometrics
2521310, WS 23/24, 2 SWS, Language: German, [Open in study portal]

Organizational issues
Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben
Course: Seminar Informatics A [T-INFO-104336]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: M-INFO-102822 - Seminar Module Informatics

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
<th>Responsible</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400011</td>
<td>Hot Topics in Bioinformatics</td>
<td>Examination of another type</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>1</td>
<td>Stamatakis</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2400072</td>
<td>Seminar: Service-oriented Architectures</td>
<td>Seminar / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Abeck, Schneider, Sänger</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2400137</td>
<td>Embedded Machine Learning</td>
<td>Seminar / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Sikal, Pfeiffer, Balaskas, Khdr, Henkel</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2400144</td>
<td>Can Statistics Prove Cause and Effect?</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Janzing</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2400148</td>
<td>Embedded Security and Architectures</td>
<td>Seminar / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Hussain, Nassar, Bauer, Khdr, Gonzalez, Henkel, Sikal</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>24344</td>
<td>Advanced Methods of Information Fusion</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Hanebeck, Reith-Braun</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>Seminar / 🗣</td>
<td>3 SWS</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540553</td>
<td>User-Adaptive Systems Seminar</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Mädche, Beigl</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>2540557</td>
<td>Research Seminar: Human-Centered Systems</td>
<td>Seminar / 🗣</td>
<td>3 SWS</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2400137</td>
<td>Embedded Machine Learning</td>
<td>Seminar / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Rapp, Sikal, Pfeiffer, Balaskas, Zervakis, Khdr, Henkel</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2400148</td>
<td>Embedded Security and Architectures</td>
<td>Seminar / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Hussain, Nassar, Bauer, Khdr, Gonzalez, Sikal, Henkel</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>24344</td>
<td>Advanced Methods of Information Fusion</td>
<td>Seminar / 🗣</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Hanebeck, Reith-Braun</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>24844</td>
<td>Seminar: Ubiquitous Systems</td>
<td>Seminar</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Beigl, Zhou</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2500125</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>Seminar</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500013</td>
<td>Advanced Methods of Information Fusion</td>
<td>Hanebeck</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500014</td>
<td>Seminar: Hot Topics in Bioinformatics</td>
<td>Stamatakis</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500040</td>
<td>Seminar Information Systems</td>
<td>Böhm</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500106</td>
<td>Title not available</td>
<td>Bless, Hartenstein, Mädche, Zitterbart, Boehm, Sunyaev</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500162</td>
<td>Seminar: Ubiquitous Systems</td>
<td>Beigl, Riedel</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500177</td>
<td>Seminar Hot Topics in Networking</td>
<td>Zitterbart</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500276</td>
<td>Seminar: Can Statistics Prove Cause and Effect?</td>
<td>Janzing</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500301</td>
<td>Seminar: Proofs from THE BOOK</td>
<td>Sanders</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500335</td>
<td>CES - Seminar: Machine Learning</td>
<td>Henkel</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500350</td>
<td>Seminar in Security</td>
<td>Geiselmann, Müller-Quade</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>75104740</td>
<td>Seminar: Service-Oriented Architectures</td>
<td>Abeck</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900190</td>
<td>Engineering Seminar: Human-Centered Systems</td>
<td>Mädche</td>
<td></td>
</tr>
</tbody>
</table>

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
Below you will find excerpts from events related to this course:

Hot Topics in Bioinformatics

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
<th>Credits</th>
<th>Language</th>
<th>Workshop Mode</th>
<th>Organizational Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400011</td>
<td>Hot Topics in Bioinformatics</td>
<td>SS 2023</td>
<td>2 SWS</td>
<td>English</td>
<td>Open in study portal</td>
<td>Register for seminar mailing list by sending an email to Alexandros.Stamatakis@h-its.org Please also register for the seminar via the campus system. All information on the seminar is provided at: Seminar page. We will start with a kick-off meeting in the first week of the summer term on Thursday April 20. Seminar presentations will be conducted in a block toward the end of the semester - date and time to be determined.</td>
</tr>
</tbody>
</table>

Embedded Machine Learning

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Term</th>
<th>Credits</th>
<th>Language</th>
<th>Workshop Mode</th>
<th>Organizational Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400137</td>
<td>Embedded Machine Learning</td>
<td>SS 2023</td>
<td>SWS</td>
<td>German/English</td>
<td>Blended (On-Site/Online)</td>
<td></td>
</tr>
</tbody>
</table>
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Machine learning on on-chip systems
Machine learning and on-chip systems form a symbiosis where each research area benefits from advances in the other. In this seminar, students review cutting-edge research on both areas.

Machine learning (ML) gains importance in all aspects of information systems. From high-level algorithms like image recognition to lower-level intelligent CPU management - ML is ubiquitous. On-chip systems also benefit from advances in ML techniques. Examples include adaptive resource management or workload prediction. However, ML techniques also benefit from advances in on-chip systems. A prominent example is acceleration of neural networks in recent desktop GPUs and even smartphone chips.

In this seminar, students will review cutting-edge state-of-the-art research (publications) on a specific topic related to ML on on-chip systems. The findings will be summarized in a seminar report and presented to the other members of the course. Students are welcome to suggest their own topics, but this is not required. The seminar can be held in English or German.

Approximate Computing for Efficient Machine Learning
Nowadays, energy efficiency is a first-class design constraint in the ICT sector. Approximate computing emerges as a new design paradigm for generating energy efficient computing systems. There is a large body of resource-hungry applications (eg. image processing and machine learning) that exhibit an intrinsic resilience to errors and produce outputs that are useful and of acceptable quality for the users despite their underlying computations being performed in an approximate manner. By exploiting this inherent error tolerance of such applications, approximate computing trades computational accuracy for savings in other metrics, eg. energy consumption and performance.

Machine learning, a very common and top trending workload of both data centers and embedded systems, is a perfect candidate for approximate computing application since, by definition, it delivers approximate results. Performance as well as energy efficiency (especially in the case of embedded systems) are crucial for machine learning applications and thus, approximate computing techniques are widely adopted in machine learning (eg. TPU) to improve its energy profile as well as performance.

Machine Learning methods for DNN compilation and mapping
Deep neural networks have achieved great success in challenging tasks such as image classification and object detection. There is a great demand for deploying these networks in different devices, ranging from cloud servers to embedded devices. Mapping DNNs to these devices is a challenging task since each of these devices has different characteristics in terms of memory organization, compute units, etc. There have been efforts to automate the process of mapping/compiling DNNs to hardware with different characteristics.

In this seminar, we will discuss the efforts that have been done in mapping/compiling DNNs over hardware using machine learning methods.

Organizational issues
Please register in ILIAS to participate.

<table>
<thead>
<tr>
<th>Embedded Security and Architectures</th>
<th>Seminar (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400148, SS 2023, SWS, Language: German/English, Open in study portal</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Dependability for Reconfigurable Architectures
Dependability has become one of the prime concerns in recent nano-era. Reliability (the ability of the system to deliver services as specified) and Security (the ability of the system to protect itself against deliberate or accidental intrusion) are the two crucial attributes of dependable systems. Among the other reliability threats due to physical limits of CMOS technology, radiation induced soft errors or transient faults are also the most challenging threat to be handled. During this seminar, we will explore state-of-the-art for the power-efficient soft-error reliability and study different research solutions to improve soft-error resiliency in power efficient manner leveraging power-performance-reliability trade-offs. During this seminar, the students will also be able to understand hardware security in reconfigurable architectures.

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re)configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality. This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (ie, systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.

In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems. During this seminar, student will dive into the security aspects of resource management, while investigating answers to the following research questions:

- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What’s their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organizational issues
Please register in ILIAS to participate.

Advanced Methods of Information Fusion
24344, SS 2023, 2 SWS, Language: German/English, Open in study portal

User-Adaptive Systems Seminar
2540553, SS 2023, 2 SWS, Language: English, Open in study portal
Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school “KD2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar

- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.
Content
Formerly known as "Information Systems and Service Design Seminar"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group IS I (Prof. Mädche). The research group "Information Systems I" (IS I) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites

No specific prerequisites are required for the seminar.

Literature

Further literature will be made available in the seminar.

Organizational issues

Termine werden bekannt gegeben

Embedded Machine Learning

2400137, WS 23/24, SWS, Language: German/English, [Open in study portal](#)

Seminar (S)

Blended (On-Site/Online)

Content

In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Machine Learning on On-Chip Systems

Machine learning and on-chip systems form a symbiosis where each research area benefits from advances in the other. In this seminar, students review cutting-edge research on both areas.

Machine learning (ML) gains importance in all aspects of information systems. From high-level algorithms like image recognition to lower-level intelligent CPU management - ML is ubiquitous. On-chip systems also benefit from advances in ML techniques. Examples include adaptive resource management or workload prediction. However, ML techniques also benefit from advances in on-chip systems. A prominent example is acceleration of neural networks in recent desktop GPUs and even smartphone chips.

In this seminar, students will review cutting-edge state-of-the-art research (publications) to a specific topic related to ML on on-chip systems. The findings will be summarized in a seminar report and presented to the other members of the course. Students are welcome to suggest own topics, but this is not required. The seminar can be held in English or German.

DNN Pruning and Quantization

As DNNs become more computationally hungry, their hardware implementation becomes more challenging, since embedded devices have limited resources. DNN compression techniques, such as pruning and quantization, can be applied for efficient utilization of computational resources. While pruning involves removing unimportant elements of a DNN structure (connections, filters, channels etc), quantization decreases the precision for representing DNN-related tensors (weights and activations). Both promise to trade-off some of the application's accuracy for limited energy consumption and reduced memory footprint. Students will review state-of-the-art research works on hardware-aware DNN pruning and quantization. The findings will be summarized in a seminar report and presented to the other members of the course.

Organizational issues

Bitte im ILIAS zur Teilnahme anmelden.
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Dependability for Reconfigurable Architectures
Dependability has become one of the prime concerns in recent nano-era. Reliability (the ability of the system to deliver services as specified) and Security (the ability of the system to protect itself against deliberate or accidental intrusion) are the two crucial attributes of dependable systems. Among the other reliability threats due to physical limits of CMOS technology, radiation induced soft errors or transient faults are also the most challenging threat to be handled. During this seminar, we will explore state-of-the-art for the power-efficient soft-error reliability and study different research solutions to improve soft-error resiliency in power efficient manner leveraging power-performance-reliability trade-offs. During this seminar, the students will also be able to understand hardware security in reconfigurable architectures.

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re)configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality. This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (ie, systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.

In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems. During this seminar, student will dive into the security aspects of resource management, while investigating answers to the following research questions:

- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What's their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organizational issues
Please register in ILIAS to participate.

Content
The growing spread and performance of modern information and communication technologies produces an ever-increasing amount data. It is one of the central challenges of our time to extract meaningful information from these data sets. The approach to address these issues, often called data science, combines strategies and methods from the fields of machine learning, mathematics, state estimation, visualization and pattern recognition. During this seminar, the students will familiarize themselves with concepts and methods particularly focusing on estimation theory and its application.

The seminar targets master students in computer science and bachelor students in Information engineering and management.
5.259 Course: Seminar Informatics Master [T-INFO-111205]

Organisation: KIT Department of Informatics
Part of: M-INFO-102822 - Seminar Module Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

ST 2023	2400035	Seminar Image Analysis and Fusion	2 SWS	Seminar / 🗣	Beyerer
ST 2023	2400039	Research Focus Class: Blockchain & Payment Channel Networks Seminar	2 SWS	Seminar / 🗣	Droll, Hartenstein, Grundmann, Stengele
ST 2023	2400044	Seminar Cryptanalysis	2 SWS	Seminar / 🗣	Geiselmann, Müller-Quade, Tiepelt
ST 2023	2400084	Seminar: Robot Reinforcement Learning	2 SWS	Seminar / 🛢️	Neumann
ST 2023	2400085	Quantum Information Theory	2 SWS	Seminar / 🛢️	Müller-Quade, Tiepelt, Schwerdt, Ottenhues, Früböse
ST 2023	2400089	Decentralized Systems: Fundamentals, Modeling, and Applications	4 SWS	Lecture / Practice / 🗣	Stengele, Hartenstein
ST 2023	2400136	Seminar: Interactive Learning	2 SWS	Seminar / 🗣	Lioutikov
ST 2023	2400137	Embedded Machine Learning	2 SWS	Seminar / 🛢️	Sikal, Pfeiffer, Balaskas, Khdr, Henkel
ST 2023	2400148	Embedded Security and Architectures	2 SWS	Seminar / 🛢️	Hussain, Nassar, Bauer, Khdr, Gonzalez, Henkel, Sikal
ST 2023	2400178	Maschinelles Lernen in den Klima- und Umweltwissenschaften	2 SWS	Seminar / 🗣	Nowack
ST 2023	2400181	Interpretability and Causality in Machine Learning	2 SWS	Seminar / 🗣	Stühmer
ST 2023	2400285	Seminar: Critical topics of Artificial Intelligence	2 SWS	Seminar / 🗣	Friederich, Nierling, Baresi
ST 2023	24344	Advanced Methods of Information Fusion	2 SWS	Seminar / 🗣	Hanebeck, Reith-Braun
ST 2023	2500125	Engineering Seminar: Human-Centered Systems	3 SWS	Seminar / 🛢️	Mädche
ST 2023	2540553	User-Adaptive Systems Seminar	2 SWS	Seminar / 🛢️	Mädche, Beigl
ST 2023	2540557	Research Seminar: Human-Centered Systems	3 SWS	Seminar / 🛢️	Mädche
WT 23/24	2400013	Seminar: Energy Informatics	2 SWS	Seminar / 🗣	Wagner, Hagenmeyer, Fichtner, Heidrich, Ueckerdt, Bläsius, Göttlicher, Yi
WT 23/24	2400108	Continuous Software Engineering	2 SWS	Seminar	Koziolek
WT 23/24 2400126 Post-Quantum Cryptography 2 SWS Seminar / 🗣 Ottenhues, Tiepelt, Müller-Quade, Coijanovic, Fruböse, Gröll, Beskorovajnov, Benz

WT 23/24 2400129 Seminar Digital Accessibility and Assistive Technologies 2 SWS Seminar / 🗣 Stiefelhagen, Schwarz

WT 23/24 2400137 Embedded Machine Learning Seminar / 🗣 Rapp, Sikal, Pfeiffer, Balaskas, Zervakis, Khdr, Henkel

WT 23/24 2400148 Embedded Security and Architectures Seminar / 🗣 Hussain, Nassar, Bauer, Khdr, Gonzalez, Sikal, Henkel

WT 23/24 24344 Advanced Methods of Information Fusion 2 SWS Seminar / 🗣 Hanebeck, Reith-Braun

WT 23/24 2500125 Engineering Seminar: Human-Centered Systems 2 SWS Seminar / 🗣 Mädche

Exams
ST 2023 7500013 Advanced Methods of Information Fusion Hanebeck
ST 2023 7500284 Decentralized Systems: Fundamentals, Modeling, and Applications Hartenstein
ST 2023 7500285 Seminar: Critical topics of Artificial Intelligence Friederich
ST 2023 7500302 Research Focus Class: Blockchain & Payment Channel Networks - Seminar Hartenstein
ST 2023 7500319 Seminar: Interpretability and Causality in Machine Learning Stühmer
ST 2023 7500335 CES - Seminar: Machine Learning Henkel

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Below you will find excerpts from events related to this course:

Seminar Image Analysis and Fusion
2400035, SS 2023, 2 SWS, Language: German, Open in study portal

Organizational issues
Termin und Ort der Einführungsveranstaltung werden vor Semesterbeginn auf der Webseite bekannt gegeben.
Findet - sofern Präsenz-Veranstaltung erlaubt - im Fraunhofer IOSB statt.

Decentralized Systems: Fundamentals, Modeling, and Applications
2400089, SS 2023, 4 SWS, Language: English, Open in study portal
Content
Decentralized Systems (like blockchain-based systems) represent distributed systems that are controlled by multiple parties who make their own independent decisions. In this course, we cover fundamental theoretical aspects as well as up-to-date decentralized systems and connect theory with current practice. We thereby address fault tolerance, security & trust, as well as performance aspects at the example of applications like Bitcoin, Ethereum Smart Contracts, and Matrix.

The lecture covers the following topics:

- **Fundamentals**
 - Peer-to-Peer Overlay Networks, Sybil and Eclipse Attacks
 - Formalization of decentralized systems, including models for their computation, communication, faults, and timing.
 - Leader election and mutual exclusion in decentralized systems based on different models for node identities and timing.
 - Byzantine consensus in synchronous and asynchronous settings, including Bracha’s fundamental algorithm for reliable broadcast, Practical Byzantine Fault Tolerant consensus, and the fundamental limits.
 - Consistency models and protocols, up to and including Conflict-Free Replicated Data Types.

- **Applications**
 - Matrix
 - Distributed Ledgers, Blockchain, and Bitcoin
 - Payment Channel Networks
 - Ethereum as a smart contract platform
 - Decentralized storage systems

Competency

Goals:

1. **Fundamentals & Modeling**
 1. The student is able to recognize and distinguish distributed, federated, and decentralized systems.
 2. The student understands consensus, consistency and coordination within the context of networked and decentralized systems.
 3. The student understands the concept of Sybil attacks.
 4. The student is familiar with decentralized algorithms for leader election and mutual exclusion for execution contexts with various guarantees.
 5. The student understands the formally proven limits of fault tolerance and their underlying assumptions. This includes an understanding of synchronous and asynchronous network models which underpin the respective proofs. The student also understands several models for fault tolerance, notably silent and noisy crash as well as byzantine fault tolerance within the context of decentralized and distributed systems.
 6. The student has a basic understanding of state machine replication.
 7. The student knows various models for and levels of consistency.

2. **Applications**
 1. The student understands conflict-free replicated data types and their use in decentralized systems like Matrix.
 2. The student has a fundamental understanding of blockchain-based cryptocurrencies (e.g. Bitcoin/Ethereum), Payment Channels, and decentralized communication systems like Matrix.
 3. The student understands trust relations in distributed and decentralized systems and applications.
 4. The student is able to understand how the previously introduced theoretical foundations relate to networked and decentralized systems in practice.
 5. The student understands concepts of decentralized storage systems.

Seminar: Interactive Learning
2400136, SS 2023, 2 SWS, Language: English, [Open in study portal]
Content
Arbeitsaufwand = 90 h = 3 ECTS

- Präsenzzeit: 15hr
- Selbststudium: 45h
- Scientific Report schreiben: 20h

Präsentation vorbereiten: 10h

Each student will select several related papers in the field of Interactive Learning. The organizers will suggest several papers but the students will be encouraged to identify and research additional relevant papers during the semester. The students will then prepare a presentation and a basic scientific research paper.

It is highly recommended to take this seminar in combination with the "Interactive Learning" Research Project (Forschungspraktikum), where the students get the chance to deepen their understanding, implement and evaluate their presented work.

We highly recommend to take this seminar in combination with the "Interactive Learning" research project (Forschungspraktikum).

It is highly recommended to attend the "Explainable Artificial Intelligence" lecture in parallel or prior to this seminar.

- Experience in Machine Learning is recommended, e.g. through prior coursework.
- The Computer Science Department offers several great lectures e.g., "Maschinelles Lernen - Grundlagen und Algorithmen" and "Deep Learning"
- A good mathematical background will be beneficial
- Python experience is recommended
- We might use the PyTorch deep learning library in the exercises. Some prior knowledge in this is helpful but not necessary.

Vortrag zum gewählten Thema am Ende des Semesters und schriftliche Ausarbeitung.

Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

It is only possible to resign within two weeks after assignment of the topic.

Organizational issues
KIT-Fakultät für Informatik/1. Informatik Lehrveranstaltungen/1.7 Seminare

Embedded Machine Learning
2400137, SS 2023, SWS, Language: German/English, [Open in study portal](#)

Seminar (S)
Blended (On-Site/Online)
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Machine learning on on-chip systems

Machine learning and on-chip systems form a symbiosis where each research area benefits from advances in the other. In this seminar, students review cutting-edge research on both areas.

Machine learning (ML) gains importance in all aspects of information systems. From high-level algorithms like image recognition to lower-level intelligent CPU management - ML is ubiquitous. On-chip systems also benefit from advances in ML techniques. Examples include adaptive resource management or workload prediction. However, ML techniques also benefit from advances in on-chip systems. A prominent example is acceleration of neural networks in recent desktop GPUs and even smartphone chips.

In this seminar, students will review cutting-edge state-of-the-art research (publications) on a specific topic related to ML on on-chip systems. The findings will be summarized in a seminar report and presented to the other members of the course. Students are welcome to suggest their own topics, but this is not required. The seminar can be held in English or German.

Approximate Computing for Efficient Machine Learning

Nowadays, energy efficiency is a first-class design constraint in the ICT sector. Approximate computing emerges as a new design paradigm for generating energy efficient computing systems. There is a large body of resource-hungry applications (eg, image processing and machine learning) that exhibit an intrinsic resilience to errors and produce outputs that are useful and of acceptable quality for the users despite their underlying computations being performed in an approximate manner. By exploiting this inherent error tolerance of such applications, approximate computing trades computational accuracy for savings in other metrics, eg, energy consumption and performance. Machine learning, a very common and top trending workload of both data centers and embedded systems, is a perfect candidate for approximate computing application since, by definition, it delivers approximate results. Performance as well as energy efficiency (especially in the case of embedded systems) are crucial for machine learning applications and thus, approximate computing techniques are widely adopted in machine learning (eg, TPU) to improve its energy profile as well as performance.

Machine Learning methods for DNN compilation and mapping

Deep neural networks have achieved great success in challenging tasks such as image classification and object detection. There is a great demand for deploying these networks in different devices, ranging from cloud servers to embedded devices. Mapping DNNs to these devices is a challenging task since each of these devices has different characteristics in terms of memory organization, compute units, etc.. There have been efforts to automate the process of mapping/compiling DNNs to hardware with different characteristics.

In this seminar, we will discuss the efforts that have been done in mapping/compiling DNNs over hardware using machine learning methods.

Organizational issues

Please register in ILIAS to participate.

<table>
<thead>
<tr>
<th>Embedded Security and Architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400148, SS 2023, SWS, Language: German/English, Open in study portal</td>
</tr>
<tr>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Dependability for Reconfigurable Architectures
Dependability has become one of the prime concerns in recent nano-era. Reliability (the ability of the system to deliver services as specified) and Security (the ability of the system to protect itself against deliberate or accidental intrusion) are the two crucial attributes of dependable systems. Among the other reliability threats due to physical limits of CMOS technology, radiation induced soft errors or transient faults are also the most challenging threat to be handled. During this seminar, we will explore state-of-the-art for the power-efficient soft-error reliability and study different research solutions to improve soft-error resiliency in power efficient manner leveraging power-performance-reliability trade-offs. During this seminar, the students will also be able to understand hardware security in reconfigurable architectures,

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re)configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality.
This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (ie, systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.
In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems.
During this seminar, student will dive into the security aspects of resource management, while investigating answers to the following research questions:

- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What’s their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organizational issues
Please register in ILIAS to participate.

Advanced Methods of Information Fusion
24344, SS 2023, 2 SWS, Language: German/English, Open in study portal

User-Adaptive Systems Seminar
2540553, SS 2023, 2 SWS, Language: English, Open in study portal
Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school “KD2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.
Content
Formerly known as "Information Systems and Service Design Seminar"

With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group IS I (Prof. Mädche). The research group “Information Systems I” (IS I) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites

No specific prerequisites are required for the seminar.

Literature

Further literature will be made available in the seminar.

Organizational issues

Termine werden bekannt gegeben

Continuous Software Engineering

2400108, WS 23/24, 2 SWS, Language: German/English, Open in study portal

Embedded Machine Learning

2400137, WS 23/24, SWS, Language: German/English, Open in study portal

Content
Modern software engineering happens in short cycles, which allow fast feedback. Technologies like build servers and containerization support fast, frequent and automated deployment of software to production systems and fast feedback to development (devops).

The term "continuous software engineering" combines different aspects of this intertwinemenet of different software engineering activities.

In this seminars, students will work on a topic in the context of continuous software engineering. Some of the addressed topics will be concerned with challenges when engineering systems with machine-learning components.

Literature
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Machine Learning on On-Chip Systems
Machine learning and on-chip systems form a symbiosis where each research area benefits from advances in the other. In this seminar, students review cutting-edge research on both areas.

Machine learning (ML) gains importance in all aspects of information systems. From high-level algorithms like image recognition to lower-level intelligent CPU management - ML is ubiquitous. On-chip systems also benefit from advances in ML techniques. Examples include adaptive resource management or workload prediction. However, ML techniques also benefit from advances in on-chip systems. A prominent example is acceleration of neural networks in recent desktop GPUs and even smartphone chips.

In this seminar, students will review cutting-edge state-of-the-art research (publications) to a specific topic related to ML on on-chip systems. The findings will be summarized in a seminar report and presented to the other members of the course. Students are welcome to suggest own topics, but this is not required. The seminar can be held in English or German.

DNN Pruning and Quantization
As DNNs become more computationally hungry, their hardware implementation becomes more challenging, since embedded devices have limited resources. DNN compression techniques, such as pruning and quantization, can be applied for efficient utilization of computational resources. While pruning involves removing unimportant elements of a DNN structure (connections, filters, channels etc), quantization decreases the precision for representing DNN-related tensors (weights and activations). Both promise to trade-off some of the application's accuracy for limited energy consumption and reduced memory footprint. Students will review state-of-the-art research works on hardware-aware DNN pruning and quantization. The findings will be summarized in a seminar report and presented to the other members of the course.

Organizational issues
Bitte im ILIAS zur Teilnahme anmelden.

<table>
<thead>
<tr>
<th>v</th>
<th>Embedded Security and Architectures</th>
<th>Seminar (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2400148, WS 23/24, SWS, Language: German/English, Open in study portal</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Dependability for Reconfigurable Architectures
Dependability has become one of the prime concerns in recent nano-era. Reliability (the ability of the system to deliver services as specified) and Security (the ability of the system to protect itself against deliberate or accidental intrusion) are the two crucial attributes of dependable systems. Among the other reliability threats due to physical limits of CMOS technology, radiation induced soft errors or transient faults are also the most challenging threat to be handled. During this seminar, we will explore state-of-the-art for the power-efficient soft-error reliability and study different research solutions to improve soft-error resiliency in power efficient manner leveraging power-performance-reliability trade-offs. During this seminar, the students will also be able to understand hardware security in reconfigurable architectures.

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re) configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality.
This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (i.e., systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.

In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems. During this seminar, student will dive into the security aspects of resource management, while investigating answers to the following research questions:

- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What’s their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organizational issues
Please register in ILIAS to participate.

Advanced Methods of Information Fusion
24344, WS 23/24, 2 SWS, Language: German, Open in study portal

Content
The growing spread and performance of modern information and communication technologies produces an ever-increasing amount data. It is one of the central challenges of our time to extract meaningful information from these data sets. The approach to address these issues, often called data science, combines strategies and methods from the fields of machine learning, mathematics, state estimation, visualization and pattern recognition. During this seminar, the students will familiarize themselves with concepts and methods particularly focusing on estimation theory and its application.

The seminar targets master students in computer science and bachelor students in Information engineering and management.
T 5.260 Course: Seminar: Commercial and Corporate Law in the IT Industry [T-INFO-111405]

Responsible: Prof. Dr. Thomas Dreier
Dr. Georg Nolte

Organisation: KIT Department of Informatics

Part of: M/INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>2400165</th>
<th>Seminar Commercial and Corporate Law in Information Technology</th>
<th>2 SWS</th>
<th>Seminar / 🖥</th>
<th>Nolte</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>7500182</th>
<th>Seminar: Legal Studies II</th>
<th>Dreier, Boehm, Raabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500310</td>
<td>Seminar: Commercial and Corporate Law in the IT Industry</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.261 Course: Seminar: Computer Science TECO [T-INFO-110808]

Responsible:	Prof. Dr.-Ing. Michael Beigl
Organisation:	KIT Department of Informatics
Part of:	M-INFO-105328 - Seminar: Computer Science TECO

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>
5.262 Course: Seminar: IT- Security Law [T-INFO-111404]

Responsible: Martin Schallbruch
Organisation: KIT Department of Informatics
Part of: M-INFO-101217 - Public Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Exam Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>7500182</td>
<td>Seminar: Legal Studies II</td>
<td>Dreier, Boehm, Raabe</td>
</tr>
</tbody>
</table>
Course: Seminar: Legal Studies I [T-INFO-101997]

5.263 Course: Seminar: Legal Studies I [T-INFO-101997]

- **Responsible:** Prof. Dr. Thomas Dreier
- **Organisation:** KIT Department of Informatics
- **Part of:** M-INFO-101218 - Seminar Module Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2400005</td>
<td>Governance, Risk & Compliance</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Herzig, Siddiq</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2400061</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Bless, Boehm, Hartenstein, Mädche, Volkamer, Zitterbart</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2400078</td>
<td>Intelligente Chatbots und Recht</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Raabe</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2400149</td>
<td>„Vom Original zur Kopie und vom Analogon zum Digitalen“</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Dreier</td>
</tr>
<tr>
<td>ST 2023</td>
<td>24820</td>
<td>Current Issues in Patent Law</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Melullis</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2400184</td>
<td>EU Digital Regulatory Framework</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Zufall</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2513214</td>
<td>Seminar Information security and Data protection (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Oberweis, Volkamer, Raabe, Schieber, Hennig, Sterz, Veit, Ballreich, Mossano</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500106</td>
<td>Title not available</td>
<td></td>
<td>Bless, Hartenstein, Mädche, Zitterbart, Boehm, Sunyaev</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500140</td>
<td>Seminar: Legal Studies I</td>
<td></td>
<td>Dreier, Melullis, Matz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500182</td>
<td>Seminar: Legal Studies II</td>
<td></td>
<td>Dreier, Boehm, Raabe</td>
</tr>
</tbody>
</table>

Content

- Registration via https://portal.wiwi.kit.edu/ys/5877

Organizational issues

- nach Vereinbarung

below you will find excerpts from events related to this course:

Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung

2400061, SS 2023, 2 SWS, [Open in study portal](https://portal.wiwi.kit.edu/ys/5877)

EU Digital Regulatory Framework

2400184, WS 23/24, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/ys/5877)
Content
This class aims to provide an overview on the legal instruments forming the EU digital regulatory framework. Following its Digital Single Market Strategy, the EU has set up a new strategic programme for a "Digital Decade". Existing regulations like the General Data Protection Regulation (GDPR), or the E-Commerce Directive, are being complemented by a variety of new instruments that aim to set binding rules on online markets, to regulate data flows in various ways, but also to pioneer a legal framework on AI. Prominent instruments include the new AI Act (proposal), the Digital Services Act (DSA) and Digital Markets Act (DMA), the Data Act, Data Governance Act, or Open Data Directive.

The class will provide an overview on the existing framework: Which regulations and directives are relevant? How do they apply and interact which each other in a broader context?

Another objective is to provide students with the ability to read these legal instruments: How to access regulatory instruments that often have more than 100 pages (without having to read every single sentence)? How to gain a comprehensive, high-level understanding of the instrument? How to identify parts relevant to a particular legal problem?

The class will start with an introduction into EU law and regulatory instruments in general. Concrete guidance on reading, analysing and working with legal instruments in English will be given. Based on these instructions, students will be assigned legal instruments to present in the following units.

Grades will be assigned based on the quality of these presentations and participation in the discussions.

Organizational issues
WS 2023/24
Das Seminar findet Mittwochs (im wöchentlichen Rhythmus) von 14:00 - 15:30 Uhr im Seminarraum Nr. 313 (3. OG) in der Vincenz-Prießnitz-Straße 3, 76131 Karlsruhe, statt.

The seminar takes place on Wednesdays (in weekly rhythm) from 14:00 - 15:30 in the seminar room No. 313 (3rd floor), Vincenz-Prießnitz-Straße 3, 76131 Karlsruhe.
5.264 Course: Service Design Thinking [T-WIWI-102849]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101503 - Service Design Thinking

Type: Examination of another type
** Credits:** 12
** Grading scale:** Grade to a third
** Recurrence:** Irregular
** Version:** 4

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture /تناقش</td>
<td>Irregular</td>
<td>4</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>7900293</th>
<th>Service Design Thinking</th>
<th>Satzger</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900301</td>
<td>Practical Seminar Service Innovation</td>
<td>Satzger</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment.

Prerequisites

None

Recommendation

This course is held in English – proficiency in writing and communication is required. Our past students recommend to take this course at the beginning of the masters program.

Annotation

Due to practical project work as a component of the program, access is limited. The module (as well as the module component) spans two semesters. It starts in September every year and runs until end of June in the subsequent year. Entering the program is only possible at its beginning - after prior application in May/June. For more information on the application process and the program itself are provided in the module component description and the program's website (http://sdt-karlsruhe.de). Furthermore, the KSRI conducts an information event for applicants every year in May. This module is part of the KSRI Teaching Program „Digital Service Systems”. For more information see the KSRI Teaching website: www.ksri.kit.edu/teaching.

Below you will find excerpts from events related to this course:

Service Design Thinking

2595600, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Content
The Service Design Thinking course is more than a usual lecture. You will learn what it really takes to be an innovator. You will receive education in the human-centric innovation approach Design Thinking, work in small but interdisciplinary and international teams on real business challenges over the course of nine months (September to June). You will collaborate directly with mentors from a partner company as well as with fellow students from renowned universities from the SUGAR network, e.g. the University of St. Gallen, the Trinity College Dublin or the University of Science and Technology of China (USTC). Along the way, you will visit international destinations known for being innovation hotspots and will be on stage at innovation events that draw an audience of several hundred participants.

What students will learn:

- Deep knowledge of the innovation method “Design Thinking”, as introduced and promoted by Stanford University.
- Development of new, creative solutions through extensive observation of oneself and one’s environment, in particular with regard to the relevant service users.
- Know-how to use prototyping and experimentation to visualize one’s ideas, to test and iteratively develop them, and to converge on a solution.
- Learn to apply the method to real innovation projects issued by industry partners.
- Communicate, work and present in an interdisciplinary and international project setting.

Course phases (roughly 4 weeks each):

- **Paper Bike:**
 Learning about the basic method elements by building a paper bike that has to fulfill a given set of challenges. The bikes will be tested in a race during an international Kick-Off event with other universities of the SUGAR network (internally known as Design Thinking network).

- **Design Space Exploration:**
 Exploring the problem space through customer and user observation as well as desk research.

- **Critical Function Prototype:**
 Identification of critical features from the customer’s perspective that can contribute to the solution of the overarching problem. Building and testing prototypes that integrate these functionalities.

- **Dark Horse Prototype:**
 Inverting earlier assumptions and experiences, which leads to the inclusion of new features and solutions. Developing radically new ideas are the focus of this phase.

- **Funky Prototype:**
 Integration of the individually tested and successful functions to a complete solution, which is further tested and developed.

- **Functional Prototype:**
 Selection of successful scenarios from the previous phase and building a higher resolution prototype. The final solution to the challenge is laid out in detail and tested with users.

- **Final Prototype:**
 Implementing the functional prototype and presenting it to the customer as well as the SUGAR network.

Literature

- Design Thinking: Das Handbuch; Falk Uebernickel, Walter Brenner, Therese Naef, Britta Pukall, Bernhard Schindlholzer
- The Design Thinking Playbook: Mindful Digital Transformation of Teams, Products, Services, Businesses and Ecosystems; Michael Lewrick, Patrick Link, Larry Leifer
- The Design Thinking Toolbox: A Guide to Mastering the Most Popular and Valuable Innovation Methods; Michael Lewrick, Patrick Link, Larry Leifer
- Frame Innovation: Create New Thinking by Design (Design Thinking, Design Theory); Kees Dorst
5.265 Course: Service Innovation [T-WIWI-102641]

Responsibe: Prof. Dr. Gerhard Satzger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-102808 - Digital Service Systems in Industry

Type: Written examination
Credits: 4.5
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>ECTS</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2595468</td>
<td>Digital Services: Innovation & Business Models</td>
<td>1.5 SWS</td>
<td>Lecture</td>
<td>English</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900113</td>
<td>Digital Services: Innovation & Business Models</td>
<td>Satzger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900249</td>
<td>Service Innovation - oral exam</td>
<td>Satzger</td>
</tr>
</tbody>
</table>

Competence Certificate
Note: From summer semester 2023, the course Service Innovation will be offered with a revised course concept and content. The focus will be on the closer integration of the topics of service innovation and digitalization. Current foundational content (e.g., on service innovation challenges or human-centered innovation methods) will remain. New content will cover topics such as digital platforms and ecosystems, IoT and smart service innovation, and business models.

The assessment consists of a written exam (60 min.). A bonus can be acquired through successful participation in the exercise. If the grade of the written exam is between 4.0 and 1.3, the bonus improves the grade by one grade (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites
None

Recommendation
None

Annotation
Starting with the summer semester 2023, the course Service Innovation will be called "Digital Services: Innovation & Business Models".

Below you will find excerpts from events related to this course:

Digital Services: Innovation & Business Models
2595468, SS 2023, 1.5 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content
Leveraging data and digital technologies for business success is a key challenge for organizations as they need to

- get aware of the newly arising potential
- develop suitable digital services that are user-centric and individualized
- "servitize" their offering portfolio and business model
- transform their organizations

This course will equip students with concepts and methods to tackle this challenge along two dimensions: First, we will cover innovation as a concept as well as apply contemporary innovation methods (like Design Thinking, Open Innovation) to the services space. Second, we deal with leveraging innovation to develop new business models (including multi-partner concepts in platforms or ecosystems), to servitize existing business models (e.g., via product-service-systems), and to accordingly transform the organization.

The course links innovation and business model theories with practical examples and exercises. Students are asked to actively engage in the discussion.
Organizational issues
The course will be offered in the form of a flipped classroom concept starting in summer semester 2023. The lecture will be recorded in advance and made available online. During the “in presence” sessions, the contents of the lecture will be applied and expanded on.

Literature

5.266 Course: Signals and Codes [T-INFO-101360]

Responsible: Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics

Part of: M-INFO-101198 - Advanced Topics in Cryptography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Content</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24137</td>
<td>Signals and Codes</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Geiselmann, Müller-Quade</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7500179</td>
<td>Signals and Codes</td>
<td>Lecture (V)</td>
<td></td>
<td>Geiselmann, Müller-Quade</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Content</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24137</td>
<td>Signals and Codes</td>
<td>Geiselmann, Müller-Quade</td>
</tr>
<tr>
<td></td>
<td>7500179</td>
<td>Signals and Codes</td>
<td>Geiselmann, Müller-Quade</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗣 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Signals and Codes

24137, WS 23/24, 2 SWS, Language: German, Open in study portal

Content

In this lecture, bounds for codes (Hamming, Gilbert-Varshamov, Singleton) are presented. Coding and decoding for classical algebraic codes (linear, cyclic, Reed Solomon-, Goppa- und Reed Muller-codes) will be presented as well as concatenated codes.

Literature

Todd Moon, ‘Error Correction Coding’, Wiley, 2005
Weitere Literatur wird in der Vorlesung bekannt gegeben.

Weiterführende Literatur

Wird in der Vorlesung bekannt gegeben.
5.267 Course: Simulation Game in Energy Economics [T-WIWI-108016]

Responsible: Dr. Massimo Genoese
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101451 - Energy Economics and Energy Markets

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>Type: Examination of another type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>Type: Examination of another type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>Type: Examination of another type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>Type: Examination of another type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Examination as written assignment and oral presentation ($\$4$ (2), 1 SPO).

Prerequisites

None

Recommendation

Visiting the course "Introduction to Energy Economics"

Annotation

The number of participants is limited.
There is a registration procedure via CAS followed by a selection of the participants.

Below you will find excerpts from events related to this course:

Simulation Game in Energy Economics
2581025, SS 2023, 3 SWS, Language: German, [Open in study portal](#)
Lecture / Practice (VÜ)
On-Site

Content

- Introduction
- Agents and market places in the electricity industry
- Selected planning tasks of energy service companies
- Methods of modelling in the energy sector
- Agent-based simulation: The PowerACE model
- Simulation game: Simulation in energy economics (electricity and emission trading, investment decisions)

The lecture is structured in a theoretical and a practical part. In the theoretical part, the students are taught the basics to carry out simulations themselves in the practical part which comprises amongst others the simulation of the power exchange. The participants of the simulation game take a role as a power trader in the power market. Based on various sources of information (e.g. prognosis of power prices, available power plants, fuel prices), they can launch bids in the power exchange.

Assessment: presentation and written summary
Prerequisites: Basics in Energy economics ad markets are advantageous.

Organizational issues

CIP-Pool West, Raum 102, Geb. 06.41 - siehe Institutsaushang

Literature

Weiterführende Literatur:

5.268 Course: Smart Energy Infrastructure [T-WIWI-107464]

Responsible: Dr. Armin Ardone
Dr. Dr. Andrej Marko Pustisek

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101452 - Energy Economics and Technology

Type: Written examination
Credits: 5.5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 2

Events
WT 23/24 2581023 (Smart) Energy Infrastructure 4 SWS Lecture / Ardone, Pustisek

Exams
ST 2023 7981023 Smart Energy Infrastructure Fichtner
WT 23/24 7900178 Smart Energy Infrastructure NEW Fichtner
WT 23/24 7981023 Smart Energy Infrastructure Fichtner

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Below you will find excerpts from events related to this course:

V (Smart) Energy Infrastructure 2581023, WS 23/24, 4 SWS, Language: English, Open in study portal

Lecture (V) On-Site

Content
The lecture provides a techno-economic overview of different infrastructures of the energy system and their importance regarding the future energy system (“Energiewende”) – in particular

- for electricity:
 - the supply side (e.g. power plants)
 - the demand side (e.g. load structures of appliances, flexibilities) as well as
 - transport infrastructures (electricity grids)
- for fuel transportation:
 - pipeline infrastructures (focus on natural gas)
 - shipping of LNG
 - crude oil and oil product transportation
 - hydrogen transportation
 - comparison of potential energy carriers for global trade of renewable energy (e.g., hydrogen and its derivates, e-fuels, reactive metals)
- storage systems (e.g. batteries)

Additionally, the lecture provides a toolbox for energy system analysis such as an overview and classification of energy systems modelling approaches as well as the usage of scenario techniques for energy systems analysis.

The lecture also provides practical examples for the relevant methods presented.

Organizational issues
Blockveranstaltung
5.269 Course: Smart Grid Applications [T-WIWI-107504]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101446 - Market Engineering
- M-WIWI-103720 - eEnergy: Markets, Services and Systems

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- see Annotations

Version
- 2

Competence Certificate
The assessment consists of a written exam (60 min) (according to §4(2), 1 of the examination regulations). By successful completion of the exercises (§4 (2), 3 SPO 2007 respectively §4 (3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Recommendation
None

Annotation
The lecture will no longer be offered from the coming winter semester 2023/24. It is only possible to take part in the main exam (first-time writer) and follow-up exam (repeater).
5.270 Course: Social Choice Theory [T-WIWI-102859]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101500 - Microeconomic Theory
M-WIWI-101504 - Collective Decision Making

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2520537 Social Choice Theory 2 SWS Lecture / 🗣 Puppe</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
<tr>
<td>ST 2023 2520539 Übung zu Social Choice Theory 1 SWS Practice / 🗣 Müller, Puppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an alternative exam assessment (open book exam). The exam takes place in every summer semester.

Prerequisites

None

Below you will find excerpts from events related to this course:

Social Choice Theory
2520537, SS 2023, 2 SWS, Language: English, [Open in study portal](#)
Lecture (V) On-Site

Content

How should (political) candidates be elected? What are good ways of merging individual judgments into collective judgments? Social Choice Theory is the systematic study and comparison of how groups and societies can come to collective decisions.

The course offers a rigorous and comprehensive treatment of judgment and preference aggregation as well as voting theory. It is divided into two parts. The first part deals with (general binary) aggregation theory and builds towards a general impossibility result that has the famous Arrow theorem as a corollary. The second part treats voting theory. Among other things, it includes proving the Gibbard-Satterthwaite theorem.

Literature

Main texts:

Secondary texts:
5.271 Course: Sociotechnical Information Systems Development [T-WIWI-109249]

Responsible: Prof. Dr. Ali Sunyaev

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2512400</th>
<th>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</th>
<th>3 SWS</th>
<th>Practical course / 🖥 Sunyaev, Pandl, Goram, Leiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2512401</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Master)</td>
<td>3 SWS</td>
<td>Practical course / 🖥 Sunyaev, Pandl, Goram, Leiser</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900173 | Advanced Lab Development of Sociotechnical Information Systems (Master) | Sunyaev |

Competence Certificate
The alternative exam assessment consists of an implementation and a final thesis documenting the development and use of the application.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Advanced Lab Development of Sociotechnical Information Systems (Bachelor)

| 2512400, SS 2023, 3 SWS, Language: German/English, Open in study portal |

Content
The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.

Registration information will be announced on the course page.

Advanced Lab Development of Sociotechnical Information Systems (Master)

| 2512401, SS 2023, 3 SWS, Language: German/English, Open in study portal |

Content
The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.

Registration information will be announced on the course page.
5.272 Course: Software Architecture and Quality [T-INFO-101381]

Responsible:
Prof. Dr. Ralf Reussner

Organisation:
KIT Department of Informatics

Part of:
- M-INFO-101201 - Software Systems
- M-INFO-101202 - Software Methods

Table:

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24667</td>
<td>Software Architecture and Quality</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500021</td>
<td>Software Architecture and Quality</td>
<td>Reussner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500032</td>
<td>Software Architecture and Quality</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.273 Course: Software Quality Management [T-WIWI-102895]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101477 - Development of Business Information Systems

Type: Written examination
Credits: 4,5
Grading scale: Grade to a third
Recurrence: Each summer term
Version: 2

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2511208</td>
<td>Software Quality Management</td>
<td>2</td>
<td>Lecture</td>
<td>Alpers</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2511209</td>
<td>Übungen zu Software-Qualitätsmanagement</td>
<td>1</td>
<td>Practice</td>
<td>Frister, Forell</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>79AIFB_STQM_A5</td>
<td>Software Quality Management (Registration until 1 July 2023)</td>
<td>0</td>
<td>Lecture</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>79AIFB_STQM_C1</td>
<td>Software Quality Management</td>
<td>0</td>
<td>Lecture</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
None

Below you will find excerpts from events related to this course:

Software Quality Management
2511208, SS 2023, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site

Content
This lecture imparts fundamentals of active software quality management (quality planning, quality testing, quality control, quality assurance) and illustrates them with concrete examples, as currently applied in industrial software development. Keywords of the lecture content are: software and software quality, process models, software process quality, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, software tests.

Learning objectives:
Students
- explain the relevant quality models,
- apply methods to evaluate the software quality and evaluate the results,
- know the main models of software certification, compare and evaluate these models,
- write scientific theses in the area of software quality management and find own solutions for given problems.

Recommendations:
Programming knowledge in Java and basic knowledge of computer science are expected.

Workload:
- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
Literature

- Peter Liggesmeyer: Software-Qualität, Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag 2002
- Mauro Pezzè, Michal Young: Software testen und analysieren. Oldenbourg Verlag 2009

Weitere Literatur wird in der Vorlesung bekanntgegeben.
5.274 Course: Software-Evolution [T-INFO-101256]

Responsible: Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of:
- M-INFO-101201 - Software Systems
- M-INFO-101202 - Software Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Type</th>
<th>Event Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturer</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24164</td>
<td>Software Evolution</td>
<td>2 SWS</td>
<td>Lecture/🗣</td>
<td>Heinrich</td>
<td>Each winter term</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Event Code</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500023</td>
<td>Software-Evolution</td>
<td>Reussner</td>
</tr>
</tbody>
</table>
5.275 Course: Spatial Economics [T-WIWI-103107]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101485 - Transport Infrastructure Policy and Regional Development
M-WIWI-101496 - Growth and Agglomeration

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 2561260</td>
<td>Spatial Economics</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2561261</td>
<td>Exercise for Spatial Economics</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Ott, Mirzoyan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900103</td>
<td>Spatial Economics</td>
<td></td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 7900075</td>
<td>Spatial Economics</td>
<td></td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 7900276</td>
<td>Spatial Economics</td>
<td></td>
<td>Ott</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as an open-book examination, or as a 60-minute written examination.

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses "Economics I" [2600012], and "Economics II" [2600014]. In addition, an interest in quantitative-mathematical modeling is required. The attendance of the course "Introduction to economic policy" [2560280] is recommended.

Annotation

Due to the research semester of Prof. Dr. Ingrid Ott, the course will not be offered in the winter semester 2021/22. The exam will take place. Preparation materials can be found in ILIAS.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Spatial Economics 2561260, WS 23/24, 2 SWS, Language: English</td>
<td>Lecture (V) On-Site</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), 🗣️ On-Site, ✗ CANCELLED
Content
The course covers the following topics:

- Geography, trade and development
- Geography and economic theory
- Core models of economic geography and empirical evidence
- Agglomeration, home market effect, and spatial wages
- Applications and extensions

Learning objectives:
The student

- analyses how spatial distribution of economic activity is determined.
- uses quantitative methods within the context of economic models.
- has basic knowledge of formal-analytic methods.
- understands the link between economic theory and its empirical applications.
- understands to what extent concentration processes result from agglomeration and dispersion forces.
- is able to determine theory based policy recommendations.

Recommendations:
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2600012], and Economics II [2600014]. An interest in mathematical modeling is advantageous.

Workload:
The total workload for this course is approximately 135 hours.

- Classes: ca. 30 h
- Self-study: ca. 45 h
- Exam and exam preparation: ca. 60 h

Assessment:
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Literature

Weitere Literatur wird in der Vorlesung bekanntgegeben.
(Further literature will be announced in the lecture.)
5.276 Course: Special Topics in Information Systems [T-WIWI-109940]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101410 - Business & Service Engineering
- M-WIWI-101506 - Service Analytics
- M-WIWI-103720 - eEnergy: Markets, Services and Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Year</th>
<th>Exam ID</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 23</td>
<td>00019</td>
<td>Implementation of a classification of Digital Involvement Projects (DIP) in a web-based application</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 23</td>
<td>00032</td>
<td>Practical Seminar: Visualizing AI Predictions Using Metaverse Technology</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 23</td>
<td>7900326</td>
<td>Special Topics in Information Systems</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The overall grade is composed as follows:

A total of 60 points can be achieved, of which

- A maximum of 30 points for the written documentation
- A maximum of 30 points for the practical component

In order to pass the success control, at least 15 points (written documentation / practical component) must be achieved.

Prerequisites

see below

Recommendation

None

Annotation

All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Systems course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre.

The Special Topics Information Systems is equivalent to the practical seminar, as it was only offered for the major in "Information Systems" so far. With this course students majoring in "Industrial Engineering and Management" and "Economics Engineering" also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Systems can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.
5.277 Course: Startup Experience [T-WIWI-111561]

Responsible: Prof. Dr. Orestis Terzidis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101488 - Entrepreneurship (EnTechnon)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2545004 Startup Experience</td>
<td>4 SWS</td>
<td>Seminar / 🗣️</td>
<td>Finner, Manthey, Weimar, Terzidis</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 2545004 Startup Experience</td>
<td>4 SWS</td>
<td>Seminar / 🗣️</td>
<td>Weimar, Martjan, Terzidis</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900186 Startup Experience</td>
<td></td>
<td></td>
<td>Terzidis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
Alternative exam assessment. Details on the design of the examination performance of other types will be announced in the course. The grade is composed of a presentation and a written paper (plus any specified documentation, e.g. work results, experience diary, reflection).

Recommendation
Lecture Entrepreneurship already completed

Annotation
The language in the seminar is English. The seminar contents will be published on the chair homepage.

Below you will find excerpts from events related to this course:

Startup Experience
2545004, SS 2023, 4 SWS, Language: English, Open in study portal
Content

In the Startup Experience course, you develop entrepreneurial competences that enable you to develop a new venture. In an entrepreneurial project, you have three main goals:

1. Identify and develop an opportunity. Who is your target customer and what problem or task does he or she have? How attractive and how big is this market?
2. How will you provide value for them? How can you use specific resources, including technology to develop a solution?
3. How can you conceive and set up a viable organization? Which business model do you suggest to create, deliver, and capture value?

After the teams are formed, a teambuilding session follows so that the team members get to know each other better and establish the cornerstones for working together. In this way, they create a basis for their joint project.

The focus of the seminar is on technology-based venturing. In this context, we will use the TAS (Technology-Application-Selection) approach developed at the EnTechnon. By default, we start from KIT patents (but you can also ‘bring with you’ other new technologies). We analyze the technology and use creativity techniques to find potential applications. Among other approaches, we will systematically explore applications around the UN sustainable development goals. Prototyping, business model development, and pitching are part of the seminar.

Learning Objectives

You will be able to explore deep technology venturing opportunities and create new products and services. The pedagogical approach is that of action learning. In a team, you will experience typical challenges and processes related to setting up a new business and develop the corresponding entrepreneurial competences.

After completing this course, the course participants will be able to:

- Characterize the core process of Deep Tech Venturing,
- Work effectively in a cohesive team,
- Use a technology characterization canvas to extract the core characteristics of a technology,
- Apply creativity techniques to ideate potential applications,
- Use utility analysis approaches to select a promising technology application,
- Develop a value proposition based on techniques like the value proposition canvas or the jobs-to-be-done method,
- Use approaches of technology impact assessment to implement responsible innovation processes,
- Apply advanced business modeling methods to develop a sound business concept,
- Develop and deliver a concise presentation (“pitch”) to communicate your project.

Additional information:

Alternative exam assessment. The grade consists of the presentation and the written elaboration. Potentially, a ‘project diary’ of the seminar progress may be part of the deliverables (depends on tutor and will be communicated at the kick-off).

For a successful course completion, we expect you to submit a Business Plan with the following features:

- Scope: 9000 words,
- Sound and clear structure,
- Expression and spelling are correct
- Complete and correct references, quotations, etc.
- Visual elements are chosen appropriately
- Documentation and traceability of data acquisition, analysis and evaluation,
- Content is developed according to the course instructions.

Furthermore, we expect you to deliver a team Pitch.

- Duration: will be communicated (typically 5-10 minutes)
- Content: Introduction/Purpose; Problem; Solution; Business Model; Prototype; Competition; Management Team; Current Status and next steps,
- Layout and form: appropriate choice,
- Appearance: appropriate amount of visual elements,
- Data: well researched and organized visually
- Story Line: is sound; clear and convincing.

Organizational issues

Registration is via the Wiwi-Portal.

In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation. The seminars will be held in English.
In the Startup Experience seminar you will develop entrepreneurial competences that will enable you to build a new business. In an entrepreneurial project, you have three main objectives:

1. Identify and develop an opportunity. Who is your target customer and what problem or task does he or she have? How attractive and how big is this market?
2. How will you add value to it? How can you use specific resources, including technology, to develop a solution?
3. How can you design and set up a viable organisation? What business model do you propose to create, deliver and capture value?

Our primary focus is on digital healthcare ventures, granting you the opportunity to delve into the realm of entrepreneurship within the healthcare system. After gaining a deep understanding of healthcare needs, you will utilize creativity techniques to uncover potential business ideas that provide value for patients and doctors. Additionally, you will learn how to create viable business models, dive into health regulations, and pitch your idea to a jury.

Learning Objectives
After completing this course, the course participants will be able to:

- Work effectively in a cohesive team
- Understand the role of digital entrepreneurship in healthcare
- Apply creativity techniques to ideate
- Use utility analysis approaches to select promising solutions
- Develop a value proposition based on techniques like the value proposition canvas or the jobs-to-be-done method
- Apply advanced business modeling methods to develop a sound business concept
- Develop and deliver a concise presentation ("pitch") to communicate your project
- Gain basic knowledge of healthcare regulations and reimbursement ways

Additional information:
Alternative exam assessment. The grade consists of the presentation and the written elaboration. Potentially, a ‘project diary’ of the seminar progress may be part of the deliverables (depends on tutor and will be communicated at the kick-off).

For a successful course completion, we expect you to submit a Business Plan with the following features:

- Scope: 9000 words,
- Sound and clear structure,
- Expression and spelling are correct
- Complete and correct references, quotations, etc.
- Visual elements are chosen appropriately
- Documentation and traceability of data acquisition, analysis and evaluation,
- Content is developed according to the course instructions.

Furthermore, we expect you to deliver a team Pitch.

- Duration: will be communicated (typically 5-10 minutes)
- Content: Introduction/Purpose; Problem; Solution; Business Model; Prototype; Competition; Management Team; Current Status and next steps,
- Layout and form: appropriate choice,
- Appearance: appropriate amount of visual elements,
- Data: well researched and organized visually
- Story Line: is sound; clear and convincing.

Organizational issues
Registration is via the Wiwi portal.

In the seminar you will work on a project in teams of max. 5 persons. The groups are formed in the seminar.
Course: Statistical Modeling of Generalized Regression Models [T-WIWI-103065]

Responsible: apl. Prof. Dr. Wolf-Dieter Heller

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101638 - Econometrics and Statistics I
M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2521350</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Heller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>7900146 (SS23)</td>
<td>Statistical Modeling of generalized regression models</td>
<td></td>
<td></td>
<td>Heller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900146 (WS23/24)</td>
<td>Statistical Modeling of generalized regression models</td>
<td></td>
<td></td>
<td>Heller</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Below you will find excerpts from events related to this course:

Statistical Modeling of Generalized Regression Models
2521350, WS 23/24, 2 SWS, Open in study portal

V Lecture (V)

Content

Learning objectives:
The student has profound knowledge of generalized regression models.

Requirements:
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016].

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Course: Stochastic Calculus and Finance [T-WIWI-103129]

Responsible: Dr. Mher Safarian
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101639 - Econometrics and Statistics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>Stochastic Calculus and Finance</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Safarian</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Übungen zu Stochastic Calculus and Finance</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Safarian</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course consists of a written examination (§4(2), 1 SPOs, 180 min.).

Prerequisites
None

Annotation
For more information see http://statistik.econ.kit.edu/

Below you will find excerpts from events related to this course:

Stochastic Calculus and Finance

Learning objectives:
After successful completion of the course students will be familiar with many common methods of pricing and portfolio models in finance. Emphasis we be put on both finance and the theory behind it.

Content:
The course will provide rigorous yet focused training in stochastic calculus and mathematical finance. Topics to be covered:

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours

Organizational issues
Blockveranstaltung. Termine werden über Ilias bekannt gegeben.
Literature

- Stochastic Finance: An Introduction in Discrete Time by H. Föllmer, A. Schied, de Gruyter, 2011
- Introduction to Stochastic Calculus Applied to Finance by D. Lamberton, B. Lapeyre, Chapman&Hall, 1996
5.280 Course: Strategic Finance and Technology Change [T-WIWI-110511]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101483 - Finance 2

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>1,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7900268</td>
<td>Strategic Finance and Technology Change</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7900219</td>
<td>Strategic Finance and Technology Change</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The exam is offered each semester. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Prerequisites

None

Recommendation

Attending the lecture "Financial Management" is strongly recommended.
5.281 Course: Strategic Management of Information Technology [T-WIWI-102669]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Thomas Wolf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-101477 - Development of Business Information Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

Please note that the exam for first writers will be offered for the last time in winter semester 2019/2020. A last examination possibility exists in the summer semester 2020 (only for repeaters).

The assessment of this course is a written (60 min.) or (if necessary) oral examination according (30 min.) to §4(2) of the examination regulation.

Prerequisites

None
5.282 Course: Strategy and Management Theory: Developments and “Classics” [T-WIWI-106190]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2577921 | Strategy and Management Theory: Developments and “Classics” (Master) | 2 SWS | Seminar / 🗣 | Lindstädt |

Exams

| ST 2023 | 7900278 | Strategy and Management Theory: Developments and “Classics” | Lindstädt |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The control of success according to § 4(2), 3 SPO takes place by writing a scientific work and a presentation of the results of the work in the context of a conclusion meeting. Details on the design of the performance review will be announced during the lecture.

Prerequisites
None

Recommendation
Basic knowledge as conveyed in the bachelor module „Strategy and Organization” is recommended.

Annotation
This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed.

The course is planned to be held for the first time in the winter term 2017/18.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>V</th>
<th>Strategy and Management Theory: Developments and "Classics" (Master)</th>
<th>Seminar (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2577921, SS 2023, 2 SWS, Language: German, [Open in study portal]</td>
<td>On-Site</td>
</tr>
</tbody>
</table>
Content
This course covers highly topical issues of great relevance to the management of organizations. Students will be enabled to take strategic management positions. By applying appropriate models from the fields of strategy and management - or models developed in-house - participants will learn to evaluate the strategic starting position of an organization and derive precise and well-founded recommendations for action based on this.

This course offers students the opportunity to explore current management issues and sharpen their skills in strategic analysis and evaluation. Through intensive collaboration and practical application of the knowledge learned, students are optimally prepared for the demands and challenges of modern business management.

Structure
The course begins with an overarching theme, based on which students are divided into groups of two. The core of the course consists of the preparation of a written paper as well as the presentation and discussion of the results.

Learning Objectives
Upon completion of the course, students will be able to,

- analyze complex business situations, think strategically and derive sound management decisions.
- compose clear and convincing written papers that accurately present the analyses and recommendations developed.
- present results in an engaging manner and actively participate in substantive discussions.

Recommendations:
Prior attendance of the Bachelor’s module "Strategy and Organization" or another module with comparable content at another university is recommended.

Workload:
Total effort approx. 90 hours
Attendance time: 15 hours
Preparation and follow-up: 75 hours
Examination and preparation: not applicable

Verification:
The success control according to § 4(2), 3 SPO is done by writing a scientific paper and a presentation of the results of the paper in the context of a final event. Details on the design of the performance review will be announced during the lecture.

Annotation:
The course is admission restricted. In case of prior admission to another course in the module "Strategy and Management: Advanced Topics" [M-WIWI-103119], participation in this course is guaranteed. For more information on the application process, see the IBU website.

Exams are offered at least every other semester, so the entire module can be completed in two semesters.

Organizational issues
siehe Homepage
5.283 Course: Successful Transformation Through Innovation [T-WIWI-111823]

Responsible: Malte Busch
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 2500018 | Successful transformation through innovation | 2 SWS | Seminar / 🗣 | Busch |

Exams

| ST 2023 | 7900025 | Successful Transformation Through Innovation | Busch |

Competence Certificate

Alternative exam assessments. The grade consists of an presentation of the results (50%) and a seminar paper (50%).

Recommendation

Prior attendance of the course Innovation Management [2545015] is recommended.

Below you will find excerpts from events related to this course:

Successful transformation through innovation

ST 2023, 2500018, SS 2023, 2 SWS, Language: German, Open in study portal

Content

This seminar uses strategic innovation management theory and concepts such as organisational ambidexterity, boundary spanning and stakeholder approaches how companies can increase their innovative increase their innovative capacity through innovation. The students will use a core paper to illustrate the steps towards becoming an innovative organisation. The aim is to understand how -with the help of the concepts mentioned above - medium-sized companies, in the context of organisational inertia and path dependency, may become innovation-driven organisations. The seminar will analyse the role of different stakeholders, which role the different stakeholders play and how companies may become part of an innovation ecosystems. Based on the core paper, the students will apply the concepts they have learned to selected companies and present the results in class. In addition to a presentation, the students will submit the results in seminar papers.

Organizational issues

Weblink: https://itm.entechnon.kit.edu/192_1281.php
Course: Supplement Enterprise Information Systems [T-WIWI-110346]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101477 - Development of Business Information Systems

Type: Written examination

Credits: 4.5

Grading scale: Grade to a third

Recurrence: Each term

Version: 1

Competence Certificate
The assessment of this course is a written or (if necessary) oral examination.

Prerequisites
None

Annotation
This course can be used in particular for the acceptance of external courses whose content is in the broader area of applied informatics, but is not equivalent to another course of this topic.
5.285 Course: Supply Chain Management in the Automotive Industry [T-WIWI-102828]

Responsible: Tilman Heupel
Hendrik Lang

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101412 - Industrial Production III
- M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2581957</td>
<td>Supply Chain Management in the automotive industry</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7981957</td>
<td>Supply Chain Management in the Automotive Industry</td>
<td></td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (examination of another type, following §4(2), 3 of the examination regulation).

Prerequisites
None

Recommendation
None

Annotation
The lecture will be offered for the next time in the summer semester 2023.

Below you will find excerpts from events related to this course:

Supply Chain Management in the automotive industry
2581957, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)
Online

Content
- Automotive industry significance
- The automotive supply chain
- Adding value structures of the automotive supply chain and mastering of the production systems as factors of success in the SCM
- Strategic procurement logistics
- Risk management
- Quality engineering and management in the automotive supply chain
- Cost engineering and management in the automotive supply chain
- Purchasing (Supplier selection, contract management)
- Performance measurement of the supply chain
- Organization

Organizational issues
Blockveranstaltung, siehe Homepage

Literature
Wird in der Veranstaltung bekannt gegeben.
5.286 Course: Supply Chain Management with Advanced Planning Systems [T-WIWI-102763]

Responsible: Claus J. Bosch
Dr. Mathias Göbelt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101412 - Industrial Production III
M-WIWI-101471 - Industrial Production II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2581961</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>2</td>
<td>Lecture/🗣</td>
<td>Göbelt, Bosch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7981961</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td></td>
<td></td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Supply Chain Management with Advanced Planning Systems
2581961, SS 2023, 2 SWS, Language: English, Open in study portal

Lecture (V)
On-Site
Content
This lecture deals with supply chain management from a practitioner’s perspective with a special emphasis Advanced Planning Systems (APS) and the planning domain. The software solution SAP SCM, one of the most widely used Advanced Planning Systems, is used as an example to show functionality and application of an APS in practice.

First, the term supply chain management is defined and its scope is determined. Methods to analyze supply chains as well as indicators to measure supply chains are derived. Second, the structure of an APS (advanced planning system) is discussed in a generic way. Later in the lecture, the software solution SAP SCM is mapped to this generic structure. The individual planning tasks and software modules (demand planning, supply network planning / sales & operations planning, production planning / detailed scheduling, deployment, transportation planning, global available-to-promise) are presented by discussing the relevant business processes, providing academic background, describing typical planning processes and showing the user interface and user-related processes in the software solution. At the end of the lecture, implementation methodologies and project management approaches for SAP SCM are covered.

Contents
1. Introduction to Supply Chain Management
 1.1. Supply Chain Management Fundamentals
 1.2. Supply Chain Management Analytics
2. Structure of Advanced Planning Systems
3. SAP SCM
 3.1. Introduction / SCM Solution Map
 3.2. Demand Planning
 3.4. Production Planning and Detailed Scheduling
 3.5. Deployment
 3.6. Transportation Planning / Global Available to Promise
 3.7. Cloud-based Supply Chain Planning
4. SAP SCM in Practice
 4.1. Project Management and Implementation
 4.2. SAP Implementation Methodology

Literature
will be announced in the course
5.287 Course: Symmetric Encryption [T-INFO-101390]

Responsible: Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics

Part of: M-INFO-101198 - Advanced Topics in Cryptography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 24629 | Symmetric encryption | 2 SWS | Lecture / 🗣 | Müller-Quade, Geiselmann |

Exams

| ST 2023 | 7500070 | Symmetric Encryption | Geiselmann, Müller-Quade |

Legend: Online, Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Es wird empfohlen, das Modul Sicherheit zu belegen.

Below you will find excerpts from events related to this course:

Symmetric encryption

24629, SS 2023, 2 SWS, Language: German, Open in study portal
5.288 Course: Tax Law [T-INFO-111437]

Responsible: Detlef Dietrich

Organisation: KIT Department of Informatics

Part of: M-INFO-101216 - Private Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24646</td>
<td>Tax Law</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500120</td>
<td>Tax Law</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500062</td>
<td>Tax Law</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💼 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.289 Course: Technologies for Innovation Management [T-WIWI-102854]

Responsible: Dr. Daniel Jeffrey Koch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101507 - Innovation Management
- M-WIWI-101507 - Innovation Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Presentation and individual paper (ca. 15 pages) as alternative exam assessment.

Prerequisites
None

Recommendation
Prior attendance of the course Innovationsmanagement: Konzepte, Strategien und Methoden is recommended.
5.290 Course: Technology Assessment [T-WIWI-102858]

- **Responsible:** Dr. Daniel Jeffrey Koch
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101507 - Innovation Management
 - M-WIWI-101507 - Innovation Management

Type
Examination of another type

Credits
3

Grading scale
Grade to a third

Recurrence
See Annotations

Version
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 2545101 Technology Assessment 2 SWS Seminar / 🗣 Koch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 7900238 Technology Assessment Seminar / 🗣 Koch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Alternative exam assessment.

Prerequisites
None

Recommendation
Prior attendance of the course Innovation Management is recommended.

Annotation
See German version.

Below you will find excerpts from events related to this course:

Technology Assessment

2545101, SS 2023, 2 SWS, Language: German, Open in study portal

Content

Technology assessment can play a role at different points in the innovation process and can be considered as a decision support for or against certain technological options. The seminar Technology Assessment will focus on the early phase "fuzzy front end" in innovation management. Here, technology assessment takes place under a high degree of uncertainty regarding future technological developments. The evaluation of technologies can be carried out using methods such as technology readiness, technology lifecycle analysis, portfolio analysis, etc. The early evaluation of technologies is of particular importance before the "fuzzy front end" in innovation management. The early evaluation of technologies is of great importance, especially against the background of limited resources in companies and uncertainty about future developments.

Translated with www.DeepL.com/Translator (free version)

Organizational issues

Weblink: https://itm.entechnon.kit.edu/192_1284.php
5.291 Course: Telecommunications and Internet – Economics and Policy [T-WIWI-113147]

Responsible: Prof. Dr. Kay Mitusch

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101406 - Network Economics
- M-WIWI-101409 - Electronic Markets

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td></td>
<td>Lecture / 📚</td>
<td>Mitusch</td>
</tr>
<tr>
<td>2561232</td>
<td></td>
<td></td>
<td>Blended (On-Site/Online)</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>1 SWS</td>
<td></td>
<td>Practice / 📚</td>
<td>Mitusch, Wisotzky, Corbo</td>
</tr>
<tr>
<td>2561233</td>
<td></td>
<td></td>
<td>Blended (On-Site/Online)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td></td>
<td></td>
<td></td>
<td>Mitusch</td>
</tr>
<tr>
<td>7900276</td>
<td></td>
<td></td>
<td>Telecommunication and Internet Economics</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Students' understanding and knowledge will be assessed through either an oral or a written exam. The actual method used will be announced during the course. The course takes place every winter term, and exams are offered two times a year, in March and in September.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-WIWI-102713 - Telecommunication and Internet Economics must not have been started.

Recommendation

Basic knowledge of microeconomics is a precondition. Further knowledge of industrial economics or networks economics is useful, but not necessary. No prior knowledge of telecommunications or internet technologies is required.

Annotation

Disclaimer:
German wording is sometimes provided in parallel. Some German original literature is used (especially official and legislative texts) where we will try to provide English translations in parallel.

Below you will find excerpts from events related to this course:
Content

Description:

The course provides students with a comprehensive understanding of the economic principles, dynamics, and policies that govern the telecommunication and internet industries and markets. It focuses on the infrastructure of the internet, both physical and logical.

Course Objectives:

Understand the telecommunication and internet landscape: Students will be introduced to the historical development, evolution, and current state of the telecommunication and internet industries. This includes technology, industrial organization, regulation, and other policies. Students will explore the emergence of modern telecommunication networks, the birth of the internet, and key milestones that have shaped the global communication landscape.

Examine network economics: Students will explore the unique economic characteristics of telecommunications networks, including network effects, economies of scale, the implications for investment decisions and market entry barriers, and regulatory responses.

Analyse market structures and competition policies: Students will dive into the various market structures that exist within the telecommunication and internet industries, including: access to the internet by users, access to the infrastructure by firms, economic interactions between the autonomous systems (i.e. sub-networks) and other players (like internet exchange points) of the internet, implications for quality of services and network neutrality. Emphasis will be placed on competitiveness of markets, resp. market power, on the role of regulation, and how they impact market dynamics.

Investigate infrastructure investment and policy: The course will address the significant role of infrastructure investment in the telecommunication and internet sectors. Students will analyse the economic drivers behind infrastructure construction, government policies, and regulatory frameworks that influence investment decisions.

Address emerging trends: The course will address the latest trends and technologies in telecommunication and the internet, such as 5G, Internet of Things (IoT), and cloud computing, content delivery networks, and their economic implications.

Assess platform economics: The role of digital platforms in the telecommunication and internet industries will be addressed. Students will understand platform business models and the economics of multisided markets. In this context, the “hypergiants” of the internet get into the focus as well as the challenges and opportunities they present.

Teaching Methodology:

The course will adopt a combination of lectures, case studies, and guest lectures from (industry) experts. Real-world examples will be used to illustrate economic principles in action within the telecommunication and internet sectors. A few economic models will be analysed, but most of the issues will be addressed verbally.
5.292 Course: Telecommunications Law [T-INFO-101309]

Organisation: KIT Department of Informatics
Part of: M-INFO-101217 - Public Business Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>24632</td>
<td>Telekommunikationsrecht</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Döveling</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7500085 | Telecommunications Law | Dreier |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.293 Course: Telematics [T-INFO-101338]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: M-INFO-100801 - Telematics
M-INFO-101205 - Future Networking
M-INFO-101206 - Networking

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24128</td>
<td>Telematics</td>
<td>Lecture / 🔖</td>
<td>Heseding, Kopmann, Seehofer, Zitterbart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500115</td>
<td>Telematics</td>
<td>Lecture / 🔖</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Legend: 🔥 Online, ⚠ Blended (On-Site/Online), 🔖 On-Site, X Cancelled

Below you will find excerpts from events related to this course:

Telematics

Course: Telematics [T-INFO-101338], Lecture (V)
Lecture (V)
On-Site

Content

The lecture covers (i.a.) protocols, architectures, as well as methods and algorithms, for routing and establishing reliable end-to-end connections in the Internet. In addition to various methods for media access control in local area networks, the lecture also covers other communication systems, e.g. circuit-switched systems such as ISDN. Participants should also have understood the possibilities for managing and administering networks.

Familiar with the contents of the lecture *Einführung in Rechnernetze* or comparable lectures is assumed.

Learning Objectives

After attending this lecture, the students will

- have a profound understanding of protocols, architectures, as well as procedures and algorithms used for routing and for establishing reliable end-to-end connections in the Internet
- have a profound understanding of different media access control procedures in local networks and other communication systems like circuit-switched ISDN
- have a profound understanding of the problems that arise in large scale dynamic communication systems and are familiar with mechanism to deal with these problems
- be familiar with current developments such as SDN and data center networking
- be familiar with different aspects and possibilities for network management and administration

Students have a profound understanding of the basic protocol mechanisms that are necessary to establish reliable end-to-end communication. Students have detailed knowledge about the congestion and flow control mechanisms used in TCP and can discuss fairness issue in the context of multiple parallel transport streams. Students can analytically determine the performance of transport protocols and know techniques for dealing with specific constraints in the context of TCP, e.g., high data rates and low latencies. Students are familiar with current topics such as the problem of middle boxes on the Internet, the usage of TCP in data centers or multipath TCP. Students are also familiar with practical aspects of modern transport protocols and know practical ways to overcome heterogeneity in the development of distributed applications.

Students know the functions of (Internet) routing and routers and can explain and apply common routing algorithms. Students are familiar with routing architectures and different alternatives for buffer placement as well as their advantages and disadvantages. Students understand the classification into interior and exterior gateway protocols and have in-depth knowledge of the functionality and features of common protocols such as RIP, OSPF, and BGP. Students are also familiar with current topics such as label switching, IPv6 and SDN.

Students know the function of media access control and are able to classify and analytically evaluate different media access control mechanisms. Students have an in-depth knowledge of Ethernet and various Ethernet variants and characteristics, which especially includes current developments such as real-time Ethernet and data center Ethernet. Students can explain and apply the Spanning Tree Protocol.

Students know the architecture of ISDN and can reproduce the peculiarities of setting up the ISDN subscriber line. Students are familiar with the technical features of DSL.

Information Engineering and Management M.Sc.
Module Handbook as of 04/09/2023
581
Literature
5.294 Course: Topics in Experimental Economics [T-WIWI-102863]

Responsible: Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101505 - Experimental Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Basic knowledge of Experimental Economics is assumed. Therefore, it is strongly recommended to attend the course Experimental Economics beforehand.

Annotation
The course is offered in summer 2020 for the next time, not in summer 2018.
5.295 Course: Topics in Stochastic Optimization [T-WIWI-112109]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101473 - Mathematical Programming
- M-WIWI-101637 - Analytics and Statistics
- M-WIWI-102832 - Operations Research in Supply Chain Management
- M-WIWI-103289 - Stochastic Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Students will be given problem sets on which they work in groups. The problem sets will involve the implementation of the models presented in the course, and exploring features of these models. The groups will present their findings in front of the class. The grading will be based on the presentation.

Recommendation
A solid understanding of Stochastic Optimization and/or Optimization under Uncertainty as well as optimization in general is highly recommended, since we will heavily build upon basics of these areas.

Below you will find excerpts from events related to this course:

Topics in Stochastic Optimization
2500026, SS 2023, 2 SWS, Language: English, Open in study portal
Lecture (V) Blended (On-Site/Online)

Content
Content:
While Stochastic Optimization is a long established, powerful paradigm for dealing with optimization problems under uncertainty, it is also a field that is continuously evolving, in an effort to expand the applicability of the respective techniques, but also to challenge frontiers to other paradigms such as robust optimization. In this course we will closely examine more recent developments in the field, and introduce, and train the usage of the computational techniques, that act as a workhorse for solution strategies.
Prerequisites:
None.
5.296 Course: Trademark and Unfair Competition Law [T-INFO-101313]

Responsible: Dr. Yvonne Matz
Organisation: KIT Department of Informatics
Part of: M-INFO-101215 - Intellectual Property Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each term</td>
<td>Matz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Each term</td>
<td>Matz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500051</td>
<td>Trademark and Unfair Competition Law</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500061</td>
<td>Trademark and Unfair Competition Law</td>
<td>Matz</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ⌚️ Cancelled
Course: Transport Economics [T-WIWI-100007]

Responsible: Prof. Dr. Kay Mitusch
Dr. Eckhard Szimba

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101406 - Network Economics
M-WIWI-101468 - Environmental Economics
M-WIWI-101485 - Transport Infrastructure Policy and Regional Development

Type
Written examination

Credits
4,5

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2560230</th>
<th>Transport Economics</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Mitusch, Szimba</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>2560231</td>
<td>Übung zu Transportökonomie</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Mitusch, Szimba, Wisotzky</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900275 | Transport Economics | | | Mitusch |

Competence Certificate

The assessment is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Below you will find excerpts from events related to this course:

Transport Economics
2560230, SS 2023, 2 SWS, Language: German, Open in study portal

Lecture (V)

Content

The course shall provide an overview of transport economics. It will be demonstrated, using new microeconomic models, which impacts regulation and pricing in transport have on the economic actions of individuals and logistics and which benefits and costs apply. The following topics will be discussed:

- demand and supply in transport
- empirical analysis of transport demand
- assessment of transport infrastructure projects
- external effects in transport
- transport policy
- cost structures of transport infrastructure
- Project evaluation from the perspective of the public sector

Literature

Literatur:

Course: Trustworthy Emerging Technologies [T-WIWI-113026]

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104403 - Critical Digital Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2511404 | Trustworthy Emerging Technologies | Lecture / 🧩 | Sunyaev, Lins |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO). Details will be announced in the respective course.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-WIWI-109251 - Selected Issues in Critical Information Infrastructures must not have been started.
5.299 Course: Ubiquitous Computing [T-INFO-101326]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of:
- M-INFO-100789 - Ubiquitous Computing
- M-INFO-101203 - Wireless Networking
- M-INFO-101210 - Dynamic IT-Infrastructures
- M-WIWI-101458 - Ubiquitous Computing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>24146</td>
<td>Ubiquitäre Informationstechnologien</td>
<td>Lecture / Practice</td>
<td>2+1 SWS</td>
<td>Lecture / Practice</td>
<td>Each winter term</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>7500342_03.07.23</td>
<td>Ubiquitous Computing</td>
<td>Beigl</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>7500351</td>
<td>Ubiquitous Computing</td>
<td>Beigl</td>
</tr>
</tbody>
</table>
5.300 Course: Valuation [T-WIWI-102621]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101480 - Finance 3
- M-WIWI-101482 - Finance 1
- M-WIWI-101483 - Finance 2
- M-WIWI-101510 - Cross-Functional Management Accounting

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2530212</td>
<td>Valuation</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Practice</td>
<td>2530213</td>
<td>Übungen zu Valuation</td>
<td>1 SWS</td>
<td></td>
<td>Ruckes, Luedecke</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valuation</td>
<td>7900072</td>
<td>Lecture / 📚</td>
<td>Ruckes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valuation</td>
<td>7900057</td>
<td>Practice / 📚</td>
<td>Ruckes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Literature

Weiterführende Literatur

5.301 Course: Wearable Robotic Technologies [T-INFO-106557]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: M-INFO-103294 - Wearable Robotic Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2400062</th>
<th>Wearable Robotic Technologies</th>
<th>2 SWS</th>
<th>Lecture / On-Site</th>
<th>Asfour, Beigl</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
</tr>
<tr>
<td>WT 23/24</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Competence Certificate

The assessment is carried out as a written examination (§ 4 Abs. 2 No. 1 SPO) lasting 60 minutes.

Prerequisites

Attending the lecture Mechano-Informatics and Robotics is recommended.

Recommendation

Attending the lecture Mechano-Informatics and Robotics is recommended.

Below you will find excerpts from events related to this course:

V Wearable Robotic Technologies
2400062, SS 2023, 2 SWS, Language: German/English, Open in study portal

Lecture (V) On-Site

Content

The lecture starts with an overview of wearable robot technologies (exoskeletons, prostheses and orthoses) and its potentials, followed by the basics of wearable robotics. In addition to different approaches to the design of wearable robots and their related actuator and sensor technology, the lecture focuses on modeling the neuromusculoskeletal system of the human body and the physical and cognitive human-robot interaction for tightly coupled hybrid human-robot systems. Examples of current research and various applications of lower, upper and full body exoskeletons as well as prostheses are presented.

Learning Objectives:

The students have received fundamental knowledge about wearable robotic technologies and understand the requirements for the design, the interface to the human body and the control of wearable robots. They are able to describe methods for modelling the human neuromusculoskeletal system, the mechatronic design, fabrication and composition of interfaces to the human body. The students understand the symbiotic human–machine interaction as a core topic of Anthropomatics and has knowledge of state-of-the-art examples of exoskeletons, orthoses and prostheses.

Organizational issues

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Modul für Master Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik, Sportwissenschaften

Empfehlungen: Der Besuch der Vorlesung Mechano-Informatik in der Robotik wird empfohlen.

Arbeitsaufwand: 120h

Literature

5.302 Course: Web App Programming for Finance [T-WIWI-110933]

Responsible: TT-Prof. Dr. Julian Thimme
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101480 - Finance 3

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Once</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Non exam assessment according to § 4 paragraph 3 of the examination regulation. (Anmerkung: gilt nur für SPO 2015). The grade is made up as follows: 50% result of the project (R-code), 50% presentation of the project.

Prerequisites
None

Recommendation
The content of the bachelor course Investments is assumed to be known and necessary to follow the course.
5.303 Course: Web Applications and Service-Oriented Architectures (II) [T-INFO-101271]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Sebastian Abeck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-104061 - Microservice-Based Web Applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2023</th>
<th>24677</th>
<th>Web Applications and Service oriented Architectures (II)</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Abeck, Schneider, Sänger, Throner</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2023</th>
<th>7500138</th>
<th>Web Applications and Service-oriented Architectures (II)</th>
<th>Abeck</th>
</tr>
</thead>
</table>
5.304 Course: Workshop Business Wargaming – Analyzing Strategic Interactions [T-WIWI-106189]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>2577922</th>
<th>Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)</th>
<th>2 SWS</th>
<th>Seminar / 🗣</th>
<th>Lindstädt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>2577922</td>
<td>Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🗣</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Exams

| ST 2023 | 7900071 | Workshop Business Wargaming – Analyzing Strategic Interactions | Lindstädt |

Competence Certificate

In this course, real conflict situations are simulated and analyzed using various methods from business wargaming. Details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the bachelor module „Strategy and Organization“ is recommended.

Annotation

This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed.

The course is planned to be held for the first time in the summer term 2018.

Below you will find excerpts from events related to this course:

Workshop Business Wargaming - Analyse strategischer Interaktionen (Master)

2577922, SS 2023, 2 SWS, Language: German, Open in study portal
Content
This course enables the simulation of strategic conflicts in which the participants assume the roles of selected actors. With the help of specially programmed wargaming software, strategic conflicts are simulated interactively and then reflected upon and discussed.

The course focuses on the simulation and analysis of real conflict situations with strategic interaction. Students gain a better understanding of the structural characteristics of strategic conflicts in the fields of economics and politics as well as the ability to derive their own strategies for action.

Through a combination of group work, simulation, and reflection, the seminar provides a learning experience that both strengthens team skills and develops analytical skills in strategic conflict. Join this seminar to gain sound insights into conflict dynamics and develop effective action strategies for complex situations.

Learning Objectives
Upon completion of the course, students will be able to,

- learn the basic methodologies, characteristics and benefits of business wargaming
- improve their understanding of conflict dynamics by reflecting on strategic conflicts
- Strengthen analytical skills by processing a variety of courses of action and deriving strategies for action

Recommendations:
Previous attendance of the bachelor module "Strategy and Organization" or another module with comparable content at another university is recommended.

Workload:
- Total workload: approx. 90 hours
- Attendance time: 15 hours
- Preparation and follow-up: 75 hours
- Examination and preparation: not applicable

Evidence:
In this course, real conflict situations are simulated and analyzed with the help of various methods from business wargaming. Details on the design of the performance review will be announced during the lecture.

Annotation:
The course is admission restricted. In case of prior admission to another course in the module "Strategy and Management: Advanced Topics" [M-WIWI-103119], participation in this course is guaranteed. For more information on the application process, see the IBU website.

Exams are offered at least every other semester, so the entire module can be completed in two semesters.
Content
This course enables the simulation of strategic conflicts in which the participants assume the roles of selected actors. With the help of specially programmed wargaming software, strategic conflicts are simulated interactively and then reflected upon and discussed.

The course focuses on the simulation and analysis of real conflict situations with strategic interaction. Students gain a better understanding of the structural characteristics of strategic conflicts in the fields of economics and politics as well as the ability to derive their own strategies for action.

Through a combination of group work, simulation, and reflection, the seminar provides a learning experience that both strengthens team skills and develops analytical skills in strategic conflict. Join this seminar to gain sound insights into conflict dynamics and develop effective action strategies for complex situations.

Learning Objectives
Upon completion of the course, students will be able to,

- learn the basic methodologies, features and benefits of business wargaming
- improve their understanding of conflict dynamics by reflecting on strategic conflicts
- Strengthen analytical skills by processing a variety of courses of action and deriving strategies for action

Recommendations:
Prior attendance of the Bachelor’s module "Strategy and Organization" or another module with comparable content at another university is recommended.

Workload:
- Total workload: approx. 90 hours
- Attendance time: 15 hours
- Preparation and follow-up: 75 hours
- Examination and preparation: not applicable

Evidence:
In this course, real conflict situations are simulated and analyzed with the help of various methods from business wargaming. Details on the design of the performance review will be announced during the lecture.

Annotation:
The course is admission restricted. In case of prior admission to another course in the module "Strategy and Management: Advanced Topics" [M-WIWI-103119], participation in this course is guaranteed. For more information on the application process, see the IBU website.

Exams are offered at least every other semester, so the entire module can be completed in two semesters.
5.305 Course: Workshop Current Topics in Strategy and Management [T-WIWI-106188]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-103119 - Advanced Topics in Strategy and Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2577923 | Workshop aktuelle Themen Strategie und Management (Master) | 2 SWS | Seminar / 🗣 | Lindstädt |

Legend: 🖥 Online, ☨ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The evaluation of the performance takes place through the active participation in the discussion rounds; an appropriate preparation is expressed here and a clear understanding of the topic and framework becomes recognizable. Further details on the design of the performance review will be announced during the lecture.

Prerequisites

None

Recommendation

Basic knowledge as conveyed in the bachelor module „Strategy and Organization“ is recommended.

Annotation

This course is admission restricted. If you were already admitted to another course in the module “Advanced Topics in Strategy and Management” the participation at this course will be guaranteed.

The course is planned to be held for the first time in the winter term 2017/18.

Below you will find excerpts from events related to this course:

Workshop aktuelle Themen Strategie und Management (Master)

2577923, WS 23/24, 2 SWS, Language: German, Open in study portal

Seminar (S) On-Site
Content
Aspects of strategic management can be found in a variety of daily events. In this course, current strategic and industrial policy issues are discussed and the exchange of ideas on current management topics is promoted.

For this purpose, practice-relevant case studies and dedicated questions are communicated to the students in advance so that they can prepare themselves individually for the discussion. The chair team actively moderates the discussion and creates typical discussion situations such as pro/con discussions and conflicting interests of different groups in order to bring opposing opinions into an exchange and to promote the power of argumentation. In this way, the discussion not only imparts knowledge about the content, but also strengthens the participants' skills by simulating real discussion situations in a management team.

In addition, company representatives and managers participate in individual case studies to strengthen the context of the content and experience the daily dynamics of discussion in strategic business areas.

Learning Objectives:
Students will

- are able to evaluate strategic decisions using appropriate models of strategic business management,
- are able to present and critically evaluate theoretical approaches and models in the field of strategic business management and illustrate them using practical examples, and
- have the ability to present their position convincingly through a reasoned argumentation in structured discussions.

Recommendations:
Previous attendance of the Bachelor's module “Strategy and Organization” or another module with comparable content at another university is recommended.

Workload:
Total effort approx. 90 hours
Attendance time: 15 hours
Preparation and follow-up: 75 hours
Examination and preparation: not applicable

Evidence:
Performance will be assessed through active discussion participation in the discussion rounds; here, adequate preparation will be expressed and a clear understanding of the topic and framework will be evident. Further details on the design of the performance assessment will be announced during the lecture.

Annotation:
This course is admission restricted. In case of prior admission to another course in the module "Strategy and Management: Advanced Topics"[M-WIWI-103119], participation in this course is guaranteed. For more information on the application process, see the IBU website.

Exams are offered at least every other semester so that the entire module can be completed in two semesters.