Module Handbook
Information Systems B.Sc.
SPO 2019
Summer term 2021
Date: 09/04/2021
Table Of Contents

1. General information ... 7
 1.1. Structural elements .. 7
 1.2. Begin and completion of a module .. 7
 1.3. Module versions ... 7
 1.4. General and partial examinations .. 7
 1.5. Types of exams .. 7
 1.6. Repeating exams ... 8
 1.7. Examiners ... 8
 1.8. Additional accomplishments ... 8
 1.9. Further information ... 8
 1.10. Contact persons .. 8

2. Study plan... 9

3. Qualification goals ... 10

4. Field of study structure.. 11
 4.1. Bachelor Thesis ... 11
 4.2. Orientation Exam .. 11
 4.3. Information Systems ... 11
 4.4. Informatics ... 12
 4.5. Mathematics .. 14
 4.6. Economics and Management .. 15
 4.7. Law .. 16
 4.8. Seminars ... 16

5. Modules .. 17
 5.1. Algorithmic Methods for Hard Optimization Problems - M-INFOR-101237 17
 5.2. Algorithms for Planar Graphs - M-INFOR-101220 .. 18
 5.3. Algorithms I - M-INFOR-100030 ... 19
 5.4. Algorithms II - M-INFOR-101173 .. 20
 5.5. Applications of Operations Research - M-WIWI-101413 ... 21
 5.6. Applied Informatics - M-WIWI-101430 ... 23
 5.7. Applied Microeconomics - M-WIWI-101499 .. 24
 5.8. Basic Notions of Computer Science - M-INFOR-101170 .. 25
 5.9. Basic Practical Course for the ICPC-Programming Contest - M-INFOR-101230 26
 5.10. Business Administration - M-WIWI-105267 .. 27
 5.11. Business Processes and Information Systems - M-WIWI-101476 28
 5.13. Commercial Law - M-INFOR-101191 .. 30
 5.15. Computer Graphics - M-INFOR-100856 ... 32
 5.16. Computer Organization - M-INFOR-103179 .. 33
 5.17. Constitutional and Administrative Law - M-INFOR-105247 34
 5.18. Curves in CAD - M-INFOR-101248 ... 35
 5.19. Database Systems - M-INFOR-104921 .. 36
 5.20. Design, Construction and Sustainability Assessment of Buildings - M-WIWI-101467 ... 37
 5.21. Digital Circuits Design - M-INFOR-102978 .. 38
 5.22. eBusiness and Service Management - M-WIWI-101434 39
 5.23. Economic Policy I - M-WIWI-101668 .. 41
 5.24. Economic Theory - M-WIWI-101501 .. 42
 5.25. Economics - M-WIWI-101431 .. 43
 5.26. eFinance - M-WIWI-101402 .. 44
 5.27. Energy Economics - M-WIWI-101464 .. 45
 5.28. Essentials of Finance - M-WIWI-101435 .. 46
 5.29. Financial Data Science - M-WIWI-105610 .. 47
 5.30. Formal Systems - M-INFOR-100799 .. 48
 5.31. Foundations of Marketing - M-WIWI-101424 ... 49
 5.32. Fundamentals of Digital Service Systems - M-WIWI-102752 51
 5.33. Geometric Basics for Geometry Processing - M-INFOR-100756 52
 5.34. Geometric Optimization - M-INFOR-100730 ... 53
Table Of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.35</td>
<td>Human Computer Interaction - M-INFO-100729</td>
</tr>
<tr>
<td>5.36</td>
<td>Human Resources and Organizations - M-WIWI-101513</td>
</tr>
<tr>
<td>5.37</td>
<td>Industrial Production I - M-WIWI-101437</td>
</tr>
<tr>
<td>5.38</td>
<td>Information Security - M-WIWI-104069</td>
</tr>
<tr>
<td>5.39</td>
<td>Information Services in Networks - M-WIWI-101440</td>
</tr>
<tr>
<td>5.41</td>
<td>Information Systems & Digital Business: Platforms - M-WIWI-104912</td>
</tr>
<tr>
<td>5.42</td>
<td>Information Systems & Digital Business: Servitization - M-WIWI-104913</td>
</tr>
<tr>
<td>5.43</td>
<td>Information Systems I - M-WIWI-104820</td>
</tr>
<tr>
<td>5.44</td>
<td>Information Systems II - M-WIWI-104821</td>
</tr>
<tr>
<td>5.45</td>
<td>Intellectual Property and Data Protection - M-INFO-101253</td>
</tr>
<tr>
<td>5.46</td>
<td>Introduction in Computer Networks - M-INFO-103455</td>
</tr>
<tr>
<td>5.47</td>
<td>Introduction to Civil Law - M-INFO-101190</td>
</tr>
<tr>
<td>5.48</td>
<td>Introduction to Data and Information Management - M-INFO-105589</td>
</tr>
<tr>
<td>5.49</td>
<td>Introduction to Operations Research - M-WIWI-101418</td>
</tr>
<tr>
<td>5.50</td>
<td>Introduction to Statistics - M-WIWI-101432</td>
</tr>
<tr>
<td>5.51</td>
<td>Lab Protocol Engineering - M-INFO-101247</td>
</tr>
<tr>
<td>5.52</td>
<td>Lab: Working with Database Systems - M-INFO-101865</td>
</tr>
<tr>
<td>5.53</td>
<td>Lego Mindstorms - Practical Course - M-INFO-102557</td>
</tr>
<tr>
<td>5.54</td>
<td>Machine Learning and Data Science - M-WIWI-105482</td>
</tr>
<tr>
<td>5.55</td>
<td>MARS-Based Internship - M-INFO-101245</td>
</tr>
<tr>
<td>5.56</td>
<td>Mathematics I - M-MATH-104914</td>
</tr>
<tr>
<td>5.57</td>
<td>Mathematics II - M-MATH-104915</td>
</tr>
<tr>
<td>5.58</td>
<td>Mecharo-Informatics and Robotics - M-INFO-100757</td>
</tr>
<tr>
<td>5.59</td>
<td>Methodical Foundations of OR - M-WIWI-101936</td>
</tr>
<tr>
<td>5.60</td>
<td>Microprocessors I - M-INFO-101183</td>
</tr>
<tr>
<td>5.61</td>
<td>Mobile Computing and Internet of Things - M-INFO-101249</td>
</tr>
<tr>
<td>5.62</td>
<td>Mobile Robots - Practical Course - M-INFO-101184</td>
</tr>
<tr>
<td>5.63</td>
<td>Module Bachelor Thesis - M-INFO-104875</td>
</tr>
<tr>
<td>5.64</td>
<td>Optimization under Uncertainty - M-WIWI-103278</td>
</tr>
<tr>
<td>5.65</td>
<td>Orientation Exam - M-WIWI-104843</td>
</tr>
<tr>
<td>5.66</td>
<td>Practical Course Computer Engineering: Hardware Design - M-INFO-101219</td>
</tr>
<tr>
<td>5.67</td>
<td>Practical Course Web Applications and Service-Oriented Architectures (I) - M-INFO-101633</td>
</tr>
<tr>
<td>5.68</td>
<td>Programming - M-INFO-101174</td>
</tr>
<tr>
<td>5.69</td>
<td>Public Finance - M-WIWI-101403</td>
</tr>
<tr>
<td>5.70</td>
<td>Real Estate Management - M-WIWI-101466</td>
</tr>
<tr>
<td>5.71</td>
<td>Real-Time Systems - M-INFO-100803</td>
</tr>
<tr>
<td>5.72</td>
<td>Robotics I - Introduction to Robotics - M-INFO-100893</td>
</tr>
<tr>
<td>5.73</td>
<td>Security - M-INFO-10083</td>
</tr>
<tr>
<td>5.74</td>
<td>Semantic Knowledge Management - M-WIWI-101438</td>
</tr>
<tr>
<td>5.75</td>
<td>Seminar Module Economic Sciences - M-WIWI-101826</td>
</tr>
<tr>
<td>5.76</td>
<td>Seminar Module Informatics - M-INFO-102058</td>
</tr>
<tr>
<td>5.77</td>
<td>Seminar Module Law - M-INFO-101218</td>
</tr>
<tr>
<td>5.78</td>
<td>Software Engineering I - M-INFO-101175</td>
</tr>
<tr>
<td>5.79</td>
<td>Software Engineering II - M-INFO-100833</td>
</tr>
<tr>
<td>5.80</td>
<td>Statistics and Econometrics - M-WIWI-101599</td>
</tr>
<tr>
<td>5.81</td>
<td>Statistics and Econometrics II - M-WIWI-105414</td>
</tr>
<tr>
<td>5.82</td>
<td>Strategy and Organization - M-WIWI-101425</td>
</tr>
<tr>
<td>5.83</td>
<td>Supply Chain Management - M-WIWI-101421</td>
</tr>
<tr>
<td>5.84</td>
<td>Surfaces for Computer Aided Design - M-INFO-101254</td>
</tr>
<tr>
<td>5.85</td>
<td>Team Project Software Development - M-INFO-104809</td>
</tr>
<tr>
<td>5.86</td>
<td>Telematics - M-INFO-100801</td>
</tr>
<tr>
<td>5.87</td>
<td>Theoretical Informatics - M-INFO-101189</td>
</tr>
<tr>
<td>5.88</td>
<td>Topics in Finance I - M-WIWI-101465</td>
</tr>
<tr>
<td>5.89</td>
<td>Topics in Finance II - M-WIWI-101423</td>
</tr>
<tr>
<td>5.90</td>
<td>Web Applications and Service-Oriented Architectures (I) - M-INFO-101636</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Advanced Lab Informatics (Master) - T-WIWI-110541</td>
</tr>
<tr>
<td>6.2</td>
<td>Advanced Lab Security - T-WIWI-109786</td>
</tr>
<tr>
<td>6.3</td>
<td>Advanced Lab Security, Usability and Society - T-WIWI-108439</td>
</tr>
<tr>
<td>Module Title</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Advanced Topics in Economic Theory - T-WIWI-102609</td>
<td>6.4</td>
</tr>
<tr>
<td>Algorithmic Methods for Hard Optimization Problems - T-INFO-103334</td>
<td>6.5</td>
</tr>
<tr>
<td>Algorithms for Planar Graphs - T-INFO-101986</td>
<td>6.6</td>
</tr>
<tr>
<td>Algorithms I - T-INFO-100001</td>
<td>6.7</td>
</tr>
<tr>
<td>Algorithms II - T-INFO-102020</td>
<td>6.8</td>
</tr>
<tr>
<td>Analysis of Multivariate Data - T-WIWI-103063</td>
<td>6.9</td>
</tr>
<tr>
<td>Applied Informatics - Applications of Artificial Intelligence - T-WIWI-110340</td>
<td>6.10</td>
</tr>
<tr>
<td>Applied Informatics - Information Security - T-WIWI-110342</td>
<td>6.11</td>
</tr>
<tr>
<td>Auction & Mechanism Design - T-WIWI-102876</td>
<td>6.14</td>
</tr>
<tr>
<td>B2B Sales Management - T-WIWI-111367</td>
<td>6.15</td>
</tr>
<tr>
<td>Bachelor Thesis - T-INFO-109907</td>
<td>6.16</td>
</tr>
<tr>
<td>Basic Notions of Computer Science - T-INFO-101964</td>
<td>6.17</td>
</tr>
<tr>
<td>Basic Notions of Computer Science Pass - T-INFO-101965</td>
<td>6.18</td>
</tr>
<tr>
<td>Basic Practical Course for the ICPC-Programming Contest - T-INFO-101991</td>
<td>6.19</td>
</tr>
<tr>
<td>Basic Principles of Economic Policy - T-WIWI-103213</td>
<td>6.20</td>
</tr>
<tr>
<td>Basics of German Company Tax Law and Tax Planning - T-WIWI-108711</td>
<td>6.21</td>
</tr>
<tr>
<td>Big Data Analytics - T-INFO-101305</td>
<td>6.22</td>
</tr>
<tr>
<td>Business Administration: Finance and Accounting - T-WIWI-102819</td>
<td>6.23</td>
</tr>
<tr>
<td>Business Administration: Production Economics and Marketing - T-WIWI-102818</td>
<td>6.24</td>
</tr>
<tr>
<td>Business Process Modelling - T-WIWI-102697</td>
<td>6.25</td>
</tr>
<tr>
<td>Business Strategies of Banks - T-WIWI-102626</td>
<td>6.26</td>
</tr>
<tr>
<td>Civil Law for Beginners - T-INFO-103339</td>
<td>6.27</td>
</tr>
<tr>
<td>Cognitive Systems - T-INFO-101356</td>
<td>6.28</td>
</tr>
<tr>
<td>Competition in Networks - T-WIWI-100005</td>
<td>6.29</td>
</tr>
<tr>
<td>Computer Architecture - T-INFO-101355</td>
<td>6.30</td>
</tr>
<tr>
<td>Computer Graphics - T-INFO-101393</td>
<td>6.31</td>
</tr>
<tr>
<td>Computer Graphics Pass - T-INFO-104313</td>
<td>6.32</td>
</tr>
<tr>
<td>Computer Organization - T-INFO-103531</td>
<td>6.33</td>
</tr>
<tr>
<td>Consulting in Practice - T-INFO-101975</td>
<td>6.34</td>
</tr>
<tr>
<td>Consumer Behavior - T-WIWI-106569</td>
<td>6.35</td>
</tr>
<tr>
<td>Curves in CAD - T-INFO-102067</td>
<td>6.36</td>
</tr>
<tr>
<td>Data and Storage Management - T-INFO-101276</td>
<td>6.37</td>
</tr>
<tr>
<td>Data Mining and Applications - T-WIWI-103066</td>
<td>6.38</td>
</tr>
<tr>
<td>Database Systems - T-INFO-101497</td>
<td>6.39</td>
</tr>
<tr>
<td>Decision Theory - T-WIWI-102792</td>
<td>6.40</td>
</tr>
<tr>
<td>Deployment of Database Systems - T-INFO-101317</td>
<td>6.41</td>
</tr>
<tr>
<td>Derivatives - T-WIWI-102643</td>
<td>6.42</td>
</tr>
<tr>
<td>Design, Construction and Sustainability Assessment of Buildings I - T-WIWI-102742</td>
<td>6.43</td>
</tr>
<tr>
<td>Design, Construction and Sustainability Assessment of Buildings II - T-WIWI-102743</td>
<td>6.44</td>
</tr>
<tr>
<td>Digital Circuits Design - T-INFO-103469</td>
<td>6.45</td>
</tr>
<tr>
<td>Digital Services: Foundations - T-WIWI-111307</td>
<td>6.46</td>
</tr>
<tr>
<td>Economics and Behavior - T-WIWI-102892</td>
<td>6.47</td>
</tr>
<tr>
<td>Economics I: Microeconomics - T-WIWI-102708</td>
<td>6.48</td>
</tr>
<tr>
<td>Economics III: Introduction in Econometrics - T-WIWI-102736</td>
<td>6.49</td>
</tr>
<tr>
<td>eFinance: Information Systems for Securities Trading - T-WIWI-110797</td>
<td>6.50</td>
</tr>
<tr>
<td>Energy Policy - T-WIWI-102607</td>
<td>6.51</td>
</tr>
<tr>
<td>Exercises in Civil Law - T-INFO-102013</td>
<td>6.52</td>
</tr>
<tr>
<td>Facility Location and Strategic Supply Chain Management - T-WIWI-102704</td>
<td>6.53</td>
</tr>
<tr>
<td>Financial Accounting for Global Firms - T-WIWI-107505</td>
<td>6.54</td>
</tr>
<tr>
<td>Financial Data Science - T-WIWI-111238</td>
<td>6.55</td>
</tr>
<tr>
<td>Financial Econometrics - T-WIWI-103064</td>
<td>6.56</td>
</tr>
<tr>
<td>Financial Econometrics II - T-WIWI-110939</td>
<td>6.57</td>
</tr>
<tr>
<td>Financial Intermediation - T-WIWI-102623</td>
<td>6.58</td>
</tr>
<tr>
<td>Financial Management - T-WIWI-102605</td>
<td>6.59</td>
</tr>
<tr>
<td>Formal Systems - T-INFO-101336</td>
<td>6.60</td>
</tr>
<tr>
<td>Foundations of Interactive Systems - T-WIWI-109816</td>
<td>6.61</td>
</tr>
<tr>
<td>Foundations of Mobile Business - T-WIWI-104679</td>
<td>6.62</td>
</tr>
<tr>
<td>Title</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Fundamentals of Production Management</td>
<td>T-WIWI-102606</td>
</tr>
<tr>
<td>Geometric Basics for Geometry Processing</td>
<td>T-INFO-101293</td>
</tr>
<tr>
<td>Geometric Optimization</td>
<td>T-INFO-101267</td>
</tr>
<tr>
<td>Global Optimization I</td>
<td>T-WIWI-102726</td>
</tr>
<tr>
<td>Global Optimization I and II</td>
<td>T-WIWI-103638</td>
</tr>
<tr>
<td>Global Optimization II</td>
<td>T-WIWI-102727</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>T-WIWI-102909</td>
</tr>
<tr>
<td>Human-Machine-Interaction</td>
<td>T-INFO-101266</td>
</tr>
<tr>
<td>Human-Machine-Interaction Pass</td>
<td>T-INFO-106257</td>
</tr>
<tr>
<td>Industrial Organization</td>
<td>T-WIWI-102844</td>
</tr>
<tr>
<td>Information Systems 1</td>
<td>T-WIWI-109817</td>
</tr>
<tr>
<td>Information Systems 2</td>
<td>T-WIWI-109818</td>
</tr>
<tr>
<td>Integrated Network and Systems Management</td>
<td>T-INFO-101284</td>
</tr>
<tr>
<td>Intellectual Property and Data Protection</td>
<td>T-INFO-109840</td>
</tr>
<tr>
<td>International Finance</td>
<td>T-WIWI-102646</td>
</tr>
<tr>
<td>Introduction in Computer Networks</td>
<td>T-INFO-102015</td>
</tr>
<tr>
<td>Introduction to Energy Economics</td>
<td>T-WIWI-102746</td>
</tr>
<tr>
<td>Introduction to Game Theory</td>
<td>T-WIWI-102850</td>
</tr>
<tr>
<td>Introduction to Machine Learning</td>
<td>T-WIWI-111028</td>
</tr>
<tr>
<td>Introduction to Neural Networks and Genetic Algorithms</td>
<td>T-WIWI-111029</td>
</tr>
<tr>
<td>Introduction to Operations Research I and II</td>
<td>T-WIWI-102758</td>
</tr>
<tr>
<td>Introduction to Public Finance</td>
<td>T-WIWI-102877</td>
</tr>
<tr>
<td>Introduction to Stochastic Optimization</td>
<td>T-WIWI-106546</td>
</tr>
<tr>
<td>Investments</td>
<td>T-WIWI-102604</td>
</tr>
<tr>
<td>Lab Protocol Engineering</td>
<td>T-INFO-102066</td>
</tr>
<tr>
<td>Lab: Working with Database Systems</td>
<td>T-INFO-103552</td>
</tr>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>T-WIWI-102870</td>
</tr>
<tr>
<td>Macroeconomic Theory</td>
<td>T-WIWI-109121</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>T-WIWI-102629</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>T-WIWI-102630</td>
</tr>
<tr>
<td>Managing the Marketing Mix</td>
<td>T-WIWI-102805</td>
</tr>
<tr>
<td>MARS Basis Lab</td>
<td>T-INFO-102053</td>
</tr>
<tr>
<td>Mathematics I for Information Systems Exam</td>
<td>T-MATH-109942</td>
</tr>
<tr>
<td>Mathematics I for Information Systems Exercise</td>
<td>T-MATH-109943</td>
</tr>
<tr>
<td>Mathematics II for Information Systems Exam</td>
<td>T-MATH-109944</td>
</tr>
<tr>
<td>Mathematics II for Information Systems Exercise</td>
<td>T-MATH-109945</td>
</tr>
<tr>
<td>Mechanisms and Applications of Workflow Systems</td>
<td>T-INFO-101257</td>
</tr>
<tr>
<td>Mechano-Informatics and Robotics</td>
<td>T-INFO-101294</td>
</tr>
<tr>
<td>Microprocessors I</td>
<td>T-INFO-101972</td>
</tr>
<tr>
<td>Mobile Computing and Internet of Things</td>
<td>T-INFO-102061</td>
</tr>
<tr>
<td>Mobile Robots - Practical Course</td>
<td>T-INFO-101992</td>
</tr>
<tr>
<td>Modeling and OR-Software: Introduction</td>
<td>T-WIWI-106199</td>
</tr>
<tr>
<td>Nonlinear Optimization I</td>
<td>T-WIWI-102724</td>
</tr>
<tr>
<td>Nonlinear Optimization I and II</td>
<td>T-WIWI-103637</td>
</tr>
<tr>
<td>Nonlinear Optimization II</td>
<td>T-WIWI-102725</td>
</tr>
<tr>
<td>Optimization under Uncertainty</td>
<td>T-WIWI-106545</td>
</tr>
<tr>
<td>Personnel Policies and Labor Market Institutions</td>
<td>T-WIWI-102908</td>
</tr>
<tr>
<td>Platform Economy</td>
<td>T-WIWI-109936</td>
</tr>
<tr>
<td>Practical Course Computer Engineering: Hardware Design</td>
<td>T-INFO-102011</td>
</tr>
<tr>
<td>Practical Course Computer Engineering: Hardware Design Pass</td>
<td>T-INFO-105983</td>
</tr>
<tr>
<td>Practical Course Web Applications and Service-Oriented Architectures (II)</td>
<td>T-INFO-103119</td>
</tr>
<tr>
<td>Practical Course: Lego Mindstorms</td>
<td>T-INFO-107502</td>
</tr>
<tr>
<td>Practical Seminar Interaction</td>
<td>T-WIWI-109935</td>
</tr>
<tr>
<td>Practical Seminar Platforms</td>
<td>T-WIWI-109937</td>
</tr>
<tr>
<td>Practical Seminar Servitization</td>
<td>T-WIWI-109939</td>
</tr>
<tr>
<td>Practical Seminar: Digital Services</td>
<td>T-WIWI-110888</td>
</tr>
<tr>
<td>Problem Solving, Communication and Leadership</td>
<td>T-WIWI-102871</td>
</tr>
<tr>
<td>Process Mining</td>
<td>T-WIWI-109799</td>
</tr>
<tr>
<td>Production Economics and Sustainability</td>
<td>T-WIWI-102820</td>
</tr>
<tr>
<td>Programming</td>
<td>T-INFO-101531</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>6.123. Programming Pass - T-INFO-101967</td>
<td>280</td>
</tr>
<tr>
<td>6.124. Project Management in Practice - T-INFO-101976</td>
<td>281</td>
</tr>
<tr>
<td>6.125. Public Law I & II - T-INFO-110300</td>
<td>282</td>
</tr>
<tr>
<td>6.126. Public Revenues - T-WIWI-102739</td>
<td>283</td>
</tr>
<tr>
<td>6.127. Public Sector Finance - T-WIWI-109590</td>
<td>284</td>
</tr>
<tr>
<td>6.128. Real Estate Management I - T-WIWI-102744</td>
<td>286</td>
</tr>
<tr>
<td>6.129. Real Estate Management II - T-WIWI-102745</td>
<td>288</td>
</tr>
<tr>
<td>6.130. Real-Time Systems - T-INFO-101340</td>
<td>290</td>
</tr>
<tr>
<td>6.132. Robotics I - Introduction to Robotics - T-INFO-108014</td>
<td>293</td>
</tr>
<tr>
<td>6.133. Security - T-INFO-101371</td>
<td>294</td>
</tr>
<tr>
<td>6.134. Selling IT-Solutions Professionally - T-INFO-101977</td>
<td>295</td>
</tr>
<tr>
<td>6.136. Seminar in Business Administration (Bachelor) - T-WIWI-103486</td>
<td>299</td>
</tr>
<tr>
<td>6.137. Seminar in Economics (Bachelor) - T-WIWI-103487</td>
<td>309</td>
</tr>
<tr>
<td>6.138. Seminar in Informatics (Bachelor) - T-WIWI-103485</td>
<td>312</td>
</tr>
<tr>
<td>6.139. Seminar in Operations Research (Bachelor) - T-WIWI-103488</td>
<td>317</td>
</tr>
<tr>
<td>6.140. Seminar in Statistics (Bachelor) - T-WIWI-103489</td>
<td>320</td>
</tr>
<tr>
<td>6.141. Seminar Informatics A - T-INFO-104336</td>
<td>321</td>
</tr>
<tr>
<td>6.142. Seminar: Legal Studies I - T-INFO-101997</td>
<td>323</td>
</tr>
<tr>
<td>6.143. Software Engineering I - T-INFO-101968</td>
<td>325</td>
</tr>
<tr>
<td>6.144. Software Engineering I Pass - T-INFO-101995</td>
<td>326</td>
</tr>
<tr>
<td>6.145. Software Engineering II - T-INFO-101370</td>
<td>327</td>
</tr>
<tr>
<td>6.146. Special Topics in Information Systems - T-WIWI-109940</td>
<td>328</td>
</tr>
<tr>
<td>6.149. Statistics II - T-WIWI-102738</td>
<td>332</td>
</tr>
<tr>
<td>6.150. Strategic Finance and Technology Change - T-WIWI-110511</td>
<td>334</td>
</tr>
<tr>
<td>6.152. Surfaces for Computer aided Design - T-INFO-102073</td>
<td>336</td>
</tr>
<tr>
<td>6.153. Tactical and Operational Supply Chain Management - T-WIWI-102714</td>
<td>337</td>
</tr>
<tr>
<td>6.155. Telematics - T-INFO-101338</td>
<td>340</td>
</tr>
<tr>
<td>6.156. Theoretical Foundations of Computer Science - T-INFO-103235</td>
<td>342</td>
</tr>
<tr>
<td>6.157. Web Applications and Service-Oriented Architectures (I) - T-INFO-103122</td>
<td>343</td>
</tr>
<tr>
<td>6.158. Welfare Economics - T-WIWI-102610</td>
<td>344</td>
</tr>
</tbody>
</table>
1 General information

Welcome to the new module handbook of your study program! We are delighted that you have decided to study at the KIT Department of Economics and Management and wish you a good start into the new semester! In the following we would like to give you a short introduction to the most important terms and rules that are important in connection with the choice of modules, courses and examinations.

1.1 Structural elements

The program exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself consists of one or more interrelated module component exams. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the program, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the program according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the program. It describes particularly:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalog, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

1.2 Begin and completion of a module

Each module and each examination can only be selected once. The decision on the assignment of an examination to a module (if, for example, an examination in several modules is selectable) is made by the student at the moment when he / she is registered for the appropriate examination. A module is completed or passed when the module examination is passed (grade 4.0 or better). For modules in which the module examination is carried out over several partial examinations, the following applies: The module is completed when all necessary module partial examinations have been passed. In the case of modules which offer alternative partial examinations, the module examination is concluded with the examination with which the required total credit points are reached or exceeded. The module grade, however, is combined with the weight of the predefined credit points for the module in the overall grade calculation.

1.3 Module versions

It is not uncommon for modules to be revised due to, for example, new courses or cancelled examinations. As a rule, a new module version is created, which applies to all students who are new to the module. On the other hand, students who have already started the module enjoy confidence and remain in the old module version. These students can complete the module on the same conditions as at the beginning of the module (exceptions are regulated by the examination committee). The date of the student’s ”binding declaration” on the choice of the module in the sense of §5(2) of the Study and Examination Regulation is decisive. This binding declaration is made by registering for the first examination in this module.

In the module handbook, all modules are presented in their current version. The version number is given in the module description. Older module versions can be accessed via the previous module handbooks in the archive at http://www.wiwi.kit.edu/Archiv_MHB.php.

1.4 General and partial examinations

Module examinations can be either taken in a general examination or in partial examinations. If the module examination is offered as a general examination, the entire learning content of the module will be examined in a single examination. If the module examination is subdivided into partial examinations, the content of each course will be examined in corresponding partial examinations. Registration for examinations can be done online at the campus management portal. The following functions can be accessed on https://campus.studium.kit.edu/:

- Register/unregister for examinations
- Check for examination results
- Create transcript of records

For further and more detailed information, https://studium.kit.edu/Seiten/FAQ.aspx.

1.5 Types of exams

Exams are split into written exams, oral exams and alternative exam assessments. Exams are always graded. Non exam assessments can be repeated several times and are not graded.
Caution: exam type dependent on further pandemic developments

Due to the current situation, online formats are also available for examinations that are typically offered as presence examinations, depending on the circumstances.

All assessments that are announced in the modules as a written exam (written exam/sP according to SPO § 4 Abs. 2, Pkt. 1) can therefore also be offered as an alternative exam assessment/PLaA (according to SPO § 4 Abs. 2, Pkt. 3) depending on further pandemic developments. And vice versa. As alternative examination formats, a) online examinations with video supervision (sP) and optionally a face-to-face examination in the same examination period are offered. Or b) the Online Open Book exam (PLaA) format.

This option applies to all modules and assessments listed in the module handbook, regardless of whether or not corresponding references are already made to them there. It is also at the discretion of the responsible examiners whether they allow a 'free shot' for their examination when determining the type of examination.

1.6 Repeating exams

Principally, a failed written exam, oral exam or alternative exam assessment can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. A request for a second repetition has to be made in written form to the examination committee two months after loosing the examination claim. A counseling interview is mandatory.

For further information see http://www.wiwi.kit.edu/hinweiseZweitwdh.php.

1.7 Examiners

The examination committee has appointed the KIT examiners and lecturers listed in the module handbook for the modules and their courses as examiners for the courses they offer.

1.8 Additional accomplishments

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Additional accomplishments with at most 30 CP may appear additionally in the certificate.

1.9 Further information

For current information about studying at the KIT Department of Economics and Management, please visit our website www.wiwi.kit.edu as well as Instagram, LinkedIn, and YouTube. Please also see current notices and announcements for students at: https://www.wiwi.kit.edu/studium.php.

Information around the legal and official framework of the study program can be found in the respective study and examination regulations of your study program. These are available under the Official Announcements of KIT (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

More detailed information about the legal and general conditions of the program can be found in the examination regulation of the program (http://www.sle.kit.edu/amtlicheBekanntmachungen.php).

1.10 Contact persons

for Bachelor students

Personal consultation: KIT Department of Informatics, Informatics Study Program Service Informatics Building 50.34, EG, Rooms 001.2/.3
bachelor@wirtschaftsinformatik.kit.edu

Editorial responsibility: Lena Coerdt, KIT Department of Informatics
Phone: +49 721 608-48893
modulhandbuch@informatik.kit.edu

for master students

Personal consultation: KIT Department of Economics and Management, Examination Office Gebäude am Kronenplatz Building 05.20, 3rd floor, Room 3C-05
master@wirtschaftsinformatik.kit.edu

Editorial responsibility: Dr. André Wiesner, KIT Department of Economics and Management
Phone: +49 721 608-44061
modul@wiwi.kit.edu
2 Study plan

The Bachelor's programme in Information Systems has a standard study period of six semesters and comprises 180 credit points. The basic area in the first four semesters is methodically oriented. In the fifth and sixth semesters, students deepen their specialist knowledge, which can be structured according to personal interests and goals within the curriculum.

Figure 2 shows the subject and module structure with the allocation of credit points (LP) and, as an example, a possible distribution of modules and courses in the basic area over the semesters.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungspunkte</th>
<th>Wirtschaftsinformatik</th>
<th>Informatik</th>
<th>Mathematik</th>
<th>Wirtschaftswissenschaften</th>
<th>Rechtswissenschaften</th>
<th>Seminar</th>
<th>Abschlussarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WS)</td>
<td>33</td>
<td>Wirtschaftsinformatik I</td>
<td>0 LP</td>
<td>Grundbegriffe der Informatik*</td>
<td>6 LP</td>
<td>Mathematik I*</td>
<td>8 LP</td>
<td>Volkswirtschaftslehre</td>
</tr>
<tr>
<td>2 (SS)</td>
<td>29,5</td>
<td>Wirtschaftsinformatik II</td>
<td>0 LP</td>
<td>Algorithmen I</td>
<td>6 LP</td>
<td>Mathematik II*</td>
<td>8 LP</td>
<td>Einführung in die Statistik</td>
</tr>
<tr>
<td>3 (WS)</td>
<td>28,5</td>
<td>Theoretische Informatik</td>
<td>6 LP</td>
<td>Angewandte Informatik</td>
<td>8 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (SS)</td>
<td>30</td>
<td>Datenbanksysteme</td>
<td>4 LP</td>
<td>Einführung in die Rechnernetze</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 (WS)</td>
<td>30,5</td>
<td>Teamprojekt Softwareentwicklung</td>
<td>6 LP</td>
<td>1-2 Wahlmodule</td>
<td>9/18 LP</td>
<td>1-2 Wahlmodule</td>
<td>9/18 LP</td>
<td>Wahlmodul</td>
</tr>
<tr>
<td>6 (SS)</td>
<td>28,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Rahmen des Moduls ist eine Studienleistung zu erbringen [z.B. verpflichtender Übungslehrstuhl]

Figure 2: Recommended structure and subject structure of the bachelor's programme in Information Systems (german)

In the first four semesters, the modules illustrated from the subjects Information Systems, Informatics, Mathematics, Economics and Law are compulsory.

In the fifth and sixth semesters, elective modules of 9 to 18 credit points must be completed in the subjects of Informatics and Economics. In the subject Law, one or more modules with a total of 6 credit points must be selected. A software development project with 5 credit points is to be completed in the subject Information Systems. Key qualifications are taught integratively. The bachelor thesis comprises 15 credit points and is planned for the 6th semester.

It is up to the individual study plan (taking into account the relevant requirements in the study and examination regulations as well as any module regulations) in which semester the selected module examinations are started or completed.
3 Qualification goals

The graduates of the interdisciplinary, six-semester Bachelor’s programme in Information Systems understand the digital transformation of business and society as a socio-technical process of shaping processes (internal digitisation) and products and services (external digitisation). They are familiar with the subject area of Information Systems in science and practice and have methodologically oriented basic knowledge in the fields of Informatics (theoretical computer science, algorithms, software technology, databases, communication networks), Economics (finance, accounting, production economics, marketing, accounting, economic interrelations of microeconomics) and Law (public law, private law, business private law, constitutional and administrative law, data protection law) as well as Mathematics, Statistics and Operations Research.

Thanks to their sound basic methodological knowledge, graduates are able to name subject-specific basic terms, methods, models and procedures and apply them in an interdisciplinary manner.

KIT Bachelor of Information Systems graduates have in-depth knowledge of Informatics, Economics and Law and understand the interrelationships between these sub-disciplines. They are able to identify, describe and communicate economic, IT and legal problems and topics. In this complex of topics they plan, analyse, compare, evaluate and optimise information systems and infrastructures in business and society. They make decisions, develop subject-specific solutions and implement their innovative ideas using methods and models from the various disciplines, taking into account given resources. They know how to document, present, validate, assess and ensure the quality of the results obtained. Their practical handling of specialist knowledge takes account of social, scientific and ethical aspects.

Due to the interdisciplinarity of the study programme, KIT Bachelor of Information Systems graduates can act effectively at the interface of these three subject areas and shape communication between the disciplines in a targeted manner. The graduates are able to work in a team and master challenges in the field of information and communication technologies.

KIT Bachelor of Information Systems graduates have the ability to work in a professional field in industry, the service sector or trade, to found their own company or to take up a Master’s degree in Information Systems or a related degree.
4 Field of study structure

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Thesis</td>
<td>15 CR</td>
</tr>
<tr>
<td>Orientation Exam</td>
<td>0 CR</td>
</tr>
<tr>
<td>Information Systems</td>
<td>16 CR</td>
</tr>
<tr>
<td>Informatics</td>
<td>54-63 CR</td>
</tr>
<tr>
<td>Mathematics</td>
<td>26 CR</td>
</tr>
<tr>
<td>Economics and Management</td>
<td>31-40 CR</td>
</tr>
<tr>
<td>Law</td>
<td>26 CR</td>
</tr>
<tr>
<td>Seminars</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

4.1 Bachelor Thesis

Credits

15

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-104875 Module Bachelor Thesis</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

4.2 Orientation Exam

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-104843 Orientation Exam</td>
<td>0 CR</td>
</tr>
</tbody>
</table>

4.3 Information Systems

Credits

16

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-104809 Team Project Software Development</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-WIWI-104820 Information Systems I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-WIWI-104821 Information Systems II</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
Election notes

In Informatics, in addition to the compulsory modules, optional modules with a total of 9 or 18 credit points must be completed. If elective modules totalling 18 LP are chosen, only elective modules totalling 9 credit points can be taken in the subject of Economics and Management.
Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100030</td>
<td>Algorithms I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101430</td>
<td>Applied Informatics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-104921</td>
<td>Database Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-103455</td>
<td>Introduction in Computer Networks</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101170</td>
<td>Basic Notions of Computer Science</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101174</td>
<td>Programming</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101175</td>
<td>Software Engineering I</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101189</td>
<td>Theoretical Informatics</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Modules in Informatics (between 9 and 18 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101220</td>
<td>Algorithms for Planar Graphs</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101173</td>
<td>Algorithms II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101237</td>
<td>Algorithmic Methods for Hard Optimization Problems</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101865</td>
<td>Lab: Working with Database Systems</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101184</td>
<td>Mobile Robots – Practical Course</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101247</td>
<td>Lab Protocol Engineering</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101219</td>
<td>Practical Course Computer Engineering: Hardware Design</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101633</td>
<td>Practical Course Web Applications and Service-Oriented Architectures (I)</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101230</td>
<td>Basic Practical Course for the ICPC-Programming Contest</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100856</td>
<td>Computer Graphics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-102978</td>
<td>Digital Circuits Design</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100803</td>
<td>Real-Time Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101254</td>
<td>Surfaces for Computer Aided Design</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100799</td>
<td>Formal Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100756</td>
<td>Geometric Basics for Geometry Processing</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-100730</td>
<td>Geometric Optimization</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-101476</td>
<td>Business Processes and Information Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-105589</td>
<td>Introduction to Data and Information Management new</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-WIWI-104069</td>
<td>Information Security</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101440</td>
<td>Information Services in Networks</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-INFO-100819</td>
<td>Cognitive Systems</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101248</td>
<td>Curves in CAD</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-102557</td>
<td>Lego Mindstorms - Practical Course</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-101245</td>
<td>MARS-Based Internship</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100757</td>
<td>Mechano-Informatics and Robotics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-INFO-100729</td>
<td>Human Computer Interaction</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101183</td>
<td>Microprocessors I</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101249</td>
<td>Mobile Computing and Internet of Things</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-103179</td>
<td>Computer Organization</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100818</td>
<td>Computer Architecture</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100893</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-WIWI-101438</td>
<td>Semantic Knowledge Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-100834</td>
<td>Security</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100833</td>
<td>Software Engineering II</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-100801</td>
<td>Telematics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-INFO-101636</td>
<td>Web Applications and Service-Oriented Architectures (I)</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
4.5 Mathematics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101432</td>
<td>Introduction to Statistics</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-MATH-104914</td>
<td>Mathematics I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-MATH-104915</td>
<td>Mathematics II</td>
<td>8 CR</td>
</tr>
</tbody>
</table>
4.6 Economics and Management

Election notes
In addition to the compulsory modules, one or two modules of 9 credit points each in Business Administration, Economics, Operations Research and Statistics must be completed. If two optional modules with a total of 18 credit points are chosen, only optional modules with a total of 9 credit points can be completed in Informatics.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105267 Business Administration</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-WIWI-101418 Introduction to Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101431 Economics</td>
<td>5 CR</td>
</tr>
<tr>
<td>Election block: Business Administration ()</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101467 Design, Construction and Sustainability Assessment of Buildings</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101434 eBusiness and Service Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101402 eFinance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101464 Energy Economics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101435 Essentials of Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105610 Financial Data Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-102752 Fundamentals of Digital Service Systems</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101424 Foundations of Marketing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101437 Industrial Production I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-104913 Information Systems & Digital Business: Servitization</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105482 Machine Learning and Data Science</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101513 Human Resources and Organizations</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101466 Real Estate Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-105414 Statistics and Econometrics II</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101425 Strategy and Organization</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101421 Supply Chain Management</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101465 Topics in Finance I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101423 Topics in Finance II</td>
<td>9 CR</td>
</tr>
<tr>
<td>Election block: Operations Research ()</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101413 Applications of Operations Research</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101936 Methodical Foundations of OR</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-103278 Optimization under Uncertainty</td>
<td>9 CR</td>
</tr>
<tr>
<td>Election block: Statistics ()</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101599 Statistics and Econometrics</td>
<td>9 CR</td>
</tr>
<tr>
<td>Election block: Economics ()</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101499 Applied Microeconomics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101403 Public Finance</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101599 Statistics and Econometrics</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101668 Economic Policy I</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-WIWI-101501 Economic Theory</td>
<td>9 CR</td>
</tr>
</tbody>
</table>
4.7 Law

Credits: 26

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101190</td>
<td>Introduction to Civil Law</td>
<td>5 CR</td>
</tr>
<tr>
<td>M-INFO-101191</td>
<td>Commercial Law</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-INFO-105247</td>
<td>Constitutional and Administrative Law</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Module in Law (at least 6 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101253</td>
<td>Intellectual Property and Data Protection</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

4.8 Seminars

Credits: 3

Election block: Compulsory Elective Seminar in Informatics (at most 3 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-102058</td>
<td>Seminar Module Informatics</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-INFO-101218</td>
<td>Seminar Module Law</td>
<td>3 CR</td>
</tr>
<tr>
<td>M-WIWI-101826</td>
<td>Seminar Module Economic Sciences</td>
<td>3 CR</td>
</tr>
</tbody>
</table>
5 Modules

5.1 Module: Algorithmic Methods for Hard Optimization Problems [M-INFO-101237]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103334 | Algorithmic Methods for Hard Optimization Problems | 5 CR | Wagner |

Competence Goal
The goal of this course is to familiarize the students with hard problems and possible approaches to solve them. Online problems may also be part of the course.

Content
There are many practical problems that cannot be solved optimally - some not at all and some not in a reasonable amount of time. An example is the "bin packing problem" where a collection of objects must be packed using a possibly small number of bins. Moreover, problems sometimes arise where knowledge about the future (or even about the present) is incomplete, but a decision is required nevertheless ("online problems"). Regarding bin packing, for example, there must be a point in time when you close the bins and send them away. Even if there are some more objects arriving later.
5.2 Module: Algorithms for Planar Graphs [M-INFO-101220]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101986</td>
<td>Algorithms for Planar Graphs</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Content
A planar graph is defined as a graph that can be drawn in the plane such that no edges intersect. Planar graphs have many interesting properties that can be used to solve several problems in a particularly simple, fast and elegant way. In addition, some problems that are (NP-)hard in general graphs can be efficiently solved in planar graphs. The lecture presents a selection of these problems and corresponding algorithmic approaches.

Annotation
The module is offered irregularly.

Workload
approx. 150 h
5.3 Module: Algorithms I [M-INFO-100030]

Responsible: Prof. Dr. Peter Sanders

Organisation: KIT Department of Informatics

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Level</th>
<th>Recurrence</th>
<th>Language</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-100001</td>
<td>Algorithms I</td>
<td>6</td>
<td>1</td>
<td>Each summer term</td>
<td>German</td>
<td>Sanders</td>
</tr>
</tbody>
</table>
5.4 Module: Algorithms II [M-INFO-101173]

Responsible: Prof. Dr. Hartmut Prautzsch
Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-102020 | Algorithms II | 6 CR Prautzsch, Sanders, Wagner |
5.5 Module: Applications of Operations Research [M-WIWI-101413]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (between 1 and 2 Items)

<table>
<thead>
<tr>
<th>Module</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4.5 CR</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-106199</td>
<td>Modeling and OR-Software: Introduction</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under Uncertainty</td>
<td>4.5 CR</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Compétence Certificate
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of Supply Chain Management and their respective optimization problems,
- is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Prerequisites
At least one of the courses *Facility Location and Strategic Supply Chain Management* and *Tactical and Operational Supply Chain Management* has to be taken.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.

Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Recommendation
The courses Introduction to Operations Research I and II are helpful.
Annotation
The planned lectures and courses for the next three years are announced online.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.6 Module: Applied Informatics [M-WIWI-101430]

Responsible: Prof. Dr. Andreas Oberweis
Prof. Dr. Ali Sunyaev

Organisation: KIT Department of Economics and Management

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110338</td>
<td>Applied Informatics – Modelling</td>
<td>4 CR</td>
<td>Färber, Oberweis</td>
</tr>
</tbody>
</table>

Competence Certificate
The learning control for both courses takes the form of a written examination (60 minutes) in accordance with § 4(2), 1 SPO. The module grade consists of the credit-weighted average of the grades for both courses.

Competence Goal
The student should:

- Becomes familiar with relevant modelling languages for describing application domains and aspects of early software system design.
- Gains insight into methods and systems of computer science for the design and development of distributed information systems (supporting electronic business),
- is able to select, design, and apply these methods and systems in a way that is appropriate for the application context.

Prerequisites
None.

Content
The course Applied Informatics - Modelling [2511030] mainly addresses the early phases of the development of database-supported information systems, distributed systems for information services, intelligent systems and software systems in general. Main topics are modelling concepts and languages for describing application domains as well as static and dynamic aspects of early software system design. The course addresses in detail the following approaches: Entity-Relationship model, advanced aspects of UML, description logic, relational model, Petri nets, and event-driven process chains.

The course Applied Informatics - Internet Computing [2511032] provides insights into fundamental concepts and future technologies of distributed systems and Internet computing. Students should be able to select, design and apply the presented concepts and technologies. The course first introduces basic concepts of distributed systems (e.g. design of architectures for distributed systems, internet architectures, web services, middleware).

In the second part of the course, emerging technologies of Internet computing will be examined in depth. These include, among others:

- Cloud Computing
- Edge & Fog Computing
- Internet of Things
- Blockchain
- Artificial Intelligence

Recommendation
Knowledge of the module Basic Notions of Computer Science as well as Algorithms I is expected.

Workload
See german version.
5.7 Module: Applied Microeconomics [M-WIWI-101499]

Responsibility: Prof. Dr. Johannes Philipp Reiß
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (at least 9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4.5</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4.5</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory</td>
<td>4.5</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102792</td>
<td>Decision Theory</td>
<td>4.5</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization</td>
<td>4.5</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4.5</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics</td>
<td>5</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4.5</td>
<td>Mitusch</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students

- are introduced to the basic theoretical analysis of strategic interaction situations and shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings, (course "Introduction to Game Theory");
- are exposed to the basic problems of imperfect competition and its implications for policy making; (course "Industrial Organization");
- are provided with the basic economics of network industries (e.g., telecom, utilities, IT, and transport sectors) and should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion, and state intervention, (course "Competition in Networks").

Prerequisites
None.

Content
The module’s purpose is to extend and foster skills in microeconomic theory by investigating a variety of applications. Students shall be able to analyze real-life problems using microeconomics.

Recommendation
Completion of the module Economics is assumed.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Basic Notions of Computer Science [M-INFO-101170]

Responsible: Dr. Sebastian Stüker
Thomas Worsch

Organisation: KIT Department of Informatics

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101965</td>
<td>Basic Notions of Computer Science Pass</td>
<td>0 CR</td>
<td>Stüker, Worsch</td>
<td></td>
</tr>
<tr>
<td>T-INFO-101964</td>
<td>Basic Notions of Computer Science</td>
<td>6 CR</td>
<td>Stüker, Worsch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Goal

- Students know the most important techniques for definitions and are able to read and understand such definitions.
- Students know the difference between syntax and semantics.
- Students know the most important notions from discrete mathematics and computer science and are able to use them for the description of problems and in proofs.

Content

- informal notion of algorithm, basics of correctness proofs
- computational complexity measures, hard problems
- big O notation, master theorem
- alphabets, words, formal languages
- finite acceptors, contextfree grammars
- inductive/recursive definitions, proofs by induction, closure
- relations and functions
- graphs

Workload

180 h
5.9 Module: Basic Practical Course for the ICPC-Programming Contest [M-INFO-101230]

Responsible:	Prof. Dr. Dorothea Wagner
Organisation:	KIT Department of Informatics
Part of:	Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101991</td>
<td>Basic Practical Course for the ICPC-Programming Contest</td>
</tr>
</tbody>
</table>
5.10 Module: Business Administration [M-WIWI-105267]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management
Part of: Economics and Management (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102819</td>
<td>Business Administration: Finance and Accounting</td>
<td>4 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>German</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102818</td>
<td>Business Administration: Production Economics and Marketing</td>
<td>4 CR</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>German</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessments of the courses are written examinations (90 minutes each) according to §4(2), 1 of the examination regulation. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student should be able to
- deal with advanced topics in accounting,
- describe the impacts and features of marketing instruments,
- knows the problem formulation and theories of production management, including the areas of energy, construction, real-estate and ergonomics,
- evaluate information as a competitive factor and is in control of the terminology and the methods to asses information.

Prerequisites

None

Content

The institutional framework and the modelling and formal description of a company's decisions play an essential role in this module. This module contains problems in procurement and materials management as well as in logistics. Modern production processes for goods and services are systematically presented. Marketing research and knowledge of the range of marketing instruments are fundamental for decisions in a competitive market environment. Advanced topics in accounting are also taught.

Recommendation

It is highly recommended to fulfil this module only after completing the module Foundations in Business Administration.

Workload

See German version.
Module: Business Processes and Information Systems [M-WIWI-101476]

5.11 Module: Business Processes and Information Systems [M-WIWI-101476]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-109799</td>
<td>Process Mining</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (between 0 and 1 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110711</td>
<td>Supplement Applied Informatics</td>
<td>4.5 CR</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
</tr>
<tr>
<td>T-WIWI-104679</td>
<td>Foundations of Mobile Business</td>
<td>4.5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110541</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4.5 CR</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- design architecture models of enterprise information systems and compare alternative designs,
- explain the concepts and principles of process modeling languages and methods, apply the methods in a concrete situation and evaluate the results,
- choose an appropriate modeling language according to a given context for analysing, modeling and improving business processes.

Prerequisites

At least one of the courses "Business Process Modelling" or "Process Mining" has to be attended.

Content

Modeling the relevant aspects of a business process is the basis for efficient and effective support of this process in an enterprise information system. Detailed knowledge of languages, methods and software tools for supporting business process modeling is taught in this module.

Additionally fundamentals of software quality management are considered in this module. Maturity models like CMMI or SPICE for evaluation and improvement of a software development process are introduced.
5.12 Module: Cognitive Systems [M-INFO-100819]

Responsible: Prof. Dr. Gerhard Neumann
Prof. Dr. Alexander Waibel

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101356</td>
</tr>
</tbody>
</table>
5.13 Module: Commercial Law [M-INFO-101191]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Law (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102013</td>
</tr>
</tbody>
</table>
5.14 Module: Computer Architecture [M-INFO-100818]

Responsible: Prof. Dr.-Ing. Jörg Henkel
Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101355 | Computer Architecture | 6 CR | Henkel, Karl |
5.15 Module: Computer Graphics [M-INFO-100856]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101393</td>
<td>Computer Graphics</td>
<td>6 CR</td>
<td>Dachsbacher</td>
<td></td>
</tr>
<tr>
<td>T-INFO-104313</td>
<td>Computer Graphics Pass</td>
<td>0 CR</td>
<td>Dachsbacher</td>
<td></td>
</tr>
</tbody>
</table>
5.16 Module: Computer Organization [M-INFO-103179]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103531 | Computer Organization | 6 CR | Karl |
5.17 Module: Constitutional and Administrative Law [M-INFO-105247]

Responsible: Prof. Dr. Nikolaus Marsch
Organisation: KIT Department of Informatics
Part of: Law (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-110300 | Public Law I & II | 6 CR | Eichenhofer |

Workload

See German version.
5.18 Module: Curves in CAD [M-INFO-101248]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-102067 | Curves in CAD | 5 CR | Prautzsch |

Competence Goal

Basic knowledge about smooth freeform curves, and about their representations in CAD systems and in computer graphics. In particular, knowledge of control points and the geometric properties of Bézier and B-spline representations.

Content

Bézier and B-spline-Technics, polarforms, algorithms of de Casteljau, de Boor and Boehm, Oslo-Algorithm, Stärk's C^k construction, subdivision, change of representations, intersection algorithms, interpolation with splines, and a bit on tensorproduct surfaces (= curves controlled by curves).
Module: Database Systems [M-INFO-104921]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Grade</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101497</td>
<td>Database Systems</td>
<td>4 CR</td>
<td>Böhm</td>
</tr>
</tbody>
</table>
5.20 Module: Design, Construction and Sustainability Assessment of Buildings [M-WIWI-101467]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102742</td>
<td>Design, Construction and Sustainability Assessment of Buildings I</td>
<td>4,5</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>T-WIWI-102743</td>
<td>Design, Construction and Sustainability Assessment of Buildings II</td>
<td>4,5</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- knows the basics of sustainable design, construction and operation of buildings with an emphasis on building ecology
- has knowledge of building ecology assessment procedures and tools for design and assessment
- is capable of applying this knowledge to assessing the ecological advantageousness of buildings as well as their contribution to a sustainable development.

Prerequisites
None

Content
Sustainable design, construction and operation of buildings currently are predominant topics of the real estate sector, as well as "green buildings". Not only designers and civil engineers, but also other actors who are concerned with project development, financing and insurance of buildings or portfolio management are interested in these topics.

On the one hand the courses included in this module cover the basics of energy-efficient, resource-saving and health-supporting design and construction of buildings. On the other hand fundamental assessment procedures for analysing and communicating the ecological advantageousness of technical solutions are discussed. With the basics of green building certification systems the lectures provide presently strongly demanded knowledge.

Additionally, videos and simulation tools are used for providing a better understanding of the content of teaching.

Recommendation
The combination with the module Real Estate Management is recommended. Furthermore a combination with courses in the area of

- Industrial production (energy flow in the economy, energy politics, emissions)
- Civil engineering and architecture (building physics, building construction)

is recommended.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.21 Module: Digital Circuits Design [M-INF-102978]

Responsible: Prof. Dr.-Ing. Uwe Hanebeck
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-103469</th>
<th>Digital Circuits Design</th>
<th>6 CR</th>
<th>Karl</th>
</tr>
</thead>
</table>
5.22 Module: eBusiness and Service Management [M-WIWI-101434]

Responsible: Prof. Dr. Christof Weinhardt
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td>4,5 CR</td>
<td>CR</td>
<td>Satzger, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4,5 CR</td>
<td>CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-109936</td>
<td>Platform Economy</td>
<td>4,5 CR</td>
<td>CR</td>
<td>Dörner, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Special Topics in Information Systems</td>
<td>4,5 CR</td>
<td>CR</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Prerequisites

None

Content

This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle.

The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented. The lecture is complemented by exercise courses. The courses "Platform Economy", "eFinance: Information systems in finance" and "eServices" constitute three different application domains in which the basic principles of the Internet Economy are deepened. In the core lecture "Platform Economy" the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and marketdesign. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform.

The course "eFinance: information systems for securities trading" provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.

In "eServices" the increasing impact of electronic services compared to the traditional services is outlined. The Information- und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality. This course provides basic knowledge about the development and management of ICT-based services.

The theoretic fundamentals of Information systems can be enriched by a practical experience in Special Topics in Information Engineering and Management. Any practical Seminar at the IM can be chosen for the course Special Topics in Information systems.

Annotation

All practical Seminars offered at the IM can be chosen for Special Topics in Information Systems. Please update yourself on www.iism.kit.edu/im/lehre

Information Systems B.Sc.
Module Handbook as of 09/04/2021
Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.23 Module: Economic Policy I [M-WIWI-101668]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103213</td>
<td>Basic Principles of Economic Policy</td>
<td>4.5 CR</td>
<td>Ott</td>
<td></td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (1 item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4.5 CR</td>
<td>Brumm</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4.5 CR</td>
<td>Wigger</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>4.5 CR</td>
<td>Nieken</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Competition in Networks</td>
<td>4.5 CR</td>
<td>Mltusch</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination takes place in the form of examinations (§4(2),1 SPO) of the selected partial module performance. The examination is carried out separately for each partial module and is described there. It is possible to repeat examinations at any regular examination date.

The grades of the partial module correspond to the grades of the passed examinations. The overall grade of the module is formed from the grades of the partial performances weighted with LP.

Competence Goal

Students shall be given the ability to

- understand and deepen basic concepts of micro- and macroeconomic theories
- apply those theories to economic policy issues
- understand government interventions in the market and their legitimation from the perspective of economic welfare
- learn how theory-based policy recommendations are derived

Prerequisites

The course "Introduction to Economic Policy" is mandatory in the module.

Content

- Intervention in the market: micro-economic perspective
- Intervention in the market: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Carriers of economic policy: political-economic aspects

Recommendation

Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is made according to the credit points of the courses of the module.
5.24 Module: Economic Theory [M-WIWI-101501]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4.5 CR</td>
<td>Mitusch</td>
<td>Each term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4.5 CR</td>
<td>Szech</td>
<td>Each term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4.5 CR</td>
<td>Szech</td>
<td>Each term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Introduction to Game Theory</td>
<td>4.5 CR</td>
<td>Puppe, Reiß</td>
<td>Each term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrial Organization</td>
<td>4.5 CR</td>
<td>Reiß</td>
<td>Each term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4.5 CR</td>
<td>Brumm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102610</td>
<td>Welfare Economics</td>
<td>4.5 CR</td>
<td>Puppe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
See German version.

Prerequisites
None

Content
The lecture Introduction to Game Theory focuses on the basics of non-cooperative game theory. Model assumptions, solution concepts and applications are discussed in detail both for simultaneous games (normal form games) and for sequential games (extensive form games). Classical equilibrium concepts like the Nash equilibrium or the subgame perfect equilibrium, but also advanced concepts will be discussed in detail. If necessary, a brief insight into cooperative game theory will also be given.

The course Auction & Mechanism Design starts with the basic theory of equilibrium behavior and yield management in single object standard auctions. After introducing the yield equivalence theorem for standard auctions, the focus shifts to mechanism design and its applications for single-object auctions and bilateral exchanges.

The course Economics and Behavior introduces fundamental topics of behavioural economics in terms of content and methodology. Students will also gain insight into the design of economic experimental studies. Students will also be introduced to the reading of and critical examination of current research in behavioural economics.

Recommendation
None

Annotation
The course T-WIWI-102609 - Advanced Topics in Economic Theory is currently not available.
5.25 Module: Economics [M-WIWI-101431]

Responsible: Prof. Dr. Clemens Puppe
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-WIWI-102708 Economics I: Microeconomics 5 CR Puppe, Reiß

Competence Certificate
The assessment of the module is a written examination according to §4(2), 1 of the examination regulation. The grade of the module corresponds to the grade of this examination.

The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. Only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Competence Goal
It is the main aim of this module to provide basic knowledge in economic modelling. In particular, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative, more effective policy measures.

In particular, the student should learn

- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems

- to analyze the structure of microeconomics relationships and to present own problem solutions,
- solve simple economic decision problems.

Prerequisites
None

Content
In the two main parts of the course, problems of microeconomic decision making (household and firm behavior) and problems of commodity allocation on markets (market equilibria and their efficiency properties of markets) are discussed. In the final part of the course, basics of imperfect competition (oligopolistic markets) and of game theory as well as welfare economics are presented.

Annotation
When personal resources are available students' tutorials will be established.

Workload
See German version.
5.26 Module: eFinance [M-WIWI-101402]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4,5 CR</td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at least 4,5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
</tr>
</tbody>
</table>
5.27 Module: Energy Economics [M-WIWI-101464]

Responsible: Prof. Dr. Wolf Fichtner

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102746</td>
<td>Introduction to Energy Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Election block: Supplementary Courses (3,5 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102607</td>
</tr>
<tr>
<td>T-WIWI-100806</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture *Introduction into Energy Economics* [2581010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- is able to understand interdependencies in energy economics and to evaluate ecological impacts in energy supply,
- is able to assess the different energy carriers and their characteristics,
- knows the energy political framework conditions,
- gains knowledge about new market-based conditions and the cost and potentials of renewable energies in particular.

Prerequisites
The lecture *Introduction into Energy Economics* [2581010] has to be examined.

Content
Introduction to Energy Economics: Characterisation (reserves, suppliers, cost, technologies) of different energy carriers (coal, gas, oil, electricity, heat etc.)

Renewable Energy - Resources, Technology and Economics: Characterisation of different renewable energy carriers (wind, solar, hydro, geothermal etc.)

Energy Policy: Management of energy flows, energy-political targets and instruments (emission trading etc.)

Recommendation
The courses are conceived in a way that they can be attended independently from each other. Therefore, it is possible to start the module in winter and summer term.

Annotation
Additional study courses (E.g. from other universities) can be transferred to the grade of the module on special request at the institute.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Essentials of Finance [M-WIWI-101435]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102605</td>
<td>Financial Management</td>
<td>4,5 CR</td>
<td>Ruckes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102604</td>
<td>Investments</td>
<td>4,5 CR</td>
<td>Uhrig-Homburg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- has fundamental skills in modern finance
- has fundamental skills to support investment decisions on stock, bond and derivative markets
- applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Prerequisites

None

Content

The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.29 Module: Financial Data Science [M-WIWI-105610]

Responsibility: Prof. Dr. Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-111238 | Financial Data Science | 9 CR | Ulrich |

Competence Certificate

The module examination is an alternative exam assessment and consists of two parts in which a maximum of 100 points can be achieved:

In the first part of the examination, a maximum of 30 points can be achieved, which are distributed equally weighted over eight worksheets to be submitted during the semester. The worksheets of the first three weeks are representative for all following worksheets in terms of scope and degree of difficulty. With the beginning of the 4th week of the course, the handing in of the worksheets is considered to be part of the alternative exam assessment.

A maximum of 70 points can be achieved in the second part of the examination. For this part of the examination, the student write a “Final Exam” in the last week of the lecture period, which takes 2 hours.

Detailed information about the course schedule and the module exam will be announced at the first course date.

A retake opportunity for those who do not pass the module exam will take place at the end of the fourth September calendar week of the same year. The registration for the examination must be made at least 1 day before the beginning of the examination. The following applies to deregistration for the examination: Deregistration can be made online in the student portal up to 1 day before the start of the examination.

Competence Goal

The objective of the module is to provide fundamental financial knowledge for advanced applications in Financial Data Science and Financial Machine Learning. The course teaches concepts and provides weekly Python assignments to scientifically address the following topics: Robo Advisory, Linear Factor Models, Statistical Arbitrage, Monte Carlo Simulation, and Financial Machine Learning. The course is for the students, who are interested in financial markets, as well as for the students, who are interested in Data Science. Scientific financial market knowledge helps in creating financial innovations, such as a Robo Advisor. Practical knowledge in using Python helps in coding machines, which are essential for offering automated financial market solutions.

Content

The module covers the following topics:

- Robo Advisory: Investor preferences, Expected utility theory, Mean-variance optimal investing
- Linear Factor Models: prediction of returns, decomposition of risks, Capital Asset Pricing Model, Arbitrage Pricing Theory
- Statistical Arbitrage: ARMA-GARCH Modeling of Return Time Series
- Monte Carlo Simulation: Simulation of ARMA-GARCH processes
- Machine Learning: Least Squares Methods, Maximum Likelihood, Prediction of Returns, Prediction of Risks
- New developments in asset management: factor investing, smart beta, I-CAPM, Fama-MacBeth estimation of risk premia, factor anomalies

Annotation

Please note that the module is only offered every second summer semester (SS2021, SS2023).

Workload

The total workload for this module is approx. 270 hours (9 credit points). The total number of hours results from the effort for studying online videos, working on quiz questions, studying Ipython-Notebooks, participating in interactive "Python Sessions" and reading the recommended literature.
5.30 Module: Formal Systems [M-INFO-100799]

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101336</th>
<th>Formal Systems</th>
<th>6 CR</th>
<th>Beckert</th>
</tr>
</thead>
</table>
5.31 Module: Foundations of Marketing [M-WIWI-101424]

Responsible: Prof. Dr. Martin Klarmann

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Mandatory

- **T-WIWI-102805** Managing the Marketing Mix 4,5 CR Klarmann

Election block: Supplementary Courses (at least 4,5 credits)

- **T-WIWI-111367** B2B Sales Management 4,5 CR Klarmann

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The aim of this module is to prepare students for a job in marketing or sales. Especially in technically oriented companies, employees who have a certain technical background as industrial engineers or business informatics specialists are often fit for this purpose.

Students

- are familiar with the most important concepts, procedures and theories of the four instruments of the marketing mix (product management, price management, communication management and sales management)
- have the knowledge to make decisions regarding current and future products (product innovations, e.g. by using conjoint analysis)
- know how customers perceive brands and how this perception can be influenced by the company
- understand how customers react to prices (e.g. using price-sales functions)
- can determine prices on the basis of conceptual and quantitative considerations
- know the basics of price differentiation
- are familiar with various communication instruments (e.g. TV advertising) and can design them accurately
- make communication decisions systematically (e.g. by means of media planning)
- can segment the market and position the product
- know how to assess the importance and satisfaction of customers
- can shape the relationship with customers and sales partners and know the basics of sales organization as well as essential sales channel decisions
- know about specifics of marketing in B2B
- are able to identify different B2B business types and their peculiarities in marketing and sales
- are able to prioritize customers and calculate B2B customer lifetime value
- are able to determine value-based prices and prepare and conduct B2B sales presentations

Prerequisites

The course Marketing Mix is compulsory and must be examined.

Content

The core course of the module is "Marketing Mix". This course is compulsory and must be examined. "Marketing Mix" contains instruments and methods that enable you to goal-oriented decisions in the operative marketing management (product management, pricing, promotion and sales management).

In the "B2B Sales Management" course, we impart knowledge about marketing and sales in environments in which companies themselves distribute and market (often technically highly complex) products to other companies ("business-to-business").
Annotation
The courses "Services Marketing and B2B Marketing" and "International Marketing" were offered for the last time in the winter semester 2020/21 and will be replaced by the course "B2B Sales Management" from the winter semester 2021/22 on. The course "Marketing Mix" will continue to be offered as normal in the summer semester 2021 and will also be retained in the long term. For further information please contact the Marketing & Sales Research Group (marketing.iism.kit.edu).

Workload
Total effort for 9 credit points: approx. 270 hours.
The exact distribution is done according to the credit points of the courses of the module.
5.32 Module: Fundamentals of Digital Service Systems [M-WIWI-102752]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Module</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td>4.5 CR</td>
<td>Satzger, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4.5 CR</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-110888</td>
<td>Practical Seminar: Digital Services</td>
<td>4.5 CR</td>
<td>Satzger, Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO), whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

Students

- Understand services from different perspectives and the concept of value creation in service networks
- Know about the concepts, methods and tools for the design, modelling, development and management of digital services and are able to use them
- Understand the basic characteristics and effects of integrated information systems as an integral element of digital services
- Gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
- Practice skills in the English language in preparation for jobs in an international environment

Prerequisites

None

Content

Global economy is increasingly determined by services: in industrialized countries nearly 70% of gross value added is achieved in the tertiary sector. Unfortunately, for the design, development and the management of services traditional concepts focused on goods are often insufficient or inappropriate. Besides, the rapid technical advance in the information and communication technology sector pushes the economic importance of digital services even further thus changing the competition environment. ICT-based interaction and individualization open up completely new dimensions of shared value between clients and providers, dynamic and scalable "service value networks" replace established value chains, digital services are provided globally crossing geographical boundaries. This module establishes a basis for further specialization in service innovation, service economics, service design, service modelling, service analytics as well as the transformation and coordination of service networks.

Recommendation

None

Annotation

This module is part of the KSRI teaching profile "Digital Service Systems". Further information on a service-specific profiling is available under www.ksri.kit.edu/teaching.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
5.33 Module: Geometric Basics for Geometry Processing [M-INFO-100756]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101293</th>
<th>Geometric Basics for Geometry Processing</th>
<th>5 CR</th>
<th>Prautzsch</th>
</tr>
</thead>
</table>
5.34 Module: Geometric Optimization [M-INFO-100730]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101267</td>
</tr>
</tbody>
</table>
5.35 Module: Human Computer Interaction [M-INFO-100729]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101266</td>
<td>Human-Machine-Interaction</td>
<td>6 CR</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>T-INFO-106257</td>
<td>Human-Machine-Interaction Pass</td>
<td>0 CR</td>
<td>Beigl</td>
<td></td>
</tr>
</tbody>
</table>
Module: Human Resources and Organizations [M-WIWI-101513]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102909</td>
<td>Human Resource Management</td>
<td>4,5</td>
<td>CR</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (between 4,5 and 5,5 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102630</td>
<td>Managing Organizations</td>
<td>3,5</td>
<td>CR</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>4,5</td>
<td>CR</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problem Solving, Communication and Leadership</td>
<td>2</td>
<td>CR</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- knows and analyzes basic concepts, instruments, and challenges of present human resource and organizational management.
- uses the techniques he / she has learned to evaluate strategic situations which occur in human resource and organizational management.
- evaluates the strengths and weaknesses of existing structures and rules based on systematic criterions.
- Discusses and evaluates the practical use of models and methods by using case studies.
- has basic knowledge of fit and challenges of different scientific methods in the context of personnel and organizational economics.

Prerequisites
The course "Human Resource Management" is compulsory and must be examined.

Content
Students acquire basic knowledge in the field of human resource and organizational management. Strategic as well as operative aspects of human resource management practices are analyzed. The module offers an up-to-date overview over basic concepts and models. It also shows the strengths and weaknesses of rational concepts in human resources and organizational management.

The students learn to apply methods and instruments to plan, select, and manage staff. Current issues of organizational management or selected aspects of personnel politics are examined and evaluated.

The focus lies on the strategic analysis of decisions and the use microeconomic or behavioral approaches. Empirical results of field or lab studies are discussed critically.

Recommendation
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory and statistics is recommended.

Workload
The total workload for this module is approximately 270 hours.
5.37 Module: Industrial Production I [M-WIWI-101437]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102606 Fundamentals of Production Management</td>
<td>5.5 CR</td>
<td>Schultmann</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102870 Logistics and Supply Chain Management</td>
<td>3.5 CR</td>
<td>Schultmann, Wiens</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102820 Production Economics and Sustainability</td>
<td>3.5 CR</td>
<td>Schultmann, Volk</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to section 4 (2), 1 SPO) of the core course “Fundamentals of Production Management” [2581950] and one further single course of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

- Students shall be aware of the important role of industrial production and logistics for production management.
- Students shall use relevant concepts of production management and logistics in an adequate manner.
- Students shall be able to reflect on decision principles in firms and their circumstances in the light of the production management aspects studied.
- Students shall be proficient in describing essential tasks, difficulties and solutions to problems in production management and logistics.
- Students shall be able to describe relevant approaches of modeling production and logistic systems.
- Students shall be aware of the important role of material and energy-flows in production systems.
- Students shall be proficient in using exemplary methods for solving selected problems.

Prerequisites

The course “Fundamentals of Production Management” [2581950] and one additional activity have to be chosen.

Content

This module is designed to introduce students into the wide area of industrial production and logistics management. It focuses on strategic production management under the aspect of sustainability. The courses use interdisciplinary approaches of systems, also theory to describe the central tasks of industrial production management and logistics. Herein, attention is drawn upon strategic corporate planning, research and development as well as site selection. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Workload

Total effort will account to 270 hours (9 credit points) and can be allocated according to the credit point rating. Therefore, a course with 3.5 credits requires an effort of approximately 105h and a course with 5.5 credits 165h.

The total effort for each course consists of attending lectures and tutorials, examination times and the time an average student needs to prepare himself in order to pass the exam with an average grade.
5.38 Module: Information Security [M-WIWI-104069]

Responsible: Prof. Dr. Melanie Volkamer
Organisation: KIT Department of Economics and Management
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

| Mandatory |
| T-WIWI-110342 | Applied Informatics – Information Security | 4.5 CR Volkamer |

| Election block: Compulsory Elective Courses (1 item) |
| T-WIWI-108439 | Advanced Lab Security, Usability and Society | 4.5 CR Volkamer |
| T-WIWI-109786 | Advanced Lab Security | 4.5 CR Volkamer |

Competence Certificate
The module examination is carried out in the form of partial examinations on the selected courses of the module, with which the minimum requirement at credit points is fulfilled. The learning control is described in each course. The overall score of the module is made up of the sub-scores weighted with credit points and is cut off after the first comma point.

Competence Goal
The student
- can explain and apply the basics of information security
- knows appropriate measures to achieve different protection goals and can implement these measures
- can assess the quality of organisational protective measures, i.e. among other things knows what has to be taken into account when using the individual measures
- Understanding the differences between information security in the enterprise and in the private context
- knows the areas of application of a variety of relevant standards and knows their weaknesses
- knows and can explain the problems of information security which may arise from human-machine interaction
- can assess messages about detected security problems in a critical way
- can structure a software project in the field of information security and explain and present results in oral and written form
- can use the techniques of Human Centred Security and Privacy by Design to create user-friendly software.

Prerequisites
None

Content
- Basics and concepts of information security
- Understanding the protection objectives of information security and various attack models (including associated assumptions)
- Introduction of measures to achieve the respective protection goals, taking into account different attack models
- Note: In contrast to the IT Security lecture, measures such as encryption algorithms are treated only abstractly, i.e. the idea of the measure, assumptions to the attacker and the deployment environment.
- Presentation and analysis of problems of information security arising from human-machine interaction and presentation of the Human Centered Security by Design approach.
- Introduction into organisational protective measures and standards to be observed for companies.

Annotation
This new module can be chosen from summer term 2018.

Workload
The total workload for this module is approximately 270 hours.
5.39 Module: Information Services in Networks [M-WIWI-101440]

Responsible: N.N.
Prof. Dr. Hartmut Schmeck

Organisation: KIT Department of Economics and Management

Part of: Informatics (Compulsory Elective Modules in Informatics) (Usage until 9/30/2021)

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German/English
Level: 3
Version: 5

Election block: Compulsory Elective Courses ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101276</td>
<td>Data and Storage Management</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td></td>
<td>Neumair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-101284</td>
<td>Integrated Network and Systems Management</td>
<td>4 CR</td>
<td></td>
<td>Each term</td>
<td></td>
<td>Neumair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110541</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td></td>
<td>Professorenschaft des Fachbereichs Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4,5 CR</td>
<td></td>
<td>Each term</td>
<td></td>
<td>Käfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Please note that the module will no longer be offered as of winter semester 2021/22.

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None

Workload
The total workload for this module is approximately 270 hours. For further information see German version.

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Area ()

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4.5</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-109936</td>
<td>Platform Economy</td>
<td>4.5</td>
<td>Dorner, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109935</td>
<td>Practical Seminar Interaction</td>
<td>4.5</td>
<td>Mädche, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-106569</td>
<td>Consumer Behavior</td>
<td>4.5</td>
<td>Scheibehenne</td>
</tr>
</tbody>
</table>

Competence Certificate

The module examination takes place in the form of partial examinations in accordance with § 4 Para. 2 No. 1 - No. 3 SPO via courses of the module amounting to a total of at least 9 LP. The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal

Students

- understand the basic concepts of interactive systems as well as the economic foundations and key components of platforms
- explore the theoretical grounding of interactive systems leveraging theories from reference disciplines such as psychology
- understand business models, network effects of digital platforms and get to know different market forms and market mechanisms
- gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
Content
The “Information Systems & Digital Business” modules of the research groups of Prof. Dr. Alexander Mädche (Information Systems & Service Design), Prof. Dr. Gerhard Satzger (Digital Service Innovation) and Prof. Dr. Christof Weinhardt (Information & Market Engineering), offer a comprehensive overview on important topics of digitalization – blending aspects of digital interaction, digital services and the platform economy.

Courses in this module cover the aspects of interaction between humans and information systems as well as the economic foundations of platform businesses:

- **Foundations of Interactive Systems:** Advanced information and communication technologies (ICT) make interactive systems ever-present in the users’ private and business life. They are an integral part of E-Commerce portals or social networking sites as well as at the workplace, e.g. in the form of collaboration portals or analytical dashboards. Furthermore, with the ever-increasing capabilities of ICT, the design of human-computer interaction is becoming increasingly important. The aim of this module is to introduce the foundations, related theories, key concepts, and design principles as well as current practice of contemporary interactive systems. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

- **Platform Economy:** Apple, Alphabet, Amazon, Microsoft, and Facebook; five of the most valuable companies worldwide create large portions of their profits employing a digital platform model. This module teaches the key design considerations of digital platforms: their foundations in economic theory, their core components and design aspects, the adequate selection of market mechanisms for achieving certain goals and the role of user behavior in the context of digital platforms. The theoretic foundations are enriched by discussions of several real-world examples, e.g. from the finance sector. Thus, the students are enabled to a) analyze given platforms and make recommendations for improvements and b) independently design new platforms for given use cases.

- **Consumer Behavior:** Consumer decisions are ubiquitous in daily life and they can have long-ranging and important consequences for individual (financial) well-being and health but also for societies and the planet as a whole. To help people making better choices it is important to understand the factors that influence their behavior. Towards this goal, we will explore how consumer behavior is shaped by social influences, situational and cognitive constraints, as well as by emotions, motivations, evolutionary forces, neuronal processes, and individual differences. Across all topics covered in class, we will engage with basic theoretical work as well as with groundbreaking empirical research and current scientific debates. The lecture will be held in English.

Workload
Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Examining Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td>4.5 CR</td>
<td>Satzger, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109936</td>
<td>Platform Economy</td>
<td>4.5 CR</td>
<td>Dorner, Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109937</td>
<td>Practical Seminar Platforms</td>
<td>4.5 CR</td>
<td>Satzger, Weinhardt</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination takes place in the form of partial examinations in accordance with § 4 Para. 2 No. 1 - No. 3 SPO via courses of the module amounting to a total of at least 9 LP. The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal

Students

- understand services from different perspectives, the concept of value creation in service systems as well as the economic foundations and key components or platforms
- get familiar with concepts, methods and tools for the design, modelling, development and management of digital services and platforms
- understand the categories and trends of platforms as providers of digital services
- gain experience in group work as well as in the analysis of case studies and the professional presentation of research results
- are enabled to design new platforms based on a business idea.

Content
The "Information Systems & Digital Business" modules of the research groups of Prof. Dr. Alexander Mädche (Information Systems & Service Design), Prof. Dr. Gerhard Satzger (Digital Service Innovation) and Prof. Dr. Christof Weinhardt (Information & Market Engineering), offer a comprehensive overview on important topics of digitalization – blending aspects of digital interaction, digital services and the platform economy.

Courses in this module cover the technical and economic aspects of digital services as well as their application in the platform economy:

- **Digital Services:** The global economy is increasingly determined by services: in industrialized countries, nearly 70% of gross value added is achieved in the tertiary sector. For the design, development and the management of services traditional "goods-focused" concepts are often insufficient or inappropriate – even more so, if companies reap the ample opportunities to offer digital services. The course is centered around the concepts of joint value creation within service systems. It covers the theoretical background of services and service innovation, technical and economic aspects of cloud and cloud labor services as well as webservices. It focusses on the potential to leverage data for novel digital services and business models and to form dynamic and scalable service value networks. It comprises hands-on experience to conceive and build novel digital, cloud-based services.

- **Platform Economy:** Apple, Alphabet, Amazon, Microsoft, und Facebook; five of the most valuable companies worldwide create large portions of their profits employing a digital platform model. This module teaches the key design considerations of digital platforms: their foundations in economic theory, their core components and design aspects, the adequate selection of market mechanisms for achieving certain goals and the role of user behavior in the context of digital platforms. The theoretic foundations are enriched by discussions of several real-world examples, e.g. from the finance sector. Thus, the students are enabled to a) analyze given platforms and make recommendations for improvements and b) independently design new platforms for given use cases.
Workload
Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Gerhard Satzger

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses ()

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111307</td>
<td>Digital Services: Foundations</td>
<td>4.5 CR</td>
<td>Satzger, Weinhardt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4.5 CR</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109939</td>
<td>Practical Seminar Servitization</td>
<td>4.5 CR</td>
<td>Mädche, Satzger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination takes place in the form of partial examinations in accordance with § 4 Para. 2 No. 1 - No. 3 SPO via courses of the module amounting to a total of at least 9 LP.
The overall score of the module is formed from the credit-weighted scores of the partial examinations and truncated after the first decimal place.

Competence Goal

Students

- understand services from different perspectives and the concept of value creation in service systems
- get familiar with concepts, methods and tools for the design, modelling, development and management of digital services and interactive systems
- understand the basic characteristics and effects of interactive systems as an integral element of digital services – theoretically grounded in reference disciplines such as psychology
- get hands-on experience in conceptualizing and designing digital services and interactive systems in real use cases.

Content
The "Information Systems & Digital Business" modules of the research groups of Prof. Dr. Alexander Mädche (Information Systems & Service Design), Prof. Dr. Gerhard Satzger (Digital Service Innovation) and Prof. Dr. Christof Weinhardt (Information & Market Engineering), offer a comprehensive overview on important topics of digitalization – blending aspects of digital interaction, digital services and the platform economy.

Courses in this module cover the technical and economic aspects of digital services as well as the interaction of humans with information systems:

- **Digital Services:** The global economy is increasingly driven by services: in industrialized countries, nearly 70% of gross value added is achieved in the tertiary sector. For the design, development and the management of services traditional "goods-focused" concepts are often insufficient or inappropriate – even more so, if companies reap the ample opportunities to offer digital services. The course is centered around the concepts of joint value creation within service systems. It covers the theoretical background of services and service innovation, technical and economic aspects of cloud and cloud labor services as well as webservices. It focuses on the potential to leverage data for novel digital services and business models and to form dynamic and scalable service value networks. It comprises hands-on experience to conceive and build novel digital, cloud-based services.

- **Foundations of Interactive Systems:** Advanced information and communication technologies (ICT) make interactive systems ever-present in the users’ private and business life. They are an integral part of E-Commerce portals or social networking sites as well as at the workplace, e.g. in the form of collaboration portals or analytical dashboards. Furthermore, with the ever-increasing capabilities of ICT, the design of human-computer interaction is becoming increasingly important. The aim of this module is to introduce the foundations, related theories, key concepts, and design principles as well as current practice of contemporary interactive systems. The students get the necessary knowledge to guide the successful implementation of interactive systems in business and private life.

Workload

Total effort for 9 credit points: approx. 270 hours. The distribution is based on the credit points of the courses of the module (120-135h for courses with 4.5 credit points). The total number of hours per course results from the effort required to attend lectures and exercises, as well as the examination times and the time required to achieve the learning objectives of the module for an average student for an average performance.
5.43 Module: Information Systems I [M-WIWI-104820]

Responsible: Prof. Dr. Sebastian Abeck
Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management
Part of: Information Systems

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-109817 | Information Systems 1 | 4 CR | Mädche |

Competence Certificate

The module examination takes place in the form of a written examination of 60 minutes according to § 4 Abs. 2 via the course "Business Information Systems 1". A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Competence Goal

The student

- understands information systems and infrastructures as a dynamic interaction of technical and non-technical elements in the generation and use of information,
- knows application areas of information systems and infrastructures in business and society,
 understands digital transformation as a socio-technical design process of (business) processes (internal digitisation) and products/services (external digitisation) in information systems and infrastructures,
- knows different types of information systems and infrastructures in business and society,
- knows the potential benefits of a targeted supply of information in business and society through the appropriate use of information systems and infrastructures,
- develops an understanding of the importance of interdisciplinary, systemic thinking and learns to work with students in a team

General qualifications:

- Teamwork: communication, organization
- Problem-solving competence for socially relevant problems

Content

In the lecture "Business Information Systems 1" of the module central basics of information systems are introduced as a scientific discipline. The subject area, basic terms, scientific character and goals as well as methods in science and practice of information systems are introduced. Concepts, methods and theories as well as systems and their engineering design are discussed along the levels of individual, organization and market. The lectures are complemented by exercises with real questions.

Workload

Total effort for 4 credit points: approx. 120 hours.
Presence time: 40 hours
Preparation / follow-up: 40 hours
Exam and exam preparation: 40 hours
5.44 Module: Information Systems II [M-WIWI-104821]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: Information Systems

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 1
Version: 1

Mandatory

| T-WIWI-109818 | Information Systems 2 | 4 CR | Mädche, Weinhardt |

Competence Certificate
The module examination takes place in the form of a written examination of 60 minutes according to § 4 Abs. 2 via the course Business Information Systems 2.

Competence Goal
Students
- know important integrated information systems and understand how they are being used in organisations.
- understand central concepts of IT management.
- learn the foundations of market engineering and understand how digital platforms contribute to the solution of allocation problems and how their success can be measured.
- know the foundations of digital value creation (information economy), and basic concepts for the evaluation and analysis of data.

Content
In the lecture Information Systems II of the module four central issues of Information Systems, respectively their relevance in companies and society, are deepened. This includes the management of IT systems in organizations (IT Management), the use of IT for corporate management (Integrated Information Systems), the use of digital platforms and markets to coordinate economic problems such as the allocation and exchange of goods and services (Platform Economics), and the value and use of data (i.a. big data, open data, etc.) (Information Economics).

Workload
Total effort for 4 credit points: approx. 120 hours.
Presence time: 40 hours
Preparation / follow-up: 40 hours
Exam and exam preparation: 40 hours
5.45 Module: Intellectual Property and Data Protection [M-INFO-101253]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Law (Compulsory Elective Module in Law)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-109840 | Intellectual Property and Data Protection | 6 CR | Dreier, Eichenhofer |

Content

Building onto what the students have learned in law during the first two years of Bachelor studies, the module Law in the third Bachelor years has the purpose of both deepening and specialising the legal studies in areas of practical importance for information economics and management...
Module: Introduction in Computer Networks [M-INFO-103455]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-102015</th>
<th>Introduction in Computer Networks</th>
<th>4 CR</th>
<th>Zitterbart</th>
</tr>
</thead>
</table>
5.47 Module: Introduction to Civil Law [M-INFO-101190]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: Law (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103339</td>
</tr>
</tbody>
</table>
5.48 Module: Introduction to Data and Information Management [M-INFO-105589]

Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

Election block: Introduction to Data and Information Management (at least 1 item as well as at least 5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade Scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101305</td>
<td>Big Data Analytics</td>
<td>5 CR</td>
<td>Böhm</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-103552</td>
<td>Lab: Working with Database Systems</td>
<td>4 CR</td>
<td>Böhm</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-101317</td>
<td>Deployment of Database Systems</td>
<td>5 CR</td>
<td>Böhm</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-101257</td>
<td>Mechanisms and Applications of Workflow Systems</td>
<td>5 CR</td>
<td>Mülle</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-101977</td>
<td>Selling IT-Solutions Professionally</td>
<td>1.5 CR</td>
<td>Böhm</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-101975</td>
<td>Consulting in Practice</td>
<td>1.5 CR</td>
<td>Böhm</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-101976</td>
<td>Project Management in Practice</td>
<td>1.5 CR</td>
<td>Böhm</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Goal

The students

- see the necessity of specialised systems for information and data management and are able to define and deploy decision criteria for purchasing such software,
- are aware of the fundamental approaches in information and database systems and are able to judge their potential applications,
- understand database applications and develop simple database applications on their own,
- are able to communicate at a professional level about technical aspects of information and knowledge management

Prerequisites

None

Content

This module aims at exposing students to modern information and database systems. Beyond fundamental theory and concepts, this module covers the deployment of such technology.
5.49 Module: Introduction to Operations Research [M-WIWI-101418]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management
Part of: Economics and Management (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-WIWI-102758 | Introduction to Operations Research I and II | 9 CR | Nickel, Rebennack, Stein |

Competence Certificate
The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

Competence Goal
The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Module grade calculation
The overall grade of the module is the grade of the written examination.

Prerequisites
None

Content
This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.

This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Workload
The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.50 Module: Introduction to Statistics [M-WIWI-101432]

Responsible:
Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation:
KIT Department of Economics and Management
Part of: Mathematics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102737</td>
<td>Statistics I</td>
<td>5 CR</td>
<td>Grothe, Schienle</td>
</tr>
<tr>
<td>T-WIWI-102738</td>
<td>Statistics II</td>
<td>5 CR</td>
<td>Grothe, Schienle</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II). The overall grade of the module is the average of the grades of these two written examinations.

Competence Goal
See German version.

Module grade calculation
The overall grade of the module is the average of the grades of these two written examinations.

Prerequisites
Keine

Content
The module contains the fundamental methods and scopes of Statistics.

A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, linear regression

Recommendation
In some cases, knowledge is required that is imparted within the mathematics module. The module should therefore only be attended if the course Mathematics I for Information Engineering and Management [01360] has been attended beforehand. It is strongly recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021].
The lecture will be accompanied by an exercise, a tutorial and a computer internship, which are recommended.

Workload
The total workload for this module is approximately 300 hours. For further information see German version.
Module: Lab Protocol Engineering [M-INFO-101247]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-102066</th>
<th>Lab Protocol Engineering</th>
<th>4 CR</th>
<th>Zitterbart</th>
</tr>
</thead>
</table>
M 5.52 Module: Lab: Working with Database Systems [M-INFO-101865]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-103552</th>
<th>Lab: Working with Database Systems</th>
<th>4 CR</th>
<th>Böhm</th>
</tr>
</thead>
</table>
5.53 Module: Lego Mindstorms - Practical Course [M-INFO-102557]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Details</th>
<th>CR</th>
<th>Asfour</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-107502</td>
<td>Practical Course: Lego Mindstorms</td>
<td>4</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Competence Goal

The participants are able to design and construct a robot with motors and sensors using the Lego Mindstorms kit. The students are familiar with programming the Lego EV3 components using the Java programming language. They are able to understand and solve several key problems in mobile robotics, such as autonomous navigation, detection of landmarks and objects as well as obstacle avoidance. The students know how to efficiently and independently solve problems in a small group in a given time frame and are able to systematically document their work and results.

Content

In this practical course, teams of three students build and program a mobile robot using Lego Mindstorms and the Java programming language. The robots are challenged to complete a versatile parkour including sections like the traversal of a maze, following a line, crossing a bridge or avoiding obstacle. After initial building of the robots, a section of the parkour will be set up each week and tackled by the robots, for which the students have to prepare their code beforehand. A final race of the robots on the entire parkour will be held at the end of the semester.

Recommendation

Basic knowledge in JAVA is necessary for successful completion of this course.
Module: Machine Learning and Data Science [M-WIWI-105482]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111028</td>
<td>Introduction to Machine Learning</td>
<td>4.5 CR</td>
<td>Geyer-Schulz, Nazemi</td>
</tr>
<tr>
<td>T-WIWI-111029</td>
<td>Introduction to Neural Networks and Genetic Algorithms</td>
<td>4.5 CR</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Competence Certificate
The module examination is carried out in the form of partial examinations of the selected courses of the module, with which in total the minimum requirement of credit points is fulfilled. The kind of examination is described in detail for each course of this module.

Competence Goal
The student

- knows the main families of machine learning methods, their basic principles, assumptions and restrictions.
- can use these methods to solve data analysis problems, to support decision making or for process automation in companies and use the solutions interpreted and evaluated accordingly.
- can compare and evaluate the performance of solutions.

Prerequisites
None

Content
The module mainly focuses on methods from statistical learning (linear and logistic learning, regression, tree methods, SVMs, and shrinkage estimators) and from the field of neural and genetic procedures were presented. Furthermore, data transformations and -presentations (e.g. dimension reduction, clustering, imputation in case of missing data) and visualization techniques and appropriate inference, diagnosis and validation techniques are presented.

Workload
Total effort for 9 credit points: approx. 270 hours. The allocation is based on the credit points of the courses of the module.
Module: MARS-Based Internship [M-INFO-101245]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-102053 | MARS Basis Lab | 4 CR | Prautzsch |

Workload

120 h
Module: Mathematics I [M-MATH-104914]

Responsible: Prof. Dr. Andreas Rieder
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: Mathematics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-109942</td>
<td>Mathematics I for Information Systems - Exam</td>
<td>7 CR</td>
</tr>
<tr>
<td>T-MATH-109943</td>
<td>Mathematics I for Information Systems - Exercise</td>
<td>1 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment in this module consists of

1. a nongraded certificate of exercise following §4(3) of the examination regulation from the exercises to mathematics I (1 credit) and
2. a written examination of 60 minutes on the lectures mathematics I following §4(2), 1 of the examination regulations (7 credits).

The grade of the module is the grade of the written examination.

Competence Goal
Mathematical models are an important part in economical sciences. Therefore, the students need a basic knowledge in mathematics. The aim is the instruction in a comprehension of basic methods in analysis and linear algebra.

The students learn

- to use simple concepts and structures in mathematics;
- to recognize the mathematical structure of practical applications and to solve in simple cases mathematical problems;
- to comprehend the mathematical structure of more complex applications;
- to understand the mathematical basics to develop mathematical models for applications in cooperation with experts;
- to explain as a group member in the tutorial elementary mathematical structures and to stimulate in the discussion of examples the success of the group;
- to be in time for the tutorial group and for the preparation of homeworks;
- to work with basic mathematical literature.

The provides the foundations for

- comprehending the mathematical structure of more complex applications;
- developing mathematical models for applications in cooperation with experts;
- constructing algorithmical solutions of mathematical models for applications in cooperation with experts.

Prerequisites
None

Content
The lectures mathematics I and II give an overview in basic mathematical knowledge which is required to understand modern computer science and economical sciences. Part I consist of linear algebra including the basic algebraic structures, vector spaces and linear mappings. Many algebraic concepts are important for computer science. Part II consists of analysis including an introduction into the calculus of functions of one or several variables.

Annotation
None.

Workload
See German version.
5.57 Module: Mathematics II [M-MATH-104915]

Responsible: Prof. Dr. Andreas Rieder
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: Mathematics

Credits 8
Grading scale Grade to a tenth
Recurrence Each summer term
Duration 1 term
Language German
Level 1
Version 2

Mandatory
T-MATH-109944 Mathematics II for Information Systems - Exam 7 CR Rieder, Weiβ, Wieners
T-MATH-109945 Mathematics II for Information Systems - Exercise 1 CR Rieder, Weiβ, Wieners

Competence Certificate
The assessment in this module consists of

1. a nongraded certificate of exercise following §4(3) of the examination regulation from the exercises to mathematics II (1 credit) and
2. a written examination of 60 minutes on the lectures mathematics II following §4(2), 1 of the examination regulations (7 credits).

The grade of the module is the grade of the written examination.

Competence Goal
Mathematical models are an important part in economical sciences. Therefore, the students need a basic knowledge in mathematics. The aim is the instruction in a comprehension of basic methods in analysis and linear algebra.

The students learn

- to use simple concepts and structures in mathematics;
- to recognize the mathematical structure of practical applications and to solve in simple cases mathematical problems;
- to comprehend the mathematical structure of more complex applications;
- to understand the mathematical basics to develop mathematical models for applications in cooperation with experts;
- to explain as a group member in the tutorial elementary mathematical structures and to stimulate in the discussion of examples the success of the group;
- to be in time for the tutorial group and for the preparation of homeworks;
- to work with basic mathematical literature.

The provides the foundations for

- comprehending the mathematical structure of more complex applications;
- developing mathematical models for applications in cooperation with experts;
- constructing algorithmical solutions of mathematical models for applications in cooperation with experts.

Prerequisites
None

Content
The lectures mathematics I and II give an overview in basic mathematical knowledge which is required to understand modern computer science and economical sciences. Part I consist of linear algebra including the basic algebraic structures, vector spaces and linear mappings. Many algebraic concepts are important for computer science. Part II consists of analysis including an introduction into the calculus of functions of one or several variables.

Workload
See German version.
5.58 Module: Mechano-Informatics and Robotics [M-INFO-100757]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-INFO-101294 Mechano-Informatics and Robotics 4 CR Asfour

Competence Goal

Students understand the basics of the synergistic integration of mechatronics, computer science and artificial intelligence methods on the example of humanoid robotics. They are acquainted with the basic concepts and methods of machine learning, the description of robot movements and actions as well as artificial neural networks and their application in robotics.

In particular, they are able to apply basic methods to problems and know relevant tools. Using research-oriented examples from humanoid robotics, students have learned - in an interactive way - to think analytically and to proceed in a structured and goal-oriented way when analyzing, formalizing and solving tasks.

Content

The lecture addresses topic at the interface between robotics and artificial intelligence, which are illustrated and explained based on examples from current research in the area of humanoid robotics. The lecture introduces fundamental algorithms in robotics and machine learning as well as methods for describing dynamical systems and representing of robot motions and actions. This includes an introduction to artificial neural networks, the description of dynamical systems in state space, the learning of movement primitives as well as methods for haptic perception for object exploration. The topics and content is illustrated using practical examples from humanoid robotics.

Recommendation

Basispraktikum Mobile Roboter.
Module: Methodical Foundations of OR [M-WIWI-101936]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (at least 1 item as well as between 4.5 and 9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Global Optimization I</td>
<td>4,5 CR</td>
<td>Stein</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Global Optimization I and II</td>
<td>9 CR</td>
<td>Stein</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td>4,5 CR</td>
<td>Stein</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nonlinear Optimization I and II</td>
<td>9 CR</td>
<td>Stein</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at most 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102727</td>
<td>Global Optimization II</td>
<td>4,5 CR</td>
<td>Stein</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nonlinear Optimization II</td>
<td>4,5 CR</td>
<td>Stein</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>4,5 CR</td>
<td>Nickel</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions.

Prerequisites
At least one of the courses "Nonlinear Optimization I" and "Global Optimization I" has to be examined.

Content
The module focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat approaches for global solutions.

Annotation
The planned lectures and courses for the next three years are announced online [http://www.ior.kit.edu).

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
5.60 Module: Microprocessors I [M-INFO-101183]

Responsible: Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101972</th>
<th>Microprocessors I</th>
<th>3 CR</th>
<th>Karl</th>
</tr>
</thead>
</table>
Module: Mobile Computing and Internet of Things [M-INFO-101249]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-102061 | Mobile Computing and Internet of Things | 5 CR | Beigl |

Prerequisites

None
Module: Mobile Robots – Practical Course [M-INFO-101184]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101992 | Mobile Robots – Practical Course | 4 CR | Asfour |

Competence Goal

The student is able to understand circuit diagrams and can assemble, test and debug complex PCBs. The student is familiar with programming microcontroller-based embedded systems using the C language and cross compilers. The student is able to use methods for controlling robotic sensors and actuators, can conduct experiments with robots and solve tasks in this context independently and in small groups.

Content

In this practical course, students assemble an ASURO robot in groups of two. Each student will be provided with his own robot, which he has to put into operation. While using the robots, a new set of problems will be solved each week. The students will need to prepare for each week given the provided material. Sets of problems be solved using the C language and focus on controlling the robot’s sensors and actuators as well as on the generation of reflex-based behavior. The course ends with a race, where the robots have to tackle an obstacle course.
5.63 Module: Module Bachelor Thesis [M-INFO-104875]

Organisation: KIT Department of Informatics
Part of: Bachelor Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>id</th>
<th>Component</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-109907</td>
<td>Bachelor Thesis</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

Competence Goal

The student can independently work on a relevant topic in accordance with scientific criteria within the specified time frame. He/she is in a position to research, analyze the information, abstract and identify basic principles and regulations from less structured information. He/she reviews the task ahead, can select scientific methods and techniques and apply them to solve a problem or identify further potential. This is basically also done under consideration of social and/or ethical aspects. He/she can interpret, evaluate and if required, graphically present the obtained results. He/she is in a position to clearly structure a research paper and communicate in writing using the technical terminology.

Content

The Bachelor thesis is a written report which shows that the student can autonomously investigate a scientific problem in Information Engineering and Management. The work load for the Bachelor thesis should be 360h. The recommended project time is 4 months, the maximal project time is 5 months. The Bachelor thesis may also be written in English.
Module: Optimization under Uncertainty [M-WIWI-103278]

Responsible: Prof. Dr. Steffen Rebennack

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Operations Research)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Gradating scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (between 1 and 2 Items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Introduction to Stochastic Optimization</td>
<td>4.5 CR</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimization under Uncertainty</td>
<td>4.5 CR</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at most 1 Item)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102724</td>
<td>Nonlinear Optimization I</td>
<td>4.5 CR</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- denotes and describes basic notions for optimization methods under uncertainty, in particular from stochastic optimization,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems under uncertainty and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
- validates, illustrates and interprets the obtained solutions, in particular of stochastic optimization problems.

Prerequisites

At least one of the courses *Introduction to Stochastic Optimization* and *Optimization approaches under Uncertainty* has to be taken.

Content

The module focuses on modeling and analyzing mathematical optimization problems where certain data is not fully present at the time of decision-making. The lectures on the introduction to stochastic optimization deal with methods to integrate distribution information into the mathematical model. The lectures on the optimization approaches under uncertainty offer alternative approaches such as robust optimization.

Recommendation

Knowledge from the lectures "Introduction to Operations Research I" and "Introduction to Operations Research II" are helpful.

Annotation

The curriculum, planned for three years in advance, can be found on the Internet at http://sop.ior.kit.edu/28.php.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.65 Module: Orientation Exam [M-WIWI-104843]

Responsible: Studiendekan der KIT-Fakultät für Informatik
Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften

Organisation: KIT Department of Informatics
KIT Department of Economics and Management

Part of: Orientation Exam

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101531</td>
<td>Programming</td>
<td>5 CR</td>
<td>Koziolek, Reussner</td>
</tr>
<tr>
<td>T-INFO-101967</td>
<td>Programming Pass</td>
<td>0 CR</td>
<td>Koziolek, Reussner</td>
</tr>
<tr>
<td>T-MATH-109943</td>
<td>Mathematics I for Information Systems - Exercise</td>
<td>1 CR</td>
<td>Rieder, Weiβ, Wieners</td>
</tr>
<tr>
<td>T-MATH-109942</td>
<td>Mathematics I for Information Systems - Exam</td>
<td>7 CR</td>
<td>Rieder, Weiβ, Wieners</td>
</tr>
<tr>
<td>T-WIWI-109817</td>
<td>Information Systems 1</td>
<td>4 CR</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Modelled deadline

This module must be passed until the end of the 3. term.

Prerequisites

None

Annotation

The deadline for taking the orientation exam shall be extended by two semesters for first-year students of the winter semester of 2018/19 and first-year students of the winter semester of 2019/20, provided that they were enrolled in the same degree program during both semesters.

For first-year students of the winter semester of 2020/2021 or for students who have changed their degree program for the winter semester of 2020/2021, the deadline for taking the orientation exam shall be extended by one semester.
Module: Practical Course Computer Engineering: Hardware Design [M-INFO-101219]

Responsible:
Prof. Dr. Wolfgang Karl

Organisation:
KIT Department of Informatics

Part of:
Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102011</td>
<td>Practical Course Computer Engineering: Hardware Design</td>
<td>4 CR</td>
<td>Karl</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-INFO-105983</td>
<td>Practical Course Computer Engineering: Hardware Design Pass</td>
<td>0 CR</td>
<td>Karl</td>
<td>Each winter term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Workload
60 h
Module: Practical Course Web Applications and Service-Oriented Architectures (I) [M-INFO-101633]

Responsible: Prof. Dr. Sebastian Abeck

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103119</td>
<td>Practical Course Web Applications and Service-Oriented Architectures (I)</td>
<td>5 CR</td>
<td>Abeck</td>
<td></td>
</tr>
</tbody>
</table>
5.68 Module: Programming [M-INFO-101174]

Responsible:
Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr.-Ing. Gregor Snelting

Organisation:
KIT Department of Informatics

Part of:
Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101967</td>
<td>Programming Pass</td>
<td>0 CR</td>
<td>Koziolek, Reussner</td>
</tr>
<tr>
<td>T-INFO-101531</td>
<td>Programming</td>
<td>5 CR</td>
<td>Koziolek, Reussner</td>
</tr>
</tbody>
</table>

Competence Goal

Students should learn

- basic structures of the programming language Java and how to apply them; in particular control and simple data structures, object orientation and implementation of basic algorithms
- basics of programming methodology and the ability to autonomously write executable small to medium sized Java programs

Content

- objects and classes
- types, values and variables
- methods
- control structures
- recursion
- references, lists
- inheritance
- input and output
- exceptions
- programming methodology
- implementation of basic algorithms in Java (such as sorting algorithms)
5.69 Module: Public Finance [M-WIWI-101403]

Responsible: Prof. Dr. Berthold Wigger

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102877</td>
<td>Introduction to Public Finance</td>
<td>4.5</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4.5</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Public Revenues</td>
<td>4.5</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-109590</td>
<td>Public Sector Finance</td>
<td>4.5</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The exams are offered at the beginning of the recess period about the subject matter of the latest held lecture. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

See German version.

Content

As a branch of Economics, Public Finance is concerned with the theory and policy of the public sector and its interrelations with the private sector. It analyzes the economic role of the state from a normative as well as from a positive point of view. The normative view examines efficiency- and equity-oriented motives for government intervention and develops fiscal policy guidelines. The positive view explains the actual behavior of economic agents in public sector affairs. Special fields of Public Finance are public revenues, i.e. taxes and public debt, public expenditures for publicly provided goods, and welfare programs.

Recommendation

It is recommended to attend the course 2560129 after having completed the course 2560120.

Annotation

The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Workload

The total workload for this module is approximately 270 hours. For further information see German version.
Module: Real Estate Management [M-WIWI-101466]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102744</td>
<td>Real Estate Management I</td>
<td>4.5 CR</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>T-WIWI-102745</td>
<td>Real Estate Management II</td>
<td>4.5 CR</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal
The student

- possesses an overview concerning the different facets and interrelationships within the real estate business, the important decision points in real estate lifecycle and the different views and interests of the actors concerned, and
- is capable of applying basic economic methods and procedures to problems within the real estate area.

Prerequisites
None

Content
The real estate business offers graduates very interesting jobs and excellent work- and advancement possibilities. This module provides an insight into the macroeconomic importance of this industry, discusses problems concerned to the administration of real estate and housing companies and provides basic knowledge for making decisions both along the lifecycle of a single building and the management of real estate portfolios. Innovative operating and financing models are illustrated, as well as the current development when looking at real estate as an asset-class.

This module is also suitable for students who want to discuss macroeconomic, business-management or financial problems in a real estate context.

Recommendation
The combination with the module Design Constructions and Assessment of Green Buildings is recommended. Furthermore a combination with courses in the area of

- Finance
- Insurance
- Civil engineering and architecture (building physics, building construction, facility management)

is recommended.

Workload
The total workload for this module is approximately 270 hours. For further information see German version.
Module: Real-Time Systems [M-INFO-100803]

Responsible: Prof. Dr.-Ing. Thomas Längle
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101340</th>
<th>Real-Time Systems</th>
<th>6 CR</th>
<th>Längle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-108014</td>
<td>Robotics I - Introduction to Robotics</td>
<td>6 CR</td>
<td>Asfour</td>
</tr>
</tbody>
</table>
5.73 Module: Security [M-INFO-100834]

Responsible: Prof. Dr. Jörn Müller-Quade
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101371</th>
<th>Security</th>
<th>6 CR</th>
<th>Hofheinz, Müller-Quade</th>
</tr>
</thead>
</table>
5.74 Module: Semantic Knowledge Management [M-WIWI-101438]

Responsible: Prof. Dr. York Sure-Vetter
Organisation: KIT Department of Economics and Management
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>10</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110848</td>
<td>Semantic Web Technologies</td>
<td>4,5 CR</td>
<td>Käfer</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (at least 1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110340</td>
<td>Applied Informatics – Applications of Artificial Intelligence</td>
<td>4,5 CR</td>
<td>Färber</td>
</tr>
<tr>
<td>T-WIWI-102697</td>
<td>Business Process Modelling</td>
<td>4,5 CR</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-110541</td>
<td>Advanced Lab Informatics (Master)</td>
<td>4,5 CR</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Competence Goal
Students
- know the motives for the application of knowledge management in organizations
- know the basic design dimensions of holistic knowledge management (organization, human, information technology, corporate culture)
- know the main group of IT systems for knowledge management and are able to describe the relevant application scenarios and basic operating modes of these systems
- know how to use the different IT systems for knowledge management in practice
- know the basic standards for the modeling of information and processes and are able to describe their formal structures
- know how to apply the different modeling languages
- know criteria to evaluate the success of knowledge management systems and are able to apply them to assess defined knowledge management scenarios

Prerequisites
Lecture Semantic Web Technologien [2511310] is mandatory.

Content
In modern companies the availability and usability of knowledge is an essential factor of success for central managerial tasks and duties such as the improvement of business processes, product innovation and the amelioration of customer satisfaction.

This module illustrates the typical problems of knowledge management in organizations and presents IT methods to approach these questions. The relevant groups of knowledge management systems are analyzed and expanded in the subject areas knowledge representation/semantic modeling and document management/groupware systems.

Annotation
Detailed information on the recognition of examinations in the field of Informatics can be found at http://www.aifb.kit.edu/web/Auslandsaufenthalt.

Workload
The workload is app. 270 hours.
5.75 Module: Seminar Module Economic Sciences [M-WIWI-101826]

Responsible: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften

Organisation: KIT Department of Economics and Management

Part of: Seminars

Credits
- 3

Grading scale
- Grade to a tenth

Language
- German

Level
- 3

Version
- 1

Election block: Compulsory Elective Courses (1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103486</td>
<td>Seminar in Business Administration (Bachelor)</td>
<td>3 CR</td>
<td>Professorenschaft des Fachbereichs Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>T-WIWI-103488</td>
<td>Seminar in Operations Research (Bachelor)</td>
<td>3 CR</td>
<td>Nickel, Rebennack, Stein</td>
</tr>
<tr>
<td>T-WIWI-103489</td>
<td>Seminar in Statistics (Bachelor)</td>
<td>3 CR</td>
<td>Grothe, Schienle</td>
</tr>
<tr>
<td>T-WIWI-103487</td>
<td>Seminar in Economics (Bachelor)</td>
<td>3 CR</td>
<td>Professorenschaft des Fachbereichs Volkswirtschaftslehre</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is done by a seminar with at least 3 CP.

The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

Competence Goal

- Students are able to independently deal with a defined problem in a specialized field based on scientific criteria.
- They are able to research, analyze the information, abstract and derive basic principles and regularities from unstructured information.
- They can solve the problems in a structured manner using their interdisciplinary know-how.
- They know how to validate the obtained results.
- Finally, they are able to logically and systematically present the results both orally and in written form in accordance with scientific guidelines (structuring, technical terminology, referencing). They can argue and defend the results professionally in the discussion.

Prerequisites

None.

Content

The module consists of a seminar, that is related to the research field of economic sciences. A complete list of available seminars is published in the internet.

Annotation

The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.

Workload

The total workload for this module is approximately 90 hours.
5.76 Module: Seminar Module Informatics [M-INFO-102058]

Responsible: Professorenschaft des Fachbereichs Informatik

Organisation:
- KIT Department of Informatics
- KIT Department of Economics and Management

Part of: Seminars

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Seminar Informatics (1 item)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-104336</td>
<td>Seminar Informatics A</td>
<td>3 CR</td>
<td>Abeck</td>
</tr>
<tr>
<td>T-WIWI-103485</td>
<td>Seminar in Informatics (Bachelor)</td>
<td>3 CR</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
</tr>
</tbody>
</table>
5.77 Module: Seminar Module Law [M-INFO-101218]

Responsible: Prof. Dr. Thomas Dreier

Organisation: KIT Department of Informatics

Part of: Seminars

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101997</th>
<th>Seminar: Legal Studies I</th>
<th>3 CR</th>
<th>Dreier</th>
</tr>
</thead>
</table>
5.78 Module: Software Engineering I [M-INFO-101175]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101968</td>
<td>Software Engineering I</td>
<td>6 CR</td>
<td>Koziolek, Reussner, Tichy</td>
</tr>
<tr>
<td>T-INFO-101995</td>
<td>Software Engineering I Pass</td>
<td>0 CR</td>
<td>Tichy</td>
</tr>
</tbody>
</table>

Competence Goal
The students acquire basic knowledge about the principles, methods and tools of software engineering. They learn how to build and to maintain complex software systems in a systematic way.

Content
The content of the lecture is the entire lifecycle of software, spanning project planning, system analysis, cost estimation, design, implementation, validation, verification, and finally the maintaining of software. The covered topics include UML, design patterns, software tools, programming environments and configuration control/versioning systems.

Workload
approx. 180 h
5.79 Module: Software Engineering II [M-INFO-100833]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-101370 | Software Engineering II | 6 CR
Koziolek, Reussner, Tichy |

Content

Requirements engineering, software development processes, software quality, software architectures, MDD, Enterprise Software Patterns software maintainability, software security, dependability, embedded software, middleware, domain-driven design
5.80 Module: Statistics and Econometrics [M-WIWI-101599]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Statistics)
Economics and Management (Economics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Supplementary Courses (between 1 and 2 items)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of Multivariate Data</td>
<td>4.5 CR</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications</td>
<td>4.5 CR</td>
<td>Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4.5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4.5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4.5 CR</td>
<td>Heller</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102736</td>
<td>Economics III: Introduction in Econometrics</td>
<td>5 CR</td>
<td>Schienle</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module seperately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- shows an advanced understanding of Econometric techniques and statistical model building.
- is able to develop Econometric models for applied problems based on available data
- is able to apply techniques and models with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Prerequisites

The course "Economics III: Introduction in Econometrics" is compulsory and must be examined. In case the course „Economics III: Introduction in Econometrics“ has already been examined within the module „Applied Microeconomics“, the course „Economics III: Introduction in Econometrics“ is not compulsory.

Content

The courses provide a solid Econometric and statistical foundation of techniques necessary to conduct valid regression, time series and multivariate analysis.

Workload

The total workload for this module is approximately 270 hours.
Module: Statistics and Econometrics II [M-WIWI-105414]

Responsible: Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses ()

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analysis of Multivariate Data</td>
<td>4,5 CR</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications</td>
<td>4,5 CR</td>
<td>Nakhaeizadeh</td>
</tr>
<tr>
<td>T-WIWI-110939</td>
<td>Financial Econometrics II</td>
<td>4,5 CR</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistical Modeling of Generalized Regression Models</td>
<td>4,5 CR</td>
<td>Heller</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student
- shows an advanced understanding of Econometric techniques and statistical model building.
- is able to develop advanced Econometric models for applied problems based on available data
- is able to apply techniques and models efficiently with statistical software, to interpret results and to judge on different approaches with appropriate statistical criteria.

Prerequisites

The following module must be passed: Statistics and Econometrics [M-WIWI-101599]

Content

The courses provide foundations of advanced Econometric and statistical techniques for regression, time series and multivariate analysis.

Workload

The total workload for this module is approximately 270 hours.
Module: Strategy and Organization [M-WIWI-101425]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Election block: Strategy and Organization (at least 9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102630</td>
<td>Managing Organizations</td>
<td>3.5 CR</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problem Solving, Communication and Leadership</td>
<td>2 CR</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102629</td>
<td>Management and Strategy</td>
<td>3.5 CR</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

- The student describes both central concepts of strategic management as well as concepts and models for the design of organizational structures.
- He / she evaluates the strengths and weaknesses of existing organizational structures and regulations on the basis of systematic criteria.
- The management of organizational changes discusses and examines the students by means of case studies to what extent the models can be used in practice and what conditions must apply to them.
- In addition, students plan to use IT to support corporate governance.

Content

The module has a practical and action-oriented structure and provides the student with an up-to-date overview of basic skills concepts and models of strategic management and a realistic picture of possibilities and limitations rational design approaches of the organization.

The focus is firstly on internal and external strategic analysis, concept and sources of competitive advantage, Formulation of competitive and corporate strategies as well as strategy assessment and implementation. Secondly strengths and weaknesses of organizational structures and regulations are assessed on the basis of systematic criteria. Concepts for the organization of organizational structures, the regulation of organizational processes and the control organizational changes are presented.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
Module: Supply Chain Management [M-WIWI-101421]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-WIWI-109936</th>
<th>Platform Economy</th>
<th>4.5 CR</th>
<th>Dorner, Weinhardt</th>
</tr>
</thead>
</table>

Election block: Supplementary Courses (1 item)

<table>
<thead>
<tr>
<th>T-WIWI-102704</th>
<th>Facility Location and Strategic Supply Chain Management</th>
<th>4.5 CR</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102714</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>4.5 CR</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4 (2), 1-3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The students

- are able to understand and evaluate the control of cross-company supply chains based on a strategic and operative view,
- are able to analyse the coordination problems within the supply chains,
- are able to identify and integrate adequate information system infrastructures to support the supply chains,
- are able to apply theoretical methods from the operations research and the information management,
- learn to elaborate solutions in a team

Prerequisites

The course T-WIWI-107506 "Platform Economy" has to be taken.

Content

The module "Supply Chain Management" gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture "Platform Economy" the focus is set on markets between two parties that act through an intermediary on an Internet platform. Topics discussed are network effects, peer-to-peer markets, blockchains and market design. The course is held in English and teaches parts of the syllabus with the support of a case study in which students analyze a platform.

The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Annotation

The planned lectures in the next terms can be found on the websites of the respective institutes IISM, IFL and IOR.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.84 Module: Surfaces for Computer Aided Design [M-INFO-101254]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-102073 | Surfaces for Computer aided Design | 5 CR | Prautzsch |

Competence Goal

Die Hörer und Hörerinnen der Vorlesung können grundlegende CAGD-Techniken für praktische und theoretische Arbeiten auf entsprechenden Gebieten anwenden und sind in der Lage die Qualität von CAGD-Lösungen zu beurteilen.

Brauchen Sie dann noch für alle meine anderen Module Qualifikationsziele? Für alle diese Module wurden bislang noch keine Qualifikationsziele formuliert.

Content

5.85 Module: Team Project Software Development [M-INFO-104809]

| Responsible: | Prof. Dr. Sebastian Abeck
| | Prof. Dr. Ralf Reussner
| Organisation: | KIT Department of Informatics
| Part of: | Information Systems

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-109823</td>
</tr>
</tbody>
</table>
5.86 Module: Telematics [M-INFO-100801]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-INFO-101338</th>
<th>Telematics</th>
<th>6 CR</th>
<th>Zitterbart</th>
</tr>
</thead>
</table>
5.87 Module: Theoretical Informatics [M-INFO-101189]

Responsible: Prof. Dr. Jörn Müller-Quade
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: Informatics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-INFO-103235 | Theoretical Foundations of Computer Science | 6 CR | Müller-Quade, Sanders, Wagner |

Competence Certificate

The assessment of the module consists of a written examination according to §4(2), 1 of the examination regulations. The grade of the module corresponds to the grade of the written examination. Further details see the german section.

Competence Goal

The student

- has a deeper insight into the fundamentals of theoretical computer science and knows the computation models and proof techniques,
- understands the limits and possibilities of computer science in relation to the solution of definable but only partially predictable problems
- knows basic aspects of computer science in contrast to specific circumstances, such as specific computers or programming languages and also can phrase general statements about the solvability of problems
- is able to apply the proof techniques learned for the specification of systems of computer science and for the systematic design of programs and algorithms

Content

There are important problems whose solutions can clearly be defined but one will never be able to calculate such a solution systematically. Other problems are “likely” to be solved only through trial and error. Other topics of the module provide the basis for circuit design, design of compilers, and many others. Most results are rigorously proved. The proof techniques learned by the way are important for the specification of systems of computer science and for the systematic design of programs and algorithms.

The module provides a deep insight into the principles and methods of theoretical computer science. In particular, this will be discussed on the basic properties of Formal Languages as foundations of programming languages and communication protocols (regular, context-free Chomsky hierarchy), machine models (finite automata, pushdown automata, Turing machines, non determinism, and relations to families of formal languages), equivalence of sufficiently powerful computation models (Church’s thesis), non computable important functions (halting problem,…), Gödel’s incompleteness theorem and introduction to complexity theory, NP-complete problems and polynomial reductions.

Workload

approx. 210 h
5.88 Module: Topics in Finance I [M-WIWI-101465]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4.5 CR</td>
<td>Lueddecke</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Financial Intermediation</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4.5 CR</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1.5 CR</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Prerequisites

It is only possible to choose this module in combination with the module Essentials in Finance. The module is passed only after the final partial exam of Essentials in Finance is additionally passed.

In addition to that it is possible to choose the module Topics in Finance II.

Content

The module Topics in Finance I is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Annotation

The course T-WIWI-102790 "Specific Aspects in Taxation" will no longer be offered in the module as of winter semester 2018/2019.

Workload

The total workload of the module is about 240 hours. The workload is proportional to the credit points of the individual courses.
5.89 Module: Topics in Finance II [M-WIWI-101423]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of: Economics and Management (Business Administration)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Election block: Compulsory Elective Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivatives</td>
<td>4.5 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>4.5 CR</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4.5 CR</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Business Strategies of Banks</td>
<td>3 CR</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>4.5 CR</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>International Finance</td>
<td>3 CR</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1.5 CR</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Competence Goal

The student

- has advanced skills in modern finance
- is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Prerequisites

It is only possible to choose this module in combination with the module Essentials in Finance. The module is passed only after the final partial exam of Essentials in Finance is additionally passed.

In addition to that it is possible to choose the module Topics in Finance I.

Content

The module Topics in Finance II is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Annotation

The course T-WIWI-102790 "Special Taxation" will no longer be offered in the module as of winter semester 2018/1019.

Workload

The total workload for this module is approximately 270 hours.
Module: Web Applications and Service-Oriented Architectures (I) [M-INFO-101636]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: Informatics (Compulsory Elective Modules in Informatics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-103122</td>
<td>Web Applications and Service-Oriented Architectures (I)</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Abeck
6 Courses

6.1 Course: Advanced Lab Informatics (Master) [T-WIWI-110541]

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Practical Course Blockchain Hackathon (Bachelor)</td>
<td>4,5</td>
<td>Practical course / 📝</td>
<td>Sunyaev, Kannengießer</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Practical Course Cognitive Automobiles and Robots (Master)</td>
<td>3 SWS</td>
<td>Practical course / 📝</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Project lab Information Service Engineering (Master)</td>
<td>2 SWS</td>
<td>Practical course / 📝</td>
<td>Sack</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar Linked Data and the Semantic Web (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 📝</td>
<td>Färber, Käfer, Heling, Bartscherer</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar Linked Data and the Semantic Web (Master)</td>
<td>2 SWS</td>
<td>Seminar / 📝</td>
<td>Färber, Käfer, Heling, Bartscherer</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Lab Realisation of innovative services (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 📝</td>
<td>Oberweis, Schiefer, Schüler, Toussaint</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 📝</td>
<td>Sunyaev, Pandl</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td>2 SWS</td>
<td>Practical course / 📝</td>
<td>Sunyaev, Beyene, Kannengießer</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course / 📝</td>
<td>Strufe, Mayer, Arias Cabarcos, Berens, Mossano, Beckmann</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Advanced Lab Implementation of Innovative Services (Bachelor)</td>
<td></td>
<td></td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td></td>
<td></td>
<td>Sunyaev</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Advanced Lab Security, Usability and Society (Bachelor)</td>
<td></td>
<td></td>
<td>Volkamer</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Advanced Lab Development of Sociotechnical Information Systems (Bachelor)</td>
<td></td>
<td></td>
<td>Sunyaev</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td></td>
<td></td>
<td>Volkamer</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Advanced Lab Realization of innovative services (Bachelor)</td>
<td></td>
<td></td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Advanced Lab Blockchain Hackathon (Bachelor)</td>
<td></td>
<td></td>
<td>Sunyaev</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.
Prerequisites
None

Annotation
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Practical Course Cognitive Automobiles and Robots (Master)
2512501, WS 20/21, 3 SWS, Language: German/English, Open in study portal

Content
The lab is intended as a practical supplement to lectures such as "Machine Learning". The theoretical basics are applied in the lab course. The aim of the lab course is that the participants work together to design, develop and evaluate a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

In addition to the scientific objectives involved in the investigation and application of the methods, aspects of project-specific teamwork in research (from specification to presentation of the results) are also developed in this practical course.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and implementation and evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
• Students can practically apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles.
• Students master the analysis and solution of corresponding problems in a team.
• Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning, C/C++ knowledge, Python knowledge

Workload:
The workload of 4.5 credit points consists of the time spent in the lab for practical implementation of the selected solution, as well as the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

Project lab Information Service Engineering (Master)
2512600, WS 20/21, 2 SWS, Language: English, Open in study portal

Practical course (P)
Blended (On-Site/Online)
Content
The ISE project course is based on the summer semester lecture "Information Service Engineering". The topics of the ISE project course focus on artificial intelligence based applications. In particular, we are covering the following:

- Natural Language Processing
- Knowledge Graphs
- Deep Learning

Goal of the course is to work on a research problem in small groups (3-4 students) related to the ISE lecture topics, i.e. Natural Language Processing, Knowledge Graphs, and Machine Learning. The solution of the given research problem requires the development of a software implementation.

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

Required coursework includes:

- Mid term presentation (5-10 min)
- Final presentation (10-15 min)
- Course report (c. 20 pages)
- Participation and contribution of the students during the course
- Software development and delivery

Notes:
The ISE project course can also be credited as a seminar.

The project will be worked on in teams of 3-4 students each, guided by a tutor from the teaching staff.

The project course will be restricted to 15 participants.

Participation in the lecture "Information Service Engineering" (summer semester) is required.

ISE Tutor Team:

- Dr. Mehwish Alam
- Dr. Danilo Dessi
- M. Sc. Genet Asefa Gesese
- M. Sc. Fabian Hoppe
- M. Sc. Zahra Rezaie
- M. Sc. Sasha Vsesvsiatska
- B. Sc. Tabea Tietz

Organizational issues
Projektpraktikum Information Service Engineering can also be credited as a seminar.
Content
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.
Organizational issues
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Advanced Lab Development of Sociotechnical Information Systems (Bachelor)
2512400, SS 2021, 3 SWS, Language: German/English, [Open in study portal](https://portal.wiwi.kit.edu/ys/4628)

Content
The aim of the lab is to get to know the development of socio-technical information systems in different application areas. In the event framework, you should develop a suitable solution strategy for your problem alone or in group work, collect requirements, and implement a software artifact based on it (for example, web platform, mobile apps, desktop application). Another focus of the lab is on the subsequent quality assurance and documentation of the implemented software artifact.

Registration information will be announced on the course page.

Practical lab Security, Usability and Society (Bachelor)
2612554, SS 2021, 3 SWS, Language: German/English, [Open in study portal](https://portal.wiwi.kit.edu/ys/4628)

Content
The internship "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. This internship will be only in English. The kick-off, the presentations, and every written material to be graded must be in English. Communications with supervisors can be in German.

WiWi portal: https://portal.wiwi.kit.edu/ys/4628

Important dates:
- **Kick-off:** 06.04.2021, 10:00-11:00 CET in Microsoft Teams - [Link](https://portal.wiwi.kit.edu/ys/4628)
- **Report + code submission:** 07.09.2021, 23:59 CET
- **Presentation deadline:** 20.09.2021, 23:59 CET
- **Presentation day:** 24.09.2021, 09:00 CET

Topics:

Privacy Friendly apps
In this subject, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Notes 2.0

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, e.g. as an extension. E.g. [TORPEDO](https://secuso.aifb.kit.edu/english/TORPEDO.php) or [PassSec](https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Password Manager Enrolment Add-On
- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Visualization app to explore Facebook behavioral data collection

Designing Security User studies (online studies only)
These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

- Neurotechnologies, Neuroprivacy, and User Acceptance
- Expert feedback for an anti-phishing webpage template (English only)
- "Your website has been hacked" - How to inform business owners about security issues on their webpages in more sensitive ways

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.
6.2 Course: Advanced Lab Security [T-WIWI-109786]

Responsible: Prof. Dr. Melanie Volkamer

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104069 - Information Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>2512557</th>
<th>Practical Course Security (Master)</th>
<th>4 SWS</th>
<th>Practical course /</th>
<th>Baumgart, Volkamer, Mayer</th>
</tr>
</thead>
</table>

| Exams | WT 20/21 | 7900046 | Advanced Lab Security (Master) | | Volkamer |

Exams

| Exams | WT 20/21 | 7900046 | Advanced Lab Security (Master) | | Volkamer |

Legend: 📂 Online, 📡 Blended (On-Site/Online), 📉 On-Site, ✗ Cancelled

Competence Certificate

The alternative exam assessment consists of:

- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites

None

Recommendation

Knowledge from the lecture "Information Security" is recommended.

Below you will find excerpts from events related to this course:

Practical Course Security (Master)

2512557, WS 20/21, 4 SWS, Language: German, [Open in study portal](https://ilias.studium.kit.edu/goto_produktiv_crs_998421.html)

Content

The lab deals with the IT security of everyday utensils. Implemented security mechanisms are first theoretically investigated and put to the test with practical attacks. Finally, countermeasures and suggestions for improvement are worked out. The lab is offered within the competence center for applied security technologies (KASTEL) and is supervised by several institutes.

The success control takes the form of a final presentation, a thesis and the handing over of the developed code.

More information on https://ilias.studium.kit.edu/goto_produktiv_crs_998421.html
6.3 Course: Advanced Lab Security, Usability and Society [T-WIWI-108439]

Responsible:
Prof. Dr. Melanie Volkamer

Organisation:
KIT Department of Economics and Management

Part of: M-WIWI-104069 - Information Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>2512554</th>
<th>Practical Course Security, Usability and Society (Bachelor)</th>
<th>3 SWS</th>
<th>Practical course</th>
<th>Volkamer, Strufe, Mayer, Arias Cabarcos, Aldag, Berens, Düzgün, Mossano, Beckmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2512555</td>
<td>Practical Course Security, Usability and Society (Master)</td>
<td>3 SWS</td>
<td>Practical course</td>
<td>Volkamer, Strufe, Mayer, Arias Cabarcos, Aldag, Berens, Düzgün, Mossano, Beckmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2612554</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>3 SWS</td>
<td>Practical course</td>
<td>Strufe, Mayer, Arias Cabarcos, Berens, Mossano, Beckmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>7900116</th>
<th>Advanced Lab Security, Usability and Society (Bachelor)</th>
<th>Volkamer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900138</td>
<td>Advanced Lab Security, Usability and Society (Master)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900029</td>
<td>Practical lab Security, Usability and Society (Bachelor)</td>
<td>Volkamer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate
The alternative exam assessment consists of:
- a practical work
- a presentation and possibly
- a written seminar thesis

Practical work, presentation and written thesis are weighted according to the course.

Prerequisites
None

Recommendation
Knowledge from the lecture "Information Security" is recommended.

Annotation
The course is expected to be offered from winter term 2018/2019.

Contents:
In the course of the programming lab, changing topics from the field of Human Factors in Security und Privacy will be worked on.

Learning goals:
The student
- can apply the basics of information security
- is able to implement appropriate measures to achieve different protection goals
- can structure a software project in the field of information security
- can use the Human Centred Security and Privacy by Design technique to develop user-friendly software
- can explain and present technical facts and the results of the programming lab in oral and written form

Below you will find excerpts from events related to this course:
Content

The internship “Security, Usability, and Society” covers topics such as user-friendly security and data protection programs as well as the implementation of user studies. The kick-off and the final presentations will be in English. The language of communication with the supervisor can - depending on the topic / supervisor - be German.

Important dates:
- **Kick-off:** (mandatory) 3.11.2020, 10:00-11:30, online. Link: [Microsoft Teams](https://secuso.aifb.kit.edu/english/105.php)
- **Final submission:** 14.03.2021, 23:59
- **Presentation:** March 14, 2021

Topics:

Privacy-friendly apps

In this topic area, students complete an app (or an extension of an app) among our Privacy-Friendly Apps (PFA). Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- NoPhish 2.0
- Notes 2.0

Programming usable security measures

In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Some examples are TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec+ (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as for PFA, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Password Manager Enrolment Add-On
- Visualization app to explore Facebook behavioral data collection
- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Implementation of an anti-phishing browser extension (English only)

Usable security user studies (online studies only)

These topics relate to setting up or analysing the results of user studies of various kinds. This year, due to the Corona outbreak, we decided to only run online studies. Otherwise interviews and laboratory tests would have been possible. At the end of the semester, the students present a report / work and a lecture in which they present their results.

- Investigating user reaction to password data breaches
- Expert feedback for an anti-phishing webpage template (English only)

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).
Content
The internship "Security, Usability, and Society" covers topics such as user-friendly security and data protection programs as well as the implementation of user studies. The kick-off and the final presentations will be in English. The language of communication with the supervisor can - depending on the topic / supervisor - be German.

Important dates:
- **Kick-off**: (mandatory) 3.11.2020, 10:00-11:30, online. Link: Microsoft Teams
- **Final submission**: 14.03.2021, 23:59
- **Presentation**: March 14, 2021

Topics:
- **Privacy-friendly apps**
 In this topic area, students complete an app (or an extension of an app) among our Privacy-Friendly Apps (PFA). Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
 - NoPhish 2.0
 - Notes 2.0

- **Programming usable security measures**
 In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Some examples are TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as for PFA, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.
 - Password Manager Enrolment Add-On
 - Visualization app to explore Facebook behavioral data collection
 - Portfolio Graphical Recognition-Based Passwords with Gamepads
 - Implementation of an anti-phishing browser extension (English only)

- **Execution of usable security user studies (online studies only)**
 These topics relate to setting up or analysing the results of user studies of various kinds. This year, due to the Corona outbreak, we decided to only run online studies. Otherwise interviews and laboratory tests would have been possible. At the end of the semester, the students present a report / work and a lecture in which they present their results.
 - Investigating user reaction to password data breaches
 - Expert feedback for an anti-phishing webpage template (English only)
 - Implementing Zero-Trust Authentication Schemes

Please note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website (https://secuso.aifb.kit.edu/Studium_und_Lehre.php).
Content
The internship "Security, Usability and Society" will cover topics both of usable security and privacy programming, and how to conduct user studies. This internship will be only in English. The kick-off, the presentations, and every written material to be graded must be in English. Communications with supervisors can be in German.

WiWi portal: https://portal.wiwi.kit.edu/ys/4628

Important dates:
Kick-off: 06.04.2021, 10:00-11:00 CET in Microsoft Teams - Link
Report + code submission: 07.09.2021, 23:59 CET
Presentation deadline: 20.09.2021, 23:59 CET
Presentation day: 24.09.2021, 09:00 CET

Topics:

Privacy Friendly apps
In this subject, students complete an app (or an extension of an app) among our Privacy-Friendly Apps. Please click the following link to know more about them: https://secuso.aifb.kit.edu/english/105.php. Students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Notes 2.0

Programming Usable Security Intervention
In this subject, students develop a part of coding, an extension, or another programming task dealing with various usable security interventions, eg as an extension. Eg TORPEDO (https://secuso.aifb.kit.edu/english/TORPEDO.php) or PassSec + (https://secuso.aifb.kit.edu/english/PassSecPlus.php). Just as before, students are provided with a point list of goals, containing both basic features mandatory to pass the course and more advanced ones that heighten the final grade.

- Password Manager Enrolment Add-On
- Portfolio Graphical Recognition-Based Passwords with Gamepads
- Visualization app to explore Facebook behavioral data collection

Designing Security User studies (online studies only)
These topics are related to how to set up and conducting user studies of various types. This year, due to the Corona outbreak, we decided to conduct online studies only; otherwise, interviews and in lab studies would have been possible. At the end of the semester, the students present a report / paper and a talk in which they present their results.

- Neurotechnologies, Neuroprivacy, and User Acceptance
- Expert feedback for an anti-phishing webpage template (English only)
- "Your website has been hacked" - How to inform business owners about security issues on their webpages in more sensitive ways

Please, note that registration is not required to participate in the kick-off meeting.

This event counts towards the KASTEL certificate. Further information on how to obtain the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.
6.4 Course: Advanced Topics in Economic Theory [T-WIWI-102609]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>2520527</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Advanced Topics in Economic Theory</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Mitusch, Brumm</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Übung zu Advanced Topics in Economic Theory</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Pegorari</td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🗁 Blended (On-Site/Online), 🍁 On-Site, ❌ Cancelled

Competence Certificate

The assessment consists of a written exam (60min) (following §4(2), 1 of the examination regulation) at the end of the lecture period or at the beginning of the following semester.

Prerequisites

None

Recommendation

This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Below you will find excerpts from events related to this course:

Advanced Topics in Economic Theory
2520527, SS 2021, 2 SWS, Language: English, [Open in study portal](#)

Literature

Die Veranstaltung wird in englischer Sprache angeboten:

The course is based on the excellent textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.
6.5 Course: Algorithmic Methods for Hard Optimization Problems [T-INFO-103334]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Dorothea Wagner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-INFO-101237 - Algorithmic Methods for Hard Optimization Problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Algorithms for Planar Graphs [T-INFO-101986]

Responsibility: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: M-INFO-101220 - Algorithms for Planar Graphs

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 24614</td>
<td>3 SWS</td>
<td>Lecture / Practice</td>
<td>Each summer term</td>
<td>Oral examination</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Course: Algorithmen für planare Graphen (mit Übungen)
6.7 Course: Algorithms I [T-INFO-100001]

- **Responsible:** Prof. Dr. Peter Sanders
- **Organisation:** KIT Department of Informatics
- **Part of:** M-INFO-100030 - Algorithms I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Module</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 24500</td>
<td></td>
<td>Algorithms I</td>
<td>4 SWS</td>
<td>Lecture / Practice (/ Dachsbacher, Kleine Büning)</td>
<td>Each summer term</td>
<td>Dachsbacher, Kleine Büning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Module</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7500291</td>
<td></td>
<td>Algorithms I</td>
<td>Dachsbacher</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
6.8 Course: Algorithms II [T-INFO-102020]

Responsible: Prof. Dr. Hartmut Prautzsch
Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: M-INFO-101173 - Algorithms II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24079</td>
<td>Algorithms II</td>
<td>4</td>
<td>SWS</td>
<td>6</td>
<td>Lecture</td>
<td>Sanders, Heuer, Seemaier</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500245</td>
<td>Algorithms II</td>
<td></td>
<td></td>
<td>Sanders</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500464</td>
<td>Algorithms II</td>
<td></td>
<td></td>
<td>Sanders</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, ⬇️ Blended (On-Site/Online), 🔢 On-Site, ✗ Cancelled
6.9 Course: Analysis of Multivariate Data [T-WIWI-103063]

Responsible: Prof. Dr. Oliver Grothe
Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101599 - Statistics and Econometrics
- M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Course</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900355</td>
<td>Analysis of Multivariate Data</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation. The exam is offered every semester. Re-examinations are offered only for repeaters.

Prerequisites
None

Recommendation
Attendance of the courses Statistics 1 [2600008] and Statistics 2 [2610020] is recommended.

Annotation
The lecture is not offered regularly. The courses planned for three years in advance can be found online.
6.10 Course: Applied Informatics – Applications of Artificial Intelligence [T-WIWI-110340]

Responsible: Michael Färber
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101438 - Semantic Knowledge Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2511314</td>
<td>Applied Informatics - Applications of Artificial Intelligence</td>
<td>2</td>
<td>Lecture</td>
<td>Färber, Käfer</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2511315</td>
<td>Exercises to Applied Informatics - Applications of Artificial Intelligence</td>
<td>1</td>
<td>Practice</td>
<td>Färber, Käfer, Nguyen</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Examination Date</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900091</td>
<td>Applied Informatics - Applications of Artificial Intelligence</td>
<td>Until 08 February 2021</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900009</td>
<td>Applied Informatics - Applications of AI (Registration until 12 July 2021)</td>
<td></td>
<td>Färber</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Written Examination (60 min) according to §4, Abs. 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2 of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

None.

Recommendation

Basics in logic, e.g. from lecture Foundations of Informatics 1 are important.

Annotation

Replaces from winter semester 2019/2020 T-WIWI-109263 "Applications of Artificial Intelligence".

Below you will find excerpts from events related to this course:

Applied Informatics - Applications of Artificial Intelligence

2511314, WS 20/21, 2 SWS, Language: German, [Open in study portal](#)
Content
The lecture provides insights into the fundamentals of artificial intelligence. Basic methods of artificial intelligence and their applications in industry are presented.

Applications of the AI is a sub-area of computer science dealing with the automation of intelligent behavior. In general, it is a question of mapping human intelligence. Methods of artificial intelligence are presented in various areas such as, for example, question answering systems, speech recognition and image recognition.

The lecture gives an introduction to the basic concepts of artificial intelligence. Essential theoretical foundations, methods and their applications are presented and explained.

This lecture aims to provide students with a basic knowledge and understanding of the structure, analysis and application of selected methods and technologies on artificial intelligence. The topics include, among others, knowledge modeling, machine learning, text mining, uninformed search, and intelligent agents.

Learning objectives:
The students

- consider current research topics in the field of artificial intelligence and in particular learn about the topics of knowledge modeling, machine learning, text mining and uninformed search.
- interdisciplinary thinking.
- technological approaches to current problems.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preparation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Exercises to Applied Informatics - Applications of Artificial Intelligence
2511315, WS 20/21, 1 SWS, Language: German, Open in study portal

Content
The exercises are oriented on the lecture applications of AI.

Multiple exercises are held that capture the topics, held in the lecture Applications of AI and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

This lecture aims to provide students with a basic knowledge and understanding of the structure, analysis and application of selected methods and technologies on artificial intelligence. The topics include, among others, knowledge modeling, machine learning, text mining, uninformed search, and intelligent agents.

Learning objectives:
The students

- consider current research topics in the field of artificial intelligence and in particular learn about the topics of knowledge modeling, machine learning, text mining and uninformed search.
- interdisciplinary thinking.
- technological approaches to current problems.

Responsible:
Prof. Dr. Melanie Volkamer

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-104069 - Information Security

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Written examination</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Type
- Written examination
- Practice

Credits
- 4,5

Grading scale
- Grade to a third

Recurrence
- Each summer term

Version
- 3

Events
<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation or an oral exam (30 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Annotation
Replaces from summer term 2020 T-WIWI-108387 "Information Security".

Below you will find excerpts from events related to this course:

Applied Informatics - Information Security
<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Open in study portal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Content

- Basics and concepts of information security
- Understanding the protection objectives of information security and various attack models (including associated assumptions)
- Introduction of measures to achieve the respective protection goals, taking into account different attack models
- Note: In contrast to the IT Security lecture, measures such as encryption algorithms are treated only abstractly, i.e. the idea of the measure, assumptions to the attacker and the deployment environment.
- Presentation and analysis of problems of information security arising from human-machine interaction and presentation of the Human Centered Security by Design approach.
- Introduction into organisational protective measures and standards to be observed for companies

Learning objectives:
The student

- can explain the basics of information security
- knows suitable measures to achieve different protection goals
- can assess the quality of organisational protective measures, i.e. among other things knows what has to be taken into account when using the individual measures
- understands the differences between information security in the organisational and in the private context
- knows the areas of application of different standards and knows their weaknesses
- knows and can explain the problems of information security that which arise from human-machine interaction
- is able to deal with messages concerning found security problems in a critical way.

This course can also be credited for the KASTEL certificate. Further information about obtaining the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.

Literature

Exercise Applied Informatics - Information Security

2511551, SS 2021, 1 SWS, Open in study portal

Content

This course can also be credited for the KASTEL certificate. Further information about obtaining the certificate can be found on the SECUSO website https://secuso.aifb.kit.edu/Studium_und_Lehre.php.
6.12 Course: Applied Informatics – Modelling [T-WIWI-110338]

Responsible: Michael Färber
Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101430 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Applied Informatics - Modelling</td>
<td>2 SWS</td>
<td>Oberweis, Käfer, Schiefer</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Exercises to Applied Informatics - Modelling</td>
<td>1 SWS</td>
<td>Oberweis, Käfer, Schiefer</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Applied Informatics - Modelling (Registration until 08 February 2021)</td>
<td></td>
<td>Oberweis, Sure-Vetter</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Applied Informatics - Modelling (Registration until 12 July 2021)</td>
<td></td>
<td>Oberweis, Färber</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written examination (60 min) in the first week after lecture period (according to Section 4 (2),1 of the examination regulation).

Prerequisites
None

Annotation
Replaces from winter semester 2019/2020 T-WIWI-102652 "Applied Informatics I - Modeling".

Below you will find excerpts from events related to this course:

Applied Informatics - Modelling
2511030, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V)
Online
Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspects, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets together with their respective analysis techniques will be introduced.

Learning objectives:
Students

- explain the strengths and weaknesses of various modeling approaches for Information Systems and choose an appropriate method for a given problem,
- create UML models, ER models and Petri nets for given problems,
- model given problems in Description Logics and apply description logic rules,
- describe the main ontology concepts and languages and explain SPARQL queries,
- create and evaluate a relational database schema and express queries in relational algebra.

Workload:
- Total effort: 120-135 hours
- Online time: 45 hours
- Self study: 75-90 hours

Organizational issues
Im WS 20/21 gibt es keine festen Vorlesungszeiten, die Vorlesungsinhalte werden in Ilias bereitgestellt.

Literature

Weiterführende Literatur:

Exercises to Applied Informatics - Modelling
2511031, WS 20/21, 1 SWS, Language: German, Open in study portal
Organizational issues
Siehe zugehörige Vorlesung

- Online-Tutorium Dienstag 12-13:30 unter http://s.kit.edu/ai-m-dienstag
- Online-Tutorium Mittwoch 10-11:30 unter http://s.kit.edu/ai-m-mittwoch
- Online-Tutorium Donnerstag 10-11:30 unter http://s.kit.edu/ai-m-donnerstag

Beitritt zum Team unter http://connect.studium.kit.edu/teams/join/CC3Oqrge

Literature

Weiterführende Literatur:

Responsible: Prof. Dr. Ali Sunyaev

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101430 - Applied Informatics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Online</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2511032</td>
<td></td>
<td>Applied Informatics - Principles of Internet Computing: Foundations for Emerging Technologies and Future Services</td>
<td>2</td>
<td>Lecture</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2511033</td>
<td></td>
<td>Übungen zu Angewandte Informatik - Internet Computing</td>
<td>1</td>
<td>Practice</td>
<td>Sunyaev, Teigeler, Beyene</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Title</th>
<th>SWS</th>
<th>Type / Online</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900004</td>
<td></td>
<td>Applied Informatics – Principles of Internet Computing: Foundations for Emerging Technologies and Future Services (Registration until 08 February 2021)</td>
<td>2</td>
<td></td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900025</td>
<td></td>
<td>Applied Informatics - Internet Computing (Registration until 12 July 2021)</td>
<td>2</td>
<td></td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 min) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is recommended for the written exam, which is offered at the end of the winter semester and at the end of the summer semester.

By successful processing the exercises a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

None

Recommendation

Knowledge of content of the modules Basic Notions of Computer Science and Algorithms I is expected.

Annotation

Replaces from winter semester 2019/2020 T-WIWI-109445 "Applied Informatics - Internet Computing".

Below you will find excerpts from events related to this course:
Content
The lecture Applied Computer Science II provides insights into fundamental concepts and future technologies of distributed systems and Internet computing. Students should be able to select, design and apply the presented concepts and technologies. The course first introduces basic concepts of distributed systems (e.g. design of architectures for distributed systems, internet architectures, web services, middleware).

In the second part of the course, emerging technologies of Internet computing will be examined in depth. These include, among others:

- Cloud Computing
- Edge & Fog Computing
- Internet of Things
- Blockchain
- Artificial Intelligence

Learning objectives:
The student learns about basic concepts and emerging technologies of distributed systems and internet computing. Practical topics will be deepened in lab classes.

Recommendations:
Knowledge of content of the module [WI1INFO].

Workload:
The total workload for this course is approximately 135-150 hours.

Literature
Wird in der Vorlesung bekannt gegeben
6.14 Course: Auction & Mechanism Design [T-WIWI-102876]

Responsible: Prof. Dr. Nora Szech
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101499 - Applied Microeconomics
 M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2560550</td>
<td>Auction and Mechanism Design</td>
<td>2</td>
<td>Lecture /</td>
<td>English</td>
<td>Szech</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2560551</td>
<td>Übung zu Auction and Mechanism Design</td>
<td>1</td>
<td>Practice /</td>
<td></td>
<td>Szech, Huber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Language</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900299</td>
<td>Exam Auction & Mechanism Design</td>
<td>1</td>
<td>Practice /</td>
<td></td>
<td>Szech</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

A bonus can be earned through successful participation in the exercise. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Prerequisites

None

Recommendation

Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Annotation

The lecture will be held in English.

Below you will find excerpts from events related to this course:

V Auction and Mechanism Design
2560550, SS 2021, 2 SWS, Language: English, Open in study portal
Content
The course starts with the basic theory of equilibrium behavior and revenue management in one object standard auctions. The revenue equivalence theorem for standard auctions is introduced. Thereafter, the course focuses on mechanism design and its applications to one object auctions and bilateral trade.

The students
- learn to analyze strategic behavior in auctions;
- learn to compare auction formats with regard to efficiency and revenue;
- are familiarized with the basic theory of (Bayesian) mechanism design;
- learn to master the revenue equivalence theorem for standard auctions;
- learn to apply mechanism design to one object auctions and bilateral trade.

The lecture will be held in English.

It depends on the future pandemic development if the assessment will be in the form of an open-book-exam (Prüfungsleistung anderer Art, SPO § 4 Abs. 2, Pkt. 3) or in the form of a written exam (60 minutes) (SPO §4 (2), 1).

The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Through successful participation in the Exercise, students can earn a bonus. If the grade on the written exam is between 4.0 and 1.3 the bonus improves the grade by one step (0.3 or 0.4). Details will be announced during the lecture.

The total workload for this course is approximately 135.0 hours. For further information see German version.

Recommendations:
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Literature
6.15 Course: B2B Sales Management [T-WIWI-111367]

Responsible: Prof. Dr. Martin Klarmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is carried out (according to §4(2), 3 of the examination regulation) by the preparation and presentation of a sales presentation based on a use case (max 30 points) and a written open book exam (max 60 points). In total, a maximum of 90 points can be achieved during the course.

Further details on the case study and open book exam will be announced in the lecture.

Prerequisites
None.

Annotation
For further information please contact Marketing and Sales Research Group (marketing.iism.kit.edu).
6.16 Course: Bachelor Thesis [T-INFO-109907]

Organisation: KIT Department of Informatics
Part of: M-INFO-104875 - Module Bachelor Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>15</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 4 months
- **Maximum extension period**: 1 months
- **Correction period**: 6 weeks
6.17 Course: Basic Notions of Computer Science [T-INFO-101964]

Responsible: Dr. Sebastian Stüker
Thomas Worsch

Organisation: KIT Department of Informatics

Part of: M-INFO-101170 - Basic Notions of Computer Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24001</td>
<td>Basic Notions of Computer Science</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
<td>Worsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>75400100</td>
<td>Basic Notions of Computer Science</td>
<td></td>
<td></td>
<td></td>
<td>Worsch</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>75400100</td>
<td>Basic Notions of Computer Science</td>
<td></td>
<td></td>
<td></td>
<td>Worsch</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online
🧩 Blended (On-Site/Online)
🗣 On-Site
🗙 Cancelled
6.18 Course: Basic Notions of Computer Science Pass [T-INFO-101965]

| Responsible | Dr. Sebastian Stüker
| | Thomas Worsch
| Organisation | KIT Department of Informatics
| Part of | M-INFO-101170 - Basic Notions of Computer Science
| Type | Completed coursework
| Credits | 0
| Grading scale | pass/fail
| Recurrence | Each winter term
| Version | 1

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24002</td>
<td>Übungen zu Grundbegriffe der Informatik</td>
<td>Practice</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td>Worsch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500191</td>
<td>Basic Notions of Computer Science I Pass</td>
<td>Worsch</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🔗 On-Site, ✗ Cancelled
6.19 Course: Basic Practical Course for the ICPC-Programming Contest [T/INFO-101991]

Responsible: Prof. Dr. Dorothea Wagner
Organisation: KIT Department of Informatics
Part of: M/INFO-101230 - Basic Practical Course for the ICPC-Programming Contest

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>24872</th>
<th>Basispraktikum zum ICPC Programmierwettbewerb</th>
<th>2 SWS</th>
<th>Practical course</th>
<th>Jungeblut, Zeitz, Ueckerdt</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.20 Course: Basic Principles of Economic Policy [T-WIWI-103213]

Responsible: Prof. Dr. Ingrid Ott
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2560280 | Basic Principles of Economic Policy | 2 SWS | Lecture / x | Ott |
| ST 2021 | 2560281 | Exercises of Basic Principles of Economic Policy | 1 SWS | Practice / x | Ott, Scheu |

Exams

| WT 20/21 | 7900079 | Basic Principles of Economic Policy | Ott |

Competence Certificate
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites
None

Recommendation
Basic knowledge of micro- and macroeconomics is assumed, as taught in the courses Economics I [2610012], and Economics II [2600014].
Annotation
Please note that the lecture will not be held in summer semester 2021. The exam is offered.

Description:
Theory of general economic policy and discussion of current economic policy topics:

- Goals of economic policy,
- Instruments and institutions of economic policy,
- Triad of regional, national and European economic policies,
- special fields of economic policy, in particular growth, employment, provision of public infrastructure and climate policy.

Learning objectives:
Students learn:

- To apply basic concepts of micro- and macroeconomic theories to economic policy issues.
- To develop arguments on how state intervention in the market can be legitimized from a welfare economic perspective.
- To derive theory-based policy recommendations.

Learning content:

- Market interventions: microeconomic perspective
- Market interventions: macroeconomic perspective
- Institutional economic aspects
- Economic policy and welfare economics
- Economic policy makers: Political-economic aspects

Workload:

- Total effort at 4.5 LP: approx. 135 hours
- Presence time: approx. 30 hours
- Self-study: approx. 105 hours

Media:
See course announcement

References:
See course announcement

Below you will find excerpts from events related to this course:

![Lecture (V) Cancelled](Open in study portal)
Content
The lecture deals with theories of general economic policy and discussion of current economic policy topics:

- Goals of economic policy,
- Instruments and institutions of economic policy,
- Triad of regional, national and European economic policies,
- special fields of economic policy, in particular growth, employment, provision of public infrastructure and climate policy.

Learning objectives:
Students shall be given the ability to

- apply basic concepts of micro- and macroeconomic theories to economic policy issues
- develop arguments on how state intervention in the market can be legitimized from a welfare economic perspective
- derive theory-based policy recommendations

Recommendations:
Basic micro- and macroeconomic knowledge is required, especially as taught in the courses Economics I [2610012] and Economics II [2600014].

Workload:
Total effort at 4.5 LP is approx. 135 hours and consists of:

- Presence time: approx. 30 hours
- Self-study: approx. 105 hours

Assessment:
The examination takes place in the form of a written examination (60min) (according to §4(2), 1 SPO). The examination is offered every semester and can be repeated at any regular examination date.

Organizational issues
Zugehörige Veranstaltung: Übungen zur Einführung in die Wirtschaftspolitik [2560281]

Literature

- Foliensatz zur Vorlesung
- Übungsaufgaben

Exercises of Basic Principles of Economic Policy
2560281, SS 2021, 1 SWS, Language: German, Open in study portal
6.21 Course: Basics of German Company Tax Law and Tax Planning [T-WIWI-108711]

Responsible:
- Gerd Gutekunst
- Prof. Dr. Berthold Wigger

Organisation:
KIT Department of Economics and Management

Part of:
- M-WIWI-101403 - Public Finance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2560134</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>3</td>
<td>Lecture / 🖥</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Wigger, Gutekunst</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>790unbe</td>
<td>Basics of German Company Tax Law and Tax Planning</td>
<td>3</td>
<td>Lecture / 🖥</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Competence Certificate
Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1.5 h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the collection of public revenues is assumed. Therefore it is recommended to attend the course “Öffentliche Einnahmen” beforehand.

Below you will find excerpts from events related to this course:

Basics of German Company Tax Law and Tax Planning

<table>
<thead>
<tr>
<th>Code</th>
<th>SWS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2560134</td>
<td>3</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Content

Workload:
The total workload for this course is approximately 135.0 hours. For further information see German version.

Organizational issues
Montag 17:30:00-19:00 Uhr per MS-Teams-Livestream
(Achtung: In der ersten Vorlesungswoche beginnt die Veranstaltung um 18:00 Uhr)
6.22 Course: Big Data Analytics [T-INFO-101305]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type/Online</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24114</td>
<td>Big Data Analytics</td>
<td>3</td>
<td>Lecture / 🧩</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500087</td>
<td>Big Data Analytics</td>
<td>Böhm</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500078</td>
<td>Big Data Analytics</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.23 Course: Business Administration: Finance and Accounting [T-WIWI-102819]

Responsible: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhlig-Homburg
Prof. Dr. Marcus Wouters

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-105267 - Business Administration

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Business Administration: Finance and Accounting</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Ruckes, Wouters</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2610029</td>
<td>2 SWS</td>
<td>Tutorial (/ 🧩)</td>
<td>Strych</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Business Administration: Finance and Accounting</td>
<td>Wouters, Ruckes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7900368</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 min.) according to Section 4(2), 1 of the examination regulation. The assessment takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Below you will find excerpts from events related to this course:

Business Administration: Finance and Accounting
2610026, WS 20/21, 2 SWS, Language: German, Open in study portal

Content
The lecture covers the following topics:

- Investment and Finance
 - Valuation of Bonds and Stocks
 - Capital Budgeting
 - Portfolio Theory
- Financial Accounting
- Management Accounting

Literature
Ausführliche Literaturhinweise werden in den Materialen zur Vorlesung gegeben.
Course: Business Administration: Production Economics and Marketing [T-WIWI-102818]

Responsible:
- Prof. Dr. Wolf Fichtner
- Prof. Dr. Martin Klarmann
- Prof. Dr.-Ing. Thomas Lützkendorf
- Prof. Dr. Martin Ruckes
- Prof. Dr. Frank Schultmann

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-105267 - Business Administration

Type:
Written examination

Credits:
4

Grading scale:
Grade to a third

Recurrence:
Each summer term

Version:
1

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2500025</td>
<td>Tutorien zu BWL PM</td>
<td>2</td>
<td>SWS</td>
<td>Klarmann, Strych, Assistenten</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2600024</td>
<td>Business Administration: Production Economics and Marketing</td>
<td>2</td>
<td>SWS</td>
<td>Klarmann, Schulman, Fichtner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Period</th>
<th>Code</th>
<th>Title</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900317</td>
<td>Business Administration: Production Economics and Marketing</td>
<td>Schulman, Klarmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (90 minutes) according to Section 4(2), 1 of the examination regulation.

Prerequisites
None

Below you will find excerpts from events related to this course:

Business Administration: Production Economics and Marketing

- **Code:** 2600024
- **Period:** SS 2021
- **SWS:** 2
- **Language:** German

Open in study portal
Content
The course is composed of the sub-areas:

1. Marketing:
Marketing aims at the optimal design of situations that arise in the context of economic activity in the satisfaction of needs and desires (e.g. marketing of company services, soliciting understanding of group interests, distribution of public funds, implementation of economic policy goals).
Topics dealt with in detail:
- Market research (e.g. product positioning, market segmentation)
- Behavioural research (e.g. influence of socio-cultural and physical environmental aspects)
- Marketing policy instruments (e.g. product, price, communication and distribution policy).
- Special features of international marketing activities (e.g. advantages and risks in international exchange relations).
- Entrepreneurship and intrapreneurship (e.g. marketing of innovations by company founders vs. established companies).

2. Production Economy:
This subfield provides an initial introduction to all operational tasks related to the production of tangible and intangible goods. In addition to the manufacturing industry (basic and capital goods, capital goods and consumer goods, food and beverages, i.e. production industry in the broadest sense), the energy industry, construction and real estate industry and labour sciences are also considered.
Topics dealt with in detail:
- Introduction to the subfield (system theoretical classification, general tasks, cross-sectional topics)
- Industrial production (location planning, transport planning, procurement, plant management, production management)
- Electricity industry (energy demand and supply, energy system planning, technological foresight, cost structures)
- Construction and real estate industry

3. Information Systems:
Information represents a competitive factor in today's economy, which requires an interdisciplinary view of the research fields of economics, information technology and law. In this subfield, selected fundamentals of Business Information Systems and their role in today's competition are presented.
Examples from practice motivate and complement the topics.
Topics in detail:
- Trends in Information Systems
- Definition of terms data, information, knowledge
- Information in companies: Production and competitive factor
- Information processing: from agent to corporate network
- Company networks
- Service Value Networks
- Market engineering
- Social networks and services

Literature
Ausführliche Literaturhinweise werden gegeben in den Materialen zur Vorlesung.
6.25 Course: Business Process Modelling [T-WIWI-102697]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101438 - Semantic Knowledge Management
M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Description</th>
<th>Type</th>
<th>SWS</th>
<th>Moodle Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Business Process Modelling</td>
<td>Lecture</td>
<td>2</td>
<td>Online</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Exercise Business Process Modelling</td>
<td>Practice</td>
<td>1</td>
<td>Online</td>
<td>Oberweis, Schüler, Schreiber</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Business Process Modelling (Registration until 12 July 2021)</td>
<td>Lecture</td>
<td>2</td>
<td>Online</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Business Process Modelling (Registration until 08 February 2021)</td>
<td>Lecture</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Business Process Modelling (Registration until 12 July 2021)</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
None

Below you will find excerpts from events related to this course:

Business Process Modelling
2511210, WS 20/21, 2 SWS, Language: German, [Open in study portal](#)

Content
The proper modeling of relevant aspects of business processes is essential for an efficient and effective design and implementation of processes. This lecture presents different classes of modeling languages and discusses the respective advantages and disadvantages of using actual application scenarios. For that simulative and analytical methods for process analysis are introduced. In the accompanying exercise the use of process modeling tools is practiced.

Learning objectives:
Students

- describe goals of business process modeling and apply different modeling languages,
- choose the appropriate modeling language according to a given context,
- use suitable tools for modeling business processes,
- apply methods for analysing and assessing process models to evaluate specific quality characteristics of the process model.

Recommendations:
Knowledge of course Applied Informatics I - Modelling is expected.

Workload:

- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h
Literature

Weitere Literatur wird in der Vorlesung bekannt gegeben.
6.26 Course: Business Strategies of Banks [T-WIWI-102626]

Responsible: Prof. Dr. Wolfgang Müller
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Title</th>
<th>Semester credit(s)</th>
<th>Type</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2530299</td>
<td>Business Strategies of Banks</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Müller</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>2530299</td>
<td>Business Strategies of Banks</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>Müller</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900064</td>
<td>Business Strategies of Banks</td>
<td>Müller, Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate
See German version.

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Business Strategies of Banks
2530299, WS 20/21, 2 SWS, Language: German, [Open in study portal]

Content
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank’s success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Learning outcomes:
Students are are in a position to discuss the principles of commercial banking. They are familiar with fundamental concepts of bank management and are able to apply them.

Workload:
The total workload for this course is approximately 90 hours. For further information see the German version.

Literature
Weiterführende Literatur:
- Ein Skript wird im Verlauf der Veranstaltung kapitelweise ausgeteilt.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2014, Bankbetriebslehre, 6. Auflage, Springer
Business Strategies of Banks
2530299, SS 2021, 2 SWS, Language: German, Open in study portal

Literature
Weiterführende Literatur:

- Ein Skript wird im Verlauf der Veranstaltung kapitelweise ausgeteilt.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2014, Bankbetriebslehre, 6. Auflage, Springer
6.27 Course: Civil Law for Beginners [T-INFO-103339]

Responsible: Dr. Yvonne Matz
Organisation: KIT Department of Informatics
Part of: M-INFO-101190 - Introduction to Civil Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Mode</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24012</td>
<td>Civil Law for Beginners</td>
<td>4</td>
<td>Lecture/🖥</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500012</td>
<td>Civil Law for Beginners</td>
<td>Matz, Dreier</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500041</td>
<td>Civil Law for Beginners</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.28 Course: Cognitive Systems [T-INFO-101356]

Responsible: Prof. Dr. Gerhard Neumann
Prof. Dr. Alexander Waibel
Organisation: KIT Department of Informatics
Part of: M-INFO-100819 - Cognitive Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Event</th>
<th>Type</th>
<th>Lecture / Practice</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24572</td>
<td>Kognitive Systeme</td>
<td>4 SWS</td>
<td>Waibel, Stüker, Neumann</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500277</td>
<td>Cognitive Systems Waibel/Neumann</td>
<td>Waibel, Neumann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500157</td>
<td>Cognitive Systems</td>
<td>Waibel, Neumann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🧱 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Competition in Networks [T-WIWI-100005]

Responsible: Prof. Dr. Kay Mitusch
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101499 - Applied Microeconomics
M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900335</td>
<td>Competition in Networks</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC). Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
None.

Recommendation
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required.

Annotation
Due to the research semester of Prof. Mitusch the course will not be offered in the winter semester 20/21. An examination will be offered in each semester.
6.30 Course: Computer Architecture [T-INFO-101355]

Responsible: Prof. Dr.-Ing. Jörg Henkel
Prof. Dr. Wolfgang Karl

Organisation: KIT Department of Informatics

Part of: M-INFO-100818 - Computer Architecture

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2424570</td>
<td>Computer structures</td>
<td>3</td>
<td>Lecture / 🖥</td>
<td>Karl</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500034</td>
<td>Computer Architecture</td>
<td></td>
<td></td>
<td>Karl</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500190</td>
<td>Computer Architecture</td>
<td></td>
<td></td>
<td>Karl</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500190</td>
<td>Computer Architecture</td>
<td></td>
<td>Karl</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.31 Course: Computer Graphics [T-INFO-101393]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher

Organisation: KIT Department of Informatics

Part of: M-INFO-100856 - Computer Graphics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24081</td>
<td>Computergrafik</td>
<td>Lecture</td>
<td>4 SWS</td>
<td>Dachsbacher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500430</td>
<td>Computer Graphics</td>
<td></td>
<td></td>
<td>Dachsbacher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500257</td>
<td>Computer Graphics</td>
<td></td>
<td></td>
<td>Dachsbacher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🥰 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
<table>
<thead>
<tr>
<th>6.32 Course: Computer Graphics Pass [T-INFO-104313]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible: Prof. Dr.-Ing. Carsten Dachsbacher</td>
</tr>
<tr>
<td>Organisation: KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of: M-INFO-100856 - Computer Graphics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24083</td>
<td>Übungen zu Computergrafik</td>
<td>Lecture / Practice (/</td>
<td>Zirr, Piochowiak</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500508</td>
<td>Computer Graphics</td>
<td></td>
<td>Dachsbacher</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
6.33 Course: Computer Organization [T-INFO-103531]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-103179 - Computer Organization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 24502</td>
<td>Computer Organization</td>
<td>3 SWS</td>
<td>Lecture / 🖥</td>
</tr>
<tr>
<td></td>
<td>Henkel, Bauer, Lehmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21 24505</td>
<td>Übungen zu Rechnerorganisation</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
</tr>
<tr>
<td></td>
<td>Henkel, Lehmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21 7500228</td>
<td>Computer Organization</td>
<td></td>
<td>Karl, Henkel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled
Course: Consulting in Practice [T-INFO-101975]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>1.5</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24664</td>
<td>2</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td>Praxis der Unternehmensberatung</td>
<td>Lecture / 🖥</td>
<td>Böhm, Lang</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500308</td>
<td></td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td>Consulting in Practice</td>
<td></td>
<td>Böhm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Praxis der Unternehmensberatung

24664, WS 20/21, 2 SWS, Open in study portal

Lecture (V) Online

Content

The market for consulting services grows annually by 20% and is therefore one of the leading growth sectors and professional fields in the future. This trend is in particular driven by the IT industry. Here, widely used standard software moves the focus of the future professional field from software development to consulting. In this context, consulting services have usually a broad definition, reaching from pure IT-focused consulting (e.g., deployment of SAP) to strategic consulting (strategy, organisation etc). In contrast to common rumors, a qualification in business studies is not a must. This opens up a diversified and exciting field with exceptional development perspectives for computer science students. The course deals thematically with the two fields consulting in general and function-specific consulting (with IT consulting as an example).

The structure of the course is oriented along the phases of a consulting project:

- Diagnosis: The consultant as an analytic problem solver.
- Strategic adjustment/redesign of the core processes: Optimisation/redesign of essential business functionality to solve the diagnosed problems in cooperation with the client.
- Implementation: Installation of the solutions in the client’s organisation for assuring the implementation.

Emphasised topics in the course are:

- Elementary problem solving: Problem definition, structuring of problems and focussing through the usage of tools (e.g., logic and hypothesis trees), creative techniques, solution systems etc.
- Obtaining information effectively: Access of information sources, interview techniques etc.
- Effective communication of findings/recommendations. Analysis/planning of communication (media, audience, formats), communication styles (e.g., top-down vs. bottom-up), special topics (e.g., arrangement of complex information) etc.
- Efficient teamwork: Tools for optimising efficient work, collaboration with clients, intellectual and process leadership in the team etc.

At the end of the course, the participants

- have gained knowledge and understanding for the activities of the consulting process in general,
- have gained function-specific knowledge and understanding of IT consulting,
- have an overview about consulting companies,
- know concrete consulting examples,
- have experienced how effective teams work and
- have got an insight into the professional field “consulting”.

Organizational issues

Die Teilnehmeranzahl ist limitiert. Eine Anmeldung per Mail an sekretariat.boehm@ipd.kit.edu ist erforderlich.

Die Veranstaltung findet komplett online statt. Link zur Veranstaltung: https://i40meet.ipd.kit.edu/pdub
6.35 Course: Consumer Behavior [T-WIWI-106569]

Responsible: Prof. Dr. Benjamin Scheibehenne

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104911 - Information Systems & Digital Business: Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Once</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None.

Annotation
For further information, please contact the research group Marketing and Sales (http://marketing.iism.kit.edu/).
6.36 Course: Curves in CAD [T-INFO-102067]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: M-INFO-101248 - Curves in CAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Subject</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500272</td>
<td>Curves in CAD</td>
<td>Prautzsch</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500246</td>
<td>Curves in CAD</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
6 Courses

Course: Data and Storage Management [T-INFO-101276]

Responsible: Prof. Dr. Bernhard Neumair
Organisation: KIT Department of Informatics
Part of: M-WIWI-104140 - Information Services in Networks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24074</td>
<td>Data and Storage Management</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Neumair</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500112</td>
<td>Data and Storage Management</td>
<td>Neumair</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
T 6.38 Course: Data Mining and Applications [T-WIWI-103066]

Responsible: Rheza Nakhaeizadeh
Organisation: KIT Department of Economics and Management
Part of:
M-WIWI-101599 - Statistics and Econometrics
M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2</td>
</tr>
</tbody>
</table>

Event

| ST 2021 | 2520375 | Data Mining and Applications | 2 SWS | Lecture / Online | Nakhaeizadeh |

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled

Competence Certificate

The course will be held for the last time in the summer semester 2021. The last exam opportunity for first-timers will be in the summer semester 2021. A last exam opportunity (for repeaters only) will be offered in the winter semester 2021/2022.

- Conduction of a larger empirical study in groups
- reporting of milestones
- final presentation (app. 45 minutes)

Prerequisites

None

Annotation

The course will be held for the last time in the summer semester of 2021.

Below you will find excerpts from events related to this course:

V Data Mining and Applications
2520375, SS 2021, 2 SWS, Language: German, Open in study portal
Lecture (V)
Online
Content
Learning objectives:
Students

- know the definition of Data Mining
- are familiar with the CRISP-DM
- are familiar with the most important Data Mining Algorithms like Decision Tree, K-Means, Artificial Neural Networks, Association Rules, Regression Analysis
- will be able to use a DM-Tool

Content:
Part one: Data Mining:
What is Data Mining; History of Data Mining; Conferences and Journals on Data Mining; Potential Applications; Data Mining Process; Business Understanding; Data Understanding; Data Preparation; Modeling; Evaluation; Deployment; Interdisciplinary aspects of Data Mining; Data Mining tasks; Data Mining Algorithms (Decision Trees, Association Rules, Regression, Clustering, Neural Networks); Fuzzy Mining; OLAP and Data Warehouse; Data Mining Tools; Trends in Data Mining

Part two: Examples of application of Data Mining
Success parameters of Data Mining Projects; Application in industry; Application in Commerce

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
Exam preparation: 40 hours
Exam preparation: 40 hours

Organizational issues
Blockveranstaltung, Termine werden über ILIAS bekannt gegeben

Literature
U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, 1996 (order online from Amazon.com or from MIT Press).

Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.

David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT Press, Fall 2000

6.39 Course: Database Systems [T-INFO-101497]

Responsible: Prof. Dr.-Ing. Klemens Böhm

Organisation: KIT Department of Informatics

Part of: M-INFO-104921 - Database Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Lecturer</th>
<th>Assessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24516</td>
<td>Datenbanksysteme</td>
<td>Lecture /🖥</td>
<td>2</td>
<td>Böhm, Mülle</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>24522</td>
<td>Übungen zu Datenbanksysteme</td>
<td>Practice /🖥</td>
<td>1</td>
<td>Böhm, Mülle</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500189</td>
<td>Database Systems</td>
<td>Böhm</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500166</td>
<td>Database Systems</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.40 Course: Decision Theory [T-WIWI-102792]

Responsible: Prof. Dr. Karl-Martin Ehrhart

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101499 - Applied Microeconomics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Workload</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2520365</td>
<td>Decision Theory</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>4,5</td>
<td></td>
<td>Each summer term</td>
<td>Ehrhart</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2520366</td>
<td>Übungen zu Entscheidungstheorie</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900348</td>
<td>Decision Theory</td>
<td></td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Recommendation

Knowledge in mathematics and statistics is required.

Below you will find excerpts from events related to this course:

Decision Theory

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2520365</td>
<td>Lecture (V)</td>
<td>German</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Literature

- Ehrhart, K.-M. und S.K. Berninghaus (2012): Skript zur Vorlesung Entscheidungstheorie, KIT.
6.41 Course: Deployment of Database Systems [T-INFO-101317]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 2400020</td>
<td>3 SWS</td>
<td>Datenbankeinsatz</td>
<td></td>
<td></td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT 20/21 7500007</td>
<td></td>
<td>Deployment of Database Systems</td>
<td></td>
<td></td>
<td></td>
<td>Böhm</td>
</tr>
<tr>
<td>ST 2021 7500090</td>
<td></td>
<td>Deployment of Database Systems</td>
<td></td>
<td></td>
<td></td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legend: 🏤 Online, 🧩 Blended (On-Site/Online), 🗝 On-Site, 📐 Cancelled
6.42 Course: Derivatives [T-WIWI-102643]

Responsible: Prof. Dr. Marliese Uhrig-Homburg

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2530550</th>
<th>Derivatives</th>
<th>2 SWS</th>
<th>Lecture / 🖥</th>
<th>Uhrig-Homburg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2530551</td>
<td>Übung zu Derivate</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td>Uhrig-Homburg, Eska</td>
</tr>
</tbody>
</table>

Exams

|WT 20/21|7900051|Derivatives|Uhrig-Homburg|

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Derivatives

2530550, SS 2021, 2 SWS, Language: German, Open in study portal

Organizational issues

Literature

Weiterführende Literatur:

6.43 Course: Design, Construction and Sustainability Assessment of Buildings I [T-WIWI-102742]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101467 - Design, Construction and Sustainability Assessment of Buildings

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credit(s)</th>
<th>Type</th>
<th>Recurrence</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2586404</td>
<td>Design and Construction of Buildings</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Lützkendorf</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2586405</td>
<td>Übung zu Bauökologie I</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900247</td>
<td>Design, Construction and Sustainability Assessment of Buildings I</td>
<td>Lecture (V)</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900248</td>
<td>Design, Construction and Sustainability Assessment of Buildings I</td>
<td>Lecture (V)</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

A combination with the module Real Estate Management and with engineering science modules in the area of building physics and structural design is recommended.

Below you will find excerpts from events related to this course:

Design and Construction of Buildings

2586404, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V) Online
Content
Taking low-energy buildings as an example the course is an introduction to cheap, energy-efficient, resource-saving and health-supporting design, construction and operation of buildings. Questions of the implementation of the principles of a sustainable development within the building sector are discussed on the levels of the whole building, its components, building equipment as well as the materials. Besides technical interrelationships basics dimensioning and various approaches to ecological and economical assessment play a role during the lectures, as well as the different roles of people involved into the building process. Topics are the integration of economical and ecological aspects into the design process, strategies of energy supply, low-energy and passive buildings, active and passive use of solar energy, selection and assessment of construction details, selection and assessment of insulation materials, greened roofs plus health and comfort.

Recommendations:
A combination with the module Real Estate Management [WW3BWLUO1] and with engineering science modules in the area of building physics and structural design is recommended.

The student
- has an in-depth knowledge of aspects of energy-saving, resource-saving and health-oriented design, construction and operation of buildings (design for environment)
- has a critical understanding of the essential requirements, concepts and technical solutions for green buildings
- is able to integrate aspects of energy-saving, resource-saving and health-conscious construction into a holistic environmental design approach and to assess the advantages and disadvantages of different individual solutions.

The total workload for this course is approximately 135.0 hours. For further information see German version.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Literature
Weiterführende Literatur:
- Umweltbundesamt (Hrsg.): "Leitfaden zum ökologisch orientierten Bauen". C.F.Müller 1997
- IBO (Hrsg.): "Ökologie der Dämmstoffe". Springer 2000
- Feist (Hrsg.): "Das Niedrigenergiehaus – Standard für energiebewusstes Bauen". C.F.Müller 1998
- Bundesarchitektenkammer (Hrsg.): "Energiegerechtes Bauen und Modernisieren". Birkhäuser 1996
- Schulze-Darup: "Bauökologie". Bauverlag 1996
Course: Design, Construction and Sustainability Assessment of Buildings II [T-WIWI-102743]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101467 - Design, Construction and Sustainability Assessment of Buildings

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2585403</td>
<td>Übung zu Bauökologie II</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Rochlitzer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2585404</td>
<td>Sustainability Assessment of Buildings</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Legend: ⚡ Online, ⚽ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

Depending on further pandemic developments, the exam will be offered in the summer semester 2021 either as a 60-minute upload exam (Open Book Exam @ Home), or as a 60-minute exam (written exam according to SPO § 4 Abs. 2, Pkt. 1).

Prerequisites

None

Recommendation

A combination with the module Real Estate Management and with engineering science modules from the areas building physics and structural design is recommended.

Below you will find excerpts from events related to this course:

Sustainability Assessment of Buildings

2585404, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The course identifies problems concerning the economical and environmental assessment of buildings along their lifecycle and discusses suitable procedures and tools supporting the decision making process. For example, the course addresses topics like operating costs, heat cost allocation, comparisons of heating costs, applied economical assessment methods, life cycle assessment as well as related design and assessment tools (e.g. element catalogues, databases, emblems, tools) and assessment procedures (e.g. carbon footprint, MIPS, KEA), which are currently available.

Recommendations:

A combination with the module Real Estate Management [WW3BWLOOW2] and with engineering science modules from the areas building physics and structural design is recommended.

The student

- has an in-depth knowledge of the classification of environmental design and construction of buildings within the overall context of sustainability
- has a critical understanding of the main theories and methods of assessing the environmental performance of buildings
- is able to use methods and tools to evaluate the environmental performance in design and decision processes or to interpret existing results

The total workload for this course is approximately 135.0 hours. For further information see German version.

The **assessment** consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Re-examinations are offered at every ordinary examination date.
Literature
Weiterführende Literatur:

- Schmidt-Bleek: "Das MIPS-Konzept". Droemer 1998
- Wackernagel et.al: "Unser ökologischer Fußabdruck". Birkhäuser 1997
- Braunschweig: "Methode der ökologischen Knappheit". BUWAL 1997
6.45 Course: Digital Circuits Design [T-INFO-103469]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-102978 - Digital Circuits Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type/Location</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24007</td>
<td>Digital Circuits Design</td>
<td>3</td>
<td>Lecture / 🖥</td>
<td>Tahoori</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500254</td>
<td>Digital Circuits Design</td>
<td>Henkel, Karl, Tahoori</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500254</td>
<td>Digital Circuits Design</td>
<td>Henkel, Karl, Tahoori</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
6.46 Course: Digital Services: Foundations [T-WIWI-111307]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-104913 - Information Systems & Digital Business: Servitization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2595466 | Digital Services: Foundations | 2 SWS | Lecture / Online | Satzger, Weinhardt, Kühl |
| ST 2021 | 2595467 | Exercise Digital Services: Foundations | 1 SWS | Practice / Online | Kühl, Schöffer, Badewitz |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) (§4(2), 1 of the examination regulations). By successful completion of the exercises (§4(2), 3 SPO 2007 respectively §4(3) SPO 2015) a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites

see below

Annotation

This course replaces T-WIWI-109938 “Digital Services”.

Below you will find excerpts from events related to this course:

Content

The world has been moving towards “service-led” economies: In many developed countries, services already account for more than 70% of the gross domestic product. In order to design, engineer, and manage services, traditional “goods-oriented” business models are often inappropriate. At the same time, the rapid development of information and communication technology (ICT) pushes “servitization” and the economic importance of digital services and, therefore, drives competition: Increased interaction and individualization options open up new dimensions of “value co-creation” between providers and customers; dynamic and scalable service value networks replace static value chains; services can instantly be delivered anywhere across the globe.

Building on a systematic categorization of different types of services and on the general notion of “value co-creation”, we cover concepts and foundations for engineering and managing ICT-based digital services, allowing for further specialization in other KSR/IIISM courses at the Master level. Topics in this course include an introduction to services, cloud and cloud labor services, web services, service innovation, service analytics, digital economics, as well as the transformation and coordination of service value networks. Additionally, case studies, hands-on exercises, and guest lectures will illustrate the relevance of digital services in today’s world. This course is held in English to acquaint students with international environments.
Literature

6.47 Course: Economics and Behavior [T-WIWI-102892]

Responsible: Prof. Dr. Nora Szech

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 2560137 Economics and Behavior</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Szech, Ehrlich, Zhao</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21 2560138 Übung zu Economics and Behavior</td>
<td>1 SWS</td>
<td>Practice /</td>
<td>Szech, Zhao, Huber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7900134 Exam Economics and Behavior</td>
<td></td>
<td></td>
<td>Szech</td>
<td></td>
</tr>
<tr>
<td>WT 20/21 7900135 Exam Economics and Behavior (2)</td>
<td></td>
<td></td>
<td>Szech</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The exam form in winter term 20/21 cannot be determined yet due to the Corona pandemic. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Annotation
The lecture will be held in English.

Below you will find excerpts from events related to this course:

Economics and Behavior
2560137, WS 20/21, 2 SWS, Language: English, [Open in study portal](#)
Content
The course covers topics from behavioral economics with regard to contents and methods. In addition, the students gain insight into the design of economic experiments. Furthermore, the students will become acquainted with reading and critically evaluating current research papers in the field of behavioral economics.

The students

- gain insight into fundamental topics in behavioral economics;
- get to know different research methods in the field of behavioral economics;
- learn to critically evaluate experimental designs;
- get introduced to current research papers in behavioral economics;
- become acquainted with the technical terminology in English.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

The grade will be determined in a final written exam. Students can earn a bonus to the final grade by successfully participating in the exercises.

The total workload for this course is approximately 135.0 hours. For further information see German version.

The lecture will be held in English.

Recommendations:
Basic knowledge of microeconomics and statistics are recommended. A background in game theory is helpful, but not absolutely necessary.

Literature
Course: Economics I: Microeconomics [T-WIWI-102708]

Responsible: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101431 - Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2610012</td>
<td>Economics I: Microeconomics</td>
<td>3</td>
<td>Lecture / <</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7910001</td>
<td>Economics I: Micro (Online Exam)</td>
<td></td>
<td>Reiß</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7910002</td>
<td>Economics I: Micro (Offline Exam)</td>
<td></td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. As a rule, only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Prerequisites

None

Below you will find excerpts from events related to this course:
Course: Economics I: Microeconomics [T-WIWI-102708]

Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics.

In the two main parts of the course problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) as well are discussed. In the final part of the course basics of imperfect competition (oligopolistic markets) and of game theory are presented.

It is the main aim of this course to provide basic knowledge in economic modelling. In particular, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative, more effective policy measures.

In particular, the student should learn

- to apply simple microeconomic concepts,
- to analyze the structure of real world economic phenomena,
- to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
- to suggest alternative policy measures,
- to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
- to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems

- to analyze the structure of microeconomics relationships and to present own problem solutions,
- solve simple economic decision problems.

The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. The main exam takes place subsequent to the lecture.

The re-examination is offered at the same examination period. Usually, only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

The total workload for this course is approximately 150 hours.

Literature

- H. Varian, Grundzüge der Mikroökonomik, 5. Auflage (2001), Oldenburg Verlag
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. Münchsen, 2005

Responsible: Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101499 - Applied Microeconomics
M-WIWI-101599 - Statistics and Econometrics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Language: German, Online</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2520016</td>
<td>Economics III: Introduction to Econometrics</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>5</td>
<td></td>
<td>Schienle, Rüter</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2520017</td>
<td>Übungen zu VWL III</td>
<td>2</td>
<td>Practice / 🖥️</td>
<td>5</td>
<td></td>
<td>Schienle, Rüter, Görgen</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, ☐ Blended (On-Site/Online), ☐ On-Site, ☒ Cancelled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 90-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Below you will find excerpts from events related to this course:

Economics III: Introduction to Econometrics
2520016, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) Online

Content

Learning objectives:

- Familiarity with the basic concepts and methods of econometrics
- Preparation of simple econometric surveys

Content:

- Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)
- Model assessment

Requirements:

Knowledge of the lectures Statistics I + II is required.

Workload:

Total workload for 5 CP: approx. 150 hours

Attendance: 30 hours

Preparation and follow-up: 120 hours

Literature

Schneeweß: Ökonometrie ISBN 3-7908-0008-2
Course: eFinance: Information Systems for Securities Trading [T-WIWI-110797]

6.50 Course: eFinance: Information Systems for Securities Trading [T-WIWI-110797]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101402 - eFinance
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-101402 - eFinance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2540454</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Weinhardt, Notheisen</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540455</td>
<td>Übungen zu eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>1</td>
<td>Practice / 🤫</td>
<td>Jaquart</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900182</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900309</td>
<td>eFinance: Information Systems for Securities Trading</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Competence Certificate

Success is monitored by means of ongoing elaborations and presentations of tasks and an examination (60 minutes) at the end of the lecture period. The scoring scheme for the overall evaluation will be announced at the beginning of the course.

Prerequisites

see below

Annotation

The course "eFinance: Information Systems for Securities Trading" covers different actors and their function in the securities industry in-depth, highlighting key trends in modern financial markets, such as Distributed Ledger Technology, Sustainable Finance, and Artificial Intelligence. Security prices evolve through a large number of bilateral trades, performed by market participants that have specific, well-regulated and institutionalized roles. Market microstructure is the subfield of financial economics that studies the price formation process. This process is significantly impacted by regulation and driven by technological innovation. Using the lens of theoretical economic models, this course reviews insights concerning the strategic trading behaviour of individual market participants, and models are brought market data. Analytical tools and empirical methods of market microstructure help to understand many puzzling phenomena in securities markets.

Below you will find excerpts from events related to this course:

eFinance: Information Systems for Securities Trading

2540454, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V) Online

Content

The course "eFinance: Information Systems for Securities Trading" covers different actors and their function in the securities industry in-depth, highlighting key trends in modern financial markets, such as Distributed Ledger Technology, Sustainable Finance, and Artificial Intelligence. Security prices evolve through a large number of bilateral trades, performed by market participants that have specific, well-regulated and institutionalized roles. Market microstructure is the subfield of financial economics that studies the price formation process. This process is significantly impacted by regulation and driven by technological innovation. Using the lens of theoretical economic models, this course reviews insights concerning the strategic trading behaviour of individual market participants, and models are brought market data. Analytical tools and empirical methods of market microstructure help to understand many puzzling phenomena in securities markets.
Literature

Further Literature

6.51 Course: Energy Policy [T-WIWI-102607]

Responsible: Prof. Dr. Martin Wietschel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2581959</td>
<td>Energy Policy</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Wietschel</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7981959</td>
<td>Energy Policy</td>
<td></td>
<td>Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

Below you will find excerpts from events related to this course:

V Energy Policy
2581959, SS 2021, 2 SWS, Language: German, Open in study portal

Content

The availability of cheap, environmentally friendly and secure energy is crucial for human welfare. However, the increasing scarcity of resources and increasing environmental pressures, with a particular focus on climate change, threaten human welfare through economic action. Energy contributes significantly to environmental pollution. The energy industry is characterised by high regulation and a significant influence of political decisions.

At the beginning of the lecture different perspectives on energy policy will be presented and the analysis of political decision-making processes will be discussed. Then the current energy policy challenges in the area of environmental pollution, regulation and the role of energy for households and industry will be discussed. Then the actors of energy policy and energy responsibilities in Europe will be discussed. The economic approaches from traditional environmental economics and sustainability as a new policy approach will then be discussed. Finally, energy policy instruments such as the promotion of renewable energies or energy efficiency are discussed in detail and how they can be evaluated.

The lecture emphasizes the relationship between theory and practice and presents some case studies.

Literature

Wird in der Vorlesung bekannt gegeben.
6.52 Course: Exercises in Civil Law [T-INFO-102013]

Responsible: Prof. Dr. Thomas Dreier
Dr. Yvonne Matz

Organisation: KIT Department of Informatics

Part of: M-INFO-101191 - Commercial Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24011</td>
<td>Commercial and Corporate Law</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Wiele</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>24017</td>
<td>Exercises in Civil Law</td>
<td>2</td>
<td>Lecture / Blended</td>
<td>Dreier, Käde</td>
</tr>
<tr>
<td>ST 2021</td>
<td>24504</td>
<td>Advanced Civil Law</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Matz</td>
</tr>
<tr>
<td>ST 2021</td>
<td>24506</td>
<td>Exercises in Civil Law</td>
<td>2</td>
<td>Lecture / Blended</td>
<td>Dreier</td>
</tr>
<tr>
<td>ST 2021</td>
<td>24926</td>
<td>Case Studies in Civil Law</td>
<td>2</td>
<td>Practice / Online</td>
<td>Käde, Hägle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500108</td>
<td>Commercial Law</td>
<td>2</td>
<td>On-Site</td>
<td>Dreier, Matz</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500099</td>
<td>Wirtschaftsprivatrecht</td>
<td>2</td>
<td>On-Site</td>
<td>Dreier, Matz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Facility Location and Strategic Supply Chain Management [T-WIWI-102704]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research
M-WIWI-101421 - Supply Chain Management
M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>2550486</th>
<th>Facility Location and Strategic Supply Chain Management</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2550487</td>
<td>Übungen zu Standortplanung und strategisches SCM</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Pomes</td>
</tr>
</tbody>
</table>

Exams

| WT 20/21 | 00043 | Facility Location and Strategic Supply Chain Management | Nickel |

Competence Certificate

The assessment consists of a written exam (60 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester. Prerequisite for admission to examination is the successful completion of the online assessments.

Prerequisites

Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendation

None

Annotation

The lecture is held in every winter term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Facility Location and Strategic Supply Chain Management
2550486, WS 20/21, 2 SWS, Language: German, Open in study portal
Lecture (V) Online

Literature
Weiterführende Literatur:

- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
6.54 Course: Financial Accounting for Global Firms [T-WIWI-107505]

Responsible: Dr. Torsten Luedecke
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type/Column</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2530242</td>
<td>Financial Accounting for Global Firms</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Luedecke</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2530243</td>
<td>Tutorial - Financial Accounting for Global Firms</td>
<td>1</td>
<td>Practice / Online</td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900142</td>
<td>Financial Accounting for Global Firms</td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate

The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites

None

Recommendation

Basic knowledge in corporate finance and accounting.

Annotation

New lecture in the winter term 2017/18.

Below you will find excerpts from events related to this course:

Financial Accounting for Global Firms

- Code: 2530242, WS 20/21, 2 SWS, Language: English, [Open in study portal](#)
Content
Increasing globalization coupled with related regulations continues to put pressure on moving towards a common global accounting framework - International Financial Reporting Standards (IFRS). Currently, more than 140 countries use IFRS, so if a firm's business include global transactions, it is critical to know about the impact of IFRS on the financial reporting process and business. In the EU, IFRS are compulsory for listed companies's consolidated statements but have also gained factual significance for companies without statutory duty to use IFRS. The course introduces the conceptual framework of IFRS, discuss the primary financial statements according to IFRS and explains the underlying principles, concepts, and methods to prepare the financial statements. Special focus is given to some more complex accounting issues related to revenue recognition from contracts with customers, consolidation of different types of intercorporate investments, and foreign currency translation.

The lecture covers the following topics:

- The context of financial accounting for global firms
- The mechanics of financial accounting
- Accounting frameworks and concepts
- Content and presentation of financial statements
- Preparing financial statements
- Revenue recognition from contracts
- Tangible and intangible non-current assets
- Financial assets, liabilities, and equity
- Consolidation and the assessment of control
- Investment in associates and joint arrangements
- Business combinations
- Foreign currency translation

Learning outcomes: Students

- understand the IFRS conceptual framework and its significance for global firms,
- are able to read and interpret IFRS compliant financial statements,
- know about key differences between IFRS and U.S. GAAP and its impact on financial reporting,
- can apply the multi-step model for the recognition of revenues from contracts with customers,
- are able to evaluate alternative measurement bases for assets and liabilities,
- are able to classify intercorporate investments by the concept of control and to apply the appropriate accounting method,
- know about the impact of foreign exchange translation on financial statements.

Organizational issues
Zur Vorlesung wird eine 14-tägige Übung angeboten.

Literature
6.55 Course: Financial Data Science [T-WIWI-111238]

Responsible: Prof. Dr. Maxim Ulrich
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105610 - Financial Data Science

Competence Certificate
The module examination is an alternative exam assessment and consists of two parts in which a maximum of 100 points can be achieved:
In the first part of the examination, a maximum of 30 points can be achieved, which are distributed equally weighted over eight worksheets to be submitted during the semester. The worksheets of the first three weeks are representative for all following worksheets in terms of scope and degree of difficulty. With the beginning of the 4th week of the course, the handing in of the worksheets is considered to be part of the alternative exam assessment.
A maximum of 70 points can be achieved in the second part of the examination. For this part of the examination, the student write a "Final Exam" in the last week of the lecture period, which takes 2 hours.
Detailed information about the course schedule and the module exam will be announced at the first course date.
A retake opportunity for those who do not pass the module exam will take place at the end of the fourth September calendar week of the same year. The registration for the examination must be made at least 1 day before the beginning of the examination. The following applies to deregistration for the examination: Deregistration can be made online in the student portal up to 1 day before the start of the examination.

Prerequisites
None.

Annotation
Please note that the course is only offered every second summer semester (SS2021, SS2023).
6.56 Course: Financial Econometrics [T-WIWI-103064]

Responsible: Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101599 - Statistics and Econometrics
- M-WIWI-105414 - Statistics and Econometrics II

Type
- Written examination

Credits
- 4.5

Grading scale
- Grade to a third

Recurrence
- Irregular

Version
- 2

Competence Certificate
The assessment consists of a written exam (90 minutes) (following §4(2), 1 of the examination regulation).

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Annotation
The course takes place each second summer term: 2018/2020....
6.57 Course: Financial Econometrics II [T-WWI-110939]

Responsible: Prof. Dr. Melanie Schienle
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101599 - Statistics and Econometrics
M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2521302</td>
<td>Financial Econometrics II</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Schienle, Buse</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2521303</td>
<td>Übung zu Financial Econometrics II</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Görgen, Buse, Schienle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900274</td>
<td>Financial Econometrics II</td>
<td>Schienle</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (Takehome Exam). Details will be announced at the beginning of the course.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course “Financial Econometrics”

Annotation
Course language is English
The course takes place each second winter term starting in WS2020/21
6.58 Course: Financial Intermediation [T-WIWI-102623]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 2530232</td>
<td>Written examination</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21 2530233</td>
<td>Practice</td>
<td>1 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7900063</td>
<td>Written examination</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Canceled

Competence Certificate

The assessment of this course is a written examination (following §4(2), 1 SPO) of 60 mins. The exam is offered each semester.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Financial Intermediation

2530232, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V)

Online

Content

The lecture covers the following topics:

- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Stability of the financial system
- The macroeconomic role of financial intermediation
- Principles of the prudential regulation of banks

Learning outcomes: Students

- are in a position to describe the arguments for the existence of financial intermediaries,
- are able of discuss and analyze both static and dynamic aspects of contractual relationships between banks and borrowers,
- are able to discuss the macroeconomic role of the banking system,
- are in a position to explain the fundamental principles of the prudential regulation of banks and are able to recognize and evaluate the implications of specific regulations.

Workload

The total workload for this course is approximately 135.0 hours. For further information see the German version.

Literature

Weiterführende Literatur:

Course: Financial Management [T-WIWI-102605]

Responsible: Prof. Dr. Martin Ruckes
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101435 - Essentials of Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2530216</td>
<td>Financial Management</td>
<td>2 SWS</td>
<td>Lecture /🖥</td>
<td>Ruckes</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2530217</td>
<td>Übung zu Financial Management</td>
<td>1 SWS</td>
<td>Practice /🖥</td>
<td>Ruckes, Wiegratz</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900060</td>
<td>Financial Management</td>
<td></td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Recommendation
Knowledge of the content of the course Business Administration: Finance and Accounting [25026/25027] is recommended.

Below you will find excerpts from events related to this course:

Financial Management
2530216, SS 2021, 2 SWS, Language: German, [Open in study portal](#)
Lecture (V)
Online

Literature
Weiterführende Literatur:
6.60 Course: Formal Systems [T-INFO-101336]

- **Responsible:** Prof. Dr. Bernhard Beckert
- **Organisation:** KIT Department of Informatics
- **Part of:** M-INFO-100799 - Formal Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24086</td>
<td>Formale Systeme</td>
<td>4</td>
<td>Lecture / Practice</td>
<td>Beckert, Ulbrich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500036</td>
<td>Formal Systems</td>
<td>Beckert</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500009</td>
<td>Formal Systems</td>
<td>Beckert</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- 🗑 Cancelled
6 COURSES

Course: Foundations of Interactive Systems [T-WIWI-109816]

6.61 Course: Foundations of Interactive Systems [T-WIWI-109816]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101434 - eBusiness and Service Management
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-104913 - Information Systems & Digital Business: Servitization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>ECTS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST 2021</td>
<td>Foundations of Interactive Systems</td>
<td>3 SWS</td>
<td>Lecture / 🛰</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Online</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exams</td>
<td>Foundations of Interactive Systems</td>
<td>3 SWS</td>
<td>Lecture / 🛰</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WT 20/21</td>
<td>7900326 Foundations of Interactive Systems</td>
<td></td>
<td>Lecture / 🛰</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ST 2021</td>
<td>7900247 Foundations of Interactive Systems</td>
<td></td>
<td>Lecture / 🛰</td>
<td>Mädche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment. The assessment is carried out in the form of a one-hour written examination and by carrying out a Capstone project.

Details on the assessment will be announced during the lecture.

Prerequisites

None

Recommendation

None

Below you will find excerpts from events related to this course:

Foundations of Interactive Systems

2540560, SS 2021, 3 SWS, Language: English, Open in study portal

Lecture (V) Online
Content
Computers have evolved from batch processors towards highly interactive systems. This offers new possibilities but also challenges for the successful design of the interaction between human and computer. Interactive system are socio-technical systems in which users perform tasks by interacting with technology in a specific context in order to achieve specified goals and outcomes.

This lecture introduces key concepts and principles of interactive systems from a human and computer perspective. Furthermore, it describes core development processes for interactive systems as well as provides insights on the use & contexts of interactive systems with a specific focus on selected application areas in organizations and society. With this lecture, students acquire foundational knowledge to successfully design the interaction between human and computers in business and private life.

The course is complemented with a design capstone project, where students in a team apply design methods & techniques in order to create an interactive prototype

Learning Objectives
The students
- have a basic understanding of key conceptual and theoretical foundations of interactive systems from a human and computer perspective
- are aware of important design principles for the design of important classes of interactive systems
- know design processes and techniques for developing interactive systems
- know how to apply the knowledge and skills gathered in the lecture for a real-world problem (as part of design-oriented capstone project)

Prerequisites
No specific prerequisites are required for the lecture

Literature

Further literature will be made available in the lecture.
6.62 Course: Foundations of Mobile Business [T-WIWI-104679]

Responsible: Prof. Dr. Andreas Oberweis

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2511226</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
<tr>
<td>ST 2021 2511227</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7900001</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written (60 min.) or (if necessary) oral examination according to §4(2) of the examination regulation.

Prerequisites

None

Annotation

Lecture and exercises are integrated.

Below you will find excerpts from events related to this course:

Grundlagen für mobile Business

2511226, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

The lecture covers the basics of mobile business with a focus on (information) technical basics. These are interlinked with the economic background in Germany.

Contents are:

1. organizational matters
2. introduction & definitions
3. mobile devices
4. mobile radio technologies
5. mobile communications market
6. mobile applications
7. digital radio technologies
8. location & context

Note: The teaching units listed above each have a different scope.

Learning objectives:

If you are confronted with a question in your job which affects "Mobile Business", you should be able to provide answers quickly and competently:

Market structures
teachnic
Possibilities for applications
lawsuits
issues

Workload:

The total workload for this course unit is approx. 135 hours (4.5 credit points).
Organizational issues
Vorlesung und Übung werden integriert angeboten.

Literature

 http://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/resources/Mobile_Communications/course_Material/index.html
- Martin Sauter: Grundkurs Mobile Kommunikationssysteme (6. Aufl. 2015)
- Dodel, H., Häupler, D.: Satellitenavigation

Einige relevante Informationen im Web

- Bundesnetzagentur http://www.bundesnetzagentur.de
 u.a. Jahresbericht und Marktbeobachtung
- VATM-Marktstudien
 http://www.vatm.de/vatm-marktstudien.html
- Verbände, bspw. BITKOM (bitkom.org), eco e.V. (eco.de)
- Presse, bspw. Teltarif, Heise, Golem, ...
- Statistiken (Statista Lizenz des KIT)
Course: Fundamentals of Production Management [T-WIWI-102606]

Responsible: Prof. Dr. Frank Schultmann
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2581950</td>
<td>Fundamentals of Production Management</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Schultmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2581951</td>
<td>Übungen Grundlagen der Produktionswirtschaft</td>
<td>2</td>
<td>Practice / 🖥️</td>
<td>Stallkamp, Steins</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7981950</td>
<td>Fundamentals of Production Management</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Below you will find excerpts from events related to this course:

Fundamentals of Production Management
2581950, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Content

This lecture focuses on strategic production management with respect to various economic aspects. Interdisciplinary approaches of systems theory will be used to describe the challenges of industrial production. This course will emphasize the importance of R&D as the central step in strategic corporate planning to ensure future long-term success. In the field of site selection and planning for firms and factories, attention will be drawn upon individual aspects of existing and greenfield sites as well as existing distribution and supply centres. Students will obtain knowledge in solving internal and external transport and storage problems.

Organizational issues

Blockveranstaltung, siehe Institutsaushang

Literature

Wird in der Veranstaltung bekannt gegeben.
6.64 Course: Geometric Basics for Geometry Processing [T-INFO-101293]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Hartmut Prautzsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-INFO-100756 - Geometric Basics for Geometry Processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>7500246</th>
<th>Geometric Basics for Geometry Processing</th>
<th>Prautzsch</th>
</tr>
</thead>
</table>
6.65 Course: Geometric Optimization [T-INFO-101267]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: M-INFO-100730 - Geometric Optimization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Semester</th>
<th>Exam Code</th>
<th>Exam Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500050</td>
<td>Geometric Optimization</td>
<td>Prautzsch</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500230</td>
<td>Geometric Optimization</td>
<td>Prautzsch</td>
</tr>
</tbody>
</table>
Course: Global Optimization I [T-WIWI-102726]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101413 - Applications of Operations Research
M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2550134</th>
<th>Globale Optimierung I</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Stein</th>
</tr>
</thead>
</table>

Competence Certificate

Success is in the form of a written examination (60 min.) (according to § 4(2), 1 SPO). The successful completion of the exercises is required for admission to the written exam.

The exam is offered in the lecture of semester and the following semester.

The success check can be done also with the success control for "Global optimization II". In this case, the duration of the written exam is 120 min.

Prerequisites

None

Recommendation

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Globale Optimierung I

2550134, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V) Online

Content

In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley’s cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.
Literature

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
6.67 Course: Global Optimization I and II [T-WIWI-103638]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>9</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2550134 Globale Optimierung I 2 SWS</td>
<td>Lecture/🖥</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2550135 Übung zu Globale Optimierung I und II 2 SWS</td>
<td>Practice/🖥</td>
<td>Stein, Schwarze, Beck</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2550136 Globale Optimierung II 2 SWS</td>
<td>Lecture/🖥</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of the lecture is a written examination (120 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.
The examination is held in the semester of the lecture and in the following semester.

Prerequisites
None

Recommendation
None

Annotation
Part I and II of the lecture are held consecutively in the **same** semester.

Below you will find excerpts from events related to this course:

Globale Optimierung I
2550134, SS 2021, 2 SWS, Language: German, [Open in study portal](#)
Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- Optimality in convex optimization
- Duality, bounds, and constraint qualifications
- Algorithms (Kelley's cutting plane method, Frank-Wolfe method, primal-dual interior point methods)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of nonconvex optimization problems forms the contents of the lecture "Global Optimization II". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the convex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the convex case in practice.

Literature

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000

Content
In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of convex optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.
Literature

Weiterführende Literatur:
- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
6.68 Course: Global Optimization II [T-WIWI-102727]

Responsible: Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101936 - Methodical Foundations of OR

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2550136</th>
<th>Globale Optimierung II</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Stein</th>
</tr>
</thead>
</table>

Competence Certificate

The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of "Global optimization I". In this case, the duration of the written examination takes 120 minutes.

Prerequisites

None

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Globale Optimierung II

2550136, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V)

Online

Content

In many optimization problems from economics, engineering and natural sciences, solution algorithms are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

The lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:

- Introduction and examples
- Convex relaxation
- Interval arithmetic
- Convex relaxation via alphaBB method
- Branch-and-bound methods
- Lipschitz optimization

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:

The treatment of convex optimization problems forms the contents of the lecture "Global Optimization I". The lectures "Global Optimization I" and "Global Optimization II" are held consecutively in the same semester.

Learning objectives:

The student

- knows and understands the fundamentals of deterministic global optimization in the nonconvex case,
- is able to choose, design and apply modern techniques of deterministic global optimization in the nonconvex case in practice.
Literatur

Weiterführende Literatur:

- W. Alt, Numerische Verfahren der konvexen, nichtglatten Optimierung, Teubner, 2004
- C.A. Floudas, Deterministic Global Optimization, Kluwer, 2000
6.69 Course: Human Resource Management [T-WIWI-102909]

Responsible: Prof. Dr. Petra Nieken

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101513 - Human Resources and Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Weekly Schedule</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2573005</td>
<td>Human Resource Management</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nieken</td>
</tr>
<tr>
<td>Practice</td>
<td>2573006</td>
<td>Übung zu Human Resource Management</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Nieken, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Weekly Schedule</th>
<th>Lecture / Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>7900200</td>
<td>Human Resource Management</td>
<td></td>
<td></td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment of this course is a written examination of 1 hour. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites
None

Recommendation
Completion of module Business Administration is recommended.
Basic knowledge of microeconomics, game theory, and statistics is recommended.

Below you will find excerpts from events related to this course:

Human Resource Management
2573005, WS 20/21, 2 SWS, Language: German, Open in study portal

Content
The students acquire basic knowledge in the fields of human resource planning, selection and talent management. Different processes and instruments and their link to corporate strategy are evaluated based on microeconomic and behavioral approaches. The results are tested and discussed based on empirical data.

Aim
The student

- understands the processes and instruments of human resource management.
- analyzes different methods of human resource planning and selection and evaluates their usefulness.
- analyzes different processes of talent management and evaluates the strengths and weaknesses.
- understands the challenges of human resource management and its link to corporate strategy.

Workload
The total workload for this course is approximately 135 hours.

Lecture: 32 hours
Preparation of lecture: 52 hours
Exam preparation: 51 hours

Literature
- Personnel Economics in Practice, Lazear & Gibbs, John Wiley & Sons, 2014
- Strategic Human Resources. Frameworks for General Managers, Baron & Kreps, John Wiley & Sons, 1999
6.70 Course: Human-Machine-Interaction [T-INFO-101266]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 24659 | Human-Computer-Interaction | 2 SWS | Lecture | Beigl |

Exams

| WT 20/21 | 7500076 | Human-Machine-Interaction | Beigl |
| ST 2021 | 7500048 | Human-Machine-Interaction | Beigl |

Legend: 📇 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.71 Course: Human-Machine-Interaction Pass [T-INFO-106257]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-100729 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2400095 | Human-Computer-Interaction | 1 SWS | Practice / 🖤 | Beigl |
| ST 2021 | 24659 | Human-Computer-Interaction | 2 SWS | Lecture / 🖤 | Beigl |

Exams

| ST 2021 | 7500121 | Human-Machine-Interaction | Beigl |

Legend: 🖤 Online, 🟢 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.72 Course: Industrial Organization [T-WIWI-102844]

Responsible: Prof. Dr. Johannes Philipp Reiβ

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Title</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900296</td>
<td>Industrial Organization</td>
<td>Reiβ</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Recommendation

Completion of the module Economics [WW1VWL] is assumed.

Annotation

This course is not given in summer 2017.
Course: Information Systems 1 [T-WIWI-109817]

Responsible: Prof. Dr. Alexander Mädche

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-104820 - Information Systems I
- M-WIWI-104843 - Orientation Exam

Type: Written examination

Credits: 4

Grading scale: Grade to a third

Recurrence: Each winter term

Version: 2

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Date</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2540425</td>
<td>Wirtschaftsinformatik I</td>
<td>Lecture</td>
<td>4</td>
<td>Grade to a third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Each winter term</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900174</td>
<td>Information Systems 1</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900279</td>
<td>Information Systems 1</td>
<td></td>
<td></td>
<td>Mädche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exam preparation: 40 hours

Competence Certificate
The assessment is monitored in the form of a written test (60 minutes) at the end of the lecture period. By successful processing the exercises a bonus can be obtained. If the grade of the written exam is at least 4.0 and at most 1.3, the bonus will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None

Recommendation
None

Below you will find excerpts from events related to this course:

Wirtschaftsinformatik I

2540425, WS 20/21, SWS, Language: German, [Open in study portal](#)

Lecture (V)

On-Site

Content
In the lecture Information Systems I of the module central basics of information systems are introduced as a scientific discipline. For this purpose, the objects of knowledge, basic terms, scientific character and goals as well as methods in science and practice of information systems are introduced. Concepts, methods and theories as well as systems and their technical design are discussed along the analysis units individual, group, organisation and market. The lecture focuses on the analysis units individual and group. Within the framework of the lecture, a Capstone project is worked on in a team, which takes up a real social question and develops a concrete problem solution.

Learning objectives:
The student

- can describe the subject area of the discipline information systems in science and practice
- knows the central terms as well as goals, core tasks and objects of knowledge of information systems
- understands the interplay of subject area, method and theory in information systems
- can define the central analysis units individual, group, organisation and market and obtain a basic understanding of the targeted use of information systems and infrastructures
- develops an understanding of the importance of interdisciplinary, systemic thinking and develops in a team a solution to a real social problem

Workload:
Total effort for 4 credit points: approx. 120 hours. Presence time: 40 hours Preparation/postprocessing: 40 hours Examination and exam preparation: 40 hours
6.74 Course: Information Systems 2 [T-WIWI-109818]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104821 - Information Systems II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer/Senior Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2540450</td>
<td>Wirtschaftsinformatik 2</td>
<td>2</td>
<td>Lecture/ meds</td>
<td>Weinhardt, Mädche, Gnewuch</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer/Senior Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900359</td>
<td>Information Systems 2</td>
<td>Online</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900325</td>
<td>Information Systems 2</td>
<td>On-Site</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Legend:
Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None

Recommendation
None

Annotation
New course starting summer term 2020.
6.75 Course: Integrated Network and Systems Management [T-INFO-101284]

Responsible: Prof. Dr. Bernhard Neumair

Organisation: KIT Department of Informatics

Part of: M-WIWI-101440 - Information Services in Networks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Code</th>
<th>Name</th>
<th>SW</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2400004</td>
<td>2 SWS</td>
<td>Integrated Network and Systems Management</td>
<td></td>
<td>Lecture</td>
<td>Neumair</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.76 Course: Intellectual Property and Data Protection [T-INFO-109840]

Responsible: Prof. Dr. Thomas Dreier
Dr. Johannes Eichenhofer

Organisation: KIT Department of Informatics

Part of: M-INFOR-101253 - Intellectual Property and Data Protection

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24018</td>
<td>Datenschutzrecht 2 SWS Lecture /</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>24070</td>
<td>Industrial Property and Copyright Law 2 SWS Lecture /</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500184</td>
<td>Intellectual Property and Data Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
Course: International Finance [T-WIWI-102646]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101402 - eFinance
M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Code</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2530570</td>
<td>International Finance</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Walter, Uhrig-Homburg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Code</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900052</td>
<td>International Finance</td>
<td>2</td>
<td></td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Code</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900052</td>
<td>International Finance</td>
<td>2</td>
<td></td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Competence Certificate
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites
None

Recommendation
None

Annotation
The course will not be offered in the summer semester 2020 as originally planned, but only in the winter semester 2020/2021. The course is offered as a 14-day or block course.

Below you will find excerpts from events related to this course:

Organizational issues
Blockveranstaltung

Literature
Weiterführende Literatur:

Organizational issues
nach dem 21.04. nach Absprache
Literature
Weiterführende Literatur:

6.78 Course: Introduction in Computer Networks [T-INFO-102015]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: M-INFO-103455 - Introduction in Computer Networks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 24519 | Einführung in Rechnernetze | 2 SWS | Lecture / 🖥 | Kopmann, Neumeister, Schneider, Friebe, Jung, Zitterbart |
| ST 2021 | 24521 | Übung zu Einführung in Rechnernetze | 1 SWS | Practice / 🖥 | Kopmann, Neumeister, Schneider, Friebe, Jung, Zitterbart |

Exams

| WT 20/21 | 7500201 | Introduction to Computer Networking | Zitterbart |
| ST 2021 | 7500116 | Introduction to Computer Networking | Zitterbart |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.79 Course: Introduction to Energy Economics [T-WIWI-102746]

Responsible: Prof. Dr. Wolf Fichtner
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2581010</td>
<td>Introduction to Energy Economics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Fichtner</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2581011</td>
<td>Übungen zu Einführung in die Energiewirtschaft</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Lehmann, Sandmeier, Ardone, Fichtner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7981010</td>
<td>Introduction to Energy Economics</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a written exam (90 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None.

Below you will find excerpts from events related to this course:

Introduction to Energy Economics

2581010, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V)

Online

Content

1. Introduction: terms, units, conversions
2. The energy carrier gas (reserves, resources, technologies)
3. The energy carrier oil (reserves, resources, technologies)
4. The energy carrier hard coal (reserves, resources, technologies)
5. The energy carrier lignite (reserves, resources, technologies)
6. The energy carrier uranium (reserves, resources, technologies)
7. The final carrier source electricity
8. The final carrier source heat
9. Other final energy carriers (cooling energy, hydrogen, compressed air)

The student is able to

- characterize and judge the different energy carriers and their peculiarities,
- understand contexts related to energy economics.

Literature

Weiterführende Literatur:

Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
6.80 Course: Introduction to Game Theory [T-WIWI-102850]

Responsible:
Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Organisation:
KIT Department of Economics and Management

Part of:
- M-WIWI-101499 - Applied Microeconomics
- M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 2520525 | Introduction to Game Theory | 2 SWS | Lecture / Online | Reiß |
| ST 2021 | 2520526 | Übungen zu Einführung in die Spieltheorie | 1 SWS | Practice / Online | Peters, Reiß |

Exams

| WT 20/21 | 7900346 | Introduction to Game Theory | Puppe |

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2).1 of the examination regulation.
The exam takes place in the recess period and can be resited at every ordinary examination date.

Prerequisites
The course Economics I: Microeconomics [2610012] must have been successfully completed.

Recommendation
Basic knowledge of mathematics and statistics is assumed.

Below you will find excerpts from events related to this course:

Introduction to Game Theory
2520525, SS 2021, 2 SWS, Language: German, [Open in study portal](#)
Content
The course focusses on non-cooperative game theory. It discusses models, solution concepts, and applications for simultaneous games as well as sequential games. Various solution concepts, e.g., Nash equilibrium and subgame-perfect equilibrium, are introduced along with more advanced concepts. A short introduction to cooperative game theory is given if there is sufficient time.

The assessment consists of a written exam (60 minutes) according to Section 4(2),1 of the examination regulation.

The exam takes place in the recess period and can be resited at every ordinary examination date.

The module [M-WIWI-101398] Introduction to Economics must have been passed.

Recommendations:
Basic knowledge of mathematics and statistics is assumed.

The total workload for this course is approximately 135.0 hours. For further information see German version.

This course offers an introduction to the theoretical analysis of strategic interaction situations. At the end of the course, students shall be able to analyze situations of strategic interaction systematically and to use game theory to predict outcomes and give advice in applied economics settings.

Compulsory textbook:

Additional Literature:

Literature
Verpflichtende Literatur:

Ergänzende Literatur:
6.81 Course: Introduction to Machine Learning [T-WIWI-111028]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Dr. Abdolreza Nazemi
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105482 - Machine Learning and Data Science

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

- WT 20/21 2540539: Introduction to Machine Learning
 2 SWS
 Lecture
 Nazemi
- WT 20/21 2540540: Übung zu Introduction to Machine Learning
 1 SWS
 Practice
 Nazemi

Exams

- WT 20/21 7900311: Introduction to Machine Learning
 Geyer-Schulz

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five-point-steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.

Below you will find excerpts from events related to this course:

Introduction to Machine Learning
2540539, WS 20/21, 2 SWS, Language: English, Open in study portal

Lecture (V)

Content

- Introduction
- Data Cleaning
- Data Visualization
- Linear Regression
- Logistic Regression
- Tree-based Algorithms
- Support Vector Machine
- Shrinkage Models
- Dimensionality Reduction
- Clustering

Literature

6.82 Course: Introduction to Neural Networks and Genetic Algorithms [T-WIWI-111029]

Responsible: Prof. Dr. Andreas Geyer-Schulz
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-105482 - Machine Learning and Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Written examination (60 minutes) according to §4(2), 1 SPO. The exam is considered passed if at least 50 out of a maximum of 100 possible points are achieved. The grades are graded in five-point-steps (best grade 1.0 from 95 points). Details of the grade formation and scale will be announced in the course.

A bonus can be acquired through successful participation in the practice. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for awarding a bonus will be announced at the beginning of the course.
6.83 Course: Introduction to Operations Research I and II [T-WIWI-102758]

Responsible:
- Prof. Dr. Stefan Nickel
- Prof. Dr. Steffen Rebennack
- Prof. Dr. Oliver Stein

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101418 - Introduction to Operations Research

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>9</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 2530043</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WT 20/21 2530044</td>
<td>Tutorial / Online</td>
<td>2 SWS</td>
<td>Rebennack, Sinske</td>
</tr>
<tr>
<td>ST 2021 2550040</td>
<td>Lecture / Online</td>
<td>2 SWS</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7900290</td>
<td>Introduction to Operations Research I and II</td>
<td></td>
<td>Rebennack</td>
</tr>
<tr>
<td>ST 2021 7900237</td>
<td>Introduction to Operations Research I and II</td>
<td></td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🥉 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses.

The overall grade of the module is the grade of the written examination.

Prerequisites
None

Recommendation
Mathematics I und II. Programming knowledge for computing exercises.

It is strongly recommended to attend the course *Introduction to Operations Research I* [2550040] before attending the course *Introduction to Operations Research II* [2530043].

Below you will find excerpts from events related to this course:

Introduction to Operations Research II
2530043, WS 20/21, 2 SWS, Language: German, [Open in study portal](#)
Content
Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.

Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.

Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynamic and stochastic inventory models, queueing theory.

Learning objectives:
The student
- names and describes basic notions of integer and combinatorial optimization, nonlinear programming, and dynamic programming,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Literature

Introduction to Operations Research I
2550040, SS 2021, 2 SWS, Language: German, Open in study portal

Content
Examples for typical OR problems.

Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.

Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Learning objectives:
The student
- names and describes basic notions of linear programming as well as graphs and networks,
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Literature
6.84 Course: Introduction to Public Finance [T-WIWI-102877]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101403 - Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Below you will find excerpts from events related to this course:

Introduction to Public Finance

2560131, WS 20/21, 3 SWS, Language: German, Open in study portal

Lecture (V)

Online

Content

The course *Introduction to Public Finance* provides an overview of the fundamental issues in public economics. The first part of the course deals with normative theories about the economic role of the state in a market economy. Welfare economics theory is offered as a base model, with which alternative normative theories are compared and contrasted. Within this theoretical framework, arguments concerning efficiency and equity are developed as justification for varying degrees of economic intervention by the state. The second part of the course deals with the positivist theory of public economics. Processes of public decision making are examined and the conditions that lead to market failures resulting from collective action problems are discussed. The third part of the course examines a variety of public spending programs, including social security systems, the public education system, and programs aimed at reducing poverty. The fifth part of the course addresses the key theoretical and political issues associated with fiscal federalism.

Learning goals:

Students are able to:

- critically assess the economic role of the state in a market economy
- explain and discuss key concepts in public finance, including: public goods; economic externalities; and market failure
- explain and critically discuss competing theoretical approaches to public finance, including welfare economics and public choice theory
- explain the theory of bureaucracy according to Weber and critically assess its strengths and weaknesses
- evaluate the incentives inherent in the bureaucratic model, as well as the more recent introduction of market-oriented incentives associated with public-sector reform

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Organizational issues

Donnerstag 14:00-15:30 Uhr per Zoom-Livestream
Literature
Literatur:
6.85 Course: Introduction to Stochastic Optimization [T-WIWI-106546]

Responsible: Prof. Dr. Steffen Rebennack
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2550470</td>
<td>2 SWS</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>Lecture / 🖥️</td>
<td>Rebennack</td>
</tr>
<tr>
<td>ST 2021 2550471</td>
<td>1 SWS</td>
<td>Übung zur Einführung in die Stochastische Optimierung</td>
<td>Practice / 🖥️</td>
<td>Rebennack, Sinske</td>
</tr>
<tr>
<td>ST 2021 2550474</td>
<td>2 SWS</td>
<td>Rechnerübung zur Einführung in die Stochastische Optimierung</td>
<td>Practice / 🖥️</td>
<td>Rebennack, Sinske</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7900242</td>
<td></td>
<td>Introduction to Stochastic Optimization</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Competence Certificate
Alternative exam assessment (open book exam). The exam takes place in every semester.

Prerequisites
None.
Course: Investments [T-WIWI-102604]

Responsible: Prof. Dr. Marliese Uhrig-Homburg
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101435 - Essentials of Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2530575</td>
<td>Investments</td>
<td>2</td>
<td>Lecture / 🦠</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2530576</td>
<td>Übung zu Investments</td>
<td>1</td>
<td>Practice / 🦠</td>
<td>Uhrig-Homburg, Eberbach</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900054</td>
<td>Investments</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Legend: 🦠 Online, 🤖 Blended (On-Site/Online), 🔧 On-Site, ✗ Cancelled

Competence Certificate
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites
None

Recommendation
Knowledge of Business Administration: Finance and Accounting [2610026] is recommended.

Below you will find excerpts from events related to this course:

Organizational issues
Veranstaltungskonzept umfasst vollständige Aufzeichnungen von Vorlesung und Übung. Ergänzend bieten wir zweiwöchig freiwillige Live-Fragerunden zum fachlichen und organisatorischen Austausch an.

Literature
Weiterführende Literatur:
6.87 Course: Lab Protocol Engineering [T-INFO-102066]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: M-INFO-101247 - Lab Protocol Engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Basispraktikum Protocol Engineering</td>
<td>4 SWS</td>
<td>Practical course / 🖩</td>
<td>Bauer, Zitterbart</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Lab Protocol Engineering</td>
<td></td>
<td></td>
<td>Zitterbart</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕒 Blended (On-Site/Online), 🗿 On-Site, × Cancelled
6.88 Course: Lab: Working with Database Systems [T-INFO-103552]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-101865 - Lab: Working with Database Systems
M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>24317</th>
<th>Arbeiten mit Datenbanksystemen</th>
<th>2 SWS</th>
<th>Practical course / 🗣</th>
<th>Böhm</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>7500146</th>
<th>Lab: Working with Database Systems</th>
<th>Böhm</th>
</tr>
</thead>
</table>
6.89 Course: Logistics and Supply Chain Management [T-WIWI-102870]

Responsible: Prof. Dr. Frank Schultmann
Dr. Marcus Wiens

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2581996</td>
<td>Logistics and Supply Chain Management</td>
<td>2</td>
<td>Lecture</td>
<td>Wiens, Schultmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2581997</td>
<td>Übung zu Logistics and Supply Chain Management</td>
<td>1</td>
<td>Practice</td>
<td>Diehlmann, Lüttenberg</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7981996</td>
<td>Logistics and Supply Chain Management</td>
<td>Lecture</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites

None

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>Lecture</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Content

Students are introduced to the methods and tools of logistics and supply chain management. They learn the key terms and components of supply chains together with key economic trade-offs. In detail, students gain knowledge of decisions in supply chain management, such as facility location, supply chain planning, inventory management, pricing and supply chain cooperation. In this manner, students will gain knowledge in analyzing, designing and steering of decisions in the domain of logistics and supply chain management.

- Introduction: Basic terms and concepts
- Facility location and network optimization
- Supply chain planning I: flexibility
- Supply chain planning II: forecasting
- Inventory management & pricing
- Supply chain coordination I: the Bullwhip-effect
- Supply chain coordination II: double marginalization
- Supply chain risk management

Literature

Wird in der Veranstaltung bekannt gegeben.
6.90 Course: Macroeconomic Theory [T-WIWI-109121]

Responsible: Prof. Dr. Johannes Brumm

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101501 - Economic Theory
- M-WIWI-101668 - Economic Policy

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2560404</td>
<td>Macroeconomic Theory</td>
<td>2</td>
<td>Lecture</td>
<td>Scheffel</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2560405</td>
<td>Übung zu Macroeconomic Theory</td>
<td>1</td>
<td>Practice</td>
<td>Pegorari</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900264</td>
<td>Macroeconomic Theory</td>
<td></td>
<td></td>
<td>Scheffel</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation.

Prerequisites
None.

Below you will find excerpts from events related to this course:

Macroeconomic Theory
2560404, WS 20/21, 2 SWS, Language: English, [Open in study portal]

Literature
Literatur und Skripte werden in der Veranstaltung angegeben.
6.91 Course: Management and Strategy [T-WIWI-102629]

Responsible: Prof. Dr. Hagen Lindstädt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101425 - Strategy and Organization

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2577900</td>
<td>Management and Strategy</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Lindstädt</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Subject</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900199</td>
<td>Management and Strategy</td>
<td>Lindstädt</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900067</td>
<td>Management and Strategy</td>
<td>Lindstädt</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Competence Certificate

The assessment consists of a written exam (60 min) taking place at the beginning of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Management and Strategy

2577900, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V)

Online
Content
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration. Thereby a focus is on imparting knowledge about how price developments in oligopolistic markets can be understood, modeled and forecasted based on game theory.

Content in brief:
- Corporate management principles
- Strategic management principles
- Strategic analysis
- Competitive strategy: modelling and selection on a divisional level
- Strategies for oligopolies and networks: anticipation of dependencies
- Corporate strategy: modelling and evaluation on a corporate level
- Strategy implementation

Learning Objectives:
After passing this course students are able to
- prepare strategic decisions along the ideal-typical strategy process in practice ("strategic analysis").
- assess strategic options.
- explain the portfolio management (Parental advantage and best owner of business entities).
- discuss price and capacity decisions in oligopolies and explain them in examples.

Recommendations:
None.

Workload:
The total workload for this course is approximately 105.0 hours. For further information see German version.

Assessment:
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as an open-book examination (examination performance of a different kind according to SPO § 4 para. 2, item 3), or as a 60-minute written examination (written examination according to SPO § 4 para. 2, item 1).

It is expected that the exam will take place at the beginning of the semester's lecture-free period.

The examination is offered every semester and can be repeated at any regular examination date.

Literature

Die relevanten Auszüge und zusätzliche Quellen werden in der Veranstaltung bekannt gegeben.
6.92 Course: Managing Organizations [T-WIWI-102630]

Responsible: Prof. Dr. Hagen Lindstädt

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101425 - Strategy and Organization
- M-WIWI-101513 - Human Resources and Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>2577902</th>
<th>Managing Organizations</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Lindstädt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>7900049</td>
<td>Managing Organizations</td>
<td></td>
<td></td>
<td>Lindstädt</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900066</td>
<td>Managing Organizations</td>
<td></td>
<td></td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Managing Organizations

2577902, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V)

Online
Content
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organizational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Content in brief:
- Principles of organisational management
- Managing organisational structures and processes: the selection of design parameters
- Ideal-typical organisational structures: choice and effect of parameter combinations
- Managing organisational changes

Learning Objectives:
After passing this course students are able to
- evaluate strengths and weaknesses of existing organisational structures and rules.
- compare alternatives of organisational structure in practice and assess and interpret them regarding their effectiveness and efficiency.
- assess the management of organisational changes.

Recommendations:
None.

Workload:
The total workload for this course is approximately 105.0 hours. For further information see German version.

Assessment:
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as an open-book examination (examination performance of a different kind according to SPO § 4 para. 2, item 3), or as a 60-minute written examination (written examination according to SPO § 4 para. 2, item 1).

It is expected that the exam will take place at the beginning of the semester's lecture-free period.

The examination is offered every semester and can be repeated at any regular examination date.

A bonus can be acquired through successful participation in the exercises. If the grade of the written examination is between 4.0 and 1.3, the bonus improves the grade by one grade level (0.3 or 0.4). The exact criteria for the award of a bonus will be announced at the beginning of the lecture.

Literature

Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.
6.93 Course: Managing the Marketing Mix [T-WIWI-102805]

Responsible:
Prof. Dr. Martin Klarmann

Organisation:
KIT Department of Economics and Management

Part of:
M-WIWI-101424 - Foundations of Marketing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Language</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2571152</td>
<td>Managing the Marketing Mix</td>
<td>Lecture</td>
<td>2</td>
<td>German</td>
<td>Klarmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2571153</td>
<td>Übung zu Marketing Mix (Bachelor)</td>
<td>Practice</td>
<td>1</td>
<td>German</td>
<td>Pade</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7900023</td>
<td>Managing the Marketing Mix</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment is carried out (according to §4(2), 3 of the examination regulation) through the preparation and presentation of a case study (max. 30 points) and a written open book exam (max. 60 points). In total, a maximum of 90 points can be earned during the course. In the summer term 2021, the written open book exam will either take place in the lecture hall or online, depending on further pandemic developments. Further details on the case study and open book exam will be announced in the lecture.

Prerequisites
None

Annotation

The course is compulsory in the module “Foundations of Marketing”. For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu).

Below you will find excerpts from events related to this course:

Managing the Marketing Mix
2571152, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Content

The content of this course concentrates on the elements of the marketing mix. Therefore the main chapters are brand management, pricing, promotion and sales management. For further information please contact Marketing & Sales Research Group (marketing.iism.kit.edu). This course is compulsory within or the module “Foundations of Marketing” and must be examined.

Learning objectives:

- student
 - know the meaning of the branding, the brand positioning and the possibilities of the brand value calculation
 - understand the price behavior of customers and can apply this knowledge to the practice
 - know different methods for price determination (conjoint analysis, cost-plus determination, target costing, customer surveys, bidding procedures) and price differentiation
 - are able to name and explain the relevant communication theories
 - can identify crisis situations and formulate appropriate response strategies
 - can name and judge different possibilities of the Intermediaplanung
 - know various design elements of advertising communication
 - understand the measurement of advertising impact and can apply it
 - know the basics of sales organization
 - are able to evaluate basic sales channel decisions

Workload:

The total workload for this course is approximately 135.0 hours.
Literature
6.94 Course: MARS Basis Lab [T-INFO-102053]

Responsible: Prof. Dr. Hartmut Prautzsch
Organisation: KIT Department of Informatics
Part of: M-INFO-101245 - MARS-Based Internship

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Praktikum</td>
<td>2</td>
<td>Practical course / 🖥</td>
<td>Xu, Prautzsch</td>
</tr>
<tr>
<td>ST 2021</td>
<td>MARS-Basispraktikum</td>
<td>4</td>
<td>Practical course / 🖥</td>
<td>Xu, Prautzsch</td>
</tr>
</tbody>
</table>

| Exams | MARS Basis Lab | | Prautzsch |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
6.95 Course: Mathematics I for Information Systems - Exam [T-MATH-109942]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of:
M-MATH-104914 - Mathematics I
M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Exam Code</th>
<th>Exam Name</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>77362</td>
<td>Mathematics I for Information Systems - Exam</td>
<td>Weiß</td>
</tr>
</tbody>
</table>

Annotation

This exam is part of the orientation exam.
6.96 Course: Mathematics I for Information Systems - Exercise [T-MATH-109943]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of:
M-MATH-104914 - Mathematics I
M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7700053</td>
<td>Mathematics I for Information Systems - Exercise</td>
<td>Weiβ</td>
<td></td>
</tr>
</tbody>
</table>

Annotation

This exam is part of the orientation exam.
6.97 Course: Mathematics II for Information Systems - Exam [T-MATH-109944]

Responsible:
- Prof. Dr. Andreas Rieder
- Dr. Daniel Weiß
- Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-104915 - Mathematics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>8005030</td>
<td></td>
<td>Written exam</td>
<td>Rieder</td>
</tr>
<tr>
<td>0187700</td>
<td></td>
<td></td>
<td>Mathematik II für Wirtschaftsinformatik</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>4 SWS</td>
<td>Lecture / 🖥</td>
<td>0187700</td>
<td>Weiß</td>
</tr>
<tr>
<td>Mathematik II für Wirtschaftsinformatik</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7700068</td>
<td></td>
<td>Mathematics II for Information Systems - Exam</td>
<td>Rieder, Weiß</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7700021</td>
<td></td>
<td>Mathematics II for Information Systems - Exam</td>
<td>Weiß</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Canceled
6.98 Course: Mathematics II for Information Systems - Exercise [T-MATH-109945]

Responsible: Prof. Dr. Andreas Rieder
Dr. Daniel Weiße
Prof. Dr. Christian Wieners

Organisation: KIT Department of Mathematics

Part of: M-MATH-104915 - Mathematics II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>2</td>
</tr>
</tbody>
</table>
6.99 Course: Mechanisms and Applications of Workflow Systems [T-INFO-101257]

Responsible: Jutta Mülle
Organisation: KIT Department of Informatics
Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24111</td>
<td>Konzepte und Anwendungen von Workflowsystemen</td>
<td>3</td>
<td>Lecture / 🖥️</td>
<td>Mülle</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500089</td>
<td>Mechanisms and Applications of Workflow Systems</td>
<td>Böhm, Mülle</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500094</td>
<td>Mechanisms and Applications of Workflow Systems</td>
<td>Mülle</td>
</tr>
</tbody>
</table>

Legends: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
Course: Mechano-Informatics and Robotics [T-INFO-101294]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-100757 - Mechano-Informatics and Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Lectures/Time</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2400077</td>
<td>Mechano-Informatics and Robotics</td>
<td>Lecture / Online</td>
<td>Asfour</td>
</tr>
<tr>
<td>Exams</td>
<td>WT 20/21</td>
<td>7500176 Mechano-Informatics and Robotics</td>
<td></td>
<td>Asfour</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500217</td>
<td>Nachprüfung: Mechano-Informatics and Robotics</td>
<td></td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Below you will find excerpts from events related to this course:

Mechano-Informatics and Robotics
2400077, WS 20/21, 2 SWS, Language: German/English, [Open in study portal](#)

Content

The lecture addresses various engineering and algorithmic aspects and topics in robotics which are illustrated and explained based on examples originating from current research conducted in the field of humanoid robotics. First, this lecture gives an introduction into the mathematical fundamentals which are needed to describe a robotic system as well as the basic algorithms commonly applied in motion planning. Subsequently, models and methods are introduced with which dynamical systems can be formalized and which can be used to encode and represent robot actions. To do so, we will discuss linear time-invariant systems in state.

Recommendations:

Participating in the „Basispraktikums Mobile Roboter“ is recommended.

Workload:

Lecture with 2 SWS, 4 LP.
4 LP correspond to ca. 120 hours, thereof
ca. 40 hrs. presence during lectures,
ca. 30 hrs. preparation and rework time,
ca. 50 hrs. preparation for exam.

Learning Objectives:

Based on the example of robotics students understand the synergistic effects and interdisciplinarity of mechatronics and informatics, the embedded systems, the control, and the methods and the algorithms. They are acquainted with the basic terminology and the methods which are common in robotics, signal processing, action representation, machine learning and cognitive systems. They are capable of applying fundamental state-of-the-art methods and tools for the development and programming of robots. Based on examples originating from current research conducted in the fields of humanoid robotics, the students interactively learn how to identify and formalize problems and tasks and how to develop solutions in an analytical and goal-directed way.

Organizational issues

Zugehörige Veranstaltungen: Empfehlung - Basispraktikum Mobile Roboter
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Arbeitsaufwand:

2h Präsenz
+ 2*2h = 4h Vor/Nachbereitung
+ 30h Prüfungsvorbereitung
120h
Course: Microprocessors I [T-INFO-101972]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-101183 - Microprocessors I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Lecture / 📥</td>
<td>Karl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>3 SWS</td>
<td>Lecture / 📥</td>
<td>Karl</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Lecture / 📥</td>
<td>Karl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ cancelled
6.102 Course: Mobile Computing and Internet of Things [T-INFO-102061]

Responsible: Prof. Dr.-Ing. Michael Beigl

Organisation: KIT Department of Informatics

Part of: M-INFO-101249 - Mobile Computing and Internet of Things

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 20/21 | 2400051 | Mobile Computing and Internet of Things | 2+1 SWS | Lecture / Practice / | Beigl |

Exams

WT 20/21	7500277_0125	Mobile Computing and Internet of Things	Beigl
WT 20/21	7500277_0129	Mobile Computing and Internet of Things	Beigl
WT 20/21	7500277_0216	Mobile Computing and Internet of Things	Beigl
WT 20/21	7500277_0226	Mobile Computing and Internet of Things	Beigl
WT 20/21	7500277_0308	Mobile Computing and Internet of Things	Beigl
WT 20/21	7500277_0401	Mobile Computing and Internet of Things	Beigl
WT 20/21	7500277_0503	Mobile Computing and Internet of Things	Beigl
WT 20/21	7500277_1222	Mobile Computing and Internet of Things	Beigl
ST 2021	7500107	Mobile Computing and Internet of Things	Beigl

Legend: 📧 Online, 🧬 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Content
In this practical course, students assemble an ASURO robot in groups of two. Each student will be provided with his own robot, which he has to put into operation. While using the robots, a new set of problems will be solved each week. The students will need to prepare for each week given the provided material. Sets of problem be solved using the C language and focus on controlling the robot’s sensors and actuators as well as on the generation of reflex-based behavior. The course ends with a race, where the robots have to tackle an obstacle course.

Learning Objectives:
The student is able to understand circuit diagrams and can assemble, test and debug complex PCBs. The student is familiar with programming microcontroller-based embedded systems using the C language and cross compilers. The student is able to use methods for controlling robotic sensors and actuators, can conduct experiments with robots and solve tasks in this context independently and in small groups.

Organizational issues
Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 Nr. 3 SPO als Erfolgskontrolle anderer Art und besteht aus mehreren Teilaufgaben. Die Bewertung erfolgt mit den Noten “bestanden” / “nicht bestanden”.
Voraussetzungen: Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.
Arbeitsaufwand: 120 h
Modul für Bachelor Maschinenbau, Mechatronik und Informationstechnik, Elektrotechnik und Informationstechnik
6.104 Course: Modeling and OR-Software: Introduction [T-WIWI-106199]

Responsible: Prof. Dr. Stefan Nickel
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101413 - Applications of Operations Research

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2550490</td>
<td>Modellieren und OR-Software: Einführung</td>
<td>3 SWS</td>
<td>Practical course</td>
<td>Nickel, Pomes, Bakker, Zander</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>00040</td>
<td>Modeling and OR-Software: Introduction</td>
<td></td>
<td></td>
<td>Nickel</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900153</td>
<td>Modeling and OR-Software: Introduction</td>
<td></td>
<td></td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the software laboratory and the following term.

Prerequisites
None

Recommendation

Annotation
Due to capacity restrictions, registration before course start is required. For further information see the webpage of the course.
The lecture is offered in every term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Modellieren und OR-Software: Einführung

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550490</td>
<td>Modellieren und OR-Software: Einführung</td>
<td>3 SWS</td>
<td>Practical course</td>
<td>Nickel, Pomes, Bakker, Zander</td>
</tr>
</tbody>
</table>

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, ...), the software IBM ILOG CPLEX Optimization Studio and the corresponding modeling language OPL will be discussed which can be used to solve OR problems on a computer-aided basis. Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.
6 COURSES

Course: Nonlinear Optimization I [T-WIWI-102724]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Oliver Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Economics and Management</td>
</tr>
</tbody>
</table>
| Part of: | M-WIWI-101936 - Methodical Foundations of OR
M-WIWI-103278 - Optimization under Uncertainty |

<table>
<thead>
<tr>
<th>Type</th>
<th>Written examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4.5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each winter term</td>
</tr>
<tr>
<td>Version</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2 SWS</td>
<td>Nonlinear Optimization I</td>
<td>Lecture / Online</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>2550111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2 SWS</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td>Practice / Online</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>2550112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td></td>
<td>Nonlinear Optimization I</td>
<td>Lecture / Online</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>7900086_WS2021_HK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competition Certificate

The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester. The examination can also be combined with the examination of Nonlinear Optimization II [2550113]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites

The module component exam T-WIWI-103637 "Nonlinear Optimization I and II" may not be selected.

Annotation

Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I

2550111, WS 20/21, 2 SWS, Language: German, Open in study portal

Learning objectives:

The student

- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Literature
O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
6 COURSES

Course: Nonlinear Optimization I and II [T-WIWI-103637]

6.106 Course: Nonlinear Optimization I and II [T-WIWI-103637]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101936 - Methodical Foundations of OR

Type: Written examination
Credits: 9
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 6

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2550111</td>
<td>Nonlinear Optimization I</td>
<td>2</td>
<td>Lecture / 📡</td>
<td>Stein</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2550112</td>
<td>Exercises Nonlinear Optimization I + II</td>
<td></td>
<td>Practice / 📡</td>
<td>Stein</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2550113</td>
<td>Nonlinear Optimization II</td>
<td>2</td>
<td>Lecture / 📡</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Title</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900088_WS2021_HK</td>
<td>Nonlinear Optimization I and II</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legend: 📡 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗐 Cancelled

Competence Certificate
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam. The exam takes place in the semester of the lecture and in the following semester.

Prerequisites
None.

Annotation
Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization I
2550111, WS 20/21, 2 SWS, Language: German, Open in study portal
Lecture (V) Online

Content
The lecture treats the minimization of smooth nonlinear functions without constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions
- Algorithms (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems with constraints forms the contents of the lecture "Nonlinear Optimization II". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands fundamentals of unconstrained nonlinear optimization,
- is able to choose, design and apply modern techniques of unconstrained nonlinear optimization in practice.
Literature
O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Nonlinear Optimization II
2550113, WS 20/21, 2 SWS, Language: German, Open in study portal

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student
- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.

Literature
O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
6.107 Course: Nonlinear Optimization II [T-WIWI-102725]

Responsible: Prof. Dr. Oliver Stein
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101936 - Methodical Foundations of OR

Type: Written examination
Credits: 4.5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 3

Events
WT 20/21 2550112 Exercises Nonlinear Optimization I + II Practice / Stein
WT 20/21 2550113 Nonlinear Optimization II 2 SWS Lecture / Stein

Exams
WT 20/21 7900087_WS2021_HK Nonlinear Optimization II Stein

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The successful completion of the exercises is required for admission to the written exam.

The exam takes place in the semester of the lecture and in the following semester.

The exam can also be combined with the examination of Nonlinear Optimization I [2550111]. In this case, the duration of the written exam takes 120 minutes.

Prerequisites
None.

Annotation
Part I and II of the lecture are held consecutively in the same semester.

Below you will find excerpts from events related to this course:

Nonlinear Optimization II
2550113, WS 20/21, 2 SWS, Language: German, Open in study portal

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, optimality conditions are derived and, based on them, solution algorithms are developed. The lecture is structured as follows:

- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions
- Algorithms (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by exercises which, amongst others, offers the opportunity to implement and to test some of the methods on practically relevant examples.

Remark:
The treatment of optimization problems without constraints forms the contents of the lecture "Nonlinear Optimization I". The lectures "Nonlinear Optimization I" and "Nonlinear Optimization II" are held consecutively in the same semester.

Learning objectives:
The student

- knows and understands fundamentals of constrained nonlinear optimization,
- is able to choose, design and apply modern techniques of constrained nonlinear optimization in practice.
Literature
O. Stein, Grundzüge der Nichtlinearen Optimierung, SpringerSpektrum, 2018

Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
6.108 Course: Optimization under Uncertainty [T-WIWI-106545]

Responsible:	Prof. Dr. Steffen Rebennack
Organisation:	KIT Department of Economics and Management
Part of:	M-WIWI-101413 - Applications of Operations Research
	M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2550464</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2550465</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td>Practice / Online</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2550466</td>
<td>2 SWS</td>
<td>Practice / Online</td>
</tr>
</tbody>
</table>

Exams				
Exams				
WT 20/21	7900240	Optimization under Uncertainty		Rebennack

Legend: ⏯ Online, 🧩 Blended (On-Site/Online), ⬆ On-Site, ✗ Cancelled

Competence Certificate
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites
None.
Course: Personnel Policies and Labor Market Institutions [T-WIWI-102908]

Responsible: Prof. Dr. Petra Nieken
Organisation: KIT Department of Economics and Management
Part of:
- M-WIWI-101513 - Human Resources and Organizations
- M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2573001</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nieken</td>
</tr>
<tr>
<td>ST 2021 2573002</td>
<td>Übungen zu Personalpolitik und Arbeitsmarktinstitutionen</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Nieken, Mitarbeiter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7900202</td>
<td>Personnel Policies and Labor Market Institutions</td>
<td></td>
<td></td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment of this course is a written examination of 1 hour. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. In case of a small number of registrations, we might offer an oral exam instead of a written exam.

Prerequisites

None

Recommendation

Completion of module Business Administration is recommended. Basic knowledge of microeconomics, game theory, and statistics is recommended.

Below you will find excerpts from events related to this course:
Content
The students acquire knowledge about the process and the strategic aspects of collective bargaining about wages. They analyze selected aspects of corporate governance and co-determination in Germany. The lecture also addresses questions of personnel politics and labor market discrimination. Microeconomic and behavioral approaches as well as empirical data is used and evaluated critically.

Aim
The student
- understands the process and role of agents in collective wage bargaining.
- analyzes strategic decisions in the context of corporate governance.
- understands the concept of co-determination in Germany.
- challenges statements that evaluate certain personnel politics.

Workload
The total workload for this course is approximately 135 hours.
Lecture 32 hours
Preparation of lecture 52 hours
Exam preparation 51 hours

Literature

Organizational issues
There are recordings of the lecture contents. There will be live sessions on selected lecture dates. These will be announced at the start of the lecture time.
6.110 Course: Platform Economy [T-WIWI-109936]

Responsible:
- Dr. Verena Dorner
- Prof. Dr. Christof Weinhardt

Organisation:
KIT Department of Economics and Management

Part of:
- M-WIWI-101421 - Supply Chain Management
- M-WIWI-101434 - eBusiness and Service Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2540468</td>
<td>Platform Economy</td>
<td>2</td>
<td>Lecture / 🧩</td>
<td>Dann, Weinhardt</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540469</td>
<td>Übung zu Platform Economy</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Dann, Richter</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Event Name</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900213</td>
<td>Platform Economy</td>
<td></td>
<td>Weinhardt</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online,
- 🧩 Blended (On-Site/Online),
- 🗣️ On-Site,
- 🗑 Canceled

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. Details of the grades will be announced at the beginning of the course.

Prerequisites
See below

Recommendation
None

Below you will find excerpts from events related to this course:

Platform Economy

2540468, WS 20/21, 2 SWS, Language: German, Open in study portal

Lecture (V)
Blended (On-Site/Online)
Literature

6.111 Course: Practical Course Computer Engineering: Hardware Design [T-INFO-102011]

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-101219 - Practical Course Computer Engineering: Hardware Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Basispraktikum TI: Hardwarenaher Systementwurf (findet nicht statt aktuell)</td>
<td>4 SWS</td>
<td>Practical course / 🖥</td>
<td>Karl</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗿 Cancelled
6.112 Course: Practical Course Computer Engineering: Hardware Design Pass [T-INFO-105983]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Wolfgang Karl
Organisation: KIT Department of Informatics
Part of: M-INFO-101219 - Practical Course Computer Engineering: Hardware Design
6.113 Course: Practical Course Web Applications and Service-Oriented Architectures (I) [T-INFO-103119]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: M-INFO-101633 - Practical Course Web Applications and Service-Oriented Architectures (I)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24312</td>
<td>Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I)</td>
<td>2</td>
<td>Practical course / 🖥</td>
<td>Abeck, Hippchen, Schneider, Throner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500029</td>
<td>Practical Course Web Applications and Service-oriented Architectures (I)</td>
<td>Abeck</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗩 On-Site, ❌ Cancelled
6.114 Course: Practical Course: Lego Mindstorms [T-INFO-107502]

Responsible: Prof. Dr.-Ing. Tamim Asfour

Organisation: KIT Department of Informatics

Part of: M-INFO-102557 - Lego Mindstorms - Practical Course

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>3 SWS</td>
<td>Lego Mindstorms - Laboratory</td>
<td>Asfour</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>3 SWS</td>
<td>Lego Mindstorms - Practical Course</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Recommendation

Basic knowledge in JAVA is necessary for successful completion of this course.

Below you will find excerpts from events related to this course:

Lego Mindstorms - Laboratory

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>3 SWS</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Content

In this practical course, teams of three students build and program a mobile robot using Lego Mindstorms and the Java programming language. The robots are challenged to complete a versatile parkour including sections like the traversal of a maze, following a line, crossing a bridge or avoiding obstacle. After initial building of the robots, a section of the parkour will be set up each week and tackled by the robots, for which the students have to prepare their code beforehand. A final race of the robots on the entire parkour will be held at the end of the semester.

Learning Objectives:

The participants are able to design and construct a robot with motors and sensors using the Lego Mindstorms kit. The students are familiar with programming the Lego EV3 components using the Java programming language. They are able to understand and solve several key problems in mobile robotics, such as autonomous navigation, detection of landmarks and objects as well as obstacle avoidance. The students know how to efficiently and independently solve problems in a small group in a given time frame and are able to systematically document their work and results.

Organizational issues

Das Praktikum findet wöchentlich statt.

Nachweis: Die Erfolgskontrolle wird in der Modulbeschreibung erläutert.

Ansprechpartner: Pascal Weiner

E-Mail: pascal.weiner@kit.edu

Empfehlung:

Grundlegende Kenntnisse in Java sind hilfreich, aber nicht zwingend erforderlich. / Basic knowledge in JAVA is helpful but not required.

Arbeitsaufwand: 120 h

Beschreibung:

Die Aufgabenstellungen des Praktikums reichen von Aufbau und Programmierung der Lego EV3-Bausteine mit der Programmiersprache JAVA bis hin zur Lösung spezieller Aufgaben, die im Rahmen eines abschließenden Wettrennens zu lösen sind (Linien folgen, Hindernissen ausweichen, Bahnplanung).

Literature

Wird in der Veranstaltung bekannt gegeben.
6.115 Course: Practical Seminar Interaction [T-WIWI-109935]

Responsible: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104911 - Information Systems & Digital Business: Interaction

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture</th>
<th>Responsable</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2540555</td>
<td>Practical Seminar: Digital Services (Ba)</td>
<td>3</td>
<td>Lecture</td>
<td>Mädche</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900363</td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td>Mädche</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class). In the winter terms, the course is only offered as a seminar.

Prerequisites

None.
6.116 Course: Practical Seminar Platforms [T-WIWI-109937]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-104912 - Information Systems & Digital Business: Platforms

Competence Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class). In the winter terms, the course is only offered as a seminar.

Prerequisites

None.
6.117 Course: Practical Seminar Servitization [T-WIWI-109939]

| Responsible | Prof. Dr. Alexander Mädche
| | Prof. Dr. Gerhard Satzger
| Organisation | KIT Department of Economics and Management
| Part of | M-WIWI-104913 - Information Systems & Digital Business: Servitization

<table>
<thead>
<tr>
<th>Type</th>
<th>Examination of another type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4,5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class). In the winter terms, the course is only offered as a seminar.

Prerequisites

None.
6.118 Course: Practical Seminar: Digital Services [T-WIWI-110888]

Responsible: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-102752 - Fundamentals of Digital Service Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>SW</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2540555</td>
<td>Practical Seminar: Digital Services (Ba)</td>
<td>3</td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Seminar: Information Systems and Service Design</td>
<td></td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment consists of a seminar paper, a presentation of the results and the contribution to the discussion (according to §4(2), 3 of the examination regulation). The final grade is based on the evaluation of each component (seminar paper, oral presentation, and active participation).

Prerequisites

None

Recommendation

None

Annotation

The current range of seminar topics is announced on the KSRI website www.ksri.kit.edu.
6.119 Course: Problem Solving, Communication and Leadership [T-WIWI-102871]

Responsible: Prof. Dr. Hagen Lindstädt
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101425 - Strategy and Organization
M-WIWI-101513 - Human Resources and Organizations

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2577910</td>
<td>Problem solving, communication and leadership</td>
<td>Lecture</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900070</td>
<td>Problem Solving, Communication and Leadership</td>
<td>Lindstädt</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900068</td>
<td>Problem Solving, Communication and Leadership</td>
<td>Lindstädt</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online,
- 🧩 Blended (On-Site/Online),
- 🗣 On-Site,
- ❌ Cancelled

Competence Certificate
The assessment consists of a written exam (30 minutes) (following §4(2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None

Below you will find excerpts from events related to this course:

Problem solving, communication and leadership
2577910, SS 2021, 1 SWS, Language: German, [Open in study portal](#)
Content
The course deals with various aspects of problem solving and communication processes and is divided into two parts. The first part of the course addresses the fundamental steps in the problem-solving process; namely, problem identification, problem structuring, problem analysis and communication of solution. Ideas for structuring problem solving processes will be discussed and the perquisites for and principles of structured communication based on charts and presentations will be explained. The second part of the course addresses important concepts in leadership, including the context-specificity of influence, the choice of leader and the characteristics of employees. The course content reflects current issues in management and communication practice and is oriented toward the practical application of theoretical insights to these issues. In this respect, the course aims to develop interdisciplinary skills.

Learning Objectives:
After passing this course students are able to
- structure problem solving processes.
- apply the principles of focused communication based on charts and presentations.
- understand leadership in the context of situation and personality.

Recommendations:
None.

Workload:
The total workload for this course is approximately 60 hours. For further information see German version.

Assessment:
Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as an open-book examination (examination performance of a different kind according to SPO § 4 para. 2, item 3), or as a 60-minute written examination (written examination according to SPO § 4 para. 2, item 1).

It is expected that the exam will take place at the beginning of the semester’s lecture-free period.
The examination is offered every semester and can be repeated at any regular examination date.

Organizational issues
Blockveranstaltung. Termine werden bekannt gegeben

Literature
Verpflichtende Literatur:
Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.

Ergänzende Literatur:
- Zelazny, Gene; Delker, Christel: Wie aus zahlen Bilder werden, 6. Aufl. Wiesbaden 2008
- Minto, Barbara: Das Prinzip der Pyramide: Ideen klar, verständlich und erfolgreich kommunizieren. 2005
6.120 Course: Process Mining [T-WIWI-109799]

Responsible: Prof. Dr. Andreas Oberweis
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2511204</td>
<td>Process Mining</td>
<td>2</td>
<td>Lecture</td>
<td>Oberweis</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2511205</td>
<td>Exercise Process Mining</td>
<td>1</td>
<td>Practice</td>
<td>Oberweis, Schreiber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900033</td>
<td>Process Mining (Registration until 08 February 2021)</td>
<td>2</td>
<td>Lecture</td>
<td>Oberweis</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7900048</td>
<td>Process Mining (Registration until 12 July 2021)</td>
<td>2</td>
<td>Lecture</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, X Cancelled

Competence Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
None

Annotation
Former name (up to winter semester 2018/1019) "Workflow Management".

Below you will find excerpts from events related to this course:

Process Mining

2511204, SS 2021, 2 SWS, Language: German, Open in study portal
Content
The area of process mining covers approaches which aim at deducting new knowledge on the basis of logfiles generated by information systems. Such information systems are e.g., workflow-management-systems which are used for an efficient control of processes in enterprises and organisations. The lecture introduces the foundations of processes and respective modeling and analysis techniques. In the following, the foundations of process mining and the three classical types of approaches - discovery, conformance and enhancement - will be taught. In addition to the theoretical basics, tools, application scenarios in practice and open research questions are covered as well.

Learning objectives:
Students
- understand the concepts and approaches of process mining and know how they are applied,
- create and evaluate business process models,
- analyze static and dynamic properties of workflows,
- apply approaches and tools of process mining.

Recommendations:
Knowledge of course Applied Informatics - Modelling is expected.

Workload:
- Lecture 30h
- Exercise 15h
- Preparation of lecture 24h
- Preparation of exercises 25h
- Exam preparation 40h
- Exam 1h

Literature

Weitere Literatur wird in der Vorlesung bekannt gegeben.
6.121 Course: Production Economics and Sustainability [T-WIWI-102820]

Responsible: Prof. Dr. Frank Schultmann
Dr.-Ing. Rebekka Volk
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101437 - Industrial Production I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 20/21 | 2581960 | Production Economics and Sustainability | 2 SWS | Lecture / 🖥 | Volk, Schultmann |

Exams

| WT 20/21 | 7981960 | Production Economics and Sustainability | Schultmann |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of an oral (30 minutes) or written exam (60 minutes) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Below you will find excerpts from events related to this course:

Production Economics and Sustainability

2581960, WS 20/21, 2 SWS, Language: German, [Open in study portal](#)

Lecture (V) Online

Content

The analysis and management of material flows on the company level and above will be the focus of this lecture. Herein, the discussion will be about cost-effective and environmentally acceptable steps to avoid, abate and recycle emissions and waste as well as ways of efficient resources handling. As methods material flow analysis (MFA), life cycle assessment (LCA) and OR methods, e.g. for decision support, are introduced.

Topics:
- regulations related to materials and substances
- raw materials, reserves and their availabilities/lifetimes
- material and substance flow analysis (MFA/SFA)
- material related ecoprofiles, e.g. Carbon Footprint
- LCA
- resource efficiency
- emission abatement
- waste management and closed-loop recycling
- raw material oriented production systems
- environmental management (EMAS, ISO 14001, Ecoprofit), eco-controlling

Literature

wird in der Veranstaltung bekannt gegeben
Course: Programming [T-INFO-101531]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of:
M-INFO-101174 - Programming
M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Programming</td>
<td>4 SWS</td>
<td>Koziolek</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Programming</td>
<td></td>
<td>Koziolck</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Programming</td>
<td></td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Week</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Programming</td>
<td></td>
<td>Koziolck</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
-🗙 Cancelled
6.123 Course: Programming Pass [T-INFO-101967]

Responsible: Prof. Dr.-Ing. Anne Koziolæk
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of:
M-INFO-101174 - Programming
M-WIWI-104843 - Orientation Exam

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24004</td>
<td>Programming</td>
<td>4</td>
<td>Lecture / Practice (/ Koziolek)</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500074</td>
<td>Programming Pass</td>
<td>Koziolek</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500022</td>
<td>Programming Pass</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🎤 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled
6.124 Course: Project Management in Practice [T-INFO-101976]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-105589 - Introduction to Data and Information Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1,5</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Below you will find excerpts from events related to this course:

Project Management in Practice
2400019, SS 2021, 2 SWS, Language: German, Open in study portal

Lecture (V)
Online

Content
At the end of the course, the participants:

- Know the principles of project management and are able to make use of them in real-world case studies.
- Have profound knowledge about project phases, principles of project planning, fundamental elements such as project charter & scope definitions, descriptions of project goals, activity planning, milestones, project-structure plans, agenda and cost planning and risk management. Further, they know principle elements of project implementation, crisis management, escalation and, last but not least, project-termination activities.
- Understand and are able to adopt the fundamentals of planning as well as the subjective factors which are relevant in a project. This includes topics such as communication, group processes, teambuilding, leadership, creative solution methods and risk-assessment methods.

The following key skills are taught:

- Project planning
- Project control
- Communication
- Leadership behavior
- Crisis management
- Identification of and solutions of difficult situations
- Team building
- Motivation (of oneself and of others)

Organizational issues
Die Plätze sind begrenzt und die Anmeldung findet durch das Sekretariat Prof. Böhm statt.

Termine
FR, 16. 4. von 13:00 bis 18:00 Uhr
SA, 17.4. von 9:00 bis 15:30 Uhr
FR, 23.4. von 13:00 bis 18:00 Uhr
SA, 24.4. von 9:00 bis 15:30 Uhr
6.125 Course: Public Law I & II [T-INFO-110300]

Responsible: Dr. Johannes Eichenhofer
Organisation: KIT Department of Informatics
Part of: M-INFO-105247 - Constitutional and Administrative Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Date</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24016</td>
<td>Öffentliches Recht I - Grundlagen</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>2021</td>
<td>Eichenhofer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>24520</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>2021</td>
<td>Eichenhofer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Title</th>
<th>Date</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500138</td>
<td>Public Law I & II</td>
<td>2021</td>
<td>Eichenhofer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500298</td>
<td>Public Law I & II</td>
<td>2021</td>
<td>Eichenhofer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗐 Cancelled
6 COURSES

Course: Public Revenues [T-WIWI-102739]

6.126 Course: Public Revenues [T-WIWI-102739]

- **Responsible:** Prof. Dr. Berthold Wigger
- **Organisation:** KIT Department of Economics and Management
- **Part of:**
 - M-WIWI-101403 - Public Finance
 - M-WIWI-101499 - Applied Microeconomics
 - M-WIWI-101668 - Economic Policy I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2021</th>
<th>2560120</th>
<th>Public Revenues</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Wigger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST 2021</td>
<td>2560121</td>
<td>Übung zu Öffentliche Einnahmen</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>WT 20/21</th>
<th>790oeff</th>
<th>Public Revenues</th>
<th>Wigger</th>
</tr>
</thead>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Recommendation

Basic knowledge of Public Finance is required.

Below you will find excerpts from events related to this course:

Public Revenues

2560120, SS 2021, 2 SWS, Language: German, [Open in study portal]

Content

The Public Revenues lecture is concerned with the theory and policy of taxation and public dept. In the first chapter, fundamental concepts of taxation theory are introduced, whereas the second chapter deals with key elements of the German taxation system. The allocative and distributive effects of different taxation types are examined in chapter three and four. Chapter five integrates both allocative and distributive components in order to derive a theory of optimal taxation. The core of the sixth chapter is represented by international aspects of taxation. The debt part begins with a description of the extent and structure of public dept in chapter seven. In the following chapter, macroeconomic theories of national dept are evolved, while chapter nine is concerned with its long term consequences when employed as a regular instrument of budgeting. Finally, the tenth chapter deals with constitutional limits to public debt-incurring.

Learning goals:

See German version.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.

Literature

6.127 Course: Public Sector Finance [T-WIWI-109590]

Responsible: Prof. Dr. Berthold Wigger
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101403 - Public Finance

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lectures</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>3 SWS</td>
<td>Lecture / 🗣️</td>
<td>Wigger, Groh</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Lectures</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>1h</td>
<td>Written exam</td>
<td>Wigger</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on the further pandemic development in the summer semester 2021 the assessment will consist either of an open book exam (following Art. 4, para. 2, clause 3 of the examination regulation), or of an 1h written exam (following Art. 4, para. 2, clause 1 of the examination regulation).

Prerequisites

None

Annotation

Previous title until winter semester 2018/19 "Municipal Finance".

Below you will find excerpts from events related to this course:

Content

The course Municipal Finance addresses the theory and policy of municipal revenues and spending including grants, municipal revenue equalisation, taxation as well as municipal and public enterprises.

At the beginning of the course, fundamental concepts of taxation theory as well as key elements of the German taxation system are introduced. The allocative and distributive effects of different taxation methods are examined thereafter and are combined within the theory of optimal taxation. The following chapter is concerned with municipal borrowing and illustrates ways to acquire additional funding. After addressing the extent, structure and variety of municipal borrowing, macroeconomic theories are introduced and applied to the municipal sector. In the course of this final chapter, special attention will be paid to the long term consequences and the sustainability of municipal borrowing as a means of budgeting.

Learning goals:

The students:

- are familiar with the theory and policy of municipal revenues and spending,
- are able to evaluate the allocative and distributive effects of different kinds of municipal revenues and spending,
- understand the extent, structure and variety of municipal budgeting and are able to assess long term consequences of municipal revenues and spending.

Workload:

The total workload for this course is approximately 135.0 hours. For further information see German version.
Literature

- Diverse Veröffentlichungen des Innenministeriums und Finanzministeriums Baden-Württemberg.
6.128 Course: Real Estate Management I [T-WIWI-102744]

Responsible: Prof. Dr.-Ing. Thomas Lützkendorf

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101466 - Real Estate Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2586400</td>
<td>Real Estate Management I</td>
<td>2</td>
<td>Lecture</td>
<td>Lützkendorf, Worschech</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2586401</td>
<td>Übungen zu Real Estate Management I</td>
<td>2</td>
<td>Practice</td>
<td>Worschech</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Description</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900249</td>
<td>Real Estate Management I</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900316</td>
<td>Real Estate Management I</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Prerequisites
None

Annotation
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

Below you will find excerpts from events related to this course:
Content
The course Real Estate Management I deals with questions concerning the economy of a single building throughout its lifecycle. Among other topics this includes project development, location and market studies, German federal building codes as well as finance and assessment of economic efficiency.

The tutorial recesses the contents of the course by means of practical examples and, in addition to that, goes into the possible use of software tools.

The course Real Estate Management I deals with questions concerning the economy of a single building throughout its lifecycle. Among other topics this includes project development, location and market studies, German federal building codes as well as finance and assessment of economic efficiency.

The tutorial recesses the contents of the course by means of practical examples and, in addition to that, goes into the possible use of software tools.

The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

Recommendations:
A combination with the module Design Construction and Assessment of Green Buildings I [WW3BWLOOW1] is recommended.

Furthermore it is recommended to choose courses of the following fields:

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

The total workload for this course is approximately 135.0 hours. For further information see German version.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (winter semester). Re-examinations are offered at every ordinary examination date.

Literature
Weiterführende Literatur:

6.129 Course: Real Estate Management II [T-WIWI-102745]

Responsibility: Prof. Dr.-Ing. Thomas Lützkendorf

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101466 - Real Estate Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>2585400</th>
<th>Real Estate Management II</th>
<th>2 SWS</th>
<th>Lecture / 📏</th>
<th>Lützkendorf, Worschech</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2585401</td>
<td>Übung zu Real Estate Management II</td>
<td>2 SWS</td>
<td>Practice / 📏</td>
<td>Worschech</td>
</tr>
</tbody>
</table>

Legend: 📏 Online, 🧩 Blended (On-Site/Online), ☑️ On-Site, ✗ Canceled

Competence Certificate

Depending on further pandemic developments, the exam will be offered in the summer semester 2021 either as a 60-minute upload exam (Open Book Exam @ Home), or as a 60-minute exam (written exam according to SPO § 4 Abs. 2, Pkt. 1).

Prerequisites

None

Recommendation

A combination with the module Design Construction and Assessment of Green Buildings I is recommended. Furthermore it is recommended to choose courses of the following fields

- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Annotation

The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

Below you will find excerpts from events related to this course:

<table>
<thead>
<tr>
<th>V</th>
<th>Real Estate Management II</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2585400, SS 2021, 2 SWS, Language: German, Open in study portal</td>
<td>Online</td>
</tr>
</tbody>
</table>
Content
The course Real Estate Management II gives special attention to topics in connection to the management of large real estate portfolios. This especially includes property valuation, market and object rating, maintenance and modernization, as well as real estate portfolio and risk management. The tutorial provides examples in order to practice the application of theoretical knowledge to practical problems.

The course is replenished by excursions and guest lectures by practitioners out of the real estate business.

The student
- has an in-depth knowledge on the economic classification and significance of the real estate industry
- has a critical understanding of essential theories, methods and instruments of the real estate industry
- is able to analyze and evaluate activity areas and functions in real estate companies as well as to prepare or to take decisions

Recommendations:
A combination with the module Design Construction and Assessment of Green Buildings I [WW3BWLOOW1] is recommended.
Furthermore it is recommended to choose courses of the following fields
- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

The total workload for this course is approximately 135.0 hours. For further information see German version.

The assessment consists of a written exam (60 minutes) (following §4(2), 1 of the examination regulation). The exam takes place two times only in the semester in which the lecture is takes place (summer semester). Reexaminations are offered at every ordinary examination date.

Literature
Weiterführende Literatur:
6.130 Course: Real-Time Systems [T-INFO-101340]

Responsible: Prof. Dr.-Ing. Thomas Längle
Organisation: KIT Department of Informatics
Part of: M-INFO-100803 - Real-Time Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
</table>
| ST 2021 | 24576 | Real-Time Systems | 4 | Lecture / Practice (/)
| | | | | Längle, Ledermann, Huck |

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>750002</td>
<td>Real-Time Systems</td>
<td>Längle</td>
</tr>
<tr>
<td>ST 2021</td>
<td>750002</td>
<td>Real-Time Systems</td>
<td>Längle</td>
</tr>
</tbody>
</table>

Legend: ⚫ Online, ⚪ Blended (On-Site/Online), ⚬ On-Site, ☎ Cancelled

Responsibility: PD Dr. Patrick Jochem
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101464 - Energy Economics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 2581012</td>
<td>3.5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
<tr>
<td>Lecture / [Online]</td>
<td>Jochem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credit</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7981012</td>
<td>3.5</td>
<td>Renewable Energy – Resources, Technologies and Economics</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>4</td>
</tr>
<tr>
<td>Fichtner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: [Online], [Blended (On-Site/Online)], [On-Site], [Cancelled]

Competence Certificate
The assessment consists of a written exam (60 minutes, in English, answers are possible in German or English) (following §4(2) of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date. Depending on the respective pandemic situation, the exam may be offered as an open book exam (alternative exam assessment, following §4(2), 3 of the examination regulation).

Prerequisites
None.

Below you will find excerpts from events related to this course:

V Renewable Energy – Resources, Technologies and Economics
2581012, WS 20/21, 2 SWS, Language: English, [Open in study portal]

Content
1. General introduction: Motivation, Global situation
2. Basics of renewable energies: Energy balance of the earth, potential definition
3. Hydro
4. Wind
5. Solar
6. Biomass
7. Geothermal
8. Other renewable energies
9. Promotion of renewable energies
10. Interactions in systemic context
11. Excursion to the "Energieberg" in Mühlburg

Learning Goals:
The student
- understands the motivation and the global context of renewable energy resources.
- gains detailed knowledge about the different renewable resources and technologies as well as their potentials.
- understands the systemic context and interactions resulting from the increased share of renewable power generation.
- understands the important economic aspects of renewable energies, including electricity generation costs, political promotion and marketing of renewable electricity.
- is able to characterize and where required calculate these technologies.

Organizational issues
siehe Institutsaushang

Information Systems B.Sc.
Module Handbook as of 09/04/2021
Literature
Weiterführende Literatur:

6.132 Course: Robotics I - Introduction to Robotics [T-INFO-108014]

Responsible: Prof. Dr.-Ing. Tamim Asfour
Organisation: KIT Department of Informatics
Part of: M-INFO-100893 - Robotics I - Introduction to Robotics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2424152</td>
<td>Robotics I - Introduction to Robotics</td>
<td>Lecture</td>
<td>3/1 SWS</td>
<td>Asfour</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500106</td>
<td>Robotics I - Introduction to Robotics</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500218</td>
<td>Robotik I - Einführung in die Robotik</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🥑 Online, 🟢 Blended (On-Site/Online), 🟠 On-Site, ✗ Cancelled
6.133 Course: Security [T-INFO-101371]

Responsible: Prof. Dr. Dennis Hofheinz
Prof. Dr. Jörn Müller-Quade

Organisation: KIT Department of Informatics

Part of: M-INFO-100834 - Security

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credit</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>24941</td>
<td>Security</td>
<td>3</td>
<td>Lecture / 🖥️</td>
<td>Müller-Quade, Strufe</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500290</td>
<td>Security</td>
<td>Müller-Quade, Strufe</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7524941</td>
<td>Security</td>
<td>Müller-Quade, Strufe</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
6.134 Course: Selling IT-Solutions Professionally [T-INFO-101977]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr.-Ing. Klemens Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Informatics</td>
</tr>
<tr>
<td>Part of</td>
<td>M-INFO-105589 - Introduction to Data and Information Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>1.5</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Semantic Web Technologies [T-WIWI-110848]

Responsible: Tobias Christof Käfer
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101438 - Semantic Knowledge Management
M-WIWI-101440 - Information Services in Networks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>WS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2511310</td>
<td>Semantic Web Technologies</td>
<td>2</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Färber, Käfer, Heling</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2511311</td>
<td>Exercises to Semantic Web Technologies</td>
<td>1</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td></td>
<td>Färber, Käfer, Heling</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>7900022</th>
<th>Semantic Web Technologies (Registration until 08 February 2021)</th>
<th>Sure-Vetter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7900028</td>
<td>Semantic Web Technologies (Registration until 12 July 2021)</td>
<td>Färber</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
None

Recommendation
Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required.

Below you will find excerpts from events related to this course:

Semantic Web Technologies
2511310, SS 2021, 2 SWS, Language: English, Open in study portal
Content

The aim of the Semantic Web is to make the meaning (semantics) of data on the web usable in intelligent systems, e.g. in e-commerce and internet portals.

Central concepts are the representation of knowledge in form of RDF and ontologies, the access via Linked Data, as well as querying the data by using SPARQL. This lecture provides the foundations of knowledge representation and processing for the corresponding technologies and presents example applications.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:

The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:

Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Workload:

- The total workload for this course is approximately 135 hours
- Time of presentness: 45 hours
- Time of preperation and postprocessing: 60 hours
- Exam and exam preparation: 30 hours

Literature

Weitere Literatur

Content
The exercises are related to the lecture Semantic Web Technologies.

Multiple exercises are held that capture the topics, held in the lecture Semantic Web Technologies, and discuss them in detail. Thereby, practical examples are given to the students in order to transfer theoretical aspects into practical implementation.

The following topics are covered:

- Resource Description Framework (RDF) and RDF Schema (RDFS)
- Web Architecture and Linked Data
- Web Ontology Language (OWL)
- Query language SPARQL
- Rule languages
- Applications

Learning objectives:
The student

- understands the motivation and foundational ideas behind Semantic Web and Linked Data technologies, and is able to analyse and realise systems
- demonstrates basic competency in the areas of data and system integration on the web
- masters advanced knowledge representation scenarios involving ontologies

Recommendations:
Lectures on Informatics of the Bachelor on Information Systems (Semester 1-4) or equivalent are required. Knowledge of modeling with UML is required.

Literature

Weitere Literatur
Course: Seminar in Business Administration (Bachelor) [T-WIWI-103486]

Responsible: Professorenschaft des Fachbereichs Betriebswirtschaftslehre

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101826 - Seminar Module Economic Sciences

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2500019</td>
<td>Digital Citizen Science</td>
<td>2</td>
<td>Seminar</td>
<td>Weinhardt, Volkamer, Mayer</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2500125</td>
<td>Current Topics in Digital Transformation Seminar</td>
<td>3</td>
<td>Seminar</td>
<td>Mädche</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2530374</td>
<td>Machine Learning for Business Applications</td>
<td>2</td>
<td>Seminar</td>
<td>Ulrich</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2530580</td>
<td>Seminar in Finance</td>
<td>2</td>
<td>Seminar</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2530610</td>
<td>Seminar in Financial Economics</td>
<td>2</td>
<td>Seminar</td>
<td>Thimme</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540473</td>
<td>Data Science in Service Management</td>
<td>2</td>
<td>Seminar</td>
<td>Haubner, Dann, Badewitz, Stoeckel</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540475</td>
<td>Electronic Markets & User behavior</td>
<td>2</td>
<td>Seminar</td>
<td>Knierim</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540477</td>
<td>Digital Experience and Participation</td>
<td>2</td>
<td>Seminar</td>
<td>Straub, Peukert, Hoffmann, Pusmaz, Willrich, Kloeper, Jegert, Greif-Winzrieth</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540478</td>
<td>Smart Grids and Energy Markets</td>
<td>2</td>
<td>Seminar</td>
<td>Staudt, Richter, Huber, vom Scheidt, Golla, Schmidt, Henni, Meinke</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540524</td>
<td>Bachelor Seminar aus Data Science</td>
<td>2</td>
<td>Seminar</td>
<td>Geyer-Schulz, Schweizer, Nazemi</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2540557</td>
<td>Information Systems and Service Design Seminar</td>
<td>3</td>
<td>Seminar</td>
<td>Mädche</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2545010</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>2</td>
<td>Seminar</td>
<td>Terzidis, Tittel</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2545011</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>2</td>
<td>Seminar</td>
<td>Böhrer, Terzidis</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2573010</td>
<td>Seminar: Human Resources and Organizations (Bachelor)</td>
<td>2</td>
<td>Seminar</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2573011</td>
<td>Seminar: Human Resource Management (Bachelor)</td>
<td>2</td>
<td>Seminar</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2579919</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2</td>
<td>Seminar</td>
<td>Riar, Wouters, Ebinger</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2581976</td>
<td>Seminar in Production and Operations Management I</td>
<td>2</td>
<td>Seminar</td>
<td>Glöser-Chahoud, Schultmann</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2581977</td>
<td>Seminar in Production and Operations Management II</td>
<td>2</td>
<td>Seminar</td>
<td>Volk, Schultmann</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2581978</td>
<td>Seminar in Production and Operations Management III</td>
<td>2</td>
<td>Seminar</td>
<td>Wiens, Schultmann</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2581980</td>
<td></td>
<td>2</td>
<td>Seminar</td>
<td>Yilmaz, Fraunholz, Dehler-Holland, Kraft</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2581981</td>
<td></td>
<td>2</td>
<td>Seminar</td>
<td>Ardone, Sandmeier, Scharnhorst</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2581990</td>
<td></td>
<td>2</td>
<td>Seminar</td>
<td>Schumacher, Schultmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2500125</td>
<td>Current Topics in Digital Transformation Seminar</td>
<td>3 SWS</td>
<td>Seminar / 🧩</td>
<td>Mädche</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---</td>
<td>-------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2530293</td>
<td>Seminar in Finance (Bachelor, Prof. Ruckes)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Ruckes, Luedecke, Hoang, Benz, Wiegratz, Strych, Silbereis</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2530374</td>
<td>Machine Learning for Business Applications</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Ulrich</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2530610</td>
<td>Seminar Financial Economics</td>
<td></td>
<td>Seminar / 🧩</td>
<td>Thimme</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2540473</td>
<td>Business Data Analytics</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Dann, Stoeckel, Grote, Badewitz</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2540477</td>
<td>Digital Experience & Participation</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Peukert, Greif-Winzrieth</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2540478</td>
<td>Smart Grid Economics & Energy Markets</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Staudt, Huber, Richter, vom Scheidt, Golla, Henzi, Schmidt, Meinke, Qu</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2540524</td>
<td>Bachelor Seminar in Data Science and Machine</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Geyer-Schulz, Schweigert, Schweizer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2540557</td>
<td>Information Systems and Service Design Seminar</td>
<td>3 SWS</td>
<td>Seminar / 🧩</td>
<td>Mädche</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2540588</td>
<td>Economic Psychology in Action</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Liu</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2545010</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Eckerle, Terzidis, Hirte</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2545011</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Böhrer, Terzidis</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2571180</td>
<td>Seminar in Marketing und Vertrieb (Master)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Klarmann, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2573010</td>
<td>Seminar Human Resources and Organizations</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2573011</td>
<td>Seminar Human Resource Management (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2579909</td>
<td>Seminar Management Accounting</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Wouters, Hammann, Disch</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2579919</td>
<td>Seminar in Management Accounting - Special</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Ebinger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>2581030</td>
<td>Seminar Energiewirtschaft IV</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Plötz</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2581977</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Volk, Schultmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Fichtner</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2581990</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Exams

WT 20/21 00042 Seminar Business Data Analytics Weinhardt
WT 20/21 7900017 Seminar Smart Grid and Energy Markets Weinhardt
WT 20/21 7900085 Entrepreneurship Basics (Track 1) Terzidis
WT 20/21 7900087 Entrepreneurship Basics (Track 2) Terzidis
WT 20/21 7900125 Current Topics in Digital Transformation Seminar Mädche
WT 20/21 7900157 Seminar Human Resources and Organizations (Bachelor) Nieken
WT 20/21 7900161 Seminar Human Resource Management (Bachelor) Nieken
WT 20/21 7900165 Seminar Digital Experience and Participation Weinhardt
WT 20/21 7900175 Seminar in Finance (Bachelor) Uhrig-Homburg
WT 20/21 7900203 Seminar in Finance Uhrig-Homburg
WT 20/21 7900220 Machine Learning for Business Applications Ulrich
WT 20/21 7900233 Information Systems and Service Design Seminar Mädche
WT 20/21 7900279 Seminar Financial Economics (Bachelor) Thimme
WT 20/21 7900327 Electronic Markets & User behavior (Seminar) Weinhardt
WT 20/21 7900330 Seminar Digital Citizen Science Weinhardt
WT 20/21 79-2579919-B Seminar Management Accounting - Special Topics (Bachelor) Wouters
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Digital Citizen Science
2500019, WS 20/21, 2 SWS, Language: German/English, Open in study portal
Content

Digital Citizen Science is an innovative approach to conduct field research - interactively and in the real world. Especially in times of social distancing measures essential questions about how private lives are changing are investigated. Who is experiencing more stress during HomeOffice hours? Who is flourishing while learning at home because flow is experienced more often? Which formats of digital cooperation are fostering social contacts and bonding? These and other questions that target the main topic: Well-being @Home are focused in these seminar projects.

The seminar theses are supervised by academics from multiple institutes that are working together on the topic of Digital Citizen Science arbeiten. Involved are the research groups of Prof. Mädche, Prof. Nieken, Prof. Scheibehenne, Prof. Szech, Prof. Volkamer, Prof. Weinhardt and Prof. Woll.

Machine Learning for Business Applications
2530374, WS 20/21, 2 SWS, Language: English, [Open in study portal]

Content

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations.

In this seminar we will apply modern machine learning techniques hands on to various business applications.

Organizational issues
Blockseminar tba

Data Science in Service Management
2540473, WS 20/21, 2 SWS, Language: German/English, [Open in study portal]

Content

wird auf deutsch und englisch gehalten

Organizational issues
Blockveranstaltung, siehe WWW

Bachelor Seminar aus Data Science
2540524, WS 20/21, 2 SWS, Language: German, [Open in study portal]

Literature

Weiterführende Literatur:

Entrepreneurship Basics (Track 1)
2545010, WS 20/21, 2 SWS, Language: German, [Open in study portal]
Content
The seminar introduces students to basic concepts of business planning for entrepreneurs. This involves concepts for the concretization of business ideas (development of business models), market potential estimation, resource planning, etc. as well as the creation of an executable business plan (with or without VC financing).

The primary focus of the seminar is on working with the Business Model Canvas and developing a value proposition.

Learning objectives:
After attending, students have learned how to use a structured process to take the first steps in starting a business to identify and minimize their most important risks. In particular, they have practical experience in identifying and validating 1) relevant customer issues, 2) designing and testing solutions to these problems, 3) targeting and assessing their accessibility, and 4) their willingness to pay. In doing so, they have learned to know and apply the business model canvas, methods for developing value propositions, rapid prototyping and target group interviews. In addition, they have learned to work efficiently in a team through the use of communication strategies.

Credentials:
Registration is via the Wiwi portal.
Exam:
Presentation + active participation + paper.
Target group:
Bachelor students

Entrepreneurship Basics (Track 2)
2545011, WS 20/21, 2 SWS, Language: German, Open in study portal

Content
The seminar introduces students to basic concepts of business planning for entrepreneurs. This involves concepts for the concretization of business ideas (development of business models), market potential estimation, resource planning, etc. as well as the creation of an executable business plan (with or without VC financing).

The primary focus of the seminar is on working with the Business Model Canvas and developing a value proposition.

Learning objectives:
After attending, students have learned how to use a structured process to take the first steps in starting a business to identify and minimize their most important risks. In particular, they have practical experience in identifying and validating 1) relevant customer issues, 2) designing and testing solutions to these problems, 3) targeting and assessing their accessibility, and 4) their willingness to pay. In doing so, they have learned to know and apply the business model canvas, methods for developing value propositions, rapid prototyping and target group interviews. In addition, they have learned to work efficiently in a team through the use of communication strategies.

Credentials:
Registration is via the Wiwi portal.
Exam:
Presentation + active participation + paper.
Target group:
Bachelor students

Seminar: Human Resources and Organizations (Bachelor)
2573010, WS 20/21, 2 SWS, Language: German, Open in study portal
Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Blockveranstaltung siehe Homepage

Seminar: Human Resource Management (Bachelor)
2573011, WS 20/21, 2 SWS, Language: German, Open in study portal
Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student
- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Seminar Management Accounting - Special Topics
2579919, WS 20/21, 2 SWS, Language: English, Open in study portal
Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:

- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Examination:

- The performance review is carried out in the form of a “Prüfungsleistung anderer Art” (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Workload:

- The total workload for this course is approximately 90 hours. For further information see German version.

Note:

- Maximum of 16 students.

Literature
Will be announced in the course.

Machine Learning for Business Applications

2530374, SS 2021, 2 SWS, Language: English, [Open in study portal](#)

Content
The digitalization is not only changing today’s society but also companies’ business models, in particular of the financial industry. In general, the large variety of digitalized processes and connected devices (Industry 4.0) generates a huge amount of data which can be used to extract valuable (investment) insights. For this task data science skills are essential.

In this seminar we will use modern data science techniques to analyze all kinds of financial and economic data, ranging from big data intra-day option prices to alternative datasets, like textual statements. For this empirical analysis we will use the state of the art Python programming language.

In a bi-weekly schedule you and your supervisor will first learn and discuss important data science concepts and then apply it in a practical FinTech-type analysis using real-world data. As a prerequisite students should already have basic finance knowledge.

Organizational issues
Blockseminar tba

Information Systems and Service Design Seminar

2540557, SS 2021, 3 SWS, Language: English, [Open in study portal](#)
Content
With this seminar, we aim to provide students with the possibility to independently work on state-of-the-art research topics in addition to the knowledge gained in the lectures of the research group ISSD (Prof. Mädche). The research group "Information Systems & Service Design" (ISSD) headed by Prof. Mädche focuses in research, education, and innovation on designing interactive intelligent systems. It is positioned at the intersection of Information Systems and Human-Computer Interaction (HCI).

In the seminar, participants will get deeper insights in a contemporary research topic in the field of information systems, specifically interactive intelligent systems.

The actual seminar topics will be derived from current research activities of the research group. Our research assistants offer a rich set of topics from our research clusters (digital experience and participation, intelligent enterprise systems, or digital services design & innovation). Students can select among these topics individually depending on their personal interests. The seminar is carried out in the form of a literature-based thesis project. In the seminar, students will acquire the important methodological skills of running a systematic literature review.

Learning Objectives

- focus on a contemporary topic at the intersection of Information Systems and Human-Computer Interaction (HCI), specifically interactive intelligent systems
- carry out a structured literature search for a given topic
- aggregate the collected information in a suitable way to present and extract knowledge
- write a seminar thesis following academic writing standards
- deliver a presentation in a scientific context in front of an auditorium

Prerequisites
No specific prerequisites are required for the seminar.

Literature
Further literature will be made available in the seminar.

Organizational issues
Termine werden bekannt gegeben

Economic Psychology in Action

2540588, SS 2021, 2 SWS, Language: English, [Open in study portal](#)

Content
Description

This blocked event contains 3 stages.

- **Stage 1**: Students meet online for one day and experience recent economic psychology research as participants. The research topics will mainly consist of novel economic games with certain level of strategic depth (i.e., we will not play simple games like rock paper scissors, nor will we play games that many people are familiar with like the prisoner’s dilemma).

- **Stage 2**: Students will receive the data from the games they played in Stage 1 along with a few journal articles assigned by the instructor on related topics. Based on reading, they choose one of the datasets from Stage 1 to write up a short report.

- **Stage 3**: Students will try to design and conduct a study on a related topic themselves based on what they have learned in the previous stages. They will collect their own data and write a research report. The nature of this project is to be determined together by the students and instructor. It would either be ideas generated by the students themselves, or something assigned by the instructor.

English will be the language used in all discussions, course materials, and assessments.

Competence Certificate
The assessment is based on the short report in Stage 2 and the research report in Stage 3.

Workload
Students are expected to spend a total of 90 hours (30 hours per ECTS), including meeting and assignments, on this seminar.

Organizational issues
Blockveranstaltung. Termine werden bekanntgegeben
Seminar Human Resources and Organizations (Bachelor)
2573010, SS 2021, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student

- looks critically into current research topics in the fields of human resources and organizations.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Human Resource Management (Bachelor)
2573011, SS 2021, 2 SWS, Language: German, Open in study portal

Content
The topics are redefined each semester on basis of current research topics. The topics will be announced on the website of the Wiwi-Portal.

Aim
The student

- looks critically into current research topics in the fields of Human Resource Management and Personnel Economics.
- trains his / her presentation skills.
- learns to get his / her ideas and insights across in a focused and concise way, both in oral and written form, and to sum up the crucial facts.
- cultivates the discussion of research approaches.

Workload
The total workload for this course is: approximately 90 hours.
Lecture: 30h
Preparation of lecture: 45h
Exam preparation: 15h

Literature
Selected journal articles and books.

Organizational issues
Geb. 05.20, Raum 2A-12.1, Termine werden bekannt gegeben

Seminar Management Accounting
2579909, SS 2021, 2 SWS, Language: English, Open in study portal
Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. You are to a large extent free to select your own topic. The seminar course is concentrated in four meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a “Prüfungsleistung anderer Art” (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:
- Maximum of 16 students.

Organizational issues
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature
Will be announced in the course.

Seminar in Management Accounting - Special Topics
2579919, SS 2021, 2 SWS, Language: English, Open in study portal

Content
The course will be a mix of lectures, discussions, and student presentations. Students will write a paper in small groups, and present this in the final week. Topics are selectively prediscibed. The seminar course is concentrated in several meetings that are spread throughout the semester.

Learning objectives:
- Students are largely independently able to identify a distinct topic in Management Accounting,
- Students are capable to research the topic, analyze the information, to conceptualize and deduct fundamental principles and relationships from relatively unstructured information,
- Students can afterwards logically and systematically present the results in writing and as an oral presentation, following a scientific approach (structuring, terminology, sources).

Workload:
- The total workload for this course is approximately 90 hours. For further information see German version.

Examination:
- The performance review is carried out in the form of a “Prüfungsleistung anderer Art” (following § 4 (2) No. 3 of the examination regulation), which in this case is an essay the seminar participants prepare in group work.
- The final grade of the course is the grade awarded to the paper.

Note:
- Maximum of 16 students.

Organizational issues
Geb.05.20, 2A-12.1; Termine werden bekannt gegeben

Literature
Will be announced in the course.
Course: Seminar in Economics (Bachelor) [T-WIWI-103487]

Responsible: Professorenschaft des Fachbereichs Volkswirtschaftslehre
Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101826 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Topics in Political Economy (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Morals & Social Behavior (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Topics in Political Economy (Master)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Selected aspects of European transport planning and -modelling</td>
<td>1 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Wirtschaftspolitisches Seminar</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Seminar zur Luftverkehrspolitik</td>
<td>Seminar</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Overcoming the Corona Crisis, Seminar Morals and Social Behavior (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Markets for Attention and the Digital Economy Seminar on Topics in Political Economy (Master)</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams:

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Seminar Digital Markets (Bachelor)</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar in Economics (Bachelor/Master)</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar in Macroeconomics</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Topics in Econometrics. Seminar in Economics</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Data Mining, Seminar in Economics (Bachelor)</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Time and Risk Preferences: Theory and Empirics</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar in Economics (Bachelor): Corona</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Topics in Experimental Economics</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar in Economics (Bachelor)</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Seminar in Macroeconomics I</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Markets for Attention and the Digital Economy (Bachelor)</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Overcoming the Corona Crisis (Bachelor)</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Seminar in Macroeconomics II</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Social Preferences in Behavioral Economics</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>Seminar Death, Mistake & Fraud in Science (Bachelor)</td>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.
Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.
The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Econometrics
2521310, WS 20/21, 2 SWS, Language: German, Open in study portal

Organizational issues
Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben

Topics in Political Economy (Bachelor)
2560140, WS 20/21, 2 SWS, Language: English, Open in study portal

Content
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

For bachelor students, grades will be based on the quality of presentation slides (25%) and the seminar paper (50%). Additionally each student will have to hand in one individual abstract of 75–100 words. The quality of abstracts will reflect with 25% in the final grade.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Morals & Social Behavior (Bachelor)
2560141, WS 20/21, 2 SWS, Language: English, Open in study portal

Content
For Bachelor students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

For bachelor students, grades will be based on the quality of presentation slides (25%) and the seminar paper (50%). Additionally each student will have to hand in one individual abstract of 75–100 words. The quality of abstracts will reflect with 25% in the final grade.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Application is possible via https://portal.wiwi.kit.edu/Seminare

Topics in Political Economy (Master)
2560142, WS 20/21, 2 SWS, Language: English, Open in study portal
Content
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

Seminar Papers of 8–10 pages are to be handed in.

For Master students, grades will be based on the quality of presentation slides (25%) and the seminar paper (50%). Additionally each student will have to hand in two individual abstracts – one with 75-100 words and one with 150-200 words. The quality of abstracts will reflect with 25% in the final grade.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Overcoming the Corona Crisis, Seminar Morals and Social Behavior (Bachelor)
2560553, SS 2021, 2 SWS, Language: English, Open in study portal

Content
Participation will be limited to 12 students.

Organizational issues
Blockveranstaltung

Markets for Attention and the Digital Economy Seminar on Topics in Political Economy (Master)
2560554, SS 2021, 2 SWS, Language: English, Open in study portal

Content
For Master students of the fields Industrial Engineering and Management, Information Engineering and Management, Economics Engineering or Economathematics.

Objective: The student develops an own idea for an economic experiment in this research direction. Students work in groups. Changing topics each semester. For current topics, see http://polit.econ.kit.edu or https://portal.wiwi.kit.edu/Seminare

The acceptance of students for the seminar is based on preferences and suitability for the topics. This includes theoretical and practical experience with Behavioral Economics as well as English skills.

Seminar Papers of 8–10 pages are to be handed in.

Students’ grades will be based on the quality of presentations in the seminar (40%) and the seminar paper (40%). Additionally students will have to hand in two abstracts with different lengths (20%). Students can improve their grades by actively participating in the discussions of the presentations.

Recommendation: Knowledge in the field of experimental economic research or behavioral economics as well as in the field of microeconomics and game theory may be helpful.

Organizational issues
Blockveranstaltung
6.1.38 Course: Seminar in Informatics (Bachelor) [T-WIWI-103485]

Responsible: Professorenschaft des Fachbereichs Informatik
Organisation: KIT Department of Economics and Management
Part of: M-INFO-102058 - Seminar Module Informatics

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 2513200</td>
<td>Seminar Programming 3 (Bachelor)</td>
<td>2 SWS</td>
<td>Examination of another type</td>
<td>Seminar /</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21 2513214</td>
<td>Seminar Information security and data protection (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Oberweis, Zöllner, Frister, Fritsch, Struppke, Forell</td>
<td></td>
</tr>
<tr>
<td>WT 20/21 2513312</td>
<td>Seminar Linked Data and the Semantic Web (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Färber, Käfer, Heling, Bartscherer</td>
<td></td>
</tr>
<tr>
<td>WT 20/21 2513313</td>
<td>Seminar Linked Data and the Semantic Web (Master)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Färber, Käfer, Heling, Bartscherer</td>
<td></td>
</tr>
<tr>
<td>WT 20/21 2513314</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</td>
<td>3 SWS</td>
<td>Seminar /</td>
<td>Nickel, Weinhardt, Färber, Zehnder, Brandt</td>
<td></td>
</tr>
<tr>
<td>WT 20/21 2513315</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Master)</td>
<td>3 SWS</td>
<td>Seminar /</td>
<td>Nickel, Weinhardt, Färber, Zehnder, Brandt</td>
<td></td>
</tr>
<tr>
<td>WT 20/21 2513500</td>
<td>Seminar Cognitive Automobiles and Robots (Master)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Zöllner</td>
<td></td>
</tr>
<tr>
<td>WT 20/21 2513550</td>
<td>Seminar Security, Usability and Society (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Volkamer, Aldag, Düzgün, Mayer, Mossano, Berens</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2513308</td>
<td>Seminar Knowledge Discovery and Data Mining (Bachelor)</td>
<td>3 SWS</td>
<td>Seminar /</td>
<td>Färber, Nguyen, Noullet, Säier, Bartscherer</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2513310</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Färber, Riemer, Heyden, Käfer</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2513402</td>
<td>Seminar Emerging Trends in Internet Technologies (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Sunyaev, Thiebes, Lins</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2513404</td>
<td>Seminar Emerging Trends in Digital Health (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Lins, Sunyaev, Thiebes</td>
<td></td>
</tr>
<tr>
<td>ST 2021 2513500</td>
<td>Cognitive Automobiles and Robots</td>
<td>2 SWS</td>
<td>Seminar /</td>
<td>Zöllner</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Exam Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21 7900002</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Bachelor)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>WT 20/21 7900038</td>
<td>Seminar Linked Data and the Semantic Web (Bachelor)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>WT 20/21 7900042</td>
<td>Seminar Programming 3 (Bachelor)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 20/21 7900121</td>
<td>Seminar Information Security and Privacy (Bachelor)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 20/21 7900129</td>
<td>Seminar Information Security and Privacy Awareness</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 20/21 7900185</td>
<td>Seminar Security, Usability and Society (Bachelor)</td>
<td>Volkamer</td>
</tr>
<tr>
<td>WT 20/21 7900187</td>
<td>Seminar Real-World Challenges in Data Science and Analytics (Bachelor)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>ST 2021 7900090</td>
<td>Seminar Data Science & Real-time Big Data Analytics (Bachelor)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>ST 2021 7900094</td>
<td>Seminar Knowledge Discovery and Data Mining (Bachelor)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>ST 2021 7900136</td>
<td>Seminar Emerging Trends in Digital Health (Bachelor)</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>ST 2021 7900187</td>
<td>Seminar Emerging Trends in Internet Technologies (Bachelor)</td>
<td>Sunyaev</td>
</tr>
</tbody>
</table>
Competence Certificate
Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites
None.

Recommendation
See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation
Placeholder for seminars offered by the Institute AIFB. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Seminar Programming 3 (Bachelor)
2513200, WS 20/21, 2 SWS, Open in study portal

Content
Registration information and the content of the seminar will be announced on the course page. Only bachelor students are allowed to attend this seminar.

Seminar Linked Data and the Semantic Web (Bachelor)
2513312, WS 20/21, 2 SWS, Language: German/English, Open in study portal

Content
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as ‘Block-Seminar’.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.
Content
Linked Data is a way of publishing data on the web in a machine-understandable fashion. The aim of this seminar is to build applications and devise algorithms that consume, provide, or analyse Linked Data.

The Linked Data principles are a set of practices for data publishing on the web. Linked Data builds on the web architecture and uses HTTP for data access, and RDF for describing data, thus aiming towards web-scale data integration. There is a vast amount of data available published according to those principles: recently, 4.5 billion facts have been counted with information about various domains, including music, movies, geography, natural sciences. Linked Data is also used to make web-pages machine-understandable, corresponding annotations are considered by the big search engine providers. On a smaller scale, devices on the Internet of Things can also be accessed using Linked Data which makes the unified processing of device data and data from the web easy.

In this seminar, students will build prototypical applications and devise algorithms that consume, provide, or analyse Linked Data. Those applications and algorithms can also extend existing applications ranging from databases to mobile apps.

For the seminar, programming skills or knowledge about web development tools/technologies are highly recommended. Basic knowledge of RDF and SPARQL are also recommended, but may be acquired during the seminar. Students will work in groups. Seminar meetings will take place as 'Block-Seminar'.

Topics of interest include, but are not limited to:

- Travel Security
- Geo data
- Linked News
- Social Media

The exact dates and information for registration will be announced at the event page.

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master's programs.

The exact dates and information for registration will be announced at the course page.

Content
In the seminar, various Real-World Challenges in Data Science and Analytics will be worked on.

During this seminar, groups of students work on a case challenge with data provided. Here, the typical process of a data science project is depicted: integration of data, analysis of these, modeling of the decisions and visualization of the results.

During the seminar, solution concepts are worked out, implemented as a software solution and presented in an intermediate and final presentation. The seminar "Real-World Challenges in Data Science and Analytics" is aimed at students in master's programs.

The exact dates and information for registration will be announced at the course page.
Content
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.

Registration and further information can be found in the WiWi-portal.

V Seminar Knowledge Discovery and Data Mining (Bachelor)
2513308, SS 2021, 3 SWS, Language: English, Open in study portal

Content
In this seminar different machine learning and data mining methods are implemented.

The seminar includes different methods of machine learning and data mining. Participants of the seminar should have basic knowledge of machine learning and programming skills.

Domains of interest include, but are not limited to:
- Medicine
- Social Media
- Finance Market

The exact dates and information for registration will be announced at the event page.

Organizational issues
Die Anmeldung erfolgt über das WiWi Portal https://portal.wiwi.kit.edu/.

Für weitere Fragen bezüglich des Seminar und der behandelten Themen wenden Sie sich bitte an die entsprechenden Verantwortlichen.

Literature
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B.aus den folgenden Lehrbüchern:
- Mitchell, T.; Machine Learning

V Seminar Data Science & Real-time Big Data Analytics (Bachelor)
2513310, SS 2021, 2 SWS, Language: English, Open in study portal

Content
In this seminar, students will design applications in teams that use meaningful and creative Event Processing methods. Thereby, students have access to an existing record.

Event processing and real-time data are everywhere: financial market data, sensors, business intelligence, social media analytics, logistics. Many applications collect large volumes of data in real time and are increasingly faced with the challenge of being able to process them quickly and react promptly. The challenges of this real-time processing are currently also receiving a great deal of attention under the term "Big Data". The complex processing of real-time data requires both knowledge of methods for data analysis (data science) and their processing (real-time analytics). Seminar papers are offered on both of these areas as well as on interface topics, the input of own ideas is explicitly desired.

Further information to the seminar is given under the following Link:
http://seminar-cep.fzi.de
Questions are answered via the e-mail address sem-ep@fzi.de.

Organizational issues
Further information as well as the registration form can be found under the following link:
http://seminar-cep.fzi.de
Questions are answered via the e-mail address sem-ep@fzi.de.

Cognitive Automobiles and Robots
2513500, SS 2021, 2 SWS, Language: German/English, Open in study portal

Content
The seminar is intended as a theoretical supplement to lectures such as "Machine Learning". The theoretical basics will be deepened in the seminar. The aim of the seminar is that the participants work individually to analyze a subsystem from the field of robotics and cognitive systems using one or more procedures from the field of AI/ML.

The individual projects require the analysis of the task at hand, selection of suitable procedures, specification and theoretical evaluation of the approach taken. Finally, the chosen solution has to be documented and presented in a short presentation.

Learning objectives:
- Students can apply knowledge from the Machine Learning lecture in a selected field of current research in robotics or cognitive automobiles for theoretical analysis.
- Students can evaluate, document and present their concepts and results.

Recommendations:
Attendance of the lecture machine learning

Workload:
The workload of 3 credit points consists of the time spent on literature research and planning/specifying the proposed solution. In addition, a short report and a presentation of the work carried out will be prepared.

Organizational issues
Anmeldung und weitere Informationen sind im WiWi-Portal zu finden.
Registration and further information can be found in the WiWi-portal.
6 COURSES

6.139 Course: Seminar in Operations Research (Bachelor) [T-WIWI-103488]

Responsible: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101826 - Seminar Module Economic Sciences

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2 SWS</td>
<td>Seminar on Methodical Foundations of Operations Research</td>
<td>Seminar /겠다</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2 SWS</td>
<td>Seminar zur Mathematischen Optimierung (MA)</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2 SWS</td>
<td>Seminar on Power Systems Optimization (Bachelor)</td>
<td>Seminar /겠다</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2 SWS</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>Seminar /饧</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Seminar zur Mathematischen Optimierung (MA)</td>
<td>Seminar</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Seminar on Power Systems Optimization (Bachelor)</td>
<td>Seminar /饧</td>
<td>Each term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2 SWS</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>Seminar /饧</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900011_WS2021</td>
<td>Seminar in Operations Research B (Bachelor)</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900012_WS2021</td>
<td>Seminar in Operations Research A (Master)</td>
<td>Stein</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900108</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900282</td>
<td>Digitization in the Steel Industry</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900313</td>
<td>Seminar in Operations Research (Bachelor)</td>
<td>Rebennack</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.
Below you will find excerpts from events related to this course:

Seminar on Methodical Foundations of Operations Research

2550131, WS 20/21, 2 SWS, Language: German, [Open in study portal](#)

Seminar (S) Online

Content
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.

Bachelor students are introduced to the style of scientific work. By focused treatment of a scientific topic they deal with the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetoric abilities may be improved.

Remarks:
Attendance at all oral presentations is compulsory.

Preferably at least one module offered by the Institute of Operations Research should have been chosen before attending this seminar.

Assessment:
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation. The grade is composed of the equally weighted assessments of the paper and the oral presentation.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the oral presentation.

Workload:
The total workload for this course is approximately 90 hours. For further information see German version.

Organizational issues
Blockveranstaltung. Termin n. V.

Literature
Die Literatur und die relevanten Quellen werden gegen Ende des vorausgehenden Semesters im Wiwi-Portal und in einer Seminarvorbereitung bekannt gegeben.

References and relevant sources are announced at the end of the preceding semester in the Wiwi-Portal and in a preparatory meeting.

Seminar: Modern OR and Innovative Logistics

2550491, WS 20/21, 2 SWS, Language: German, [Open in study portal](#)

Seminar (S) Online

Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Organizational issues
wird auf der Homepage bekannt gegeben

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar: Modern OR and Innovative Logistics

2550491, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Seminar (S) Online
Content
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization. The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management). The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic. Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

The topics of the seminar will be announced at the beginning of the term in a preliminary meeting. Attendance is compulsory for the preliminary meeting as well for all seminar presentations.

Exam:
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 35-40 minutes (according to §4(2), 3 of the examination regulation).

The final mark for the seminar consists of the seminar thesis, the seminar presentation, the handout, and if applicable further material such as programming code.

The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Requirements:
If possible, at least one module of the institute should be taken before attending the seminar.

Objectives:
The student

- illustrates and evaluates classic and current research questions in discrete optimization,
- applies optimization models and algorithms in discrete optimization, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management),
- successfully gets in touch with scientific working by an in-depth working on a special scientific topic which makes the student familiar with scientific literature research and argumentation methods,
- acquires good rhetorical and presentation skills.

As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.

Organizational issues
wird auf der Homepage dol.ior.kit.edu bzw. auf dem WiWi-Portal bekannt gegeben

Literature
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.
6.140 Course: Seminar in Statistics (Bachelor) [T-WIWI-103489]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101826 - Seminar Module Economic Sciences

Type
Examination of another type

Credits
3

Grading scale
Grade to a third

Recurrence
Each term

Version
1

Events

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>Topics in Econometrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2521310</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Seminar / Online</td>
</tr>
<tr>
<td></td>
<td>Schienle, Chen, Görgen, Krüger, Buse</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>Data Mining, Seminar in Economics (Bachelor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900256</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Seminar / Online</td>
</tr>
<tr>
<td></td>
<td>Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Competence Certificate

Alternative exam assessment (§ 4(2), 3 SPO 2015). The following aspects are included:

- Regular participation in the seminar dates
- Preparation of a seminar paper on a partial aspect of the seminar topic according to scientific methods
- Lecture on the topic of the seminar paper.

The point scheme for the assessment is determined by the lecturer of the respective course. It will be announced at the beginning of the course.

Prerequisites

None.

Recommendation

See seminar description in the course catalogue of the KIT (https://campus.kit.edu/)

Annotation

The listed seminar titles are placeholders. Currently offered seminars of each semester will be published on the websites of the institutes and in the course catalogue of the KIT. In general, the current seminar topics of each semester are already announced at the end of the previous semester. Furthermore for some seminars there is an application required.

The available places are listed on the internet: https://portal.wiwi.kit.edu.

Below you will find excerpts from events related to this course:

Topics in Econometrics

2521310, WS 20/21, 2 SWS, Language: German, [Open in study portal](#)

Organizational issues

Blockveranstaltung, Termine werden auf Homepage und über Ilias bekannt gegeben.
Course: Seminar Informatics A [T-INFO-104336]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: M-INFO-102058 - Seminar Module Informatics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Examination of another type</td>
<td>Grade to a third</td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar: Service-oriented Architectures</td>
<td>Seminar / Online</td>
<td>Abeck, Schneider</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar: Neuronale Netze und künstliche Intelligenz</td>
<td>Seminar / Online</td>
<td>Waibel, Stüker, Asfour, HA</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>Seminar: Ubiquitous Systems</td>
<td>2 SWS</td>
<td>Beigl, Pescara</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Hot Topics in Bioinformatics</td>
<td>2 SWS</td>
<td>Stamatakis</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Seminar: Service-oriented Architectures</td>
<td>Seminar / Online</td>
<td>Abeck, Schneider</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Can Statistics Prove Cause and Effect?</td>
<td>2 SWS</td>
<td>Janzing</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Advanced Methods of Information Fusion</td>
<td>2 SWS</td>
<td>Hanebeck, Radtke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Examination of another type</td>
<td>Grade to a third</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Advanced Methods of Information Fusion</td>
<td>Hanebeck</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>CES - Seminar: Machine Learning</td>
<td>Henkel</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar: Energy Informatics</td>
<td>Wagner</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar Ubiquitous Computing</td>
<td>Beigl</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar Big Data Tools</td>
<td>Streit</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar Advanced Topics in Machine Translation</td>
<td>Waibel</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar: Service-Oriented Architectures</td>
<td>Abeck</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Advanced Methods of Information Fusion</td>
<td>Hanebeck, Noack</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar: Hot Topics in Bioinformatics</td>
<td>Stamatakis</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Proseminar: Practical Seminar: Interactive Analytics</td>
<td>Beigl, Mädche</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar: Ubiquitous Systems</td>
<td>Beigl, Riedel</td>
<td></td>
</tr>
<tr>
<td>Exam 2021</td>
<td>Seminar: Service-Oriented Architectures</td>
<td>Abeck</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Below you will find excerpts from events related to this course:

Seminar: Neuronale Netze und künstliche Intelligenz

2400078, WS 20/21, SWS, Language: German/English, [Open in study portal](#)

Content

In many tasks that appear natural to us, the fastest computers are unable to match the performance of the human brain. Neural networks attempt to simulate the parallel and distributed architecture of the brain in order to master these skills with learning algorithms. In this context, focus is being put on neural network approaches to computer vision and speech recognition, robotics and other areas.

In this seminar students will acquaint themselves with literature from provided topics and will present their results as a talk supported by slides to the other participants of the seminar.

Recommendations:

- Finishing the module "Kognitive Systeme" prior to the seminar is recommended.
- Attending the lecture "Deep Learning und Neuronale Netze" prior to the seminar is of advantage.
Organizational issues
Die Anmeldung zum Seminar erfolgt über die Anmeldung zur Veranstaltung im Campus-System.

Hot Topics in Bioinformatics
2400011, SS 2021, 2 SWS, Language: English, [Open in study portal](#)

Content
Prerequisites: CS Master's level seminar. Participants must have attended and passed the course on "Introduction to Bioinformatics for Computer Scientists" in one of the preceding winter terms.

Task: You will need to select papers to present, give a presentation and write a report.

This main seminar allows students to understand and present the contents of current papers in Bioinformatics such as published for instance in the journals *Bioinformatics, BMC Bioinformatics, Journal of Computational Biology* etc. or at conferences such as ISMB or RECOMB.

We will provide a list of interesting papers, but students can also propose papers they are interested in. Students may also chose to cover broader topics of more general interest such as multiple sequence alignment, Bayesian phylogenetic inference, read assembly etc.

Each student will be assigned a lab member for help with understanding the article and preparing the slides as well as the report. Students should give a 35 minute presentation on their topic of choice and write a report (Seminararbeit) comprising 8 pages.

Goals: Participants are able to understand, critically assess, and compare current research papers in Bioinformatics. They are able to present algorithms and models from current research papers in oral and written form at a level that corresponds to that of scientific publications and conference presentations. Participants are able to suggest extension to current methods.

Credits: 3 ECTS

Organizational issues
IMPORTANT: Register for the seminar mailing list by sending an email to Alexandros.Stamatakis@h-its.org.

All information on the seminar is provided at: Seminar page Information about how we will start virtually is also provided there. We will start in the first week of the summer term. For all further information, students are requested to regularly read their emails.

Advanced Methods of Information Fusion
24344, SS 2021, 2 SWS, Language: German/English, [Open in study portal](#)

Content
The growing spread and performance of modern information and communication technologies produces an ever-increasing amount data. It is one of the central challenges of our time to extract meaningful information from these data sets. The approach to address these issues, often called data science, combines strategies and methods from the fields of machine learning, mathematics, state estimation, visualization and pattern recognition. During this seminar, the students will familiarize themselves with concepts and methods particularly focusing on estimation theory and its application.

The seminar targets master students in computer science and bachelor students in Information engineering and management.
Course: Seminar: Legal Studies I [T-INFO-101997]

Responsible: Prof. Dr. Thomas Dreier
Organisation: KIT Department of Informatics
Part of: M-INFO-101218 - Seminar Module Law

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2400060</td>
<td>Data in Software-Intensive Technical Systems – Modeling – Analysis – Protection</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Reussner, Raabe, Müller-Quade</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2400133</td>
<td>Hate speech & Fake news – Das öffentliche Recht in der „postrationalen Konstellation“?</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Eichenhofer</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2400240</td>
<td>Grundfragen Ethik und IT</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Dreier</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>24389</td>
<td>IT-Sicherheit und Recht</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Schallbruch</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2513214</td>
<td>Seminar Information security and data protection (Bachelor)</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Oberweis, Volkamer, Raabe, Alpers, Dügün, Schiefer, Wagner</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2400041</td>
<td>Governance, Risk & Compliance</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Herzig</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2400061</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Bless, Boehm, Hartenstein, Mädche, Sunyaev, Zitterbart, Volkamer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2400065</td>
<td>"Die Corona-Krise aus der Sicht des Verfassungsrechts"</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Eichenhofer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2400082</td>
<td>"Verfassungsrechtliche Fragen staatlicher Öffentlichkeitsarbeit"</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Eichenhofer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2400127</td>
<td>Aktuelle Probleme des Datenschutzrechts</td>
<td></td>
<td>Seminar / Online</td>
<td>Eichenhofer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2400153</td>
<td>Technische Aspekte der DSGVO und deren Umsetzung in der Praxis</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Boehm, Dimitrova</td>
</tr>
<tr>
<td>ST 2021</td>
<td>24820</td>
<td>Current Issues in Patent Law</td>
<td>2</td>
<td>Seminar / Online</td>
<td>Melullis</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Title</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500035</td>
<td>Seminar: Legal Studies II</td>
<td>Seminar</td>
<td>Eichenhofer</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500182</td>
<td>Seminar: Legal Studies II</td>
<td>Seminar</td>
<td>Dreier, Boehm, Raabe</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500232</td>
<td>Seminar Data in Software-Intensive Technical Systems – Modeling – Analysis – Protection</td>
<td>Seminar</td>
<td>Reussner</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500140</td>
<td>Seminar: Legal Studies I</td>
<td>Seminar</td>
<td>Dreier, Boehm, Melullis, Matz</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500159</td>
<td>Seminar: Legal Studies I</td>
<td>Seminar</td>
<td>Eichenhofer</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Below you will find excerpts from events related to this course:

Content

- Registration via https://portal.wiwi.kit.edu/ys/4516
Organizational issues
nach Vereinbarung
6.143 Course: Software Engineering I [T-INFO-101968]

Responsible: Prof. Dr.-Ing. Anne Koziolke
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: M-INFO-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Tichy, Gerking, Hey</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 24518</td>
<td>4 SWS</td>
<td>Lecture / Practice</td>
<td>Tichy, Gerking, Hey</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lecture / Practice</th>
<th>Tichy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 7500152</td>
<td></td>
<td>Software Engineering I</td>
<td>Tichy</td>
</tr>
</tbody>
</table>

Legend:
Online, Blended (On-Site/Online), On-Site, Cancelled
6.144 Course: Software Engineering I Pass [T-INF-101995]

Responsible: Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: M-INF-101175 - Software Engineering I

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>0</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| Events | ST 2021 | 24518 | Softwaretechnik I | 4 SWS | Lecture / Practice (/) | Tichy, Gerking, Hey |

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
6.145 Course: Software Engineering II [T-INFO-101370]

Responsible: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Organisation: KIT Department of Informatics

Part of: M-INFO-100833 - Software Engineering II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Time</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24076</td>
<td>Software Engineering II</td>
<td>4</td>
<td>Lecture / 🖥</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Time</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500054</td>
<td>Software Engineering II</td>
<td>Reussner</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500255</td>
<td>Software Engineering II</td>
<td>Reussner</td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500235</td>
<td>Software Engineering II</td>
<td>Reussner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✖ Cancelled

Below you will find excerpts from events related to this course:

Software Engineering II

24076, WS 20/21, 4 SWS, Language: German, Open in study portal

Literature

6.146 Course: Special Topics in Information Systems [T-WIWI-109940]

Responsible: Prof. Dr. Christof Weinhardt

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101434 - eBusiness and Service Management

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4.5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| WT 20/21 | 7900263 | Special Topics in Information Systems | Weinhardt |

Competition Certificate

The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class.

Please take into account that, beside the written documentation, also a practical component (such as a survey or an implementation of an application) is part of the course. Please examine the course description for the particular tasks.

The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Prerequisites

see below

Recommendation

None

Annotation

All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Systems course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre.

The Special Topics Information Systems is equivalent to the practical seminar, as it was only offered for the major in “Information Systems” so far. With this course students majoring in “Industrial Engineering and Management” and “Economics Engineering” also have the chance of getting practical experience and enhance their scientific capabilities.

The Special Topics Information Systems can be chosen instead of a regular lecture (see module description). Please take into account, that this course can only be accounted once per module.
6 COURSES

Course: Statistical Modeling of Generalized Regression Models [T-WIWI-103065]

6.147 Course: Statistical Modeling of Generalized Regression Models [T-WIWI-103065]

Responsible: apl. Prof. Dr. Wolf-Dieter Heller

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101599 - Statistics and Econometrics
- M-WIWI-105414 - Statistics and Econometrics II

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2521350</td>
<td>Lecture /</td>
<td>Heller</td>
</tr>
</tbody>
</table>

Competition Certificate
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation.

Prerequisites
None

Recommendation
Knowledge of the contents covered by the course "Economics III: Introduction in Econometrics" [2520016]

Below you will find excerpts from events related to this course:

Statistical Modeling of Generalized Regression Models

2521350, WS 20/21, 2 SWS, Open in study portal

Content

Learning objectives:
The student has profound knowledge of generalized regression models.

Requirements:
Knowledge of the contents covered by the course Economics III: Introduction in Econometrics" [2520016].

Workload:
Total workload for 4.5 CP: approx. 135 hours
Attendance: 30 hours
Preparation and follow-up: 65 hours
6 COURSES

Course: Statistics I [T-WIWI-102737]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management
Part of: M-WIWI-101432 - Introduction to Statistics

Type
Written examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>Lecture</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021</td>
<td>Lecture</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 120-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

None

Below you will find excerpts from events related to this course:

Content

Learning objectives:
The Student understands and applies
- the basic concepts of statistical data exploration,
- the basic definitions and theorems of probability theory.

Content:
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities
C. Random variables: location and shape parameters, dependency measures, concrete distribution models

Workload:
Total workload for 5 CP: approx. 150 hours
Attendance: 60 hours
Preparation and follow-up: 90 hours
Literature
Skriptum: Kurzfassung Statistik I

Weiterführende Literatur:
Course: Statistics II [T-WIWI-102738]

Responsible: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101432 - Introduction to Statistics

Type: Written examination
Credits: 5
Grading scale: Grade to a third
Recurrence: Each winter term
Version: 1

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation.
The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Prerequisites
None

Recommendation
It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2610020].

Below you will find excerpts from events related to this course:

Statistics II
2610020, WS 20/21, 4 SWS, Language: German, Open in study portal

Lecture (V) Online

Content
Learning objectives:
The student

- understands and applies the basic definitions and theorems of probability theory,
- transfers these theoretical foundations to problems in parametrical mathematical statistics.

Requirements:
It is recommended to attend the course Statistics I [2600008] before the course Statistics II [2600020].

Workload:
Total workload: 150 hours (5.0 Credits).
Attendance: 30 hours
Preparation and follow-up: 90 hours
Literatur
Skriptum: Kurzfassung Statistik II

Weiterführende Literatur:
6.150 Course: Strategic Finance and Technology Change [T-WIWI-110511]

Responsible: Prof. Dr. Martin Ruckes

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>1.5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7900219</td>
<td>Strategic Finance and Technology Change</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a written exam (60 min.) according to § 4 paragraph 2 Nr. 1 of the examination regulation. The exam is offered each semester. If there are only a small number of participants registered for the exam, we reserve the right to hold an oral examination instead of a written one.

Prerequisites
None

Recommendation
Attending the lecture "Financial Management" is strongly recommended.
6.151 Course: Supplement Applied Informatics [T-WIWI-110711]

Responsible: Professorenschaft des Fachbereichs Informatik

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101476 - Business Processes and Information Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam.</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation. Depending on the particular course associated with this placeholder a bonus on the examination grade is possible.

Prerequisites

None

Annotation

This course can be used in particular for the acceptance of external courses whose content is in the broader area of applied informatics, but is not equivalent to another course of this topic.
6.152 Course: Surfaces for Computer aided Design [T-INFO-102073]

Responsible: Prof. Dr. Hartmut Prautzsch

Organisation: KIT Department of Informatics

Part of: M-INFO-101254 - Surfaces for Computer Aided Design

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Time</th>
<th>Location</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 2400152</td>
<td>Flächen im CAD</td>
<td>Lecture / Online</td>
<td>Prautzsch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
Course: Tactical and Operational Supply Chain Management [T-WIWI-102714]

6.153 Course: Tactical and Operational Supply Chain Management [T-WIWI-102714]

Responsible: Prof. Dr. Stefan Nickel

Organisation: KIT Department of Economics and Management

Part of:
- M-WIWI-101413 - Applications of Operations Research
- M-WIWI-101421 - Supply Chain Management
- M-WIWI-103278 - Optimization under Uncertainty

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2021 2550486</th>
<th>Taktisches und operatives SCM</th>
<th>2 SWS</th>
<th>Lecture / Online</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>ST 2021 2550487</td>
<td>Übungen zu Taktisches und operatives SCM</td>
<td>1 SWS</td>
<td>Practice / Online</td>
<td>Pomes, Bakker</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>WT 20/21 7900342</th>
<th>Tactical and Operational Supply Chain Management</th>
<th>Nickel</th>
</tr>
</thead>
</table>

Competence Certificate

Depending on further pandemic developments, the exam will be offered in the summer semester 2021 either as an open-book exam, or as a written exam (60 min).

The exam takes place in every semester.

Prerequisite for admission to examination is the successful completion of the online assessments.

Prerequisites

Prerequisite for admission to examination is the successful completion of the online assessments.

Recommendation

None

Annotation

The lecture is held in every summer term. The planned lectures and courses for the next three years are announced online.

Below you will find excerpts from events related to this course:

Taktisches und operatives SCM

2550486, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

Content

The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot. The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.
Literature

Weiterführende Literatur

- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005
6.154 Course: Team Project Software Development [T-INFO-109823]

Responsibility: Prof. Dr. Sebastian Abeck
Prof. Dr. Ralf Reussner

Organisation: KIT Department of Informatics

Part of: M-INFO-104809 - Team Project Software Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Event Type</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>2400101</td>
<td>Team Project Software Development</td>
<td>Practical course / 🖥</td>
<td>Abeck, Schneider, Reussner, Burger, Koziolek, Mädche, Oberweis, Zöllner, Fritsch, Kurzer, Feine</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>2500025</td>
<td>Teamprojekt Wirtschaft und Technologie</td>
<td>Project (P / 🖥)</td>
<td>Klarmann, Mädche</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2400003</td>
<td>Team Project Software Development</td>
<td>Practical course / 🖥</td>
<td>Abeck, Schneider, Reussner, Burger, Koziolek, Mädche, Oberweis, Zöllner, Fritsch, Kurzer, Feine</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>7500128</td>
<td>Team Project Software Development: Development of an Application for the Healthcare Asset Management</td>
<td>Abeck</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500274</td>
<td>Team Project Software Development: Development of a Platform for Programming Challenges</td>
<td>Reussner</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900329</td>
<td>Team Project Software Development: App Development for Intelligent Infrastructure</td>
<td>Zöllner</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900332</td>
<td>Team Project Software Development: Conferences and Meetings with Corona - Robots can help</td>
<td>Oberweis</td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7900360</td>
<td>Team Project Software Development: Development of eXplainable Artificial Intelligence for analytical dashboards</td>
<td>Mädche</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏭 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
6.155 Course: Telematics [T-INFO-101338]

Responsible: Prof. Dr. Martina Zitterbart
Organisation: KIT Department of Informatics
Part of: M-INFO-100801 - Telematics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>24128</th>
<th>Telematics</th>
<th>3 SWS</th>
<th>Lecture / Online</th>
<th>Bauer, Friebe, Heseding, Hock, Zitterbart</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 20/21</th>
<th>7500166</th>
<th>Telematics</th>
<th>Zitterbart</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>7500115</td>
<td>Telematics</td>
<td>Zitterbart</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Below you will find excerpts from events related to this course:

Telematics

24128, WS 20/21, 3 SWS, Language: German, [Open in study portal](#)
Content
The lecture covers (i.a.) protocols, architectures, as well as methods and algorithms, for routing and establishing reliable end-to-end connections in the Internet. In addition to various methods for media access control in local area networks, the lecture also covers other communication systems, e.g. circuit-switched systems such as ISDN. Participants should also have understood the possibilities for managing and administering networks.

Familiar with the contents of the lecture *Einführung in Rechnernetze* or comparable lectures is assumed.

Learning Objectives
After attending this lecture, the students will

- have a profound understanding of protocols, architectures, as well as procedures and algorithms used for routing and for establishing reliable end-to-end connections in the Internet
- have a profound understanding of different media access control procedures in local networks and other communication systems like circuit-switched ISDN
- have a profound understanding of the problems that arise in large scale dynamic communication systems and are familiar with mechanisms to deal with these problems
- be familiar with current developments such as SDN and data center networking
- be familiar with different aspects and possibilities for network management and administration

Students have a profound understanding of the basic protocol mechanisms that are necessary to establish reliable end-to-end communication. Students have detailed knowledge about the congestion and flow control mechanisms used in TCP and can discuss fairness issue in the context of multiple parallel transport streams. Students can analytically determine the performance of transport protocols and know techniques for dealing with specific constraints in the context of TCP, e.g., high data rates and low latencies. Students are familiar with current topics such as the problem of middle boxes on the Internet, the usage of TCP in data centers or multipath TCP. Students are also familiar with practical aspects of modern transport protocols and know practical ways to overcome heterogeneity in the development of distributed applications.

Students know the functions of (Internet) routing and routers and can explain and apply common routing algorithms. Students are familiar with routing architectures and different alternatives for buffer placement as well as their advantages and disadvantages. Students understand the classification into interior and exterior gateway protocols and have in-depth knowledge of the functionality and features of common protocols such as RIP, OSPF, and BGP. Students are also familiar with current topics such as label switching, IPv6 and SDN.

Students know the function of media access control and are able to classify and analytically evaluate different media access control mechanisms. Students have an in-depth knowledge of Ethernet and various Ethernet variants and characteristics, which especially includes current developments such as real-time Ethernet and data center Ethernet. Students can explain and apply the Spanning Tree Protocol.

Students know the architecture of ISDN and can reproduce the peculiarities of setting up the ISDN subscriber line. Students are familiar with the technical features of DSL.

Literature
Internet- Standards. Artikel in Fachzeitschriften.
6.156 Course: Theoretical Foundations of Computer Science [T-INFO-103235]

Responsible: Prof. Dr. Jörn Müller-Quade
Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Organisation: KIT Department of Informatics

Part of: M-INFO-101189 - Theoretical Informatics

Type: Written examination

Credits: 6

Grading scale: Grade to a third

Recurrence: Each winter term

Version: 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Grading scale</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Grading scale</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>3 SWS</td>
<td>Theoretical Foundations of Computer Science</td>
<td>Each winter term</td>
<td>Grade to a third</td>
<td>Written examination</td>
<td>6</td>
<td>Each winter term</td>
<td>Grade to a third</td>
<td>6</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 20/21</td>
<td>7500251</td>
<td>Theoretical Foundations of Computer Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>7500314</td>
<td>Theoretical Foundations of Computer Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: ⏯ Online, ⏯ Blended (On-Site/Online), ⏯ On-Site, ⏯ C cancelled
6.157 Course: Web Applications and Service-Oriented Architectures (I) [T-INFO-103122]

Responsible: Prof. Dr. Sebastian Abeck
Organisation: KIT Department of Informatics
Part of: M-INFO-101636 - Web Applications and Service-Oriented Architectures (I)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 20/21</td>
<td>24153</td>
<td>Web Applications and Service-</td>
<td></td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oriented Architectures (I)</td>
<td></td>
<td></td>
<td>Abeck, Schneider, Hippchen, Throner</td>
<td></td>
</tr>
<tr>
<td>Exams</td>
<td>7500026</td>
<td>Web Applications and Service-</td>
<td>Abeck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>oriented Architectures (I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ❌ Cancelled
6.158 Course: Welfare Economics [T-WIWI-102610]

Responsible: Prof. Dr. Clemens Puppe

Organisation: KIT Department of Economics and Management

Part of: M-WIWI-101501 - Economic Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4,5</td>
<td>Grade to a third</td>
<td>see Annotations</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Lecture</th>
<th>Credits</th>
<th>Language</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2520517</td>
<td>Welfare Economics</td>
<td>2 SWS</td>
<td>German</td>
<td>Lecture / 🖥️</td>
<td>Puppe, Rollmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2520518</td>
<td>Übung zur Wohlfahrtstheorie</td>
<td>1 SWS</td>
<td>German</td>
<td>Practice / 🖥️</td>
<td>Puppe, Rollmann</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Blended (On-Site/Online), 📧 On-Site, ⚫ Canceled

Competence Certificate

Depending on further pandemic developments, the examination will be offered in the summer semester 2021 either as a 60-minute written examination (written examination according to SPO § 4 Abs. 2, Pkt. 1) or as an open-book examination (alternative exam assessment according to SPO § 4 Abs. 2, Pkt. 3).

Prerequisites

The course Economics I: Microeconomics [2610012] has to be completed beforehand.

Recommendation

None

Annotation

The course only takes place every second summer semester, the next course is planned for summer semester 2021.

Below you will find excerpts from events related to this course:

Welfare Economics

2520517, SS 2021, 2 SWS, Language: German, [Open in study portal](#)

**Lecture (V)

Online

Content

The lecture "Welfare economics" deals with the question of efficiency and distributonal properties of economic allocations, in particular allocations of market equilibria. The lecture is based on the two welfare theorems: The first welfare theorem (under weak preconditions) says that every competitive equilibrium is efficient. According to the second welfare theorem (under stronger preconditions), every efficient allocation can be preserved as a competitive equilibrium through adequate choices of initial endowments. Afterwards, the terms and definitions of envy-freeness and the related concept of egalitarian equivalence will be discussed in the context of the general theory of equilibrium.

The second part of the lecture deals with the principle of "social justice" (i.e. distributational justice). The fundamental principles of utilitarianism, Rawls's theory of justice as well as John Roemer's theory of equality of opportunity are explained and critically analyzed.

The assessment consists of a written exam at the end of the semester (according to Section 4 (2), 1 or 2 of the examination regulation).

The course will be held every two years in the summer.

The total workload for this course is approximately 135 hours. For further information see German version.

Elective literature:

Literature

Weiterführende Literatur: