Module Handbook
Information Systems B.Sc.
SPO 2019
Winter term 2022/23
Date: 04/10/2022
Table Of Contents

1. General information ... 7
 1.1. Structural elements .. 7
 1.2. Begin and completion of a module ... 7
 1.3. Module versions .. 7
 1.4. General and partial examinations ... 7
 1.5. Types of exams .. 7
 1.6. Repeating exams .. 8
 1.7. Examiners .. 8
 1.8. Additional accomplishments ... 8
 1.9. Further information .. 8
 1.10. Contact persons .. 8

2. Study plan .. 9

3. Qualification goals .. 10

4. Field of study structure .. 11
 4.1. Bachelor’s Thesis ... 11
 4.2. Orientation Exam .. 11
 4.3. Information Systems .. 11
 4.4. Informatics ... 12
 4.5. Mathematics .. 14
 4.6. Economics and Management .. 15
 4.7. Law .. 16
 4.8. Seminars ... 16

5. Modules .. 17
 5.1. Advanced Algorithmic Programming - M-INFO-105723 .. 17
 5.2. Algorithmic Methods for Hard Optimization Problems - M-INFO-101237.. 18
 5.3. Algorithms for Planar Graphs - M-INFO-101220 .. 19
 5.4. Algorithms I - M-INFO-100030 .. 20
 5.5. Algorithms II - M-INFO-101173 .. 21
 5.6. Applications of Operations Research - M-WIWI-101413 ... 22
 5.7. Applied Informatics - M-WIWI-101430 .. 24
 5.8. Applied Microeconomics - M-WIWI-101499 ... 25
 5.9. Basic Notions of Computer Science - M-INFO-101170 ... 26
 5.10. Basic Practical Course for the ICPC-Programming Contest - M-INFO-101230 .. 27
 5.11. Business Administration - M-WIWI-105267 ... 28
 5.15. Computer Architecture - M-INFO-100818 .. 32
 5.17. Computer Organization - M-INFO-103179 ... 34
 5.18. Constitutional and Administrative Law - M-INFO-105247 ... 35
 5.19. Curves in CAD - M-INFO-101248 ... 36
 5.20. Database Systems - M-INFO-104921 ... 37
 5.22. Digital Circuits Design - M-INFO-102978 ... 39
 5.23. eBusiness and Service Management - M-WIWI-101434 ... 40
 5.25. Economic Theory I - M-WIWI-101501 ... 42
 5.26. Economics - M-WIWI-101431 ... 43
 5.27. eFinance - M-WIWI-101402 ... 44
 5.28. Energy Economics - M-WIWI-101464 .. 45
 5.29. Essentials of Finance - M-WIWI-101435 .. 46
 5.30. Financial Data Science - M-WIWI-105610 ... 47
 5.31. Formal Systems - M-INFO-100799 ... 48
 5.32. Foundations of Marketing - M-WIWI-101424 .. 49
 5.33. Fundamentals of Digital Service Systems - M-WIWI-102752 ... 51
 5.34. Geometric Basics for Geometry Processing - M-INFO-100756 .. 52
6. Courses

6.2. Advanced Lab Informatics (Bachelor) - T-WIWI-110541 .. 110
6.3. Advanced Lab Security - T-WIWI-109786 ... 118
6.4. Advanced Lab Security, Usability and Society - T-WIWI-108439 ... 119
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5. Advanced Topics in Economic Theory</td>
<td>T-WIWI-102609</td>
<td>125</td>
</tr>
<tr>
<td>6.6. Algorithmic Methods for Hard Optimization Problems</td>
<td>T-INFO-103334</td>
<td>126</td>
</tr>
<tr>
<td>6.7. Algorithms for Planar Graphs</td>
<td>T-INFO-101986</td>
<td>127</td>
</tr>
<tr>
<td>6.8. Algorithms I - T-INFO-100001</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>6.9. Algorithms II - T-INFO-102020</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>6.10. Analysis of Multivariate Data</td>
<td>T-WIWI-103063</td>
<td>130</td>
</tr>
<tr>
<td>6.11. Applied Informatics – Applications of Artificial Intelligence</td>
<td>T-WIWI-110340</td>
<td>131</td>
</tr>
<tr>
<td>Foundations for Emerging Technologies and Future Services</td>
<td>T-WIWI-110339</td>
<td></td>
</tr>
<tr>
<td>6.15. Auction & Mechanism Design</td>
<td>T-WIWI-102876</td>
<td>139</td>
</tr>
<tr>
<td>6.17. Bachelor’s Thesis</td>
<td>T-INFO-109907</td>
<td>143</td>
</tr>
<tr>
<td>6.18. Basic Notions of Computer Science</td>
<td>T-INFO-101964</td>
<td>144</td>
</tr>
<tr>
<td>6.20. Basic Practical Course for the IPCPC-Programming Contest</td>
<td>T-INFO-101991</td>
<td>146</td>
</tr>
<tr>
<td>6.23. Brand Management</td>
<td>T-WIWI-112156</td>
<td>151</td>
</tr>
<tr>
<td>6.25. Business Strategies of Banks</td>
<td>T-WIWI-102626</td>
<td>154</td>
</tr>
<tr>
<td>6.27. Cognitive Systems</td>
<td>T-INFO-101356</td>
<td>156</td>
</tr>
<tr>
<td>6.28. Competition in Networks</td>
<td>T-WIWI-100005</td>
<td>157</td>
</tr>
<tr>
<td>6.29. Computer Architecture</td>
<td>T-INFO-101355</td>
<td>158</td>
</tr>
<tr>
<td>6.32. Computer Organization</td>
<td>T-INFO-103531</td>
<td>161</td>
</tr>
<tr>
<td>6.33. Consulting in Practice</td>
<td>T-INFO-101975</td>
<td>162</td>
</tr>
<tr>
<td>6.34. Consumer Behavior</td>
<td>T-WIWI-106569</td>
<td>163</td>
</tr>
<tr>
<td>6.35. Curves in CAD</td>
<td>T-INFO-102067</td>
<td>165</td>
</tr>
<tr>
<td>6.36. Data Science I - T-INFO-111622</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>6.37. Database Systems</td>
<td>T-INFO-101497</td>
<td>167</td>
</tr>
<tr>
<td>6.38. Decision Theory</td>
<td>T-WIWI-102792</td>
<td>168</td>
</tr>
<tr>
<td>6.40. Derivatives</td>
<td>T-WIWI-102643</td>
<td>170</td>
</tr>
<tr>
<td>6.41. Design, Construction and Sustainability Assessment of Buildings</td>
<td>T-WIWI-102742</td>
<td>171</td>
</tr>
<tr>
<td>I - T-WIWI-102742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.42. Design, Construction and Sustainability Assessment of Buildings</td>
<td>T-WIWI-102743</td>
<td>172</td>
</tr>
<tr>
<td>II - T-WIWI-102743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.43. Digital Circuits Design</td>
<td>T-INFO-103469</td>
<td>174</td>
</tr>
<tr>
<td>6.44. Digital Markets and Market Design</td>
<td>T-WIWI-112228</td>
<td>175</td>
</tr>
<tr>
<td>6.45. Digital Services: Foundations</td>
<td>T-WIWI-111307</td>
<td>176</td>
</tr>
<tr>
<td>6.46. Economics and Behavior</td>
<td>T-WIWI-102892</td>
<td>178</td>
</tr>
<tr>
<td>6.47. Economics I: Microeconomics</td>
<td>T-WIWI-102708</td>
<td>180</td>
</tr>
<tr>
<td>6.49. eFinance: Information Systems for Securities Trading</td>
<td>T-WIWI-110797</td>
<td>183</td>
</tr>
<tr>
<td>6.50. Energy Policy</td>
<td>T-WIWI-102607</td>
<td>184</td>
</tr>
<tr>
<td>6.51. Exercises in Civil Law</td>
<td>T-INFO-102013</td>
<td>185</td>
</tr>
<tr>
<td>6.52. Facility Location and Strategic Supply Chain Management</td>
<td>T-WIWI-102704</td>
<td>186</td>
</tr>
<tr>
<td>6.53. Financial Accounting for Global Firms</td>
<td>T-WIWI-107505</td>
<td>187</td>
</tr>
<tr>
<td>6.54. Financial Data Science</td>
<td>T-WIWI-111238</td>
<td>188</td>
</tr>
<tr>
<td>6.55. Financial Econometrics</td>
<td>T-WIWI-103064</td>
<td>189</td>
</tr>
<tr>
<td>6.56. Financial Econometrics II - T-WIWI-110939</td>
<td></td>
<td>191</td>
</tr>
<tr>
<td>6.57. Financial Intermediation</td>
<td>T-WIWI-102623</td>
<td>192</td>
</tr>
<tr>
<td>6.58. Financial Management</td>
<td>T-WIWI-102605</td>
<td>193</td>
</tr>
<tr>
<td>6.59. Financing and Accounting</td>
<td>T-WIWI-111595</td>
<td>194</td>
</tr>
<tr>
<td>6.60. Formal Systems</td>
<td>T-INFO-101336</td>
<td>195</td>
</tr>
<tr>
<td>6.61. Foundations of Interactive Systems</td>
<td>T-WIWI-109816</td>
<td>196</td>
</tr>
<tr>
<td>6.63. Fundamentals of Production Management</td>
<td>T-WIWI-102606</td>
<td>200</td>
</tr>
</tbody>
</table>
Table Of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Course Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.64. Geometric Basics for Geometry Processing</td>
<td>T-INF0-101293</td>
<td>201</td>
</tr>
<tr>
<td>6.65. Geometric Optimization</td>
<td>T-INF0-101267</td>
<td>202</td>
</tr>
<tr>
<td>6.66. Global Optimization I</td>
<td>T-WIWI-102726</td>
<td>203</td>
</tr>
<tr>
<td>6.67. Global Optimization I and II</td>
<td>T-WIWI-103638</td>
<td>205</td>
</tr>
<tr>
<td>6.68. Global Optimization II</td>
<td>T-WIWI-102727</td>
<td>208</td>
</tr>
<tr>
<td>6.70. Human-Machine-Interaction</td>
<td>T-INF0-101266</td>
<td>211</td>
</tr>
<tr>
<td>6.71. Human-Machine-Interaction Pass</td>
<td>T-INF0-106257</td>
<td>212</td>
</tr>
<tr>
<td>6.72. Industrial Organization</td>
<td>T-WIWI-102844</td>
<td>213</td>
</tr>
<tr>
<td>6.73. Information Systems 1</td>
<td>T-WIWI-109817</td>
<td>214</td>
</tr>
<tr>
<td>6.74. Information Systems 2</td>
<td>T-WIWI-109818</td>
<td>215</td>
</tr>
<tr>
<td>6.75. Intellectual Property and Data Protection</td>
<td>T-INF0-109840</td>
<td>216</td>
</tr>
<tr>
<td>6.76. International Finance</td>
<td>T-WIWI-102646</td>
<td>217</td>
</tr>
<tr>
<td>6.77. Introduction in Computer Networks</td>
<td>T-INF0-102015</td>
<td>218</td>
</tr>
<tr>
<td>6.78. Introduction to Game Theory</td>
<td>T-WIWI-102850</td>
<td>220</td>
</tr>
<tr>
<td>6.79. Introduction to Game Theory</td>
<td>T-WIWI-111028</td>
<td>222</td>
</tr>
<tr>
<td>6.81. Introduction to Neural Networks and Genetic Algorithms</td>
<td>T-WIWI-111029</td>
<td>224</td>
</tr>
<tr>
<td>6.82. Introduction to Operations Research I and II</td>
<td>T-WIWI-102758</td>
<td>226</td>
</tr>
<tr>
<td>6.83. Introduction to Public Finance</td>
<td>T-WIWI-102877</td>
<td>227</td>
</tr>
<tr>
<td>6.84. Introduction to Stochastic Optimization</td>
<td>T-WIWI-106546</td>
<td>228</td>
</tr>
<tr>
<td>6.85. Investments</td>
<td>T-WIWI-102604</td>
<td>229</td>
</tr>
<tr>
<td>6.86. Lab Protocol Engineering</td>
<td>T-INF0-102066</td>
<td>230</td>
</tr>
<tr>
<td>6.87. Lab: Working with Database Systems</td>
<td>T-INF0-103552</td>
<td>231</td>
</tr>
<tr>
<td>6.88. Logistics and Supply Chain Management</td>
<td>T-WIWI-102870</td>
<td>232</td>
</tr>
<tr>
<td>6.89. Macroeconomic Theory</td>
<td>T-WIWI-109121</td>
<td>233</td>
</tr>
<tr>
<td>6.90. Management and Marketing</td>
<td>T-WIWI-111594</td>
<td>234</td>
</tr>
<tr>
<td>6.91. Management and Strategy</td>
<td>T-WIWI-102629</td>
<td>236</td>
</tr>
<tr>
<td>6.92. Managing Organizations</td>
<td>T-WIWI-102630</td>
<td>238</td>
</tr>
<tr>
<td>6.93. Managing the Marketing Mix</td>
<td>T-WIWI-102805</td>
<td>240</td>
</tr>
<tr>
<td>6.94. MARS Basis Lab</td>
<td>T-INF0-102053</td>
<td>241</td>
</tr>
<tr>
<td>6.95. Mathematics I for Information Systems - Exam</td>
<td>T-MATH-109942</td>
<td>242</td>
</tr>
<tr>
<td>6.96. Mathematics I for Information Systems - Exercise</td>
<td>T-MATH-109943</td>
<td>243</td>
</tr>
<tr>
<td>6.97. Mathematics II for Information Systems - Exam</td>
<td>T-MATH-109944</td>
<td>244</td>
</tr>
<tr>
<td>6.98. Mathematics II for Information Systems - Exercise</td>
<td>T-MATH-109945</td>
<td>245</td>
</tr>
<tr>
<td>6.100. Mechano-Informatics and Robotics</td>
<td>T-INF0-101294</td>
<td>247</td>
</tr>
<tr>
<td>6.101. Microelectronics</td>
<td>T-WIWI-112153</td>
<td>248</td>
</tr>
<tr>
<td>6.102. Microprocessors I</td>
<td>T-INF0-101972</td>
<td>249</td>
</tr>
<tr>
<td>6.103. Mobile Computing and Internet of Things</td>
<td>T-INF0-102061</td>
<td>250</td>
</tr>
<tr>
<td>6.104. Mobile Robots - Practical Course</td>
<td>T-INF0-101992</td>
<td>251</td>
</tr>
<tr>
<td>6.106. Nonlinear Optimization I</td>
<td>T-WIWI-102724</td>
<td>253</td>
</tr>
<tr>
<td>6.108. Nonlinear Optimization II</td>
<td>T-WIWI-102725</td>
<td>255</td>
</tr>
<tr>
<td>6.109. Optimization under Uncertainty</td>
<td>T-WIWI-106545</td>
<td>256</td>
</tr>
<tr>
<td>6.111. Platform Economy</td>
<td>T-WIWI-107506</td>
<td>258</td>
</tr>
<tr>
<td>6.112. Practical Course Computer Engineering: Hardware Design</td>
<td>T-INF0-102011</td>
<td>259</td>
</tr>
<tr>
<td>6.113. Practical Course Computer Engineering: Hardware Design Pass</td>
<td>T-INF0-105983</td>
<td>260</td>
</tr>
<tr>
<td>6.114. Practical Course Web Applications and Service-Oriented Architectures (II)</td>
<td>T-INF0-103119</td>
<td>261</td>
</tr>
<tr>
<td>6.115. Practical Course: Lego Mindstorms</td>
<td>T-INF0-107502</td>
<td>262</td>
</tr>
<tr>
<td>6.117. Practical Seminar: Interactive Systems</td>
<td>T-WIWI-111914</td>
<td>264</td>
</tr>
<tr>
<td>6.118. Practical Seminar: Platform Economy</td>
<td>T-WIWI-112154</td>
<td>265</td>
</tr>
<tr>
<td>6.119. Problem Solving, Communication and Leadership</td>
<td>T-WIWI-102871</td>
<td>266</td>
</tr>
<tr>
<td>6.120. Process Mining</td>
<td>T-WIWI-109799</td>
<td>267</td>
</tr>
<tr>
<td>6.121. Production and Logistics</td>
<td>T-WIWI-111632</td>
<td>268</td>
</tr>
<tr>
<td>6.122. Production Economics and Sustainability</td>
<td>T-WIWI-102820</td>
<td>269</td>
</tr>
<tr>
<td>6.123. Programming</td>
<td>T-INF0-101531</td>
<td>270</td>
</tr>
</tbody>
</table>

Information Systems B.Sc.
Module Handbook as of 04/10/2022
<table>
<thead>
<tr>
<th>Module</th>
<th>Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.125. Project Management in Practice</td>
<td>T-INFO-101976</td>
<td>277</td>
</tr>
<tr>
<td>6.126. Public Law I & II</td>
<td>T-INFO-110300</td>
<td>278</td>
</tr>
<tr>
<td>6.128. Public Sector Finance</td>
<td>T-WIWI-109590</td>
<td>280</td>
</tr>
<tr>
<td>6.129. Real Estate Management I</td>
<td>T-WIWI-102744</td>
<td>281</td>
</tr>
<tr>
<td>6.130. Real Estate Management II</td>
<td>T-WIWI-102745</td>
<td>282</td>
</tr>
<tr>
<td>6.133. Robotics I - Introduction to Robotics</td>
<td>T-INFO-108014</td>
<td>287</td>
</tr>
<tr>
<td>6.134. Security</td>
<td>T-INFO-101371</td>
<td>288</td>
</tr>
<tr>
<td>6.135. Selling IT-Solutions Profession</td>
<td>T-INFO-101977</td>
<td>289</td>
</tr>
<tr>
<td>6.136. Semantic Web Technologies</td>
<td>T-WIWI-110848</td>
<td>290</td>
</tr>
<tr>
<td>6.137. Seminar in Business Administration (Bachelor)</td>
<td>T-WIWI-103486</td>
<td>293</td>
</tr>
<tr>
<td>6.138. Seminar in Economics (Bachelor)</td>
<td>T-WIWI-103487</td>
<td>304</td>
</tr>
<tr>
<td>6.139. Seminar in Informatics (Bachelor)</td>
<td>T-WIWI-103485</td>
<td>308</td>
</tr>
<tr>
<td>6.140. Seminar in Operations Research (Bachelor)</td>
<td>T-WIWI-103488</td>
<td>313</td>
</tr>
<tr>
<td>6.141. Seminar in Statistics (Bachelor)</td>
<td>T-WIWI-103489</td>
<td>316</td>
</tr>
<tr>
<td>6.142. Seminar Informatics A</td>
<td>T-INFO-104336</td>
<td>318</td>
</tr>
<tr>
<td>6.143. Seminar: Legal Studies I</td>
<td>T-INFO-101997</td>
<td>326</td>
</tr>
<tr>
<td>6.144. Software Engineering I</td>
<td>T-INFO-101968</td>
<td>327</td>
</tr>
<tr>
<td>6.145. Software Engineering I Pass</td>
<td>T-INFO-101995</td>
<td>328</td>
</tr>
<tr>
<td>6.146. Software Engineering II</td>
<td>T-INFO-101370</td>
<td>329</td>
</tr>
<tr>
<td>6.147. Special Topics in Information Systems</td>
<td>T-WIWI-109940</td>
<td>330</td>
</tr>
<tr>
<td>6.149. Statistics I</td>
<td>T-WIWI-102737</td>
<td>332</td>
</tr>
<tr>
<td>6.150. Statistics II</td>
<td>T-WIWI-102738</td>
<td>334</td>
</tr>
<tr>
<td>6.151. Strategic Finance and Technology Change</td>
<td>T-WIWI-110511</td>
<td>336</td>
</tr>
<tr>
<td>6.152. Supplement Applied Informatics</td>
<td>T-WIWI-110711</td>
<td>337</td>
</tr>
<tr>
<td>6.154. Tactical and Operational Supply Chain Management</td>
<td>T-WIWI-102714</td>
<td>339</td>
</tr>
<tr>
<td>6.155. Team Project Software Development</td>
<td>T-INFO-109823</td>
<td>341</td>
</tr>
<tr>
<td>6.156. Telematics</td>
<td>T-INFO-101338</td>
<td>342</td>
</tr>
<tr>
<td>6.158. Topics in Human Resource Management</td>
<td>T-WIWI-111858</td>
<td>345</td>
</tr>
<tr>
<td>6.159. Web Applications and Service-Oriented Architectures (I)</td>
<td>T-INFO-103122</td>
<td>347</td>
</tr>
</tbody>
</table>
1 General information

Welcome to the new module handbook of your study program! We are delighted that you have decided to study at the KIT Department of Economics and Management and wish you a good start into the new semester! In the following we would like to give you a short introduction to the most important terms and rules that are important in connection with the choice of modules, courses and examinations.

1.1 Structural elements

The program exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.2 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.3 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student’s "binding declaration" on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive at http://www.wiwi.kit.edu/Archiv_MHB.php.

1.4 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.5 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.
1.6 Repeating exams

 Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim. A counseling interview is mandatory.

For further information see http://www.wiwi.kit.edu/hinweiseZweitwdh.php.

1.7 Examiners

The examination committee has appointed the KIT examiners and lecturers listed in the module handbook for the modules and their courses as examiners for the courses they offer.

1.8 Additional accomplishments

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Additional accomplishments with at most 30 CP may appear additionally in the certificate.

1.9 Further information

For current information about studying at the KIT Department of Economics and Management, please visit our website www.wiwi.kit.edu as well as Instagram, LinkedIn, and YouTube. Please also see current notices and announcements for students at: https://www.wiwi.kit.edu/studium.php.

Information around the legal and official framework of the study program can be found in the respective study and examination regulations of your study program. These are available under the Official Announcements of KIT (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

1.10 Contact persons

for Bachelor students

Personal consultation: KIT Department of Informatics, Informatics Study Program Service
Informatics Building 50.34, EG, Rooms 001.2/3
bachelor@wirtschaftsinformatik.kit.edu

Editorial responsibility: Lena Coerd, KIT Department of Informatics
Phone: +49 721 608-48893
modulhandbuch@informatik.kit.edu

for master students

Personal consultation: KIT Department of Economics and Management, Examination Office
Gebäude am Kronenplatz Building 05.20, 3rd floor, Room 3C-05
master@wirtschaftsinformatik.kit.edu

Editorial responsibility: Dr. André Wiesner, KIT Department of Economics and Management
Phone: +49 721 608-44061
modul@wiwi.kit.edu

Caution: exam type dependent on further pandemic developments

Due to the current situation, online formats are also available for examinations that are typically offered as presence examinations, depending on the circumstances. All assessments that are announced in the modules as a written exam (written exam/sP according to SPO § 4 Abs. 2, Pkt. 1) can therefore also be offered as an alternative exam assessment/PLaA (according to SPO § 4 Abs. 2, Pkt. 3) depending on further pandemic developments. And vice versa. As alternative examination formats, a) online examinations with video supervision (sP) and optionally a face-to-face examination in the same examination period are offered. Or b) the Online Open Book exam (PLaA) format.

This option applies to all modules and assessments listed in the module handbook, regardless of whether or not corresponding references are already made to them there. It is also at the discretion of the responsible examiners whether they allow a 'free shot' for their examination when determining the type of examination.
2 Study plan

The Bachelor’s programme in Information Systems has a standard study period of six semesters and comprises 180 credit points. The basic area in the first four semesters is methodically oriented. In the fifth and sixth semesters, students deepen their specialist knowledge, which can be structured according to personal interests and goals within the curriculum.

Figure 2 shows the subject and module structure with the allocation of credit points (LP) and, as an example, a possible distribution of modules and courses in the basic area over the semesters.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungs- punkte</th>
<th>Wirtschaftsinformatik</th>
<th>Informatik</th>
<th>Mathematik</th>
<th>Wirtschaftswissenschaften</th>
<th>Rechtswissenschaften</th>
<th>Seminar</th>
<th>Abschlussarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WS)</td>
<td>33</td>
<td>Wirtschaftsinformatik I</td>
<td>Grundlagen der Informatik*</td>
<td>Mathematik I*</td>
<td>Volkswirtschaftslehre</td>
<td>Einführung in das Privatrecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 LP</td>
<td>8 LP</td>
<td>5 LP</td>
<td>5 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (SS)</td>
<td>29,5</td>
<td>Wirtschaftsinformatik II</td>
<td>Algorithmen I</td>
<td>Mathematik II*</td>
<td>Einführung in die Statistik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 LP</td>
<td>8 LP</td>
<td>10 LP</td>
<td>9 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (WS)</td>
<td>28,5</td>
<td>Theoretische Informatik</td>
<td>Angewandte Informatik</td>
<td>Einführung in die Statistik</td>
<td>Wirtschafts- privatrecht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 LP</td>
<td>8 LP</td>
<td>9 LP</td>
<td>9 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (SS)</td>
<td>30</td>
<td>Datenbanksysteme</td>
<td>Einführung in Rechnernetze</td>
<td>Betriebswirt- schaftlehre</td>
<td>Verfassungs- und Verwal- tungsrecht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 LP</td>
<td>8 LP</td>
<td>6 LP</td>
<td>6 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (WS)</td>
<td>30,5</td>
<td>Teamprojekt Softwareentwicklung</td>
<td>1-2 Wahlmodule</td>
<td>Wahlmodul</td>
<td>Seminarmodul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 LP</td>
<td>9/18 LP</td>
<td>6 LP</td>
<td>3 LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 LP</td>
</tr>
<tr>
<td>6 (SS)</td>
<td>28,5</td>
<td>180</td>
<td>16</td>
<td>54-63</td>
<td>26</td>
<td>31-40</td>
<td>26</td>
<td>3</td>
</tr>
</tbody>
</table>

* In Rahmen des Moduls ist eine Studienleitung zu erörtern [z.B. verpflichtender Übungsleiter]

Figure 2: Recommended structure and subject structure of the bachelor’s programme in Information Systems (german)

In the first four semesters, the modules illustrated from the subjects Information Systems, Informatics, Mathematics, Economics and Law are compulsory.

In the fifth and sixth semesters, elective modules of 9 to 18 credit points must be completed in the subjects of Informatics and Economics. In the subject Law, one or more modules with a total of 6 credit points must be selected. A software development project with 5 credit points is to be completed in the subject Information Systems. Key qualifications are taught integratively. The bachelor thesis comprises 15 credit points and is planned for the 6th semester.

It is up to the individual study plan (taking into account the relevant requirements in the study and examination regulations as well as any module regulations) in which semester the selected module examinations are started or completed.
3 Qualification goals

The graduates of the interdisciplinary, six-semester Bachelor's programme in Information Systems understand the digital transformation of business and society as a socio-technical process of shaping processes (internal digitisation) and products and services (external digitisation). They are familiar with the subject area of Information Systems in science and practice and have methodologically oriented basic knowledge in the fields of Informatics (theoretical computer science, algorithms, software technology, databases, communication networks), Economics (finance, accounting, production economics, marketing, accounting, economic interrelations of microeconomics) and Law (public law, private law, business private law, constitutional and administrative law, data protection law) as well as Mathematics, Statistics and Operations Research.

Thanks to their sound basic methodological knowledge, graduates are able to name subject-specific basic terms, methods, models and procedures and apply them in an interdisciplinary manner.

KIT Bachelor of Information Systems graduates have in-depth knowledge of Informatics, Economics and Law and understand the interrelationships between these sub-disciplines. They are able to identify, describe and communicate economic, IT and legal problems and topics. In this complex of topics they plan, analyse, compare, evaluate and optimise information systems and infrastructures in business and society. They make decisions, develop subject-specific solutions and implement their innovative ideas using methods and models from the various disciplines, taking into account given resources. They know how to document, present, validate, assess and ensure the quality of the results obtained. Their practical handling of specialist knowledge takes account of social, scientific and ethical aspects.

Due to the interdisciplinarity of the study programme, KIT Bachelor of Information Systems graduates can act effectively at the interface of these three subject areas and shape communication between the disciplines in a targeted manner. The graduates are able to work in a team and master challenges in the field of information and communication technologies.

KIT Bachelor of Information Systems graduates have the ability to work in a professional field in industry, the service sector or trade, to found their own company or to take up a Master's degree in Information Systems or a related degree.
4 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor's Thesis</td>
<td>15 CR</td>
</tr>
<tr>
<td>Orientation Exam</td>
<td></td>
</tr>
<tr>
<td>This field will not influence the calculated grade of its parent.</td>
<td></td>
</tr>
<tr>
<td>Information Systems</td>
<td>16 CR</td>
</tr>
<tr>
<td>Informatics</td>
<td>54-63 CR</td>
</tr>
<tr>
<td>Mathematics</td>
<td>26 CR</td>
</tr>
<tr>
<td>Economics and Management</td>
<td>31-40 CR</td>
</tr>
<tr>
<td>Law</td>
<td>26 CR</td>
</tr>
<tr>
<td>Seminars</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

4.1 Bachelor's Thesis

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-104875 Module Bachelor's Thesis</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

4.2 Orientation Exam

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-104843 Orientation Exam</td>
<td>0 CR</td>
</tr>
</tbody>
</table>

4.3 Information Systems

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-104809 Team Project Software Development</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-WIWI-104820 Information Systems I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-WIWI-104821 Information Systems II</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
4.4 Informatics

Election notes
In Informatics, in addition to the compulsory modules, optional modules with a total of 9 or 18 credit points must be completed. If elective modules totalling 18 LP are chosen, only elective modules totalling 9 credit points can be taken in the subject of Economics and Management.
<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100030 Algorithms I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101430 Applied Informatics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-104921 Database Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-103455 Introduction in Computer Networks</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101170 Basic Notions of Computer Science</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101174 Programming</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101175 Software Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101189 Theoretical Informatics</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compulsory Elective Modules in Informatics (Election: between 9 and 18 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101220 Algorithms for Planar Graphs</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101173 Algorithms II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101237 Algorithmic Methods for Hard Optimization Problems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101865 Lab: Working with Database Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101184 Mobile Robots – Practical Course</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101247 Lab Protocol Engineering</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101219 Practical Course Computer Engineering: Hardware Design</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101633 Practical Course Web Applications and Service-Oriented Architectures (I)</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101230 Basic Practical Course for the ICPC-Programming Contest</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100856 Computer Graphics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-102978 Digital Circuits Design</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100803 Real-Time Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101254 Surfaces for Computer Aided Design</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100799 Formal Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-105723 Advanced Algorithmic Programming neu</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100756 Geometric Basics for Geometry Processing</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100730 Geometric Optimization</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-101476 Business Processes and Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-105589 Introduction to Data and Information Management</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-WIWI-1014069 Information Security</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100819 Cognitive Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101248 Curves in CAD</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-102557 Lego Mindstorms - Practical Course</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101245 MARS-Based Internship</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100757 Mechano-Informatics and Robotics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100729 Human Computer Interaction</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101183 Microprocessors I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101249 Mobile Computing and Internet of Things</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-103179 Computer Organization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100818 Computer Architecture</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893 Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101438 Semantic Knowledge Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100834 Security</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100833 Software Engineering II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100801 Telematics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101636 Web Applications and Service-Oriented Architectures (I)</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
4.5 Mathematics

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101432 Introduction to Statistics</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-MATH-104914 Mathematics I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MATH-104915 Mathematics II</td>
<td>8 CR</td>
</tr>
</tbody>
</table>
4.6 Economics and Management

Election notes
In addition to the compulsory modules, one or two modules of 9 credit points each in Business Administration, Economics, Operations Research and Statistics must be completed. If two optional modules with a total of 18 credit points are chosen, only optional modules with a total of 9 credit points can be completed in Informatics.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105267 Business Administration</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-WIWI-101418 Introduction to Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101431 Economics</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Business Administration (Election:)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101467 Design, Construction and Sustainability Assessment of Buildings</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101434 eBusiness and Service Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101402 eFinance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101464 Energy Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101435 Essentials of Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105610 Financial Data Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102752 Fundamentals of Digital Service Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101424 Foundations of Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105928 HR Management & Digital Workplace</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101437 Industrial Production I</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

M-WIWI-105981 Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105482 Machine Learning and Data Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101513 Human Resources and Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101466 Real Estate Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105414 Statistics and Econometrics II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101425 Strategy and Organization</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101421 Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101465 Topics in Finance I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101423 Topics in Finance II</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Operations Research (Election:)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101413 Applications of Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101936 Methodical Foundations of OR</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103278 Optimization under Uncertainty</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Statistics (Election:)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101599 Statistics and Econometrics</td>
<td>9 CR</td>
</tr>
</tbody>
</table>

Economics (Election:)

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101499 Applied Microeconomics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101403 Public Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101599 Statistics and Econometrics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101668 Economic Policy I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101501 Economic Theory</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
4.7 Law

Credits

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101190</td>
<td>Introduction to Civil Law</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101191</td>
<td>Commercial Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-105247</td>
<td>Constitutional and Administrative Law</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Compulsory Elective Module in Law (Election: at least 6 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101253</td>
<td>Intellectual Property and Data Protection</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

4.8 Seminars

Credits

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-102058</td>
<td>Seminar Module Informatics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101218</td>
<td>Seminar Module Law</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-101826</td>
<td>Seminar Module Economic Sciences</td>
<td>3 CR</td>
</tr>
</tbody>
</table>
5 Modules

5.1 Module: Advanced Algorithmic Programming [M-INFO-105723]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-111399</td>
<td>Advanced Algorithmic Programming</td>
<td>6 CR</td>
<td>Bläsius</td>
</tr>
</tbody>
</table>
5.2 Module: Algorithmic Methods for Hard Optimization Problems [M-INFO-101237]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103334 | Algorithmic Methods for Hard Optimization Problems | 5 CR | Wagner |

Competence Goal

The goal of this course is to familiarize the students with hard problems and possible approaches to solve them. Online problems may also be part of the course.

Content

There are many practical problems that cannot be solved optimally - some not at all and some not in a reasonable amount of time. An example is the "bin packing problem" where a collection of objects must be packed using a possibly small number of bins. Moreover, problems sometimes arise where knowledge about the future (or even about the present) is incomplete, but a decision is required nevertheless ("online problems"). Regarding bin packing, for example, there must be a point in time when you close the bins and send them away. Even if there are some more objects arriving later.
5.3 Module: Algorithms for Planar Graphs [M-INFO-101220]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101986 | Algorithms for Planar Graphs | 5 CR | Wagner |

Content
A planar graph is defined as a graph that can be drawn in the plane such that no edges intersect. Planar graphs have many interesting properties that can be used to solve several problems in a particularly simple, fast and elegant way. In addition, some problems that are (NP-)hard in general graphs can be efficiently solved in planar graphs. The lecture presents a selection of these problems and corresponding algorithmic approaches.

Annotation
The module is offered irregularly.

Workload
approx. 150 h
5.4 Module: Algorithms I [M-INFO-100030]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-100001</td>
<td>Algorithms I</td>
</tr>
</tbody>
</table>
5.5 Module: Algorithms II [M-INFO-101173]

Responsible: Prof. Dr. Peter Sanders
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102020</td>
<td>Algorithms II</td>
<td></td>
<td></td>
<td>6 CR</td>
<td>Sanders</td>
<td></td>
</tr>
</tbody>
</table>
5.6 Module: Applications of Operations Research [M-WIWI-101413]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elect: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Supplementary Courses (Elect: at most 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4.5 CR</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-106199</td>
<td>Modeling and OR-Software: Introduction</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under Uncertainty</td>
<td>4.5 CR</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

At least one of the courses Facility Location and Strategic Supply Chain Management and Tactical and Operational Supply Chain Management has to be taken.

Competence Goal

The student

- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of Supply Chain Management and their respective optimization problems,
- is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content

Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.

Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Annotation

The planned lectures and courses for the next three years are announced online.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Recommendation
The courses Introduction to Operations Research I and II are helpful.
5.7 Module: Applied Informatics [M-WIWI-101430]

Responsible: Prof. Dr. Andreas Oberweis
Prof. Dr. Ali Sunyaev

Organisation: KIT Department of Economics and Management

Part of: Informatics (mandatory)

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 2 terms
Language: German
Level: 2
Version: 3

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110338</td>
<td>4 CR</td>
<td>Applied Informatics – Modelling</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The learning control for both courses takes the form of a written examination (60 minutes) in accordance with § 4(2), 1 SPO. The module grade consists of the credit-weighted average of the grades for both courses.

Prerequisites
None.

Competence Goal
The student should:

- Becomes familiar with relevant modelling languages for describing application domains and aspects of early software system design.
- Gains insight into methods and systems of computer science for the design and development of distributed information systems (supporting electronic business),
- is able to select, design, and apply these methods and systems in a way that is appropriate for the application context.

Content
The course Applied Informatics - Modelling [2511030] mainly addresses the early phases of the development of database-supported information systems, distributed systems for information services, intelligent systems and software systems in general. Main topics are modelling concepts and languages for describing application domains as well as static and dynamic aspects of early software system design. The course addresses in detail the following approaches: Entity-Relationship model, advanced aspects of UML, description logic, relational model, Petri nets, and event-driven process chains.

The course Applied Informatics - Internet Computing [2511032] provides insights into fundamental concepts and future technologies of distributed systems and Internet computing. Students should be able to select, design and apply the presented concepts and technologies. The course first introduces basic concepts of distributed systems (e.g. design of architectures for distributed systems, internet architectures, web services, middleware).

In the second part of the course, emerging technologies of Internet computing will be examined in depth. These include, among others:

- Cloud Computing
- Edge & Fog Computing
- Internet of Things
- Blockchain
- Artificial Intelligence

Workload
See german version.

Recommendation
Knowledge of the module Basic Notions of Computer Science as well as Algorithms I is expected.
5.8 Module: Applied Microeconomics [M-WIWI-101499]

Responsible: Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Elective: at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4,5 CR</td>
<td>Szech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112228</td>
<td>Digital Markets and Market Design</td>
<td>4,5 CR</td>
<td>Hillenbrand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4,5 CR</td>
<td>Szech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory</td>
<td>4,5 CR</td>
<td>Puppe, Reiß</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102792</td>
<td>Decision Theory</td>
<td>4,5 CR</td>
<td>Ehrhart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization</td>
<td>4,5 CR</td>
<td>Reiß</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics</td>
<td>5 CR</td>
<td>Schienle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4,5 CR</td>
<td>Mitusch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Competence Goal
Students

- are introduced to the basic theoretical analysis of strategic interaction situations and shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings, (course "Introduction to Game Theory");
- are exposed to the basic problems of imperfect competition and its implications for policy making; (course "Industrial Organization");
- are provided with the basic economics of network industries (e.g., telecom, utilities, IT, and transport sectors) and should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion, and state intervention, (course “Competition in Networks”).

Content
The module’s purpose is to extend and foster skills in microeconomic theory by investigating a variety of applications. Students shall be able to analyze real-life problems using microeconomics.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
Completion of the module Economics is strongly recommended.
Module: Basic Notions of Computer Science [M-INFO-101170]

Responsible: Prof. Dr. Carsten Sinz
Organisation: KIT Department of Informatics
Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101965</td>
<td>Basic Notions of Computer Science Pass</td>
<td>0 CR</td>
<td>Sinz</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101964</td>
<td>Basic Notions of Computer Science</td>
<td>6 CR</td>
<td>Sinz</td>
<td></td>
</tr>
</tbody>
</table>

Competence Goal

- Students know the most important techniques for definitions and are able to read and understand such definitions.
- Students know the difference between syntax and semantics.
- Students know the most important notions from discrete mathematics and computer science and are able to use them for the description of problems and in proofs.

Content

- informal notion of algorithm, basics of correctness proofs
- computational complexity measures, hard problems
- big O notation, master theorem
- alphabets, words, formal languages
- finite acceptors, contextfree grammars
- inductive/recursive definitions, proofs by induction, closure
- relations and functions
- graphs

Workload

180 h
Module: Basic Practical Course for the ICPC-Programming Contest [M-INFO-101230]

Responsible: Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101991 | Basic Practical Course for the ICPC-Programming Contest | 4 CR | Wagner |
Module: Business Administration [M-WIWI-105267]

M 5.11 Module: Business Administration [M-WIWI-105267]

- **Responsible:** Prof. Dr. Marliese Uhrig-Homburg
 Prof. Dr. Christof Weinhardt
- **Organisation:** KIT Department of Economics and Management
- **Part of:** Economics and Management (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-WIWI-111632</th>
<th>Production and Logistics</th>
<th>3 CR</th>
</tr>
</thead>
</table>

Compulsory Elective Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>T-WIWI-111594</th>
<th>Management and Marketing</th>
<th>5 CR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>T-WIWI-111595</th>
<th>Financing and Accounting</th>
<th>5 CR</th>
</tr>
</thead>
</table>

Competence Certificate

The assessments of the courses are written examinations. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student should be able to

- deal with advanced topics in accounting,
- describe the impacts and features of marketing instruments,
- knows the problem formulation and theories of production management, including the areas of energy, construction, real-estate and ergonomics,
- evaluate information as a competitive factor and is in control of the terminology and the methods to assess information.

Content

The institutional framework and the modelling and formal description of a company's decisions play an essential role in this module. This module contains problems in procurement and materials management as well as in logistics. Modern production processes for goods and services are systematically presented. Marketing research and knowledge of the range of marketing instruments are fundamental for decisions in a competitive market environment. Advanced topics in accounting are also taught.

Workload

The total workload for this module is approximately 240 hours (8 credits). The distribution is done according to the credit points of the courses of the module.

The total number of hours per course is calculated from the time required to attend the lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
5.12 Module: Business Processes and Information Systems [M-WIWI-101476]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-109799</td>
<td>Process Mining</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: between 0 and 1 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110711</td>
<td>Supplement Applied Informatics</td>
<td>4,5 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
<tr>
<td>T-WIWI-104679</td>
<td>Foundations of Mobile Business</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110541</td>
<td>Advanced Lab Informatics (Bachelor)</td>
<td>4,5 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
At least one of the courses "Business Process Modelling" or "Process Mining" has to be attended.

Competence Goal
Students

- design architecture models of enterprise information systems and compare alternative designs.
- explain the concepts and principles of process modeling languages and methods, apply the methods in a concrete situation and evaluate the results.
- choose an appropriate modeling language according to a given context for analysing, modeling and improving business processes.

Content
Modeling the relevant aspects of a business process is the basis for efficient and effective support of this process in an enterprise information system. Detailed knowledge of languages, methods and software tools for supporting business process modeling is taught in this module.

Additionally, fundamentals of software quality management are considered in this module. Maturity models like CMMI or SPICE for evaluation and improvement of a software development process are introduced.
5.13 Module: Cognitive Systems [M-INFO-100819]

Responsible: Prof. Dr. Gerhard Neumann
Prof. Dr. Alexander Waibel

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101356 | Cognitive Systems | 6 CR | Neumann, Waibel |
5.4 Module: Commercial Law [M-INFO-101191]

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: Law (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Language</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102013</td>
<td>Exercises in Civil Law</td>
<td>9 CR</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
</tbody>
</table>
5.15 Module: Computer Architecture [M/INFO-100818]

Responsibility: Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T/INFO-101355 Computer Architecture 6 CR Karl
Module: Computer Graphics [M-INFO-100856]

5.16 Module: Computer Graphics [M-INFO-100856]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101393</td>
<td>Computer Graphics</td>
<td>6</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-104313</td>
<td>Computer Graphics Pass</td>
<td>0</td>
<td>CR</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
5.17 Module: Computer Organization [M-INFO-103179]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-103531</th>
<th>Computer Organization</th>
<th>6 CR</th>
<th>Karl</th>
</tr>
</thead>
</table>
5.18 Module: Constitutional and Administrative Law [M-INFO-105247]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Law (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-110300</td>
<td>Public Law I & II</td>
<td>6 CR</td>
<td>Dreier</td>
<td></td>
</tr>
</tbody>
</table>

Workload

See German version.
M 5.19 Module: Curves in CAD [M-INFO-101248]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/INFO-102067</td>
<td>Curves in CAD</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Prautzsch

Competence Goal
Basic knowledge about smooth freeform curves, and about their representations in CAD systems and in computer graphics. In particular, knowledge of control points and the geometric properties of Bézier and B-spline representations.

Content
Bézier and B-spline Technics, polarforms, algorithms of de Casteljau, de Boor and Boehm, Oslo-Algorithm, Stärk’s C\(^k\) construction, subdivision, change of representations, intersection algorithms, interpolation with splines, and a bit on tensorproduct surfaces (= curves controlled by curves).
5.20 Module: Database Systems [M-INFO-104921]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101497 | Database Systems | 4 CR | Böhm |
Module: Design, Construction and Sustainability Assessment of Buildings [M-WIWI-101467]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Design, Construction and Sustainability Assessment of Buildings I</td>
</tr>
<tr>
<td>Lützkendorf</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Design, Construction and Sustainability Assessment of Buildings II</td>
</tr>
<tr>
<td>Lützkendorf</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The module will be discontinued in the winter semester 2022/2023.

The assessment is carried out as partial exams, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student

- knows the basics of sustainable design, construction and operation of buildings with an emphasis on building ecology
- has knowledge of building ecology assessment procedures and tools for design and assessment
- is capable of applying this knowledge to assessing the ecological advantageousness of buildings as well as their contribution to a sustainable development.

Content

Sustainable design, construction and operation of buildings currently are predominant topics of the real estate sector, as well as "green buildings". Not only designers and civil engineers, but also other actors who are concerned with project development, financing and insurance of buildings or portfolio management are interested in these topics.

On the one hand the courses included in this module cover the basics of energy-efficient, resource-saving and health-supporting design and construction of buildings. On the other hand fundamental assessment procedures for analysing and communicating the ecological advantageousness of technical solutions are discussed. With the basics of green building certification systems the lectures provide presently strongly demanded knowledge.

Additionally, videos and simulation tools are used for providing a better understanding of the content of teaching.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

The combination with the module Real Estate Management is recommended.

Furthermore a combination with courses in the area of

- Industrial production (energy flow in the economy, energy politics, emissions)
- Civil engineering and architecture (building physics, building construction)

is recommended.
Module: Digital Circuits Design [M-INFO-102978]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Uwe Hanebeck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Informatics (Compulsory Elective Modules in Informatics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module ID</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103469</td>
<td>Digital Circuits Design</td>
<td>6 CR</td>
<td>Karl</td>
<td>Each summer term</td>
<td>German</td>
<td>3</td>
</tr>
</tbody>
</table>
5.23 Module: eBusiness and Service Management [M-WIWI-101434]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration 1 term</th>
<th>Language German</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Module Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4,5 CR</td>
<td>Mädche</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107506</td>
<td>Platform Economy</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The students

- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Content

This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle.

The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented. The lecture is complemented by exercise courses. The courses “Platform Economy”, "eFinance: Information systems in finance" and "eServices" constitute three different application domains in which the basic principles of the Internet Economy are deepen. In the core lecture "Platform Economy" the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and marketdesign. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform.

The course "eFinance: information systems for securities trading" provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.

In "eServices" the increasing impact of electronic services compared to the traditional services is outlined. The Information- und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality. This course provides basic knowledge about the development and management of ICT-based services.

The theoretic fundamentals of Information systems can be enriched by a practical experience in Special Topics in Information Engineering and Management. Any practical Seminar at the IM can be chosen for the course Special Topics in Information systems.

Annotation

All practical Seminars offered at the IM can be chosen for Special Topics in Information Systems. Please update yourself on www.iism.kit.edu/im/lehre

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.24 Module: Economic Policy I [M-WIWI-101668]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103213</td>
<td>Basic Principles of Economic Policy</td>
<td>4,5 CR</td>
<td>Ott</td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Selection: 1 Item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4,5 CR</td>
<td>Brumm</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>4,5 CR</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4,5 CR</td>
<td>Mitusch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination takes place in the form of examinations (§4(2) SPO) of the selected partial module performance. The examination is carried out separately for each partial module and is described there. It is possible to repeat examinations at any regular examination date.

The grades of the partial module correspond to the grades of the passed examinations. The overall grade of the module is formed from the grades of the partial performances weighted with LP.

Prerequisites

The course “Introduction to Economic Policy” is mandatory in the module.

Competence Goal

Students shall be given the ability to

- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Content

- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is made according to the credit points of the courses of the module.

Recommendation

Basic knowledge of micro- and macroeconomics is strongly recommended, as taught in the courses Economics I [2610012], and Economics II [2600014].
5.25 Module: Economic Theory [M-WIWI-101501]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Exclusion: 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4.5 CR</td>
<td>Mitusch</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4.5 CR</td>
<td>Szech</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4.5 CR</td>
<td>Szech</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory</td>
<td>4.5 CR</td>
<td>Puppe, Reiß</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization</td>
<td>4.5 CR</td>
<td>Reiß</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4.5 CR</td>
<td>Brumm</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102610</td>
<td>Welfare Economics</td>
<td>4.5 CR</td>
<td>Puppe</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4/2), 1 or 2 of the examination regulation of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
See German version.

Content
The lecture Introduction to Game Theory focuses on the basics of non-cooperative game theory. Model assumptions, solution concepts and applications are discussed in detail both for simultaneous games (normal form games) and for sequential games (extensive form games). Classical equilibrium concepts like the Nash equilibrium or the subgame perfect equilibrium, but also advanced concepts will be discussed in detail. If necessary, a brief insight into cooperative game theory will also be given.

The course Auction & Mechanism Design starts with the basic theory of equilibrium behavior and yield management in single object standard auctions. After introducing the yield equivalence theorem for standard auctions, the focus shifts to mechanism design and its applications for single-object auctions and bilateral exchanges.

The course Economics and Behavior introduces fundamental topics of behavioural economics in terms of content and methodology. Students will also gain insight into the design of economic experimental studies. Students will also be introduced to the reading of and critical examination of current research in behavioural economics.

Annotation
The course T-WIWI-102609 - Advanced Topics in Economic Theory is currently not available.

Workload
The total workload for this module is approximately 270 hours (9 credit points). The distribution is done according to the credit points of the courses of the module. The workload for courses with 4.5 credit points is approx. 135 hours. The total number of hours per course is calculated from the time required for attending lectures and exercises, as well as examination times and the time required for an average student to achieve the learning objectives of the module.

Recommendation
None
5.26 Module: Economics [M-WIWI-101431]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Clemens Puppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>Economics and Management (mandatory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-102708 | Economics I: Microeconomics | 5 CR | Puppe, Reiße |

Competence Certificate

The assessment of the module is a written examination according to §4(2), 1 of the examination regulation. The grade of the module corresponds to the grade of this examination.

The main exam takes place subsequent to the lectur. The re-examination is offered at the same examination period. Only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Prerequisites

None

Competence Goal

It is the main aim of this module to provide basic knowledge in economic modelling. In particular, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative, more effective policy measures.

In particular, the student should learn

- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems

- to analyze the structure of microeconomics relationships and to present own problem solutions,
- solve simple economic decision problems.

Content

In the two main parts of the course, problems of microeconomic decision making (household and firm behavior) and problems of commodity allocation on markets (market equilibria and their efficiency properties of markets) are discussed. In the final part of the course, basics of imperfect competition (oligopolistic markets) and of game theory as well as welfare economics are presented.

Annotation

When personal resources are available students' tutorials will be established.

Workload

See German version.
5.27 Module: eFinance [M-WIWI-101402]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at least 4,5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course **eFinance: Information Systems for Securities Trading** [2540454] is compulsory and must be examined.

Competence Goal

The students

- are able to understand and analyse the value creation chain in stock broking,
- are able to adequately identify, design and use methods and systems to solve problems in finance,
- are able to evaluate and criticize investment decisions by traders,
- are able to apply theoretical methods of econometrics,
- learn to elaborate solutions in a team.

Content

The module "eFinance" addresses current problems in the finance sector. It is investigated the role of information and knowledge in the finance sector and how information systems can solve or extenuate them. Speakers from practice will contribute to lectures with their broad knowledge. Core courses of the module deal with the background of banks and insurance companies and the electronic commerce of stocks in global finance markets. In addition the course Derivatives offers an insight into future and forward contracts as well as the assessment of options. Exchanges and International Finance are also alternatives which provide a suplementary understanding for capital markets.

Information management topics are the focus of the lecture "eFinance: Information Systems for Securities Trading". For the functioning of the international finance markets, it is necessary that there is an efficient information flow. Also, the regulatory frameworks play an important role. In this context, the role and the functioning of (electronic) stock markets, online brokers and other finance intermediaries and their platforms are presented. Not only IT concepts of German finance intermediaries are presented, but also international system approaches will be compared. The lecture is supplemented by speakers from the practice (and excursions, if possible) coming from the Deutsche Börse and the Stuttgart Stock Exchange.

Annotation

The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.iism.kit.edu/im/lehre

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.28 Module: Energy Economics [M-WIWI-101464]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics</td>
<td>5.5 CR</td>
<td>Fichtner</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: 3.5 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102607</td>
<td>Energy Policy</td>
<td>3.5 CR</td>
<td>Wietschel</td>
</tr>
<tr>
<td>T-WIWI-100806</td>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>3.5 CR</td>
<td>Jochem</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture *Introduction into Energy Economics* [2581010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The lecture *Introduction into Energy Economics* [2581010] has to be examined.

Competence Goal

The student

- is able to understand interdependencies in energy economics and to evaluate ecological impacts in energy supply,
- is able to assess the different energy carriers and their characteristics,
- knows the energy political framework conditions,
- gains knowledge about new market-based conditions and the cost and potentials of renewable energies in particular.

Content

Introduction to Energy Economics: Characterisation (reserves, suppliers, cost, technologies) of different energy carriers (coal, gas, oil, electricity, heat etc.)

Renewable Energy - Resources, Technology and Economics: Characterisation of different renewable energy carriers (wind, solar, hydro, geothermal etc.)

Energy Policy: Management of energy flows, energy-political targets and instruments (emission trading etc.)

Annotation

Additional study courses (e.g. from other universities) can be transferred to the grade of the module on special request at the institute.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.
5.29 Module: Essentials of Finance [M-WIWI-101435]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102605</td>
<td>Financial Management</td>
<td>4,5 CR</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102604</td>
<td>Investments</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Competence Goal

The student

- has fundamental skills in modern finance
- has fundamental skills to support investment decisions on stock, bond and derivative markets
- applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Content

The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.30 Module: Financial Data Science [M-WIWI-105610]

Responsible: Prof. Dr. Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Recurrence: Irregular
Duration: 1 term
Language: English
Level: 3
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade to a tenth</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111238</td>
<td>Financial Data Science</td>
<td>9 CR</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination is an alternative exam assessment and consists of two parts in which a maximum of 100 points can be achieved:

In the first part of the examination, a maximum of 30 points can be achieved, which are distributed equally weighted over eight worksheets to be submitted during the semester. The worksheets of the first three weeks are representative for all following worksheets in terms of scope and degree of difficulty. With the beginning of the 4th week of the course, the handing in of the worksheets is considered to be part of the alternative exam assessment.

A maximum of 70 points can be achieved in the second part of the examination. For this part of the examination, the student write a "Final Exam" in the last week of the lecture period, which takes 2 hours.

Detailed information about the course schedule and the module exam will be announced at the first course date.

A retake opportunity for those who do not pass the module exam will take place at the end of the fourth September calendar week of the same year. The registration for the examination must be made at least 1 day before the beginning of the examination. The following applies to deregistration for the examination: Deregistration can be made online in the student portal up to 1 day before the start of the examination.

Competence Goal

The objective of the module is to provide fundamental financial knowledge for advanced applications in Financial Data Science and Financial Machine Learning. The course teaches concepts and provides weekly Python assignments to scientifically address the following topics: Robo Advisory, Linear Factor Models, Statistical Arbitrage, Monte Carlo Simulation, and Financial Machine Learning. The course is for the students, who are interested in financial markets, as well as for the students, who are interested in Data Science. Scientific financial market knowledge helps in creating financial innovations, such as a Robo Advisor. Practical knowledge in using Python helps in coding machines, which are essential for offering automated financial market solutions.

Content

The module covers the following topics:

- Robo Advisory: Investor preferences, Expected utility theory, Mean-variance optimal investing
- Linear Factor Models: prediction of returns, decomposition of risks, Capital Asset Pricing Model, Arbitrage Pricing Theory
- Statistical Arbitrage: ARMA-GARCH Modeling of Return Time Series
- Monte Carlo Simulation: Simulation of ARMA-GARCH processes
- Machine Learning: Least Squares Methods, Maximum Likelihood, Prediction of Returns, Prediction of Risks
- New developments in asset management: factor investing, smart beta, I-CAPM, Fama-MacBeth estimation of risk premia, factor anomalies

Annotation

Please note that the module is only offered every second summer semester (SS2021, SS2023).

Workload

The total workload for this module is approx. 270 hours (9 credit points). The total number of hours results from the effort for studying online videos, working on quiz questions, studying Ipython-Notebooks, participating in interactive “Python Sessions” and reading the recommended literature.
5.31 Module: Formal Systems [M-INFO-100799]

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101336</td>
<td>Formal Systems</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Beckert
5.32 Module: Foundations of Marketing [M-WIWI-101424]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102805</td>
<td>Managing the Marketing Mix</td>
<td>4,5 CR</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Supplementary Courses (Selection: at least 4,5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111367</td>
<td>B2B Sales Management</td>
<td>4,5 CR</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-112156</td>
<td>Brand Management</td>
<td>4,5 CR</td>
<td>Kupfer</td>
</tr>
<tr>
<td>T-WIWI-106569</td>
<td>Consumer Behavior</td>
<td>4,5 CR</td>
<td>Scheibehenne</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course Marketing Mix is compulsory and must be examined.

Competence Goal

The aim of this module is to prepare students for a job in marketing or sales. Especially in technically oriented companies, employees who have a certain technical background as industrial engineers or business informatics specialists are often fit for this purpose.

Students

- are familiar with the most important concepts, procedures and theories of the four instruments of the marketing mix (product management, price management, communication management and sales management)
- have the knowledge to make decisions regarding current and future products (product innovations, e.g. by using conjoint analysis)
- know how customers perceive brands and how this perception can be influenced by the company
- understand how customers react to prices (e.g. using price-sales functions)
- can determine prices on the basis of conceptual and quantitative considerations
- know the basics of price differentiation
- are familiar with various communication instruments (e.g. TV advertising) and can design them accurately
- make communication decisions systematically (e.g. by means of media planning)
- can segment the market and position the product
- know how to assess the importance and satisfaction of customers.

Additionally when taking the course "B2B Sales Management"

- can shape the relationship with customers and sales partners and know the basics of sales organization as well as essential sales channel decisions
- know about specifics of marketing in B2B
- are able to identify different B2B business types and their peculiarities in marketing and sales
- are able to prioritize customers and calculate B2B customer lifetime value
- are able to determine value-based prices and prepare and conduct B2B sales presentations.

Additionally when taking the course "Consumer Behavior"

- know about the influences of social factors, neuronal processes and cognitive resources on consumer behavior
- know about the influences of evolutionary factors, emotions, individual differences and motivation on consumer behavior.
Content
The core course of the module is "Marketing Mix". This course is compulsory and must be examined. "Marketing Mix" contains instruments and methods that enable you to goal-oriented decisions in the operative marketing management (product management, pricing, promotion and sales management). In the "B2B Sales Management" course, we impart knowledge about marketing and sales in environments in which companies themselves distribute and market (often technically highly complex) products to other companies ("business-to-business"). In the "Consumer Behavior" course, we provide an understanding of situational, biological, cognitive, and evolutionary factors that influence consumer behavior. This understanding is provided from an interdisciplinary perspective, incorporating relevant theories and empirical research findings from psychology, cognitive science, biology, and economics.

Annotation
The courses "Services Marketing and B2B Marketing" and "International Marketing" were offered for the last time in the winter semester 2020/21 and will be replaced by the course "B2B Sales Management" from the winter semester 2021/22 on. The course "Marketing Mix" will continue to be offered as normal in the summer semester 2021 and will also be retained in the long term. For further information please contact the Marketing & Sales Research Group (marketing.iism.kit.edu).

Workload
Total effort for 9 credit points: approx. 270 hours.
The exact distribution is done according to the credit points of the courses of the module.
5.33 Module: Fundamentals of Digital Service Systems [M-WIWI-102752]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110888</td>
<td>Practical Seminar: Digital Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

- T-WIWI-111307
- T-WIWI-109816
- T-WIWI-110888

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Competence Goal
Students
- understand services from different perspectives and the concept of value creation in service networks
- know about the concepts, methods and tools for the design, modelling, development and management of digital services and are able to use them
- understand the basic characteristics and effects of integrated information system as an integral element of digital services
- gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
- practice skills in the English language in preparation of jobs in an international environment

Content
Global economy is increasingly determined by services: in industrialized countries nearly 70% of gross value added is achieved in the tertiary sector. Unfortunately, for the design, development and the management of services traditional concepts focused on goods are often insufficient or inappropriate. Besides, the rapid technical advance in the information and communication technology sector pushes the economic importance of digital services even further thus changing the competition environment. ICT-based interaction and individualization open up completely new dimensions of shared value between clients and providers, dynamic and scalable “service value networks” replace established value chains, digital services are provided globally crossing geographical boundaries. This module establishes a basis for further specialization in service innovation, service economics, service design, service modelling, service analytics as well as the transformation and coordination of service networks.

Annotation
This module is part of the KSRI teaching profile “Digital Service Systems”. Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation
None
Module: Geometric Basics for Geometry Processing [M-INFO-100756]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101293</td>
<td>Geometric Basics for Geometry Processing</td>
<td>5 CR</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
5.35 Module: Geometric Optimization [M-INFO-100730]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101267</td>
<td>Geometric Optimization</td>
<td>3 CR</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
5.36 Module: HR Management & Digital Workplace [M-WIWI-105928]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Elective Offer (Election:)

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102909</td>
<td>Human Resource Management</td>
<td>4,5</td>
<td>CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-111858</td>
<td>Topics in Human Resource Management</td>
<td>3</td>
<td>CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4,5</td>
<td>CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-111914</td>
<td>Practical Seminar: Interactive Systems</td>
<td>4,5</td>
<td>CR</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams of the courses in this module. The assessment procedures are described for each course in the module separately.

The overall grade of the module is the average of grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Please refer to the course descriptions for potential restrictions regarding an individual course.

Competence Goal
The student
- understands and analyses challenges and objectives within organizations
- applies economic models and empirical methods to analyze and solve challenges with a focus on the future of work
- understands the impact of digitalization and new information and communication technology on the work life and HR decisions
- knows how to apply scientific research methods and understands the underlying problems

Content
The module „HR Management & Digital Workplace“ offers an interdisciplinary approach and brings together knowledge about Human Resource Management, Leadership and Digitalization. The module specifically focuses on topics related to the future of work in organizations. The topics range from interactive systems at the digital workplace and human-centered design, to recruiting, training and development, as well as (digital) leadership. All courses in the module foster active participation and allow students to learn state-of-the-art concepts and methods and apply them to real-world challenges.

Annotation
Please refer to the course descriptions for potential restrictions regarding an individual course.

Workload
Total workload for 9 credits: approx. 270 hours.
Module: Human Computer Interaction [M-INFO-100729]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible:
Prof. Dr.-Ing. Michael Beigl

Organisation:
KIT Department of Informatics

Part of:
Informatics (Compulsory Elective Modules in Informatics)

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
<td>Each summer term</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Human-Machine-Interaction Pass</td>
<td>0 CR</td>
<td>Beigl</td>
<td>Each summer term</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
5.38 Module: Human Resources and Organizations [M-WIWI-101513]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Elective Offer (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102909</td>
<td>Human Resource Management</td>
<td>4.5 CR</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>4.5 CR</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-111858</td>
<td>Topics in Human Resource Management</td>
<td>3 CR</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102630</td>
<td>Managing Organizations</td>
<td>3.5 CR</td>
<td>Lindstädt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problem Solving, Communication and Leadership</td>
<td>2 CR</td>
<td>Lindstädt</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams or alternative exam assessment of the single courses of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course T-WIWI-111858 Topics in Human Resource Management may not be taken together with the course T-WIWI-102871 Problem Solving, Communication, and Leadership.

Competence Goal

The student

- knows and analyzes basic concepts, instruments, and challenges of present human resource and organizational management.
- uses the techniques he / she has learned to evaluate strategic situations which occur in human resource and organizational management.
- evaluates the strengths and weaknesses of existing structures and rules based on systematic criterions.
- Discusses and evaluates the practical use of models and methods by using case studies.
- has basic knowledge of fit and challenges of different scientific methods in the context of personnel and organizational economics.

Content

Students acquire basic knowledge in the field of human resources, personnel economics and organization economics. Strategic as well as operative aspects of human resource management practices are analyzed and current research results discussed. Students gain knowledge about methods and instruments from the field of human resources and are able to apply those. The module addresses the opportunities and threats of digitalization in the workplace as well as the use of AI in HRM. In addition, questions of optimal organizational design or personnel politics are considered. The focus lies on the strategic analysis of decisions and the use of microeconomic or behavioral approaches. Empirical results of field or lab studies are discussed critically.

Workload

Total workload for 9 credits: approx. 270 hours.

Recommendation

Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory and statistics is recommended.
5.39 Module: Industrial Production I [M-WIWI-101437]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102606</td>
<td>Fundamentals of Production Management</td>
<td>5.5 CR</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: 3.5 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102870</td>
<td>Logistics and Supply Chain Management</td>
<td>3.5 CR</td>
<td>Klein, Schultmann</td>
</tr>
<tr>
<td>T-WIWI-102820</td>
<td>Production Economics and Sustainability</td>
<td>3.5 CR</td>
<td>Schultmann, Volk</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course “Fundamentals of Production Management” [2581950] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

The course “Fundamentals of Production Management” [2581950] and one additional activity have to be chosen.

Competence Goal

- Students shall be aware of the important role of industrial production and logistics for production management.
- Students shall use relevant concepts of production management and logistics in an adequate manner.
- Students shall be able to reflect on decision principles in firms and their circumstances in the light of the production management aspects studied.
- Students shall be proficient in describing essential tasks, difficulties and solutions to problems in production management and logistics.
- Students shall be able to describe relevant approaches of modeling production and logistic systems.
- Students shall be aware of the important role of material and energy-flows in production systems.
- Students shall be proficient in using exemplary methods for solving selected problems.

Content

This module is designed to introduce students into the wide area of industrial production and logistics management. It focuses on strategic production management under the aspect of sustainability. The courses use interdisciplinary approaches of systems, also theory to describe the central tasks of industrial production management and logistics. Herein, attention is drawn upon strategic corporate planning, research and development as well as site selection. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Workload

Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h.

The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.
Module: Information Security [M-WIWI-104069]

Responsible: Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

- T-WIWI-110342 **Applied Informatics – Information Security** 4,5 CR Volkamer

Compulsory Elective Courses (Election: 1 Item)

- T-WIWI-108439 **Advanced Lab Security, Usability and Society** 4,5 CR Volkamer
- T-WIWI-109786 **Advanced Lab Security** 4,5 CR Volkamer

Competence Certificate
The module examination is carried out in the form of partial examinations on the selected courses of the module, with which the minimum requirement at creditpoints is fulfilled. The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with creditpoints and is cut off after the first comma point.

Prerequisites
None

Competence Goal
The student

- can explain and apply the basics of information security
- knows appropriate measures to achieve different protection goals and can implement these measures
- can assess the quality of organisational protective measures, i.e. among other things knows what has to be taken into account when using the individual measures
- Understanding the differences between information security in the enterprise and in the private context
- knows the areas of application of a variety of relevant standards and knows their weaknesses
- knows and can explain the problems of information security which may arise from human-machine interaction
- can assess messages about detected security problems in a critical way
- can structure a software project in the field of information security and explain and present results in oral and written form
- can use the techniques of Human Centred Security and Privacy by Design to create user-friendly software.

Content

- Basics and concepts of information security
- Understanding the protection objectives of information security and various attack models (including associated assumptions)
- introduction of measures to achieve the respective protection goals, taking into account different attack models
- Note: In contrast to the IT Security lecture, measures such as encryption algorithms are treated only abstractly, i.e. the idea of the measure, assumptions to the attacker and the deployment environment.
- Presentation and analysis of problems of information security arising from human-machine interaction and presentation of the Human Centered Security by Design approach.
- Introduction into organisational protective measures and standards to be observed for companies.

Annotation
This new module can be chosen from summer term 2018.

Workload
The total workload for this module is approximately 270 hours.
5.41 Module: Information Systems & Digital Business [M-WIWI-105981]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: at least 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106569</td>
<td>Consumer Behavior</td>
<td>4.5</td>
<td>CR</td>
<td>Scheibehenne</td>
</tr>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4.5</td>
<td>CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-107506</td>
<td>Platform Economy</td>
<td>4.5</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Complementary Offer (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110888</td>
<td>Practical Seminar: Digital Services</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-111914</td>
<td>Practical Seminar: Interactive Systems</td>
<td>4.5</td>
<td>CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-112154</td>
<td>Practical Seminar: Platform Economy</td>
<td>4.5</td>
<td>CR</td>
<td>Satzger, Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination takes place in the form of partial examinations via courses of the module amounting to a total of at least 9 LP.
The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal
Students

- understand the basic concepts of interactive systems as well as the economic foundations and key components of platforms
- explore the theoretical grounding of interactive systems leveraging theories from reference disciplines such as psychology
- understand business models, network effects of digital platforms and get to know different market forms and market mechanisms
- gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
Content
The “Information Systems & Digital Business” modules of the research groups of Prof. Dr. Alexander Mädche (Information Systems & Service Design), Prof. Dr. Gerhard Satzger (Digital Service Innovation) and Prof. Dr. Christof Weinhardt (Information & Market Engineering), offer a comprehensive overview on important topics of digitalization – blending aspects of digital interaction, digital services and the platform economy. Courses in this module cover the aspects of interaction between humans and information systems as well as the economic foundations of platform businesses:

Foundations of Interactive Systems:
Advanced information and communication technologies (ICT) make interactive systems ever-present in the users’ private and business life. They are an integral part of E-Commerce portals or social networking sites as well as at the workplace, e.g. in the form of collaboration portals or analytical dashboards. Furthermore, with the ever-increasing capabilities of ICT, the design of human-computer interaction is becoming increasingly important. The aim of this module is to introduce the foundations, related theories, key concepts, and design principles as well as current practice of contemporary interactive systems. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

Platform Economy:
Apple, Alphabet, Amazon, Microsoft, and Facebook; five of the most valuable companies worldwide create large portions of their profits by employing a digital platform model. This module teaches the key design considerations of digital platforms: their foundations in economic theory, their core components and design aspects, the adequate selection of market mechanisms for achieving certain goals, and the role of user behavior in the context of digital platforms. The theoretic foundations are enriched by discussions of several real-world examples, e.g. from the finance sector. Thus, the students are enabled to a) analyze given platforms and make recommendations for improvements and b) independently design new platforms for given use cases.

Consumer Behavior:
Consumer decisions are ubiquitous in daily life and they can have long-ranging and important consequences for individual (financial) well-being and health but also for societies and the planet as a whole. To help people to make better choices it is important to understand the factors that influence their behavior. Towards this goal, we will explore how consumer behavior is shaped by social influences, situational and cognitive constraints, as well as by emotions, motivations, evolutionary forces, neuronal processes, and individual differences. Across all topics covered in class, we will engage with basic theoretical work as well as with groundbreaking empirical research and current scientific debates. The lecture will be held in English.

Annotation
The module can no longer be taken as of winter semester 2022/2023.

Workload
Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
Module: Information Systems I [M-WIWI-104820]

Responsible: Prof. Dr. Sebastian Abeck
Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management
Part of: Information Systems

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109817</td>
<td>Information Systems 1</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination takes place in the form of a written examination of 60 minutes according to § 4 Abs. 2 via the course "Business Information Systems 1". A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Competence Goal
The student

- understands information systems and infrastructures as a dynamic interaction of technical and non-technical elements in the generation and use of information,
- knows application areas of information systems and infrastructures in business and society,
- understands digital transformation as a socio-technical design process of (business) processes (internal digitisation) and products/services (external digitisation) in information systems and infrastructures,
- knows different types of information systems and infrastructures in business and society,
- knows the potential benefits of a targeted supply of information in business and society through the appropriate use of information systems and infrastructures,
- develops an understanding of the importance of interdisciplinary, systemic thinking and learns to work with students in a team.

General qualifications:

- Teamwork: communication, organization
- Problem-solving competence for socially relevant problems

Content
In the lecture "Business Information Systems 1" of the module central basics of information systems are introduced as a scientific discipline. The subject area, basic terms, scientific character and goals as well as methods in science and practice of information systems are introduced. Concepts, methods and theories as well as systems and their engineering design are discussed along the levels of individual, organization and market. The lectures are complemented by exercises with real questions.

Workload
Total effort for 4 credit points: approx. 120 hours.
Presence time: 40 hours
Preparation / follow-up: 40 hours
Exam and exam preparation: 40 hours
Module: Information Systems II [M-WIWI-104821]

5.43 Module: Information Systems II [M-WIWI-104821]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Information Systems

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-109818 | Information Systems 2 | 4 CR | Mädche, Weinhardt |

Competence Certificate
The module examination takes place in the form of a written examination of 60 minutes according to § 4 Abs. 2 via the course Business Information Systems 2.

Competence Goal
Students

- know important integrated information systems and understand how they are being used in organisations.
- understand central concepts of IT management.
- learn the foundations of market engineering and understand how digital platforms contribute to the solution of allocation problems and how their success can be measured.
- know the foundations of digital value creation (information economy), and basic concepts for the evaluation and analysis of data.

Content
In the lecture Information Systems II of the module four central issues of Information Systems, respectively their relevance in companies and society, are deepened. This includes the management of IT systems in organizations (IT Management), the use of IT for corporate management (Integrated Information Systems), the use of digital platforms and markets to coordinate economic problems such as the allocation and exchange of goods and services (Platform Economics), and the value and use of data (i.a. big data, open data, etc.) (Information Economics).

Workload
Total effort for 4 credit points: approx. 120 hours.
Presence time: 40 hours
Preparation / follow-up: 40 hours
Exam and exam preparation: 40 hours
5.44 Module: Intellectual Property and Data Protection [M-INFO-101253]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Law (Compulsory Elective Module in Law)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-109840 | Intellectual Property and Data Protection | 6 CR | Dreier |

Content

Building onto what the students have learned in law during the first two years of Bachelor studies, the module Law in the third Bachelor years has the purpose of both deepening and specialising the legal studies in areas of practical importance for information economics and management...
<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102015</td>
</tr>
<tr>
<td>Mandatory</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>T-INFO-103339</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: Law (mandatory)
5.47 Module: Introduction to Data and Information Management [M-INFO-105589]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101317 Deployment of Database Systems</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Böhm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101257 Mechanisms and Applications of Workflow Systems</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Mülle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-111622 Data Science I</td>
<td>5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Böhm, Fouché</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103552 Lab: Working with Database Systems</td>
<td>4</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Böhm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101977 Selling IT-Solutions Professionally</td>
<td>1,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Böhm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101975 Consulting in Practice</td>
<td>1,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Böhm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101976 Project Management in Practice</td>
<td>1,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Böhm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Competence Goal
The students

- see the necessity of specialised systems for information and data management and are able to define and deploy decision criteria for purchasing such software,
- are aware of the fundamental approaches in information and database systems and are able to judge their potential applications,
- understand database applications and develop simple database applications on their own,
- are able to communicate at a professional level about technical aspects of information and knowledge management

Content
This module aims at exposing students to modern information and database systems. Beyond fundamental theory and concepts, this module covers the deployment of such technology.
5.48 Module: Introduction to Operations Research [M-WWI-101418]

Responsible: Prof. Dr. Stefan Nickel
 Prof. Dr. Steffen Rebennack
 Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WWI-102758</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

Prerequisites

None

Competence Goal

The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content

This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.

This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Module grade calculation

The overall grade of the module is the grade of the written examination.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Introduction to Statistics [M-WIWI-101432]

Responsible: Prof. Dr. Oliver Grothe
 Prof. Dr. Melanie Schienle
Organization: KIT Department of Economics and Management
Part of: Mathematics

Credits 10
Grading scale Grade to a tenth
Recurrence Each term
Duration 2 terms
Language German
Level 1
Version 2

Mandatory
T-WIWI-102737 Statistics I
T-WIWI-102738 Statistics II
5 CR Grothe, Schienle

Competence Certificate
The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II).

The overall grade of the module is the average of the grades of these two written examinations.

Prerequisites
Keine

Competence Goal
See German version.

Content
The module contains the fundamental methods and scopes of Statistics.
A. Descriptive Statistics: univariate and bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, linear regression

Module grade calculation
The overall grade of the module is the average of the grades of these two written examinations.

Workload
The total workload for this module is approximately 300 hours. For further information see German version.

Recommendation
In some cases, knowledge is required that is imparted within the mathematics module. The module should therefore only be attended if the course Mathematics I for Information Engineering and Management [01360] has been attended beforehand.

It is strongly recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021].

The lecture will be accompanied by an exercise, a tutorial and a computer internship, which are recommended.
5.50 Module: Lab Protocol Engineering [M-INFO-101247]

Responsible: Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102066</td>
</tr>
</tbody>
</table>
Module: Lab: Working with Database Systems [M-INFO-101865]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103552</td>
<td>Lab: Working with Database Systems</td>
<td>4 CR</td>
<td>Böhm</td>
</tr>
</tbody>
</table>
5.52 Module: Lego Mindstorms - Practical Course [M-INFO-102557]

Responsibility: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-107502 | Practical Course: Lego Mindstorms | 4 CR | Asfour |

Competence Goal

The participants are able to design and construct a robot with motors and sensors using the Lego Mindstorms kit. The students are familiar with programming the Lego EV3 components using the Java programming language. They are able to understand and solve several key problems in mobile robotics, such as autonomous navigation, detection of landmarks and objects as well as obstacle avoidance. The students know how to efficiently and independently solve problems in a small group in a given time frame and are able to systematically document their work and results.

Content

In this practical course, teams of three students build and program a mobile robot using Lego Mindstorms and the Java programming language. The robots are challenged to complete a versatile parkour including sections like the traversal of a maze, following a line, crossing a bridge or avoiding obstacle. After initial building of the robots, a section of the parkour will be set up each week and tackled by the robots, for which the students have to prepare their code beforehand. A final race of the robots on the entire parkour will be held at the end of the semester.

Recommendation

Basic knowledge in JAVA is necessary for successful completion of this course.
5.53 Module: Machine Learning and Data Science [M-WIWI-105482]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111028</td>
<td>Introduction to Machine Learning</td>
<td>4,5</td>
<td>CR</td>
<td>Geyer-Schulz, Nazemi</td>
</tr>
<tr>
<td>T-WIWI-111029</td>
<td>Introduction to Neural Networks and Genetic Algorithms</td>
<td>4,5</td>
<td>CR</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination is carried out in the form of partial examinations of the selected courses of the module, with which in total the minimum requirement of credit points is fulfilled. The kind of examination is described in detail for each course of this module.

Prerequisites
None

Competence Goal
The student
- knows the main families of machine learning methods, their basic principles, assumptions and restrictions.
- can use these methods to solve data analysis problems, to support decision making or for process automation in companies and use the solutions interpreted and evaluated accordingly.
- can compare and evaluate the performance of solutions.

Content
The module mainly focuses on methods from statistical learning (linear and logistic learning, regression, tree methods, SVMs, and shrinkage estimators) and from the field of neural and genetic procedures were presented. Furthermore, data transformations and -representations (e.g. dimension reduction, clustering, imputation in case of missing data) and visualization techniques and appropriate inference, diagnosis and validation techniques are presented.

Workload
Total effort for 9 credit points: approx. 270 hours. The allocation is based on the credit points of the courses of the module.
5.54 Module: MARS-Based Internship [M-INFO-101245]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102053</td>
<td>MARS Basis Lab</td>
<td>4 CR</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>

Workload
120 h
5.55 Module: Mathematics I [M-MATH-104914]

Responsible: Prof. Dr. Andreas Rieder
 Prof. Dr. Christian Wieners
 Organisation: KIT Department of Mathematics
 Part of: Mathematics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-109942</td>
<td>Mathematics I for Information Systems - Exam</td>
<td>7 CR</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
<tr>
<td>T-MATH-109943</td>
<td>Mathematics I for Information Systems - Exercise</td>
<td>1 CR</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment in this module consists of

1. a nongraded certificate of exercise following §4(3) of the examination regulation from the exercises to mathematics I (1 credit) and
2. a written examination of 90 minutes on the lectures mathematics I following §4(2), 1 of the examination regulations (7 credits).

The grade of the module is the grade of the written examinaition.

Prerequisites
None

Competence Goal
Mathematical models are an important part in economical sciences. Therefore, the students need a basic knowledge in mathematics. The aim is the instruction in a comprehension of basic methods in analysis and linear algebra.

The students learn

- to use simple concepts and structures in mathematics;
- to recognize the mathematical structure of practical applications and to solve in simple cases mathematical problems;
- to comprehend the mathematical structure of more complex applications;
- to understand the mathematical basics to develop mathematical models for applications in cooperation with experts;
- to explain as a group member in the tutorial elementary mathematical structures and to stimulate in the discussion of examples the success of the group;
- to be in time for the tutorial group and for the preparation of homeworks;
- to work with basic mathematical literature.

The provides the foundations for

- comprehending the mathematical structure of more complex applications;
- developing mathematical models for applications in cooperation with experts;
- constructing algorithmical solutions of mathematical models for applications in cooperation with experts.

Content
The lectures mathematics I and II give an overview in basic mathematical knowledge which is required to understand modern computer science and economical sciences. Part I consist of linear algebra including the basic algebraic structures, vector spaces and linear mappings. Many algebraic concepts are important for computer science. Part II consists of analysis including an introduction into the calculus of functions of one or several variables.

Annotation
None.

Workload
See German version.
5.56 Module: Mathematics II [M-MATH-104915]

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- T-MATH-109944 Mathematics II for Information Systems - Exam 7 CR Rieder, Weiß, Wieners
- T-MATH-109945 Mathematics II for Information Systems - Exercise 1 CR Rieder, Weiß, Wieners

Competence Certificate

The assessment in this module consists of

1. a nongraded certificate of exercise following §4(3) of the examination regulation from the exercises to mathematics II (1 credit) and
2. a written examination of 90 minutes on the lectures mathematics II following §4(2), 1 of the examination regulations (7 credits).

The grade of the module is the grade of the written examination.

Prerequisites

None

Competence Goal

Mathematical models are an important part in economical sciences. Therefore, the students need a basic knowledge in mathematics. The aim is the instruction in a comprehension of basic methods in analysis and linear algebra.

The students learn

- to use simple concepts and structures in mathematics;
- to recognize the mathematical structure of practical applications and to solve in simple cases mathematical problems;
- to comprehend the mathematical structure of more complex applications;
- to understand the mathematical basics to develop mathematical models for applications in cooperation with experts;
- to explain as a group member in the tutorial elementary mathematical structures and to stimulate in the discussion of examples the success of the group;
- to be in time for the tutorial group and for the preparation of homeworks;
- to work with basic mathematical literature.

The provides the foundations for

- comprehending the mathematical structure of more complex applications;
- developing mathematical models for applications in cooperation with experts;
- constructing algorithmical solutions of mathematical models for applications in cooperation with experts.

Content

The lectures mathematics I and II give an overview in basic mathematical knowledge which is required to understand modern computer science and economical sciences. Part I consist of linear algebra including the basic algebraic structures, vector spaces and linear mappings. Many algebraic concepts are important for computer science. Part II consists of analysis including an introduction into the calculus of functions of one or several variables.

Workload

See German version.
5.57 Module: Mechano-Informatics and Robotics [M-INFO-100757]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101294 | Mechano-Informatics and Robotics | 4 CR | Asfour |

Competence Goal

Students understand the basics of the synergistic integration of methods from mechatronics, computer science and artificial intelligence using the example of humanoid robotics. They are acquainted with the basic concepts and methods of machine learning, the description of robot movements and actions as well as artificial neural networks and their application in robotics.

In particular, they are able to apply basic methods to problems and know relevant tools. Using research-oriented examples from humanoid robotics, students have learned – in an interactive way – to think analytically and to proceed in a structured and goal-oriented way when analyzing, formalizing and solving tasks.

Content

The lecture addresses topics at the interface between robotics and artificial intelligence, which are illustrated and explained based on examples from current research in the area of humanoid robotics. The lecture introduces fundamental algorithms in robotics and machine learning as well as methods for describing dynamical systems and representing robot motions and actions. This includes an introduction to artificial neural networks, the description of dynamical systems in state space as well as the learning of movement primitives. The topics and content are illustrated by practical examples from humanoid robotics.

Recommendation

Der Besuch des Basispraktikums Mobile Roboter wird empfohlen.
Module: Methodical Foundations of OR [M-WIWI-101936]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Operations Research)

Compulsory Elective Courses (Election: at least 1 item as well as between 4,5 and 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Global Optimization I and II</td>
<td>9</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nonlinear Optimization I and II</td>
<td>9</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at most 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102727</td>
<td>Global Optimization II</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nonlinear Optimization II</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

At least one of the courses "Nonlinear Optimization I" and "Global Optimization I" has to be examined.

Competence Goal

The student

- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.

Content

The module focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat approaches for global solutions.

Annotation

The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu).

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
5.59 Module: Microprocessors I [M-INFO-101183]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101972</th>
<th>Microprocessors I</th>
<th>3 CR</th>
<th>Karl</th>
</tr>
</thead>
</table>
5.60 Module: Mobile Computing and Internet of Things [M-INFO-101249]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102061</td>
<td>Mobile Computing and Internet of Things</td>
<td>5 CR</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Prerequisites

None
5.61 Module: Mobile Robots – Practical Course [M-INFO-101184]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101992 | Mobile Robots – Practical Course | 4 CR | Asfour |

Competence Goal

The student is able to understand circuit diagrams and can assemble, test and debug complex PCBs. The student is familiar with programming microcontroller-based embedded systems using the C language and cross compilers. The student is able to use methods for controlling robotic sensors and actuators, can conduct experiments with robots and solve tasks in this context independently and in small groups.

Content

In this practical course, students assemble an ASURO robot in groups of two. Each student will be provided with his own robot, which he has to put into operation. While using the robots, a new set of problems will be solved each week. The students will need to prepare for each week given the provided material. Sets of problem be solved using the C language and focus on controlling the robot’s sensors and actuators as well as on the generation of reflex-based behavior. The course ends with a race, where the robots have to tackle an obstacle course.
5.62 Module: Module Bachelor's Thesis [M-INFO-104875]

Organisation: KIT Department of Informatics
Part of: Bachelor's Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-109907 | Bachelor's Thesis | 15 CR |

Competence Goal

The student can independently work on a relevant topic in accordance with scientific criteria within the specified time frame. He/she is in a position to research, analyze the information, abstract and identify basic principles and regulations from less structured information.

He/she reviews the task ahead, can select scientific methods and techniques and apply them to solve a problem or identify further potential. This is basically also done under consideration of social and/or ethical aspects.

He/she can interpret, evaluate and if required, graphically present the obtained results.

He/she is in a position to clearly structure a research paper and communicate in writing using the technical terminology.

Content

The Bachelor thesis is a written report which shows that the student can autonomously investigate a scientific problem in Information Engineering and Management. The work load for the Bachelor thesis should be 360h. The recommended project time is 4 months, the maximal project time is 5 months. The Bachelor thesis may also be written in English.
Module: Optimization under Uncertainty [M-WIWI-103278]

Responsible: Prof. Dr. Steffen Rebennack

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: between 1 and 2 items)

- T-WIWI-106546 Introduction to Stochastic Optimization 4.5 CR Rebennack
- T-WIWI-106545 Optimization under Uncertainty 4.5 CR Rebennack

Supplementary Courses (Election: at most 1 item)

- T-WIWI-102724 Nonlinear Optimization I 4.5 CR Stein
- T-WIWI-102714 Tactical and Operational Supply Chain Management 4.5 CR Nickel

Competence Certificate

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

At least one of the courses *Introduction to Stochastic Optimization* and *Optimization approaches under uncertainty* has to be taken.

Competence Goal

The student

- denonimates and describes basic notions for optimization methods under uncertainty, in particular from stochastic optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems under uncertainty and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions, in particular of stochastic optimization problems.

Content

The module focuses on modeling and analyzing mathematical optimization problems where certain data is not fully present at the time of decision-making. The lectures on the introduction to stochastic optimization deal with methods to integrate distribution information into the mathematical model. The lectures on the optimization approaches under uncertainty offer alternative approaches such as robust optimization.

Annotation

The curriculum, planned for three years in advance, can be found on the Internet at http://sop.ior.kit.edu/28.php.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.

Recommendation

Knowledge from the lectures “Introduction to Operations Research I” and “Introduction to Operations Research II” are helpful.
5.64 Module: Orientation Exam [M-WIWI-104843]

Responsible: Studiendekan der KIT-Fakultät für Informatik
Studiendekan des KIT-Studienganges

Organisation: KIT Department of Informatics
KIT Department of Economics and Management

Part of: Orientation Exam

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101531</td>
<td>Programming</td>
<td>5 CR</td>
<td>Koziolek, Reussner</td>
</tr>
<tr>
<td>T-INFO-101967</td>
<td>Programming Pass</td>
<td>0 CR</td>
<td>Koziolek, Reussner</td>
</tr>
<tr>
<td>T-MATH-109943</td>
<td>Mathematics I for Information Systems - Exercise</td>
<td>1 CR</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
<tr>
<td>T-MATH-109942</td>
<td>Mathematics I for Information Systems - Exam</td>
<td>7 CR</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
<tr>
<td>T-WIWI-109817</td>
<td>Information Systems 1</td>
<td>4 CR</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Modelled deadline
This module must be passed until the end of the 3. term.

Prerequisites
None

Annotation
For students who are or were enrolled in a degree program in the summer semester 2020, winter semester 2020/2021, summer semester 2021, or winter semester 2021/2022, the deadline for taking the orientation exam has been extended by one semester in each case (section 32 (5 a), sentence 1 LHG).
This means that the deadline has been extended for
- students enrolled in one of the above semesters in the same program by one semester;
- students enrolled in two of the above semesters in the same program by two semesters;
- students enrolled in three or more of the above semesters in the same program by a maximum of three semesters.
5.65 Module: Practical Course Computer Engineering: Hardware Design [M-INFO-101219]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102011</td>
<td>Practical Course Computer Engineering: Hardware Design</td>
<td>4 CR</td>
<td>Karl</td>
<td>Each winter term</td>
<td></td>
</tr>
<tr>
<td>T-INFO-105983</td>
<td>Practical Course Computer Engineering: Hardware Design Pass</td>
<td>0 CR</td>
<td>Karl</td>
<td>Each winter term</td>
<td></td>
</tr>
</tbody>
</table>

Workload
60 h
5.66 Module: Practical Course Web Applications and Service-Oriented Architectures (I) [M-INFO-101633]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103119 | Practical Course Web Applications and Service-Oriented Architectures (I) | 5 CR | Abeck |
5.67 Module: Programming [M-INFO-101174]

Responsible: Prof. Dr.-Ing. Anne Koziolke
Professor Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101967</td>
<td>Programming Pass</td>
<td>0 CR</td>
<td>Koziolke, Reussner</td>
</tr>
<tr>
<td>T-INFO-101531</td>
<td>Programming</td>
<td>5 CR</td>
<td>Koziolke, Reussner</td>
</tr>
</tbody>
</table>

Competence Goal

Students should learn:

- basic structures of the programming language Java and how to apply them; in particular control and simple data structures, object orientation and implementation of basic algorithms
- basics of programming methodology and the ability to autonomously write executable small to medium sized Java programs

Content

- objects and classes
- types, values and variables
- methods
- control structures
- recursion
- references, lists
- inheritance
- input and output
- exceptions
- programming methodology
- implementation of basic algorithms in Java (such as sorting algorithms)
5.68 Module: Public Finance [M-WIWI-101403]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Language</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102877</td>
<td>Introduction to Public Finance</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4,5 CR</td>
<td>Gutekunst, Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109590</td>
<td>Public Sector Finance</td>
<td>4,5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

See German version.

Content

As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs. Special fields of Public Finance are public revenues, i.e. taxes and public debt, public expenditures for publicly provided goods, and welfare programs.

Annotation

The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

It is recommended to attend the course 2560129 after having completed the course 2560120.
Module: Real Estate Management [M-WIWI-101466]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Competition Certificate

The module will be discontinued in the winter semester 2022/2023

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None

Compentence Goal

The student

- possesses an overview concerning the different facets and interrelationships within the real estate business, the important decision points in real estate lifecycle and the different views and interests of the actors concerned, and
- is capable of applying basic economic methods and procedures to problems within the real estate area.

Content

The real estate business offers graduates very interesting jobs and excellent work- and advancement possibilities. This module provides an insight into the macroeconomic importance of this industry, discusses problems concerned to the administration of real estate and housing companies and provides basic knowledge for making decisions both along the lifecycle of a single building and the management of real estate portfolios. Innovative operating and financing models are illustrated, as well as the current development when looking at real estate as an asset-class.

This module is also suitable for students who want to discuss macroeconomic, business-management or financial problems in a real estate context.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.

Recommendation

The combination with the module Design Constructions and Assessment of Green Buildings is recommended.

Furthermore a combination with courses in the area of

- Finance
- Insurance
- Civil engineering and architecture (building physics, building construction, facility management)

is recommended.
5.70 Module: Real-Time Systems [M-INFO-100803]

Responsible: Prof. Dr.-Ing. Thomas Längle
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101340 | Real-Time Systems | 6 CR | Längle |
5.71 Module: Robotics I - Introduction to Robotics [M-INFO-100893]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Tamim Asfour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Informatics (Compulsory Elective Modules in Informatics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-108014</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
5.72 Module: Security [M-INFO-100834]

Responsible: Prof. Dr. Jörn Müller-Quade
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101371</td>
<td>Security</td>
<td>6 CR</td>
<td>Hofheinz, Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Semantic Knowledge Management [M-WIWI-101438]

Responsible: Dr.-Ing. Michael Färber
Organisation: KIT Department of Economics and Management
Part of: Informatics (Compulsory Elective Modules in Informatics)

Credits: 9
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German/English
Level: 3
Version: 10

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4,5 CR</td>
<td></td>
<td>Käfer</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: at least 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110340</td>
<td>Applied Informatics – Applications of Artificial Intelligence</td>
<td>4,5 CR</td>
<td></td>
<td>Färber</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling</td>
<td>4,5 CR</td>
<td></td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110541</td>
<td>Advanced Lab Informatics (Bachelor)</td>
<td>4,5 CR</td>
<td></td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Lecture Semantic Web Technologien [2511310] is mandatory.

Competence Goal
Students

- know the motives for the application of knowledge management in organizations
- know the basic design dimensions of holistic knowledge management (organization, human, information technology, corporate culture)
- know the main group of IT systems for knowledge management and are able to describe the relevant application scenarios and basic operating modes of these systems
- know how to use the different IT systems for knowledge management in practice
- know the basic standards for the modeling of information and processes and are able to describe their formal structures
- know how to apply the different modeling languages
- know criteria to evaluate the success of knowledge management systems and are able to apply them to assess defined knowledge management scenarios

Content
In modern companies the availability and usability of knowledge is an essential factor of success for central managerial tasks and duties such as the improvement of business processes, product innovation and the amelioration of customer satisfaction.

This module illustrates the typical problems of knowledge management in organizations and presents IT methods to approach these questions. The relevant groups of knowledge management systems are analyzed and expanded in the subject areas knowledge representation/semantic modeling and document management/groupware systems.

Annotation
Detailed information on the recognition of examinations in the field of Informatics can be found at http://www.aifb.kit.edu/web/Auslandsaufenthalt.

Workload
The workload is app. 270 hours.
5.74 Module: Seminar Module Economic Sciences [M-WIWI-101826]

Module Details
- **Responsible:** Studiendekan des KIT-Studienganges
- **Organisation:** KIT Department of Economics and Management
- **Part of:** Seminars

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103486</td>
<td>Seminar in Business Administration (Bachelor)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103488</td>
<td>Seminar in Operations Research (Bachelor)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103489</td>
<td>Seminar in Statistics (Bachelor)</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-WIWI-103487</td>
<td>Seminar in Economics (Bachelor)</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is done by a seminar with at least 3 CP.
The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

Prerequisites
None.

Competence Goal
- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
- They can solve the problems in a structured manner using their interdisciplinary know-how.
- They know how to validate the obtained results.
- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Content
The module consists of a seminar, that is related to the research field of economic sciences. A complete list of available seminars is published in the internet.

Annotation
The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.

Workload
The total workload for this module is approximately 90 hours.
5.75 Module: Seminar Module Informatics [M-INFO-102058]

Responsible: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Informatics
KIT Department of Economics and Management
Part of: Seminars

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Seminar Informatics (Election: 1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-104336</td>
<td>Seminar Informatics A</td>
<td>3 CR</td>
<td>Abeck</td>
</tr>
<tr>
<td>T-WIWI-103485</td>
<td>Seminar in Informatics (Bachelor)</td>
<td>3 CR</td>
<td>Professorenschaft des Instituts AIFB</td>
</tr>
</tbody>
</table>
Module: Seminar Module Law [M-INFO-101218]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Seminars

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Level</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101997</td>
<td>Seminar: Legal Studies I</td>
<td>3 CR</td>
<td>3</td>
<td>Dreier</td>
</tr>
</tbody>
</table>
Module: Software Engineering I [M-INFO-101175]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101968</td>
<td>Software Engineering I</td>
<td>6 CR</td>
<td>Koziolek, Reussner, Tichy</td>
</tr>
<tr>
<td>T-INFO-101995</td>
<td>Software Engineering I Pass</td>
<td>0 CR</td>
<td>Tichy</td>
</tr>
</tbody>
</table>

Competence Goal
The students acquire basic knowledge about the principles, methods and tools of software engineering. They learn how to build and to maintain complex software systems in a systematic way.

Content
The content of the lecture is the entire lifecycle of software, spanning project planning, system analysis, cost estimation, design, implementation, validation, verification, and finally the maintaining of software. The covered topics include UML, design patterns, software tools, programming environments and configuration control/versioning systems.

Workload
approx. 180 h
5.78 Module: Software Engineering II [M-INFO-100833]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101370</td>
<td>Software Engineering II</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Content

Requirements engineering, software development processes, software quality, software architectures, MDD, Enterprise Software Patterns software maintainability, software security, dependability, embedded software, middleware, domain-driven design
5.79 Module: Statistics and Econometrics [M-WIWI-101599]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of:
Economics and Management (Statistics)
Economics and Management (Economics)

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics</td>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of Multivariate Data</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Grothe</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Schienle</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Schienle</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-112153</td>
<td>Microeconometrics</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Krüger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4,5</td>
<td>CR</td>
<td>Each term</td>
<td>1 term</td>
<td>Heller</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course "Economics III: Introduction in Econometrics" is compulsory and must be examined. In case the course "Economics III: Introduction in Econometrics" has already been examined within the module "Applied Microeconomics", the course "Economics III: Introduction in Econometrics" is not compulsory.

Competence Goal
The student

- shows an advanced understanding of Econometric techniques and statistical model building.
- is able to develop Econometric models for applied problems based on available data
- is able to apply techniques and models with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Content
The courses provide a solid Econometric and statistical foundation of techiques necessary to conduct valid regression, time series and multivariate analysis.

Workload
The total workload for this module is approximately 270 hours.
Compulsory Elective Courses (Election:)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of Multivariate Data</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-112153</td>
<td>Microeconometrics</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4,5 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams of the examination regulation of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The following module must be passed: Statistics and Econometrics [M-WIWI-101599]

Competence Goal
The student
- shows an advanced understanding of Econometric techniques and statistical model building.
- is able to develop advanced Econometric models for applied problems based on available data
- is able to apply techniques and models efficiently with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Content
The courses provide foundations of advanced Econometric and statistical techniques for regression, time series and multivariate analysis.

Workload
The total workload for this module is approximately 270 hours.
Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

- The student describes both central concepts of strategic management as well as concepts and models for the design of organizational structures.
- He / she evaluates the strengths and weaknesses of existing organizational structures and regulations on the basis of systematic criteria.
- The management of organizational changes discusses and examines the students by means of case studies to what extent the models can be used in practice and what conditions must apply to them.
- In addition, students plan to use IT to support corporate governance.

Content
The module has a practical and action-oriented structure and provides the student with an up-to-date overview of basic skills concepts and models of strategic management and a realistic picture of possibilities and limitations rational design approaches of the organization.

The focus is firstly on internal and external strategic analysis, concept and sources of competitive advantage. Formulation of competitive and corporate strategies as well as strategy assessment and implementation. Secondly strengths and weaknesses of organizational structures and regulations are assessed on the basis of systematic criteria. Concepts for the organization of organizational structures, the regulation of organizational processes and the control organizational changes are presented.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.82 Module: Supply Chain Management [M-WIWI-101421]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-107506</td>
<td>Platform Economy</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Supplementary Courses (Election: 1 item)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>4,5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>4,5 CR</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
The course T-WIWI-107506 "Platform Economy" has to be taken.

Competence Goal
The students

- are able to understand and evaluate the control of cross-company supply chains based on a strategic and operative view,
- are able to analyse the coordination problems within the supply chains,
- are able to identify and integrate adequate information system infrastructures to support the supply chains,
- are able to apply theoretical methods from the operations research and the information management,
- learn to elaborate solutions in a team

Content
The module “Supply Chain Management” gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture “Platform Economy” the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and market design. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform.

The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Annotation
The planned lectures in the next terms can be found on the websites of the respective institutes IISM, IFL and IOR.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.83 Module: Surfaces for Computer Aided Design [M-INFO-101254]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

| Mandatory | T-INFO-102073 | Surfaces for Computer aided Design | 5 CR | Prautzsch |

Competence Goal
Die Hörer und Hörerinnen der Vorlesung können grundlegende CAGD-Techniken für praktische und theoretische Arbeiten auf entsprechenden Gebieten anwenden und sind in der Lage die Qualität von CAGD-Lösungen zu beurteilen.

Content
5.84 Module: Team Project Software Development [M-INFO-104809]

Responsible: Prof. Dr. Sebastian Abeck
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: Information Systems

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-109823 | Team Project Software Development | 8 CR | Abeck, Reussner |
5.85 Module: Telematics [M-INFO-100801]

Responsible: Prof. Dr. Martina Zitterbart

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101338</td>
<td>Telematics</td>
<td>6 CR</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>
Module: Theoretical Informatics [M-INFO-101189]

Responsible: Prof. Dr. Jörn Müller-Quade
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103235 | Theoretical Foundations of Computer Science | 6 CR | Ueckerdt, Wagner |

Competence Certificate

The assessment of the module consists of a written examination according to §4(2), 1 of the examination regulations. The grade of the module corresponds to the grade of the written examination. Further details see the german section.

Competence Goal

The student

- has a deeper insight into the fundamentals of theoretical computer science and knows the computation models and proof techniques,
- understands the limits and possibilities of computer science in relation to the solution of definable but only partially predictable problems,
- knows basic aspects of computer science in contrast to specific circumstances, such as specific computers or programming languages and also can phrase general statements about the solvability of problems,
- is able to apply the proof techniques learned for the specification of systems of computer science and for the systematic design of programs and algorithms.

Content

There are important problems whose solutions can clearly be defined but one will never be able to calculate such a solution systematically. Other problems are "likely" to be solved only through trial and error. Other topics of the module provide the basis for circuit design, design of compilers, and many others. Most results are rigorously proved. The proof techniques learned by the way are important for the specification of systems of computer science and for the systematic design of programs and algorithms.

The module provides a deep insight into the principles and methods of theoretical computer science. In particular, this will be discussed on the basic properties of Formal Languages as foundations of programming languages and communication protocols (regular, context-free Chomsky hierarchy), machine models (finite automata, pushdown automata, Turing machines, non determinism, and relations to families of formal languages), equivalence of sufficiently powerful computation models (Church’s thesis), non computable important functions (halting problem,...), Gödel’s incompleteness theorem and introduction to complexity theory, NP-complete problems and polynomial reductions.

Workload

approx. 210 h
5.87 Module: Topics in Finance I [M-WIWI-101465]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

Credits: 9
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German/English
Level: 3
Version: 9

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit(s)</th>
<th>Grade(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4.5 CR</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4.5 CR</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1.5 CR</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
It is only possible to choose this module in combination with the module Essentials in Finance. The module is passed only after the final partial exam of Essentials in Finance is additionally passed.

In addition to that it is possible to choose the module Topics in Finance II.

Competence Goal
The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content
The module Topics in Finance I is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Annotation
The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.88 Module: Topics in Finance II [M-WIWI-101423]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Compulsory Elective Courses (Election: 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4,5 CR</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4,5 CR</td>
<td>Luedecke</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4,5 CR</td>
<td>Gutekunst, Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1,5 CR</td>
<td>Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

It is only possible to choose this module in combination with the module Essentials in Finance. The module is passed only after the final partial exam of Essentials in Finance is additionally passed.

In addition to that it is possible to choose the module Topics in Finance I.

Competence Goal

The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content

The module Topics in Finance II is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Annotation

The course T-WIWI-102790 "Special Taxation" will no longer be offered in the module as of winter semester 2018/1019.

Workload

The total workload for this module is approximately 270 hours.
5.89 Module: Web Applications and Service-Oriented Architectures (I) [M-INFO-101636]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Sebastian Abeck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>Informatics (Compulsory Elective Modules in Informatics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103122</td>
</tr>
</tbody>
</table>
6 Courses

6.1 Course: Advanced Algorithmic Programming [T-INFO-111399]

Responsible: TT-Prof. Dr. Thomas Bläsius

Organisation: KIT Department of Informatics

Part of: M-INFO-105723 - Advanced Algorithmic Programming

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2400145</td>
<td>Advanced Algorithmic Programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📴 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
6.2 Course: Advanced Lab Informatics (Bachelor) [T-WIWI-110541]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2512204</th>
<th>Lab Realisation of innovative services (Bachelor)</th>
<th>3 SWS</th>
<th>Practical course / 🧩</th>
<th>Schiefer, Schüler, Toussaint</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2512400</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Sunyaev, Pandl, Goram</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2512402</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td></td>
<td>Sunyaev, Beyene, Kannengießer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2512602</td>
<td>Project Course Coding da Vinci - Cultural Heritage Hackathon (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Sack, Bruns, Tietz</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2612554</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Volkamer, Strufe, Mayer, Berens, Mossano, Düzgün, Veit, Hennig</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2512204</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Oberweis, Toussaint, Schiefer, Schüler</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2512400</td>
<td>Practical Course Sociotechnical Information Systems Development (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Sunyaev, Pandl, Goram</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2512402</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td></td>
<td>Sunyaev, Kannengießer, Sturm, Beyene</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2512554</td>
<td>Praktikum Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Volkamer, Mayer, Berens, Mossano, Düzgün, Veit, Hennig</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2512555</td>
<td>Praktikum Security, Usability and Society (Master)</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Volkamer, Mayer, Berens, Mossano, Düzgün, Veit, Hennig</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7900016</th>
<th>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</th>
<th></th>
<th>Sunyaev</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900028</td>
<td>Advanced Lab Coding da Vinci - Cultural Heritage Hackathon (Bachelor)</td>
<td></td>
<td>Sack</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900029</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td></td>
<td>Volkamer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900085</td>
<td>Advanced Lab Realization of innovative services (Bachelor)</td>
<td></td>
<td>Oberweis</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900096</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td>Sunyaev</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900047</td>
<td>Advanced Lab Realization of Innovative Services (Bachelor)</td>
<td></td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900080</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td></td>
<td>Sunyaev</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900086</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td>Sunyaev</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900116</td>
<td>Advanced Lab Security, Usability and Society (Bachelor)</td>
<td></td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled
Competence Certificate
The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites
None

Annotation
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Course</th>
<th>Content</th>
<th>Organizational issues</th>
<th>Registration information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Realisation of innovative services (Bachelor)
2512204, SS 2022, 3 SWS, Language: German, Open in study portal</td>
<td>As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students). Further information can be found on the ILIAS page of the lab.</td>
<td>Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.</td>
<td></td>
</tr>
<tr>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)
2512400, SS 2022, 3 SWS, Language: German/English, Open in study portal</td>
<td>The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact. Registration information will be announced on the course page.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Course Coding da Vinci - Cultural Heritage Hackathon (Bachelor)
2512602, SS 2022, 3 SWS, Language: English, Open in study portal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

Cultural heritage includes tangible and intangible heritage assets inherited from past generations. Cultural heritage data are usually stored in galleries, museums, archives and libraries (GLAM institutions) and in recent years, efforts by culture domain experts and computer scientists have begun to make this data more findable, accessible, interoperable and reusable by the general public, but also by researchers in the domains of history, social science, etc. This seminar follows up on these efforts by having student groups participate in the official Coding da Vinci culture hackathon with guidance and coaching by the course tutors.

The culture hackathon Coding da Vinci has brought together the cultural sector with creative technology communities to explore the creative potential of digital cultural heritage. Over a sprint of seven weeks the hackathon teams, together with representatives of cultural institutions, develop working prototypes that show surprising and inspiring new ways to make use of institutions' collections and artifacts in the digital age.

As part of this "Projektpraktikum", the students will take part in the official hackathon "Coding da Vinci Baden-Württemberg" (https://codingdavinci.de/index.php/de/events/baden-wuerttemberg-2022). They will form groups and implement their own interesting culture project by using the dataset(s) provided by Coding da Vinci. The goal is to create a project that is useful for the culture community and helps to explore and experience cultural heritage data in an interesting, innovative and fun way.

This "Projektpraktikum" is furthermore a chance to network with the community of culture enthusiasts and developers while creating a working application that adds value to the community. The groups will present their work at the official Codings da Vinci kick-off event and the award ceremony.

Contributions of the students:
The students will form groups of 3-4 people. They will be expected to first get familiar with datasets presented in the event, the technologies and methods they will utilize and will develop their own project idea. Each group will present their project idea on May 07, 2022 at the Coding da Vinci BW kick-off and will officially start the implementation of their project. On June 24, 2022, each group will present their final project at the official Coding da Vinci BW award ceremony. Following the event, each group will prepare a scientific seminar paper of not more than 16 pages.

Implementation:
Each group will implement their project idea based on the datasets given in the event using open source software and will publish their code using an open license via github.

Learning Goals:
- Basic understanding of knowledge graphs and Natural Language Processing
- Independent and self-organized realization of a group project
- Planning and execution of design, implementation and quality assurance of the group project
- Preparation of a scientific seminar paper for the group project of 16 pages
- Presentation of the group project in a comprehensible and structured manner

Registration:
The registration period for this course lasts from 01.02.2022 until 22.04.2022. The places are expected to be allocated on 25.04.2022 and must be accepted by the student within two days.
If you have any questions regarding the registration or course content, please contact tabea.tietz@kit.edu and oleksandra.bruns@kit.edu.

Modules: Informatik

Timeline:
20.04.2022 Plenary meeting: Introduction and Course Organization
27.04.2022 Plenary meeting: Forming of student groups and discussion of datasets
07.05.2022 Official Coding da Vinci Kick-off Event: Presentation of group idea
11.05.2022 Individual group sessions: Fixing a project plan and timeline
18.05.2022 Individual group sessions: Weekly progress meeting
25.05.2022 Individual group sessions: Weekly progress meeting
01.06.2022 Individual group sessions: Weekly progress meeting
08.06.2022 Individual group sessions: Weekly progress meeting
15.06.2022 Individual group sessions: Weekly progress meeting
22.06.2022 Individual group sessions: Weekly progress meeting
24.06.2022 Official Coding da Vinci Award Ceremony: Final Presentation
17.08.2022 Seminar paper submission and finalization (and documentation) of the code

Organizational issues
Considering the then current pandemic situation and in coordination with the participants the course will mostly take place as online course with potentially a few "live" events (cf further description below).
Content

The internship Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a backup one, to mattia.mossano@kit.edu before the kick-off. You can find a better description of the topics in ILIAS (link below). Topics are assigned first-come-first-served until all of them are filled. Topics in italics have been already assigned.

ILIAS link: https://ilias.studium.kit.edu/goto.php?target=crs_1792110&client_id=produktiv

Important dates:

Kick-off: 19.04.2022, 9:00-10:00 CET Uhr Microsoft Teams
Report + code submission: 09.09.2022, 23:59 CET
Presentation deadline: 25.09.2022, 23:59 CET
Presentation day: 28.09.2022, 16:00 CET

Topics:

Programming Usable Security Intervention

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, e.g., as an extension. E.g., TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Improving the PassSec+ browser extension by investigating a security vulnerability in Mozilla Firefox Relay
- Development of a tool for the automated search for tweets on the topic of “phishing”
- Hacking TORPEDO
- Restructuring TORPEDO

Please note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.

Content

As part of the lab, the participants should work together in small groups to realize innovative services (mainly for students). Further information can be found on the ILIAS page of the lab.

Organizational issues

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

V Practical lab Security, Usability and Society (Bachelor)
2612554, SS 2022, 3 SWS, Language: German/English, Open in study portal

V Lab Realisation of innovative services (Bachelor)
2512204, WS 22/23, 3 SWS, Language: German, Open in study portal

V Praktikum Security, Usability and Society (Bachelor)
2512554, WS 22/23, 3 SWS, Language: German/English, Open in study portal
Content
The Praktikum "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to anne.hennig@kit.edu. Topics are assigned first-come-first-served until all of them are filled. The deadline for the first round is 18.07.2022. Topics in italics have been already assigned.

Important dates:
Kick-off: 13.10.2022, 10:00 AM CET in Big Blue Button - Link
Report + code submission: 30.01.2023 23:59 CET
Presentation deadline: 30.01.2023, 23:59 CET
Presentation day: 01.02.2023

Topics:
Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

Title: Portfolio Graphical Recognition-Based PWDs with Gamepads
Number of students: 2 Bachelor or Master level
Description: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Title: Development of a secure web interface with a ticket system for the Hashcat Password Cracker
Number of students: 2 Bachelor or Master level
Description: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User studies
These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

Title: NoPhish Cardgame
Number of students: 1/2 Bachelor level
Description: Das NoPhish Konzept findet bereits in vielen Formen Anwendung. Es hilft dabei betrügerische Nachrichten von legitimen zu Unterscheiden. Die neueste Form ist ein Cardgame bei dem man spielerisch lernen kann Phishing zu erkennen. Hierbei wird sowohl grundlegendes Wissen, als auch konkretes Wissen vermittelt. Aufgabe: Erheben von Daten (Studiendesign ist bereits vorhanden) und Auswertung bestehender Daten mit neu erhobenen Daten

Title: Analysing the perceptions on email subject extensions like 'Caution - This e-mail is sent from someone outside the company'
Number of students: 1/2 Bachelor or Master level
Description: Email subject extensions are used in myn organisations to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develop the study protocol and to collect first data which should be analysed.

Title: Benutzerstudie zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten
Number of students: 2 Bachelor or Master level

Title: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users (https://secuso.aifb.kit.edu/english/105.php). One of these apps is "Sudoku", available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by rheumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., https://idarinstitute.com/products/arthritis-simulation-gloves). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.
Title: Replication and extension of "What is this URL's destination?" (English only)
Number of students: 1 Bachelor level
Description: Replication of studies is a fundamental part of the scientific process; it allows to confirm or deny experimental results and can open new lines of research. This topic is a replication of the study presented in Albakry, S., Vaniea, K. & Wolters, M.K. (2020) What is this URL's destination? Empirical Evaluation of Users' URL Reading" (https://doi.org/10.1145/3313831.3376168). The student will re-implement the study following the precise description from the original authors, run it and then compare the results with the previous iteration.

Title: Password Generator Defaults
Number of students: 2 Bachelor or Master level
Description: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular website, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds; (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Title: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Number of students: 1/2 Bachelor or Master level

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php .

Praktikum Security, Usability and Society (Master)
2512555, WS 22/23, 3 SWS, Language: German/English, Open in study portal
Content
The Praktikum "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to anne.hennig@kit.edu. Topics are assigned first-come-first-served until all of them are filled. The deadline for the first round is 18.07.2022. Topics in italics have been already assigned.

WiWi portal: https://portal.wiwi.kit.edu/ys/6273

Important dates:
Kick-off: 13.10.2022, 10:00 AM CET in Big Blue Button · Link
Report + code submission: 30.01.2023 23:59 CET
Presentation deadline: 30.01.2023, 23:59 CET
Presentation day: 01.02.2023

Topics:

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec+ (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

Title: Portfolio Graphical Recognition-Based PWDs with Gamepads
Number of students: 2 Bachelor or Master level
Description: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Title: Development of a secure web interface with a ticket system for the Hashcat Password Cracker
Number of students: 2 Bachelor or Master level
Description: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User studies
These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

Title: Analysing the perceptions on email subject extensions like 'Caution - This e-mail is sent from someone outside the company'
Number of students: 1/2 Bachelor or Master level
Description: Email subject extensions are used in email to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develop the study protocol and to collect first data which should be analysed.

Title: Benutzerstudie zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten
Number of students: 2 Bachelor or Master level

Title: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users (https://secuso.aifb.kit.edu/english/105.php). One of these apps is "Sudoku", available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by reumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., https://idarinistitute.com/products/arthritis-simulation-gloves). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.
Title: Password Generator Defaults
Number of students: 2 Bachelor or Master level
Description: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular website, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds: (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Title: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Number of students: 1/2 Bachelor or Master level

Title: User study on user’s knowledge about brainwaves verification
Number of students: 1 Master level
Description: Brainwaves can be used to authenticate users. Hoever, several questions are left unanswered regarding the users’ stance on this: What is the prior knowledge of users about verification and brainwaves? Are they comfortable wearing a device to record their brainwaves? How are they feeling regarding storing their brainwaves samples? Which kind of information can be extracted from the smaples? How secure would such an authentication scheme be? The task of the student is to design, implement an pre-test a user study investigating these questions.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website [https://secuso.aifb.kit.edu/Studium_und_Lehre.php].
6.3 Course: Advanced Lab Security [T-WIWI-109786]

Responsible: Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104069 - Information Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2512557</td>
<td>Practical Course Security (Master)</td>
<td>4 SWS</td>
<td>Practical course / 🧩</td>
<td>Baumgart, Volkamer, Mayer, Wressnegger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>Course</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900046</td>
<td>Advanced Lab Security (Master)</td>
<td></td>
<td></td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Recommendation

Knowledge from the lecture "Information Security" is recommended.

Below you will find excerpts from events related to this course:

Practical Course Security (Master)

2512557, WS 22/23, 4 SWS, Language: German, [Open in study portal]

Content

The lab deals with the IT security of everyday utensils. Implemented security mechanisms are first theoretically investigated and put to the test with practical attacks. Finally, countermeasures and suggestions for improvement are worked out. The lab is offered within the competence center for applied security technologies (KASTEL) and is supervised by several institutes.

The success control takes the form of a final presentation, a thesis and the handing over of the developed code.

More information on ILIAS.
6.4 Course: Advanced Lab Security, Usability and Society [T-WIWI-108439]

Responsible: Prof. Dr. Melanie Volkamer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104069 - Information Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🖥</td>
<td>Volkamer, Strufe, Mayer, Berens, Mossano, Düzgün, Hennig, Veit</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Praktikum Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🖥</td>
<td>Volkamer, Mayer, Berens, Mossano, Düzgün, Veit, Hennig</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Praktikum Security, Usability and Society (Master)</td>
<td>3 SWS</td>
<td>Practical course / 🖥</td>
<td>Volkamer, Mayer, Berens, Mossano, Düzgün, Veit, Hennig</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🖥</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Advanced Lab Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 🖥</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Advanced Lab Security, Usability and Society (Master)</td>
<td>3 SWS</td>
<td>Practical course / 🖥</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🚶 Blended (On-Site/Online), 🗝 On-Site, ✗ Canceled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Recommendation

Knowledge from the lecture "Information Security" is recommended.

Annotation

The course is expected to be offered from winter term 2018/2019.

Contents:

In the course of the programming lab, changing topics from the field of Human Factors in Security und Privacy will be worked on.

Learning goals:

The student

- can apply the basics of information security
- is able to implement appropriate measures to achieve different protection goals
- can structure a software project in the field of information security
- can use the Human Centred Security and Privacy by Design technique to develop user-friendly software
- can explain and present technical facts and the results of the programming lab in oral and written form

Below you will find excerpts from events related to this course:
Content

The internship Security, Usability and Society will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a backup one, to mattia.mossano@kit.edu before the kick-off. You can find a better description of the topics in ILIAS (link below). Topics are assigned first-come-first-served until all of them are filled. Topics in italics have been already assigned.

ILIAS link: https://ilias.studium.kit.edu/goto.php?target=crs_1792110&client_id=produktiv

Important dates:
- Kick-off: 19.04.2022, 9:00-10:00 CET Uhr Microsoft Teams - Link
- Report + code submission: 09.09.2022, 23:59 CET
- Presentation deadline: 25.09.2022, 23:59 CET
- Presentation day: 28.09.2022, 16:00 CET

Topics:

Programming Usable Security Intervention

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec+ (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Improving the PassSec+ browser extension by investigating a security vulnerability in Mozilla Firefox Relay
- Development of a tool for the automated search for tweets on the topic of "phishing"
- Hacking TORPEDO
- Restructuring TORPEDO

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.

Praktikum Security, Usability and Society (Bachelor)

2512554, WS 22/23, 3 SWS, Language: German/English, Open in study portal
Content

The Praktikum "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a backup one, to anne.hennig@kit.edu. Topics are assigned first-come-first-served until all of them are filled. The deadline for the first round is 18.07.2022. Topics in italics have been already assigned.

Important dates:
- **Kick-off:** 13.10.2022, 10:00 AM CET in Big Blue Button - [Link](#)
- **Report + code submission:** 30.01.2023 23:59 CET
- **Presentation deadline:** 30.01.2023, 23:59 CET
- **Presentation day:** 01.02.2023

Topics:

Programming Usable Security Intervention

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

Title: Portfolio Graphical Recognition-Based PWDs with Gamepads

Number of students: 2 Bachelor or Master level

Description: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Title: Development of a secure web interface with a ticket system for the Hashcat Password Cracker

Number of students: 2 Bachelor or Master level

Description: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User studies

These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

Title: NoPhish Cardgame

Number of students: 1/2 Bachelor level

Description: Das NoPhish Konzept findet bereits in vielen Formen Anwendung. Es hilft dabei betrügerische Nachrichten von legitimem zu Unterscheiden. Die neueste Form ist ein Cardgame bei dem man spielerisch lernen kann Phishing zu erkennen. Hierbei wird sowohl grundlegendes Wissen, als auch konkretes Wissen vermittelt. Aufgabe: Erheben von Daten (Studiendesign ist bereits vorhanden) und Auswertung bestehender Daten mit neu erhobenen Daten

Title: Analysing the perceptions on email subject extensions like 'Caution - This e-mail is sent from someone outside the company'

Number of students: 1/2 Bachelor or Master level

Description: Email subject extensions are used in many organizations to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develop the study protocol and to collect first data which should be analysed.

Title: Benutzerstudie zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten

Number of students: 2 Bachelor or Master level

Title: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)

Number of students: 1 Bachelor or Master level

Description: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users (https://secuso.aifb.kit.edu/english/105.php).

One of these apps is "Sudoku", available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by rheumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., https://idar institute.com/products/arthritis-simulation-gloves). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.
Title: Replication and extension of "What is this URL's destination?" (English only)
Number of students: 1 Bachelor level
Description: Replication of studies is a fundamental part of the scientific process: it allows to confirm or deny experimental results and can open new lines of research. This topic is a replication of the study presented in Albakry, S., Vaniea, K. & Wolters, M.K. (2020) What is this URL's destination? Empirical Evaluation of Users' URL Reading" (https://doi.org/10.1145/3313831.3376168). The student will re-implement the study following the precise description from the original authors, run it and then compare the results with the previous iteration.

Title: Password Generator Defaults
Number of students: 2 Bachelor or Master level
Description: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular websites, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds: (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Title: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Number of students: 1/2 Bachelor or Master level

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php .
Content
The Praktikum "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. To reserve a place, please, register on the WiWi portal and send an email with your chosen topic, plus a back-up one, to anne.hennig@kit.edu . Topics are assigned first-come-first-served until all of them are filled. The deadline for the first round is 18.07.2022. Topics in italics have been already assigned.

WiWi portal: https://portal.wiwi.kit.edu/ys/6273

Important dates:
Kick-off: 13.10.2022, 10:00 AM CET in Big Blue Button - Link
Report + code submission: 30.01.2023 23:59 CET
Presentation deadline: 30.01.2023, 23:59 CET
Presentation day: 01.02.2023

Topics:

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.alfb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.alfb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

Title: Portfolio Graphical Recognition-Based PWDs with Gamepads
Number of students: 2 Bachelor or Master level
Description: Graphical passwords use graphical elements as passwords and they are usually easier to remember than textual passwords. Moreover, they can be combined with "portfolio authentication" techniques to make them shoulder surfing resistant. The goal of this topic is to implement a graphical portfolio authentication scheme for gamepads, based on previous textual schemes implementations.

Title: Development of a secure web interface with a ticket system for the Hashcat Password Cracker
Number of students: 2 Bachelor or Master level
Description: Hashcat is a console application which allows to crack passwords using a given wordlist or password pattern. In order to allow multiple not necessarily trustworthy users to register a password cracking job with the specified parameters in parallel, a web platform with a ticket system should be developed within the framework of this laboratory topic. Therefore a frontend and backend should be implemented separately and a clear description of the interface between is essential part of this work. Python with Flask Web Framework can be used to implement the backend. Good knowledge in programming, APIs and web security are required.

Designing Security User studies
These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

Title: Analysing the perceptions on email subject extensions like 'Caution' - This e-mail is sent from someone outside the company'
Number of students: 1/2 Bachelor or Master level
Description: Email subject extensions are used in my organizations to reduce the risk to become a victim of a phishing email - why should your boss e.g. send you an external email? Likely to be a phish! The idea is to develop the study protocol and to collect first data which should be analysed.

Title: Benutzerstudie zur Erkennung von Angriffen auf die E-Mail Absicherung mit S/MIME-Zertifikaten
Number of students: 2 Bachelor or Master level

Title: Evaluation of the Sudoku Privacy Friendly App usability for users with rheumatoid arthritis (English only)
Number of students: 1 Bachelor or Master level
Description: The Privacy Friendly Apps are a set of applications developed by the SECUSO group that do not contain any advertisement or tracking mechanism, hence preserving the privacy of their users (https://secuso.alfb.kit.edu/english/105.php). One of these apps is “Sudoku”, available for Android on both the Google Store and F-Droid. Although the app is friendlier to privacy that other alternatives, it requires multiple tactile interactions with the mobile device. This can be an issue for users with reduced hand mobility, such as those suffering from rheumatoid arthritis. To approximate the reduced mobility caused by rheumatoid arthritis in healthy users, it is common to use arthritis simulation gloves (e.g., https://idarinsitute.com/products/arthritis-simulation-gloves). The task of the student is to design a lab study involving arthritis simulation gloves that evaluates the Sudoku app usability for users suffering from rheumatoid arthritis.
Title: Password Generator Defaults
Number of students: 2 Bachelor or Master level
Description: Password Managers are useful tools that help the use of complex passwords and avoid the password recycle practice. Moreover, they support users by providing password generator tools, that create random password of specific length. However, the defaults settings might be at odds with the password policies of popular website, e.g., they can contain forbidden characters or be too long/short. Moreover, we need to understand if Password Managers users change the default settings to generate passwords, in how many cases and for what reasons. The students task is therefore two-folds: (1) compare the default settings of several Password Managers to the privacy policies of popular websites; (2) design and implement a survey to collect the behavior of Password Managers users with regard to the password generator tools.

Title: Benutzerstudie zur Auswertung der PassSec+ Browser Extension mittels Eye-Tracking
Number of students: 1/2 Bachelor or Master level

Title: User study on user’s knowledge about brainwaves verification
Number of students: 1 Master level
Description: Brainwaves can be used to authenticate users. However, several questions are left unanswered regarding the users’ stance on this: What is the prior knowledge of users about verification and brainwaves? Are they comfortable wearing a device to record their brainwaves? How are they feeling regarding storing their brainwaves samples? Which kind of information can be extracted from the samples? How secure would such an authentication scheme be? The task of the student is to design, implement an pre-test a user study investigating these questions.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.
6.5 Course: Advanced Topics in Economic Theory [T-WIWI-102609]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2520527</td>
<td>Advanced Topics in Economic Theory</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Mitusch, Brumm</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2520528</td>
<td>Übung zu Advanced Topics in Economic Theory</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Pegorari, Corbo</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>00227</td>
<td>Advanced Topics in Economic Theory</td>
<td>(V) On-Site</td>
<td>Mitusch, Brumm</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900269</td>
<td>Advanced Topics in Economic Theory</td>
<td>(V) On-Site</td>
<td>Mitusch, Brumm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the end of the lecture period or at the beginning of the following semester.

Prerequisites
None

Recommendation
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Below you will find excerpts from events related to this course:

Advanced Topics in Economic Theory
2520527, SS 2022; 2 SWS, Language: English, Open in study portal

Literature
Die Veranstaltung wird in englischer Sprache angeboten:

The course is based on the excellent textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.
6.6 Course: Algorithmic Methods for Hard Optimization Problems [T-INFO-103334]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: M-INFO-101237 - Algorithmic Methods for Hard Optimization Problems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>
6.7 Course: Algorithms for Planar Graphs [T-INFO-101986]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: M-INFO-101220 - Algorithms for Planar Graphs

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>ID</th>
<th>Title</th>
<th>Weekly Schedule</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>24614</td>
<td>Algorithmen für planare Graphen (mit Übungen)</td>
<td>3 SWS</td>
<td>Lecture / Practice (/ Ueckerdt, Gottesbüren, Merker)</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>ID</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500018</td>
<td>Algorithms for Planar Graphs</td>
<td>Ueckerdt</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.8 Course: Algorithms I [T-INFO-100001]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: M-INFO-100030 - Algorithms I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>24500</th>
<th>Algorithms I</th>
<th>4 SWS</th>
<th>Lecture / Practice (/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bläsius, Wilhelm, Katzmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7500186</th>
<th>Algorithms I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bläsius</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
6.9 Course: Algorithms II [T-INFO-102020]

Responsible: Prof. Dr. Peter Sanders
Organisation: KIT Department of Informatics
Part of: M-INFO-101173 - Algorithms II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 24079 | Algorithms II | 4 SWS | Lecture / ☑ | Sanders, Lehmann, Laupichler |

Exams

| ST 2022 | 7500464 | Algorithms II | Sanders |

Legend: ☑ Online, ☑ Blended (On-Site/Online), ☑ On-Site, ☑ X Cancelled
6.10 Course: Analysis of Multivariate Data [T-WIWI-103063]

Responsible: Prof. Dr. Oliver Grothe

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101599 - Statistics and Econometrics
- M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 7900344 | Analysis of Multivariate Data | Grothe |

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites
None

Recommendation
Attendance of the courses Statistics 1 [2600008] and Statistics 2 [2610020] is recommended.

Annotation
The lecture is not offered regularly. The courses planned for three years in advance can be found online.
Course: Applied Informatics – Applications of Artificial Intelligence [T-WIWI-110340]

Responsibility: Dr.-Ing. Michael Färber
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101438 - Semantic Knowledge Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2511314</td>
<td>Applied Informatics - Applications of Artificial Intelligence</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Färber, Käfer</td>
</tr>
<tr>
<td>WT 22/23 2511315</td>
<td>Exercises to Applied Informatics - Applications of Artificial Intelligence</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
<td>Färber, Käfer, Popovic, Noullet, Qu, Yuan</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 79AIFB_AKI_C1</td>
<td>Applied Informatics - Applications of AI (Registration until 18 July 2022)</td>
<td></td>
<td>Färber</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 79AIFB_AKI_C1</td>
<td>Applied Informatics - Applications of Artificial Intelligence</td>
<td></td>
<td>Färber</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Written Examination (60 min) according to §4, Abs. 2, 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, 2 of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None.

Recommendation

Basics in logic, e.g. from lecture Foundations of Informatics 1 are important.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Applied Informatics - Applications of Artificial Intelligence</td>
<td>Lecture (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2511314, WS 22/23, 2 SWS, Language: German</td>
<td>Blended (On-Site/Online)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content
The lecture provides insights into the fundamentals of artificial intelligence. Basic methods of artificial intelligence and their applications in industry are presented.

Applications of the AI is a sub-area of computer science dealing with the automation of intelligent behavior. In general, it is a question of mapping human intelligence. Methods of artificial intelligence are presented in various areas such as, for example, question answering systems, speech recognition and image recognition.

The lecture gives an introduction to the basic concepts of artificial intelligence. Essential theoretical foundations, methods and their applications are presented and explained.

This lecture aims to provide students with a basic knowledge and understanding of the structure, analysis and application of selected methods and technologies on artificial intelligence. The topics include, among others, knowledge modeling, machine learning, text mining, uninformed search, and intelligent agents.

Learning objectives:
The students

- consider current research topics in the field of artificial intelligence and in particular learn about the topics of knowledge modeling, machine learning, text mining and uninformed search.
- interdisciplinary thinking.
- technological approaches to current problems.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Exercises to Applied Informatics - Applications of Artificial Intelligence
2511315, WS 22/23, 1 SWS, Language: German, Open in study portal

Content
The exercises are oriented on the lecture applications of AI.

Multiple exercises are held that capture the topics, held in the lecture Applications of AI and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

This lecture aims to provide students with a basic knowledge and understanding of the structure, analysis and application of selected methods and technologies on artificial intelligence. The topics include, among others, knowledge modeling, machine learning, text mining, uninformed search, and intelligent agents.

Learning objectives:
The students

- consider current research topics in the field of artificial intelligence and in particular learn about the topics of knowledge modeling, machine learning, text mining and uninformed search.
- interdisciplinary thinking.
- technological approaches to current problems.

Responsible: Prof. Dr. Melanie Volkamer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-104069 - Information Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Type
Written examination

Credits
4,5

Grading scale
Grade to a third

Recurrence
Each summer term

Version
4

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2511550</td>
<td>Applied Informatics - Information Security</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Volkamer, Mayer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2511551</td>
<td>Exercise Applied Informatics - Information Security</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Volkamer, Berens</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>79AIFB_IS_A1</td>
<td>Applied Informatics - Information Security (Registration until 18 July 2022)</td>
<td>Lecture (V)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>79AIFB_IS_A3</td>
<td>Applied Informatics - Information Security</td>
<td>Lecture (V)</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, x Cancelled

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (30 min) following §4, Abs. 2, 2 of the examination regulation, for which admission must be obtained through successful participation in the exercise during the semester.

The exam takes place every semester and can be repeated at every regular examination date.

Below you will find excerpts from events related to this course:

V Applied Informatics - Information Security

2511550, SS 2022, 2 SWS, Open in study portal
Lecture (V)
On-Site

Content

- Basics and concepts of information security
- Understanding the protection objectives of information security and various attack models (including associated assumptions)
- Introduction of measures to achieve the respective protection goals, taking into account different attack models
- Note: In contrast to the IT Security lecture, measures such as encryption algorithms are treated only abstractly, i.e. the idea of the measure, assumptions to the attacker and the deployment environment.
- Presentation and analysis of problems of information security arising from human-machine interaction and presentation of the Human Centered Security by Design approach.
- Introduction into organisational protective measures and standards to be observed for companies

Learing objectives:

The student

- can explain the basics of information security
- knows suitable measures to achieve different protection goals
- can assess the quality of organisational protective measures, i.e. among other things knows what has to be taken into account when using the individual measures
- understands the differences between information security in the organisational and in the private context
- knows the areas of application of different standards and knows their weaknesses
- knows and can explain the problems of information security that which arise from human-machine interaction
- is able to deal with messages concerning found security problems in a critical way.

This course can also be credited for the KASTEL certificate. Further information about obtaining the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.
Literature

Exercise Applied Informatics - Information Security

V 2511551, SS 2022, 1 SWS, Open in study portal

Practice (Ü) On-Site

Content

This course can also be credited for the KASTEL certificate. Further information about obtaining the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.

Responsible: Dr.-Ing. Michael Färber
Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101430 - Applied Informatics

Type: Written examination
Credits: 4
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 2

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Informatics - Modelling</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Oberweis, Schiefer, Schüler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises to Applied Informatics - Modelling</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Oberweis, Schiefer, Schüler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Informatics - Modelling (Registration until 18 July 2022)</td>
<td></td>
<td></td>
<td></td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>Applied Informatics - Modelling</td>
<td></td>
<td></td>
<td></td>
<td>Oberweis, Färber</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, X Cancelled

Competence Certificate
The assessment consists of a written examination (60 min) in the first week after lecture period (according to Section 4 (2),1 of the examination regulation).

Prerequisites
None

Below you will find excerpts from events related to this course:

Applied Informatics - Modelling
2511030, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspects, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets together with their respective analysis techniques will be introduced.

Learning objectives:
Students

- explain the strengths and weaknesses of various modeling approaches for Information Systems and choose an appropriate method for a given problem,
- create UML models, ER models and Petri nets for given problems,
- model given problems in Description Logics and apply description logic rules,
- describe the main ontology concepts and languages and explain SPARQL queries,
- create and evaluate a relational database schema and express queries in relational algebra.

Workload:

- Total effort: 120-135 hours
- Presence time: 45 hours
- Self study: 75-90 hours
Literature

Weiterführende Literatur:

Exercises to Applied Informatics - Modelling

2511031, WS 22/23, 1 SWS, Language: German, Open in study portal

Content

The exercises are related to the lecture Applied Informatics I - Modelling.

Multiple exercises are held that capture the topics, held in the lecture Applied Informatics I - Modelling, and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets together with their respective analysis techniques will be introduced.

Learning objectives:

Students

- explain the strengths and weaknesses of various modeling approaches for Information Systems and choose an appropriate method for a given problem,
- create UML models, ER models and Petri nets for given problems,
- model given problems in Description Logics and apply description logic rules,
- describe the main ontology concepts and languages and explain SPARQL queries,
- create and evaluate a relational database schema and express queries in relational algebra.

Organizational issues

Bei Bedarf wird ein Tutorium online angeboten.

Literature

Weiterführende Literatur:

Responsible: Prof. Dr. Ali Sunyaev
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101430 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 2511032 | Applied Informatics - Principles of Internet Computing: Foundations for Emerging Technologies and Future Services | 2 SWS | Lecture /强壮 | Sunyaev |
| ST 2022 | 2511033 | Übungen zu Angewandte Informatik - Internet Computing | 1 SWS | Practice /强壮 | Sunyaev, Teigeler, Beyene |

Exams

| ST 2022 | 79AIFB_AI2_A2 | Applied Informatics - Internet Computing (Registration until 18 July 2022) | Sunyaev |
| WT 22/23 | 79AIFB_AI2_A1 | Applied Informatics – Principles of Internet Computing: Foundations for Emerging Technologies and Future Services | Sunyaev |

Competence Certificate

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is recommended for the written exam, which is offered at the end of the winter semester and at the end of the summer semester.

Successful participation in the exercise by submitting correct solutions to 50% of the exercises can earn a grade bonus. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Recommendation

Knowledge of content of the modules Basic Notions of Computer Science and Algorithms I is expected.

Annotation

Replaces from winter semester 2019/2020 T-WIWI-109445 “Applied Informatics - Internet Computing”.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>V Applied Informatics - Principles of Internet Computing: Foundations for Emerging Technologies and Future Services</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2511032, SS 2022, 2 SWS, Language: German</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Open in study portal
Content
The lecture Applied Computer Science - Internet Computing provides insights into fundamental concepts and future technologies of distributed systems and Internet computing. Students should be able to select, design and apply the presented concepts and technologies. The course first introduces basic concepts of distributed systems (e.g. design of architectures for distributed systems, internet architectures, web services, middleware).

In the second part of the course, emerging technologies of Internet computing will be examined in depth. These include, among others:

- Cloud Computing
- Edge & Fog Computing
- Internet of Things
- Blockchain
- Artificial Intelligence

Learning objectives:
The student learns about basic concepts and emerging technologies of distributed systems and internet computing. Practical topics will be deepened in lab classes.

Recommendations:
Knowledge of content of the module [WI1INFO].

Workload:
The total workload for this course is approximately 135-150 hours.

Literature
Wird in der Vorlesung bekannt gegeben
6.15 Course: Auction & Mechanism Design [T-WIWI-102876]

Responsible: Prof. Dr. Nora Szech
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2560550</td>
<td>Auction and Mechanism Design</td>
<td>2 SWS Lecture / 🗣</td>
<td>Huber, Szech, Rosar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2560551</td>
<td>Übung zu Auction and Mechanism Design</td>
<td>1 SWS Practice / 🗣</td>
<td>Szech, Rau, Huber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exam

<table>
<thead>
<tr>
<th>Events</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900161</td>
<td>Exam Auction & Mechanism Design</td>
<td></td>
<td>Szech</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A bonus can be earned through successful participation in the exercise. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Annotation

The lecture will be held in English.

Below you will find excerpts from events related to this course:

V Auction and Mechanism Design
2560550, SS 2022, 2 SWS, Language: English, Open in study portal
Lecture (V)
On-Site
Content
The course starts with the basic theory of equilibrium behavior and revenue management in one object standard auctions. The revenue equivalence theorem for standard auctions is introduced. Thereafter, the course focuses on mechanism design and its applications to one object auctions and bilateral trade.

The students
- learn to analyze strategic behavior in auctions;
- learn to compare auction formats with regard to efficiency and revenue;
- are familiarized with the basic theory of (Bayesian) mechanism design;
- learn to master the revenue equivalence theorem for standard auctions;
- learn to apply mechanism design to one object auctions and bilateral trade.

The lecture will be held in English.

It depends on the future pandemic development if the assessment will be in the form of an open-book-exam (Prüfungsleistung anderer Art, SPO § 4 Abs. 2, Pkt. 3) or in the form of a written exam (60 minutes) (SPO §4 (2), 1).

The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Through successful participation in the Exercise, students can earn a bonus. If the grade on the written exam is between 4,0 and 1,3 the bonus improves the grade by one step (0,3 or 0,4). Details will be announced during the lecture.

The total workload for this course is approximately 135.0 hours. For further information see German version.

Recommendations:
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Literature
6.16 Course: B2B Sales Management [T-WIWI-111367]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2572187</td>
<td>B2B Sales Management</td>
<td>2</td>
<td>Lecture / K</td>
<td>Klarmann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2572188</td>
<td>Übung zu B2B Vertriebsmanagement (Bachelor)</td>
<td>1</td>
<td>Practice / K</td>
<td>Cordts, Gerlach</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📌 Blended (On-Site/Online), 🌆 On-Site, ✗ Cancelled

Competence Certificate

The assessment of success takes place through the preparation and presentation of a sales presentation based on a case study (max 30 points) and a written exam with additional aids in the sense of an open book exam (max. 60 points). In total, a maximum of 90 points can be achieved in the course. The written exam will either take place in the lecture hall or online, depending on further pandemic developments. Further details will be announced during the lecture.

Prerequisites

None.

Annotation

Starting in the winter semester 22/23, the course will be scheduled to be completed after the first half of the semester. For further information, please contact Marketing and Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

B2B Sales Management

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 22/23</td>
<td>2572187</td>
<td>B2B Sales Management</td>
<td>2</td>
<td>Lecture / K</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Language: German, Open in study portal
Content

The event is designed to teach you taking on marketing responsibility in a very special business environment. This involves companies that sell and market their (often technically highly complex) products themselves to other companies, which is referred to as "business-to-business" (B2B) marketing and sales. Since traditional communication instruments (e.g. advertising) often hardly work in this environment and many projects lead to a long-term cooperation between supplier and customer, (personal) sales play a special role in marketing. Therefore, this event introduces marketing in B2B markets on the one hand and deals with questions of sales and distribution on the other hand.

Topics with regard to B2B sales management are:

- Basic aspects of B2B sales and B2B purchasing
- Understanding of marketing challenges in specific B2B business types (commodities, systems, solutions)
- Value pricing and value-based selling
- Organizational buying behavior
- Basics of B2B customer relationship management (e.g. key account management, reference customer management)
- Sales process (lead generation, sales presentations, customer-oriented selling, closing)
- Sales automation

Learning objectives

Students

- Are familiar with marketing and sales peculiarities and challenges in B2B environments
- Are able to identify different B2B business types and their marketing characteristics
- Are familiar with central theories of organizational buying behavior
- Are familiar with central objectives of Customer Relationship Management in B2B environments and are able to implement them with appropriate tools
- Are able to prioritize customers and calculate B2B Customer Lifetime Value
- Know how B2B sales presentations work and have also gained practical experience in this area
- Are able to determine value-based prices

Workload

The total workload for this course is approximately 135.0 hours.

Attendance time: 35.0 hours
Self-study: 100.0 hours

Organization

A detailed schedule will be announced.

Literature

6.17 Course: Bachelor's Thesis [T-INFO-109907]

Organisation: KIT Department of Informatics
Part of: M-INFO-104875 - Module Bachelor's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>15</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 4 months
- **Maximum extension period**: 1 months
- **Correction period**: 6 weeks
6.18 Course: Basic Notions of Computer Science [T-INFO-101964]

Responsible: Prof. Dr. Carsten Sinz
Organisation: KIT Department of Informatics
Part of: M-INFO-101170 - Basic Notions of Computer Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>24001</td>
<td>Grundbegriffe der Informatik</td>
<td>Lecture</td>
<td>3 SWS</td>
<td></td>
<td>Ulbrich, Kern</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>75400100</td>
<td>Basic Notions of Computer Science</td>
<td>Sinz</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🕒 Blended (On-Site/Online), 🗞️ On-Site, ✗ Cancelled
6.19 Course: Basic Notions of Computer Science Pass [T-INFO-101965]

Responsible: Prof. Dr. Carsten Sinz
Organisation: KIT Department of Informatics
Part of: M-INFO-101170 - Basic Notions of Computer Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 24002 | Übungen zu Grundbegriffe der Informatik | 1 SWS | Practice / 🗣 | Ulbrich, Kern |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.20 Course: Basic Practical Course for the ICPC-Programming Contest [T-INFO-101991]

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: M-INFO-101230 - Basic Practical Course for the ICPC-Programming Contest

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
<th>Examiners</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Basispraktikum zum ICPC Programmierwettbewerb</td>
<td>2</td>
<td>Practical course / 🗣️</td>
<td>Jungeblut, Zeitz, Ueckerdt, Weyand</td>
</tr>
<tr>
<td></td>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>Basic Practical Course for the ICPC-Programming Contest</td>
<td></td>
<td></td>
<td>Wagner, Ueckerdt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⬅️ Blended (On-Site/Online), 🗣️ On-Site, ✗ Canceled
6 COURSES

Course: Basic Principles of Economic Policy [T-WIWI-103213]

6.21 Course: Basic Principles of Economic Policy [T-WIWI-103213]

Responsible: Prof. Dr. Ingrid Ott

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2560280</td>
<td>Basic Principles of Economic Policy</td>
<td>2 SWS</td>
<td>Lecture /🗣</td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>ST 2022 2560281</td>
<td>Exercises of Basic Principles of Economic Policy</td>
<td>1 SWS</td>
<td>Practice /🗣</td>
<td>Scheidt, Zoroglu</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7900106</td>
<td>Basic Principles of Economic Policy</td>
<td></td>
<td></td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 7900079</td>
<td>Basic Principles of Economic Policy</td>
<td></td>
<td></td>
<td>Ott</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].
Annotation
Please note that the lecture will not be held in summer semester 2021. The exam is offered.

Description:
Theory of general economic policy and discussion of current economic policy topics:
- Goals of economic policy,
- Instruments and institutions of economic policy,
- Triad of regional, national and European economic policies,
- Special fields of economic policy, in particular growth, employment, provision of public infrastructure and climate policy.

Learning objectives:
Students learn:
- To apply basic concepts of micro- and macroeconomic theories to economic policy issues.
- To develop arguments on how state intervention in the market can be legitimized from a welfare economic perspective.
- To derive theory-based policy recommendations.

Learning content:
- Market interventions: microeconomic perspective
- Market interventions: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Economic policy makers: Political-economic aspects

Workload:
- Total effort at 4.5 LP: approx. 135 hours
- Presence time: approx. 30 hours
- Self-study: approx. 105 hours

Media:
See course announcement

References:
See course announcement

Below you will find excerpts from events related to this course:

V Basic Principles of Economic Policy
2560280, SS 2022, 2 SWS, Language: German, Open in study portal
Lecture (V) On-Site
Content
The lecture deals with theories of general economic policy and discussion of current economic policy topics:

- Goals of economic policy,
- Instruments and institutions of economic policy,
- Triad of regional, national and European economic policies,
- special fields of economic policy, in particular growth, employment, provision of public infrastructure and climate policy.

Learning objectives:
Students shall be given the ability to

- apply basic concepts of micro- and macroeconomic theories to economic policy issues
- develop arguments on how state intervention in the market can be legitimized from a welfare economic perspective
- derive theory-based policy recommendations

Recommendations:
Basic micro- and macroeconomic knowledge is required, especially as taught in the courses Economics I [2610012] and Economics II [2600014].

Workload:
Total effort at 4.5 LP is approx. 135 hours and consists of:

- Presence time: approx. 30 hours
- Self-study: approx. 105 hours

Assessment:
The examination takes place in the form of a written examination (60min) (according to §4(2), 1 SPO). The examination is offered every semester and can be repeated at any regular examination date.

Organizational issues
Zugehörige Veranstaltung: Übungen zur Einführung in die Wirtschaftspolitik [2560281]

Literature
- Foliensatz zur Vorlesung
- Übungsaufgaben

Exercises of Basic Principles of Economic Policy
2560281, SS 2022, 1 SWS, Language: German, Open in study portal

Organizational issues
Zugehörige Veranstaltung: [2560280] Einführung in die Wirtschaftspolitik

Literature
- Foliensatz zur Vorlesung
- Übungsaufgaben
6.22 Course: Basics of German Company Tax Law and Tax Planning [T-WIWI-108711]

Responsible: Gerd Gutekunst
Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101403 - Public Finance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2560134</th>
<th>Basics of German Company Tax Law and Tax Planning</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Wigger, Gutekunst</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>790unbe</th>
<th>Basics of German Company Tax Law and Tax Planning</th>
<th>Wigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>790unbe</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5 h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course “Öffentliche Einnahmen” beforehand.

*Below you will find excerpts from events related to this course:

Basics of German Company Tax Law and Tax Planning
2560134, WS 22/23, 3 SWS, Language: German, [Open in study portal](#)

Content

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.
6.23 Course: Brand Management [T-WIWI-112156]

Responsible: Prof. Dr. Ann-Kristin Kupfer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Contact Time</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2572190</td>
<td>Brand Management</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Kupfer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2572191</td>
<td>Brand Management Exercise</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Mitarbeiter</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of success will be done by the preparation and presentation of a case study as well as a written exam. Further details will be announced during the lecture.

Prerequisites
None

Recommendation
Students are highly encouraged to actively participate in class.

Below you will find excerpts from events related to this course:

Brand Management
2572190, WS 22/23, 2 SWS, Language: English, [Open in study portal]

Content
Students learn the theoretical foundations of brand management and its most important concepts. They learn both about the importance of brands for consumers as well as the importance of brands for firms. Special emphasis will be given to the development of brand strategies. Furthermore, students will learn how to evaluate and apply brand instruments. A tutorial offers the opportunity to apply the key learnings of the lecture using case studies.

The learning objectives are as follows:

- Getting to know the theoretical foundations of brand management
- Evaluating strategic branding options (e.g., relating to the development of the core of the brand and the brand architecture) and operative brand instruments (e.g., relating to the brand name and logo)
- Fostering critical and analytical thinking skills and the application of knowledge to marketing problems
- Improving English skills

Total time required for 4.5 credit points: approx. 135 hours
Attendance time: 30 hours
Self-study: 105 hours
Course: Business Process Modelling [T-WIWI-102697]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101438 - Semantic Knowledge Management
- M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2511210</td>
<td>Business Process Modelling</td>
<td>2</td>
<td>Lecture</td>
<td>Oberweis</td>
</tr>
<tr>
<td>Exercise</td>
<td>2511211</td>
<td>Exercise Business Process Modelling</td>
<td>1</td>
<td>Practice</td>
<td>Oberweis, Schüler</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Code</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>79AIFB_MvG_B4</td>
<td>Business Process Modelling (Registration until 18 July 2022)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>79AIFB_MvG_C2</td>
<td>Business Process Modelling</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites

None

Below you will find excerpts from events related to this course:

Business Process Modelling

2511210, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Content

The proper modeling of relevant aspects of business processes is essential for an efficient and effective design and implementation of processes. This lecture presents different classes of modeling languages and discusses the respective advantages and disadvantages of using actual application scenarios. For that simulative and analytical methods for process analysis are introduced. In the accompanying exercise the use of process modeling tools is practiced.

Learning objectives:

Students

- describe goals of business process modeling and apply different modeling languages,
- choose the appropriate modeling language according to a given context,
- use suitable tools for modeling business processes,
- apply methods for analysing and assessing process models to evaluate specific quality characteristics of the process model.

Recommendations:

Knowledge of course Applied Informatics I - Modelling is expected.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
Literature

Weitere Literatur wird in der Vorlesung bekannt gegeben.
6.25 Course: Business Strategies of Banks [T-WIWI-102626]

Responsible: Prof. Dr. Wolfgang Müller

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 7900079 | Business Strategies of Banks | Müller |

Competence Certificate
The lecture will be offered for the last time in the winter semester 2021/22. The exam will take place for the last time in the summer semester 2022 (only for repeaters).

Prerequisites
None

Recommendation
None

Annotation
The lecture will be offered for the last time in the winter semester 2021/22.
6.26 Course: Civil Law for Beginners [T-INFO-103339]

- **Responsible:** Dr. Yvonne Matz
- **Organisation:** KIT Department of Informatics
- **Part of:** M-INFO-101190 - Introduction to Civil Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 24012</td>
<td>Civil Law for Beginners</td>
<td>4 SWS</td>
<td>Lecture /</td>
<td>Matz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 7500041</td>
<td>Civil Law for Beginners</td>
<td></td>
<td>Dreier, Matz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🍪 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.27 Course: Cognitive Systems [T-INFO-101356]

Responsible: Prof. Dr. Gerhard Neumann
Prof. Dr. Alexander Waibel

Organisation: KIT Department of Informatics

Part of: M-INFO-100819 - Cognitive Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>24572</td>
<td>Kognitive Systeme</td>
<td>4</td>
<td>Lecture / Practice</td>
<td>Waibel, Neumann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2400158</td>
<td>Introduction to Artificial Intelligence</td>
<td>3</td>
<td>Lecture / Practice</td>
<td>Neumann, Friederich, Dahlinger, Shaj Kumar</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Course</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500157</td>
<td>Cognitive Systems</td>
<td>Waibel, Neumann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500158</td>
<td>Cognitive Systems Waibel/Neumann</td>
<td>Waibel, Neumann</td>
</tr>
</tbody>
</table>

Legend: 🛥 Online, 📍 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled
Course: Competition in Networks [T-WIWI-100005]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2561204</td>
<td>Competition in Networks</td>
<td>2</td>
<td>Lecture / 🥽</td>
<td>Mitusch</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2561205</td>
<td>Übung zu Wettbewerb in Netzen</td>
<td>1</td>
<td>Practice / 🥽</td>
<td>Wisotzky, Mitusch, Corbo</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900274</td>
<td>Competition in Networks</td>
<td>Lecture (V)</td>
</tr>
</tbody>
</table>

Legend: 🦺 Online, 🧩 Blended (On-Site/Online), 🗦 On-Site, ✗ Cancelled

Competence Certificate

Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites

None.

Recommendation

Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Below you will find excerpts from events related to this course:

Competition in Networks

2561204, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies - competition or cooperation or both - are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Literature

Literatur und Skripte werden in der Veranstaltung angegeben.
6.29 Course: Computer Architecture [T-INFO-101355]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-100818 - Computer Architecture

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Type</th>
<th>WS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2424570</td>
<td>Computer structures</td>
<td>3 SWS</td>
<td>Lecture / On-Site</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Event Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500190</td>
<td>Computer Architecture</td>
<td>Karl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled
6.30 Course: Computer Graphics [T-INFO-101393]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: M-INFO-100856 - Computer Graphics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher

Organisation: KIT Department of Informatics

Part of: M-INFO-100856 - Computer Graphics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Lecture / Practice</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Übungen zu Computergrafik</td>
<td>Jung, Dolp</td>
</tr>
</tbody>
</table>
6.32 Course: Computer Organization [T-INFO-103531]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-103179 - Computer Organization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>24502</td>
<td>Computer Organization</td>
<td>3 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>24505</td>
<td>Übungen zu Rechnerorganisation</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500240</td>
<td>Computer Organization</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Karl</td>
</tr>
</tbody>
</table>
6.33 Course: Consulting in Practice [T/INFO-101975]

- **Responsible:** Prof. Dr.-Ing. Klemens Böhm
- **Organisation:** KIT Department of Informatics
- **Part of:** M/INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1.5</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 24664 | Praxis der Unternehmensberatung | 2 SWS | Lecture | Böhm, Lang |

Below you will find excerpts from events related to this course:

Praxis der Unternehmensberatung

Content

The market for consulting services grows annually by 20% and is therefore one of the leading growth sectors and professional fields in the future. This trend is in particular driven by the IT industry. Here, widely used standard software moves the focus of the future professional field from software development to consulting. In this context, consulting services have usually a broad definition, reaching from pure IT-focused consulting (e.g., deployment of SAP) to strategic consulting (strategy, organisation etc.). In contrast to common rumors, a qualification in business studies is not a must. This opens up a diversified and exciting field with exceptional development perspectives for computer science students. The course deals thematically with the two fields consulting in general and function-specific consulting (with IT consulting as an example).

The structure of the course is oriented along the phases of a consulting project:

- **Diagnosis:** The consultant as an analytic problem solver.
- **Strategic adjustment/redesign of the core processes:** Optimisation/redesign of essential business functionality to solve the diagnosed problems in cooperation with the client.
- **Implementation:** Installation of the solutions in the client’s organisation for assuring the implementation.

Emphasised topics in the course are:

- **Elementary problem solving:** Problem definition, structuring of problems and focussing through the usage of tools (e.g., logic and hypothesis trees), creative techniques, solution systems etc.
- **Obtaining information effectively:** Access of information sources, interview techniques etc.
- **Effective communication of findings/recommendations:** Analysis/planning of communication (media, audience, formats), communication styles (e.g., top-down vs. bottom-up), special topics (e.g., arrangement of complex information) etc.
- **Efficient teamwork:** Tools for optimising efficient work, collaboration with clients, intellectual and process leadership in the team etc.

At the end of the course, the participants

- have gained knowledge and understanding for the activities of the consulting process in general,
- have gained function-specific knowledge and understanding of IT consulting,
- have an overview about consulting companies,
- know concrete consulting examples,
- have experienced how effective teams work and
- have got an insight into the professional field “consulting”.

Organizational issues

Die Veranstaltung fällt in diesem Semester leider aus.
Course: Consumer Behavior [T-WIWI-106569]

Responsible: Prof. Dr. Benjamin Scheibehenne
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101424 - Foundations of Marketing
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Written examination</td>
</tr>
</tbody>
</table>

Credits: 4.5

Grading scale: Grade to a third

Recurrence: Once

Version: 3

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None.

Annotation
For further information, please contact the research group Marketing and Sales (http://marketing.iism.kit.edu/).

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Consumer Behavior</td>
</tr>
<tr>
<td>2572174, SS 2022, 3 SWS, Language: English, Open in study portal</td>
</tr>
</tbody>
</table>
Content
Goal
The goal of the class is to gain a better understanding of the situational, biological, cognitive, and evolutionary factors that drive consumer behavior. We will address these questions from an interdisciplinary perspective, including relevant theories and empirical research findings from Psychology, Marketing, Cognitive Science, Biology, and Economics.

Description
Consumer decisions are ubiquitous in daily life and they can have long-ranging and important consequences for individual (financial) well-being and health but also for societies and the planet as a whole. To help people making better choices it is important to understand the factors that influence their behavior. Towards this goal, we will explore how consumer behavior is shaped by social influences, situational and cognitive constraints, as well as by emotions, motivations, evolutionary forces, neuronal processes, and individual differences. Across all topics covered in class, we will engage with basic theoretical work as well as with groundbreaking empirical research and current scientific debates.

The lecture will be held in English.

Grading
There will be a written exam at the last day of class. The exam will cover the content of the lecture and the literature listed in the required reading list that will be made available to enrolled students on the first day of class. The exam questions will be in English. You are allowed to bring a language dictionary into the exam but you are not allowed to bring notes.

Workload
The total workload for this course is approximately 135 hours.
Presence time: 30 hours
Preparation and wrap-up of the course: 45 hours
Exam and exam preparation: 60 hours

Comment
This lecture features a “double down” format: There will be two lecture sessions in a row during the first half of the semester. Thus, you will be finished with this class after 7 weeks.

Literature
Will be made available to enrolled students on the first day of class.
6.35 Course: Curves in CAD [T-INFO-102067]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: M-INFO-101248 - Curves in CAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7500246</th>
<th>Curves in CAD</th>
<th>Prautzsch</th>
</tr>
</thead>
</table>
6.36 Course: Data Science I [T-INFO-111622]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Dr.-Ing. Edouard Fouché

Organisation: KIT Department of Informatics

Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>24114</th>
<th>Data Science 1</th>
<th>3 SWS</th>
<th>Lecture / 🖥</th>
<th>Fouché</th>
</tr>
</thead>
</table>

Exams

ST 2022	7500062	Data Science I	Böhm
ST 2022	7500311	Data Science I	Böhm
WT 22/23	7500087	Data Science 1	Böhm

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
6.37 Course: Database Systems [T-INFO-101497]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-104921 - Database Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type of Session</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>24516</td>
<td>Datenbanksysteme</td>
<td>2</td>
<td>Lecture</td>
<td>Böhm</td>
</tr>
<tr>
<td>ST 2022</td>
<td>24522</td>
<td>Übungen zu Datenbanksysteme</td>
<td>1</td>
<td>Practice</td>
<td>Böhm, Kalinke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500166</td>
<td>Database Systems</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, × Cancelled
6.38 Course: Decision Theory [T-WIWI-102792]

Responsible: Prof. Dr. Karl-Martin Ehrhart
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101499 - Applied Microeconomics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2022</th>
<th>2520365</th>
<th>Decision Theory</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Ehrhart</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2520366</td>
<td>Übungen zu Entscheidungstheorie</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ehrhart</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7900254</th>
<th>Decision Theory</th>
<th>Ehrhart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7900159</td>
<td>Decision Theory</td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites
None

Recommendation
Knowledge in mathematics and statistics is required.

Below you will find excerpts from events related to this course:

Decision Theory
2520365, SS 2022, 2 SWS, Language: German, Open in study portal

Literature

- Ehrhart, K.-M. und S.K. Berninghaus (2012): Skript zur Vorlesung Entscheidungstheorie, KIT.
6.39 Course: Deployment of Database Systems [T-INFO-101317]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Subject</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>3</td>
<td>Datenbankeinsatz</td>
<td>Lecture / 🗣</td>
<td>Böhm</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Deployment of Database Systems</td>
<td>Böhm</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Deployment of Database Systems</td>
<td>Böhm</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
6.40 Course: Derivatives [T-WIWI-102643]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101402 - eFinance
M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2530550</td>
<td>Derivatives</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Thimme, Uhrig-Homburg</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2530551</td>
<td>Übung zu Derivate</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Thimme, Eska, Uhrig-Homburg</td>
</tr>
<tr>
<td>Exams</td>
<td>ST 2022</td>
<td>7900111</td>
<td>Derivatives</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900051</td>
<td>Derivatives</td>
<td>Uhrig-Homburg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

- **ST 2022** 7900111 Derivatives Uhrig-Homburg
- **WT 22/23** 7900051 Derivatives Uhrig-Homburg

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🚦 Cancelled

Competence Certificate
Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination or as an open-book examination (alternative exam assessment).

A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

V Derivatives

- **2530550, SS 2022, 2 SWS, Language: German**, [Open in study portal](#)

Literature

Weiterführende Literatur:

6.41 Course: Design, Construction and Sustainability Assessment of Buildings I [T-WIWI-102742]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Thomas Lützkendorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-101467 - Design, Construction and Sustainability Assessment of Buildings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Exam Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900267</td>
<td>Design, Construction and Sustainability Assessment of Buildings I</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

A combination with the module Real Estate Management and with engineering science modules in the area of building physics and structural design is recommended.
Course: Design, Construction and Sustainability Assessment of Buildings II [T-WIWI-102743]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101467 - Design, Construction and Sustainability Assessment of Buildings

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Each summer term

Version
- 1

Events

| ST 2022 | 2585403 | Übung zu Bauökologie II | 1 SWS | Practice / 📜 | Rochlitzer |
| ST 2022 | 2585404 | Sustainability Assessment of Buildings | 2 SWS | Lecture / 📜 | Lützkendorf, Rochlitzer |

Exams

| ST 2022 | 7900345 | Design, Construction and Sustainability Assessment of Buildings II | Lützkendorf |
| ST 2022 | 7900350 | Design, Construction and Sustainability Assessment of Buildings II | Lützkendorf |

Competence Certificate
Depending on further pandemic developments, the exam will be offered either as a 60-minute upload exam (Open Book Exam @ Home), or as a 60-minute exam (written exam according to SPO § 4 Abs. 2, Pkt. 1).

Prerequisites
None

Recommendation
A combination with the module Real Estate Management and with engineering science modules from the areas building physics and structural design is recommended.

Below you will find excerpts from events related to this course:

Content
The course identifies problems concerning the economical and environmental assessment of buildings along their lifecycle and discusses suitable procedures and tools supporting the decision making process. For example, the course addresses topics like operating costs, heat cost allocation, comparisons of heating costs, applied economical assessment methods, life cycle assessment as well as related design and assessment tools (e.g. element catalogues, databases, emblems, tools) and assessment procedures (e.g. carbon footprint, MIPS, KEA), which are currently available.

Recommendations:
A combination with the module Real Estate Management [WW3BWLOO2] and with engineering science modules from the areas building physics and structural design is recommended.

The student
- has an in-depth knowledge of the classification of environmental design and construction of buildings within the overall context of sustainability
- has a critical understanding of the main theories and methods of assessing the environmental performance of buildings
- is able to use methods and tools to evaluate the environmental performance in design and decision processes or to interpret existing results

The total workload for this course is approximately 135.0 hours. For further information see German version.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Re-examinations are offered at every ordinary examination date.
Literature
Weiterführende Literatur:

- Schmidt-Bleek: "Das MIPS-Konzept". Droemer 1998
- Wackernagel et al.: "Unser ökologischer Fußabdruck". Birkhäuser 1997
- Braunschweig: "Methode der ökologischen Knappheit". BUWAL 1997
6.43 Course: Digital Circuits Design [T-INFO-103469]

Responsible: Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: M-INFO-102978 - Digital Circuits Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>24007</td>
<td>Digital Circuits Design</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500254</td>
<td>Digital Circuits Design</td>
<td></td>
<td>Tahoori</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏢 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
Course: Digital Markets and Market Design [T-WIWI-112228]

Responsible: Prof. Dr. Adrian Hillenbrand
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101499 - Applied Microeconomics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>2500035</th>
<th>Digital Markets and Market Design</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Hillenbrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2500036</td>
<td>Digital Markets and Market Design</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Hillenbrand</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>7900016</th>
<th>Digital Markets and Market Design</th>
<th>Hillenbrand</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7900026</td>
<td>Digital Markets and Market Design</td>
<td>Hillenbrand</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Annotation

The lecture will be held in English.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>Practice (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Markets and Market Design</td>
<td>Digital Markets and Market Design</td>
</tr>
<tr>
<td>2500035, WS 22/23, 2 SWS, Language: English, Open in study portal</td>
<td>2500036, WS 22/23, 1 SWS, Language: English, Open in study portal</td>
</tr>
<tr>
<td>On-Site</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Content

Online Markets determine our everyday lives. At the same time rapid technological advancements quickly change the landscape of online markets posing challenges for market design and consumer protection. In this course we apply theoretical economic models in the area of digital markets in order to make sense of current developments. Topics include consumer search, algorithmic pricing, recommender systems and steering, price discrimination and matching markets. We also discuss the potential effects of current policies like the Digital Markets Act and Digital Services Act on market outcomes.

<table>
<thead>
<tr>
<th>Lecture (V)</th>
<th>Practice (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Markets and Market Design</td>
<td>Digital Markets and Market Design</td>
</tr>
<tr>
<td>2500035, WS 22/23, 2 SWS, Language: English, Open in study portal</td>
<td>2500036, WS 22/23, 1 SWS, Language: English, Open in study portal</td>
</tr>
<tr>
<td>On-Site</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Content

Exercise Session for the course "Digital Markets and Market Design"

Organizational issues

Jede zweite Woche eine Übung
6.45 Course: Digital Services: Foundations [T-WIWI-111307]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
M-WIWI-101434 - eBusiness and Service Management
M-WIWI-102752 - Fundamentals of Digital Service Systems
M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 2595466 | Digital Services: Foundations | 2 SWS | Lecture / 📽️ | Satzger, Weinhardt |
| ST 2022 | 2595467 | Exercise Digital Services: Foundations | 1 SWS | Practice / 📽️ | Kühl, Schöffler, Badewitz |

Exams

| ST 2022 | 7900307 | Digital Services | Satzger |
| WT 22/23 | 7900002 | Digital Services: Foundations | Satzger |

Legend: 📽️ Online, 🗺️ Blended (On-Site/Online), 🗺️ On-Site, X Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) (§4(2), 1 of the examination regulations). By successful completion of the exercises (§4(2), 3 SPO 2007 respectively §4(3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

see below

Annotation

This course replaces T-WIWI-109938 "Digital Services".

Below you will find excerpts from events related to this course:

Digital Services: Foundations

2595466, SS 2022, 2 SWS, Language: English, Open in study portal

Lecture (V)

On-Site

Content

The world has been moving towards “service-led” economies: In many developed countries, services already account for more than 70% of the gross domestic product. In order to design, engineer, and manage services, traditional “goods-oriented” business models are often inappropriate. At the same time, the rapid development of information and communication technology (ICT) pushes “servitization” and the economic importance of digital services and, therefore, drives competition: Increased interaction and individualization options open up new dimensions of “value co-creation” between providers and customers; dynamic and scalable service value networks replace static value chains; services can instantly be delivered anywhere across the globe.

Building on a systematic categorization of different types of services and on the general notion of “value co-creation”, we cover concepts and foundations for engineering and managing ICT-based digital services, allowing for further specialization in other KSRI/IISM courses at the Master level. Topics in this course include an introduction to services, cloud and cloud labor services, web services, service innovation, service analytics, digital economics, as well as the transformation and coordination of service value networks. Additionally, case studies, hands-on exercises, and guest lectures will illustrate the relevance of digital services in today’s world. This course is held in English to acquaint students with international environments.
Literature

6.46 Course: Economics and Behavior [T-WIWI-102892]

Responsible: Prof. Dr. Nora Szech
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Title</th>
<th>Type</th>
<th>Credit Hours</th>
<th>Language</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Economics and Behavior</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>English</td>
<td>Szech, Rau, Zhao</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Übung zu Economics and Behavior</td>
<td>Practice</td>
<td>1 SWS</td>
<td>English</td>
<td>Szech, Zhao</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Annotation
The lecture will be held in English.

Below you will find excerpts from events related to this course:

Economics and Behavior
2560137, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)
Lecture (V)
Blended (On-Site/Online)

Content
The course covers topics from behavioral economics with regard to contents and methods. In addition, the students gain insight into the design of economic experiments. Furthermore, the students will become acquainted with reading and critically evaluating current research papers in the field of behavioral economics.

The students
- gain insight into fundamental topics in behavioral economics;
- get to know different research methods in the field of behavioral economics;
- learn to critically evaluate experimental designs;
- get introduced to current research papers in behavioral economics;
- become acquainted with the technical terminology in English.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. The grade will be determined in a final written exam. Students can earn a bonus to the final grade by successfully participating in the exercises.

The total workload for this course is approximately 135.0 hours. For further information see German version.

Recommendations:
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.
Literature
6.47 Course: Economics I: Microeconomics [T-WIWI-102708]

Responsibility: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101431 - Economics

Type: Written examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

| WT 22/23 | 2610012 | Economics I: Microeconomics | 3 SWS | Lecture / 📚 | Reiß, Potarca |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation.
The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. As a rule, only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Prerequisites
None

Below you will find excerpts from events related to this course:

Economics I: Microeconomics
2610012, WS 22/23, 3 SWS, Language: German, Open in study portal
Blended (On-Site/Online)

Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics.

In the two main parts of the course problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) as well are discussed. In the final part of the course basics of imperfect competition (oligopolistic markets) and of game theory are presented.

It is the main aim of this course to provide basic knowledge in economic modelling. In particular, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative, more effective policy measures.

In particular, the student should learn

- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems

- to analyze the structure of microeconomics relationships and to present own problem solutions,
- solve simple economic decision problems.

The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. The main exam takes place subsequent to the lecture.

The re-examination is offered at the same examination period. Usually, only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

The total workload for this course is approximately 150 hours.
Literature

- H. Varian, Grundzüge der Mikroökonomik, 5. Auflage (2001), Oldenburg Verlag
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. München, 2005
6 COURSES

Course: Economics III: Introduction in Econometrics [T-WIWI-102736]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Melanie Schienle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Economics and Management</td>
</tr>
<tr>
<td>Part of</td>
<td>M-WIWI-101499 - Applied Microeconomics</td>
</tr>
<tr>
<td></td>
<td>M-WIWI-101599 - Statistics and Econometrics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2520016 Economics III: Introduction to Econometrics 2 SWS</td>
<td>Lecture / Blended (Online/On-Site)</td>
<td>Krüger, Rüter</td>
<td></td>
</tr>
<tr>
<td>ST 2022 2520017 Übungen zu VWL III 2 SWS</td>
<td>Practice</td>
<td>Krüger, Rüter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7900027 Economics III: Introduction in Econometrics</td>
<td></td>
<td>Krüger</td>
<td></td>
</tr>
<tr>
<td>ST 2022 7900034 Economics III: Introduction in Econometrics</td>
<td></td>
<td>Krüger</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 90-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Below you will find excerpts from events related to this course:

Economics III: Introduction to Econometrics
2520016, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V) Blended (On-Site/Online)

Content

Learning objectives:

- Familiarity with the basic concepts and methods of econometrics
- Preparation of simple econometric surveys

Content:

- Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)
- Model assessment

Requirements:

Knowledge of the lectures Statistics I + II is required.

Workload:

Total workload for 5 CP: approx. 150 hours

Attendance: 30 hours

Preparation and follow-up: 120 hours

Literature

Schneeweiß: Ökonometrie ISBN 3-7908-0008-2
6.49 Course: eFinance: Information Systems for Securities Trading [T-WIWI-110797]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-105981 - Information Systems & Digital Business

Type
- Written examination

Credits
- 4,5

Grading scale
- Grade to a third

Recurrence
- Each winter term

Version
- 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2540454</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Weinhardt, Notheisen</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2540455</td>
<td>Übungen zu eFinance: Information Systems for Securities Trading</td>
<td>Practice / 🗣️️</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td>Jaquart</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Canceled

Competence Certificate

Success is monitored by means of ongoing elaborations and presentations of tasks and an examination (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Annotation

The course “eFinance: Information Systems for Securities Trading” covers different actors and their function in the securities industry in-depth, highlighting key trends in modern financial markets, such as Distributed Ledger Technology, Sustainable Finance, and Artificial Intelligence. Security prices evolve through a large number of bilateral trades, performed by market participants that have specific, well-regulated and institutionalized roles. Market microstructure is the subfield of financial economics that studies the price formation process. This process is significantly impacted by regulation and driven by technological innovation. Using the lens of theoretical economic models, this course reviews insights concerning the strategic trading behaviour of individual market participants, and models are brought market data. Analytical tools and empirical methods of market microstructure help to understand many puzzling phenomena in securities markets.

Below you will find excerpts from events related to this course:

Literature

Weiterführende Literatur:

6.50 Course: Energy Policy [T-WIWI-102607]

Responsible: Prof. Dr. Martin Wietschel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2581959</th>
<th>Energy Policy</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Wietschel</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7981959</th>
<th>Energy Policy</th>
<th>Fichtner</th>
</tr>
</thead>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None.

Below you will find excerpts from events related to this course:

Energy Policy
2581959, SS 2022, 2 SWS, Language: German, [Open in study portal]

Content
The availability of cheap, environmentally friendly and secure energy is crucial for human welfare. However, the increasing scarcity of resources and increasing environmental pressures, with a particular focus on climate change, threaten human welfare through economic action. Energy contributes significantly to environmental pollution. The energy industry is characterised by high regulation and a significant influence of political decisions.

At the beginning of the lecture different perspectives on energy policy will be presented and the analysis of political decision-making processes will be discussed. Then the current energy policy challenges in the area of environmental pollution, regulation and the role of energy for households and industry will be discussed. Then the actors of energy policy and energy responsibilities in Europe will be discussed. The economic approaches from traditional environmental economics and sustainability as a new policy approach will then be discussed. Finally, energy policy instruments such as the promotion of renewable energies or energy efficiency are discussed in detail and how they can be evaluated.

The lecture emphasizes the relationship between theory and practice and presents some case studies.

Literature
Wird in der Vorlesung bekannt gegeben.
6.51 Course: Exercises in Civil Law [T-INFO-102013]

Responsible: Prof. Dr. Thomas Dreier
Dr. Yvonne Matz

Organisation: KIT Department of Informatics

Part of: M-INFO-101191 - Commercial Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Advanced Civil Law</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Matz</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Exercises in Civil Law</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Dreier</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Case Studies in Civil Law</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Herr</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Commercial and Corporate Law</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Wiele</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Exercises in Civil Law</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7</td>
<td>Wirtschaftsprivatrecht</td>
<td>2</td>
<td></td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7</td>
<td>Commercial Law</td>
<td>2</td>
<td></td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
Course: Facility Location and Strategic Supply Chain Management [T-WIWI-102704]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101413 - Applications of Operations Research
- M-WIWI-101421 - Supply Chain Management
- M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2550486</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nickel</td>
</tr>
<tr>
<td>WT 22/23 2550487</td>
<td>Übungen zu Standortplanung und strategisches SCM</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Pomes, Linner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 00020</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td></td>
<td></td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Legends:
- 🖥 Online
- ⬆ Blended (On-Site/Online)
- 🗣 On-Site
- ❌ Canceled

Competence Certificate
The assessment consists of a written exam (60 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester.

Prerequisite
Prerequisite for admission to examination is the successful completion of the online assessments.

Prerequisites
Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendation
None

Annotation
The lecture is held in every winter term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Facility Location and Strategic Supply Chain Management

- 2550486, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Literature

Weiterführende Literatur:

- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
6 COURSES

6.53 Course: Financial Accounting for Global Firms [T-WIWI-107505]

Responsible: Dr. Torsten Luedecke

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Event Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530242</td>
<td>WS 22/23</td>
<td>Financial Accounting for Global Firms</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Luedecke</td>
<td></td>
</tr>
<tr>
<td>2530243</td>
<td>WS 22/23</td>
<td>Übung zu Financial Accounting for Global Firms</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Luedecke</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Exam Code</th>
<th>Description</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900195</td>
<td>ST 2022</td>
<td>Financial Accounting for Global Firms</td>
<td>Luedecke</td>
<td></td>
</tr>
<tr>
<td>7900142</td>
<td>WS 22/23</td>
<td>Financial Accounting for Global Firms</td>
<td>Luedecke, Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏕 Blended (On-Site/Online), 🗣 On-Site, ❌ Canceled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None

Recommendation
Basic knowledge in corporate finance and accounting.

Annotation
New lecture in the winter term 2017/18.

Below you will find excerpts from events related to this course:

Financial Accounting for Global Firms
2530242, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Literature
Competence Certificate
The module examination is an alternative exam assessment and consists of two parts in which a maximum of 100 points can be achieved:

In the first part of the examination, a maximum of 30 points can be achieved, which are distributed equally weighted over eight worksheets to be submitted during the semester. The worksheets of the first three weeks are representative for all following worksheets in terms of scope and degree of difficulty. With the beginning of the 4th week of the course, the handing in of the worksheets is considered to be part of the alternative exam assessment.

A maximum of 70 points can be achieved in the second part of the examination. For this part of the examination, the student write a "Final Exam" in the last week of the lecture period, which takes 2 hours.

Detailed information about the course schedule and the module exam will be announced at the first course date.

A retake opportunity for those who do not pass the module exam will take place at the end of the fourth September calendar week of the same year. The registration for the examination must be made at least 1 day before the beginning of the examination. The following applies to deregistration for the examination: Deregistration can be made online in the student portal up to 1 day before the start of the examination.

Prerequisites
None.

Annotation
Please note that the course is only offered every second summer semester (SS2021, SS2023).
6.55 Course: Financial Econometrics [T-WIWI-103064]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101599 - Statistics and Econometrics
M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2520022</td>
<td>Financial Econometrics</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>4.5</td>
<td>Schienle</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2520023</td>
<td>Übungen zu Financial Econometrics</td>
<td>2</td>
<td>Practice / 📚</td>
<td></td>
<td>Schienle, Görgen, Buse</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7900123</td>
<td>Financial Econometrics</td>
<td>2</td>
<td>Lecture / 📚</td>
<td></td>
<td>Schienle</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900126</td>
<td>Financial Econometrics</td>
<td>2</td>
<td>Lecture / 📚</td>
<td></td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course “Economics III: Introduction in Econometrics” [2520016]

Annotation
The next lecture will take place in the winter semester 2022/23.

Below you will find excerpts from events related to this course:

Financial Econometrics
2520022, WS 22/23, 2 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content
Learning objectives:
The student
- shows a broad knowledge of financial econometric estimation and testing techniques
- is able to apply his/her technical knowledge using software in order to critically assess empirical problems

Content:
ARMA, ARIMA, ARFIMA, (non)stationarity, causality, cointegration, ARCH/GARCH, stochastic volatility models, computer based exercises

Requirements:
It is recommended to attend the course Economics III: Introduction to Econometrics [2520016] prior to this course.

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours
Literature
Additional literature will be discussed in the lecture.
Course: Financial Econometrics II [T-WIWI-110939]

Responsible: Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101599 - Statistics and Econometrics
- M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (Takehome Exam). Details will be announced at the beginning of the course.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Financial Econometrics"

Annotation
Course language is English
The next lecture will take place in the summer semester of 2023.
6.57 Course: Financial Intermediation [T-WIWI-102623]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2530232</td>
<td>Financial Intermediation</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2530233</td>
<td>Übung zu Finanzintermediation</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Ruckes, Benz</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7900078</td>
<td>Financial Intermediation</td>
<td></td>
<td></td>
<td>Ruckes</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 7900063</td>
<td>Financial Intermediation</td>
<td></td>
<td></td>
<td>Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Financial Intermediation

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530232, WS 22/23</td>
<td>Financial Intermediation</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Literature

Weiterführende Literatur:

6.58 Course: Financial Management [T-WIWI-102605]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101435 - Essentials of Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Faculties</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2530216</td>
<td>Financial Management</td>
<td>2</td>
<td>Lecture /📍</td>
<td>Ruckes</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2530217</td>
<td>Übung zu Financial Management</td>
<td>1</td>
<td>Practice /📍</td>
<td>Ruckes, Wiegratz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Faculties</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900074</td>
<td>Financial Management</td>
<td>1</td>
<td>Lecture /📍</td>
<td>Ruckes</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900060</td>
<td>Financial Management</td>
<td>1</td>
<td>Lecture /📍</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Legend:
- 📍 Online
- 🟢 Blended (On-Site/Online)
- 🟠 On-Site
- ❌ Canceled

Competence Certificate
The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Knowledge of the content of the course Business Administration: Finance and Accounting [25026/25027] is recommended.

Below you will find excerpts from events related to this course:

Financial Management
2530216, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Literature
Weiterführende Literatur:

6.59 Course: Financing and Accounting [T-WIWI-111595]

Responsible:
- Dr. Torsten Luedecke
- Prof. Dr. Martin Ruckes
- Dr. Jan-Oliver Strych
- Prof. Dr. Marliese Uhrig-Homburg
- Prof. Dr. Marcus Wouters

Organisation:
- KIT Department of Economics and Management

Part of:
- M-WIWI-105267 - Business Administration

Type
Written examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2500002</td>
<td>Jahresabschluss und Bewertung</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2500025</td>
<td>Tutorien zu Finanzierung und Rechnungswesen</td>
<td>Tutorial</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2610026</td>
<td>Finance and Accounting</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900043</td>
<td>Financing and Accounting</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900005</td>
<td>Financing and Accounting</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Written Exam. The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Below you will find excerpts from events related to this course:

Finance and Accounting

2610026, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Content
The lecture covers the following topics:

- Investment and Finance
 - Valuation of Bonds and Stocks
 - Capital Budgeting
 - Portfolio Theory
- Financial Accounting
- Management Accounting

Literature
Ausführliche Literaturhinweise werden in den Materialen zur Vorlesung gegeben.
6.60 Course: Formal Systems [T-INFO-101336]

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of: M-INFO-100799 - Formal Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>24086</td>
<td>Formale Systeme</td>
<td>4</td>
<td>Lecture / Practice (</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beckert, Ulbrich, Weigl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500009</td>
<td>Formal Systems</td>
<td>Beckert</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500036</td>
<td>Formal Systems</td>
<td>Beckert</td>
<td></td>
</tr>
</tbody>
</table>
Course: Foundations of Interactive Systems [T-WIWI-109816]

Responsibility: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-105928 - HR Management & Digital Workplace
- M-WIWI-105981 - Information Systems & Digital Business

Type: Examination of another type

Credits: 4.5

Grading scale: Grade to a third

Recurrence: Each summer term

Version: 3

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Mädche, Toreini</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate

Alternative exam assessment. The assessment is carried out in the form of a one-hour written examination and by carrying out a Capstone project.

Details on the assessment will be announced during the lecture.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Foundations of Interactive Systems

2540560, SS 2022, 3 SWS, Language: English, [Open in study portal](#)
Content

Lecture Description
Computers have evolved from batch processors to highly interactive systems. This offers new possibilities besides challenges for the successful interaction design between humans and computers. Interactive systems are socio-technical systems in which users perform tasks by interacting with technology in a specific context to achieve specified goals and outcomes.

This lecture introduces key concepts and principles of interactive systems from a human and computer perspective. Furthermore, it describes core development processes for interactive systems as well as provides insights on the use & contexts of interactive systems with a specific focus on selected application areas in organizations and society. With this lecture, students acquire foundational knowledge to successfully design the interaction between humans and computers in business and private life.

The course is complemented with a design Capstone Project, where students in a team apply design methods & techniques to create an interactive prototype. For the SS2022, the capstone project focuses on understanding user experience with AR-based shopping systems on mobile phones and provides a new design based on the capabilities of smart glasses.

Learning Objectives
The students
- have a basic understanding of key conceptual and theoretical foundations of interactive systems from a human and computer perspective
- are aware of important design principles for the design of important classes of interactive systems
- know design processes and techniques for developing interactive systems
- know how to apply the knowledge and skills gathered in the lecture for a real-world problem (as part of design-oriented capstone project)

Prerequisites
No specific prerequisites are required for the lecture

Start Date: 26.04.2022

Literature
Further literature will be made available in the lecture.
T

6.62 Course: Foundations of Mobile Business [T-WIWI-104679]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Lecture</td>
<td>Schiefer, Frister</td>
</tr>
<tr>
<td>ST 2022</td>
<td>1</td>
<td>Practice</td>
<td>Schiefer, Frister</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>1 SWS</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td></td>
<td>Practice</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment of this course is a written (60 min.) or (if necessary) oral examination according to §4(2) of the examination regulation.

Prerequisites
None

Annotation
Lecture and exercises are integrated.

Below you will find excerpts from events related to this course:

V

Foundations of mobile Business
2511226, SS 2022, 2 SWS, Language: German, Open in study portal

Content
The lecture covers the basics of mobile business with a focus on (information) technical basics. These are interlinked with the economic background in Germany.

Contents are:
1. organizational matters
2. introduction & definitions
3. mobile devices
4. mobile radio technologies
5. mobile communications market
6. mobile applications
7. digital radio technologies
8. location & context

Note: The teaching units listed above each have a different scope.

Learning objectives:
If you are confronted with a question in your job which affects "Mobile Business", you should be able to provide answers quickly and competently:

Market structures technique
Possibilities for applications lawsuits issues

Workload:
The total workload for this course unit is approx. 135 hours (4.5 credit points).
Organizational issues
Vorlesung und Übung werden integriert angeboten.

Literature

 http://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/resources/Mobile_Communications/course_Material/index.html
- Martin Sauter: Grundkurs Mobile Kommunikationssysteme (6. Aufl. 2015)
- Dodel, H., Häupler, D.: Satellitennavigation

Einige relevante Informationen im Web

- Bundesnetzagentur http://www.bundesnetzagentur.de
 u.a. Jahresbericht und Marktbeobachtung
- VATM-Marktstudien
 http://www.vatm.de/vatm-marktstudien.html
- Verbände, bspw. BITKOM (bitkom.org), eco e.V. (eco.de)
- Presse, bspw. Teltarif, Heise, Golem, ...
- Statistiken (Statista Lizenz des KIT)
6.63 Course: Fundamentals of Production Management [T-WIWI-102606]

Responsible: Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101437 - Industrial Production I

Type

- Written examination

Credits

- 5.5

Grading scale

- Grade to a third

Recurrence

- Each summer term

Version

- 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code/Date</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2581950</td>
<td>Fundamentals of Production Management</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Each summer term</td>
<td>Schultmann</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2581951</td>
<td>Übungen Grundlagen der Produktionswirtschaft</td>
<td>Practice / 🗣</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Each summer term</td>
<td>Steins, Stefl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code/Date</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7981950</td>
<td>Fundamentals of Production Management</td>
<td>Lecture (V)</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None

Below you will find excerpts from events related to this course:

Fundamentals of Production Management

- 2581950, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Content
This lecture focuses on strategic production management with respect to various economic aspects. Interdisciplinary approaches of systems theory will be used to describe the challenges of industrial production. This course will emphasize the importance of R&D as the central step in strategic corporate planning to ensure future long-term success. In the field of site selection and planning for firms and factories, attention will be drawn upon individual aspects of existing and greenfield sites as well as existing distribution and supply centres. Students will obtain knowledge in solving internal and external transport and storage problems.

Organizational issues
Blockveranstaltung, siehe Institutsaushang

Literature
Wird in der Veranstaltung bekannt gegeben.
T 6.64 Course: Geometric Basics for Geometry Processing [T-INFO-101293]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: M-INFO-100756 - Geometric Basics for Geometry Processing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Registration</th>
<th>Exam Details</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500245</td>
<td>Geometric Basics for Geometry Processing</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
6.65 Course: Geometric Optimization [T-INFO-101267]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: M-INFO-100730 - Geometric Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credit Code</th>
<th>Subject</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500230</td>
<td>Geometric Optimization</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
Course: Global Optimization I [T-WIWI-102726]

6.66 Course: Global Optimization I [T-WIWI-102726]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101413 - Applications of Operations Research
- M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2550134</td>
<td>Global Optimization I</td>
<td>Lecture / 📚</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900270_SS2022_HK</td>
<td>Global Optimization I</td>
<td>Stein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900004_WS2223_NK</td>
<td>Global Optimization I</td>
<td>Stein</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Competence Certificate

Success is in the form of a written examination (60 min.) (according to § 4(2), 1 SPO). The successful completion of the exercises is required for admission to the written exam.

The exam is offered in the lecture of semester and the following semester.

The success check can be done also with the success control for “Global optimization II”. In this case, the duration of the written exam is 120 min.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>ID</th>
<th>Title</th>
<th>Type</th>
<th>Language</th>
<th>Duration</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2550134</td>
<td>Global Optimization I</td>
<td>Lecture (V)</td>
<td>German</td>
<td>2 SWS</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Open in study portal
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley’s cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
6.67 Course: Global Optimization I and II [T-WIWI-103638]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Event Description</th>
<th>Type</th>
<th>SWS</th>
<th>Language</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2550134</td>
<td>Global Optimization I</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>German</td>
<td>Stein</td>
</tr>
<tr>
<td>ST 2022 2550135</td>
<td>Exercise to Global Optimization I and II</td>
<td>Practice</td>
<td>2 SWS</td>
<td>German</td>
<td>Stein, Beck</td>
</tr>
<tr>
<td>ST 2022 2550136</td>
<td>Global Optimization II</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>German</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Event Description</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7900272_SS2022_HK</td>
<td>Global Optimization I and II</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
<tr>
<td>WT 22/23 7900006_WS2223_NK</td>
<td>Global Optimization I and II</td>
<td>Lecture</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of the lecture is a written examination (120 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Global Optimization I

2550134, SS 2022, 2 SWS, Language: German, [Open in study portal](#)
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley's cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000

Global Optimization II
2550136, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of convex optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.
Literature

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
6 COURSES

Course: Global Optimization II [T-WIWI-102727]

6.68 Course: Global Optimization II [T-WIWI-102727]

- **Responsible:** Prof. Dr. Oliver Stein
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2550136</td>
<td>Global Optimization II</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th></th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900271_SS2022_HK</td>
<td>Global Optimization II</td>
<td></td>
<td>Lecture / 🗣️</td>
<td>Stein</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900005_WS2223_NK</td>
<td>Global Optimization II</td>
<td></td>
<td>Lecture / 🗣️</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💹 Blended (On-Site/Online), 🗣️ On-Site, 🗓 Cancelled

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of "Global optimization I". In this case, the duration of the written examination takes 120 minutes.

Prerequisites

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Global Optimization II

2550136, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of convex optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.

Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
6.69 Course: Human Resource Management [T-WIWI-102909]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101513 - Human Resources and Organizations
M-WIWI-105928 - HR Management & Digital Workplace

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Credit(s)</th>
<th>Type/Lecture/Practice</th>
<th>Responsible/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2573005</td>
<td>Human Resource Management</td>
<td>2 SWS</td>
<td>Lecture / Nieken</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2573006</td>
<td>Übung zu Human Resource Management</td>
<td>1 SWS</td>
<td>Practice / Nieken, Mitarbeiter, Walther</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Credit(s)</th>
<th>Type/Lecture</th>
<th>Responsible/Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900134</td>
<td>Human Resource Management</td>
<td></td>
<td></td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment of this course is a written examination of 1 hour. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites
None

Recommendation
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory, and statistics is recommended.

Below you will find excerpts from events related to this course:

Human Resource Management
2573005, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site

Content
The students acquire basic knowledge in the fields of human resource planning, selection and talent management. Different processes and instruments and their link to corporate strategy are evaluated based on microeconomic and behavioral approaches. The results are tested and discussed based on empirical data.

Aim
The student

- understands the processes and instruments of human resource management.
- analyzes different methods of human resource planning and selection and evaluates their usefulness.
- analyzes different processes of talent management and evaluates the strengths and weaknesses.
- understands the challenges of human resource management and its link to corporate strategy.

Workload
The total workload for this course is approximately 135 hours.
Lecture: 32 hours
Preparation of lecture: 52 hours
Exam preparation: 51 hours

Literature

- Personnel Economics in Practice, Lazear & Gibbs, John Wiley & Sons, 2014
- Strategic Human Resources. Frameworks for General Managers, Baron & Kreps, John Wiley & Sons, 1999
6.70 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 24659 | Human-Computer-Interaction | 2 SWS | Lecture / 🖥 | Beigl |

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500048</td>
<td>Human-Machine-Interaction</td>
<td></td>
<td></td>
<td>Beigl</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500076</td>
<td>Human-Machine-Interaction</td>
<td></td>
<td></td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 📚 On-Site, ✗ Canceled
6.71 Course: Human-Machine-Interaction Pass [T-INFO-106257]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2400095</td>
<td>1 SWS</td>
<td>Human-Computer-Interaction</td>
<td>Practice</td>
<td>Beigl, Pescara</td>
<td></td>
</tr>
<tr>
<td>ST 2022 24659</td>
<td>2 SWS</td>
<td>Human-Computer-Interaction</td>
<td>Lecture</td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7500121</td>
<td>Human-Machine-Interaction</td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📦 Online, 🧱 Blended (On-Site/Online), 🖥 On-Site, ✗ Cancelled
6.72 Course: Industrial Organization [T-WIWI-102844]

Responsible: Prof. Dr. Johannes Philipp Reiß
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101499 - Applied Microeconomics
M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2560238 Industrial Organization</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Reiß, Peters</td>
<td></td>
</tr>
<tr>
<td>ST 2022 2560239 Übung zu Industrieökonomie</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Peters, Reiß</td>
<td></td>
</tr>
</tbody>
</table>

Exams
<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7990002 Industrial Organization</td>
<td></td>
<td></td>
<td>Reiß</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📀 Online, 🍊 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Completion of the module Economics [WW1VWL] is assumed.

Annotation
This course is not given in summer 2017.

Below you will find excerpts from events related to this course:

Industrial Organization
2560238, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Literature
Verpflichtende Literatur:

Ergänzende Literatur:
Course: Information Systems 1 [T-WIWI-109817]

Responsible: Prof. Dr. Alexander Mädche
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-104820 - Information Systems I
- M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>2500034</td>
<td>Tutorial for Information Systems I</td>
<td>2 SWS</td>
<td></td>
<td>Mädche, Abeck</td>
</tr>
<tr>
<td>Lecture</td>
<td>2540425</td>
<td>Information Systems I</td>
<td>2 SWS</td>
<td></td>
<td>Mädche, Weinhardt, Abeck</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Code</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>7900279</td>
<td>Information Systems I</td>
<td>Mädche</td>
</tr>
<tr>
<td>Exam</td>
<td>7900103</td>
<td>Information Systems I</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment is monitored in the form of a written test (60 minutes) at the end of the lecture period. By successful processing the exercises a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Information Systems I
2540425, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content

In the lecture Information Systems I of the module central basics of information systems are introduced as a scientific discipline. For this purpose, the objects of knowledge, basic terms, scientific character and goals as well as methods in science and practice of information systems are introduced. Concepts, methods and theories as well as systems and their technical design are discussed along the analysis units individual, group, organization and market. The lecture focuses on the analysis units individual and group. Within the framework of the lecture, a Capstone project is worked on in a team, which takes up a real social question and develops a concrete problem solution.

Learning objective:

The student

- can describe the subject area of the discipline information systems in science and practice
 - knows the central terms as well as goals, core tasks and objects of knowledge of information systems
- understands the interplay of subject area, method and theory in information systems
- can define the central analysis units individual, group, organisation and market and obtain a basic understanding of the targeted use of information systems and infrastructures
- develops an understanding of the importance of interdisciplinary, systemic thinking and develops in a team a solution to a real social problem

Workload:

Total effort for 4 credit points: approx. 120 hours. Presence time: 40 hours Preparation/postprocessing: 40 hours Examination and exam preparation: 40 hours
6.74 Course: Information Systems 2 [T-WIWI-109818]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104821 - Information Systems II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Module</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2540450</td>
<td>Foundations of Interactive Systems 2</td>
<td>Lecture</td>
<td>Mädche, Knierim, Gnewuch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Module</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900325</td>
<td>Information Systems 2</td>
<td>Lecture</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None

Recommendation
None

Annotation
New course starting summer term 2020.
Course: Intellectual Property and Data Protection [T-INFO-109840]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101253 - Intellectual Property and Data Protection

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 24018</td>
<td>2 SWS</td>
<td>Datenschutzrecht</td>
<td>Schneider</td>
</tr>
<tr>
<td>WT 22/23 24070</td>
<td>2 SWS</td>
<td>Industrial Property and Copyright Law</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7500299</td>
<td></td>
<td>Intellectual Property and Data Protection</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.76 Course: International Finance [T-WIWI-102646]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 2530570 | International Finance | 2 SWS | Lecture / Walter, Uhrig-Homburg |

| Exams | 7900097 | International Finance | Uhrig-Homburg |

| WT 22/23 | 7900052 | International Finance | Uhrig-Homburg |

- **ST 2022**: 2530570, SS 2022, 2 SWS, Language: German, Open in study portal
- **Exams**: 7900097, International Finance, 2 SWS, Uhrig-Homburg
- **WT 22/23**: 7900052, International Finance, 2 SWS, Uhrig-Homburg

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

None

Annotation

The course is offered as a 14-day or block course.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>International Finance</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530570, SS 2022, 2 SWS, Language: German, Open in study portal</td>
<td>On-Site</td>
</tr>
</tbody>
</table>

Organizational issues

Die Veranstaltung wird als Blockveranstaltung angeboten, nach dem Kickoff am 27.04. nach Absprache.

Literature

Weiterführende Literatur:

6.77 Course: Introduction in Computer Networks [T-INFO-102015]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: M-INFO-103455 - Introduction in Computer Networks

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2022 24519</td>
<td>Einführung in Rechnernetze</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Kopmann, Neumeister, Schneider, Zitterbart</td>
</tr>
<tr>
<td>ST 2022 24521</td>
<td>Übung zu Einführung in Rechnernetze</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Kopmann, Neumeister, Schneider, Zitterbart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7500116</td>
<td>Introduction to Computer Networking</td>
<td></td>
<td></td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
6.78 Course: Introduction to Energy Economics [T-WIWI-102746]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022, 2581010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Introduction to Energy Economics</td>
</tr>
<tr>
<td>ST 2022, 2581011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Practice</td>
<td>Übungen zu Einführung in die Energiewirtschaft</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Type</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022, 7981010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Introduction to Energy Economics</td>
</tr>
</tbody>
</table>

Legend: ☲ Online, ☳ Blended (On-Site/Online), ☹ On-Site, ☳ Cancelled

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None.

Below you will find excerpts from events related to this course:

Introduction to Energy Economics
2581010, SS 2022, 2 SWS, Language: German, Open in study portal

Content

1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Literature

Weiterführende Literatur:
Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
6.79 Course: Introduction to Game Theory [T-WIWI-102850]

Responsibility:
Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Organisation:
KIT Department of Economics and Management

Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2520525</td>
<td>Introduction to Game Theory</td>
<td>2</td>
<td>Lecture / 🗣 Rosar</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2520526</td>
<td>Übungen zu Einführung in die Spieltheorie</td>
<td>1</td>
<td>Practice / 🗣 Rosar</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>7900046</td>
<td>Introduction to Game Theory</td>
<td>1</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be repeated at every ordinary examination date.

Recommendation
Knowledge from the lecture "Economics I: Microeconomics" is recommended. Furthermore, basic knowledge of mathematics and statistics is assumed.

Below you will find excerpts from events related to this course:

Introduction to Game Theory

2520525, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Content
The course focusses on non-cooperative game theory. It discusses models, solution concepts, and applications for simultaneous games as well as sequential games. Various solution concepts, e.g., Nash equilibrium and subgame-perfect equilibrium, are introduced along with more advanced concepts. A short introduction to cooperative game theory is given if there is sufficient time.

The assessment consists of a written exam (60 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be resit at every ordinary examination date.

The module [M-WIWI-101398] Introduction to Economics must have been passed.

Recommendations:
Basic knowledge of mathematics and statistics is assumed.

The total workload for this course is approximately 135.0 hours. For further information see German version.

This course offers an introduction to the theoretical analysis of strategic interaction situations. At the end of the course, students shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings.

Compulsory textbook:

Additional Literature:
Literature
Verpflichtende Literatur:

Ergänzende Literatur:
6.80 Course: Introduction to Machine Learning [T-WIWI-111028]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Dr. Abdolreza Nazemi

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105482 - Machine Learning and Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 7900076 | Introduction to Machine Learning | Geyer-Schulz |

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five-point-steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.
6.81 Course: Introduction to Neural Networks and Genetic Algorithms [T-WIWI-111029]

Responsible: Prof. Dr. Andreas Geyer-Schulz

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105482 - Machine Learning and Data Science

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Each summer term

Expansion
- 1 terms

Version
- 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2540541</td>
<td></td>
<td>Introduction to Neural Networks and Genetic Algorithms</td>
<td></td>
<td>Lecture Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>1 SWS</td>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2540542</td>
<td></td>
<td>Übung Introduction to Neural Networks and Genetic Algorithms</td>
<td></td>
<td>Practice Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7900303</td>
<td>Introduction to Neural Networks and Genetic Algorithms</td>
<td></td>
<td>Lecture Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2). 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five-point-steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Below you will find excerpts from events related to this course:

V Introduction to Neural Networks and Genetic Algorithms

2540541, SS 2022, 2 SWS, Language: English, Open in study portal

Content
The course consists of a short introduction and two parts:

1. In the introduction, the biological mechanisms of neural and genetic methods are presented. Furthermore, a common framework for the learning performance evaluation of these methods in applications is introduced.
2. In the field of genetic methods, simple genetic algorithms and their variants are introduced, analyzed, and applied.
3. In the area of neural methods, the basic algorithms are presented (e.g., backpropagation) as well as their applications in data science.

Learning Objectives:
The student knows the essential algorithms, learning procedures, and methods for neural networks and genetic algorithms. They can apply these methods (e.g. in R) and evaluate their quality.

Literature

- Goldberg, David E. (2001)
 Addison-Wesley, New York.
- Bishop, Christopher M. (2006)
 Pattern Recognition and Machine Learning.
- Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016)
 Deep Learning.
 MIT Press. Cambridge.
6.82 Course: Introduction to Operations Research I and II [T-WIWI-102758]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101418 - Introduction to Operations Research

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>9</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2550040</td>
<td>Introduction to Operations Research I</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2530044</td>
<td>Tutorial to Operations Research II</td>
<td>2+2</td>
<td>Lecture / 🗣️</td>
<td>Dunke</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2550043</td>
<td>Introduction to Operations Research II</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900038</td>
<td>Introduction to Operations Research I and II</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

The overall grade of the module is the grade of the written examination.

Prerequisites

None

Recommendation

Mathematics I und II. Programming knowledge for computing exercises.

It is strongly recommended to attend the course Introduction to Operations Research I [2550040] before attending the course Introduction to Operations Research II [2530043].

Below you will find excerpts from events related to this course:

Introduction to Operations Research I

2550040, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

Examples for typical OR problems.

Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.

Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Learning objectives:

The student

- names and describes basic notions of linear programming as well as graphs and networks,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.
Introduction to Operations Research II

2550043, WS 22/23, 2+2 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content

Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.

Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.

Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynamic and stochastic inventory models, queuing theory.

Learning objectives:

The student

- names and describes basic notions of integer and combinatorial optimization, nonlinear programming, and dynamic programming,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Literature

6.83 Course: Introduction to Public Finance [T-WIWI-102877]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101403 - Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Title</th>
<th>Language</th>
<th>Exam Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Online</td>
<td>3 SWS</td>
<td>Introduction to Public Finance</td>
<td>German</td>
<td>Wigger</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Online</td>
<td></td>
<td>Introduction to Public Finance</td>
<td>German</td>
<td>Wigger</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Online</td>
<td></td>
<td>Introduction to Public Finance</td>
<td>German</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate
Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites
None

Below you will find excerpts from events related to this course:

Introduction to Public Finance
2560131, WS 22/23, 3 SWS, Language: German, Open in study portal
Lecture (V) Online

Content
The course *Introduction to Public Finance* provides an overview of the fundamental issues in public economics. The first part of the course deals with normative theories about the economic role of the state in a market economy. Welfare economics theory is offered as a base model, with which alternative normative theories are compared and contrasted. Within this theoretical framework, arguments concerning efficiency and equity are developed as justification for varying degrees of economic intervention by the state. The second part of the course deals with the positivist theory of public economics. Processes of public decision making are examined and the conditions that lead to market failures resulting from collective action problems are discussed. The third part of the course examines a variety of public spending programs, including social security systems, the public education system, and programs aimed at reducing poverty. The fifth part of the course addresses the key theoretical and political issues associated with fiscal federalism.

Learning goals:
Students are able to:

- critically assess the economic role of the state in a market economy
- explain and discuss key concepts in public finance, including: public goods; economic externalities; and market failure
- explain and critically discuss competing theoretical approaches to public finance, including welfare economics and public choice theory
- explain the theory of bureaucracy according to Weber and critically assess its strengths and weaknesses
- evaluate the incentives inherent in the bureaucratic model, as well as the more recent introduction of market-oriented incentives associated with public-sector reform

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

Course: Introduction to Stochastic Optimization [T-WIWI-106546]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2550470</td>
<td>2 SWS</td>
<td>Introduction to Stochastic Optimization</td>
<td></td>
<td></td>
<td>Rebennack</td>
</tr>
<tr>
<td>ST 2022 2550471</td>
<td>1 SWS</td>
<td>Übung zur Einführung in die Stochastische Optimierung</td>
<td></td>
<td></td>
<td>Rebennack, Sinske</td>
</tr>
<tr>
<td>ST 2022 2550474</td>
<td>2 SWS</td>
<td>Rechnerübung zur Einführung in die Stochastische Optimierung</td>
<td></td>
<td></td>
<td>Rebennack, Sinske</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7900311</td>
<td></td>
<td>Introduction to Stochastic Optimization</td>
<td></td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes). The exam takes place in every semester.

Prerequisites
None.
6.85 Course: Investments [T-WIWI-102604]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101435 - Essentials of Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2530575</td>
<td>Investments</td>
<td>2</td>
<td>Lecture / μ</td>
<td>Uhrig-Homburg, Müller</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2530576</td>
<td>Übung zu Investments</td>
<td>1</td>
<td>Practice / μ</td>
<td>Uhrig-Homburg, Kargus</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900109</td>
<td>Investments</td>
<td>On-Site</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900054</td>
<td>Investments</td>
<td>On-Site</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination or as an open-book examination (alternative exam assessment).

A bonus can be earned by correctly solving at least 50% of the posed bonus exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by up to one grade level (0.3 or 0.4). Details will be announced in the lecture.

Prerequisites
None

Recommendation
Knowledge of Business Administration: Finance and Accounting [2610026] is recommended.

Below you will find excerpts from events related to this course:

Investments
2530575, SS 2022, 2 SWS, Language: German, Open in study portal

Literature
Weiterführende Literatur:
6.86 Course: Lab Protocol Engineering [T-INFO-102066]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: M-INFO-101247 - Lab Protocol Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 2400107</td>
<td>Basispraktikum Protocol Engineering</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>König, Zitterbart, Mahrt</td>
<td></td>
</tr>
</tbody>
</table>
6.87 Course: Lab: Working with Database Systems [T-INFO-103552]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Klemens Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-101865 - Lab: Working with Database Systems</td>
</tr>
<tr>
<td></td>
<td>M-INFO-105589 - Introduction to Data and Information Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Code</th>
<th>Title</th>
<th>Semester Units</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>24317</td>
<td>Arbeiten mit Datenbanksystemen</td>
<td>2 SWS</td>
<td></td>
<td>Böhm, Richter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7500146</td>
<td>Lab: Working with Database Systems</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗪 On-Site, ❌ Cancelled
Course: Logistics and Supply Chain Management [T-WIWI-102870]

Responsible: Dr.-Ing. Miriam Klein
Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2581996 Logistics and Supply Chain Management 2 SWS Lecture / 🗣 Schultmann, Klein</td>
</tr>
<tr>
<td>ST 2022 2581997 Übung zu Logistics and Supply Chain Management 1 SWS Practice / 🗣 Lüttenberg, Eberhardt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7981996 Logistics and Supply Chain Management Schultmann</td>
</tr>
</tbody>
</table>

- **Competence Certificate**
 - The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

- **Below you will find excerpts from events related to this course:**

 Logistics and Supply Chain Management
 2581996, SS 2022, 2 SWS, Language: English, [Open in study portal](#)

 On-Site

Content

- Students are introduced to the methods and tools of logistics and supply chain management. They learn the key terms and components of supply chains together with key economic trade-offs. In detail, students gain knowledge of decisions in supply chain management, such as facility location, supply chain planning, inventory management, pricing and supply chain cooperation. In this manner, students will gain knowledge in analyzing, designing and steering of decisions in the domain of logistics and supply chain management.

- Introduction: Basic terms and concepts
- Facility location and network optimization
- Supply chain planning I: flexibility
- Supply chain planning II: forecasting
- Inventory management & pricing
- Supply chain coordination I: the Bullwhip-effect
- Supply chain coordination II: double marginalization
- Supply chain risk management

Literature

Wird in der Veranstaltung bekannt gegeben.
6.89 Course: Macroeconomic Theory [T-WIWI-109121]

Responsible: Prof. Dr. Johannes Brumm
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101501 - Economic Theory
- M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Lecture</td>
<td>/ 🗣</td>
<td>Brumm, Krause</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>1</td>
<td>Practice</td>
<td>/ 🗣</td>
<td>Pegorari</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Lecture</td>
<td>(V)</td>
<td>Brumm</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Lecture (V)</td>
<td>On-Site</td>
<td>Brumm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Macroeconomic Theory

2560404, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V)

On-Site

Content

This course introduces a modern approach to macroeconomics by building on microeconomic principles. To be able to rigorously address key macroeconomic questions a general framework based on intertemporal decision making is introduced. Starting by the principles of consumer and firm behavior, this framework is successively expanded by introducing market imperfections, monetary factors as well as international trade. With this framework at hand students are able to analyze labor market policies, government deficits, monetary policy, trade policy, and other important macroeconomic problems. Throughout the course, we not only point out the power of theory but also its limitations.

Literature

Literatur und Skripte werden in der Veranstaltung angegeben.
6.90 Course: Management and Marketing [T-WIWI-111594]

| Responsible: | Prof. Dr. Martin Klarmann
| | Prof. Dr. Hagen Lindstädt
| | Prof. Dr. Petra Nieken
| | Prof. Dr. Orestis Terzidis
| Organisation: | KIT Department of Economics and Management
| Part of: | M-WIWI-105267 - Business Administration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2600023</td>
<td>Management</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2610026</td>
<td>Marketing</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900184</td>
<td>Management and Marketing</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900012</td>
<td>Management and Marketing</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Written exam on the two courses "Management" and "Marketing". The examination is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Marketing
2610026, WS 22/23, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Literature
Ausführliche Literaturhinweise werden in den Materialen zur Vorlesung gegeben.
6.91 Course: Management and Strategy [T-WIWI-102629]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101425 - Strategy and Organization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Management and Strategy</td>
<td>German</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td>Lecture / On-Site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>790067</td>
<td>Management and Strategy</td>
<td></td>
<td>Lindstädt</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900199</td>
<td>Management and Strategy</td>
<td></td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Management and Strategy
2577900, SS 2022, 2 SWS, Language: German, [Open in study portal]

Lecture (V)
On-Site
Content
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration. Thereby a focus is on imparting knowledge about how price developments in oligopolistic markets can be understood, modeled and forecasted based on game theory.

Content in brief:
- Corporate management principles
- Strategic management principles
- Strategic analysis
- Competitive strategy: modelling and selection on a divisional level
- Strategies for oligopolies and networks: anticipation of dependencies
- Corporate strategy: modelling and evaluation on a corporate level
- Strategy implementation

Learning Objectives:
After passing this course students are able to
- prepare strategic decisions along the ideal-typical strategy process in practice ("strategic analysis").
- assess strategic options.
- explain the portfolio management (Parental advantage and best owner of business entities).
- discuss price and capacity decisions in oligopolies and explain them in examples.

Recommendations:
None.

Workload:
The total workload for this course is approximately 105.0 hours. For further information see German version.

Assessment:
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as an open-book examination (examination performance of a different kind according to SPO § 4 para. 2, item 3), or as a 60-minute written examination (written examination according to SPO § 4 para. 2, item 1).

It is expected that the exam will take place at the beginning of the semester’s lecture-free period.

The examination is offered every semester and can be repeated at any regular examination date.

Literature

Die relevanten Auszüge und zusätzliche Quellen werden in der Veranstaltung bekannt gegeben.
6.92 Course: Managing Organizations [T-WIWI-102630]

Responsible: Prof. Dr. Hagen Lindstädt
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101425 - Strategy and Organization
- M-WIWI-101513 - Human Resources and Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2577902</td>
<td>Managing Organizations</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lindstädt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900066</td>
<td>Managing Organizations</td>
<td>Lecture</td>
<td></td>
<td>Lindstädt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900049</td>
<td>Managing Organizations</td>
<td>Lecture</td>
<td></td>
<td>Lindstädt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Managing Organizations
2577902, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
On-Site
Content
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organizational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Content in brief:
- Principles of organisational management
- Managing organisational structures and processes: the selection of design parameters
- Ideal-typical organisational structures: choice and effect of parameter combinations
- Managing organisational changes

Learning Objectives:
After passing this course students are able to
- evaluate strengths and weaknesses of existing organisational structures and rules.
- compare alternatives of organisational structure in practice and assess and interpret them regarding their effectiveness and efficiency.
- assess the management of organisational changes.

Recommendations:
None.

Workload:
The total workload for this course is approximately 105.0 hours. For further information see German version.

Assessment:
The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.
A bonus can be acquired through successful participation in the exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for the award of a bonus will be announced at the beginning of the lecture.

Literature

Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.
6.93 Course: Managing the Marketing Mix [T-WIWI-102805]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Mode</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2571152</td>
<td>Managing the Marketing Mix</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Klarmann</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2571153</td>
<td>Übung zu Marketing Mix (Bachelor)</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Cordts, Gerlach</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Mode</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900023</td>
<td>Managing the Marketing Mix</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Klarmann</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900205</td>
<td>Managing the Marketing Mix</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of success takes place through the preparation and presentation of a case study (max. 30 points) as well as a written exam with additional aids in the sense of an open book exam (max. 60 points). In total, a maximum of 90 points can be achieved in the course. The written exam will either take place in the lecture hall or online, depending on further pandemic developments. Further details will be announced during the lecture.

Prerequisites
None

Annotation
The course is compulsory in the module "Foundations of Marketing". For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

Managing the Marketing Mix
2571152, SS 2022, 2 SWS, Language: German, Open in study portal

Content
The content of this course concentrates on the elements of the marketing mix. Therefore the main chapters are brand management, pricing, promotion and sales management.

For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

This course is compulsory within or the module "Foundations of Marketing" and must be examined.

Learning objectives:

- student
 - know the meaning of the branding, the brand positioning and the possibilities of the brand value calculation
 - understand the price behavior of customers and can apply this knowledge to the practice
 - know different methods for price determination (conjoint analysis, cost-plus determination, target costing, customer surveys, bidding procedures) and price differentiation
 - are able to name and explain the relevant communication theories
 - can identify crisis situations and formulate appropriate response strategies
 - can name and judge different possibilities of the Intermediaplanung
 - know various design elements of advertising communication
 - understand the measurement of advertising impact and can apply it
 - know the basics of sales organization
 - are able to evaluate basic sales channel decisions

Workload:
The total workload for this course is approximately 135.0 hours.
Literature
6.94 Course: MARS Basis Lab [T-INFO-102053]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: M-INFO-101245 - MARS-Based Internship

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2400036</td>
<td></td>
<td>MARS-Basispraktikum</td>
<td>4</td>
<td>Practical course / 🧩</td>
<td>Xu, Prautzsch</td>
</tr>
<tr>
<td>WT 22/23 2400025</td>
<td></td>
<td>MARS-practical course</td>
<td>2</td>
<td>Practical course / 🧩</td>
<td>Prautzsch, Xu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7500170</td>
<td></td>
<td>MARS basis lab</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗨 On-Site, ✗ Cancelled
6.95 Course: Mathematics I for Information Systems - Exam [T-MATH-109942]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of:
- M-MATH-104914 - Mathematics I
- M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>7</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Module Name</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7700072</td>
<td>Mathematics I for Information Systems - Exam</td>
<td>Wieners</td>
</tr>
</tbody>
</table>

Annotation
This exam is part of the orientation exam.
6 COURSES
Course: Mathematics I for Information Systems - Exercise [T-MATH-109943]

6.96 Course: Mathematics I for Information Systems - Exercise [T-MATH-109943]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of:
- M-MATH-104914 - Mathematics I
- M-WIWI-104843 - Orientation Exam

Type
- Completed coursework

Credits
- 1

Grading scale
- pass/fail

Version
- 2

Annotation
This exam is part of the orientation exam.
6.97 Course: Mathematics II for Information Systems - Exam [T-MATH-109944]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Andreas Rieder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dr. Daniel Weiß</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. Christian Wieners</td>
</tr>
<tr>
<td>Organisation</td>
<td>KIT Department of Mathematics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-MATH-104915 - Mathematics II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>7</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 0187700 | Mathematik II für Wirtschaftsinformatik | 4 SWS | Lecture | Wieners |

Exams

| ST 2022 | 7700021 | Mathematics II for Information Systems - Exam | Wieners |
6.98 Course: Mathematics II for Information Systems - Exercise [T-MATH-109945]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiss
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-104915 - Mathematics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7700093</th>
<th>Mathematics II for Information Systems - Exercise</th>
<th>Wieners</th>
</tr>
</thead>
</table>
6.99 Course: Mechanisms and Applications of Workflow Systems [T-INFO-101257]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Jutta Mülle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-INFO-105589 - Introduction to Data and Information Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500094</td>
<td>Mechanisms and Applications of Workflow Systems</td>
<td>Mülle</td>
</tr>
</tbody>
</table>
6 COURSES

T 6.100 Course: Mechano-Informatics and Robotics [T-INFO-101294]

 Responsible: Prof. Dr.-Ing. Tamim Asfour
 Organisation: KIT Department of Informatics
 Part of: M-INFO-100757 - Mechano-Informatics and Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

V Mechano-Informatics and Robotics
2400077, WS 22/23, 2 SWS, Language: German/English, Open in study portal

Content
The lecture addresses various engineering and algorithmic aspects and topics in robotics which are illustrated and explained based on examples originating from current research conducted in the field of humanoid robotics. First, this lecture gives an introduction into the mathematical fundamentals which are needed to describe a robotic system as well as the basic algorithms commonly applied in motion planning. Subsequently, models and methods are introduced with which dynamical systems can be formalized and which can be used to encode and represent robot actions. To do so, we will discuss linear time-invariant systems in state.

Learning Objectives:
Based on the example of robotics students understand the synergistic effects and interdisciplinarity of mechatronics and informatics, the embedded systems, the control, and the methods and the algorithms. They are acquainted with the basic terminology and the methods which are common in robotics, signal processing, action representation, machine learning and cognitive systems. They are capable of applying fundamental state-of-the-art methods and tools for the development and programming of robots. Based on examples originating from current research conducted in the fields of humanoid robotics, the students interactively learn how to identify and formalize problems and tasks and how to develop solutions in an analytical and goal-directed way.

Organizational issues
Zugehörige Veranstaltungen: Empfehlung - Basispraktikum Mobile Roboter
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.
Arbeitsaufwand:
2h Präsenz
+ 2*2h = 4h Vor/Nachbereitung
+ 30h Prüfungsvorbereitung
120h
6 COURSES

Course: Microeconometrics [T-WIWI-112153]

Responsible: TT-Prof. Dr. Fabian Krüger

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101599 - Statistics and Econometrics
- M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td>Microeconometrics</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Krüger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Tutorial in Microeconometrics</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Krüger, Pavlova</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment consists of a written exam (60 min).

Prerequisites
None

Recommendation
Course participants are expected to know econometrics at the level of 'Volkswirtschaftslehre III: Einführung in die Ökonometrie'

Below you will find excerpts from events related to this course:

Microeconometrics
2500032, WS 22/23, 2 SWS, Language: English, Open in study portal
Lecture (V) Blended (On-Site/Online)

Content
Microeconometrics is concerned with modeling data from an individual ('micro') unit like a person, household or firm. The response variables of interest are often discrete. For example, a person's type of employment may be coded as a binary variable (e.g. working in IT sector versus not working in IT sector), and a person's choice of transportation mode can be cast as a multinomial variable (e.g. bike, train, car, or other). These examples differ from the basic econometric setting of a continuous response variable, and require nonlinear regression modeling.

The course first introduces maximum likelihood estimation which is particularly useful in microeconometrics. We then discuss econometric models for various types of response variables (binary, ordered, multinomial, censored), as well as methods for estimation and model evaluation. Throughout the course, implementation via R software plays an important role.

Prerequisites: Course participants are expected to know econometrics at the level of 'Volkswirtschaftslehre III: Einführung in die Ökonometrie'.

Literature
6.102 Course: Microprocessors I [T-INFO-101972]

Responsible: Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: M-INFO-101183 - Microprocessors I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7500147</th>
<th>Microprocessors I</th>
<th>Karl</th>
</tr>
</thead>
</table>
6.103 Course: Mobile Computing and Internet of Things [T-INFO-102061]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-101249 - Mobile Computing and Internet of Things

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Date</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2400051</td>
<td></td>
<td>Mobile Computing and Internet of Things</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2+1 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture / Practice (Beigl)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Code</th>
<th>Date</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500285_04.04.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500287_11.04.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500289_30.05.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500292_18.07.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500293_30.09.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>
6.104 Course: Mobile Robots – Practical Course [T-INFO-101992]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-101184 - Mobile Robots – Practical Course

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events
ST 2022 24624 Mobile Robots - Practical Course 4 SWS Practical course / 🗣 Asfour

Exams
ST 2022 7500264 Mobile Robots – Practical Course Asfour

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⦿ Cancelled

Below you will find excerpts from events related to this course:

Mobile Robots - Practical Course
24624, SS 2022, 4 SWS, Language: German, [Open in study portal](#)

Content
In this practical course, students assemble an ASURO robot in groups of two. Each student will be provided with his own robot, which he has to put into operation. While using the robots, a new set of problems will be solved each week. The students will need to prepare for each week given the provided material. Sets of problem be solved using the C language and focus on controlling the robot’s sensors and actuators as well as on the generation of reflex-based behavior. The course ends with a race, where the robots have to tackle an obstacle course.

Learning Objectives:
The student is able to understand circuit diagrams and can assemble, test and debug complex PCBs. The student is familiar with programming microcontroller-based embedded systems using the C language and cross compilers. The student is able to use methods for controlling robotic sensors and actuators, can conduct experiments with robots and solve tasks in this context independently and in small groups.

Organizational issues
Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 Nr. 3 SPO als Erfolgskontrolle anderer Art und besteht aus mehreren Teilaufgaben. Die Bewertung erfolgt mit den Noten "bestanden" / "nicht bestanden".

Voraussetzungen: Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

Arbeitsaufwand: 120 h
6 COURSES
Course: Modeling and OR-Software: Introduction [T-WIWI-106199]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2550490</td>
<td>Modellieren und OR-Software: Einführung</td>
<td>3 SWS</td>
<td>Practical course / 🧩</td>
<td>Nickel, Linner, Pomes</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900153</td>
<td>Modeling and OR-Software: Introduction</td>
<td></td>
<td></td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗻 On-Site, ❌ Canceled

Competence Certificate
The assessment is a written examination. The examination is held in every semester. The prerequisite can only be obtained in semesters in which the course exercises are offered.

Prerequisites
Prerequisite for admission to the exam is the successful participation in the exercises. This includes the processing and presentation of exercises.

Recommendation

Annotation
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course. The lecture is offered in every term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Modellieren und OR-Software: Einführung</th>
<th>Practical course (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550490, SS 2022, 3 SWS, Language: German</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation,...), the software IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL will be discussed which can be used to solve OR problems on a computer-aided basis. Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Organizational issues
Bewerbung einreichen bis 31.03.2022:
http://go.wiwi.kit.edu/OR_Bewerbung
6.106 Course: Nonlinear Optimization I [T-WIWI-102724]

- **Responsible:** Prof. Dr. Oliver Stein
- **Organisation:** KIT Department of Economics and Management
- **Part of:** M-WIWI-101936 - Methodical Foundations of OR
 M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Events</th>
<th>WT 22/23</th>
<th>Nonlinear Optimization I</th>
<th>2 SWS</th>
<th>Lecture / On-Site</th>
<th>Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2550111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>WT 22/23</td>
<td>Exercises Nonlinear</td>
<td></td>
<td>Practice / On-Site</td>
<td>Stein, Schwarze</td>
</tr>
<tr>
<td></td>
<td>2550112</td>
<td>Optimization I + II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ST 2022</td>
<td>Nonlinear Optimization I</td>
<td></td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td></td>
<td>7900252_SS2022_NK</td>
<td>Nonlinear Optimization I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WT 22/23</td>
<td>Nonlinear Optimization I</td>
<td></td>
<td></td>
<td>Stein</td>
</tr>
<tr>
<td></td>
<td>7900001_WS2223_HK</td>
<td>Nonlinear Optimization I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Type:** Written examination
- **Credits:** 4.5
- **Grade to a third:** Grade
- **Recurrence:** Each winter term
- **Version:** 4

Competence Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester.

The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

The module component exam T-WIWI-103637 “Nonlinear Optimization I and II” may not be selected.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

- **Events:** 2550111, WS 22/23, 2 SWS, Language: German, Open in study portal
- **Type:** Lecture (V) On-Site

Content

The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems with constraints forms the contents of the lecture “Nonlinear Optimization II”. The lectures “Nonlinear Optimization I” and “Nonlinear Optimization II” are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Literature

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
6.107 Course: Nonlinear Optimization I and II [T-WIWI-103637]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Written exam</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>6</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The exam takes place in the semester of the lecture and in the following semester.

Prerequisites

None.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

2550111, WS 22/23, 2 SWS, Language: German, Open in study portal

Content

The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Nonlinear Optimization II

2550113, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Content

The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Literature

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
Nonlinear Optimization II [T-WIWI-102725]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
</table>
| WT 22/23 | 2550112 | Exercises Nonlinear Optimization I + II | Practice / 🗣️ | Stein, Schwarze
| WT 22/23 | 2550113 | Nonlinear Optimization II | 2 SWS | Lecture / 🗣️ | Stein

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
</table>
| ST 2022 | 7900258_SS2022_NK | Nonlinear Optimization II | | Stein
| WT 22/23 | 7900002_WS2223_HK | Nonlinear Optimization II | | Stein

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.
The exam takes place in the semester of the lecture and in the following semester.
The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Prerequisites
None.

Annotation
Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization II
2550113, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:
- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.
Literature

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
6.109 Course: Optimization under Uncertainty [T-WIWI-106545]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101413 - Applications of Operations Research
- M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2550464</td>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2550465</td>
<td>Optimization Under Uncertainty</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2550466</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Rebennack, Füllner</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2550466</td>
<td>Others (sons)</td>
<td>2 SWS</td>
<td>Others (sons)</td>
<td>Rebennack, Füllner</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites
None.
6 COURSES

Course: Personnel Policies and Labor Market Institutions [T-WIWI-102908]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101513 - Human Resources and Organizations
M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination of 1 hour. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites

None

Recommendation

Completion of module Business Administration is recommended. Basic knowledge of microeconomics, game theory, and statistics is recommended.

Below you will find excerpts from events related to this course:

Personnel Policies and Labor Market Institutions
2573001, SS 2022, 2 SWS, Language: German, Open in study portal

Lecture (V)
On-Site
Content
The students acquire knowledge about the process and the strategic aspects of collective bargaining about wages. They analyze selected aspects of corporate governance and co-determination in Germany. The lecture also addresses questions of personnel politics and labor market discrimination. Microeconomic and behavioral approaches as well as empirical data is used and evaluated critically.

Aim
The student

- understands the process and role of agents in collective wage bargaining.
- analyzes strategic decisions in the context of corporate governance.
- understands the concept of co-determination in Germany.
- challenges statements that evaluate certain personnel politics.

Workload
The total workload for this course is approximately 135 hours.
Lecture 32 hours
Preparation of lecture 52 hours
Exam preparation 51 hours

Literature
6.111 Course: Platform Economy [T-WIWI-107506]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101421 - Supply Chain Management
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-105981 - Information Systems & Digital Business

Type
Examination of another type

Credits
4,5

Grading scale
Grade to a third

Recurrence
Each winter term

Version
3

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment. The assessment is carried out in the form of a one-hour written examination and by carrying out a case study. Details on the assessment will be announced during the lecture.

Prerequisites

see below

Recommendation
None

Below you will find excerpts from events related to this course:

Platform Economy
2540468, WS 22/23, 2 SWS, Language: German

Literature

6.112 Course: Practical Course Computer Engineering: Hardware Design [T-INFO-102011]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-101219 - Practical Course Computer Engineering: Hardware Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
6.113 Course: Practical Course Computer Engineering: Hardware Design Pass [T-INFO-105983]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Wolfgang Karl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-101219 - Practical Course Computer Engineering: Hardware Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
6.114 Course: Practical Course Web Applications and Service-Oriented Architectures (I) [T-INFO-103119]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: M-INFO-101633 - Practical Course Web Applications and Service-Oriented Architectures (I)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 24312 | Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) | 2 SWS | Practical course / Online | Abeck, Schneider, Sänger |

Legend: ✝ Online, ☒ Blended (On-Site/Online), ⚡ On-Site, X Cancelled
6.115 Course: Practical Course: Lego Mindstorms [T-INFO-107502]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: M-INFO-102557 - Lego Mindstorms - Practical Course

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 24306 | Lego Mindstorms - Laboratory | 3 SWS | Practical course / Asfour |

Exams

| WT 22/23 | 7500179 | Lego Mindstorms - Practical Course | Asfour |

Recommendation

Basic knowledge in JAVA is necessary for successful completion of this course.

Below you will find excerpts from events related to this course:

Lego Mindstorms - Laboratory
24306, WS 22/23, 3 SWS, Language: German, Open in study portal

Content

In this practical course, teams of three students build and program a mobile robot using Lego Mindstorms and the Java programming language. The robots are challenged to complete a versatile parkour including sections like the traversal of a maze, following a line, crossing a bridge or avoiding obstacles. After initial building of the robots, a section of the parkour will be set up each week and tackled by the robots, for which the students have to prepare their code beforehand. A final race of the robots on the entire parkour will be held at the end of the semester.

Learning Objectives:

The participants are able to design and construct a robot with motors and sensors using the Lego Mindstorms kit. The students are familiar with programming the Lego EV3 components using the Java programming language. They are able to understand and solve several key problems in mobile robotics, such as autonomous navigation, detection of landmarks and objects as well as obstacle avoidance. The students know how to efficiently and independently solve problems in a small group in a given time frame and are able to systematically document their work and results.

Organizational issues

Das Praktikum findet wöchentlich statt.

Nachweis: Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Ansprechpartner: Pascal Weiner

E-Mail: pascal.weiner@kit.edu

Empfehlung:

Grundlegende Kenntnisse in Java sind hilfreich, aber nicht zwingend erforderlich. / Basic knowledge in JAVA is helpful but not required.

Arbeitsaufwand: 120 h

Beschreibung:

Die Aufgabenstellungen des Praktikums reichen von Aufbau und Programmierung der Lego EV3-Bausteine mit der Programmiersprache JAVA bis hin zur Lösung spezieller Aufgaben, die im Rahmen eines abschließenden Wettrennens zu lösen sind (Linien folgen, Hindernissen ausweichen, Bahnplanung).

Literature

Wird in der Veranstaltung bekannt gegeben.
6.116 Course: Practical Seminar: Digital Services [T-WIWI-110888]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2540555 | Practical Seminar: Digital Services (Ba) | 3 SWS | Lecture / 🧩 | Mädche |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion. In the seminar, a maximum score of 60 points can be achieved, consisting of:

- maximum 25 points for the documentation (written examination)
- maximum 25 points for the practical assessment
- maximum 10 points for the participation during the discussion sessions

The practical seminar is passed when at least a score of 30 points is achieved.

Prerequisites

None

Recommendation

None

Annotation

The current range of seminar topics is announced on the following Website:

www.dsi.iism.kit.edu

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-105928 - HR Management & Digital Workplace
- M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment.

The assessment of this course consists of the implementation of a practical component, the preparation of a written documentation, and active participation in the discussions.

A total of 60 points can be achieved, of which:

- maximum 25 points for the written documentation
- maximum 25 points for the practical component
- maximum 10 points for active participation in the discussions

A minimum of 30 points must be achieved to pass this course.

Please note that a practical component, such as conducting a survey or implementing an application, is also part of the course. Please refer to the institute website issd.iism.kit.edu for the current offer of practical seminar theses.
6 COURSES

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105981 - Information Systems & Digital Business

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites
None.
6.119 Course: Problem Solving, Communication and Leadership [T-WIWI-102871]

Responsible: Prof. Dr. Hagen Lindstädt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101425 - Strategy and Organization
M-WIWI-101513 - Human Resources and Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Problem solving, communication and leadership</td>
<td>1 SWS</td>
<td>Lecture / 🗣</td>
<td>Lindstädt</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Problem Solving, Communication and Leadership</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Problem Solving, Communication and Leadership</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (30 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Problem solving, communication and leadership

2577910, SS 2022, 1 SWS, Language: German, Open in study portal

Lecture (V) On-Site

Content
The course deals with various aspects of problem solving and communication processes and is divided into two parts. The first part of the course addresses the fundamental steps in the problem-solving process; namely, problem identification, problem structuring, problem analysis and communication of solution. Ideas for structuring problem solving processes will be discussed and the perquisites for and principles of structured communication based on charts and presentations will be explained. The second part of the course addresses important concepts in leadership, including the context-specificity of influence, the choice of leader and the characteristics of employees. The course content reflects current issues in management and communication practice and is oriented toward the practical application of theoretical insights to these issues. In this respect, the course aims to develop interdisciplinary skills.

Learning Objectives:
After passing this course students are able to

- structure problem solving processes.
- apply the principles of focused communication based on charts and presentations.
- understand leadership in the context of situation and personality.

Recommendations:
None.

Workload:
The total workload for this course is approximately 60 hours. For further information see German version.

Assessment:
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as an open-book examination (examination performance of a different kind according to SPO § 4 para. 2, item 3), or as a 60-minute written examination (written examination according to SPO § 4 para. 2, item 1).

It is expected that the exam will take place at the beginning of the semester’s lecture-free period.

The examination is offered every semester and can be repeated at any regular examination date.
Organizational issues
Blockveranstaltung. Termine werden bekannt gegeben

Literature
Verpflichtende Literatur:
Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.

Ergänzende Literatur:
- Zelazny, Gene; Delker, Christel: Wie aus zahlen Bilder werden, 6. Aufl. Wiesbaden 2008
- Minto, Barbara: Das Prinzip der Pyramide: Ideen klar, verständlich und erfolgreich kommunizieren. 2005
6.120 Course: Process Mining [T-WIWI-109799]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2511204</th>
<th>Process Mining</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Oberweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2511205</td>
<td>Exercise Process Mining</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Oberweis, Schreiber, Schüler, Rybinski</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>79AIFB_PM_C2</th>
<th>Process Mining (Registration until 18 July 2022)</th>
<th>Oberweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>79AIFB_PM_A7</td>
<td>Process Mining</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
None

Annotation
Former name (up to winter semester 2018/2019) "Workflow Management".

Below you will find excerpts from events related to this course:

Process Mining

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2511204, SS 2022, 2 SWS, Language: German, Open in study portal</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Site</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The area of process mining covers approaches which aim at deducting new knowledge on the basis of logfiles generated by information systems. Such information systems are e.g., workflow-management-systems which are used for an efficient control of processes in enterprises and organisations. The lecture introduces the foundations of processes and respective modeling and analysis techniques. In the following, the foundations of process mining and the three classical types of approaches - discovery, conformance and enhancement - will be taught. In addition to the theoretical basics, tools, application scenarios in practice and open research questions are covered as well.

Learning objectives:

Students

- understand the concepts and approaches of process mining and know how they are applied,
- create and evaluate business process models,
- analyze static and dynamic properties of workflows,
- apply approaches and tools of process mining.

Recommendations:

Knowledge of course Applied Informatics - Modelling is expected.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Literature

Weitere Literatur wird in der Vorlesung bekannt gegeben.
6.121 Course: Production and Logistics [T-WIWI-111632]

Responsible: Prof. Dr. Wolf Fichtner
Prof. Dr. Stefan Nickel
Prof. Dr. Frank Schultmann

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105267 - Business Administration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Written examination on the course "Production and Logistics". The exam is offered at the beginning of each lecture-free period. Repeat examinations are possible at any regular examination date.

Prerequisites
None
6.122 Course: Production Economics and Sustainability [T-WIWI-102820]

Responsible: Prof. Dr. Frank Schultmann
Dr.-Ing. Rebekka Volk

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2581960 | Production Economics and Sustainability | 2 SWS | Lecture / 🗣 | Volk |

Exams

| ST 2022 | 7981960 | Production Economics and Sustainability | Schultmann |

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Below you will find excerpts from events related to this course:

Production Economics and Sustainability

2581960, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) On-Site

Content

The analysis and management of material flows on the company level and above will be the focus of this lecture. Herein, the discussion will be about cost-effective and environmentally acceptable steps to avoid, abate and recycle emissions and waste as well as ways of efficient resources handling. As methods material flow analysis (MFA), life cycle assessment (LCA) and OR methods, e.g. for decision support, are introduced.

Topics:
- regulations related to materials and substances
- raw materials, reserves and their availabilities/lifetimes
- material and substance flow analysis (MFA/SFA)
- material related ecoprofiles, e.g. Carbon Footprint
- LCA
- resource efficiency
- emission abatement
- waste management and closed-loop recycling
- raw material oriented production systems
- environmental management (EMAS, ISO 14001, Ecoprofit), eco-controlling

Organizational issues

Seminarraum Uni-West, Geb. 06.33

Literature

wird in der Veranstaltung bekannt gegeben
6.123 Course: Programming [T-INFO-101531]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of:
- M-INFO-101174 - Programming
- M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4</td>
<td>Programming</td>
<td>24004</td>
<td>Lecture / Practice (Koziolek)</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4</td>
<td>Programming</td>
<td>7500195</td>
<td>Reussner</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4</td>
<td>Programming</td>
<td>7500075</td>
<td>Koziolek</td>
<td></td>
</tr>
</tbody>
</table>
6.124 Course: Programming Pass [T-INFO-101967]

Responsible: Prof. Dr.-Ing. Anne Koziol
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of:
- M-INFO-101174 - Programming
- M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>24004</td>
<td>Programming</td>
<td>4 SWS</td>
<td>Lecture / Practice (Koziol)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500022</td>
<td>Programming Pass</td>
<td></td>
<td>Reussner</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500074</td>
<td>Programming Pass</td>
<td></td>
<td>Koziol</td>
<td></td>
</tr>
</tbody>
</table>
6.125 Course: Project Management in Practice [T-INFO-101976]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>1,5</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Irregular</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>2400019</th>
<th>Project Management in Practice</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Böhm, Schnober</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Project Management in Practice
2400019, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Content

At the end of the course, the participants:

- Know the principles of project management and are able to make use of them in real-world case studies.
- Have profound knowledge about project phases, principles of project planning, fundamental elements such as project charter & scope definitions, descriptions of project goals, activity planning, milestones, project-structure plans, agenda and cost planning and risk management. Further, they know principle elements of project implementation, crisis management, escalation and, last but not least, project-termination activities.
- Understand and are able to adopt the fundamentals of planning as well as the subjective factors which are relevant in a project. This includes topics such as communication, group processes, teambuilding, leadership, creative solution methods and risk-assessment methods.

The following key skills are taught:

- Project planning
- Project control
- Communication
- Leadership behavior
- Crisis management
- Identification of and solutions of difficult situations
- Team building
- Motivation (of oneself and of others)

Organizational issues

Die Veranstaltung fällt in diesem Sommersemester leider aus.
6.126 Course: Public Law I & II [T-INFO-110300]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-105247 - Constitutional and Administrative Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>24520</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>Lecture / 🗣️</td>
<td>Werner-Kappler</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>24016</td>
<td>Öffentliches Recht I - Grundlagen</td>
<td>Lecture / ⌚️</td>
<td>Werner-Kappler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500298</td>
<td>Public Law I & II</td>
<td>Dreier</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⌚️ Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled
6.127 Course: Public Revenues [T-WIWI-102739]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101403 - Public Finance
M-WIWI-101499 - Applied Microeconomics
M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>790oeff</td>
<td>Public Revenues</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>790oeff</td>
<td>Public Revenues</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites
None

Recommendation
Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

Public Revenues
2560120, SS 2022, 2 SWS, Language: German, Open in study portal

Content
The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Learning goals:
See German version.

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

6.128 Course: Public Sector Finance [T-WIWI-109590]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101403 - Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 790oefi | Public Sector Finance | Wigger |

Competence Certificate
Depending on the further pandemic development the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites
None

Annotation
Previous title until winter semester 2018/19 "Municipal Finance".
Course: Real Estate Management I [T-WIWI-102744]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101466 - Real Estate Management

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Annotation
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
6.130 Course: Real Estate Management II [T-WIWI-102745]

Responsible:	Prof. Dr.-Ing. Thomas Lützkendorf
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101466 - Real Estate Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2585400</td>
<td>Real Estate Management II</td>
<td>2 SWS</td>
<td>Lecture / 🔗</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2585401</td>
<td>Übung zu Real Estate Management II</td>
<td>2 SWS</td>
<td>Practice / 🔗</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900333</td>
<td>Real Estate Management II</td>
<td></td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900353</td>
<td>Real Estate Management II</td>
<td></td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Competence Certificate
Depending on further pandemic developments, the exam will be offered either as a 60-minute upload exam (Open Book Exam @ Home), or as a 60-minute exam (written exam according to SPO § 4 Abs. 2, Pkt. 1).

Prerequisites
None

Recommendation
A combination with the module Design Construction and Assessment of Green Buildings is recommended.
Furthermore it is recommended to choose courses of the following fields

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Annotation
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

Below you will find excerpts from events related to this course:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Estate Management II</td>
<td>2585400, SS 2022, 2 SWS, Language: German, Open in study portal</td>
</tr>
<tr>
<td>Lecture (V)</td>
<td>Blended (On-Site/Online)</td>
</tr>
</tbody>
</table>
Content
The course Real Estate Management II gives special attention to topics in connection to the management of large real estate portfolios. This especially includes property valuation, market and object rating, maintenance and modernization, as well as real estate portfolio and risk management. The tutorial provides examples in order to practice the application of theoretical knowledge to practical problems.

The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

The student

- has an in-depth knowledge on the economic classification and significance of the real estate industry
- has a critical understanding of essential theories, methods and instruments of the real estate industry
- is able to analyze and evaluate activity areas and functions in real estate companies as well as to prepare or to take decisions

Recommendations:
A combination with the module Design Construction and Assessment of Green Buildings I [WW3BWLOOW1] is recommended.

Furthermore it is recommended to choose courses of the following fields

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

The total workload for this course is approximately 135.0 hours. For further information see German version.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Reexaminations are offered at every ordinary examination date.

Literature
Welterführende Literatur:

6.131 Course: Real-Time Systems [T-INFO-101340]

Responsible: Prof. Dr.-Ing. Thomas Längle

Organisation: KIT Department of Informatics

Part of: M-INFO-100803 - Real-Time Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 24576 | Real-Time Systems | 4 SWS | Lecture / Practice (/) | Längle, Ledermann |

Exams

| ST 2022 | 750002 | Real-Time Systems | Längle |

Legend: 🖥 Online, 🎤 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

Responsible: PD Dr. Patrick Jochem
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>5</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2581012</td>
<td>Renewable Energy – Resources, Technologies and Economics</td>
<td>2 SWS</td>
<td>Lecture / ✎</td>
<td>Jochem</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7981012</td>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>Fichtner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes, in English, answers are possible in German or English) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

Below you will find excerpts from events related to this course:

Content

1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the "Energieberg" in Mühlburg

Learning Goals:

The student

- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Organizational issues

Blockveranstaltung, freitags 14:00-17:00 Uhr, 28.10., 11.11., 25.11., 09.12., 13.01., 27.01., 10.02.
Literature
Weiterführende Literatur:

6.133 Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-100893 - Robotics I - Introduction to Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2424152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500218</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500106</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.134 Course: Security [T-INFO-101371]

Responsible: Prof. Dr. Dennis Hofheinz
Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics

Part of: M-INFO-100834 - Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 24941 | Security | 3 SWS | Lecture / 🗣 | Müller-Quade, Strufe, Wressnegger |

Exams

| ST 2022 | 7524941 | Security | Müller-Quade, Strufe, Wressnegger |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
6.135 Course: Selling IT-Solutions Professionally [T-INFO-101977]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1.5</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>
6.136 Course: Semantic Web Technologies [T-WIWI-110848]

Responsible: Dr. Tobias Christof Käfer

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101438 - Semantic Knowledge Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2511310</td>
<td>Semantic Web Technologies</td>
<td>2</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Färber, Käfer, Braun</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2511311</td>
<td>Exercises to Semantic Web Technologies</td>
<td>1</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td></td>
<td>Färber, Käfer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>79AIFB_SWebT_A4</td>
<td>Semantic Web Technologies (Registration until 18 July 2022)</td>
<td></td>
<td></td>
<td></td>
<td>Grade to a third</td>
<td></td>
<td>Färber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>79AIFB_SWebT_A2</td>
<td>Semantic Web Technologies</td>
<td></td>
<td></td>
<td></td>
<td>Grade to a third</td>
<td></td>
<td>Käfer</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None

Recommendation

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required.

Below you will find excerpts from events related to this course:

Semantic Web Technologies

2511310, SS 2022, 2 SWS, Language: English, Open in study portal

Lecture (V) On-Site
Content
The aim of the Semantic Web is to make the meaning (semantics) of data on the web usable in intelligent systems, e.g. in e-commerce and internet portals.

Central concepts are the representation of knowledge in form of RDF and ontologies, the access via Linked Data, as well as querying the data by using SPARQL. This lecture provides the foundations of knowledge representation and processing for the corresponding technologies and presents example applications.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:
The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:
Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Literature

Weitere Literatur

Exercises to Semantic Web Technologies
2511311, SS 2022, 1 SWS, Language: English, Open in study portal
Content
The exercises are related to the lecture Semantic Web Technologies.
Multiple exercises are held that capture the topics, held in the lecture Semantic Web Technologies, and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:
The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:
Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Organizational issues
Die Übungen finden im Rahmen der Termine der Blockvorlesung statt.

Literature

Weitere Literatur

6.137 Course: Seminar in Business Administration (Bachelor) [T-WIWI-103486]

Responsible: Professorenschaft des Fachbereichs Betriebswirtschaftslehre
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101826 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Type</th>
<th>Grading scale</th>
<th>Credits</th>
<th>Group</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2500033 Machine Learning for Business Applications</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Ulrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2500125 Current Topics in Digital Transformation Seminar</td>
<td>3 SWS</td>
<td>Seminar</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2530293 Seminar in Finance (Bachelor, Prof. Ruckes)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Ruckes, Luedecke, Hoang, Benz, Wiegratz, Silbereis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2530374 Machine Learning for Business Applications</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Ulrich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2540472 Digital Citizen Science</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Weinhardt, Knierim, Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2540473 Business Data Analytics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Badewitz, Weinhardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2540477 Digital Experience & Participation</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Peukert, Fegert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2540478 Smart Grid Economics & Energy Markets</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Staudt, Henni, Semmelmann, Qu, Bluhm, Golla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2540524 Bachelor Seminar in Data Science and Machine Learning</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Geyer-Schulz, Schweizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2540553 User-Adaptive Systems Seminar</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Mädche, Beigl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2540557 Information Systems and Service Design Seminar</td>
<td>3 SWS</td>
<td>Seminar</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2545010 Entrepreneurship Basics (Track 1)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Terzidis, Hirte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2545011 Entrepreneurship Basics (Track 2)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Böhrer, Terzidis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2573010 Seminar Human Resources and Organizations (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2573011 Seminar Human Resource Management (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2579909 Seminar Management Accounting</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Wouters, Jaedeke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2579919 Seminar in Management Accounting - Special Topics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Ebinger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2581030 Seminar Energiewirtschaft IV</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Dehler-Holland, Fichtner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2581977 Seminar Produktionswirtschaft und Logistik II</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Volk, Schultmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2581980 Seminar Energiewirtschaft II</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Kraft, Fichtner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 2581990 Seminar Energiewirtschaft II</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Schultmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2500019 Digital Citizen Science</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Mädche, Nieken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2500045 Digital Democracy - Challenges and Opportunities of the Digital Society</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Fegert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2500125 Current Topics in Digital Transformation Seminar</td>
<td>3 SWS</td>
<td>Seminar</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2530580 Seminar in Finance</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Uhrig-Homburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2530610 Seminar in Financial Economics (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Thimme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credit Units</td>
<td>Type</td>
<td>Instructors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Data Science in Service Management</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Badewitz, Grote, Jaquart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Digital Platforms, Markets & Work</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Knierim, del Puppo, Bartholomeyczik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Digital Experience and Participation</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Peukert, Fegert, Greif-Winzrieth, Stein, Bezzaoui</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Smart Grids and Energy Markets</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Golla, Henni, Bluhm, Semmelmann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Information Systems B.Sc.</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Golla, Henni, Bluhm, Semmelmann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Böhrer, Terzidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Klarmann, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar in Marketing and Sales (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar: Human Resources and Organizations (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Nieken, Mitarbeiter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Wouters, Dickemann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar in Energy Economics</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Dehler-Holland, Fichtner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar in Production and Operations Management I</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Schultmann, Rudi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar in Energy Economics</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Schultmann, Rudi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar in Energy Economics</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Fichtner, Kraft, Zimmermann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar in Energy Economics</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Arodne, Finck, Fichtner, Slednev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar in Business Administration</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Schultmann</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Seminar in Finance (Bachelor, Prof. Ruckes)</td>
<td>Ruckes</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Bachelor Seminar in Data Science and Machine Learning</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>Terzidis</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>Terzidis</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar in Business Administration A</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar Human Resource Management (Bachelor)</td>
<td>Nieken</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Analyse bestehender Gebäudeökobilanzen bezüglich der Einschätzung des TGA-Anteils an der Gebäudeumwelterheblichkeit</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Bewertung der Rücknahme- und Recyclingprozesse von Photovoltaikanlagen</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Vergleichende qualitative Inhaltsanalyse von Werbeaussagen und Produktbeschreibungen für Wärmpumpen</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Erstellen einer Übersicht zu soziokulturellen Anforderungen an die technische Ausrüstung von Bauwerken für den Anwendungsfall „Wohngebäude“</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Variantenvergleich von Legionellen-Schutzeinrichtungen für Ein- und Zweifamilienhäuser</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Home Office Design Seminar: Digital Citizen Science</td>
<td>Mädche</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar in Business Administration</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar in Business Administration (Bachelor) - Data Science for Human-Centric AI-Based Service Design</td>
<td>Satzger</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Current Topics in Digital Transformation Seminar</td>
<td>Mädche</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar Business Data Analytics</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar Human Resources and Organizations (Bachelor)</td>
<td>Nieken</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar Digital Platforms, Markets & Work</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>
Course: Seminar in Business Administration (Bachelor) [T-WIWI-103486]

ST 2022	7900261	Information Systems and Design (ISSD) Seminar	Mädche
ST 2022	7900265	User-adaptive Systems Seminar	Mädche
ST 2022	7900291	Integration von Nachhaltigkeitsaspekten in die Immobilienwertermittlung	Lützkendorf
ST 2022	7900296	Machine Learning for Business Applications	Ulrich
ST 2022	7900372	Seminar Digital Citizen Science	Weinhardt
ST 2022	79-2579909-B	Seminar Management Accounting (Bachelor)	Wouters
ST 2022	79-2579919-B	Seminar Management Accounting - Special Topics (Bachelor)	Wouters
ST 2022	79-2579929-B	Seminar Management Accounting - Sustainability Topics (Bachelor)	Wouters
ST 2022	792581030	Seminar in Business Administration (Bachelor)	Fichtner
ST 2022	792581031	Seminar in Business Administration B (Master)	Plötz
ST 2022	7981976	Seminar in Production and Operations Management I	Schultmann
ST 2022	7981977	Seminar in Production and Operations Management II	Schultmann
ST 2022	7981978	Seminar in Production and Operations Management III: Current Topics in Risk and Crisis Management	Schultmann
ST 2022	7981979	Seminar Energy Economics I	Fichtner
ST 2022	7981980	Seminar Energy Economics II	Fichtner
ST 2022	7981981	Seminar Energy Economics III	Fichtner
WT 22/23	7900069	Current Topics in Digital Transformation Seminar	Mädche
WT 22/23	7900085	Entrepreneurship Basics (Track 1)	Terzidis
WT 22/23	7900087	Entrepreneurship Basics (Track 2)	Terzidis
WT 22/23	7900138	Seminar in Marketing and Sales (Bachelor)	Klarmann
WT 22/23	7900157	Seminar Human Resources and Organizations (Bachelor)	Nieken
WT 22/23	7900161	Seminar Human Resource Management (Bachelor)	Nieken
WT 22/23	7900175	Seminar in Finance: Green Finance - What Does Sustainability Cost?	Uhrig-Homburg

Legend: ![Online](https://example.com) Online, ![Blended](https://example.com) Blended (On-Site/Online), ![On-Site](https://example.com) On-Site, ![Cancelled](https://example.com) Cancelled

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

| **V** Machine Learning for Business Applications |
| 2500033, SS 2022, 2 SWS, Language: English, Open in study portal |

Information Systems B.Sc.
Module Handbook as of 04/10/2022
Content
Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations.
In this seminar we will apply modern machine learning techniques hands on to various business applications.

Organizational issues
Blockseminar tba

Machine Learning for Business Applications
2530374, SS 2022, 2 SWS, Language: English, Open in study portal

Content
The digitalization is not only changing today's society but also companies' business models, in particular of the financial industry. In general, the large variety of digitalized processes and connected devices (Industry 4.0) generates a huge amount of data which can be used to extract valuable (investment) insights. For this task data science skills are essential.
In this seminar we will use modern data science techniques to analyze all kinds of financial and economic data, ranging from big data intra-day option prices to alternative datasets, like textual statements. For this empirical analysis we will use the state of the art Python programming language.
In a bi-weekly schedule you and your supervisor will first learn and discuss important data science concepts and then apply it in a practical FinTech-type analysis using real-world data. As a prerequisite students should already have basic finance knowledge.

Organizational issues
Location: Räume des Lehrstuhls, Blücherstraße 17, E-008

User-Adaptive Systems Seminar
2540553, SS 2022, 2 SWS, Language: English, Open in study portal

Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school “K2D2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.
Information Systems and Service Design Seminar
2540557, SS 2022, 3 SWS, Language: English, Open in study portal

Content
With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group ISSD (Prof. Mädche). The research group "Information Systems & Service Design" (ISSD) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites
No specific prerequisites are required for the seminar.

Literature
Further literature will be made available in the seminar.

Organizational issues
Termine werden bekannt gegeben

Entrepreneurship Basics (Track 1)
2545010, SS 2022, 2 SWS, Language: English, Open in study portal

Content
This seminar shows what is important for entrepreneurs and guides you through a structured process from the first business idea to a pitch of your final business model. In teams you create, develop, validate and present your business model. It partially simulates a start-up process up to the investor pitch.

Learning Objectives
After completing this course, the course participants will be able to

- Describe why personal and team core values are important for team formation and how they can affect start-up projects.
- Reflect on and name top 3 personal and team core values.
- Reflect on and name top 3 personal and team core competences
- Develop a sound value proposition for a target customer
- Recognize Business Opportunities applying the Business Model Canvas
- Create sustainable Business Ideas
- Pitch their Business Ideas to potential investors

Registration:
Registration is via the Wiwi portal.

Organizational issues
Please note that this seminar will be held in presence at the current planning stage. Further information will be announced via ILIAS.
Entrepreneurship Basics (Track 2)

2545011, SS 2022, 2 SWS, Language: English, Open in study portal

Content
This seminar shows what is important for entrepreneurs and guides you through a structured process from the first business idea to a pitch of your final business model. In teams you create, develop, validate and present your business model. It partially simulates a start-up process up to the investor pitch.

Learning Objectives
Starting with a rough business idea, you learn to understand and validate the customer problems. Together with your teammates and the feedback from the other teams and the lecturer, you will create a sharp business model by using tools like the Value Proposition Canvas, the Business Model Canvas and customer interviews. With some further information about rapid prototyping and structuring a pitch and a one-pager for business angels, you will learn, how to present the developed business. This seminar is teamwork. You grow as a team, learn to communicate and to work efficient in a team so all your results (the pitch and the written outline) are presented by the team.

Registration
Registration is via the Wiwi portal.

Organizational issues
Please note that this seminar will be held in presence at the current planning stage. Further information will be announced via ILIAS.

Seminar Human Resources and Organizations (Bachelor)

2573010, SS 2022, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.

Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben
Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.

Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Geb. 05.20, Raum 2A-12.1; Termine werden bekannt gegeben

Seminar Management Accounting
2579909, SS 2022, 2 SWS, Language: English, Open in study portal

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:
- Maximum of 16 students.

Organizational issues
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature
Will be announced in the course.

Seminar in Management Accounting - Special Topics
2579919, SS 2022, 2 SWS, Language: English, Open in study portal
Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:

- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:

- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:

- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:

- Maximum of 16 students.

Organizational issues
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature
Will be announced in the course.

Digital Citizen Science
2500019, WS 22/23, 2 SWS, Language: German/English, [Open in study portal]

Data Science in Service Management
2540473, WS 22/23, 2 SWS, Language: German/English, [Open in study portal]

Entrepreneurship Basics (Track 1)
2545010, WS 22/23, 2 SWS, Language: English, [Open in study portal]
Content
Course Content:
This seminar explains important factors for becoming an entrepreneur and guides you through a structured process from the first business idea to a pitch of your final business model. Therefore, a business idea will be developed in the context of the UN Sustainable Development Goals. In small teams you create, develop, validate and present your business model. It simulates the basics of a start-up process up to the investor pitch.

Learning Objectives
After completing this course, the course participants will be able to

- Reflect on and define your personal and team core values
- Reflect on and define your personal and team competencies
- Reflect on and recall a definition for business opportunity
- Define your field of interest for opportunity recognition using the UN SDGs
- Analyze a specific domain to identify business opportunities
- Develop a first draft for your business model by using the Business Model Canvas
- Pitch / present your business idea

Credentials:
Registration is via the Wiwi portal.

Exam:
Presentation + active participation + paper.

Target group:
Bachelor students

Organizational issues
Registration is via the Wiwi portal.

In the seminar you will work on a project in teams of max. 5 persons. The groups are formed in the seminar.

Entrepreneurship Basics (Track 2)
2545011, WS 22/23, 2 SWS, Language: English, Open in study portal

Content
Course Content:
This seminar shows what is important for entrepreneurs and it guides you through a structured process from the first business idea to a pitch of your final business model. In teams you create, develop, validate and present your business model. It partially simulates a start-up process up to the investor pitch.

Starting with a rough business idea, you learn to understand and validate the customer problems. Together with your teammates and the feedback from the other teams and the lecturer, you will create a sharp business model by using tools like the Value Proposition Canvas, the Business Model Canvas and customer interviews. With some further information about rapid prototyping and structuring a pitch and a one-pager for business angels, you will learn, how to present the developed business. This seminar is teamwork. You grow as a team, learn to communicate and to work efficient in a team so all your results (the pitch and the written outline) are presented by the team.

Learning Objectives

- Learning of entrepreneurial skills.
- Understanding of value creation importance.
- Experience on how to derive and test hypothesis.
- Transition from ideas to a business model that works.
- Learning how to pitch and to convince investors.

Credentials:
Registration is via the Wiwi portal.

Exam:
Presentation + active participation + paper.

Target group:
Bachelor students

Organizational issues
Registration is via the Wiwi portal.

In the seminar you will work on a project in teams of max. 5 persons. Team applications are welcome but not a prerequisite for participation.
Seminar: Human Resources and Organizations (Bachelor)
2573010, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Blockveranstaltung siehe Homepage

Seminar: Human Resource Management (Bachelor)
2573011, WS 22/23, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Blockveranstaltung siehe Homepage

Seminar Management Accounting - Special Topics
2579919, WS 22/23, 2 SWS, Language: English, Open in study portal
Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Examination:
- The performance review is carried out in the form of a "Prüfungsleistung anderer Art" (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Required prior Courses:
- The LV "Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen" (2600026) must have been completed before starting this seminar.

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Note:
- Maximum of 16 students.

Organizational issues
Ort und Zeit werden noch bekannt gegeben bzw. über ILIAS

Literature
Will be announced in the course.
6.138 Course: Seminar in Economics (Bachelor) [T-WIWI-103487]

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2500013</td>
<td>Predictive Data Analytics - An Introduction to Machine Learning</td>
<td>Seminar / 🧩</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2520367</td>
<td>Strategische Entscheidungen</td>
<td>2 SWS Seminar / 🧩</td>
<td>Ehrhart</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2560241</td>
<td>Digital IT Solutions and Services transforming the Field of Public Transportation</td>
<td>2 SWS Seminar</td>
<td>Janoshalmi</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2560259</td>
<td>Organisation and Management of Development Projects</td>
<td>2 SWS Seminar / 🧩</td>
<td>Sieber</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2560553</td>
<td>Shaping AI and Digitization for Society - Seminar Morals and Social Behavior (Bachelor)</td>
<td>2 SWS Seminar / 🧩</td>
<td>Szech, Zhao</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>2560554</td>
<td>Bounded Rationality - Theory and Experiments, Seminar on Topics in Political Economy (Master)</td>
<td>2 SWS Seminar / 🧩</td>
<td>Szech, Rau</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>2 SWS Seminar / 🧩</td>
<td>Schienle, Rüter, Görgen</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2560140</td>
<td>Moral Wiggle Room and Info Avoidance - Topics in Political Economy (Bachelor)</td>
<td>2 SWS Seminar / 🧩</td>
<td>Szech, Rosar, Rau</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2560141</td>
<td>Overcoming the Corona Crisis - Morals & Social Behavior (Bachelor)</td>
<td>2 SWS Seminar / 🧩</td>
<td>Szech, Zhao</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2560142</td>
<td>Moral Wiggle Room and Info Avoidance - Topics in Political Economy (Master)</td>
<td>2 SWS Seminar / 🧩</td>
<td>Szech, Rosar, Rau</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2560400</td>
<td>Seminar in Macroeconomics I</td>
<td>2 SWS Seminar / 🧩</td>
<td>Brumm, Krause, Pegorari, Hußmann</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2560401</td>
<td>Seminar in Macroeconomics II</td>
<td>2 SWS Seminar / 🧩</td>
<td>Brumm, Krause, Pegorari, Hußmann</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2561208</td>
<td>Selected aspects of European transport planning and -modelling</td>
<td>2 SWS Seminar / 🧩</td>
<td>Szimba</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900009</td>
<td>Demographic Change and Pension Reforms</td>
<td>Seminar / 🧩</td>
<td>Brumm</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900033</td>
<td>Predictive Data Analytics</td>
<td>Seminar / 🧩</td>
<td>Lerch</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900051</td>
<td>Seminar in Economic Policy</td>
<td>Seminar / 🧩</td>
<td>Ott</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900060</td>
<td>Bounded Rationality - Theory and Experiments (Bachelor)</td>
<td>Seminar / 🧩</td>
<td>Szech</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900070</td>
<td>Seminar: Behavioral Game Theory</td>
<td>Seminar / 🧩</td>
<td>Puppe</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900130</td>
<td>Shaping AI and Digitization (Bachelor)</td>
<td>Seminar / 🧩</td>
<td>Szech</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900162</td>
<td>The Macroeconomics of Sanctions</td>
<td>Seminar / 🧩</td>
<td>Brumm</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900164</td>
<td>Seminar in Economics (Bachelor)</td>
<td>Seminar / 🧩</td>
<td>Miusch</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900282</td>
<td>Digital IT-Solutions and Services Transforming the Field of Public Transportation</td>
<td>Seminar / 🧩</td>
<td>Miusch</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900293</td>
<td>Seminar Strategic Decision (Bachelor)</td>
<td>Seminar / 🧩</td>
<td>Ehrhart</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>79sefi1</td>
<td>Seminar Public Finance (Bachelor)</td>
<td>Seminar / 🧩</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900076</td>
<td>Economic Choices Over the Life Cycle</td>
<td>Seminar / 🧩</td>
<td>Brumm</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900254</td>
<td>Topics in Econometrics, Seminar in Economics (Bachelor)</td>
<td>Seminar / 🧩</td>
<td>Schienle</td>
<td></td>
</tr>
</tbody>
</table>
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Predictive Data Analytics - An Introduction to Machine Learning
2500013, SS 2022, SWS, Language: English, Open in study portal
Seminar (S) Blended (On-Site/Online)

Content
Modern methods from artificial intelligence and machine learning, in particular deep learning methods based on multi-layered artificial neural networks, provide unprecedented tools for data analysis and prediction. Over the past years, they have transformed many scientific fields and have become ubiquitous in real-world applications from speech recognition to self-driving cars.

This seminar will provide a broad introduction to machine learning from statistical foundations to applications in the sciences, economics and engineering. The focus will be on modern machine learning methods for predictive data analytics such as random forests, gradient boosting machines and neural networks, their trans-disciplinary application to supervised learning tasks, and approaches to gain insight into the 'black box' of machine learning models. Lectures on the theoretical background will be accompanied by hands-on programming exercises in Python that will cover practical aspects of implementing machine learning methods for analyzing scientific and real-world datasets.

Organizational issues
The seminar consists of three parts:

1. A 3-day block course of lectures and hands-on programming exercises will take place on April 11-13, 2022, either online or in person at Campus South, depending on the Covid-19 situation and regulations. Participation is mandatory. Some familiarity with basic concepts of probability theory and statistics is expected, as well as basic programming skills in Python. For the programming exercises, participants are expected to bring their own laptop with Python and relevant libraries installed.

2. Afterwards, all students will conduct a project for which they will choose a dataset from a list of scientific and real-world datasets and apply what they have learned in the course. Exemplary tasks include predictions of AirBnB prices, wine ratings, salaries, air quality, electricity prices or wildfires. The (potentially preliminary) results will be presented in a meeting during the semester (0.5 days, date to be determined, either online or in person), in a presentation of max. 15 minutes. Participation is mandatory.

3. A final report on the project of 10-20 pages and the code has to be submitted by September 30, 2022. The final grade will be based on the active participation in the seminar (10%), the presentation (30%) and the final report (60%).

Shaping AI and Digitization for Society - Seminar Morals and Social Behavior (Bachelor)
2560553, SS 2022, 2 SWS, Language: English, Open in study portal
Seminar (S) Blended (On-Site/Online)
Content
Participation will be limited to 12 students.

For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Blockveranstaltung:
Introductory Meeting April 20 (online)
Seminar Presentations June 3 (Präsenz or online)

V Bounded Rationality - Theory and Experiments, Seminar on Topics in Political Economy (Master)
2560554, SS 2022, 2 SWS, Language: English, Open in study portal
Seminar (S) Blended (On-Site/Online)

Content
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Students' grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with different lengths (20%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Blockveranstaltung:
Introductory Meeting: April 19, 16.00 (online)
Seminar Presentations (end of May) (online or Präsenz)

V Topics in Econometrics
2521310, WS 22/23, 2 SWS, Language: German, Open in study portal
Seminar (S)

Organizational issues
Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben

V Moral Wiggle Room and Info Avoidance - Topics in Political Economy (Bachelor)
2560140, WS 22/23, 2 SWS, Language: English, Open in study portal
Seminar (S) Blended (On-Site/Online)

Content
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.
Organizational issues
Application is possible via https://portal.wiwi.kit.edu/Seminare

Overcoming the Corona Crisis - Morals & Social Behavior (Bachelor)
2560141, WS 22/23, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/Seminare)

Seminar (S)
Blended (On-Site/Online)

Content
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.
The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Application is possible via https://portal.wiwi.kit.edu/Seminare

Moral Wiggle Room and Info Avoidance - Topics in Political Economy (Master)
2560142, WS 22/23, 2 SWS, Language: English, [Open in study portal](https://portal.wiwi.kit.edu/Seminare)

Seminar (S)
Blended (On-Site/Online)

Content
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Application is possible via https://portal.wiwi.kit.edu/Seminare
6.139 Course: Seminar in Informatics (Bachelor) [T-WWI-103485]

Responsible: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Economics and Management
Part of: M-INFO-102058 - Seminar Module Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Type</th>
<th>Contact Hours</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2513308</td>
<td>Seminar Knowledge Discovery and Data Mining (Bachelor)</td>
<td>3 SWS</td>
<td>Seminar / 🖥</td>
<td>Färber, Noullet, Saier, Popovic</td>
<td></td>
</tr>
<tr>
<td>2513310</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Färber, Käfer, Kulbach, Thoma</td>
<td></td>
</tr>
<tr>
<td>2513402</td>
<td>Seminar Emerging Trends in Internet Technologies (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Sunyaev, Thiebes, Lins</td>
<td></td>
</tr>
<tr>
<td>2513404</td>
<td>Seminar Emerging Trends in Digital Health (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Lins, Sunyaev, Thiebes</td>
<td></td>
</tr>
<tr>
<td>2513500</td>
<td>Cognitive Automobiles and Robots</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>2540553</td>
<td>User-Adaptive Systems Seminar</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Mädche, Beigl</td>
<td></td>
</tr>
<tr>
<td>2513200</td>
<td>Seminar Programming 3 (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Oberweis, Fritsch, Frister, Forell, Rybinski</td>
<td></td>
</tr>
<tr>
<td>2513214</td>
<td>Seminar Information security and Data protection (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Oberweis, Volkamer, Boehm, Alpers, Dügün, Schiefer, Veit, Ballreich, Gottschalk</td>
<td></td>
</tr>
<tr>
<td>2513216</td>
<td>Seminar Enabling technologies of digital process-oriented change (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Oberweis, Alpers, Becker, Sauer, Take, Wins</td>
<td></td>
</tr>
<tr>
<td>2513312</td>
<td>Seminar Linked Data and the Semantic Web (Bachelor)</td>
<td>3 SWS</td>
<td>Seminar / 🖥</td>
<td>Färber, Käfer, Braun</td>
<td></td>
</tr>
<tr>
<td>2513314</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</td>
<td>3 SWS</td>
<td>/ 🖥</td>
<td>Färber, Höllig, Thoma</td>
<td></td>
</tr>
<tr>
<td>2513315</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Master)</td>
<td>3 SWS</td>
<td>/ 🖥</td>
<td>Färber, Höllig, Thoma</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Instructor(s)</th>
<th>Type</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900090</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Bachelor)</td>
<td>Sure-Vetter</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900094</td>
<td>Seminar Knowledge Discovery and Data Mining (Bachelor)</td>
<td>Sure-Vetter</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900136</td>
<td>Seminar Emerging Trends in Digital Health (Bachelor)</td>
<td>Sunyaev</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900187</td>
<td>Seminar Emerging Trends in Internet Technologies (Bachelor)</td>
<td>Sunyaev</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900265</td>
<td>User-adaptive Systems Seminar</td>
<td>Mädche</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900034</td>
<td>Seminar Enabling technologies of digital process-oriented change (Bachelor)</td>
<td>Oberweis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7900038</td>
<td>Seminar Linked Data and the Semantic Web (Bachelor)</td>
<td>Färber</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900042</td>
<td>Seminar Programming 3 (Bachelor)</td>
<td>Oberweis</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900129</td>
<td>Security and Privacy Awareness</td>
<td>Volkamer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7900174</td>
<td>Seminar IT Security and Privacy (Bachelor)</td>
<td>Oberweis, Volkamer</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
<tr>
<td>7900187</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</td>
<td>Sure-Vetter</td>
<td>Seminar / 🖥</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕰 Blended (On-Site/Online), 🗝 On-Site, ✗ Cancelled
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
Placeholder for seminars offered by the Institute AIFB. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

V Seminar Knowledge Discovery and Data Mining (Bachelor) 2513308, SS 2022, 3 SWS, Language: English, Open in study portal

Content
In this seminar different machine learning and data mining methods are implemented.

The seminar includes different methods of machine learning and data mining. Participants of the seminar should have basic knowledge of machine learning and programming skills.

Domains of interest include, but are not limited to:

- Medicine
- Social Media
- Finance Market
- Scientific Publications

Further Information: https://aifb.kit.edu/web/Lehre/Praktikum_Knowledge_Discovery_and_Data_Science

The exact dates and information for registration will be announced at the event page.

Organizational issues
Die Anmeldung erfolgt über das WiWi Portal https://portal.wiwi.kit.edu/.

Für weitere Fragen bezüglich des Seminar und der behandelten Themen wenden Sie sich bitte an die entsprechenden Verantwortlichen.

Literature
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B. aus den folgenden Lehrbüchern:

- Mitchell, T.; Machine Learning
Content
In this seminar, students will design applications in teams that use meaningful and creative Event Processing methods. Thereby, students have access to an existing record.

Event processing and real-time data are everywhere: financial market data, sensors, business intelligence, social media analytics, logistics. Many applications collect large volumes of data in real time and are increasingly faced with the challenge of being able to process them quickly and react promptly. The challenges of this real-time processing are currently also receiving a great deal of attention under the term "Big Data". The complex processing of real-time data requires both knowledge of methods for data analysis (data science) and their processing (real-time analytics). Seminar papers are offered on both of these areas as well as on interface topics, the input of own ideas is explicitly desired.

Further information to the seminar is given under the following Link:
http://seminar-cep.fzi.de
Questions are answered via the e-mail address sem-ep@fzi.de.

Organizational issues
Further information as well as the registration form can be found under the following link:
http://seminar-cep.fzi.de
Questions are answered via the e-mail address sem-ep@fzi.de.

Cognitive Automobiles and Robots

Course Details:
- Code: 2513500, SS 2022, 2 SWS, Language: German/English, [Open in study portal](#)

Content
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im Wiwi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.
Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school “KD2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.

<table>
<thead>
<tr>
<th>V</th>
<th>Seminar Programming 3 (Bachelor)</th>
<th>Seminar (S) On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2513200, WS 22/23, 2 SWS, Open in study portal</td>
<td></td>
</tr>
</tbody>
</table>

Content
Registration information and the content of the seminar will be announced on the course page. Only bachelor students are allowed to attend this seminar.

<table>
<thead>
<tr>
<th>V</th>
<th>Seminar Linked Data and the Semantic Web (Bachelor)</th>
<th>Seminar (S) On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2513312, WS 22/23, 3 SWS, Language: German/English, Open in study portal</td>
<td></td>
</tr>
</tbody>
</table>
Content
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this practical seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this practical seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

<table>
<thead>
<tr>
<th>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2513314, WS 22/23, 3 SWS, Language: German/English, Open in study portal</td>
</tr>
</tbody>
</table>

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master's programs.

The exact dates and information for registration will be announced at the course page.

<table>
<thead>
<tr>
<th>Seminar Real-World Challenges in Data Science and Analytics (Master)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2513315, WS 22/23, 3 SWS, Language: German/English, Open in study portal</td>
</tr>
</tbody>
</table>

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master's programs.

The exact dates and information for registration will be announced at the course page.
6.140 Course: Seminar in Operations Research (Bachelor) [T-WIWI-103488]

Responsible:
- Prof. Dr. Stefan Nickel
- Prof. Dr. Steffen Rebennack
- Prof. Dr. Oliver Stein

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101826 - Seminar Module Economic Sciences

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2550132 Seminar on Mathematical Optimization (MA)</td>
<td>2 SWS</td>
<td>Seminar / Online</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
<tr>
<td>ST 2022 2550472 Seminar on Power Systems Optimization (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / Blended</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>ST 2022 2550491 Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Seminar / Blended</td>
<td>Nickel, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2550131 Seminar on Methodical Foundations of Operations Research (B)</td>
<td>2 SWS</td>
<td>Seminar / Online</td>
<td>Stein, Beck, Schwarze</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2550472 Seminar on Power Systems Optimization (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / Blended</td>
<td>Rebennack, Warwicker</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 2550491 Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Seminar / Blended</td>
<td>Nickel, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7900018_SS2022 Seminar in Operations Research A (Master)</td>
<td>Stein</td>
</tr>
<tr>
<td>ST 2022 7900244 Seminar: Modern OR and Innovative Logistics</td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2022 7900347 Seminar on Power Systems Optimization (Bachelor)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WT 22/23 7900011_WS2223 Seminar in Operations Research B (Bachelor)</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:
Seminar: Modern OR and Innovative Logistics

2550491, SS 2022. 2 SWS, Language: German, [Open in study portal](#)

Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Attendance is compulsory for the preliminary meeting as well for all seminar presentations.

Exam:
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 35-40 minutes (according to §4(2), 3 of the examination regulation).

The final mark for the seminar consists of the seminar thesis, the seminar presentation, the handout, and if applicable further material such as programming code.

The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Requirements:
If possible, at least one module of the institute should be taken before attending the seminar.

Objectives:
The student

- illustrates and evaluates classic and current research questions in discrete optimization,
- applies optimization models and algorithms in discrete optimization, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management),
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Organizational issues
wird auf der Homepage dol.ior.kit.edu bzw. auf dem WiWi-Portal bekannt gegeben

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar on Methodical Foundations of Operations Research (B)

2550131, WS 22/23, 2 SWS, Language: German, [Open in study portal](#)
Content
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application. Bachelor students are introduced to the style of scientific work. By focussed treatment of a scientific topic they deal with the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetorical abilities may be improved.

Remarks:
Attendance at all oral presentations is compulsory.

Preferably at least one module offered by the Institute of Operations Research should have been chosen before attending this seminar.

Assessment:
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation. The grade is composed of the equally weighted assessments of the paper and the oral presentation.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the oral presentation.

Workload:
The total workload for this course is approximately 90 hours. For further information see German version.

Literature
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbereitung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preparatory meeting.

6 COURSES
Course: Seminar in Operations Research (Bachelor) [T-WIWI-103488]

Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Organizational issues
wird auf der Homepage bekannt gegeben

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.
6.141 Course: Seminar in Statistics (Bachelor) [T-WIWI-103489]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101826 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Organizer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2500013</td>
<td>Predictive Data Analytics - An Introduction to Machine Learning</td>
<td>Seminar</td>
<td>Seminar / 📲</td>
<td>Lerch, Koster</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2521310</td>
<td>Advanced Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Schienle, Krüger, Görgen, Koster, Buse, Rüter</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2550560</td>
<td>Spezielle Themen der Datenanalyse und Statistik</td>
<td>2 SWS</td>
<td>Seminar / 📚</td>
<td>Grothe, Kaplan, Kächele</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2500042</td>
<td>Interpretable Statistical and Machine Learning Models</td>
<td>2 SWS</td>
<td>Seminar / 📲</td>
<td>Lerch</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Schienle, Rüter, Görgen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Organizer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900033</td>
<td>Predictive Data Analytics</td>
<td></td>
<td></td>
<td>Lerch</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900150</td>
<td>Advanced Topics in Econometrics, Seminar in Statistics A (Master)</td>
<td></td>
<td></td>
<td>Schienle, Krüger</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900250</td>
<td>Data Mining and Applications (Projectseminar)</td>
<td></td>
<td></td>
<td>Nakhaeizadeh</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7900254</td>
<td>Topics in Econometrics, Seminar in Economics (Bachelor)</td>
<td></td>
<td></td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Predictive Data Analytics - An Introduction to Machine Learning

2500013, SS 2022, SWS, Language: English, Open in study portal
Seminar (S)
Blended (On-Site/Online)
Content
Modern methods from artificial intelligence and machine learning, in particular deep learning methods based on multi-layered artificial neural networks, provide unprecedented tools for data analysis and prediction. Over the past years, they have transformed many scientific fields and have become ubiquitous in real-world applications from speech recognition to self-driving cars.

This seminar will provide a broad introduction to machine learning from statistical foundations to applications in the sciences, economics and engineering. The focus will be on modern machine learning methods for predictive data analytics such as random forests, gradient boosting machines and neural networks, their trans-disciplinary application to supervised learning tasks, and approaches to gain insight into the ‘black box’ of machine learning models. Lectures on the theoretical background will be accompanied by hands-on programming exercises in Python that will cover practical aspects of implementing machine learning methods for analyzing scientific and real-world datasets.

Organizational issues
The seminar consists of three parts:

1. A 3-day block course of lectures and hands-on programming exercises will take place on April 11-13, 2022, either online or in person at Campus South, depending on the Covid-19 situation and regulations. Participation is mandatory. Some familiarity with basic concepts of probability theory and statistics is expected, as well as basic programming skills in Python. For the programming exercises, participants are expected to bring their own laptop with Python and relevant libraries installed.

2. Afterwards, all students will conduct a project for which they will choose a dataset from a list of scientific and real-world datasets and apply what they have learned in the course. Exemplary tasks include predictions of AirBnB prices, wine ratings, salaries, air quality, electricity prices or wildfires. The (potentially preliminary) results will be presented in a meeting during the semester (0.5 days, date to be determined, either online or in person), in a presentation of max. 15 minutes. Participation is mandatory.

3. A final report on the project of 10-20 pages and the code has to be submitted by September 30, 2022. The final grade will be based on the active participation in the seminar (10%), the presentation (30%) and the final report (60%).
6.142 Course: Seminar Informatics A [T-INFO-104336]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: M-INFO-102058 - Seminar Module Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Hot Topics in Bioinformatics</td>
<td>2 SWS</td>
<td>Stamatakis</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar: Service-oriented Architectures</td>
<td></td>
<td>Abeck, Schneider, Sänger</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Undergraduate Seminar Software Disasters</td>
<td>2 SWS</td>
<td>Reussner</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Proseminar Software Requirements and Design</td>
<td>2 SWS</td>
<td>Koziolek</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Proseminar Algorithms for NP-hard Problems</td>
<td>2 SWS</td>
<td>Ueckerdt, Merker, Weyand, Feilhauer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Novel and non-mainstream advances in Data Science</td>
<td></td>
<td>Böhm, Bielski</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Embedded Machine Learning</td>
<td></td>
<td>Rapp, Sikal, Pfeiffer, Zervakis, Khdr, Henkel</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Can Statistics Prove Cause and Effect?</td>
<td>2 SWS</td>
<td>Janzing</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Embedded Security and Architectures</td>
<td></td>
<td>Hussain, Nassar, Bauer, Khdr, Gonzalez, Henkel</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Robotics and Medicine</td>
<td>2 SWS</td>
<td>Mathis-Ullrich</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Advanced Methods of Information Fusion</td>
<td>2 SWS</td>
<td>Hanebeck, Reith-Braun</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Current Topics in Digital Transformation Seminar</td>
<td>3 SWS</td>
<td>Mädche</td>
</tr>
<tr>
<td>ST 2022</td>
<td>User-Adaptive Systems Seminar</td>
<td>2 SWS</td>
<td>Mädche, Beigl</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Information Systems and Service Design Seminar</td>
<td>3 SWS</td>
<td>Mädche</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar: Neuronale Netze und künstliche Intelligenz</td>
<td></td>
<td>Waibel, Retkowski</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Internet of Things</td>
<td></td>
<td>Zervakis, Bauer, Henkel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Embedded Machine Learning</td>
<td></td>
<td>Rapp, Sikal, Pfeiffer, Balaskas, Zervakis, Khdr, Henkel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Embedded Security and Architectures</td>
<td></td>
<td>Hussain, Nassar, Bauer, Khdr, Gonzalez, Sikal, Henkel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Advanced Methods of Information Fusion</td>
<td>2 SWS</td>
<td>Hanebeck, Reith-Braun</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar: Ubiquitous Systems</td>
<td>2 SWS</td>
<td>Beigl, Zhou, Pescara</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Current Topics in Digital Transformation Seminar</td>
<td>3 SWS</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Advanced Methods of Information Fusion</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar: Hot Topics in Bioinformatics</td>
<td>Stamatakis</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Seminar Information Systems</td>
<td>Böhm</td>
</tr>
</tbody>
</table>
Below you will find excerpts from events related to this course:

Hot Topics in Bioinformatics
2400011, SS 2022, 2 SWS, Language: English, [Open in study portal]

Content

Prerequisites: CS Master’s level seminar. Participants must have attended and passed the course on “Introduction to Bioinformatics for Computer Scientists” in one of the preceding winter terms.

Task: You will need to select papers to present, give a presentation and write a report.

This main seminar allows students to understand and present the contents of current papers in Bioinformatics such as published for instance in the journals *Bioinformatics, BMC Bioinformatics, Journal of Computational Biology* etc. or at conferences such as *ISMB* or *RECOMB*.

We will provide a list of interesting papers, but students can also propose papers they are interested in. Students may also choose to cover broader topics of more general interest such as multiple sequence alignment, Bayesian phylogenetic inference, read assembly etc.

Each student will be assigned a lab member for help with understanding the article and preparing the slides as well as the report. Students should give a 35 minute presentation on their topic of choice and write a report (Seminararbeit) comprising 8 pages.

Goals: Participants are able to understand, critically assess, and compare current research papers in Bioinformatics. They are able to present algorithms and models from current research papers in oral and written form at a level that corresponds to that of scientific publications and conference presentations. Participants are able to suggest extension to current methods.

Credits: 3 ECTS

Organizational issues

IMPORTANT: Register for the seminar mailing list by sending an email to Alexandros.Stamatakis@h-its.org.

All information on the seminar is provided at: [Seminar page](#). Information about how we will start virtually is also provided there. We will start in the first week of the summer term. For all further information, students are requested to regularly read their emails.

Embedded Machine Learning
2400137, SS 2022, SWS, Language: German/English, [Open in study portal]

Seminar (S)
Blended (On-Site/Online)
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Machine learning on on-chip systems
Machine learning and on-chip systems form a symbiosis where each research area benefits from advances in the other. In this seminar, students review cutting-edge research on both areas.

Machine learning (ML) gains importance in all aspects of information systems. From high-level algorithms like image recognition to lower-level intelligent CPU management - ML is ubiquitous. On-chip systems also benefit from advances in ML techniques. Examples include adaptive resource management or workload prediction. However, ML techniques also benefit from advances in on-chip systems. A prominent example is acceleration of neural networks in recent desktop GPUs and even smartphone chips.

In this seminar, students will review cutting-edge state-of-the-art research (publications) on a specific topic related to ML on on-chip systems. The findings will be summarized in a seminar report and presented to the other members of the course. Students are welcome to suggest their own topics, but this is not required. The seminar can be held in English or German.

Approximate Computing for Efficient Machine Learning
Nowadays, energy efficiency is a first-class design constraint in the ICT sector. Approximate computing emerges as a new design paradigm for generating energy efficient computing systems. There is a large body of resource-hungry applications (eg, image processing and machine learning) that exhibit an intrinsic resilience to errors and produce outputs that are useful and of acceptable quality for the users despite their underlying computations being performed in an approximate manner. By exploiting this inherent error tolerance of such applications, approximate computing trades computational accuracy for savings in other metrics, eg, energy consumption and performance. Machine learning, a very common and top trending workload of both data centers and embedded systems, is a perfect candidate for approximate computing application since, by definition, it delivers approximate results. Performance as well as energy efficiency (especially in the case of embedded systems) are crucial for machine learning applications and thus, approximate computing techniques are widely adopted in machine learning (eg, TPU) to improve its energy profile as well as performance.

Machine Learning methods for DNN compilation and mapping
Deep neural networks have achieved great success in challenging tasks such as image classification and object detection. There is a great demand for deploying these networks in different devices, ranging from cloud servers to embedded devices. Mapping DNNs to these devices is a challenging task since each of these devices has different characteristics in terms of memory organization, compute units, etc. There have been efforts to automate the process of mapping/compiling DNNs to hardware with different characteristics.

In this seminar, we will discuss the efforts that have been done in mapping/compiling DNNs over hardware using machine learning methods.

Organizational issues
Please register in ILIAS to participate.

Embedded Security and Architectures
2400148, SS 2022, SWS, Language: German/English, [Open in study portal](#)
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Dependability for Reconfigurable Architectures
Dependability has become one of the prime concerns in recent nano-era. Reliability (the ability of the system to deliver services as specified) and Security (the ability of the system to protect itself against deliberate or accidental intrusion) are the two crucial attributes of dependable systems. Among the other reliability threats due to physical limits of CMOS technology, radiation induced soft errors or transient faults are also the most challenging threat to be handled. During this seminar, we will explore state-of-the-art for the power-efficient soft-error reliability and study different research solutions to improve soft-error resiliency in power efficient manner leveraging power-performance-reliability trade-offs. During this seminar, the students will also be able to understand hardware security in reconfigurable architectures,

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re)configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality. This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (ie, systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.

In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems. During this seminar, student will dive into the security aspects of resource management, while investigating answers to the following research questions:

- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What’s their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organizational issues
Please register in ILIAS to participate.

Advanced Methods of Information Fusion
24344, SS 2022, 2 SWS, Language: German/English, Open in study portal

Content
The growing spread and performance of modern information and communication technologies produces an ever-increasing amount data. It is one of the central challenges of our time to extract meaningful information from these data sets. The approach to address these issues, often called data science, combines strategies and methods from the fields of machine learning, mathematics, state estimation, visualization and pattern recognition. During this seminar, the students will familiarize themselves with concepts and methods particularly focusing on estimation theory and its application.

The seminar targets master students in computer science and bachelor students in Information engineering and management.

User-Adaptive Systems Seminar
2540553, SS 2022, 2 SWS, Language: English, Open in study portal

Course: Seminar Informatics A [T-INFO-104336]
Module Handbook as of 04/10/2022
Content
User-adaptive systems collect and analyze biosignals from users to recognize user states as a basis for adaptation. Thermic, mechanical, electric, acoustic, and optical signals are collected using sensors which are integrated in wearables, e.g. glasses, earphones, belts, or bracelets. The collected data is processed with analytics and machine learning techniques in order to determine short-term, evolving over time, and long-term user states in the form of user characteristics, affective-cognitive states, or behavior. Finally, the recognized user states are leveraged for realizing user-centric adaptations.

In this seminar, interdisciplinary teams of students design, develop, and evaluate a user-adaptive system prototype leveraging state-of-the-art hard- and software. This seminar follows an interdisciplinary approach. Students from the fields of computer science, information systems and industrial engineering & management collaborate in the prototype design, development, and evaluation.

The seminar is carried out in cooperation between Teco/Chair of Pervasive Computing Systems (Prof. Beigl) and the Institute of Information Systems and Marketing (Research Group ISSD, Prof. Mädche). It is offered as part of the DFG-funded graduate school “KD2School: Designing Adaptive Systems for Economic Decisions” (https://kd2school.info/)

Learning objectives of the seminar
- Explain what a user-adaptive system is and how it can be conceptualized
- Suggest and evaluate different design solutions for addressing the identified problem
- Build a user-adaptive system prototype using state-of-the-art hard- and software
- Perform a user-centric evaluation of the user-adaptive system prototype

Prerequisites
Strong analytical abilities and profound software development skills are required.

Organizational issues
Termine werden bekannt gegeben

Literature
Required literature will be made available in the seminar.
Course: Seminar Informatics A [T-INFO-104336]

Content
With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group ISSD (Prof. Mädche). The research group "Information Systems & Service Design" (ISSD) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives
- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites
No specific prerequisites are required for the seminar.

Literature
Further literature will be made available in the seminar.

Organizational issues
Termine werden bekannt gegeben

Seminar: Neuronale Netze und künstliche Intelligenz
2400078, WS 22/23, SWS, Language: German/English, Open in study portal

Content
In many tasks that appear natural to us, the fastest computers are unable to match the performance of the human brain. Neural networks attempt to simulate the parallel and distributed architecture of the brain in order to master these skills with learning algorithms. In this context, focus is being put on neural network approaches to computer vision and speech recognition, robotics and other areas.

In this seminar students will acquaint themselves with literature from provided topics and will present their results as a talk supported by slides to the other participants of the seminar.

Recommendations:
- Finishing the module "Kognitive Systeme" prior to the seminar is recommended.
- Attending the lecture "Deep Learning und Neuronale Netze" prior to the seminar is of advantage

Internet of Things
2400092, WS 22/23, SWS, Language: German/English, Open in study portal

Blended (On-Site/Online)
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Security in Internet of Things (IoT)
Welcome to the era of the Internet of Things (IoT), where millions of connected devices together in almost all aspects of our daily life, including our homes, offices, cars, and even our bodies, from TVs, fridges, and cars to health monitors and wearables. As a matter of fact, IoT is growing very fast and spreads very quickly. According to ARM, it is expected that the number of IoT devices will exceed 1 Trillion devices by 2025.

New applications and software always present new security threats; because it is developed very quickly and the developers cannot expect all threats, and it may need a decade to make these systems secure. For the IoT devices, these threats may have serious effects on our life; since Internet threats, today can steal credit cards, disable home security systems, personal data, webcam control, and even more.

Unfortunately, there is no “silver bullet” that can effectively mitigate every possible cyber threat. And these will open the need for improving the proposed security found in the IoT domain to keep malicious activity off and to cover personal privacy, financial transactions, and the threat of cyber theft to make IoT not only reliable but also safer.

Kubernetes for Edge and IoT
Kubernetes, originally developed by Google, is an open-source orchestration system for automating the deployment, scaling, monitoring, and management of containerized workloads/applications/services. Kubernetes was first announced by Google in mid-2014 and quickly became the industry standard for container orchestration. Kubernetes initially targeted on-premises, hybrid, or public cloud environments. Edge computing is gaining a lot of attraction lately with the need for mission-critical decisions to be made in real-time at the edge, the ML-powered IoT devices, and the move towards 5G. Hence, due to the increasing need to embrace cloud-native technology and containers, Kubernetes was quickly adopted in Edge/IoT environments opening up a new ecosystem for Edge Computing. However, to achieve this transition and enable leveraging Kubernetes on Edge an IoT, we have to overcome several challenges such as footprint of Kubernetes, energy constrained execution, scalability outside of the confines of data centers etc.

Kubernetes for Edge and IoT is offered only in English.

Organizational issues
Bitte im ILIAS zur Teilnahme anmelden.

Embedded Machine Learning
2400137, WS 22/23, SWS, Language: German/English, Open in study portal
Seminar (S) Blended (On-Site/Online)

Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Machine Learning on On-Chip Systems
Machine learning and on-chip systems form a symbiosis where each research area benefits from advances in the other. In this seminar, students review cutting-edge research on both areas.

Machine learning (ML) gains importance in all aspects of information systems. From high-level algorithms like image recognition to lower-level intelligent CPU management - ML is ubiquitous. On-chip systems also benefit from advances in ML techniques. Examples include adaptive resource management or workload prediction. However, ML techniques also benefit from advances in on-chip systems. A prominent example is acceleration of neural networks in recent desktop GPUs and even smartphone chips.

In this seminar, students will review cutting-edge state-of-the-art research (publications) to a specific topic related to ML on on-chip systems. The findings will be summarized in a seminar report and presented to the other members of the course. Students are welcome to suggest own topics, but this is not required. The seminar can be held in English or German.

DNN Pruning and Quantization
As DNNs become more computationally hungry, their hardware implementation becomes more challenging, since embedded devices have limited resources. DNN compression techniques, such as pruning and quantization, can be applied for efficient utilization of computational resources. While pruning involves removing unimportant elements of a DNN structure (connections, filters, channels etc), quantization decreases the precision for representing DNN-related tensors (weights and activations). Both promise to trade-off some of the application's accuracy for limited energy consumption and reduced memory footprint. Students will review state-of-the-art research works on hardware-aware DNN pruning and quantization. The findings will be summarized in a seminar report and presented to the other members of the course.

Organizational issues
Bitte im ILIAS zur Teilnahme anmelden.

Embedded Security and Architectures
2400148, WS 22/23, SWS, Language: German/English, Open in study portal
Seminar (S) Blended (On-Site/Online)
Content
In our seminars, students learn about cutting-edge research in the research fields presented below. Students are offered topics by the supervisors, but also can suggest their own topics in these fields. The seminar is offered in both English and German.

Dependability for Reconfigurable Architectures
Dependability has become one of the prime concerns in recent nano-era. Reliability (the ability of the system to deliver services as specified) and Security (the ability of the system to protect itself against deliberate or accidental intrusion) are the two crucial attributes of dependable systems. Among the other reliability threats due to physical limits of CMOS technology, radiation induced soft errors or transient faults are also the most challenging threat to be handled. During this seminar, we will explore state-of-the-art for the power-efficient soft-error reliability and study different research solutions to improve soft-error resiliency in power efficient manner leveraging power-performance-reliability trade-offs. During this seminar, the students will also be able to understand hardware security in reconfigurable architectures.

Thermal and Power Aware Embedded Systems
Power densities are continuously increasing along with technology scaling and the integration of more transistors into smaller areas, potentially resulting in thermal emergencies on the chip. To mitigate such emergencies, power and thermal management techniques are employed. The state-of-the-art power and thermal management techniques can be classified into several categories, such as reactive and proactive techniques, centralized and distributed ones. Recently, machine learning algorithms are employed in power and thermal management techniques to make them more proactive and adaptive. Those various categories of the state-of-the-art techniques need to be reviewed in this seminar to demonstrate the advantage and disadvantage of each of them.

Security of Reconfigurable Embedded Systems
Various types of (re)configurable systems have emerged in recent years. The spectrum ranges from one-time configurable systems that are programmed at the design time for product-specific requirements, to reconfigurable systems that can also be adapted after commissioning, to dynamically reconfigurable systems whose configuration can be changed at runtime and their ability to dynamic reconfiguration is an important part of their system functionality.
This seminar focuses on the runtime reconfigurable systems, their security aspects and methods. It investigates the current state of research for securing the runtime reconfigurable systems, as well as the feasibility of using the security measures from general processing architectures to runtime reconfigurable systems.

Security in Resource Management
Efficient resource management in many-core systems (i.e., systems with more than 100 cores, not only a dozen) has become a research challenge in the last years. As complexity and the demand for scalability increase, this new paradigm should also consider new security features to avoid or mitigate the effects of malicious applications both on critical information and the system as a whole.
In this seminar, we will focus on the state-of-the-art of security attacks such as Side Channel Attacks (SCA), Covert channel attacks, as well as other similar resource-based attacks and their effects on other critical applications running on many-core systems. During this seminar, student will dive into the security aspects of resource management, while investigating answers to the following research questions:
- How do these attacks work?
- Which are the associated vulnerabilities? What resources are vulnerable?
- What’s their impact on critical information or other resources?
- What are the current countermeasures for the attacks?

Organizational issues
Please register in ILIAS to participate.

Advanced Methods of Information Fusion
24344, WS 22/23, 2 SWS, Language: German. Open in study portal

Content
The growing spread and performance of modern information and communication technologies produces an ever-increasing amount of data. It is one of the central challenges of our time to extract meaningful information from these data sets. The approach to address these issues, often called data science, combines strategies and methods from the fields of machine learning, mathematics, state estimation, visualization and pattern recognition. During this seminar, the students will familiarize themselves with concepts and methods particularly focusing on estimation theory and its application.
The seminar targets master students in computer science and bachelor students in Information engineering and management.
Course: Seminar: Legal Studies I [T-INFO-101997]

Responsibility: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: M-INFO-101218 - Seminar Module Law

Type: Examination of another type

Credits: 3

Grading scale: Grade to a third

Recurrence: Each term

Version: 1

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Organizational Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2400005</td>
<td>Governance, Risk & Compliance</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>noon</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2400061</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Bless, Boehm, Hartenstein, Mädche, Zitterbart, Volkamer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2400078</td>
<td>Die Bedeutung von ISMS im Datenschutzrechtsrecht</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Raabe</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2400168</td>
<td>„Vom Original zur Kopie und vom Analogem zum Digitalen“</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Dreier, Jehle</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2400240</td>
<td>Grundlagen Ethik und IT</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Dreier</td>
</tr>
<tr>
<td>ST 2022</td>
<td>24820</td>
<td>Current Issues in Patent Law</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Melullis</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2400142</td>
<td>Seminar Urheberrecht</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Dreier</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2513214</td>
<td>Seminar Information Security and Data Protection (Bachelor)</td>
<td>Seminar</td>
<td>2 SWS</td>
<td>Oberweis, Volkamer, Boehm, Alpers, Düzgün, Schiefer, Veit, Ballreich, Gottschnalk</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Code</th>
<th>Title</th>
<th>Organizational Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500106</td>
<td>Title not available</td>
<td>Bless, Hartenstein, Mädche, Zitterbart, Boehm, Sunyaev</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500140</td>
<td>Seminar: Legal Studies I</td>
<td>Dreier, Boehm, Melullis, Matz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500182</td>
<td>Seminar: Legal Studies II</td>
<td>Dreier, Boehm, Raabe</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500232</td>
<td>Seminar Data in Software-Intensive Technical Systems – Modeling – Analysis – Protection</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🍀 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Below you will find excerpts from events related to this course:

Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung

2400061, SS 2022, 2 SWS, Open in study portal

Content

- **Registration:** via https://portal.wiwi.kit.edu/ys/5877

Organizational issues

nach Vereinbarung
6.144 Course: Software Engineering I [T-INFO-101968]

Responsible: Prof. Dr.-Ing. Anne Koziolak
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: M-INFO-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type/Practice</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>24518</td>
<td>Softwaretechnik I</td>
<td>4</td>
<td>Lecture / Practice / Schaefer, Eichhorn, Runge</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500152</td>
<td>Software Engineering I</td>
<td>Schaefer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500123</td>
<td>Software Engineering I</td>
<td>Schaefer</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
6.145 Course: Software Engineering I Pass [T-INFO-101995]

Responsible: Prof. Dr. Walter Tichy
Organisation: KIT Department of Informatics
Part of: M/INFO-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 24518</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Exams</td>
</tr>
<tr>
<td>ST 2022 7500250</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.146 Course: Software Engineering II [T-INFO-101370]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: M-INFO-100833 - Software Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 24076</td>
<td>4 SWS</td>
<td>Software Engineering II</td>
<td>German, Open in study portal</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7500207</td>
<td></td>
<td>Software Engineering II</td>
<td>German</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Software Engineering II

24076, WS 22/23, 4 SWS, Language: German, [Open in study portal](#)

Literature

6.147 Course: Special Topics in Information Systems [T-WIWI-109940]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101434 - eBusiness and Service Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7900224</th>
<th>Special Topics in Information Systems</th>
<th>Weinhardt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900286</td>
<td>Sustainability through Digitalization: Development of a Low-cost Do-it-Yourself Smart Meter Infrastructure together with an Energy App</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The overall grade is composed as follows:

A total of 60 points can be achieved, of which

- A maximum of 30 points for the written documentation
- A maximum of 30 points for the practical component

In order to pass the success control, at least 15 points (written documentation / practical component) must be achieved.

Prerequisites

see below

Recommendation

None

Annotation

All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Systems course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre.

The Special Topics Information Systems is equivalent to the practical seminar, as it was only offered for the major in "Information Systems" so far. With this course students majoring in "Industrial Engineering and Management" and "Economics Engineering" also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Systems can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.

Responsible: apl. Prof. Dr. Wolf-Dieter Heller

Organisation: KIT Department of Economics and Management

Part of:
- M-WWI-101599 - Statistics and Econometrics
- M-WWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 2521350 | Statistical Modeling of Generalized Regression Models | 2 SWS | Lecture | Heller |

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Below you will find excerpts from events related to this course:

Statistical Modeling of Generalized Regression Models

2521350, WS 22/23, 2 SWS, Open in study portal

Content

Learning objectives:
The student has profound knowledge of generalized regression models.

Requirements:
Knowledge of the contents covered by the course Economics III: Introduction in Econometrics" [2520016].

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Course: Statistics I [T-WIWI-102737]

Responsible:
Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101432 - Introduction to Statistics

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Credits

- **Type:** Written examination
- **Credits:** 5
- **Grading scale:** Grade to a third
- **Recurrence:** Each summer term
- **Version:** 1

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2600008</td>
<td>Statistics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900035</td>
<td>Statistics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900036</td>
<td>Statistics I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered either as a 120-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites
None

Below you will find excerpts from events related to this course:

Statistics I

- **2600008, SS 2022, 4 SWS, Language: German, Open in study portal**
- **Lecture (V) On-Site**

Content

Learning objectives:
The Student understands and applies

- the basic concepts of statistical data exploration,
- the basic definitions and theorems of probability theory.

Content:
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities
C. Random variables: location and shape parameters, dependency measures, concrete distribution models

Workload:
Total workload for 5 CP: approx. 150 hours
Attendance: 60 hours
Preparation and follow-up: 90 hours
Literatur
Skriptum: Kurzfassung Statistik I

Weiterführende Literatur:
Course: Statistics II [T-WIWI-102738]

Responsibility: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101432 - Introduction to Statistics

Type: Written examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events
WT 22/23 2610020 Statistics II 4 SWS Lecture / Online Grothe
WT 22/23 2610021 Statistics II 2 SWS Tutorial Grothe, Lerch, Ritschel
WT 22/23 2610022 PC-Praktikum zu Statistik II 2 SWS Grothe, Lerch, Görgen

Exams
WT 22/23 7900001 Statistics II Grothe, Lerch
WT 22/23 7900081 Statistics II Grothe, Lerch

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation.
The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Prerequisites
None

Recommendation
It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2610020].

Below you will find excerpts from events related to this course:

Statistics II
2610020, WS 22/23, 4 SWS, Language: German, Open in study portal

Content
Learning objectives:
The student
- understands and applies the basic definitions and theorems of probability theory,
- transfers these theoretical foundations to problems in parametrical mathematical statistics.

Content:
D. Sampling and Estimation Theory: Sampling distributions, estimators, point and interval estimation
E. Test Theory: General Principles of Hypothesis Testing, Concrete 1- and 2-Sampling Tests
F. Regression analysis: Simple and multiple linear regression, statistical inference

Requirements:
It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2610020].

Workload:
Total workload: 150 hours (5.0 Credits).
Attendance: 30 hours
Preparation and follow-up: 90 hours
Literature
Skriptum: Kurzfassung Statistik II

Weiterführende Literatur:
6.151 Course: Strategic Finance and Technology Change [T-WIWI-110511]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7900268</td>
<td>Strategic Finance and Technology Change</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The exam is offered each semester. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Prerequisites
None

Recommendation
Attending the lecture “Financial Management” is strongly recommended.
6.152 Course: Supplement Applied Informatics [T-WIWI-110711]

Responsible: Professorenschaft des Instituts AIFB
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written or (if necessary) oral examination. Depending on the particular course associated with this placeholder a bonus on the examination grade is possible.

Prerequisites
None

Annotation
This course can be used in particular for the acceptance of external courses whose content is in the broader area of applied informatics, but is not equivalent to another course of this topic.
6.153 Course: Surfaces for Computer aided Design [T-INFO-102073]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: M-INFO-101254 - Surfaces for Computer Aided Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Course Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500315</td>
<td>Surfaces for Computer aided Design</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
6.154 Course: Tactical and Operational Supply Chain Management [T-WIWI-102714]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research
M-WIWI-101421 - Supply Chain Management
M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2550486</td>
<td>3 SWS</td>
<td>Tactical and operational SCM</td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2022 2550487</td>
<td>1.5 SWS</td>
<td>Übungen zu Taktisches und operatives SCM</td>
<td>Pomes, Linner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 00008</td>
<td></td>
<td>Tactical and Operational Supply Chain Management</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the exam will be offered either as an open-book exam, or as a written exam (60 min).

The exam takes place in every semester.

Prerequisite for admission to examination is the successful completion of the online assessments.

Prerequisites

Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendation

None

Annotation

The lecture is held in every summer term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Tactical and operational SCM

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 2550486</td>
<td>3 SWS</td>
<td>Lecture (V)</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Content

The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot. The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.
Literature
Weiterführende Literatur

- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005
6.155 Course: Team Project Software Development [T-INFO-109823]

Responsible:
- Prof. Dr. Sebastian Abeck
- Prof. Dr. Ralf Reussner

Organisation:
- KIT Department of Informatics

Part of:
- M-INFO-104809 - Team Project Software Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Name</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2400003</td>
<td>Team Project Software Development</td>
<td></td>
<td>Abeck, Schneider, Burger, Koziolek, Mädche, Oberweis, Zöllner, Fritsch, Kurzer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2400101</td>
<td>Team Project Software Development</td>
<td></td>
<td>Abeck, Reussner, Burger, Leinweber, Martinez, Greif-Winzrieth, Gorny, Fegert, Peukert, Fritsch, Forell, Frister, Schneider, Kurzer, Daaboul</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Name</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500308</td>
<td>Team Project Software Development: Visualization of sensitive data in mobility systems</td>
<td>Reussner</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7900226</td>
<td>Team Project Software Development: Educating Data Science with Mixed Reality: Developing an Exploratory Learning System</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- 🗑 Cancelled
Below you will find excerpts from events related to this course:

Telematics
24128, WS 22/23, 3 SWS, Language: German, [Open in study portal]

Lecture
On-Site

Content
The lecture covers (i.a.) protocols, architectures, as well as methods and algorithms, for routing and establishing reliable end-to-end connections in the Internet. In addition to various methods for media access control in local area networks, the lecture also covers other communication systems, e.g. circuit-switched systems such as ISDN. Participants should also have understood the possibilities for managing and administering networks.

Familiar with the contents of the lecture *Einführung in Rechnernetze* or comparable lectures is assumed.

Learning Objectives
After attending this lecture, the students will

- have a profound understanding of protocols, architectures, as well as procedures and algorithms used for routing and for establishing reliable end-to-end connections in the Internet
- have a profound understanding of different media access control procedures in local networks and other communication systems like circuit-switched ISDN
- have a profound understanding of the problems that arise in large scale dynamic communication systems and are familiar with mechanism to deal with these problems
- be familiar with current developments such as SDN and data center networking
- be familiar with different aspects and possibilities for network management and administration

Students have a profound understanding of the basic protocol mechanisms that are necessary to establish reliable end-to-end communication. Students have detailed knowledge about the congestion and flow control mechanisms used in TCP and can discuss fairness issue in the context of multiple parallel transport streams. Students can analytically determine the performance of transport protocols and know techniques for dealing with specific constraints in the context of TCP, e.g., high data rates and low latencies. Students are familiar with current topics such as the problem of middle boxes on the Internet, the usage of TCP in data centers or multipath TCP. Students are also familiar with practical aspects of modern transport protocols and know practical ways to overcome heterogeneity in the development of distributed applications.

Students know the functions of (Internet) routing and routers and can explain and apply common routing algorithms. Students are familiar with routing architectures and different alternatives for buffer placement as well as their advantages and disadvantages. Students understand the classification into interior and exterior gateway protocols and have in-depth knowledge of the functionality and features of common protocols such as RIP, OSPF, and BGP. Students are also familiar with current topics such as label switching, IPv6 and SDN.

Students know the function of media access control and are able to classify and analytically evaluate different media access control mechanisms. Students have an in-depth knowledge of Ethernet and various Ethernet variants and characteristics, which especially includes current developments such as real-time Ethernet and data center Ethernet. Students can explain and apply the Spanning Tree Protocol.

Students know the architecture of ISDN and can reproduce the peculiarities of setting up the ISDN subscriber line. Students are familiar with the technical features of DSL.
Literature
6.157 Course: Theoretical Foundations of Computer Science [T-INFO-103235]

Responsible: Dr. rer. nat. Torsten Ueckerdt
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: M-INFO-101189 - Theoretical Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 22/23 | 24005 | Theoretical Foundations of Computer Science | 3/1 SWS | Lecture / Practice | Ueckerdt, Merker, Feilhauer |

Exams

| ST 2022 | 7500314 | Theoretical Foundations of Computer Science | Ueckerdt |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Topics in Human Resource Management [T-WIWI-111858]

Responsible: Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101513 - Human Resources and Organizations
- M-WIWI-105928 - HR Management & Digital Workplace

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 2573015 | Topics in Human Resource Management | 2 SWS | Colloquium (K / 🗣️) | Nieken, Mitarbeiter |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Canceled

Competence Certificate

Alternative exam assessment.

The grade is composed of the presentation of a given research topic and active participation in the course discussions. The final grade will be composed of the graded and weighted performance reviews (the weighting depends on the course).

Prerequisites

This course cannot be combined with T-WIWI-102871 "Problem Solving, Communication and Leadership".

Recommendation

We recommend visiting the course "Human Resource Management" before taking this course.

The course is strongly recommended for students interested in empirical research in the areas HRM, personnel economics, and leadership.

Below you will find excerpts from events related to this course:

Topics in Human Resource Management

2573015, SS 2022, 2 SWS, Language: German, [Open in study portal](#)

Colloquium (KOL)

On-Site

Content

The students will discuss and analyze selected research papers in the areas HRM, personnel economics, and leadership. The students will present research papers and discuss research methods and designs as well as content.

Aim

The student

- Looks into current research topics in the areas HRM, personnel economics, and leadership.
- Analyzes research papers in detail and evaluates the research outcomes.
- Trains their presentation skills.
- Learns to critically evaluate research methods and trains the scientific discussion culture.
- Gains deeper knowledge in the area of HRM.
- Learns to evaluate research designs and takes into account the ethical dimension of research.

Notes

Due to the interactive nature of the course, the number of participants is limited. If you are interested, please contact Prof. Nieken by email.

Workload

The total workload for this course is approximately 90 hours.

Lecture: 30 hours

Preparation: 45 hours

Exam preparation: 15 hours

Literature

Selected research papers
Organizational issues
Geb. 05.20, Raum 2A-12.1
Course: Web Applications and Service-Oriented Architectures (I) [T-INFO-103122]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Sebastian Abeck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-101636 - Web Applications and Service-Oriented Architectures (I)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>WT 22/23</th>
<th>24153</th>
<th>Web Applications and Service-oriented Architectures (I)</th>
<th>2 SWS</th>
<th>Lecture / 🖥</th>
<th>Abeck, Schneider, Sänger, Throner</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Canceled

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 7900191 | Welfare Economics | Puppe |

Competence Certificate
Depending on further pandemic developments, the examination will be offered either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites
The course Economics I: Microeconomics [2610012] has to be completed beforehand.

Recommendation
None

Annotation
The course only takes place every second summer semester, the next course is planned for summer semester 2021.