Modulhandbuch
Wirtschaftsingenieurwesen B.Sc.
SPO 2015
Sommersemester 2019
Stand 01.04.2019
Inhaltsverzeichnis

1. Willkommen im neuen Modulhandbuch Ihres Studiengangs .. 9
2. Über das Modulhandbuch .. 10
 2.1. Wichtige Regeln ... 10
 2.1.1. Beginn und Abschluss eines Moduls .. 10
 2.1.2. Modul- und Teilleistungsvariationen .. 10
 2.1.3. Erstverwendung .. 10
 2.1.4. Gesamt- oder Teilprüfung ... 10
 2.1.5. Arten von Prüfungen ... 11
 2.1.6. Wiederholung von Prüfungen ... 11
 2.1.7. Zusatzleistungen .. 11
 2.1.8. Alles ganz genau ... 11
 2.2. Ansprechpartner .. 11
3. Disziplinenübergreifendes Denken als Rüstzeug .. 12
4. Warum Wirtschaftsingenieurwesen? ... 13
5. Der Studiengang ... 14
 5.1. Qualifikationsziele .. 14
 5.2. Aufbau nach SPO 2015 ... 14
 5.3. Tipps zur Studienplanung .. 15
 5.4. Schlüsselqualifikationen ... 16
6. Aufbau des Studiengangs ... 18
 6.1. Bachelorarbeit .. 18
 6.2. Berufspraktikum .. 18
 6.3. Betriebswirtschaftslehre .. 19
 6.4. Volkswirtschaftslehre .. 19
 6.5. Informatik ... 20
 6.6. Operations Research ... 20
 6.7. Ingenieurwissenschaften .. 21
 6.8. Mathematik .. 21
 6.9. Statistik .. 22
 6.10. Wahlpflichtbereich .. 23
7. Module .. 26
 7.1. Angewandte Mikroökonomik - M-WIWI-101499 ... 26
 7.3. Außerplanmäßiges Ingenieurmodul - M-WIWI-101404 ... 30
 7.4. Bankwirtschaftstechnik - M-MACH-101274 ... 32
 7.5. Bauökologie - M-WIWI-101467 ... 34
 7.6. Berufspraktikum - M-WIWI-101419 .. 36
 7.7. Controlling (Management Accounting) - M-WIWI-101498 ... 38
 7.8. CRM und Servicemanagement - M-WIWI-101460 .. 39
 7.9. eBusiness und Service Management - M-WIWI-101434 ... 41
 7.10. eFinance - M-WIWI-101402 ... 43
 7.11. Einführung in das Operations Research - M-WIWI-101418 .. 45
 7.12. Einführung in die Programmierung - M-WIWI-101581 .. 46
 7.13. Einführung in die Statistik - M-WIWI-101432 ... 47
 7.14. Einführung in die Technische Logistik - M-MACH-101269 ... 49
 7.15. Einführung in die Volkswirtschaftslehre - M-WIWI-101398 ... 51
 7.16. Einführung in Naturgefahren und Risikoanalysen - M-WIWI-104838 52
 7.17. Elektrische Energienetze - M-ETIT-102379 ... 54
 7.18. Elektrotechnik - M-ETIT-101155 ... 55
 7.19. Energieerzeugung und Netzkomponenten - M-ETIT-101165 .. 56
 7.20. Energiewirtschaft - M-WIWI-101464 .. 57
 7.22. Fahrzeugeigenchaften - M-MACH-101264 ... 60
 7.23. Fahrzeugentwicklung - M-MACH-101265 .. 62
 7.24. Fahrzeugtechnik - M-MACH-101266 .. 64
 7.25. Fertigungstechnik - M-MACH-101276 ... 66
Inhaltsverzeichnis

7.27. Fundamentals of Digital Service Systems - M-WIWI-102752 ... 69
7.28. Grundlagen BWL 1 - M-WIWI-101494 ... 71
7.29. Grundlagen BWL 2 - M-WIWI-101578 ... 72
7.30. Grundlagen der Informatik - M-WIWI-101417 ... 73
7.31. Grundlagen des Baubetriebs - M-BGU-101004 ... 74
7.32. Grundlagen des Marketing - M-WIWI-101424 ... 76
7.33. Industrielle Produktion I - M-WIWI-101437 ... 78
7.37. Integrierte Produktionsplanung - M-MACH-101272 .. 83
7.38. Maschinenkonstruktionslehre - M-MACH-101299 .. 84
7.39. Mathematik 1 - M-MATH-101676 ... 88
7.40. Mathematik 2 - M-MATH-101677 ... 90
7.41. Mathematik 3 - M-MATH-101679 ... 92
7.42. Methodische Grundlagen des OR - M-WIWI-10144 ... 94
7.43. Mikrosystemtechnik - M-MACH-101287 ... 96
7.44. Mobile Arbeitsmaschinen - M-MACH-101267 .. 98
7.45. Mobilität und Infrastruktur - M-BGU-101067 ... 100
7.46. Modul Bachelorarbeit - M-WIWI-101601 ... 102
7.47. Optimierung unter Unsicherheit - M-WIWI-103278 .. 104
7.48. Personal und Organisation - M-WIWI-101513 .. 106
7.49. Product Lifecycle Management - M-MACH-101270 .. 108
7.50. Real Estate Management - M-WIWI-101466 .. 110
7.51. Recht Wahlpflicht - M-INFO-101187 ... 111
7.52. Regelungstechnik - M-ETIT-101156 ... 112
7.53. Risk and Insurance Management - M-WIWI-101436 .. 113
7.54. Seminarmodul - M-WIWI-101816 ... 115
7.55. Soziologie/Empirische Sozialforschung - M-GEISSERTSOZ-101167 117
7.56. Statistik und Ökonometrie - M-WIWI-101599 .. 118
7.57. Strategie und Organisation - M-WIWI-101425 .. 119
7.58. Supply Chain Management - M-WIWI-101421 ... 120
7.59. Technische Mechanik - M-MACH-101259 .. 122
7.60. Topics in Finance I - M-WIWI-101465 ... 123
7.61. Topics in Finance II - M-WIWI-101423 ... 125
7.62. Verbrennungsmotoren I - M-MACH-101275 ... 127
7.63. Verbrennungsmotoren II - M-MACH-101303 .. 129
7.64. Vertiefung der Produktionstechnik - M-MACH-101284 131
7.65. Vertiefung im Customer Relationship Management - M-WIWI-101422 133
7.66. Vertiefung Informatik - M-WIWI-101399 ... 135
7.67. Vertiefung ingenieurwissenschaftlicher Grundlagen - M-MACH-101261 137
7.68. Vertiefung Werkstoffkunde - M-MACH-101262 .. 138
7.69. Wahlpflicht Informatik - M-WIWI-101426 .. 140
7.70. Weiterführende ingenieurwissenschaftliche Grundlagen - M-WIWI-101839 142
7.71. Werkstoffkunde - M-MACH-101260 ... 143
7.72. Werkzeugmaschinen und Handhabungstechnik - M-MACH-101286 144
7.73. Wirtschaftspolitik I - M-WIWI-101668 .. 146
7.74. Wirtschaftstheorie - M-WIWI-101501 .. 148

8. Teilleistungen .. 150

8.1. Abgas- und Schmierölanalyse am Verbrennungsmotor - T-MACH-105173 150
8.2. Advanced Topics in Economic Theory - T-WIWI-102699 .. 151
8.3. Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte - T-MACH-106744 ... 152
8.4. Analyse multivariater Daten - T-WIWI-103063 .. 153
8.5. Analytisches CRM - T-WIWI-102596 ... 154
8.6. Angewandte Informatik I - Modellierung - T-WIWI-102652 156
8.7. Angewandte Informatik II - Internet Computing - T-WIWI-109445 158
8.9. Applied Asset Management - T-WIWI-108445 .. 162
8.10. Auction & Mechanism Design - T-WIWI-102876 ... 163
8.11. Aufbau und Betrieb von Leistungstransformatoren - T-ETIT-101925 ... 165
8.12. Aufbau und Eigenschaften verschleißfester Werkstoffe - T-MACH-102141 ... 166
8.13. Ausgewählte Anwendungen der Technischen Logistik - T-MACH-102160 ... 168
8.15. Ausgewählte Kapitel der Optik und Mikrooptik für Maschinenbauer - T-MACH-102165 .. 171
8.16. Bachelorarbeit - T-WIWI-103067 ... 172
8.17. Bahnsystemtechnik - T-MACH-102143 ... 173
8.18. Baubetriebstechnik - T-BGU-101691 ... 176
8.20. Bauökologie II - T-WIWI-102743 ... 179
8.22. Betriebsstoffe für Verbrennungsmotoren - T-MACH-105184 ... 182
8.23. Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen - T-WIWI-102819 ... 183
8.25. Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft - T-WIWI-102817 ... 188
8.26. BGB für Anfänger - T-INFO-103339 ... 189
8.27. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II - T-MACH-100967 ... 191
8.28. BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III - T-MACH-100968 ... 193
8.29. Bionik für Ingenieure und Naturwissenschaftler - T-MACH-102172 ... 195
8.30. Börsen - T-WIWI-102625 ... 196
8.31. BUS-Steuerungen - T-MACH-102150 ... 197
8.32. BUS-Steuerungen - Vorlesung - T-MACH-108889 ... 199
8.33. CAD-Praktikum NX - T-MACH-102187 ... 200
8.34. Customer Relationship Management - T-WIWI-102595 ... 202
8.35. Data Mining and Applications - T-WIWI-103066 ... 204
8.36. Datenbanksysteme - T-WIWI-102660 ... 206
8.37. Derivate - T-WIWI-102643 ... 208
8.39. Digital Services - T-WIWI-109938 ... 212
8.40. Economics and Behavior - T-WIWI-102892 ... 213
8.41. eFinance: Wirtschaftsinformatik für den Wertpapierhandel - T-WIWI-109941 ... 215
8.42. Einführung in das Operations Research I und II - T-WIWI-102758 ... 217
8.43. Einführung in die Energiewirtschaft - T-WIWI-102746 ... 219
8.44. Einführung in die Finanzwissenschaft - T-WIWI-102877 ... 221
8.45. Einführung in die Ingenieurgeologie - T-BGU-101500 ... 222
8.46. Einführung in die Spieltheorie - T-WIWI-102850 ... 223
8.47. Einführung in die Stochastische Optimierung - T-WIWI-106546 ... 225
8.48. Einführung in die Technische Mechanik I: Statik und Festigkeitslehre - T-MACH-102208 ... 226
8.49. Einführung in die Technische Mechanik II: Dynamik - T-MACH-102210 ... 227
8.50. Einführung in die Wirtschaftspolitik - T-WIWI-103213 ... 229
8.51. Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen - T-BGU-101681230 ... 231
8.52. Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorlesung - T-BGU-103541 ... 231
8.53. Elektrische Energienetze - T-ETIT-100830 ... 232
8.54. Elektroenergiesysteme - T-ETIT-101923 ... 233
8.55. Elektrotechnik I für Wirtschaftsingenieure - T-ETIT-100533 ... 234
8.56. Elektrotechnik II für Wirtschaftsingenieure - T-ETIT-100534 ... 235
8.57. Elemente und Systeme der Technischen Logistik - T-MACH-102159 ... 236
8.58. Elemente und Systeme der Technischen Logistik - Projekt - T-MACH-108946 ... 237
8.59. Energieeffiziente Intralogistiksysteme (mach und wiwi) - T-MACH-105151 ... 238
8.60. Energiepolitik - T-WIWI-102607 ... 240
8.61. Energieumsetzung und Wirkungsgradsteigerung bei Verbrennungsmotoren - T-MACH-105564 ... 242
8.63. Entscheidungstheorie - T-WIWI-102792 ... 244
8.64. Erzeugung elektrischer Energie - T-ETIT-101924 ... 246
8.65. Fachliche Voraussetzungen erfüllt - T-WIWI-106623 ... 247
8.66. Fahreigenschaften von Kraftfahrzeugen I - T-MACH-105152 ... 248
8.67. Fahreigenschaften von Kraftfahrzeugen II - T-MACH-105153 ... 249
8.68. Fahrzeugkomfort und -akustik I - T-MACH-105154 ... 250
8.69. Fahrzeugkomfort und -akustik II - T-MACH-105155 ... 252

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
8.70. Fahrzeugmechatronik I - T-MACH-105156 ... 254
8.71. Fahrzeugreifen- und Räderentwicklung für PKW - T-MACH-102207 256
8.72. Fernerkundung, Prüfung - T-BGU-101636 ... 258
8.73. Fernerkundungssysteme, Vorleistung - T-BGU-101637 ... 259
8.74. Fernerkundungsverfahren - T-BGU-103542 .. 260
8.75. Fernerkundungsverfahren, Vorleistung - T-BGU-101638 .. 261
8.76. Fertigungstechnik - T-MACH-102105 ... 262
8.77. Financial Accounting for Global Firms - T-WIWI-107505 .. 264
8.78. Financial Econometrics - T-WIWI-103064 ... 266
8.79. Financial Management - T-WIWI-102605 ... 267
8.80. Finanzintermediation - T-WIWI-102623 ... 269
8.81. Fluidtechnik - T-MACH-102093 .. 271
8.82. Foundations of Interactive Systems - T-WIWI-109816 ... 273
8.83. Gasmotoren - T-MACH-102197 .. 274
8.84. Geological Hazards and Risks für Nebenfachstudierende - T-PHYS-103117 275
8.85. Geschäftspolitik der Kreditinstitute - T-WIWI-102626 ... 276
8.86. Globale Optimierung I - T-WIWI-102726 ... 278
8.87. Globale Optimierung I und II - T-WIWI-103638 .. 280
8.88. Globale Optimierung II - T-WIWI-102727 .. 282
8.89. Grundlagen der Fahrzeugtechnik I - T-MACH-100092 ... 284
8.90. Grundlagen der Fahrzeugtechnik II - T-MACH-102117 ... 286
8.91. Grundlagen der Informatik I - T-WIWI-102749 .. 288
8.92. Grundlagen der Informatik II - T-WIWI-102707 .. 291
8.93. Grundlagen der katalytischen Abgaskatalysatoren bei Verbrennungskraftstoffen - T-MACH-105044 ... 293
8.94. Grundlagen der Mikrosystemtechnik I - T-MACH-105182 295
8.95. Grundlagen der Mikrosystemtechnik II - T-MACH-105183 296
8.96. Grundlagen der Produktionswirtschaft - T-WIWI-102606 297
8.97. Grundlagen der Technischen Logistik - T-MACH-102163 299
8.98. Grundlagen der Unternehmensbesteuerung - T-WIWI-1058711 301
8.99. Grundlagen für mobile Business - T-WIWI-104679 .. 302
8.100. Grundlagen zur Konstruktion von Kraftfahrzeugaufladung I - T-MACH-102116 304
8.101. Grundlagen zur Konstruktion von Kraftfahrzeugaufladung II - T-MACH-102119 306
8.102. Grundsätze der Nutzfahrzeugentwicklung I - T-MACH-105160 308
8.103. Grundsätze der Nutzfahrzeugentwicklung II - T-MACH-105161 310
8.104. Grundsätze der PKW-Entwicklung I - T-MACH-105162 312
8.105. Grundsätze der PKW-Entwicklung II - T-MACH-105163 314
8.106. Hydrologie - T-BGU-101693 ... 316
8.107. Industriöökonomie - T-WIWI-102844 ... 317
8.108. Information Engineering - T-MACH-102209 .. 319
8.109. Informationssicherheit - T-WIWI-108387 .. 320
8.110. Informationssysteme in Logistik und Supply Chain Management - T-MACH-102128 ... 322
8.111. Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen - T-MACH-105188 324
8.112. Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 - T-MACH-109054 326
8.113. Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen - T-WIWI-108716 ... 328
8.114. International Marketing - T-WIWI-102807 .. 330
8.115. Internationale Finanzierung - T-WIWI-102646 ... 332
8.116. Investments - T-WIWI-102604 .. 334
8.117. IT-Systemplattform I4.0 - T-MACH-106457 .. 335
8.118. Keramik-Grundlagen - T-MACH-100287 ... 336
8.119. Klimatologie - T-PHYS-101092 .. 338
8.120. Lager- und Distributionssysteme - T-MACH-105174 .. 339
8.121. Lernfabrik Globale Produktion - T-MACH-105783 .. 341
8.122. Logistics and Supply Chain Management - T-WIWI-102870 343
8.123. Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen - T-MACH-102089 ... 344
8.124. Logistik in der Automobilindustrie - T-MACH-105165 ... 346
8.125. Logistiksysteme auf Flughäfen - T-MACH-105175 .. 348
8.126. Macroeconomic Theory - T-WIWI-109121 .. 349
8.127. Management Accounting 1 - T-WIWI-102800 .. 350
8.128. Management Accounting 2 - T-WIWI-102801 .. 351
8.129. Marketing Mix - T-WIWI-102805 ... 352
Inhaltsverzeichnis

8.190. Produktion und Nachhaltigkeit - T-WIWI-102820 ... 440
8.191. Produktions- und Logistikcontrolling - T-WIWI-103091 .. 442
8.192. Produktionstechnisches Seminar - T-MACH-109062 .. 443
8.193. Programmieren I: Java - T-WIWI-102735 .. 444
8.194. Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java - T-WIWI-102747 .. 446
8.196. Project Workshop: Automotive Engineering - T-MACH-102156 .. 450
8.197. Projektmanagement - T-BGU-101675 .. 452
8.198. Projektübung Angewandte Fernerkundung - T-BGU-101814 .. 453
8.199. Prüfung zur Klimatologie - T-PHYS-105594 .. 454
8.200. Pulvermetallurgische Hochleistungswerkstoffe - T-MACH-102157 455
8.201. Qualitätsmanagement - T-MACH-102107 .. 456
8.203. Real Estate Management II - T-WIWI-102745 .. 460
8.204. Rechnungswesen - T-WIWI-102816 .. 462
8.206. Seminar aus Rechtswissenschaften I - T-INFO-101997 ... 465
8.207. Seminar Betriebswirtschaftslehre (Bachelor) - T-WIWI-103486 ... 468
8.208. Seminar Data-Mining in der Produktion - T-MACH-108737 .. 474
8.209. Seminar Informatik (Bachelor) - T-WIWI-103485 ... 476
8.211. Seminar Mathematik (Bachelor) - T-MATH-102265 ... 482
8.212. Seminar Operations Research (Bachelor) - T-WIWI-103488 .. 483
8.213. Seminar Statistik (Bachelor) - T-WIWI-103489 ... 485
8.214. Seminar Volkswirtschaftslehre (Bachelor) - T-WIWI-103487 ... 486
8.215. Seminarpraktikum Digital Services - T-WIWI-105711 ... 490
8.216. Simulation gekoppelter Systeme - T-MACH-105172 .. 491
8.217. Simulation gekoppelter Systeme - Vorleistung - T-MACH-108888 493
8.218. Software Engineering - T-WIWI-100809 ... 494
8.219. Sozialforschung A (WiWi) - T-GEISTSOZ-109048 .. 496
8.220. Sozialforschung B (WiWi) - T-GEISTSOZ-109049 .. 497
8.221. Sozialstrukturanalyse (WiWi) - T-GEISTSOZ-109047 .. 498
8.222. Spezialveranstaltung Wirtschaftsinformatik - T-WIWI-109940 .. 499
8.223. Spezialvorlesung Angewandte Informatik - T-WIWI-102910 .. 500
8.224. Standortplanung und strategisches Supply Chain Management - T-WIWI-102704 501
8.225. Statistik I - T-WIWI-102737 ... 503
8.226. Statistik II - T-WIWI-102738 ... 505
8.228. Steuerungstechnik - T-MACH-105185 .. 508
8.229. Struktur- und Phasenanalyse - T-MACH-102170 ... 510
8.230. Strukturkeramiken - T-MACH-102179 .. 511
8.231. Systematische Werkstoffauswahl - T-MACH-100531 ... 512
8.232. Systemdynamik und Regelungstechnik - T-ETIT-101921 .. 514
8.233. Taktisches und operatives Supply Chain Management - T-WIWI-102714 515
8.234. Technische Informationssysteme - T-MACH-102083 .. 517
8.235. Umformtechnik - T-MACH-105177 .. 518
8.236. Unternehmensführung und Strategisches Management - T-WIWI-102629 520
8.237. Verbrennungsmotoren I - T-MACH-102194 ... 522
8.238. Verbrennungsmotoren II - T-MACH-104609 ... 523
8.239. Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung - T-CIWVT-106058 ... 524
8.240. Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen - T-MACH-102139 ... 525
8.242. Verzahnungstechnik - T-MACH-102148 .. 529
8.243. Virtual Reality Praktikum - T-MACH-102149 ... 530
8.244. Volkswirtschaftslehre I: Mikroökonomie - T-WIWI-102708 .. 531
8.245. Volkswirtschaftslehre II: Makroökonomie - T-WIWI-102709 .. 533
8.247. Wasserbau und Wasserwirtschaft - T-BGU-101667 .. 536
8.248. Werkstoffkunde I für Wirtschaftsingenieure - T-MACH-102078 .. 537
8.249. Werkstoffkunde II für Wirtschaftsingenieure - T-MACH-102079 ... 539
Inhaltsverzeichnis

8.250. Werkzeugmaschinen und Handhabungstechnik - T-MACH-102158 ... 541
8.251. Wettbewerb in Netzen - T-WIWI-100005 ... 543
8.252. Wohlfahrtsrechnung - T-WIWI-102610 ... 545
Willkommen im neuen Modulhandbuch Ihres Studiengangs

Wir freuen uns, dass Sie sich für ein Studium an der KIT-Fakultät für Wirtschaftswissenschaften entschieden haben und wünschen Ihnen einen guten Start ins neue Semester!

Die folgenden Ansprechpartner stehen Ihnen bei Fragen und Problemen jederzeit gerne zur Verfügung.

Ralf Hilser, Anabela Relvas
Prüfungssekretariat
☎️ +49 721 608-43768
✉️ pruefungssekretariat@wiwi.kit.edu

Dr. André Wiesner
Redaktion Modulhandbuch
☎️ +49 721 608-44061
✉️ modul@wiwi.kit.edu

Schreiben Sie uns!
2 Über das Modulhandbuch

2.1 Wichtige Regeln

• die Zusammensetzung der Module,
• die Größe der Module (in LP),
• die Abhängigkeiten der Module untereinander,
• die Qualifikationsziele der Module,
• die Art der Erfolgskontrolle und
• die Bildung der Note eines Moduls.

Das Modulhandbuch gibt somit die notwendige Orientierung im Studium und ist ein hilfreicher Begleiter. Das Modulhandbuch ersetzt aber nicht das Vorlesungsverzeichnis, das aktuell zu jedem Semester über die variablen Veranstaltungsdaten (z.B. Zeit und Ort der Lehrveranstaltung) informiert.

2.1.1 Beginn und Abschluss eines Moduls

2.1.2 Modul- und Teilleistungsverordnung

2.1.3 Erstverwendung

2.1.4 Gesamt- oder Teilprüfungen

2.1.5 Arten von Prüfungen

In den Studien- und Prüfungsordnungen ab 2015 gibt es schriftliche Prüfungen, mündliche Prüfungen und Prüfungsleistungen anderer Art. Prüfungen sind immer benotet. Davon zu unterscheiden sind Studienleistungen, die

2.1.6 Wiederholung von Prüfungen

2.1.7 Zusatzleistungen

2.1.8 Alles ganz genau ...

2.2 Ansprechpartner

Fragen zu Modulen und Teilleistungen beantwortet Ihnen das Team des Prüfungssekretariats:

Ralf Hilser
Anabela Relvas
Telefon +49 721 608-43768
E-Mail: pruefungssekretariat@wiwi.kit.edu

Redaktionelle Verantwortung:

Dr. André Wiesner
Telefon: +49 721 608-44061
Email: modul@wiwi.kit.edu
WIRTSCHAFTSINGENIEURWESEN – Disziplinenübergreifendes Denken als Rüstzeug

Technik und Wirtschaft wachsen zusammen

Wirtschaftsingenieure arbeiten an Schnittstellen

Die Inhalte des Studiums

Neben grundlegenden wirtschaftswissenschaftlichen Studien liegt der Schwerpunkt auf der wirtschaftlichen und technischen Mehrfachqualifikation und der Vermittlung fundierter methodischer Kompetenzen.

<table>
<thead>
<tr>
<th>Bachelor-Studiengang</th>
<th>Master-Studiengang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebswirtschaftslehre</td>
<td>Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Volkswirtschaftslehre</td>
<td>Volkswirtschaftslehre</td>
</tr>
<tr>
<td>Informatik</td>
<td>Informatik</td>
</tr>
<tr>
<td>Operations Research</td>
<td>Operations Research</td>
</tr>
<tr>
<td>Mathematik</td>
<td>Ingenieurwissenschaften</td>
</tr>
<tr>
<td>Statistik</td>
<td>Schlüsselqualifikationen</td>
</tr>
<tr>
<td>Ingenieurwissenschaften</td>
<td>Regelstudienzeit: 4 Semester</td>
</tr>
<tr>
<td>Betriebspraktikum</td>
<td>Abschluss: Master of Science (M. Sc.)</td>
</tr>
<tr>
<td>Schlüsselqualifikationen</td>
<td></td>
</tr>
</tbody>
</table>

Regelstudienzeit: 6 Semester
Abschluss: Bachelor of Science (B. Sc.)

Das Studium führt zur Ausbildung eines Denkprozesses, der es ermöglicht, komplexe Sachzusammenhänge in gezielte Fragestellungen aufzulösen und diese unter Einbeziehung des erworbenen Grundwissens ergebnisorientiert zu beantworten.

Karlsruher Besonderheit
Während an anderen Hochschulen eine einzig ingenieurwissenchaftliche Disziplin das gesamte Studium bestimmt, steht dem Karlsruher Wirtschaftsingenieur nach Abschluss des Kernprogramms im ingenieurwissenschaftlichen Bereich das gesamte Angebot des Karlsruher Instituts für Technologie (KIT) offen. So können Studierende ihre Ausbildung noch während des Studiums stark auf ihre persönlichen Interessen ausrichten.
4 Warum Wirtschaftsingenieurwesen?

Der Studiengang Wirtschaftsingenieurwesen ist für Sie attraktiv, wenn Sie in Ihrem Studium wirtschaftliche und technische Interessen verfolgen möchten. Absolventinnen und Absolventen haben insbesondere aus drei Gründen riesige Jobchancen:

Das spricht (unter anderem) für den Studiengang:

- In der digitalen Gesellschaft verschwimmt die Trennung zwischen technischen und betriebswirtschaftlichen Fragestellungen. Wirtschaftsingenieurinnen und Wirtschaftsingenieure verstehen beides und können deshalb wichtige Schnittstellenfunktionen übernehmen.
- Daten und datenbasierte Entscheidungen werden in Unternehmen und Forschung immer wichtiger. Der Studiengang Wirtschaftsingenieurwesen hat eine stark quantitativ-methodische Ausrichtung und bereitet so für diese Aufgaben perfekt vor.

Mehr Informationen zum Studiengang finden Sie zum Beispiel hier:

https://ranking.zeit.de/che/de/fachinfo/13

Warum Wirtschaftsingenieurwesen am KIT? Es gibt einige Universitäten in Deutschland, an denen man sehr gut Wirtschaftsingenieurwesen studieren kann. Im Vergleich hat ein Studium bei uns drei wichtige Vorteile:

- **Flexibilität** Wenn Sie am KIT Wirtschaftsingenieurwesen studieren, können Sie Ihre Studieninhalte besonders individuell gestalten. Mit Studienbeginn legen Sie sich noch nicht auf eine technische Fachrichtung fest. Zunächst bieten Ihnen unsere Pflichtveranstaltungen im Grundlagenprogramm einen breiten Überblick. Im darauf folgenden Vertiefungsprogramm können Sie die Studieninhalte in den technischen Fächern und den Wirtschaftswissenschaften nach den eigenen Interessen und Zielen selbst wählen. Link zum Modulhandbuch

- **Eigene Fakultät** Bei uns ist der Studiengang Wirtschaftsingenieurwesen Kernstudiengang an der KIT-Fakultät für Wirtschaftswissenschaften. Die Lehrveranstaltungen in den Wirtschaftswissenschaften und der Informatik sind für Ihren Studiengang konzipiert und an Ihren Interessen ausgerichtet.

Was spricht noch für ein Wirtschaftsingenieurwesen-Studium am KIT? Die drei genannten Vorteile machen den Studiengang Wirtschaftsingenieurwesen am KIT einzigartig. Darüber hinaus gibt es noch eine Reihe weiterer Gründe, die für ein Studium bei uns sprechen:

- **Top-Positionen in Rankings.** In Befragungen bei Studierenden und Personalmanagern von Unternehmen schneidet unser Studiengang regelmäßig sehr gut ab.
- **Jobmöglichkeiten.** Nach Abschluss des Studiums bei uns finden Studierende in der Regel sehr schnell einen Arbeitsplatz, der ihnen gefällt.
- **Selber gründen.** Am KIT finden Sie ein ideales Umfeld, um selbst ein Unternehmen zu gründen. Informationen über Start-Up Aktivitäten am KIT finden Sie unter http://kit-gruenderschmiede.de/de/ gruenderschmiede/fuer-studierende/
- **Studentische Aktivitäten.** An unserer Fakultät und am KIT engagieren sich Studierende auf vielfältigste Weise für sich und andere. Einen Überblick finden Sie zum Beispiel unter Studentisches Leben an der Fakultät.
5 Der Studiengang

5.1 Qualifikationsziele

Die Absolvent/innen des Bachelorstudiengangs Wirtschaftsingenieurwesen verfügen über ein im dreisemestigen Grundlagenpro gramm erworbenes methodisch ausgerichtetes wirtschaftswissenschaftliches, ingenieurwissenschaftliches, mathematisches und technologisches Grundlagenwissen.

Sie besitzen die Fähigkeit, das erworbene Wissen berufsfeldbezogen in der Industrie, im Dienstleistungssektor oder in der öffentlichen Verwaltung anzuwenden sowie das Masterstudium Wirtschaftsingenieurwesen oder ein verwandtes Studium aufzunehmen.

5.2 Aufbau nach SPO 2015

5.3 Tipps zur Studienplanung

Der oben dargestellte Studienplan stellt eine Empfehlung dar, in welcher Abfolge die Lehrveranstaltungen besucht werden sollen, wenn das Studium planmäßig in 6 Semestern absolviert werden soll. Der Studienplan ist zugeschnitten auf den Studienbeginn im Wintersemester. Es kann sich aus verschiedenen Gründen die Notwendigkeit ergeben, von diesem Studienplan abzuweichen – z.B. weil dem/der Studierenden die Menge des Stoffes zu groß ist, oder weil eine Prüfung nicht bestanden wurde und nachgeholt werden muss o.ä. Im Fall einer solchen Studienplanung nach individuellen Bedürfnissen sollte insbesondere auf folgende Punkte geachtet werden:

- Absolute Priorität haben jene Lehrveranstaltungen, die für die Orientierungsprüfungen (siehe oben) vorgeschrieben sind.
- In einigen Fällen ist zu beachten, dass die Vorlesungen in einer bestimmten Reihenfolge zu besuchen sind, weil sie aufeinander aufbauen.
- Bestimmte Lehrveranstaltungen werden nur jedes zweite Semester (entweder Sommer- oder Wintersemester) angeboten.
- Nach 9 Semestern muss das Bachelorstudium abgeschlossen sein. Im Zweifelsfall empfiehlt sich, rechtzeitig die Fachstudien-beratung (siehe Kapitel: Informations- und Beratungsstellen) in Anspruch zu nehmen.

Abbildung 3 illustriert die Prüfungsbelastung pro Semester im Bachelorstudiengang Wirtschaftsingenieurwesen anhand einer exemplarischen Modulauswahl.
5.4 Schlüsselqualifikationen

Basiskompetenzen (soft skills)
- Teamarbeit, soziale Kommunikation und Kreativitätstechniken
- Präsentationserstellung und Präsentationstechniken
- Logisches und systematisches Argumentieren und Schreiben
- Strukturierte Problemlösung und Kommunikation

Praxisorientierung (enabling skills)
- Handlungskompetenz im beruflichen Kontext
- Kompetenzen im Projektmanagement
- betriebswirtschaftliche Grundkenntnisse
- Englisch als Fachsprache

Orientierungswissen
- Vermittlung von interdisziplinärem Wissen
- Institutionelles Wissen über Wirtschafts- und Rechtssysteme
Wissen über internationale Organisationen
Medien, Technik und Innovation

Die integrative Vermittlung der Schlüsselqualifikationen erfolgt insbesondere im Rahmen einer Reihe verpflichtender Veranstaltungen innerhalb der Bachelor-Programme, nämlich

1. Grundprogramm BWL und VWL
2. Seminarmodul
3. Begleitung Bachelorarbeit
4. Berufspraktikum
5. Vertiefungsmodule BWL, VWL, Informatik

Abbildung 4 stellt die Aufteilung der Schlüsselqualifikationen im Rahmen des Bachelorstudiengangs Wirtschaftsingenieurwesen im Überblick dar.

<table>
<thead>
<tr>
<th>Art der Schlüsselqualifikation</th>
<th>Grundprogramm</th>
<th>Vertiefungsprogramm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REWE, BWL UI</td>
<td>BWL PM, BWL FR, VWL I, II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorienprogramm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BWL, VWL, INFO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berufspraktikum</td>
</tr>
</tbody>
</table>

Basiskompetenzen (soft skills)

- Teamarbeit, soziale Kommunikation und Kreativitätstechniken: x x
- Präsentationserstellung und -techniken: x
- Logisches und systematisches Argumentieren und Schreiben: x x
- Strukturierte Problemlösung und Kommunikation: x x

Praxisorientierung (enabling skills)

- Handlungskompetenz im beruflichen Kontext: x
- Kompetenzen im Projektmanagement: x
- Betriebswirtschaftliche Grundkenntnisse: x
- Englisch als Fachsprache: x (x*)

Orientierungswissen

- Interdisziplinäres Wissen: x x x (x*) (x*)
- Institutionelles Wissen über Wirtschafts- und Rechtssysteme: x x
- Wissen über internationale Organisationen: x x
- Medien, Technik und Innovation: x x

(x*) ………. ist nicht zwingend SO-vermittelnd, hängt von der Art der Aktivität ab (z.B. Auslandspraktikum, thematische Ausrichtung der Bachelorarbeit)

Abbildung 4: Schlüsselqualifikationen B.Sc. Wirtschaftsingenieurwesen
6 Aufbau des Studiengangs

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit</td>
<td>12 LP</td>
</tr>
<tr>
<td>Berufspraktikum</td>
<td>10 LP</td>
</tr>
<tr>
<td>Betriebswirtschaftslehre</td>
<td>24 LP</td>
</tr>
<tr>
<td>Volkswirtschaftslehre</td>
<td>19 LP</td>
</tr>
<tr>
<td>Informatik</td>
<td>24 LP</td>
</tr>
<tr>
<td>Operations Research</td>
<td>18 LP</td>
</tr>
<tr>
<td>Ingenieurwissenschaften</td>
<td>21 LP</td>
</tr>
<tr>
<td>Mathematik</td>
<td>21 LP</td>
</tr>
<tr>
<td>Statistik</td>
<td>10 LP</td>
</tr>
<tr>
<td>Wahlpflichtbereich</td>
<td>21 LP</td>
</tr>
</tbody>
</table>

6.1 Bachelorarbeit

Pflichtbestandteile
- M-WIWI-101601 Modul Bachelorarbeit | 12 LP

6.2 Berufspraktikum

Pflichtbestandteile
- M-WIWI-101419 Berufspraktikum | 10 LP
6.3 Betriebswirtschaftslehre

Wahlinformationen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101494 Grundsagen BWL 1</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-WIWI-101578 Grundsagen BWL 2</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Vertiefungsprogramm Betriebswirtschaftslehre (mind. 9 LP)

<table>
<thead>
<tr>
<th>Wahlmodul</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101467 Bauökologie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101498 Controlling (Management Accounting)</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101460 CRM und Servicemanagement</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101434 eBusiness und Service Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101402 eFinance</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101464 Energiewirtschaft</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101435 Essentials of Finance</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-102752 Fundamentals of Digital Service Systems</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101424 Grundsagen des Marketing</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101437 Industrielle Produktion I</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104911 Information Systems & Digital Business: Interaction</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104912 Information Systems & Digital Business: Platforms</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104913 Information Systems & Digital Business: Servitization</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101513 Personal und Organisation</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101466 Real Estate Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101436 Risk and Insurance Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101425 Strategie und Organisation</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101465 Topics in Finance I</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101423 Topics in Finance II</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101422 Vertiefung im Customer Relationship Management</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

6.4 Volkswirtschaftslehre

Wahlinformationen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101398 Einführung in die Volkswirtschaftslehre</td>
<td>10 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Vertiefungsprogramm Volkswirtschaftslehre (mind. 9 LP)

<table>
<thead>
<tr>
<th>Wahlmodul</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101499 Angewandte Mikroökonomik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101403 Finanzwissenschaft</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101668 Wirtschaftspolitik I</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101501 Wirtschaftstheorie</td>
<td>9 LP</td>
</tr>
</tbody>
</table>
6.5 Informatik

Wahlinformationen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101417</td>
<td>Grundlagen der Informatik</td>
<td>10</td>
</tr>
<tr>
<td>M-WIWI-101581</td>
<td>Einführung in die Programmierung</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Vertiefungsprogramm Informatik (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101399</td>
<td>Vertiefung Informatik</td>
<td>9</td>
</tr>
</tbody>
</table>

6.6 Operations Research

Wahlinformationen

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101418</td>
<td>Einführung in das Operations Research</td>
<td>9</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Vertiefungsprogramm Operations Research (1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101413</td>
<td>Anwendungen des Operations Research</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-101414</td>
<td>Methodische Grundlagen des OR</td>
<td>9</td>
</tr>
<tr>
<td>M-WIWI-103278</td>
<td>Optimierung unter Unsicherheit</td>
<td>9</td>
</tr>
</tbody>
</table>
6.7 Ingenieurwissenschaften

Leistungspunkte 21

Wahlinformationen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-101155</td>
<td>Elektrotechnik</td>
</tr>
<tr>
<td>M-MACH-101259</td>
<td>Technische Mechanik</td>
</tr>
<tr>
<td>M-WIWI-101839</td>
<td>Weiterführende ingenieurwissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>M-MACH-101260</td>
<td>Werkstoffkunde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Vertiefungsprogramm Ingenieurwissenschaften (mind. 9 LP)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101404</td>
<td>Außerplanmäßiges Ingenieurmodul</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Bahnsystemtechnik</td>
</tr>
<tr>
<td>M-WIWI-104638</td>
<td>Einführung in Naturgefahren und Risikoanalysen</td>
</tr>
<tr>
<td>M-MACH-101269</td>
<td>Einführung in die Technische Logistik</td>
</tr>
<tr>
<td>M-ETIT-102379</td>
<td>Elektrische Energienetze</td>
</tr>
<tr>
<td>M-MACH-101264</td>
<td>Fahrzeugeigenschaften</td>
</tr>
<tr>
<td>M-MACH-101265</td>
<td>Fahrzeugentwicklung</td>
</tr>
<tr>
<td>M-MACH-101266</td>
<td>Fahrzeugtechnik</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Fertigungstechnik</td>
</tr>
<tr>
<td>M-BGU-101004</td>
<td>Grundlagen des Baubetriebs</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrierte Produktionsplanung</td>
</tr>
<tr>
<td>M-MACH-101299</td>
<td>Maschinenkonstruktionslehre</td>
</tr>
<tr>
<td>M-MACH-101287</td>
<td>Mikrosystemtechnik</td>
</tr>
<tr>
<td>M-MACH-101267</td>
<td>Mobile Arbeitsmaschinen</td>
</tr>
<tr>
<td>M-BGU-101067</td>
<td>Mobilität und Infrastruktur</td>
</tr>
<tr>
<td>M-MACH-101270</td>
<td>Product Lifecycle Management</td>
</tr>
<tr>
<td>M-ETIT-101156</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Verbrennungsmotoren I</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Verbrennungsmotoren II</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Vertiefung der Produktionstechnik</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Vertiefung ingenieurwissenschaftlicher Grundlagen</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Vertiefung Werkstoffkunde</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Werkzeugmaschinen und Handhabungstechnik</td>
</tr>
</tbody>
</table>

6.8 Mathematik

Leistungspunkte 21

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101676</td>
<td>Mathematik 1</td>
</tr>
<tr>
<td>M-MATH-101677</td>
<td>Mathematik 2</td>
</tr>
<tr>
<td>M-MATH-101679</td>
<td>Mathematik 3</td>
</tr>
</tbody>
</table>
6.9 Statistik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101432</td>
<td>Einführung in die Statistik</td>
</tr>
</tbody>
</table>
6.10 Wahlpflichtbereich

Wahlpflichtbereich

Leistungspunkte
21

Wahlinformationen

Besonderheiten zur Wahl
Wahlen in diesem Bereich müssen vollständig erfolgen.

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminarmodul</td>
<td>3 LP</td>
</tr>
<tr>
<td>Wahlpflichtblock: Betriebswirtschaftslehre oder Ingenieurwissenschaften (9 LP)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101404 Äußерplanmäßiges Ingenieurmodul</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101274 Bahnystemtechnik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101467 Bauökologie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101498 Controlling (Management Accounting)</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101460 CRM und Servicemanagement</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101434 eBusiness und Service Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101269 Einführung in die Technische Logistik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101402 eFinance</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104838 Einführung in Naturgefahren und Risikoanalysen</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-ETIT-102379 Elektrische Energienetze</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-ETIT-101165 Energieerzeugung und Netzkomponenten</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101464 Energiewirtschaft</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101435 Essentials of Finance</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101264 Fahrzeugeigenschaften</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101265 Fahrzeugentwicklung</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101266 Fahrzeugtechnik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101276 Fertigungstechnik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-102752 Fundamentals of Digital Service Systems</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-BGU-101004 Grundlagen des Baubetriebs</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101424 Grundlagen des Marketing</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101437 Industrielle Produktion I</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104911 Information Systems & Digital Business: Interaction</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104912 Information Systems & Digital Business: Platforms</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-104913 Information Systems & Digital Business: Servitization</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101272 Integrierte Produktionsplanung</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101299 Maschinenkonstruktionslehre</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101287 Mikrosystemtechnik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101267 Mobile Arbeitsmaschinen</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-BGU-101067 Mobilität und Infrastruktur</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101513 Personal und Organisation</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-101270 Product Lifecycle Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101466 Real Estate Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-ETIT-101156 Regelungstechnik</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101436 Risk and Insurance Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101425 Strategie und Organisation</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101421 Supply Chain Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101465 Topics in Finance I</td>
<td>9 LP</td>
</tr>
<tr>
<td>Code</td>
<td>Modulbeschreibung</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>M-WIWI-101423</td>
<td>Topics in Finance II</td>
</tr>
<tr>
<td>M-WIWI-101422</td>
<td>Vertiefung im Customer Relationship Management</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Vertiefung ingenieurwissenschaftlicher Grundlagen</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Verbrennungsmotoren I</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Verbrennungsmotoren II</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Vertiefung der Produktionstechnik</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Vertiefung Werkstoffkunde</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Werkzeugmaschinen und Handhabungstechnik</td>
</tr>
<tr>
<td>Wahlpflichtblock: Betriebswirtschaftslehre (max. 9 LP)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101467</td>
<td>Bauökologie</td>
</tr>
<tr>
<td>M-WIWI-101498</td>
<td>Controlling (Management Accounting)</td>
</tr>
<tr>
<td>M-WIWI-101460</td>
<td>CRM und Servicemanagement</td>
</tr>
<tr>
<td>M-WIWI-101434</td>
<td>eBusiness und Service Management</td>
</tr>
<tr>
<td>M-WIWI-101402</td>
<td>eFinance</td>
</tr>
<tr>
<td>M-WIWI-101464</td>
<td>Energiewirtschaft</td>
</tr>
<tr>
<td>M-WIWI-101435</td>
<td>Essentials of Finance</td>
</tr>
<tr>
<td>M-WIWI-102752</td>
<td>Fundamentals of Digital Service Systems</td>
</tr>
<tr>
<td>M-WIWI-101424</td>
<td>Grundlagen des Marketing</td>
</tr>
<tr>
<td>M-WIWI-101437</td>
<td>Industrielle Produktion I</td>
</tr>
<tr>
<td>M-WIWI-104911</td>
<td>Information Systems & Digital Business: Interaction</td>
</tr>
<tr>
<td>M-WIWI-104912</td>
<td>Information Systems & Digital Business: Platforms</td>
</tr>
<tr>
<td>M-WIWI-104913</td>
<td>Information Systems & Digital Business: Servitization</td>
</tr>
<tr>
<td>M-WIWI-101513</td>
<td>Personal und Organisation</td>
</tr>
<tr>
<td>M-WIWI-101466</td>
<td>Real Estate Management</td>
</tr>
<tr>
<td>M-WIWI-101436</td>
<td>Risk and Insurance Management</td>
</tr>
<tr>
<td>M-WIWI-101425</td>
<td>Strategie und Organisation</td>
</tr>
<tr>
<td>M-WIWI-101421</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>M-WIWI-101465</td>
<td>Topics in Finance I</td>
</tr>
<tr>
<td>M-WIWI-101423</td>
<td>Topics in Finance II</td>
</tr>
<tr>
<td>M-WIWI-101422</td>
<td>Vertiefung im Customer Relationship Management</td>
</tr>
<tr>
<td>Wahlpflichtblock: Volkswirtschaftslehre (max. 9 LP)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101499</td>
<td>Angewandte Mikroökonomik</td>
</tr>
<tr>
<td>M-WIWI-101403</td>
<td>Finanzwissenschaft</td>
</tr>
<tr>
<td>M-WIWI-101668</td>
<td>Wirtschaftspolitik I</td>
</tr>
<tr>
<td>M-WIWI-101501</td>
<td>Wirtschaftstheorie</td>
</tr>
<tr>
<td>Wahlpflichtblock: Informatik (max. 9 LP)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101426</td>
<td>Wahlpflicht Informatik</td>
</tr>
<tr>
<td>Wahlpflichtblock: Operations Research (max. 9 LP)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101413</td>
<td>Anwendungen des Operations Research</td>
</tr>
<tr>
<td>M-WIWI-101414</td>
<td>Methodische Grundlagen des OR</td>
</tr>
<tr>
<td>M-WIWI-103278</td>
<td>Optimierung unter Unsicherheit</td>
</tr>
<tr>
<td>Wahlpflichtblock: Ingenieurwissenschaften (max. 9 LP)</td>
<td></td>
</tr>
<tr>
<td>M-WIWI-101404</td>
<td>Außerplanmäßiges Ingenieurmodul</td>
</tr>
<tr>
<td>M-MACH-101274</td>
<td>Bahnystemtechnik</td>
</tr>
<tr>
<td>M-WIWI-104838</td>
<td>Einführung in Naturgefahren und Risikoanalysen</td>
</tr>
<tr>
<td>M-MACH-101269</td>
<td>Einführung in die Technische Logistik</td>
</tr>
<tr>
<td>M-ETIT-102379</td>
<td>Elektrische Energienetze</td>
</tr>
<tr>
<td>M-MACH-101264</td>
<td>Fahrzeugeigenschaften</td>
</tr>
<tr>
<td>M-MACH-101265</td>
<td>Fahrzeugentwicklung</td>
</tr>
<tr>
<td>M-MACH-101266</td>
<td>Fahrzeugtechnik</td>
</tr>
<tr>
<td>M-MACH-101276</td>
<td>Fertigungstechnik</td>
</tr>
<tr>
<td>Code</td>
<td>Titel</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>M-BGU-101004</td>
<td>Grundlagen des Baubetriebs</td>
</tr>
<tr>
<td>M-MACH-101272</td>
<td>Integrierte Produktionsplanung</td>
</tr>
<tr>
<td>M-MACH-101299</td>
<td>Maschinenkonstruktionslehre</td>
</tr>
<tr>
<td>M-MACH-101287</td>
<td>Mikrosystemtechnik</td>
</tr>
<tr>
<td>M-MACH-101267</td>
<td>Mobile Arbeitsmaschinen</td>
</tr>
<tr>
<td>M-BGU-101067</td>
<td>Mobilität und Infrastruktur</td>
</tr>
<tr>
<td>M-MACH-101270</td>
<td>Product Lifecycle Management</td>
</tr>
<tr>
<td>M-ETIT-101156</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>M-MACH-101275</td>
<td>Verbrennungsmotoren I</td>
</tr>
<tr>
<td>M-MACH-101303</td>
<td>Verbrennungsmotoren II</td>
</tr>
<tr>
<td>M-MACH-101284</td>
<td>Vertiefung der Produktionstechnik</td>
</tr>
<tr>
<td>M-MACH-101261</td>
<td>Vertiefung ingenieurwissenschaftlicher Grundlagen</td>
</tr>
<tr>
<td>M-MACH-101262</td>
<td>Vertiefung Werkstoffkunde</td>
</tr>
<tr>
<td>M-MACH-101286</td>
<td>Werkzeugmaschinen und Handhabungstechnik</td>
</tr>
<tr>
<td>M-WIWI-101599</td>
<td>Statistik und Ökonometrie</td>
</tr>
<tr>
<td>M-INFO-101187</td>
<td>Recht Wahlpflicht</td>
</tr>
<tr>
<td>M-GEISTSOZ-101167</td>
<td>Soziologie/Empirische Sozialforschung</td>
</tr>
</tbody>
</table>
7 Module

7.1 Modul: Angewandte Mikroökonomik [M-WIWI-101499]

Verantwortung: Prof. Dr. Johannes Philipp Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Volkswirtschaftslehre (Vertiefungsprogramm Volkswirtschaftslehre)
Wahlpflichtbereich (Volkswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102850</td>
<td>Einführung in die Spieltheorie</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrieökonomie</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Wettbewerb in Netzen</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Öffentliche Einnahmen</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-102792</td>
<td>Entscheidungstheorie</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-102736</td>
<td>Volkswirtschaftslehre III: Einführung in die Ökonometrie</td>
<td>5</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- besitzt fundierte Kenntnisse in der Theorie strategischer Entscheidungen. Ein Hörer der Vorlesung "Einführung in die Spieltheorie" ist in der Lage, allgemeine strategische Fragestellungen systematisch zu analysieren und gegebenenfalls Handlungsempfehlungen für konkrete volkswirtschaftliche Entscheidungssituationen (wie kooperatives vs. egoistisches Verhalten) zu geben, (Lehrveranstaltung "Einführung in die Spieltheorie");
- erkennt die Grundprobleme des unvollkommenen Wettbewerbs und deren wirtschaftspolitische Implikationen und kann Lösungsmöglichkeiten anbieten, (Lehrveranstaltung "Industrieökonomik");
- besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung und der Staatsverschuldung, beurteilt die allokativen und distributiven Effekte verschiedener Besteuerungsarten und kennt Umfang, Struktur und Formen der staatlichen Kreditaufnahme und kann mögliche Langzeiteffekte und Nachhaltigkeit der öffentlichen Kreditaufnahme benennen.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101398 – Einführung in die Volkswirtschaftslehre muss erfolgreich abgeschlossen worden sein.

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019

26
Inhalt
Hauptziel des Moduls ist die Vertiefung der Kenntnisse in verschiedenen Anwendungsgebieten der mikroökonomischen Theorie. Die Teilnehmer sollen die Konzepte und Methoden der mikroökonomischen Analyse zu beherrschen lernen und in die Lage versetzt werden, diese auf reale Probleme anzuwenden.

Empfehlungen
Der vorherige Besuch des Moduls Volkswirtschaftslehre wird vorausgesetzt.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.2 Modul: Anwendungen des Operations Research [M-WIWI-101413]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Operations Research (Vertiefungsprogramm Operations Research)
Wahlpflichtbereich (Operations Research)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Wahlpflichtblock</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Wahlpflichtblock</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-106199</td>
<td>Modellieren und OR-Software: Einführung</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>5 LP</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagement vertraut,
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.

Voraussetzungen

Mindestens eine der Teilleistungen "Standortplanung und strategisches Supply Chain Management" sowie "Taktisches und operatives Supply Chain Management" muss absolvierter werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt

Empfehlungen

Anmerkungen
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7 MODULE

Modul: Außerplanmäßiges Ingenieurmodul [M-WIWI-101404]

Verantwortung: Prüfungsausschuss der KIT-Fakultät für Wirtschaftswissenschaften
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte: 9
Turnus: Einmalig
Dauer: 1 Semester
Level: 3
Version: 3

Wahlpflichtblock: Wahlpflichtangebot (zwischen 9 und 12 LP)

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106291</td>
<td>PH APL-ING-TL01</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-WIWI-106292</td>
<td>PH APL-ING-TL02</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-WIWI-106293</td>
<td>PH APL-ING-TL03</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-WIWI-106294</td>
<td>PH APL-ING-TL04 ub</td>
<td>0 LP</td>
</tr>
<tr>
<td>T-WIWI-106295</td>
<td>PH APL-ING-TL05 ub</td>
<td>0 LP</td>
</tr>
<tr>
<td>T-WIWI-106296</td>
<td>PH APL-ING-TL06 ub</td>
<td>0 LP</td>
</tr>
<tr>
<td>T-WIWI-108384</td>
<td>PH APL-ING-TL07</td>
<td>3 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Bildung der Modulnote wird vom jeweiligen Modulkoordinator festgelegt.

Qualifikationsziele
Der/die Studierende ist durch das außerplanmäßige Ingenieurmodul in der Lage, sich vertieft mit technischen Themengebieten und Fragestellungen auseinanderzusetzen.

Die konkreten Lernziele werden mit dem jeweiligen Modulkoordinator des Moduls abgestimmt.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Die beabsichtigte Zusammenstellung an Lehrveranstaltungen, die Modulbezeichnung sowie die Angaben zur Prüfungsabnahme für ein außerplanmäßiges Ingenieurmodul müssen von einem Modulkoordinator (Professor/in) der zuständigen ingenieurwissenschaftlichen Fakultät bestätigt werden. Der Modulkoordinator achtet dabei darauf, dass die Einzelveranstaltungen des Moduls einander sinnig ergänzen und keine wahllose Abfolge von diversen Einzelprüfungen kombiniert wird.

Der verantwortliche Modulkoordinator bescheinigt, dass die Prüfung so wie dargelegt abgelegt werden kann und dass die Angaben zu den Lehrveranstaltungen im Antrag richtig sind.

Der so erstellte, formlose Antrag (nicht handschriftlich!) wird dann beim Prüfungssekretariat der KIT-Fakultät für Wirtschaftswissenschaften eingereicht.

Der Prüfungsausschuss der KIT-Fakultät für Wirtschaftswissenschaften entscheidet auf Grundlage der beschlossenen Regularien insbesondere zur inhaltlichen Ausgestaltung (vgl. auch https://www.wiwi.kit.edu/Genehmigung_Ingenieurmodul.php) sowie des vom Studierenden ausgefüllten und vom jeweiligen Modulkoordinator unterzeichneten Antragsformulars.

Es kann maximal ein außerplanmäßiges Ingenieurmodul abgelegt werden.
Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Entsprechend dem interdisziplinären Profil des Studiengangs können technisch-orientierte Lehrveranstaltungen zu einem außerplanmäßigen Ingenieurmodul zusammengestellt werden, die nicht oder nicht in dieser Kombination im Modulhandbuch des Studiengangs aufgeführt sind. Die im außerplanmäßigen Ingenieurmodul zusammengestellten technisch-orientierten Lehrveranstaltungen umfassen dabei in Summe mindestens 9 LP und mindestens 6 SWS, maximal jedoch 12 LP und 8 SWS.

7.4 Modul: Bahnsystemtechnik [M-MACH-101274]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Name</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102143</td>
<td>Bahnsystemtechnik</td>
<td>9 LP Gratzfeld</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Prüfung: mündlich
Dauer: 45 Minuten
Hilfsmittel: keine

Qualifikationsziele

- Die Studierenden verstehen Zusammenhang und gegenseitige Abhängigkeit von Fahrzeugen, Infrastruktur und Betrieb in einem Bahnsystem.
- Aus den betrieblichen Vorgaben und den gesetzlichen Rahmenbedingungen leiten sie die Anforderungen an eine leistungsfähige Infrastruktur und geeignete Schienenfahrzeugkonzepte ab.
- Sie erkennen den Einfluss der Trassierung, verstehen die systembestimmende Funktion des Rad-Schiene-Kontaktes und schätzen die Effekte der Fahrdynamik auf das Betriebsprogramm ab.
- Sie beurteilen die Auswirkungen der Betriebsverfahren auf Sicherheit und Leistungsvermögen des Bahnsystems.
- Sie lernen die Infrastruktur zur Energieversorgung von Schienenfahrzeugen unterschiedlicher Traktionsarten kennen.
- Die Studierenden erkennen die Aufgaben von Schienenfahrzeugen und verstehen ihre Einteilung. Sie erkennen die übergreifenden Aufgaben der Fahrzeugsystemtechnik.
- Sie lernen Funktionen und Anforderungen des Wagenkastens kennen und beurteilen Vor- und Nachteile von Bauweisen. Sie verstehen die Funktionsweisen der Schnittstellen des Wagenkastens nach außen.
- Sie verstehen die Grundzüge der Lauftechnik und ihre Umsetzung in Laufwerke.
- Sie lernen die Vor- und Nachteile der verschiedenen Antriebsarten kennen und entscheiden, was für welchen Anwendungsfall am besten geeignet ist.
- Sie verstehen die Bremsstechnik mit ihren fahrzeugseitigen und betrieblichen Aspekten und beurteilen die Tauglichkeit verschiedener Bremsysteme.
- Sie lernen den grundsätzlichen Aufbau der Leittechnik kennen und verstehen die Funktionen der wichtigsten Komponenten.
- Aus den Anforderungen an moderne Schienenfahrzeuge spezifizieren und definieren sie geeignete Fahrzeugkonzepte.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.
Inhalt

1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klothoide, Längsneigung), Bahnhöfe, (Bahnsteiglängen, Bahnsteighöhen), Lichtraumprofil und Fahrzeugbegrenzung
5. Längsdynamik: Zug- und Bremskraft, Fahrrichtungskraft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)
8. Geschichte (optional)
10. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Schnittstellen
11. Fahrwerke: Kräfte am Rad, Achsanordnungen, Laufwerke
12. Antrieb: Fahrzeuge am Fahrdraht, Fahrzeuge ohne Fahrdraht, Zweikraftfahrzeuge
13. Bremsen: Aufgaben, Grundlagen, Wirkprinzipien, Blending, Bremssteuerung
14. Fahrzeuggleitechnik: Definitionen, Netzwerstrukturen, Bussysteme, Komponenten, Beispiele

Anmerkungen
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
Die Vorlesungen Bahnsystemtechnik und Schienenfahrzeugtechnik können im selben Semester gehört werden.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.

1. Präsenzzeit: 42 Stunden
2. Vor- /Nachbereitung: 42 Stunden
3. Prüfung und Prüfungsvorbereitung: 186 Stunden

Lehr- und Lernformen
Vorlesungen
7.5 Modul: Bauökologie [M-WIWI-101467]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte	Turnus	Dauer	Level	Version
9 | Jedes Semester | 2 Semester | 3 | 2

Pflichtbestandteile

| T-WIWI-102742 | Bauökologie I | 4,5 LP | Lützkendorf |
| T-WIWI-102743 | Bauökologie II | 4,5 LP | Lützkendorf |

Erfolgskontrolle(n)

Qualifikationsziele

Der/die Studierende

- kennt die Grundlagen des nachhaltigen Planens, Bauens und Betreibens von Gebäuden mit einem Schwerpunkt im Themenbereich Bauökologie
- besitzt Kenntnisse über die bauökologischen Bewertungsmethoden sowie Hilfsmittel zur Planung und Bewertung von Gebäuden
- ist in der Lage, diese Kenntnisse zur Beurteilung der ökologischen Vorteilhaftigkeit sowie des Beitrages zu einer nachhaltigen Entwicklung von Immobilien einzusetzen.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Empfehlungen

Es wird eine Kombination mit dem Modul Real Estate Management empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Industrielle Produktion (Stoff- und Energieflüsse in der Ökonomie, Stoff- und Energiepolitik, Emissionen in die Umwelt)
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion)
Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.6 Modul: Berufspraktikum [M-WIWI-101419]

Verantwortung: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Berufspraktikum

Leistungspunkte
10

Turnus
Einmalig

Dauer
1 Semester

Level
3

Version
1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102611</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch den Nachweis über abgeleistete Vollzeitpraktika, die in Summe mindestens 12 Wochen im Umfang von mindestens 20 Stunden pro Woche umfassen (gleichmäßig verteilt auf mindestens 5 Wochenarbeitstage) und den inhaltlichen Vorgaben entsprechen sowie einer Kurzpräsentation der Tätigkeit in Form eines schriftlichen Berichts über die Tätigkeit. Die Leistungen im Modul und das Modul selbst werden nicht mit Note bewertet.

1. Informationen zum Nachweis über abgeleistete Vollzeitpraktika:

 Als Nachweis gilt die Bescheinigung der Praktikantenstelle über das abgeleistete Praktikum, formal korrekt mit offiziellem Firmenbriefkopf und handschriftlich gegengezeichnet von einem verantwortlichen Mitarbeiter des Unternehmens.

 Die Bescheinigung muss folgende Mindestangaben enthalten:

 - Unternehmen / Standort
 - Dauer: von ... bis ...
 - wöchentliche Arbeitszeit
 - Arbeitszeitunterbrechung, Angabe der Urlaubs- und Krankheitstage
 - Abteilung
 - Stichpunkte zu den verrichteten Tätigkeiten

2. Informationen über die zu erstellende Kurzpräsentation (Tätigkeitsbericht):

 Der Bericht (nicht handschriftlich) sollte je Praktikum mindestens eine Seite umfassen. Er muss von einem Vertreter der Praktikantenstelle gegengezeichnet sein.

 (Die Belege werden im Prüfungssekretariat der Fakultät im Original und zusätzlich in Kopie (Bearbeitungsgrundlage) eingereicht. Die Originalbelege werden nach Sichtung wieder ausgehändigt.)

Qualifikationsziele

Der/die Studierende

- besitzt einen generellen Einblick in die wesentlichen Vorgänge in einem Unternehmen,
- ist in der Lage, betriebliche Zusammenhänge zu identifizieren und besitzt Kenntnisse und Fertigkeiten, die das Verständnis für die Vorgänge im Unternehmen erleichtern,
- besitzt neben den fachpraktischen Erfahrungen und Fähigkeiten Schlüsselqualifikationen wie Eigeninitiative, Team- und Kommunikationsfähigkeit sowie die Fähigkeit zur Integration in betriebliche Hierarchien und Abläufe.
- hat die Erfahrung unter realistischen Bedingungen komplexe technische und betriebswirtschaftliche Aufgaben zu erfüllen unter Einbeziehung und Verbindung des gesamten erworbenen Wissens (vernetztes Denken).
- hat eine Vorstellung vom beruflichen Entfaltungspotenzial des Wirtschaftsingenieurwesens durch die Ausübung von studienbezogenen Tätigkeiten,
- weiß welche fachlichen und überfachlichen Anforderungen im individuell angestrebten späteren Tätigkeitsbereich bestehen und kann dies für die künftige Studienplanung berücksichtigen.
- weiß um die eigenen fachlichen und überfachlichen Stärken und Schwächen anhand der Beurteilung seiner Performance durch das Unternehmen.

Voraussetzungen

Keine
Inhalt

Das Berufspraktikum kann sowohl über technische wie auch kaufmännische Tätigkeiten nachgewiesen werden. Am besten jedoch über Tätigkeiten, die an der Schnittstelle zu beiden Bereichen angesiedelt sind, um dem besonderen Charakter des Wirtschaftsingenieurwesens gerecht zu werden.

Tätigkeiten in den Abteilungen Konstruktion, Arbeitsvorbereitung sowie Materialbereitstellung oder IT decken eher die technischen Aspekte des Berufspraktikums ab. Aber auch Tätigkeiten in einem Ingenieurbüro bieten sich für ein technisches Praktikum an.

Anmerkungen

Auch vor Studienaufnahme abgeleistete Berufspraktika sind anerkenungsfähig, wenn die Kriterien zur Anerkennung erfüllt sind. Nach Anerkennung des Pflichtpraktikums kann für ein freiwilliges, studienbezogenes Praktikum ein Urlaubssemester beantragt werden.

Bezüglich der Wahl des Unternehmens, in dem die praktische Tätigkeit absolviert wird, bestehen keine besonderen Vorschriften. Mit Blick auf das spätere berufliche Tätigkeitsfeld wird ein Berufspraktikum bei einem größeren, ggf. international agierenden Unternehmen empfohlen.

Urlaubstage werden nicht auf das Pflichtpraktikum angerechnet.

In Summe dürfen höchstens drei Krankheitstage anfallen. Darüber hinaus gehende Krankheitstage werden nicht auf das Pflichtpraktikum angerechnet.

Als äquivalente Leistungen zum Berufspraktikum wird eine einschlägige, mindestens zweijährige Berufsausbildung angerechnet.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 300 Stunden (10 Credits).
7.7 Modul: Controlling (Management Accounting) [M-WIWI-101498]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte	Turnus	Dauer	Level	Version
9 | Jedes Semester | 2 Semester | 3 | 1

Pflichtbestandteile

| T-WIWI-102800 | Management Accounting 1 | 4,5 LP | Wouters
| T-WIWI-102801 | Management Accounting 2 | 4,5 LP | Wouters

Erfolgskontrolle(n)

Qualifikationsziele
Die Studierenden
• sind vertraut mit verschiedenen Methoden des "Management Accounting",
• können diese Methoden zur Kostenschätzung, Profitabilitätsanalyse und Kostenrechnung anwenden,
• sind fähig mit diesen Methoden kurz- und langfristige Entscheidungsfragen zu analysieren,
• sind imstande organisatorische Steuerungsinstrumente zu gestalten.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt
Das Modul besteht aus zwei Vorlesungen "Management Accounting 1" und "Management Accounting 2". Der Schwerpunkt des Moduls wird auf das strukturierte Lernen von Methoden des "Management Accounting" gelegt.

Anmerkungen
Folgende Lehrveranstaltungen werden für das Modul angeboten:
• Die Vorlesung "Management Accounting 1" wird turnusmäßig im Sommersemester angeboten.
• Die Vorlesung "Management Accounting 2" wird turnusmäßig im Wintersemester angeboten.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.8 Modul: CRM und Servicemanagement [M-WIWI-101460]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 1 Semester
Level: 3
Version: 1

Wahlpflichtblock: Wahlpflichtangebot (2 Bestandteile)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modulcode</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytisches CRM</td>
<td>T-WIWI-102596</td>
<td>4,5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>Operatives CRM</td>
<td>T-WIWI-102597</td>
<td>4,5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>T-WIWI-102595</td>
<td>4,5</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von mehreren Teilprüfungen (nach § 4 Abs. 1, S. 2 2. Hs. SPO) zu den gewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt wird.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Teilnoten der einzelnen Lehrveranstaltungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- versteht Servicemanagement als betriebswirtschaftliche Grundlage für Customer Relationship Management und kennt die sich daraus ergebenden Konsequenzen für die Unternehmensführung, Organisation und die einzelnen betrieblichen Teilbereiche,
- entwickelt und gestaltet Servicekonzepte und Servicesysteme auf konzeptueller Ebene,
- bearbeitet Fallstudien im Team unter Einhaltung von Zeitvorgaben und zieht dabei internationale Literatur aus dem Bereich heran,
- kennt die aktuellen Entwicklungen im CRM-Bereich in Wissenschaft und Praxis,
- versteht die wichtigsten wissenschaftlichen Methoden (BWL, Statistik, Informatik) des analytischen CRM und kann diese Methoden selbständig auf Standardfälle anwenden,
- gestaltet, implementiert und analysiert operative CRM-Prozesse in konkreten Anwendungsbereichen (wie Marketing Kampagnen Management, Call Center Management, ...).

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
Im Modul CRM und Servicemanagement werden die Grundlagen moderner kunden- und serviceorientierter Unternehmensführung und ihre praktische Unterstützung durch Systemarchitekturen und CRM-Softwarepakete vermittelt. Customer Relationship Management (CRM) als Unternehmensstrategie erfordert Servicemanagement und dessen konsequente Umsetzung in allen Unternehmensbereichen.

Im operativen CRM wird die Gestaltung kundenorientierter IT-gestützter Geschäftsprozesse auf der Basis der Geschäftsprozessmodellierung an konkreten Anwendungsszenarien erläutert (z.B. Kampagnenmanagement, Call Center Management, Sales Force Management, Field Services, ...).

Im analytischen CRM wird Wissen über Kunden auf aggregierter Ebene für betriebliche Entscheidungen (z.B. Sortimentsplanung, Kundenloyalität, Kundenwert, ...) und zur Verbesserung von Services nutzbar gemacht. Voraussetzung dafür ist die enge Integration der operativen Systeme mit einem Datawarehouse, die Entwicklung eines kundenorientierten und flexiblen Reportings, sowie die Anwendung statistischer Analysemethoden (z.B. Clustering, Regression, stochastische Modelle, ...).

Anmerkungen
Die Lehrveranstaltung Customer Relationship Management [2540508] wird auf Englisch gehalten.

Arbeitsaufwand
7.9 Modul: eBusiness und Service Management [M-WIWI-101434]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

- T-WIWI-109938 Digital Services 4,5 LP
- T-WIWI-109941 eFinance: Wirtschaftsinformatik für den Wertpapierhandel 4,5 LP Weinhardt
- T-WIWI-109816 Foundations of Interactive Systems 4,5 LP Mädche
- T-WIWI-109936 Platform Economy 4,5 LP Weinhardt
- T-WIWI-109940 Spezialveranstaltung Wirtschaftsinformatik 4,5 LP Weinhardt
- T-WIWI-109808 Platzhalter 1 eBusiness und Service Management 4,5 LP

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Die Studierenden

- verstehen die strategischen und operativen Gestaltungen von Informationen und Informationsprodukten,
- analysieren die Rolle von Informationen auf Märkten,
- evaluieren Fallbeispiele bzgl. Informationsprodukte,
- erarbeiten Lösungen in Teams.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
Inhalt

In "eServices" wird die zunehmende Entwicklung von elektronischen Dienstleistungen im Gegensatz zu den klassischen Dienstleistungen hervorgehoben. Die Informations- und Kommunikationstechnologie ermöglicht die Bereitstellung von Diensten, die durch Interaktivität und Individualität gekennzeichnet sind. In dieser Veranstaltung werden die Grundlagen für die Entwicklung und das Management IT-basierter Dienstleistungen gelegt.

Die Veranstaltung "Spezialveranstaltung Wirtschaftsinformatik" festigt die theoretischen Grundlagen und ermöglicht weitergehende praktische Erfahrungen im Bereich der Wirtschaftsinformatik. Seminarpraktika des IM können als Spezialveranstaltung Wirtschaftsinformatik belegt werden.

Anmerkungen

Arbeitsaufwand

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.10 Modul: eFinance [M-WIWI-101402]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 2 Semester
Level: 3
Version: 5

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109941</td>
<td>eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (4,5 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen</td>
<td>1,5 LP</td>
<td>Franke</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5 LP</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung</td>
<td>3 LP</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Die Studierenden

- verstehen und analysieren die Wertschöpfungskette im Wertpapierhandel,
- bestimmen und gestalten Methoden und Systeme situationsangemessen und wenden diese zur Problemlösung im Bereich Finance an,
- beurteilen und kritisieren die Investitionsentscheidungen von Händlern,
- wenden theoretische Methoden aus der Ökonometrie an,
- erarbeiten Lösungen in Teams.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
Inhalt

Anmerkungen
Das aktuelle Angebot an Seminaren passend zu diesem Modul ist auf der folgenden Webseite aufgelistet: http://www.iism.kit.edu/im/lehre

Arbeitsaufwand
7.11 Modul: Einführung in das Operations Research [M-WIWI-101418]

Verantwortung: Prof. Dr. Stefan Nickel
 Prof. Dr. Steffen Rebennack
 Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Operations Research (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| P-LP-102758 | Einführung in das Operations Research I und II | 9 LP | Nickel, Rebennack, Stein |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtklausur (120 min.) (nach §4(2), 1 SPO).
Die Klausur wird in jedem Semester (in der Regel im März und Juli) angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Qualifikationsziele
Der/die Studierende

• benennt und beschreibt die Grundbegriffe der entscheidenden Teilbereiche im Fach Operations Research (Lineare Optimierung, Graphen und Netzwerke, Ganzzahlige und kombinatorische Optimierung, Nichtlineare Optimierung, Dynamische Optimierung und stochastische Modelle),
• kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
• modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um einfache Optimierungsprobleme selbständig zu lösen,
• validiert, illustriert und interpretiert erhaltene Lösungen.

Zusammensetzung der Modulnote
Die Modulnote entspricht der Klausurnote.

Voraussetzungen
Keine

Inhalt
Nach einer einführenden Thematisierung der Grundbegriffe des Operations Research werden insbesondere die lineare Optimierung, die Graphentheorie und Netzplantechnik, die ganzzahlige und kombinatorische Optimierung, die nichtlineare Optimierung, die deterministische und stochastische dynamische Optimierung, die Warteschlangentheorie sowie Heuristiken behandelt.
Dieses Modul bildet die Basis einer Reihe weiterführender Veranstaltungen zu theoretischen und praktischen Aspekten des Operations Research.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte).
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.12 Modul: Einführung in die Programmierung [M-WIWI-101581]

Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Informatik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-WIWI-102735 | Programmieren I: Java | 5 LP | Zöllner |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung bzw. Rechnerprüfung (60 min) (nach §4(2),1 SPO).
Die erfolgreiche Lösung der Pflichtaufgaben im Rechnerpraktikum ist Voraussetzung für die Zulassung zur Klausur oder Rechnerprüfung.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Die Modulnote entspricht der Note der schriftlichen Prüfung.

Qualifikationsziele

- Kenntnis der wesentlichen Grundlagen, Methoden und Systeme der Informatik.
- Die Studierenden erwerben die Fähigkeit eigenständig algorithmische Probleme in der im Bereich betriebswirtschaftlicher Anwendungen dominierenden Programmiersprache Java zu lösen.
- Dabei werden sie zum Finden strategischer und kreativer Antworten bei der Suche nach Lösungen für genau definierte, konkrete und abstrakte Probleme, befähigt.

Voraussetzungen

Keine

Inhalt

Arbeitsaufwand

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 45 Stunden
Vor – und Nachbereitung der LV: 67.5 Stunden
Prüfung und Prüfungsvorbereitung: 37.5 Stunden
7.13 Modul: Einführung in die Statistik [M-WIWI-101432]

Verantwortung: Prof. Dr. Oliver Grothe
Pro. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Statistik

Leistungspunkte: 10
Turnus: Jedes Semester
Dauer: 2 Semester
Level: 3
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-WIWI-102737</th>
<th>Statistik I</th>
<th>5 LP</th>
<th>Grothe, Schienle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102738</td>
<td>Statistik II</td>
<td>5 LP</td>
<td>Grothe, Schienle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- kennt und versteht die grundlegende Konzepte der statistischen Datenauswertung und wendet diese eigenständig auf begrenzte Untersuchungsgegenstände an,
- kennt und versteht die grundlegenden Definitionen und Aussagen der Wahrscheinlichkeitsrechnung und wendet diese selbstständig an,
- überträgt die theoretischen Grundlagen der statistischen Datenauswertung und der Wahrscheinlichkeitsrechnung auf die Fragestellungen der parametrischen Schätz- und Testtheorie.

Voraussetzungen

Inhalt

Das Modul umfasst die wesentlichen, grundlegenden Bereiche und Methoden der Statistik.

A. Deskriptive Statistik: Univariate und Bivariate Analyse
B. Wahrscheinlichkeitsrechnung: Wahrscheinlichkeitsraum, bedingte Wahrscheinlichkeiten, Produktwahrscheinlichkeiten
C. Zufallsvariablen: Lage- und Formparameter, Abhängigkeitsmaße, konkrete Verteilungsmodelle
D. Stichproben- und Schätztheorie: Stichprobenverteilungen, Schätzfunktionen, Punkt- und Intervallschätzung
E. Testtheorie: Allgemeine Prinzipien von Hypothesentests, konkrete 1- und 2-Stichproben tests
F. Regressionsanalyse: Einfache und multiple lineare Regression, statistische Inferenz

Empfehlungen

Es wird dringend empfohlen, die Lehrveranstaltung Statistik I [25008/25009] vor der Lehrveranstaltung Statistik II [25020/25021] zu absolvieren.

Zur Vorlesung wird eine Übung gehalten und ein Tutorium sowie ein Rechnerpraktikum gehalten, deren Besuch empfohlen wird.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 300 Stunden (10 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.14 Modul: Einführung in die Technische Logistik [M-MACH-101269]

Verantwortung: Prof. Dr.-Ing. Kai Furmans

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften) Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften) Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte 9
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 3

Wahlpflichtblock: Einführung in die Technische Logistik (Kernbereich) (zwischen 1 und 2 Bestandteilen sowie 6 LP)
T-MACH-102151 Materialfluss in Logistiksystemen 6 LP Furmans
T-MACH-102163 Grundlagen der Technischen Logistik 6 LP Mittwollen, Oellerich

Wahlpflichtblock: Einführung in die Technische Logistik (Ergänzungsbereich) (1 Bestandteil sowie mind. 3 LP)
T-MACH-102128 Informationssysteme in Logistik und Supply Chain Management 3 LP Kilger
T-MACH-102160 Ausgewählte Anwendungen der Technischen Logistik 4 LP Milushev, Mittwollen
T-MACH-105174 Lager- und Distributionssysteme 3 LP Furmans
T-MACH-105151 Energieeffiziente Intralogistiksysteme (mach und wiwi) 4 LP Braun, Schönung
T-MACH-105165 Logistik in der Automobilindustrie 4 LP Furmans
T-MACH-105175 Logistiksysteme auf Flughäfen 3 LP Richter
T-WIWI-103091 Produktions- und Logistikcontrolling 3 LP Rausch
T-MACH-102159 Elemente und Systeme der Technischen Logistik 4 LP Fischer, Mittwollen
T-MACH-108946 Elemente und Systeme der Technischen Logistik - Projekt 2 LP Fischer, Mittwollen
T-MACH-108945 Ausgewählte Anwendungen der Technischen Logistik - Projekt 2 LP Milushev, Mittwollen

Erfolgskontrolle(n)

Qualifikationsziele
Der/die Studierende
• besitzt fundierte Kenntnisse und Methodenwissen in den zentralen Fragestellungen der Technischen Logistik,
• kennt und versteht die Funktionsweise fördertechnischer Anlagen,
• ist in der Lage, logistische Systeme mit einfachen Modellen und ausreichender Genauigkeit abzubilden,
• kann Logistiksysteme bewerten und Wirkzusammenhänge in Logistiksystemen erkennen.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
Inhalt

Arbeitsaufwand
270 Stunden

Lehr- und Lernformen
Vorlesung, Übung.
7.15 Modul: Einführung in die Volkswirtschaftslehre [M-WIWI-101398]

Verantwortung: Prof. Dr. Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Volkswirtschaftslehre (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102708</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>5 LP</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102709</td>
<td>Volkswirtschaftslehre II: Makroökonomie</td>
<td>5 LP</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

Der/die Studierende

- kennt und versteht die grundsätzlichen volkswirtschaftlichen Fragestellungen,
- kann die aktuellen wirtschaftspolitischen Probleme der globalisierten Welt benennen,
- ist in der Lage, elementare Lösungsstrategien zu entwickeln.

Dabei ist der Fokus der beiden Lehrveranstaltungen des Moduls unterschiedlich. Während in der Vorlesung VWL I die ökonomischen Probleme hauptsächlich als Entscheidungsprobleme aufgefasst und gelöst werden, soll in VWL II das Verständnis des Studenten für die Dynamik wirtschaftlicher Prozesse gefördert werden.

Zusammensetzung der Modulnote

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Inhalt

Anmerkungen

Arbeitsaufwand

Gesamtaufwand bei 10 Leistungspunkten: ca. 300 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.16 Modul: Einführung in Naturgefahren und Risikoanalysen [M-WIWI-104838]

Verantwortung: Prof. Dr. Michael Kunz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Wahlpflichtblock: Wahlpflichtangebot (zwischen 9 und 12 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>LP</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101500</td>
<td>Einführung in die Ingenieurgeologie</td>
<td>5</td>
<td>Blum</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, Vorleistung</td>
<td>3</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen</td>
<td>3</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101637</td>
<td>Fernerkundungssysteme, Vorleistung</td>
<td>1</td>
<td>Hinz</td>
</tr>
<tr>
<td>T-BGU-101638</td>
<td>Fernerkundungsverfahren, Vorleistung</td>
<td>1</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-BGU-101636</td>
<td>Fernerkundung, Prüfung</td>
<td>4</td>
<td>Hinz</td>
</tr>
<tr>
<td>T-BGU-103542</td>
<td>Fernerkundungsverfahren</td>
<td>3</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-PHYS-103117</td>
<td>Geological Hazards and Risks für Nebenfachstudierende</td>
<td>4</td>
<td>Gottschämmer</td>
</tr>
<tr>
<td>T-BGU-101693</td>
<td>Hydrologie</td>
<td>4</td>
<td>Zehe</td>
</tr>
<tr>
<td>T-PHYS-101092</td>
<td>Klimatologie</td>
<td>5</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-BGU-101814</td>
<td>Projektübung Angewandte Fernerkundung</td>
<td>1</td>
<td>Hinz</td>
</tr>
<tr>
<td>T-PHYS-105594</td>
<td>Prüfung zur Klimatologie</td>
<td>1</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-BGU-101667</td>
<td>Wasserbau und Wasserwirtschaft</td>
<td>4</td>
<td>Nestmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4 (2), 1-3 SPO) über die gewählten Lehrveranstaltungen/Prüfungen des Moduls, mit denen in Summe die Mindestanforderung an LP erfüllt wird. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/ die Studierende besitzt

- Kenntnisse über verschiedene Extremereignisse (meteorologisch, hydrologisch, geophysikalisch) sowie ihrer Charakteristika und Ursachen
- ein verbessertes Verständnis von Naturkatastrophen, deren Ursachen und Auswirkungen in einer interdisziplinären Perspektive
- Kenntnisse über Methoden der Frühwarnung und/oder der Vorhersage extremer Naturereignisse sowie über mögliche Präventions- und Vorsorgemaßnahmen.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul **M-MACH-101260 - Werkstoffkunde** muss erfolgreich abgeschlossen worden sein.
2. Das Modul **M-ETIT-101155 - Elektrotechnik** muss erfolgreich abgeschlossen worden sein.
3. Das Modul **M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen** muss erfolgreich abgeschlossen worden sein.
4. Das Modul **M-MACH-101259 - Technische Mechanik** muss erfolgreich abgeschlossen worden sein.

Inhalt

Empfehlungen

Anmerkungen
Studierende, die die beiden Module „Katastrophenverständnis und –vorhersage 1 und 2" zusammen erfolgreich abgeschlossen haben (oder jeweils eines der Module im Bachelor oder Master), können sich vom Modulkordinator (CEDIM) ein Zertifikat ausstellen lassen. In diesem Zertifikat sind alle erfolgreich belegten Veranstaltungen der beiden Module aufgelistet.

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.17 Modul: Elektrische Energienetze [M-ETIT-102379]

Verantwortung: Dr.-Ing. Bernd Hoferer
Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte 9 Sprache Deutsch Level 3 Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Leiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101923</td>
<td>Elektroenergiesysteme</td>
<td>5 LP</td>
<td>Leibfried</td>
</tr>
<tr>
<td>T-ETIT-100830</td>
<td>Elektrische Energienetze</td>
<td>6 LP</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
7.18 Modul: Elektrotechnik [M-ETIT-101155]

Verantwortung: Dr. Wolfgang Menesklou
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ingenieurwissenschaften (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-100533 | Elektrotechnik I für Wirtschaftsingenieure | 3 LP | Menesklou |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (nach §4(2), 1 SPO) über die Lehrveranstaltung Elektrotechnik [23223].

Qualifikationsziele

Zusammensetzung der Modulnote
Die Note des Moduls ist die Note der Klausur.

Voraussetzungen
Keine

Inhalt
Die Vorlesung gibt eine Einführung in die Grundlagen der Elektrotechnik für Wirtschaftsingenieure. Themen sind Gleichstrom, elektrische und magnetische Felder, dielektrische und magnetische Bauelemente sowie die Analyse und der Entwurf von einfachen RLC-Schaltungen (Netzwerke) mittels komplexer Wechselstromrechnung.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Einleitung

Das Modul moduliert grundlegende und weiterführende Kenntnisse der elektrischen Energietechnik und ist in der Lage, elektrische Energiesysteme zu analysieren, zu berechnen und zu entwickeln.

Voraussetzungen

Das Modul ist erst dann bestanden, wenn zusätzlich das Modul *Elektrische Energienetze* [WW3INGETIT3] zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Modellisierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul *M-ETIT-102379 - Elektrische Energienetze* muss begonnen worden sein.
2. Das Modul *M-MACH-101260 - Werkstoffkunde* muss erfolgreich abgeschlossen worden sein.
3. Das Modul *M-ETIT-101155 - Elektrotechnik* muss erfolgreich abgeschlossen worden sein.
5. Das Modul *M-MACH-101259 - Technische Mechanik* muss erfolgreich abgeschlossen worden sein.

Inhalt

In dem Modul werden grundlegende Kenntnisse über den Aufbau und die Betriebsweise elektrischer Energienetze und der dabei benötigten Anlagen vermittelt. Weiterführende Vorlesungen geben einen Einblick in spezielle Themen, z.B. die Automation in der Energietechnik oder die Verfahren zur Erzeugung elektrischer Energie.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.20 Modul: Energiewirtschaft [M-WIWI-101464]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte: 9

Turnus: Jedes Semester

Dauer: 1 Semester

Level: 3

Version: 2

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102746 Einführung in die Energiewirtschaft</td>
<td>5,5 LP</td>
<td>Fichtner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Ergänzungsangebot (3,5 LP)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100806 Renewable Energy-Resources, Technologies and Economics</td>
<td>3,5 LP</td>
<td>Jochem, McKenna</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102607 Energiepolitik</td>
<td>3,5 LP</td>
<td>Wietschel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende
- ist in der Lage, energiewirtschaftliche Zusammenhänge zu benennen und ökologische Auswirkungen der Energieversorgung zu beurteilen,
- kann die verschiedenen Energieträger und deren Eigenheiten bewerten,
- kennt die energiepolitischen Rahmenvorgaben,
- besitzt Kenntnisse hinsichtlich der neuen marktwirtschaftlichen Gegebenheiten der Energiewirtschaft und insbesondere der Kosten und Potenziale Erneuerbarer Energien.

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt
Einführung in die Energiewirtschaft: Charakterisierung (Reserven, Anbieter, Kosten, Technologien) verschiedener Energieträger (Kohle, Gas, Erdöl, Elektrizität, Wärme etc.)

Renewable Energy - Resources, Technology and Economics: Charakterisierung der verschiedenen erneuerbaren Energieträger (Wind, Sonne, Wasser, Erdwärme etc.)

Energiepolitik: Energietrommanagement, energiepolitische Ziele und Instrumente (Emissionshandel etc.)

Empfehlungen
Die Lehrveranstaltungen sind so konzipiert, dass sie unabhängig voneinander gehört werden können. Daher kann sowohl im Winter- als auch im Sommersemester mit dem Modul begonnen werden.
Anmerkungen
Auf Antrag beim Institut können auch zusätzliche Studienleistungen (z.B. von anderen Universitäten) im Modul angerechnet werden.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 Credits ca. 105 Stunden, für Lehrveranstaltungen mit 5,5 Credits ca. 165 Stunden.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Essentials of Finance [M-WIWI-101435]

Verantwortung:
Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102604</td>
<td>Investments</td>
<td>4,5 LP Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102605</td>
<td>Financial Management</td>
<td>4,5 LP Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Der/die Studierende
- besitzt grundlegende Kenntnisse in moderner Finanzwirtschaft,
- besitzt grundlegende Kenntnisse zur Fundierung von Investmentsentscheidungen auf Aktien-, Renten- und Derivatemärkten,
- wendet konkrete Modelle zur Beurteilung von Investmentsentscheidungen auf Finanzmärkten sowie für Investitions- und Finanzierungsentscheidungen von Unternehmen an.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellisierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Arbeitsaufwand
Verantwortung: Prof. Dr. Frank Gauterin

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte 9
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 3

Wahlpflichtblock: Fahrzeugeigenschaften (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modul-Code</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105152</td>
<td>Fahr Eigenschaften von Kraftfahrzeugen I</td>
<td>3 LP</td>
<td>Unrau</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Fahr Eigenschaften von Kraftfahrzeugen II</td>
<td>3 LP</td>
<td>Unrau</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>3 LP</td>
<td>Gauterin</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>3 LP</td>
<td>Gauterin</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-105156</td>
<td>Fahrzeugmechatronik I</td>
<td>3 LP</td>
<td>Ammon</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>4,5 LP</td>
<td>Frey, Gauterin, Gießler</td>
<td></td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2) SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- kennt und versteht die Eigenschaften eines Fahrzeugs, die sich aufgrund der Auslegung und der Konstruktionsmerkmale einstellen,
- kennt und versteht insbesondere die komfort- und akustikrelevante Faktoren,
- ist in der Lage, Fahrzeugeigenschaften grundlegend zu beurteilen und auszulegen.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.

Inhalt

Siehe Lehrveranstaltungen.

Empfehlungen

Kenntnisse in Technische Mechanik I [2161238], Technische Mechanik II [2162276] und in Grundlagen der Fahrzeugtechnik I [2113805], Grundlagen der Fahrzeugtechnik II [2114835] sind hilfreich.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h und mit 3 Leistungspunkten 90h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.23 Modul: Fahrzeugentwicklung [M-MACH-101265]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte	Turnus	Dauer	Sprache	Level	Version
9 | Jedes Semester | 1 Semester | Deutsch/Englisch | 4 | 2

Wahlpflichtblock: Fahrzeugentwicklung (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105156</td>
<td>Fahrzeugmechatronik I</td>
</tr>
<tr>
<td>T-MACH-105160</td>
<td>Grundsätze der Nutzfahrzeugentwicklung I</td>
</tr>
<tr>
<td>T-MACH-105161</td>
<td>Grundsätze der Nutzfahrzeugentwicklung II</td>
</tr>
<tr>
<td>T-MACH-102207</td>
<td>Fahrzeugreifen- und Räderentwicklung für PKW</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
</tr>
<tr>
<td>T-MACH-105172</td>
<td>Simulation gekoppelter Systeme</td>
</tr>
<tr>
<td>T-MACH-108888</td>
<td>Simulation gekoppelter Systeme - Vorleistung</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Qualifikationsziele
Der/ die Studierende

- kennt und versteht die Vorgehensweisen bei der Entwicklung eines Fahrzeugs,
- kennt und versteht die technischen Besonderheiten, die beim Entwicklungsprozess eine Rolle spielen,
- ist sich der Randbedingungen, die z.B. aufgrund der Gesetzgebung zu beachten sind, bewusst.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Im Modul Fahrzeugentwicklung lernen die Studierenden die Vorgehensweisen und Prozesse kennen, die in der Fahrzeugentwicklung angewendet werden. Es werden die technischen Besonderheiten vermittelt, die während der Fahrzeugentwicklung beachtet werden müssen, und es wird dargestellt, wie die zahlreichen Einzelkomponenten in einem harmonisch abgestimmten Gesamtfahrzeug zusammenarbeiten. Auf die Beachtung von besonderen Randbedingungen, wie gesetzliche Vorgaben, wird auch eingegangen.
Empfehlungen
Kenntnisse in Technische Mechanik I [2161238], Technische Mechanik II [2162276] und in Grundlagen der Fahrzeugtechnik I [2113805], Grundlagen der Fahrzeugtechnik II [2114835] sind hilfreich.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Credits ca. 135h, für Lehrveranstaltungen mit 3 Leistungspunkten 90h und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Lehr- und Lernformen
Die Lehr- und Lernform (Vorlesung, Praktikum oder Workshop) wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
7.24 Modul: Fahrzeugtechnik [M-MACH-101266]

Verantwortung: Prof. Dr. Frank Gauterin

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 2

Wahlpflichtblock: Fahrzeugtechnik (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>LP</th>
<th>Lehrer/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>6</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Grundlagen der Fahrzeugtechnik II</td>
<td>3</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>4,5</td>
<td>Frey, Gauterin, Gießler</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>1,5</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II</td>
<td>1,5</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluidtechnik</td>
<td>5</td>
<td>Geimer, Pult</td>
</tr>
<tr>
<td>T-MACH-102150</td>
<td>BUS-Steuerungen</td>
<td>3</td>
<td>Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-108889</td>
<td>BUS-Steuerungen - Vorleistung</td>
<td>0</td>
<td>Daiß, Geimer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- kennt die wichtigsten Baugruppen eines Fahrzeugs,
- kennt und versteht die Funktionsweise und das Zusammenspiel der einzelnen Komponenten,
- kennt die Grundlagen zur Dimensionierung der Bauteile.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.
Die in Englisch abgehaltenen Vorlesungen "Automotive Engineering I" und "Automotive Engineering II" dürfen nur alternativ zu den deutschen Vorlesungen "Grundlagen der Fahrzeugtechnik I" und "Grundlagen der Fahrzeugtechnik II" geprüft werden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
Inhalt
Im Modul Fahrzeugtechnik werden die Grundlagen vermittelt, die für die Entwicklung, die Auslegung, die Produktion und den Betrieb von Kraftfahrzeugen bedeutend sind. Insbesondere werden die primär wichtigen Aggregate wie Motor, Getriebe, Antriebsstrang, Fahrwerk und Hilfsaggregate behandelt, aber ebenso alle technischen Einrichtungen, die den Betrieb sicherer und einfacher machen, bis hin zur Innenausstattung, die dem Nutzer eine möglichst angenehme, arbeitsoptimale Umgebung bieten soll.

Im Modul Fahrzeugtechnik liegt der Fokus auf den Personenfahrzeugen und Nutzfahrzeugen, die für den Straßeneinsatz bestimmt sind.

Empfehlungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 6 Leistungspunkten 180h, für Lehrveranstaltungen mit 4,5 Credits ca. 135h, für Lehrveranstaltungen mit 3 Leistungspunkten 90h und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Lehr- und Lernformen
Die Lehr- und Lernform (Vorlesung, Praktikum oder Workshop) wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
7.25 Modul: Fertigungstechnik [M-MACH-101276]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte Turnus Dauer Sprache Level Version
9 Jedes Wintersemester 1 Semester Deutsch 3 3

Pflichtbestandteile

T-MACH-102105 Fertigungstechnik 9 LP Schulze, Zanger

Erfolgskontrolle(n)
Schriftliche Prüfung (180 min)

Qualifikationsziele
Die Studierenden

- können verschiedene Fertigungsverfahren nennen, ihre charakteristischen Verfahrensmerkmale beschreiben und die Fertigungsverfahren den verschiedenen Hauptgruppen der Fertigungstechnik zuordnen.
- sind in der Lage, die grundlegenden Funktionsweisen der Fertigungsverfahren zu erörtern, und können diese entsprechend der Hauptgruppen klassifizieren. Sie sind befähigt, Zusammenhänge einzelner Verfahren zu identifizieren, und können diese hinsichtlich ihrer Einsatzmöglichkeiten auswählen.
- sind fähig, für jene Fertigungsverfahren, die sie im Rahmen der Lehrveranstaltungen des Schwerpunktes kennengelernt haben, die theoretischen Grundlagen der Fertigungsverfahren zu beschreiben und Vergleiche zwischen den einzelnen Fertigungsverfahren zu ziehen.
- besitzen die Fähigkeit, Korrelationen auf Basis der bereits erlernten materialwissenschaftlichen Grundkenntnisse zwischen der Prozessführung und den sich einstellenden Materialeigenschaften zu ziehen und dabei die auftretenden mikrostrukturellen Effekte zu beschreiben bzw. mit ins Kalkül zu ziehen.
- sind in der Lage, Fertigungsprozesse materialorientiert zu bewerten.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Im Rahmen dieses ingenieurwissenschaftlichen Moduls werden die grundlegenden Aspekte der Fertigungstechnik vermittelt. Weitere Informationen finden sich bei der Beschreibung der Lehrveranstaltung "Fertigungstechnik".

Arbeitsaufwand
Präsenzzeit: 63 Stunden Selbststudium: 207 Stunden

Lehr- und Lernformen
Vorlesung, Übung, Exkursion
7.26 Modul: Finanzwissenschaft [M-WIWI-101403]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Volkswirtschaftslehre (Vertiefungsprogramm Volkswirtschaftslehre)
Wahlpflichtbereich (Volkswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102877</td>
<td>Einführung in die Finanzwissenschaft</td>
<td></td>
<td>4,5 LP</td>
<td>Wigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td></td>
<td>4,5 LP</td>
<td>Gutekunst, Wigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Öffentliche Einnahmen</td>
<td></td>
<td>4,5 LP</td>
<td>Wigger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109590</td>
<td>Öffentliches Finanzwesen</td>
<td></td>
<td>4,5 LP</td>
<td>Wigger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der Studierende

- besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung und der Staatsverschuldung.
- versteht Umfang, Struktur und Formen der staatlichen Kreditaufnahme.
- kennt die Ausgestaltung des deutschen sowie internationalen Steuerrechts
- ist in der Lage fiskalpolitische Fragestellungen zu interpretieren und zu motivieren.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101398 - Einführung in die Volkswirtschaftslehre muss erfolgreich abgeschlossen worden sein.

Inhalt

Empfehlungen

Anmerkungen
Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Verantwortung: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte 9
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch
Level 3
Version 4

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modul Name</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109938</td>
<td>Digital Services</td>
<td></td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td></td>
<td>4,5 LP</td>
<td>Mädche</td>
</tr>
<tr>
<td>T-WIWI-105711</td>
<td>Seminarpraktikum Digital Services</td>
<td></td>
<td>4,5 LP</td>
<td>Nickel, Mädche, Satzger, Sure-Vetter, Weinhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/ die Studierende
- versteht die unterschiedlichen Perspektiven auf Dienstleistungen und das Konzept der Wertschöpfung in Service-Netzwerken,
- kennt Konzepte, Methoden und Werkzeuge für das Design, die Modellierung, Entwicklung und das Management von digitalisierten Dienstleistungen und kann diese anwenden,
- erlangt Erfahrung in Gruppenarbeit sowie im Lösen von Fallstudien und der professionellen Präsentation von Arbeitsergebnissen,
- übt den Umgang mit der englischen Sprache als Vorbereitung auf die Arbeit in einem internationalen Umfeld.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
Empfehlungen
Keine

Anmerkungen

Arbeitsaufwand
Modul: Grundlagen BWL 1 [M-WWI-101494]

Verantwortung: Prof. Dr. Martin Ruckes
 Prof. Dr. Marliese Uhrig-Homburg
 Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Pflichtbestandteil)

Leistungspunkte 7
Turnus Jedes Semester
Dauer 1 Semester
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102817</td>
<td>Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft</td>
<td>3 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-WIWI-102819</td>
<td>Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- hat fundierte Kenntnisse in den zentralen Fragestellungen der Betriebswirtschaftslehre insbesondere mit Blick auf entscheidungsorientiertes Handeln und die modellhafte Betrachtung der Unternehmung,
- beherrscht die Grundlagen der Unternehmensführung und Informationswirtschaft sowie die Grundlagen der Finanzwirtschaft und der Prinzipien des betriebswirtschaftlichen Rechnungswesens,
- ist in der Lage, zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlichen Unternehmung zu analysieren und zu bewerten.

Mit dem in den beiden Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Voraussetzungen
Keine

Inhalt
Es werden die Grundlagen der Allgemeinen Betriebswirtschaftslehre als die Lehre vom Wirtschaften im Betrieb vermittelt. Darauf aufbauend werden schwerpunktmäßig die Bereiche Unternehmensführung und Organisation, Informationswirtschaft, Investition und Finanzierung sowie erste Prinzipien des internen und externen Rechnungswesens erörtert.

Empfehlungen
Es wird dringend empfohlen, die Lehrveranstaltungen des Moduls bereits im ersten Semester zu belegen.

Arbeitsaufwand
Gesamtaufwand bei 7 Leistungspunkten: ca. 210 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.29 Modul: Grundlagen BWL 2 [M-WIWI-101578]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Pflichtbestandteil)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

T-WIWI-102818 Betriebswirtschaftslehre: Produktionswirtschaft und Marketing
4 LP
Fichtner, Klarmann, Lützkendorf, Ruckes, Schultmann

T-WIWI-102816 Rechnungswesen
4 LP
Strych

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- hat fundierte Kenntnisse in den zentralen Fragestellungen der Betriebswirtschaftslehre insbesondere mit Blick auf entscheidungsorientiertes Handeln und die modellhafte Betrachtung der Unternehmung,
- beherrscht die Grundlagen der Produktionswirtschaft und des Marketing sowie erste weiterführende Grundlagen des betriebswirtschaftlichen Rechnungswesens und des Controlling,
- ist in der Lage, zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlichen Unternehmung zu analysieren und zu bewerten.

Mit dem in den beiden Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Voraussetzungen

Keine

Inhalt

Es werden die Grundlagen des internen und externen Rechnungswesens und der Allgemeinen Betriebswirtschaftslehre als die Lehre vom Wirtschaften im Betrieb vermittelt. Darauf aufbauend werden schwerpunktartig die Bereiche Marketing und Produktionswirtschaft erörtert.

Empfehlungen

Es wird dringend empfohlen, die Lehrveranstaltungen des Moduls im 2. Semester (Betriebswirtschaftslehre: Produktionswirtschaft und Marketing) und 3. Semester (Rechnungswesen) zu belegen.

Arbeitsaufwand

Gesamtaufwand bei 8 Leistungspunkten: ca. 240 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.30 Modul: Grundlagen der Informatik [M-WIWI-101417]

Verantwortung: Dr. rer. nat. Pradyumn Kumar Shukla
Prof. Dr. York Sure-Vetter

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Informatik (Pflichtbestandteil)

Leistungspunkte	Turnus	Dauer	Level	Version
10 | Jedes Semester | 2 Semester | 3 | 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102749</td>
<td>Grundlagen der Informatik I</td>
<td>5 LP</td>
<td>Sure-Vetter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102707</td>
<td>Grundlagen der Informatik II</td>
<td>5 LP</td>
<td>Rettinger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4 (2), 1 o. 3 SPO) über die einzelnen Lehrveranstaltungen des Moduls.

Die Teilprüfungen werden jedes Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Zum Bestehen der Modulprüfung müssen in beiden Teilprüfungen die Mindestanforderungen erreicht werden.

- **Grundlagen der Informatik I**: 60min. Klausur in der ersten Woche nach Ende der Vorlesungszeit des Semesters. Die Note einer bestandenen Klausur kann durch die erfolgreiche Teilnahme am Übungsbetrieb um bis zu 0,3-0,4 Notenpunkte verbessert werden.
- **Grundlagen der Informatik II**: 90min. Klausur in der ersten Woche nach Ende der Vorlesungszeit des Semesters. Die Note einer bestandenen Klausur kann durch Bestehen einer Bonusklausur, deren Inhalte sich auf die Themen von Übungsaufgaben beziehen, um 0,3-0,4 Notenpunkte verbessert werden.

Wenn jede Teilprüfung bestanden ist, wird die Gesamtnote des Moduls aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- kennt die wesentlichen Grundlagen, Methoden und Systeme der Informatik,
- kann dieses Wissen für Anwendungen in weiterführenden Informatikvorlesungen und anderen Bereichen situationsangemessen zur Problemlösung einsetzen,
- ist in der Lage, strategische und kreative Antworten bei der Suche nach Lösungen für genau definierte, konkrete und abstrakte Probleme zu finden.

Der/die Studierende kann die erlernten Konzepte, Methoden und Systeme der Informatik in weiterführenden Informatikvorlesungen vertiefen.

Voraussetzungen

Keine

Inhalt

In diesem Modul werden die Themenbereiche Modellierung, Logik, Algorithmen, Sortier- und Suchverfahren, Komplexitätstheorie, Problemspezifikationen sowie Datenstrukturen angesprochen. Im Bereich der theoretischen Informatik werden formale Modelle für Automaten, Sprachen und Algorithmen vorgestellt. Dazu kommt eine Einführung in die technische Informatik, von der Höchstintegration über Rechnerarchitektur und Rechnerarithmetik bis zu Betriebssystemen und Programmiersprachen sowie Dateiorganisation.

Empfehlungen

Es wird dringend empfohlen, die Lehrveranstaltungen des Grundlagenprogramms Informatik in der Reihenfolge "Programmieren I: Java", "Grundlagen der Informatik I" und "Grundlagen der Informatik II" zu belegen.

Arbeitsaufwand

Gesamtaufwand bei 10 Leistungspunkten: ca. 300 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.31 Modul: Grundlagen des Baubetriebs [M-BGU-101004]

Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte	Turnus	Dauer	Sprache	Level	Version
9 | Jedes Semester | 2 Semester | Deutsch | 3 | 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modultyp</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-1010691</td>
<td>Baubetriebstechnik</td>
<td>6 LP</td>
</tr>
<tr>
<td>T-BGU-1010675</td>
<td>Projektmanagement</td>
<td>3 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Teilleistung T-BGU-1010691 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1
Teilleistung T-BGU-1010675 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1
Einzelheiten zu den einzelnen Erfolgskontrollen siehe bei den jeweiligen Teilleistungen.

Qualifikationsziele
Der / die Studierende

- besitzt einen Einblick in alle wesentlichen Bereiche des Baubetriebs
- kennt und versteht wesentliche Bauverfahren und Baumaschinen
- beherrscht einfache baubetriebliehe Berechnungen
- kennt und versteht die Grundlagen des Projektmanagements im Bereich des Bauwesens
- kann sein Wissen zielgerichtet für ein effizientes Bauprojekt einsetzen.

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt

Empfehlungen
Keine

Anmerkungen
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Baubetriebstechnik Vorlesung, Übung: 60 Std.
- Projektmanagement Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen Baubetriebstechnik: 45 Std.
- Prüfungsvorbereitung Baubetriebstechnik: 75 Std.
- Vor- und Nachbereitung Vorlesungen/Übungen Projektmanagement: 30 Std.
- Prüfungsvorbereitung Projektmanagement: 30 Std.

Summe: 270 Std.
7.32 Modul: Grundlagen des Marketing [M-WIWI-101424]

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte	Turnus	Dauer	Level	Version
9 | Jedes Semester | 1 Semester | 3 | 4

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102805</td>
<td>Marketing Mix</td>
<td>4,5 LP</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (mind. 4,5 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102806</td>
<td>Dienstleistungs- und B2B Marketing</td>
<td>3 LP</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102807</td>
<td>International Marketing</td>
<td>1,5 LP</td>
<td>Feurer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Ziel dieses Moduls ist es, Studierende auf eine Tätigkeit in Marketing oder Vertrieb vorzubereiten. Gerade in technisch orientierten Unternehmen werden hierfür gerne Mitarbeiter eingesetzt, die als Wirtschaftsingenieure oder Wirtschaftsinformatiker auch selbst einen gewissen technischen Hintergrund haben.

Studierende

- kennen die wichtigsten Konzepte, Verfahren und Theorien der vier Instrumente des Marketing Mix (Produktmanagement, Preismanagement, Kommunikationsmanagement und Vertriebsmanagement)
- verfügen über das Wissen, Entscheidungen bezüglich der gegenwärtigen und zukünftigen Produkte (Produktinnovationen) zu treffen (z.B. mittels Conjoint-Analyse)
- wissen, wie Kunden Marken wahrnehmen und wie diese Wahrnehmung durch das Unternehmen beeinflusst werden kann
- verstehen, wie Kunden auf Preise reagieren (z.B. mittels Preis-Absatz-Funktionen)
- können Preise auf Basis konzeptioneller und quantitativer Überlegungen bestimmen
- kennen die Grundlagen der Preisdifferenzierung
- sind mit verschiedenen Instrumenten der Kommunikation vertraut (z.B. TV-Werbung) und können diese treffsicher gestalten
- treffen Kommunikationsentscheidungen systematisch (z.B. mittels Mediaplanung)
- können den Markt segmentieren und das Produkt positionieren
- wissen, wie die Wichtigkeit und Zufriedenheit von Kunden beurteilt werden können
- können die Beziehung zu Kunden und Vertriebspartnern gestalten
- wissen um Besonderheiten des Marketing im Dienstleistungs- und B2B-Bereich
- kennen die Besonderheiten des Marketing im internationalen Kontext

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Die Lehrveranstaltung Marketing Mix [2571152] (Kernveranstaltung) muss besucht werden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
Inhalt
Kernelement des Moduls ist die Veranstaltung "Marketing Mix", die als Pflichtelement auch immer absolviert werden muss. In dieser Veranstaltung werden Instrumente und Methoden vermittelt, die es Ihnen erlauben, zügig Verantwortung im operativen Marketingmanagement (Produktmanagement, Pricing, Kommunikationsmanagement und Vertrieb) zu übernehmen.

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.33 Modul: Industrielle Produktion I [M-WIWI-101437]

Verantwortung: Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102606</td>
<td>Grundlagen der Produktionswirtschaft</td>
<td>5,5 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (3,5 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102820</td>
<td>Produktion und Nachhaltigkeit</td>
<td>3,5 LP</td>
</tr>
<tr>
<td>T-WIWI-102870</td>
<td>Logistics and Supply Chain Management</td>
<td>3,5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 SPO) über die Kernvorlesung *Grundlagen der Produktionswirtschaft* [2581950] und eine weitere Lehrveranstaltung des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Zusätzliche Studienleistungen können auf Antrag eingerechnet werden.

Qualifikationsziele

- Die Studierenden beschreiben das Gebiet der industriellen Produktion und Logistik und erkennen deren Bedeutung für Industriebetriebe und die darin tätigen Wirtschaftsingenieure/Wirtschaftsinformatiker und Volkswirtschaftler.
- Die Studierenden verwenden wesentliche Begriffe aus der Produktionswirtschaft und Logistik korrekt.
- Die Studierenden geben produktionswirtschaftlich relevante Entscheidungen im Unternehmen und dafür wesentliche Rahmenbedingungen wieder.
- Die Studierenden kennen die wesentlichen Planungsaufgaben, -probleme und Lösungsstrategien des strategischen Produktionsmanagements sowie der Logistik.
- Die Studierenden kennen wesentliche Ansätze zur Modellierung von Produktions- und Logistiksystemen.
- Die Studierenden kennen die Bedeutung von Stoff- und Energieflüssen in der Produktion.
- Die Studierenden wenden exemplarische Methoden zur Lösung ausgewählter Problemstellungen an.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Empfehlungen
Die Lehrveranstaltungen sind so konzipiert, dass sie voneinander unabhängig gehören können.
Mit Blick auf den konsekutiven Masterstudiengang empfiehlt es sich, das Modul mit den Modulen Industrielle Produktion II und/oder Industrielle Produktion III zu kombinieren.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 LP). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3.5 LP ca. 105h, für Lehrveranstaltungen mit 5.5 LP ca. 165h.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Verantwortung: Prof. Dr. Alexander Mädche
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot ()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-109936</td>
<td>Platform Economy</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-109935</td>
<td>Practical Seminar Interaction</td>
<td>4,5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen nach § 4 Abs. 2 Nr. 1 – Nr. 3 SPO über Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Arbeitsaufwand

Verantwortung: Prof. Dr. Gerhard Satzger
 Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
 Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
 Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109938</td>
<td>Digital Services</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-109941</td>
<td>eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td>4,5 LP Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109936</td>
<td>Platform Economy</td>
<td>4,5 LP Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-109937</td>
<td>Practical Seminar Platforms</td>
<td>4,5 LP Satzger, Weinhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen nach § 4 Abs. 2 Nr. 1 – Nr. 3 SPO über Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Arbeitsaufwand

Verantwortung: Prof. Dr. Alexander Mädche
 Prof. Dr. Gerhard Satzger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
 Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
 Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot ()

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109938</td>
<td>Digital Services</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-109939</td>
<td>Practical Seminar Servitization</td>
<td>4,5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen nach § 4 Abs. 2 Nr. 1 – Nr. 3 SPO über Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Arbeitsaufwand

Modul: Integrierte Produktionsplanung [M-MACH-101272]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte: 9
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 2

Pflichtbestandteile

| T-MACH-109054 | Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 | 9 LP | Lanza |

Erfolgskontrolle(n)
Schriftliche Prüfung (120 min)

Qualifikationsziele
Die Studierenden

- können grundlegende Fragestellungen der Produktionstechnik erörtern.
- können die grundlegenden Fragestellungen der Produktionstechnik zur Planung von Produktionsprozessen anwenden.
- sind in der Lage die Methoden, Vorgehensweisen und Techniken der integrierten Produktionsplanung zu analysieren und zu bewerten und können die vorgestellten Inhalte und Herausforderungen und Handlungsfelder in der Praxis reflektieren.
- können die Methoden der integrierten Produktionsplanung auf neue Problemstellungen anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.
- können ihr Wissen zielgerichtet für eine effiziente Produktionstechnik einsetzen.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellisierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Im Rahmen dieses ingenieurwissenschaftlichen Moduls werden die grundlegenden Aspekte der Organisation und Planung vermittelt.

Arbeitsaufwand
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Lehr- und Lernformen
Vorlesung, Übung, Exkursionen
7.38 Modul: Maschinenkonstruktionslehre [M-MACH-101299]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte: 9

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-104739 Maschinenkonstruktionslehre I und II für CIW</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>T-MACH-102132 Maschinenkonstruktionslehre I, Vorleistung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102133 Maschinenkonstruktionslehre II, Vorleistung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung über die Inhalte von Maschinenkonstruktionslehre I&II
Dauer: 90 min zzgl. Einlesesezeit
Prüfungsvorleistung: Erfolgreiche Teilnahme an den Vorleistungen im Lehrgebiet Maschinenkonstruktionslehre I&II
Qualifikationsziele

Lernziel Federn:

- Federarten erkennen können und Beanspruchung erklären können
- Eigenschaften einer federnden LSS in später vorgestellten Maschinenelementen erkennen und beschreiben können
- Wirkprinzip verstehen und erklären können
- Einsatzgebiete von Federn kennen und aufzählen
- Belastung und daraus resultierende Spannungen graphisch darstellen können
- Artnutzunggrad als Mittel des Leichtbaus beschreiben können
- Verschiedene Lösungsvarianten bezüglich Leichtbau analysieren können (Artnutzungsgrad einsetzen)
- Mehrere Federn als Schaltung erklären können und Gesamtfedersteifigkeit berechnen können

Lernziel technische Systeme:

- Erklären können, was ein technisches System ist
- „Denken in Systemen“
- Systemtechnik als Abstraktionsmittel zur Handhabung von Komplexität anwenden
- Funktionalen Zusammenhänge technischer Systeme erkennen
- Den Funktionsbegriff kennen lernen
- C&C²-A als Mittel der Systemtechnik anwenden können

Lernziel Visualisierung:

- Prinzipskizzen erstellen und interpretieren können
- Technische Freihandzeichnung als Mittel zur Kommunikation anwenden
- Die handwerklichen Grundlagen des technischen Freihandzeichnens anwenden können
- Ableitung von 2D-Darstellungen in unterschiedliche perspektivische Darstellungen technischer Gebilde und umgekehrt
- Lesen von technischen Zeichnungen beherrschen
- Zweckgerichtet technische Zeichnungen bemaßen
- Schnittdarstellungen technischer Systeme als technische Skizze erstellen können

Lernziel Lagerungen:

- Lagerungen in Maschinensystemen erkennen und in ihre Grundfunktionen erklären können
- Lager (Typ/Bauart/Funktion) nennen und in Maschinensystemen und Technischen Zeichnungen erkennen können
- Einsatzbereiche und Auswahlkriterien für die verschiedenen Lager und Lagerungen nennen und Zusammenhänge erklären können
- Gestaltung der Festlegungen der Lager in verschiedenen Richtungen radial/axial und in Umfangsrichtung funktional erklären können
- Auswahl als iterativen Prozess exemplarisch kennen und beschreiben können
- Dimensionierung von Lagerungssystemen exemplarisch für die Vorgehensweise des Ingenieurs bei der Dimensionierung von Maschinenelementen durchführen können
- Erste Vorstellungen für Wahrscheinlichkeiten in der Vorhersage von Lebensdauern von Maschinenelementen entwickeln
- Am Schädigungsbild erkennen können, ob statische oder dynamische Überlast Grund für Werkstoffversagen war
- Äquivalente statische und dynamische Lagerlasten aus Katalog und gegebenen äußeren Kräften auf das Lager berechnen können
- Grundgleichung der Dimensionierung nennen, erklären und auf die Lagerdimensionierung übertragen können

Lernziele Dichtungen:

Die Studierenden...

- können das grundlegende Funktionsprinzip von Dichtungen diskutieren.
- können die physikalischen Ursachen eines Stoffüberganges beschreiben.
- können das C&C-Modell auf Dichtungen anwenden
- können die drei wichtigsten Klassierungskriterien von Dichtungen nennen, erläutern und anwenden
- können die Funktionsweise einer berührungslosen und einer berührenden Dichtung verdeutlichen.
- können die Dichtungsbauelemente unterscheiden, bestimmen und in den Klassierungskriterien zuordnen.
- können den Aufbau und die Wirkungsweise eines Radialwellenrings diskutieren.
- können statische Dichtungen anhand verschiedener Auswahlkriterien bewerten.
- können dynamische, rotatorische Dichtungen anhand verschiedener Auswahlkriterien bewerten.
- können translatorische Dichtungen anhand verschiedener Auswahlkriterien bewerten.
- können das Konstruktionsprinzip „Selbstverstärkung“ beschreiben und an einer Dichtung anwenden.
können den Stickslip anhand des Bewegungsablaufs einer translatorischen Dichtung erklären

Lernziele Gestaltung:
Die Studierenden...

können die Grundregeln der Gestaltung und Gestaltungsprinzipien in konkreten Problemen anwenden
haben die Prozessphasen der Gestaltung verstanden
können Teilsysteme in ihrer Einbindung in das Gesamtsystem gestalten
können Anforderungsbereiche an die Gestaltung nennen und berücksichtigen
können die Hauptgruppen der Fertigungsverfahren
können die Fertigungsprozesse und können diese erklären
können die Auswirkung der Werkstoffwahl und des Fertigungsverfahren in einer Konstruktionszeichnung berücksichtigen und erkennbar abbilden.

Lernziele Schraubenverbindungen:
Die Studierenden...

können verschiedene Schraubenanwendungen aufzählen und erklären.
können Bauformen erkennen und in ihrer Funktion erklären
können ein C&C² Modell einer Schraubenverbindung aufbauen und daran die Einflüsse auf die Funktion diskutieren
können die Funktionsweise einer Schraubenverbindung mit Hilfe eines Federmodelles erklären
können die Schraubengleichung wiedergeben, anwenden und diskutieren.
Können die Beanspruchbarkeit niedrig belasteter Schraubenverbindungen zum Zweck der Dimensionierung abschätzen
können angeben, welche Schraubenverbindung berechnet und welche nur grob ausgelegt werden
können die Dimensionierung von Schraubenverbindungen als Flanschverbindung durchführen
können das Verspannungsschaubild erstellen, erklären und diskutieren

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
Inhalt
MKL I:
Einführung in die Produktentwicklung
Werkzeuge zur Visualisierung (Techn. Zeichnen)
Produkterstellung als Problemlösung
Technische Systeme Produkterstellung
 • Systemtheorie
 • Contact and Channel Approach C&C²-A
Grundlagen ausgewählter Konstruktions- und Maschinenelemente
 • Federn
 • Lagerung und Führungen
 • Dichtungen
Begleitend zur Vorlesung finden Übungen statt, mit folgenden Inhalt:
Getriebeworkshop
Werkzeuge zur Visualisierung (Techn. Zeichnen)
Technische Systeme Produkterstellung
 • Systemtheorie
 • Contact and Channel Approach C&C²-A
Federn
Lagerung und Führungen
MKL II:
 • Dichtungen
 • Gestaltung
 • Dimensionierung
 • Bauteilverbindungen
 • Schrauben
Empfehlungen
Eine Vertiefung der Maschinenkonstruktionslehre (Teil 3 + 4) kann im Rahmen des "Außerplanmäßigen Ingenieurmoduls" erfolgen.

Arbeitsaufwand
MKL1:
Anwesenheit Vorlesungen (15 VL): 22,5h
Anwesenheit Übungen (8 ÜB): 12h
Anwesenheit (3x 2h) und Vorbereitung (3x3h) Workshopsitzungen: 15h
Vorbereitung und Durchführung Onlinetest: 6h
MKL2:
Anwesenheit Vorlesungen (15 VL): 22,5h
Anwesenheit Übungen (7 ÜB): 10,5h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die Klausur: 117h

Lehr- und Lernformen
Vorlesung
Hörsaalübung
Semesterbegleitende Projektarbeit
Online-Test
7.39 Modul: Mathematik 1 [M-MATH-101676]

Verantwortung: Prof. Dr. Günter Last
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102260</th>
<th>Mathematik 1 - Semesterklausur</th>
<th>3,5 LP</th>
<th>Folkers, Hug, Last, Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102261</td>
<td>Mathematik 1 - Abschlussklausur</td>
<td>3,5 LP</td>
<td>Folkers, Hug, Last, Winter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle zu Mathematik 1 setzt sich aus zwei schriftlichen Teilprüfungen (beide nach §4(2), 1 SPO) zusammen:
1. Semesterklausur nach der Hälfte der Vorlesungszeit in Form einer 60min. Klausur ohne Hilfsmittel,
2. Abschlussklausur zu Beginn der folgenden vorlesungsfreien Zeit in Form einer 60min. Klausur ohne Hilfsmittel.

Zu Beginn der Vorlesungszeit des folgenden Sommersemesters wird zu beiden Teilprüfungen eine Nachklausur angeboten. Beide Nachklausuren finden am selben Tag statt.

Für die Nachklausuren werden sowohl Kandidaten zugelassen, die die entsprechende Semester- oder Abschlussklausur nicht bestanden haben, als auch jene, die noch keinen Erstversuch abgelegt haben.

Mündliche Nachprüfungen (nach §8(2) SPO) zur Semester- bzw. Abschlussklausur finden als Einzelprüfung (ca. 20 Minuten) statt.

Sowohl die Semester- als auch die Abschlussklausur müssen einzeln bestanden werden.

Qualifikationsziele

Der/die Studierende

- beherrscht die Grundbegriffe der Mathematik.
- besitzt grundlegende Kenntnisse der Differentialrechnung für Funktionen einer reellen Veränderlichen.

Zusammensetzung der Modulnote

Die Prüfungsnote Mathematik 1 setzt sich zusammen aus 50% der Note der Semesterklausur und 50% der Note der Abschlussklausur.

Voraussetzungen

Keine

Inhalt

- Grundbegriffe der Aussagenlogik und der Mengenlehre
- Grundbegriffe der Kombinatorik
- Zahlbereiche und Grundbegriffe der Arithmetik
- Konvergenz von Folgen und Reihen
- Stetige Funktionen
- Differenzierbare Funktionen
- Potenzreihen und spezielle Funktionen
- Der Satz von Taylor
- Lineare Gleichungssysteme

Empfehlungen

Es wird dringend empfohlen, die Module in der Reihenfolge Mathematik 1, Mathematik 2 und Mathematik 3 zu belegen.
Arbeitsaufwand
Gesamtaufwand bei 7 Leistungspunkten: ca. 210 Stunden
Präsenzzeit: 60 Stunden
Vor- und Nachbereitung der LV: 90.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Lehr- und Lernformen
Vorlesungsbegleitende Kursmaterialien über online-Lernplattform.

Literatur
Weiterführende Literatur:

7.40 Modul: Mathematik 2 [M-MATH-101677]

Verantwortung: Prof. Dr. Günter Last
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102262</th>
<th>Mathematik 2 - Semesterklausur</th>
<th>3,5 LP</th>
<th>Folkers, Hug, Last, Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102263</td>
<td>Mathematik 2 - Abschlussklausur</td>
<td>3,5 LP</td>
<td>Folkers, Hug, Last, Winter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle zu Mathematik 2 setzt sich aus zwei schriftlichen Teilprüfungen (beide nach §4(2), 1 SPO) zusammen:
1. Semesterklausur nach der Hälfte der Vorlesungszeit in Form einer 60min. Klausur ohne Hilfsmittel,
2. Abschlussklausur zu Beginn der folgenden vorlesungsfreien Zeit in Form einer 60min. Klausur ohne Hilfsmitteln.

Zu Beginn der Vorlesungszeit des folgenden Wintersemesters wird zu beiden Teilprüfungen eine Nachklausur angeboten. Beide Nachklausuren finden am selben Tag statt.

Für die Nachklausuren werden sowohl Kandidaten zugelassen, die die entsprechende Semester- oder Abschlussklausur nicht bestanden haben, als auch jene, die noch keinen Erstversuch abgelegt haben.

Mündliche Nachprüfungen (nach §8(2) SPO) zur Semester- bzw. Abschlussklausur finden als Einzelprüfung (ca. 20 Minuten) statt.
Sowohl die Semester- als auch die Abschlussklausur müssen einzeln bestanden werden.

Qualifikationsziele

Der/die Studierende

- kennt die wichtigsten Konzepte der Matrizentheorie,
- besitzt grundlegende Kenntnisse der Integralrechnung für Funktionen einer reellen Veränderlichen,
- besitzt grundlegende Kenntnisse der Differentialrechnung für Funktionen mehrerer Veränderlicher.

Zusammensetzung der Modulnote

Die Prüfungsnote Mathematik 2 setzt sich zusammen aus 50% der Note der Semesterklausur und 50% der Note der Abschlussklausur.

Voraussetzungen

Gute Kenntnisse der Inhalte aus Mathematik 1 [01350].

Inhalt

- Das Riemannintegral
- Der n-dimensionale reelle Vektorraum
- Skalarprodukte, Länge und Winkel
- Lineare Abbildungen und Matrizen
- Determinanten
- Eigenwerte und Eigenvektoren
- Differentialrechnung mehrerer Veränderlicher
Empfehlungen
Es wird dringend empfohlen, die Module in der Reihenfolge Mathematik 1, Mathematik 2 und Mathematik 3 zu belegen.

Arbeitsaufwand
Gesamtauflwand bei 7 Leistungspunkten: ca. 210 Stunden
Präsenzzeit: 60 Stunden
Vor – und Nachbereitung der LV: 90.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Lehr- und Lernformen
Vorlesungsbegleitende Kursmaterialien über online-Lernplattform.

Literatur
Weiterführende Literatur:

7.41 Modul: Mathematik 3 [M-MATH-101679]

Verantwortung: Prof. Dr. Günter Last
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik

Leistungspunkte: 7
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-MATH-102264 | Mathematik 3 - Abschlussklausur | 7 LP | Folkers, Hug, Last, Winter |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (105 min.) mit Hilfsmitteln zu Beginn der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).

Qualifikationsziele
Der/die Studierende

- beherrscht die wichtigsten Konzepte im Umgang mit normierten Räumen,
- erwerbt Grundkenntnisse in der Theorie gewöhnlicher Differentialgleichungen,
- erwerbt Grundkenntnisse in der Theorie der Fourieranalyse.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
- Das Bereichsintegral
- Implizit definierte Funktionen
- Der allgemeine Vektorraumbegriff
- Lineare Abbildungen
- Lineare Abbildungen
- Normierte Räume
- Der Fixpunktsatz von Banach
- Gewöhnliche Differentialgleichungen
- Lineare Differentialgleichungen
- Fourierreihen
- Integraltransformationen

Empfehlungen
Es wird dringend empfohlen, die Module in der Reihenfolge Mathematik 1, Mathematik 2 und Mathematik 3 zu belegen.

Arbeitsaufwand
Gesamtaufwand bei 7 Leistungspunkten: ca. 210 Stunden
Präsenzzeit: 60 Stunden
Vor – und Nachbereitung der LV: 90.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Lehr- und Lernformen
Vorlesungsbegleitende Kursmaterialien über online-Lernplattform.
Literatur
Weiterführende Literatur:

7.42 Modul: Methodische Grundlagen des OR [M-WIWI-101414]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Operations Research (Vertiefungsprogramm Operations Research)
Wahlpflichtbereich (Operations Research)

Wahlpflichtblock: Wahlpflichtangebot (mindestens 1 Bestandteil sowie zwischen 4,5 und 9 LP)

<table>
<thead>
<tr>
<th>Wahlpflichtkurs</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II</td>
<td>9 LP</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II</td>
<td>9 LP</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot

<table>
<thead>
<tr>
<th>Wahlpflichtkurs</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>4,5 LP</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II</td>
<td>4,5 LP</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II</td>
<td>4,5 LP</td>
<td>Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren, insbesondere aus der nichtlinearen und aus der globalen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen.

Voraussetzungen
Mindestens eine der Teilleistungen Nichtlineare Optimierung I und Globale Optimierung I muss absolviert werden.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen Entscheidungsvariablen. Die Vorlesungen zur nichtlinearen Optimierung behandeln lokale Lösungskonzepte, die Vorlesungen zur globalen Optimierung die Möglichkeiten zur globalen Lösung.

Empfehlungen

Anmerkungen
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu nachgelesen werden.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.43 Modul: Mikrosystemtechnik [M-MACH-101287]

Verantwortung: Prof. Dr. Jan Gerrit Korvink

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
- Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Ingenieurwissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Mikrosystemtechnik (mind. 9 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Autor(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102165</td>
<td>Ausgewählte Kapitel der Optik und Mikrooptik für Maschinenbauer</td>
<td>3</td>
<td>Mappes</td>
</tr>
<tr>
<td>T-MACH-100967</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II</td>
<td>3</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-100968</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III</td>
<td>3</td>
<td>Guber</td>
</tr>
<tr>
<td>T-MACH-102172</td>
<td>Bionik für Ingenieure und Naturwissenschaftler</td>
<td>3</td>
<td>Hölscher</td>
</tr>
<tr>
<td>T-MACH-105182</td>
<td>Grundlagen der Mikrosystemtechnik I</td>
<td>3</td>
<td>Badilita, Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-105183</td>
<td>Grundlagen der Mikrosystemtechnik II</td>
<td>3</td>
<td>Jouda, Korvink</td>
</tr>
<tr>
<td>T-MACH-101910</td>
<td>Mikroaktorik</td>
<td>3</td>
<td>Kohl</td>
</tr>
<tr>
<td>T-MACH-102080</td>
<td>Nanotechnologie mit Clustern</td>
<td>3</td>
<td>Gspann</td>
</tr>
<tr>
<td>T-MACH-102152</td>
<td>Neue Akten und Sensoren</td>
<td>4</td>
<td>Kohl, Sommer</td>
</tr>
<tr>
<td>T-ETIT-101907</td>
<td>Optoelectronic Components</td>
<td>4</td>
<td>Freude</td>
</tr>
<tr>
<td>T-MACH-100530</td>
<td>Physik für Ingenieure</td>
<td>6</td>
<td>Dienwiebel, Gumbsch, Nesterov-Müller, Weygand</td>
</tr>
<tr>
<td>T-MACH-102164</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>3</td>
<td>Last</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- kennt die Grundlagen der Funktion, Auslegung und Fertigung von Mikrosystemen.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt

Das Modul umfasst Lehrangebote auf dem Gebiet der Mikrosystemtechnik. Es werden Kenntnisse in verschiedenen Teilgebieten vermittelt wie den Grundlagen der Auslegung und Fertigung von u. a. mechanischen, optischen, fluidischen, sensorischen Mikrosystemen.
Arbeitsaufwand
270 Stunden
7.44 Modul: Mobile Arbeitsmaschinen [M-MACH-101267]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Mobile Arbeitsmaschinen (mind. 9 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102093 Fluidtechnik 5 LP Geimer, Pult</td>
</tr>
<tr>
<td>T-MACH-105172 Simulation gekoppelter Systeme 4 LP Geimer, Xiang</td>
</tr>
<tr>
<td>T-MACH-102150 BUS-Steuerungen 3 LP Becker, Geimer</td>
</tr>
<tr>
<td>T-MACH-105168 Mobile Arbeitsmaschinen 9 LP Geimer</td>
</tr>
<tr>
<td>T-MACH-105160 Grundsätze der Nutzfahrzeugentwicklung I 1,5 LP Zürn</td>
</tr>
<tr>
<td>T-MACH-105161 Grundsätze der Nutzfahrzeugentwicklung II 1,5 LP Zürn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (60 min.) (nach §4(2), 2 SPO) über die gewählten Lehrveranstaltungen, mit denen in Summe die Mindestforderung an LP erfüllt wird. Die Prüfung wird jedes Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Qualifikationsziele
Der/die Studierende

- kennt und versteht den grundlegenden Aufbau der Maschinen,
- beherrscht die grundlegenden Kompetenzen, um ausgewählte Maschinen zu entwickeln.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.

Inhalt
Im Modul Mobile Arbeitsmaschinen [Wi4iINGMB15] werden einerseits der Aufbau der Maschinen erläutert und andererseits die für die Entwicklung der Maschinen notwendigen Fachgebiete vertieft. Nach Abschluss des Moduls kennt der Hörer den aktuellen Stand der mobilen Arbeitsmaschinen und ist in der Lage Konzepte und Entwicklungstendenzen zu beurteilen. Das Modul ist praktisch orientiert und wird durch Industriepartner unterstützt.

Empfehlungen
Kenntnisse zu Grundlagen aus Fluidtechnik sind hilfreich, ansonsten wird empfohlen Fluidtechnik [2114093] zu belegen.
Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.45 Modul: Mobilität und Infrastruktur [M-BGU-101067]

Verantwortung: Prof. Dr.-Ing. Ralf Roos

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte: 9

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 3

Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101791</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Teilleistung T-BGU-101791 mit schriftlicher Prüfung nach § 4 Abs. 2 Nr. 1
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Qualifikationsziele
Die Studierenden können die grundlegenden Methoden und Verfahren zur Bearbeitung allgemeiner Fragestellungen in der Raumplanung, im Verkehrswesen und im Straßenwesen benennen und erläutern. Sie sind in der Lage, bezogen auf die genannten Fachgebiete grundlegende Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen. Weiterhin können sie fachbezogen argumentieren, Lösungen finden, entwickeln und bewerten.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Das Modul gliedert sich inhaltlich in 3 Teile:

Empfehlungen
Keine

Anmerkungen
Für Studierenden aus der Fakultät Wirtschaftsingenieurwesen wird die Teilnahme an den Übungsveranstaltungen empfohlen.
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Raumplanung und Planungsrecht Vorlesung: 30 Std.
- Verkehrswesen Vorlesung: 30 Std.
- Bemessungsgrundlagen im Straßenwesen Vorlesung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen Raumplanung und Planungsrecht: 30 Std.
- Vor- und Nachbereitung Vorlesungen Verkehrswesen: 30 Std.
- Vor- und Nachbereitung Vorlesungen Bemessungsgrundlagen im Straßenwesen: 30 Std.
- Prüfungsvorbereitung: 90 Std.

Summe: 270 Std.
Er/\ Die\ und/\ einsetzen Er/\ und\ wissenschaftlichen\ Qualifikationsziele\ Die\ Diese\ der\ Das\ Wenn\ werden.\ geschrieben\ Studierenden\ Der\ denn,\ Bachelorarbeit\ Studierenden\ Die\ wissenschaftlich\ Die\ Erfolgskontrolle(n)\ Die\ Bachelorarbeit\ ist\ eine\ schriftliche\ Arbeit,\ die\ zeigt,\ dass\ der\ Studierende\ in\ der\ Lage\ ist,\ ein\ Problem\ aus\ seinem\ Fach\ wissenschaftlich\ zu\ bearbeiten.\ Sie\ ist\ ausführlich\ in\ §11\ der\ SPO 2007\ bzw.\ in\ §14\ SPO 2015\ geregelt.\ Die\ Betreuung\ und\ Bewertung\ der\ Leistung\ erfolgen\ • nach\ SPO 2007\ durch\ mindestens\ einen\ Professor\ der\ KIT-Fakultät\ für\ Wirtschaftswissenschaften\ oder,\ nach\ Genehmigung\ durch\ den\ Prüfungsausschuss,\ durch\ mindestens\ einen\ Professor\ einer\ anderen\ KIT-Fakultät\ sowie\ in\ der\ Regel\ durch\ einen\ weiteren\ Prüfer\ der\ KIT-Fakultät\ für\ Wirtschaftswissenschaften\ als\ Korreferent.\ • nach\ SPO\ ab\ 2015\ durch\ mindestens\ zwei\ KIT-Prüfer.\ Mindestens\ einer\ der\ Prüfer\ muss\ Professor\ sein\ und\ idR.\ Prüfer\ an\ der\ KIT-Fakultät\ für\ Wirtschaftswissenschaften.\ Die\ reguläre\ Bearbeitungsdauer\ beträgt\ drei\ Monate\ (SPO\ 2007)\ bzw.\ 6\ Monate\ (SPO\ 2015).\ Auf\ begründeten\ Antrag\ des\ Studierenden\ kann\ der\ Prüfungsausschuss\ die\ Bearbeitungszeit\ um\ maximal\ einen\ Monat\ verlängern.\ Wird\ die\ Bachelorarbeit\ nicht\ fristgerecht\ abgeschlossen\ und\ dem\ Prüfer\ vorgelegt,\ wird\ sie\ mit\ „nicht\ ausreichend“\ bewertet,\ es\ sei\ denn,\ dass\ der\ Studierende\ dieses\ Versäumnis\ nicht\ zu\ vertreten\ hat\ (z.B.\ Mutterschutz).\ Der\ Prüfungsausschuss\ legt\ fest,\ in\ welchen\ Sprachen\ die\ Bachelorarbeit\ geschrieben\ werden\ kann.\ Auf\ Antrag\ des\ Studierenden\ kann\ der/die\ Prüfende\ genehmigen,\ dass\ die\ Bachelorarbeit\ in\ einer\ anderen\ Sprache\ als\ Deutsch\ geschrieben\ wird.\ Das\ Thema\ kann\ nur\ einmal\ und\ nur\ innerhalb\ des\ ersten\ Monats\ der\ Bearbeitungszeit\ zurückgegeben\ werden.\ Ein\ neues\ Thema\ ist\ binnen\ vier\ Wochen\ zu\ stellen\ und\ auszugeben.\ Wenn\ die\ Abschlussarbeit\ nicht\ bestanden\ wurde,\ darf\ sie\ einmal\ wiederholt\ werden.\ Es\ ist\ ein\ neues\ Thema\ auszugeben.\ Das\ selbe\ Thema\ ist\ für\ die\ Wiederholung\ ausgeschlossen.\ Dies\ gilt\ auch\ für\ vergleichbare\ Themen.\ Im\ Zweifel\ entscheidet\ der\ Prüfungsausschuss.\ Das\ neue\ Thema\ kann\ auch\ wieder\ von\ den\ Prüfern\ der\ ersten\ Arbeit\ betreut\ werden.\ Diese\ Regelung\ gilt\ auch\ sinngemäß\ nach\ einem\ offiziellen\ Rücktritt\ von\ einem\ angemeldeten\ Thema.\ Die\ Modulnote\ ist\ die\ Note\ für\ die\ Bachelorarbeit.\ Qualifikationsziele\ Der/die\ Studierende\ kann\ selbstständig\ ein\ abgegrenztes,\ fachrelevantes\ Thema\ in\ einem\ vorgegebenen\ Zeitrahmen\ nach\ wissenschaftlichen\ Kriterien\ bearbeiten.\ Er/sie\ ist\ in\ der\ Lage\ zu\ recherchieren,\ die\ Informationen\ zu\ analysieren,\ zu\ abstrahieren\ sowie\ grundsätzliche\ Prinzipien\ und\ Gesetzmäßigkeiten\ aus\ wenig\ strukturierten\ Informationen\ zusammensetzen\ und\ zu\ erkennen.\ Er/sie\ überblickt\ eine\ Fragestellung,\ kann\ wissenschaftliche\ Methoden\ und\ Verfahren\ auswählen\ und\ diese\ zur\ Lösung\ einsetzen\ bzw.\ weitere\ Potentiale\ aufzeigen.\ Dies\ erfolgt\ grundsätzlich\ auch\ unter\ Berücksichtigung\ von\ gesellschaftlichen\ und/oder\ ethischen\ Aspekten.\ Die\ gewonnenen\ Ergebnisse\ kann\ er/sie\ interpretieren,\ evaluieren\ und\ bei\ Bedarf\ grafisch\ darstellen.\ Er/sie\ ist\ in\ der\ Lage,\ eine\ wissenschaftliche\ Arbeit\ klar\ zu\ strukturieren\ und\ in\ schriftlicher\ Form\ unter\ Verwendung\ der\ Fachterminologie\ zu\ kommunizieren.
Voraussetzungen

SPO 2015: Voraussetzung für die Zulassung zum Modul Bachelorarbeit ist, dass die/der Studierende

1. Modulprüfungsleistungen im Umfang von mindestens 120 LP erfolgreich abgelegt und
2. alle Modulprüfungen des Grundlagenprogramms abgeschlossen hat,

Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Für beide SPOs gilt:

Es wird empfohlen, die Bachelorarbeit im 5. oder 6. Fachsemester zu bearbeiten.

Es bedarf einer schriftliche Erklärung des Prüfers über die Betreuung der Arbeit.

Die jeweiligen institutsspezifischen Regelungen zur Betreuung der Bachelorarbeit sind zu beachten.

Die Bachelorarbeit hat die folgende Erklärung zu tragen:

„Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.“

Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht werden:
 - Berufspraktikum
 - Betriebswirtschaftslehre
 - Informatik
 - Ingenieurwissenschaften
 - Mathematik
 - Operations Research
 - Statistik
 - Volkswirtschaftslehre
 - Wahlpflichtbereich
2. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-WIWI-101398 - Einführung in die Volkswirtschaftslehre muss erfolgreich abgeschlossen worden sein.
5. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.
8. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
11. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt

Arbeitsaufwand

7.47 Modul: Optimierung unter Unsicherheit [M-WIWI-103278]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Operations Research (Vertiefungsprogramm Operations Research)
Wahlpflichtbereich (Operations Research)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus / Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>4,5 LP</td>
<td>Jedes Semester</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus / Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I</td>
<td>4,5 LP</td>
<td>Jedes Semester</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management</td>
<td>4,5 LP</td>
<td>Jedes Semester</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren unter Unsicherheit, insbesondere aus der stochastischen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme unter Unsicherheit und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen, insbesondere von stochastischen Optimierungsproblemen.

Voraussetzungen

Mindestens eine der beiden Teilleistungen "Optimierungsansätze unter Unsicherheit" und "Einführung in die Stochastische Optimierung" ist Pflicht.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt

Empfehlungen

Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Credits ca. 150h und für Lehrveranstaltungen mit 4.5 Credits ca. 135h.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.48 Modul: Personal und Organisation [M-WIWI-101513]

Verantwortung: Prof. Dr. Petra Nieken
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte 9
Turnus Jedes Semester
Dauer 2 Semester
Level 3
Version 3

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Angebotseinheit</th>
<th>Leistungspunkte</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102909</td>
<td>Personalmanagement</td>
<td>4,5 LP</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personalpolitik und Arbeitsmarktinstitutionen</td>
<td>4,5 LP</td>
<td>Nieken</td>
</tr>
<tr>
<td>T-WIWI-102630</td>
<td>Organisationsmanagement</td>
<td>3,5 LP</td>
<td>Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problemlösung, Kommunikation und Leadership</td>
<td>2 LP</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (zwischen 4,5 und 5,5 LP)

Erfolgskontrolle(n)

Qualifikationsziele
Der/die Studierende
- kennt und analysiert grundlegende Prozesse, Instrumente und Herausforderungen des heutigen Personal- und Organisationsmanagements.
- wendet die erlernten Analysetechniken zur Beurteilung von strategischen Situationen im Personal- und Organisationsmanagements an.
- bewertet die Stärken und Schwächen existierender Strukturen und Regelungen anhand systematischer Kriterien.
- diskutiert und beurteilt die praktische Anwendbarkeit von Modellen und Methoden anhand von Fallstudien.
- besitzt grundlegende Kenntnisse zur Anwendbarkeit und Problematik unterschiedlicher wissenschaftlicher Untersuchungsmethoden im personal- und organisationsökonomischen Kontext.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm. Die Lehrveranstaltung Personalmanagement muss im Modul erfolgreich geprüft werden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt
Im Rahmen dieses Moduls erhalten die Studierenden grundlegende Kenntnisse im Bereich des Personal- und Organisationsmanagements. Dabei werden sowohl strategische als auch operative Aspekte des Personal- und Organisationsmanagements betrachtet. Das Modul bietet einen aktuellen Überblick über grundlegende Konzepte und Modelle sowie ein realistisches Bild über Möglichkeiten und Risiken rationaler Gestaltungsansätze im Personal- und Organisationsmanagement.

Empfehlungen
Vorheriger Besuch des Moduls Betriebswirtschaftslehre wird empfohlen. Es werden Grundkenntnisse in Mikroökonomie, Spieltheorie sowie Statistik empfohlen.

Arbeitsaufwand
7.49 Modul: Product Lifecycle Management [M-MACH-101270]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Product Lifecycle Management (Kernbereich) (1 Bestandteil)
T-MACH-105147 Product Lifecycle Management 4 LP Ovtcharova

Wahlpflichtblock: Product Lifecycle Management (2 Bestandteile)
T-MACH-102153 PLM-CAD Workshop 4 LP Ovtcharova
T-MACH-102181 PLM für mechatronische Produktentwicklung 4 LP Eigner
T-MACH-102209 Information Engineering 3 LP Ovtcharova
T-MACH-106744 Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte 4 LP Kläger
T-MACH-106457 IT-Systemplattform I4.0 4 LP Maier, Ovtcharova
T-MACH-102083 Technische Informationssysteme 4 LP Ovtcharova
T-MACH-102155 Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung 4 LP Ovtcharova
T-MACH-102149 Virtual Reality Praktikum 4 LP Ovtcharova
T-MACH-102187 CAD-Praktikum NX 2 LP Ovtcharova

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Modulteilprüfungen (nach §4(2), 1-3 SPO) im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/ die Studierende
- besitzt grundlegende Kenntnisse über die Problematik des Produkt- und Prozessdatenmanagement über den gesamten Produktlebenszyklus,
- versteht Herausforderungen und Funktionskonzept des Product Lifecycle Managements,
- ist in der Lage, ansatzweise mit gängigen PLM/CAx/VR-Systemen zu arbeiten,
- können in domänenübergreifenden Teams prototypische Lösungen erarbeiten und präsentieren.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Product Lifecycle Management (PLM), Generierung und Management von Informationen, Aufbau und Funktionsweise von Informationssystemen, Industrie 4.0, CAx und VR-Systeme.
Arbeitsaufwand
270 Stunden
7.50 Modul: Real Estate Management [M-WIWI-101466]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte 9
Turnus Jedes Semester
Dauer 2 Semester
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102744</td>
<td>Real Estate Management I</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-102745</td>
<td>Real Estate Management II</td>
<td>4,5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- besitzt einen Überblick über die verschiedenen Facetten und Zusammenhänge innerhalb der Immobilienwirtschaft, über die wesentlichen Entscheidungen im Lebenszyklus von Immobilien und über die Sichten und Interessen der am Bau Beteiligten,
- kann die im bisherigen Studium erlernten Verfahren und Methoden der Betriebswirtschaftslehre auf Problemstellungen aus dem Bereich der Immobilienwirtschaft übertragen und anwenden.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Empfehlungen
Es wird eine Kombination mit dem Modul Bauökologie empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Finanzwirtschaft und Banken
- Versicherungen
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.51 Modul: Recht Wahlpflicht [M-INFO-101187]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlpflichtbereich (Recht oder Soziologie)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-INFO-101963</th>
<th>Öffentliches Recht I - Grundlagen</th>
<th>3 LP</th>
<th>Marsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102042</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>3 LP</td>
<td>Marsch</td>
</tr>
<tr>
<td>T-INFO-103339</td>
<td>BGB für Anfänger</td>
<td>4 LP</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Der/die Studierende

- besitzt grundlegende juristische Kenntnisse des Zivilrechts, des Handels- und Gesellschaftsrechts sowie des Öffentlichen Rechts,
- ist in der Lage, juristische Fragestellungen zu erkennen, juristisch zu kommunizieren und einfache Rechtsfragen selbständig zu lösen sowie bei komplexeren rechtlichen Fragestellungen den externen Beratungsbedarf zu erkennen und zu formulieren,
- beherrscht die juristische Falllösungsmethode der Subsumtion in Grundzügen und kann sie zur Lösung konkreter Streitfragen einsetzen.

Voraussetzungen
Keine

Inhalt

Behandelt werden im Zivilrecht u.a. der allgemeine Teil des BGB, das allgemeine und das besondere Schuldrecht sowie Grundzüge des Sachenrechts; im Handels- und Gesellschaftsrecht die Kaufmannseigenschaft, Formen der handelsrechtlichen Stellvertretung und der Handelsgeschäfte einschließlich der Hauptformen der Personen- und der Kapitalgesellschaften sowie im öffentlichen Recht die Grundrechte, das Staatsorganisationsrecht, das Verwaltungsrecht und der verfassungs- und verwaltungsgerichtliche Rechtsschutz.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.52 Modul: Regelungstechnik [M-ETIT-101156]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Dr.-Ing. Mathias Kluwe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100699</td>
<td>Modellbildung und Identifikation</td>
<td>4</td>
<td>Hohmann</td>
</tr>
<tr>
<td>T-ETIT-101921</td>
<td>Systemdynamik und Regelungstechnik</td>
<td>6</td>
<td>Hohmann</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Der/die Studierende

- kennt die grundlegenden Begriffe der Regelungstechnik,
- kennt und versteht die Elemente sowie die Struktur und das Verhalten dynamischer Systeme,
- besitzt grundlegende Kenntnisse der Aufgabenstellungen beim Reglerentwurf und entsprechende Lösungsmethoden im Frequenz- und Zeitbereich,
- kennt und versteht die grundlegenden Prinzipien und Vorgehensweisen zur theoretischen und experimentellen Modellierung dynamischer Systeme.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt

7.53 Modul: Risk and Insurance Management [M-WIWI-101436]

Verantwortung: Prof. Dr. Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 2 Semester
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Level</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102603</td>
<td>Principles of Insurance Management</td>
<td>4,5 LP Werner</td>
<td>3</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>T-WIWI-102608</td>
<td>Enterprise Risk Management</td>
<td>4,5 LP Werner</td>
<td>3</td>
<td>Jedes Semester</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Das Modul kann ab 01.10.2017 (Wintersemester 2017/2018) nicht mehr neu begonnen werden.
Die Note der jeweiligen Teilprüfung setzt sich je zu 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und zu 50% aus der mündlichen Prüfung zusammen. Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- kann unternehmerische Risiken identifizieren, analysieren und bewerten.
- ist in der Lage, geeignete Strategien und Maßnahmenbündel für das operationale Risikomanagement zu entwerfen
- kann die Funktion von Versicherungsschutz als risikopolitisches Mittel auf einzel- und gesamtwirtschaftlicher Ebene einschätzen,
- kennt und versteht die rechtlichen Rahmenbedingungen und Techniken der Produktion von Versicherungsschutz sowie weiterer Leistungen von Versicherungsunternehmen (Risikoberatung, Schadenmanagement).

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Anmerkungen
Bitte beachten Sie:

Arbeitsaufwand
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.54 Modul: Seminarmodul [M-WIWI-101816]

Verantwortung: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wahlpflichtbereich (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (3 LP)

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Seminar/Thema</th>
<th>Leistungspunkte</th>
<th>Art des Anbieters/Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103486</td>
<td>Seminar Betriebswirtschaftslehre (Bachelor)</td>
<td>3</td>
<td>Professorenschaft des Fachbereichs Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>T-WIWI-103485</td>
<td>Seminar Informatik (Bachelor)</td>
<td>3</td>
<td>Professorenschaft des Fachbereichs Informatik</td>
</tr>
<tr>
<td>T-WIWI-108763</td>
<td>Seminar Ingenieurwissenschaften (genehmigungspflichtig)</td>
<td>3</td>
<td>Fachvertreter ingenieurwissenschaftlicher Fakultäten</td>
</tr>
<tr>
<td>T-MATH-102265</td>
<td>Seminar Mathematik (Bachelor)</td>
<td>3</td>
<td>Folkers, Last</td>
</tr>
<tr>
<td>T-WIWI-103488</td>
<td>Seminar Operations Research (Bachelor)</td>
<td>3</td>
<td>Nickel, Rebennack, Stein</td>
</tr>
<tr>
<td>T/INFO-101997</td>
<td>Seminar aus Rechtswissenschaften I</td>
<td>3</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-WIWI-103489</td>
<td>Seminar Statistik (Bachelor)</td>
<td>3</td>
<td>Grothe, Schienle</td>
</tr>
<tr>
<td>T-WIWI-103487</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>3</td>
<td>Professorenschaft des Fachbereichs Volkswirtschaftslehre</td>
</tr>
<tr>
<td>T-MACH-109062</td>
<td>Produktionstechnisches Seminar</td>
<td>3</td>
<td>Fleischer, Lanza, Schulze</td>
</tr>
<tr>
<td>T-MACH-108737</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>3</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Erfolgskontrollen(n)

Qualifikationsziele

- Die Studierenden können sich weitgehend selbständig mit einem abgegrenzten Problem in einem speziellen Fachgebiet nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen.
- Die Probleme können sie strukturiert und unter Einbeziehung ihres interdisziplinären Wissens lösen.
- Sie daraus abgeleiteten Ergebnisse wissen sie zu validieren.
- Anschließend können sie diese unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion verteidigen.
Voraussetzungen

Es sollten alle Module des Kern- bzw. Grundlagenprogramms erfolgreich abgeschlossen sein. Belegt werden können:

1. BWL-, VWL-, INFO-, OR- und Statistik-Seminare
2. Rechtsseminare des ZAR
3. Für die WiWi-Studiengänge angebotene Seminare an der Fakultät für Mathematik
4. Soziologiseminar, sofern als Wahlmodul ein Soziologiemodul belegt wird (genehmigungspflichtig)
5. Ingenieurwissenschaftliche Seminare, passend zu einem belegten ING-Modul.

Die inhaltliche Stimmigkeit gilt als gegeben, wenn Seminar und Modul am gleichen ING-Institut belegt werden. Ist das nicht der Fall, ist es erforderlich, dass der ING-Modul-Koordinator eines belegten Ing-Moduls bescheinigt, dass das Seminar zu seinem Modul passt. Ing-Seminare des WBK (Produktionstechnik) und IFL (Logistik) müssen diese Bedingung nicht erfüllen.

Das Seminar muss den Leistungsstandards der Fakultät für Wirtschaftswissenschaften entsprechen (regelmäßige und aktive Teilnahme, Seminararbeit zu einem Teilaspekt des Seminarthemas, Präsentation dazu, Gesamt-Workload ca. 90 std.). Ing-Seminare für das Seminarmodul sind grundsätzlich genehmigungspflichtig und ist beim Prüfungssekretariat der Fakultät für Wirtschaftswissenschaften zu beantragen. Der Zulassungsantrag wird über das entsprechende Ing.-Seminarformular auf der Download-Seite der Fakultät betrieben (Seminare des wbk und des IFL sind von dieser Genehmigungspflicht ausgenommen.)

Inhalt

Die im Rahmen des Seminarmoduls erworbenen Kompetenzen dienen im Besonderen der Vorbereitung auf die Thesis. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.

Anmerkungen

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) (SPO 2015) bzw. 270 Stunden (9 Credits) (SPO 2007).
7.55 Modul: Soziologie/Empirische Sozialforschung [M-GEISTSOZ-101167]

Verantwortung: Prof. Dr. Gerd Nollmann

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Wahlpflichtbereich (Recht oder Soziologie)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung (WiWi)</th>
<th>Leistungspunkte</th>
<th>Dozent/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-109047 Sozialstrukturanalyse</td>
<td>3 LP</td>
<td>Nollmann</td>
</tr>
<tr>
<td>T-GEISTSOZ-109048 Sozialforschung A</td>
<td>3 LP</td>
<td>Nollmann</td>
</tr>
<tr>
<td>T-GEISTSOZ-109049 Sozialforschung B</td>
<td>3 LP</td>
<td>Nollmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle findet in Form einer Klausur in der Veranstaltung "Sozialstrukturanalyse" sowie je einer schriftlichen Ausarbeitung in den gewählten Seminaren zu "Sozialforschung" statt.

Qualifikationsziele

Der/ die Studierende

- besitzt grundlegende und weiterführende Kenntnisse in der Analyse von sozialen Strukturen und Prozessen sowie empirische Kenntnisse über Gegenwartsgesellschaften,
- kann aktuelle gesellschaftliche Entwicklungen analysieren und aufgrund des erworbenen empirischen und statistischen Wissens eine begründete Meinung formulieren,
- kann kleinere empirische Projekte selbständig erheben und auswerten.

Zusammensetzung der Modulnote

Die Modulnote ist das arithmetische Mittel aus den einzelnen Studienleistungen innerhalb des Moduls.

Voraussetzungen

Keine.

Inhalt

Arbeitsaufwand

- Präsenzzeit: 54 Stunden
- Vor- /Nachbereitung: 168 Stunden
- Prüfung und Prüfungsvorbereitung: 20 Stunden
7.56 Modul: Statistik und Ökonometrie [M-WIWI-101599]

Verantwortung: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wahlpflichtbereich (Statistik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Eines Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>LP</th>
<th>Erster/die Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102736</td>
<td>Volkswirtschaftslehre III: Einführung in die Ökonometrie</td>
<td>5</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-106623</td>
<td>Fachliche Voraussetzungen erfüllt</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>LP</th>
<th>Erster/die Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103063</td>
<td>Analyse multivariater Daten</td>
<td>4,5</td>
<td>Grothe</td>
</tr>
<tr>
<td>T-WIWI-103064</td>
<td>Financial Econometrics</td>
<td>4,5</td>
<td>Schienle</td>
</tr>
<tr>
<td>T-WIWI-103065</td>
<td>Statistische Modellierung von allgemeinen Regressionsmodellen</td>
<td>4,5</td>
<td>Heller</td>
</tr>
<tr>
<td>T-WIWI-103066</td>
<td>Data Mining and Applications</td>
<td>4,5</td>
<td>Nakhaeizadeh</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Der/die Studierende

- besitzt fortgeschrittene Kenntnisse ökonometrischer Konzepte und statistischer Modellbildung.
- entwickelt eigenständig ökonometrische Modelle für Probleme und Fragestellungen ausgehend von verfügbaren Daten.
- kann Techniken und Modelle mit Hilfe von statistischer Software anwenden, die Ergebnisse interpretieren und zwischen verschiedenen Modelle und Techniken statistisch abwägen.

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101432 - Einführung in die Statistik muss erfolgreich abgeschlossen worden sein.

Inhalt
Das Modul behandelt die wesentlichen grundlegenden statistisch/mathematischen Techniken, die zur Regressions- bzw. Zeitreihenanalyse und/oder zur Analyse multivariaten Daten notwendig sind.

Arbeitsaufwand
Modul: Strategie und Organisation [M-WIWI-101425]

7.57 Modul: Strategie und Organisation [M-WIWI-101425]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre) Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften) Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Strategie und Organisation (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102629</td>
<td>Unternehmensführung und Strategisches Management</td>
<td>3,5 LP Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-102630</td>
<td>Organisationsmanagement</td>
<td>3,5 LP Lindstädt</td>
</tr>
<tr>
<td>T-WIWI-102871</td>
<td>Problemlösung, Kommunikation und Leadership</td>
<td>2 LP Lindstädt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
- Der/die Studierende beschreibt sowohl zentrale Konzepte des strategischen Managements als auch Konzepte und Modelle für die Gestaltung organisationaler Strukturen.
- Er/sie bewertet die Stärken und Schwächen existierender organisationaler Strukturen und Regelungen anhand systematischer Kriterien.
- Die Steuerung organisationaler Veränderungen diskutieren und überprüfen die Studierenden anhand von Fallbeispielen, inwieweit sich die Modelle in der Praxis einsetzen lassen und welche Bedingungen dafür gelten müssen.
- Zudem planen die Studierenden den Einsatz von IT zur Unterstützung der Unternehmensführung.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Arbeitsaufwand

Die Gesamtschülerszahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
7.58 Modul: Supply Chain Management [M-WIWI-101421]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

- T-WIWI-107506 Plattformökonomie 4,5 LP Straub, Weinhardt

Wahlpflichtblock: Ergänzungsangebot (höchstens 4 Bestandteile)

- T-WIWI-102704 Standortplanung und strategisches Supply Chain Management 4,5 LP Nickel
- T-WIWI-102714 Taktisches und operatives Supply Chain Management 4,5 LP Nickel
- T-MACH-102089 Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen 6 LP Furmans
- T-WIWI-109802 Platzhalter 1 Supply Chain Management 4,5 LP
- T-WIWI-109803 Platzhalter 2 Supply Chain Management 4,5 LP

Erfolgskontrolle(n)

Dieses Modul ist nur im Wahlpflichtbereich wählbar. Im Vertiefungsprogramm Betriebswirtschaftslehre ist die Wahl nicht zulässig.

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Die Studierenden

- verstehen und bewerten aus strategischer und operativer Sicht die Steuerung von unternehmensübergreifenden Lieferketten,
- analysieren die Koordinationsprobleme innerhalb der Lieferketten,
- identifizieren und integrieren geeignete Informationssystemlandschaften zur Unterstützung der Lieferketten,
- wenden theoretische Methoden aus dem Operations Research und dem Informationsmanagement an,
- erarbeiten Lösungen in Teams.

Voraussetzungen

Die Teilleistung T-WIWI-107506 "Plattformökonomie" ist Pflicht im Modul.
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagentenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.

Inhalt

Das Teilmodul wird durch ein Wahlfach abgerundet, welches geeignete Optimierungsmethoden für das Supply Chain Management bzw. moderne Logistikansätze adressiert.
Anmerkungen
Das geplante Vorlesungsangebot in den nächsten Semestern finden Sie auf den Webseiten der einzelnen Institute IISM, IFL und IOR.

Arbeitsaufwand
Modul: Technische Mechanik [M-MACH-101259]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: Ingenieurwissenschaften (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MACH-102208 | Einführung in die Technische Mechanik I: Statik und Festigkeitslehre | 3 LP | Fidlin |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 min) in der vorlesungsfreien Zeit des Semesters (nach §4 (2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Erlaubte Hilfsmittel: nicht-programmierbare Taschenrechner, Literatur

Qualifikationsziele

Der/die Studierende

- kennt und versteht die grundlegenden Elemente der Statik,
- kann einfache Berechnungen der Statik selbständig durchführen.

Voraussetzungen
Keine

Inhalt

Statik: Kraft · Moment · Allgemeine Gleichgewichtsbedingungen · Massenmittelpunkt · Innere Kräfte in Tragwerken · Ebene Fachwerke · Theorie des Haftens

Anmerkungen

Arbeitsaufwand

Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.

Lehr- und Lernformen

Vorlesung und Übungen
Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 1 Semester
Level: 3
Version: 5

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Name</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108445</td>
<td>Applied Asset Management</td>
<td>3</td>
<td>Sauer</td>
</tr>
<tr>
<td>T-WIWI-102625</td>
<td>Börsen</td>
<td>1,5</td>
<td>Franke</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-109941</td>
<td>eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4,5</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute</td>
<td>3</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>4,5</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung</td>
<td>3</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- besitzt weiterführende Kenntnisse in moderner Finanzwirtschaft
- wendet diese Kenntnisse in den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken in der beruflichen Praxis an.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Das Modul ist außerdem erst dann bestanden, wenn zusätzlich das Modul Essentials in Finance zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde. Zudem kann das Modul Topics in Finance II gewählt werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101435 - Essentials of Finance muss begonnen worden sein.

Inhalt

Das Modul Topics in Finance I baut inhaltlich auf dem Modul Essentials of Finance auf. In den Veranstaltungen werden weiterführende Fragestellungen aus den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken aus theoretischer und praktischer Sicht behandelt.
Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden, für Lehrveranstaltungen mit 3 Leistungspunkten ca. 90 Stunden und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45 Stunden.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.61 Modul: Topics in Finance II [M-WIWI-101423]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre)

Leistungspunkte 9
Turnus Jedes Semester
Dauer 1 Semester
Level 3
Version 6

Wahlpfllichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>LP</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-108445</td>
<td>Applied Asset Management</td>
<td>3</td>
<td>Sauer</td>
</tr>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-109941</td>
<td>eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td>4,5</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation</td>
<td>4,5</td>
<td>Ruckes</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4,5</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute</td>
<td>3</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>4,5</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung</td>
<td>3</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2) SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

In der Lehrveranstaltung Derivate [2530550] kann die Note der Teilprüfung mit der Abgabe von Übungsaufgaben durch bis zu 4 Bonuspunkte verbessert werden.

Qualifikationsziele

Der/die Studierende

- besitzt weiterführende Kenntnisse in moderner Finanzwirtschaft
- kann diese Kenntnisse in den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken in der beruflichen Praxis anwenden.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Das Modul ist außerdem erst dann bestanden, wenn zusätzlich das Modul Essentials in Finance zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.

Zudem kann das Modul Topics in Finance I gewählt werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101435 - Essentials of Finance muss begonnen worden sein.
Inhalt
Das Modul Topics in Finance II baut inhaltlich auf dem Modul Essentials of Finance auf. In den Veranstaltungen werden weiterführende Fragestellungen aus den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken aus theoretischer und praktischer Sicht behandelt.

Anmerkungen

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.62 Modul: Verbrennungsmotoren I [M-MACH-101275]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul ID</th>
<th>Modul Name</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>5 LP</td>
</tr>
<tr>
<td>T-MACH-105564</td>
<td>Energieumsetzung und Wirkungsgradsteigerung bei Verbrennungsmotoren</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von zwei mündlichen Prüfungen. Die Modulnote ergibt sich aus den beiden nach Leistungspunkten gewichteten Noten.

Qualifikationsziele
Der Student kann die grundlegenden Motorprozesse benennen und erklären. Er ist in der Lage die motorische Verbrennung zu analysieren und zu bewerten. Quereinflüsse von Ladungswechsel, Gemischbildung, Kraftstoffen und Abgasnachbehandlung auf die Güte der Verbrennung kann der Student beurteilen. Er ist dadurch in der Lage grundlegende Forschungsaufgaben im Bereich der Motorentwicklung zu lösen.

Der Student kann alle wichtigen Einflüsse auf den Ablauf der Verbrennung benennen. Er kann motorischen Verbrennungsprozess mittels der behandelten Methoden im Bezug auf Effizienz, Emissionen und Potenzial analysieren und bewerten.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
Inhalt
Prinzip des Verbrennungsmotors
Charakteristische Kenngrößen
Bauteile
Kurbeltrieb
Brennstoffe
Ottomotorische Betriebsarten
Dieselmotorische Betriebsarten
Abgasemissionen
Grundlagen der motorischen Verbrennung
Thermodynamik des Verbrennungsmotors
Strömungsfeld
Wandwärmeverluste
Verbrennung bei Otto- und Dieselmotor
Druckverlaufsanalyse und Arbeitsprozessrechnung
Restwärmenutzung

Arbeitsaufwand
Präsenzzeit: 62 h
Selbststudium: 208 h
7.63 Modul: Verbrennungsmotoren II [M-MACH-101303]

Verantwortung: Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
- Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte 9
Turnus Jedes Semester
Dauer 1 Semester
Level 4
Version 1

Pflichtbestandteile
- T-MACH-104609 Verbrennungsmotoren II

Wahlpflichtblock: Verbrennungsmotoren II (mind. 4 LP)
- T-MACH-105044 Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren
- T-MACH-105173 Abgas- und Schmierölanalyse am Verbrennungsmotor
- T-MACH-105184 Betriebsstoffe für Verbrennungsmotoren
- T-MACH-105167 Methoden zur Analyse der motorischen Verbrennung
- T-MACH-102197 Gasmotoren
- T-MACH-102199 Modellbasierte Applikation
- T-MACH-105169 Motorenmesstechnik

4 LP
Deutschmann, Grunwaldt, Kubach, Lox

4 LP
Gohl

4 LP
Kehrwald, Kubach

4 LP
Pfeil

4 LP
Golloch

4 LP
Kirschbaum

4 LP
Bernhardt

Erfolgskontrolle(n)

Qualifikationsziele
Siehe Lernziele der einzelnen Veranstaltungen.

Voraussetzungen
Das Modul ist erst bestanden, wenn zusätzlich das Modul Verbrennungsmotoren I erfolgreich mit der letzten Teilprüfung abgeschlossen ist.

Die Lehrveranstaltung Verbrennungsmotoren II [2134131] muss belegt werden.

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101275 - Verbrennungsmotoren I muss begonnen worden sein.
2. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
5. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.
Inhalt

Pflicht:
- Aufladung und Airmanagement
- Kennfelder
- Emissionen und Abgasnachbehandlung
- Transienter Motorbetrieb
- Applikation
- Elektrifizierung und alternative Antriebe

Wahlbereich:
- Betriebsstoffe für Verbrennungsmotoren
- Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren
- Methoden zur Analyse der motorischen Verbrennung
- Motorenmesstechnik
- Abgas- und Schmierölanalyse am Verbrennungsmotor

Arbeitsaufwand
- Präsenzzeit: 62 h
- Selbststudium: 208 h
7.64 Modul: Vertiefung der Produktionstechnik [M-MACH-101284]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 2

Wahlpflichtblock: Vertiefung der Produktionstechnik (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105783</td>
<td>Lernfabrik Globale Produktion</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105166</td>
<td>Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Steuerungstechnik</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105177</td>
<td>Umformtechnik</td>
<td>3 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Verzahntechnik</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Qualifikationsziele
Die Studierenden können
- erlernte Methoden der Produktionstechnik auf neue Problemstellungen anwenden,
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen,
- können ihr Wissen zielgerichtet für eine effiziente Produktionstechnik einsetzen,
- können neue Situationen analysieren und auf Basis der Analysen produktionstechnische Methoden zielgerichtet auswählen sowie ihre Auswahl begründen,
- sind in der Lage, komplexe Produktionprozesse modellhaft zu beschreiben und zu vergleichen.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Im Rahmen des Moduls werden die Studierenden die Produktionstechnik erlernen und kennenlernen. Durch das vielfältige Vorlesungsangebot und die Exkursionen im Rahmen einiger Vorlesungen werden tiefe Einblicke in den Bereich der Produktionstechnik geschaffen.
Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 270 Zeitstunden, entsprechend 9 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen, Seminare, Workshops, Exkursionen
7.65 Modul: Vertiefung im Customer Relationship Management [M-WIWI-101422]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- Betriebswirtschaftslehre (Vertiefungsprogramm Betriebswirtschaftslehre)
- Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
- Wahlpflichtbereich (Betriebswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102596</td>
<td>Analytisches CRM</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-102597</td>
<td>Operatives CRM</td>
<td>4,5 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109938</td>
<td>Digital Services</td>
<td>4,5 LP</td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Wettbewerb in Netzen</td>
<td>4,5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4 Abs. 1, S. 2 2. Hs. SPO), mit denen in Summe die Mindestanforderung an LP erfüllt wird. Die Teilprüfungen werden bei jeder Lehrveranstaltung beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- versteht die wichtigsten wissenschaftlichen Methoden (BWL, Statistik, Informatik) des analytischen CRM und kann diese Methoden selbständig auf Standardfälle anwenden,
- überblickt den Markt für CRM-Software,
- gestaltet, implementiert und analysiert operative CRM-Prozesse in konkreten Anwendungsbereichen (wie Marketing Kampagnen Management, Call Center Management, ...),
- kennt die Problematik des Schutzes der Privatsphäre von Kunden und ihre datenschutzrechtlichen Implikationen.

Voraussetzungen

- Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.
- Das Modul ist außerdem erst dann bestanden, wenn zusätzlich das Modul CRM und Servicemanagement zuvor erfolgreich mit der letzten Teilprüfung abgeschlossen wurde.
- Es muss mindestens eine der Veranstaltungen Analytisches CRM und Operatives CRM belegt werden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101460 - CRM und Servicemanagement muss begonnen worden sein.
2. Das Modul M-WIWI-101494 - Grundlagen BWL 1 muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101578 - Grundlagen BWL 2 muss erfolgreich abgeschlossen worden sein.
Inhalt
Im Modul Vertiefung im CRM werden sowohl Analysemethoden und -techniken, die zur Verwaltung und Verbesserung von Kundenbeziehungen verwendet werden können, vorgestellt als auch die Modellierung, Implementierung, Einführung, Änderung, Analyse und Bewertung operativer CRM-Prozesse behandelt.
- Strategische Marketing Prozesse
- Operative Marketing Prozesse (Kampagnenmanagement, Permission Marketing, ...)
- Customer Service Prozesses (Sales Force Management, Field Services, Call Center Management, ...)

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
7.66 Modul: Vertiefung Informatik [M-WIWI-101399]

Verantwortung: Prof. Dr. Andreas Oberweis
 Prof. Dr. Ali Sunyaev
 Prof. Dr. York Sure-Vetter
 Prof. Dr. Melanie Volkamer

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Informatik (Vertiefungsprogramm Informatik)

Leistungspunkte: 9
Jedes Semester:
Dauer: 1 Semester
Level: 3
Version: 8

Wahlpflichtblock: Wahlpflichtangebot (5 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102747</td>
<td>Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-102748</td>
<td>Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (zwischen 4 und 5 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102652</td>
<td>Angewandte Informatik I - Modellierung</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-109445</td>
<td>Angewandte Informatik II – Internet Computing</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-109263</td>
<td>Anwendungen der Künstlichen Intelligenz</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-102660</td>
<td>Datenbanksysteme</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-108716</td>
<td>Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen</td>
<td>4 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-104679</td>
<td>Grundlagen für mobile Business</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-108387</td>
<td>Informationssicherheit</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-100809</td>
<td>Software Engineering</td>
<td>4 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>T-WIWI-102910</td>
<td>Spezialvorlesung Angewandte Informatik</td>
<td>5 LP</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von zwei Teilprüfungen (nach §4 (2) SPO) über die gewählten Lehrveranstaltungen des Moduls. In jeder der gewählten Teilprüfungen, also Teilprüfung 1 und Teilprüfung 2, müssen zum Bestehen die jeweiligen Mindestanforderungen erreicht werden.

Die Prüfungen werden jedes Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Wenn jede der Teilprüfungen bestanden ist, wird die Gesamtnote des Moduls aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- hat die Fähigkeit des praktischen Umgangs mit der in vielen Anwendungsbereichen dominierenden Programmiersprache Java bzw. alternativ die Fähigkeit zur Konfiguration, Parametrisierung und Einführung betrieblicher Standardsoftware zur Ermöglichung, Unterstützung und Automatisierung von Geschäftsprozessen,
- kennt Methoden und Systeme eines Kerngebietes bzw. eines Kernanwendungsbereichs der Informatik,
- kann diese Methoden und Systeme situationsangemessen auswählen, gestalten und zur Problemlösung einsetzen,
- ist in der Lage, selbstständig strategische und kreative Antworten bei der Suche nach Lösungen für genau definierte, konkrete und abstrakte Probleme zu finden.
Voraussetzungen

Wer im Wahlpflichtprogramm ein Modul im Fach Informatik belegen möchte, kann eines der beiden Informatik-Module "Vertiefung Informatik" und "Wahlpflicht Informatik" wählen.

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.67 Modul: Vertiefung ingenieurwissenschaftlicher Grundlagen [M-MACH-101261]

Verantwortung: Prof. Dr. Michael Hoffmann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Vertiefung ingenieurwissenschaftlicher Grundlagen (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Lehrveranstaltungsmodalität</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100534</td>
<td>Elektrotechnik II für Wirtschaftsingenieure</td>
<td>5 LP</td>
<td>Menesklou</td>
</tr>
<tr>
<td>T-MACH-102079</td>
<td>Werkstoffkunde II für Wirtschaftsingenieure</td>
<td>5 LP</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102210</td>
<td>Einführung in die Technische Mechanik II: Dynamik</td>
<td>5 LP</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Die Studierenden besitzen vertiefte Fähigkeiten in den ingenieurwissenschaftlichen Grundlagen und können diese auf technische Problemstellungen anwenden.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Der Lehrinhalt ist abhängig von den gewählten Lehrveranstaltungen.

Anmerkungen
Die Lehrveranstaltung "Einführung in die Technische Mechanik II: Dynamik" [2162276] wird ab dem Wintersemester 2016/2017 jeweils im Wintersemester angeboten.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Verantwortung: Prof. Dr. Michael Hoffmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte	Turnus	Dauer	Level	Version
9 | Jedes Semester | 1 Semester | 4 | 1 |

Wahlpflichtblock: Vertiefung Werkstoffkunde (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102079</td>
<td>Werkstoffkunde II für Wirtschaftsingenieure</td>
<td>5</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102141</td>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>4</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-100287</td>
<td>Keramik-Grundlagen</td>
<td>6</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>5</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-MACH-102137</td>
<td>Polymerengineering I</td>
<td>4</td>
<td>Elsner</td>
</tr>
<tr>
<td>T-MACH-102138</td>
<td>Polymerengineering II</td>
<td>4</td>
<td>Elsner</td>
</tr>
<tr>
<td>T-MACH-102139</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen</td>
<td>4</td>
<td>Gruber, Gumbsch</td>
</tr>
<tr>
<td>T-MACH-102140</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch</td>
<td>4</td>
<td>Gumbsch, Weygand</td>
</tr>
<tr>
<td>T-MACH-102157</td>
<td>Pulvermetallurgische Hochleistungswerkstoffe</td>
<td>4</td>
<td>Oberacker</td>
</tr>
<tr>
<td>T-MACH-102179</td>
<td>Strukturkeramiken</td>
<td>4</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102170</td>
<td>Struktur- und Phasenanalyse</td>
<td>4</td>
<td>Wagner</td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>4</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus dem Mittelwert der abgelegten Prüfungen der jeweiligen Lehrveranstaltungen gebildet, wobei mindestens zwei Teilprüfungen abgelegt werden müssen.

Qualifikationsziele
Die Studierenden besitzen vertiefte Fähigkeiten in den materialwissenschaftlichen Grundlagen und können diese auf technische Problemstellungen anwenden.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt
Der Lehrinhalt ist abhängig von den gewählten Lehrveranstaltungen.
Arbeitsaufwand
Für das Modul ist ein durchschnittlicher Arbeitsaufwand von 270 Stunden notwendig.
7.69 Modul: Wahlpflicht Informatik [M-WIWI-101426]

Verantwortung: Prof. Dr. Andreas Oberweis
Prof. Dr. Ali Sunyaev
Prof. Dr. York Sure-Vetter
Prof. Dr. Melanie Volkamer

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wahlpflichtbereich (Informatik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (zwischen 9 und 10 LP)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltungstitel</th>
<th>ECTS</th>
<th>Förderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109263</td>
<td>Anwendungen der Künstlichen Intelligenz</td>
<td>5 LP</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-102652</td>
<td>Angewandte Informatik I - Modellierung</td>
<td>5 LP</td>
<td>Oberweis, Sure-Vetter</td>
</tr>
<tr>
<td>T-WIWI-109445</td>
<td>Angewandte Informatik II – Internet Computing</td>
<td>5 LP</td>
<td>Sunyaev</td>
</tr>
<tr>
<td>T-WIWI-102660</td>
<td>Datenbanksysteme</td>
<td>5 LP</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-108716</td>
<td>Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen</td>
<td>4 LP</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-104679</td>
<td>Grundlagen für mobile Business</td>
<td>5 LP</td>
<td>Oberweis, Schieber</td>
</tr>
<tr>
<td>T-WIWI-108387</td>
<td>Informationssicherheit</td>
<td>5 LP</td>
<td>Volkamer</td>
</tr>
<tr>
<td>T-WIWI-100809</td>
<td>Software Engineering</td>
<td>4 LP</td>
<td>Oberweis</td>
</tr>
<tr>
<td>T-WIWI-102910</td>
<td>Spezialvorlesung Angewandte Informatik</td>
<td>5 LP</td>
<td>Oberweis, Sack, Sunyaev, Sure-Vetter, Volkamer, Zöllner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von zwei Teilprüfungen (nach §4(2) SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an LP erfüllt werden. In jeder der gewählten Teilprüfungen, also Teilprüfung 1 und Teilprüfung 2, müssen zum Bestehen die jeweiligen Mindestanforderungen erreicht werden. Die Teilprüfungen werden jedes Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Wenn jede der zwei Teilprüfungen bestanden ist, wird die Gesamtnote des Moduls aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Qualifikationsziele

Der/die Studierende

- kennt und beherrscht Methoden und Systemen aus Kerngebieten und Kernanwendungsbereichen der Informatik,
- kann diese Methoden und Systeme situationsangemessen auswählen, gestalten und zur Problemlösung einzusetzen,
- ist in der Lage, selbstständig strategische und kreative Antworten bei der Suche nach Lösungen für genau definierte, konkrete und abstrakte Probleme zu finden.

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.
Inhalt

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.70 Modul: Weiterführende ingenieurwissenschaftliche Grundlagen [M-WIWI-101839]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Dr. Volker Gaukel
Prof. Dr. Michael Hoffmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ingenieurwissenschaften (Pflichtbestandteil)

Leistungspunkte: 3

Turnus: Jedes Semester

Dauer: 1 Semester

Sprache: Deutsch

Level: 3

Version: 4

Wahlpflichtblock: Wahlpflichtangebot (zwischen 3 und 5 LP)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
<th>Kursleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102079</td>
<td>Werkstoffkunde II für Wirtschaftsingenieure</td>
<td>5</td>
<td>Hoffmann</td>
</tr>
<tr>
<td>T-MACH-102210</td>
<td>Einführung in die Technische Mechanik II: Dynamik</td>
<td>5</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-CIWVT-106058</td>
<td>Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung</td>
<td>3</td>
<td>Gaukel</td>
</tr>
<tr>
<td>T-ETIT-100534</td>
<td>Elektrotechnik II für Wirtschaftsingenieure</td>
<td>5</td>
<td>Meneskou</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistungsbeschreibungen.

Qualifikationsziele
Die Studierenden besitzen weiterführende Kenntnisse in ingenieurwissenschaftlichen Grundlagen.

Voraussetzungen
Keine

Inhalt
In dem Modulstehen ingenieurwissenschaftliche Grundlagenthemen zur Werkstoffkunde, Technischen Mechanik und Lebensmittelverarbeitung im Vordergrund.

Anmerkungen
Es sei darauf hingewiesen, dass "Werkstoffkunde 2" sowie "Elektrotechnik II für Wirtschaftsingenieure" nicht im Wintersemester, sondern erst im Sommersemester angeboten werden.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
7 Module: Werkstoffkunde [M-MACH-101260]

Verantwortung: Prof. Dr. Michael Hoffmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: Ingenieurwissenschaften (Pflichtbestandteil)

Leistungspunkte 3 Turnus Jedes Wintersemester Dauer 1 Semester Level 3 Version 1

Pflichtbestandteile

| T-MACH-102078 | Werkstoffkunde I für Wirtschaftsingenieure | 3 LP | Hoffmann |

Erfolgskontrolle(n)
Die Modulnote ist die Note der Klausur.

Qualifikationsziele

Voraussetzungen
Keine

Inhalt

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90Stunden
7.72 Modul: Werkzeugmaschinen und Handhabungstechnik [M-MACH-101286]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: Ingenieurwissenschaften (Vertiefungsprogramm Ingenieurwissenschaften)
Wahlpflichtbereich (Betriebswirtschaftslehre oder Ingenieurwissenschaften)
Wahlpflichtbereich (Ingenieurwissenschaften)

Leistungspunkte 9

Turnus Jedes Wintersemester

Dauer 1 Semester

Sprache Deutsch

Level 4

Version 2

Pflichtbestandteile

| T-MACH-102158 | Werkzeugmaschinen und Handhabungstechnik | 9 LP | Fleischer |

Erfolgskontrolle(n)
Schriftliche Prüfung (120 Minuten)

Qualifikationsziele
Die Studierenden

- sind in der Lage, den Einsatz und die Verwendung von Werkzeugmaschinen und Handhabungsgeräten zu beurteilen und diese hinsichtlich ihrer Eigenschaften sowie ihres Aufbaus zu unterscheiden
- können die wesentlichen Elemente der Werkzeugmaschine (Gestelle, Hauptspindel, Vorschubachsen, Periphere Einrichtungen, Steuerung und Regelung) beschreiben und erörtern
- sind in der Lage, die wesentlichen Komponenten einer Werkzeugmaschine auszuwählen und auszulegen
- sind befähigt, Werkzeugmaschinen nach technischen und wirtschaftlichen Kriterien auszuwählen und zu beurteilen.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-ETIT-101155 - Elektrotechnik muss erfolgreich abgeschlossen worden sein.
3. Das Modul M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen muss erfolgreich abgeschlossen worden sein.
4. Das Modul M-MACH-101259 - Technische Mechanik muss erfolgreich abgeschlossen worden sein.

Inhalt

Die Themen im Einzelnen sind:

- Gestelle und Gestellbauteile
- Vorschubachsen
- Hauptantriebe und Hauptspezindeln
- Periphere Einrichtungen
- Steuerungen und Regelung
- Messtechnische Beurteilung und Maschinenabnahme
- Prozessüberwachung
- Instandhaltung von Werkzeugmaschinen
- Sicherheitstechnische Beurteilung von Werkzeugmaschinen
- Maschinenbeispiele
Arbeitsaufwand
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Lehr- und Lernformen
Vorlesung, Übung, Exkursionen
7.73 Modul: Wirtschaftspolitik I [M-WIWI-101668]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Volkswirtschaftslehre (Vertiefungsprogramm Volkswirtschaftslehre)
Wahlpflichtbereich (Volkswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103213</td>
<td>Einführung in die Wirtschaftspolitik</td>
<td>4,5 LP</td>
<td>Ott</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4,5 LP</td>
<td>Brumm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Öffentliche Einnahmen</td>
<td>4,5 LP</td>
<td>Wigger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102908</td>
<td>Personalpolitik und Arbeitsmarktinstitutionen</td>
<td>4,5 LP</td>
<td>Nieken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-100005</td>
<td>Wettbewerb in Netzen</td>
<td>4,5 LP</td>
<td>Mitusch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Note der Teilprüfung entspricht jeweils der Note der bestandenen Klausur.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/ die Studierende

- besitzt ein vertieftes Verständnis theoretischer Konzepte mikro- und makroökonomischer Theorien,
- wendet diese auf wirtschaftspolitische Fragestellungen an,
- versteht, wie aus wohlfahrtsökonomischer Perspektive Staatseingriffe in das Marktgesechehen legitimiert werden können,
- kann benennen, wie theoriegestützte Politikempfehlungen abgeleitet werden.

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101398 - Einführung in die Volkswirtschaftslehre muss erfolgreich abgeschlossen worden sein.

Inhalt

- Markteingriffe: mikroökonomische Perspektive
- Markteingriffe: makroökonomische Perspektive
- Institutionenökonomische Aspekte
- Wirtschaftspolitik und Wohlfahrtsoekonomik
- Träger der Wirtschaftspolitik: Politökonomische Aspekte

Empfehlungen

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden.
Präsenzzeit pro gewählter Veranstaltung: 3x14h
Vor-/Nachbereitung pro gewählter Veranstaltung: 3x14h
Rest: Prüfungsvorbereitung
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
7.74 Modul: Wirtschaftstheorie [M-WIWI-101501]

Verantwortung: Prof. Dr. Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Volkswirtschaftslehre (Vertiefungsprogramm Volkswirtschaftslehre)
Wahlpflichtbereich (Volkswirtschaftslehre)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modul Name</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5 LP</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4,5 LP</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4,5 LP</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Einführung in die Spieltheorie</td>
<td>4,5 LP</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrieökonomie</td>
<td>4,5 LP</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4,5 LP</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-102610</td>
<td>Wohlfahrtstheorie</td>
<td>4,5 LP</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- beherrscht den Umgang mit fortgeschrittenen Konzepten der mikroökonomischen Theorie - beispielsweise der allgemeinen Gleichgewichtstheorie oder der Preistheorie - und kann diese auf reale Probleme, z. B. der Allokation auf Faktor- und Gütermärkten, anwenden. (Lehrveranstaltung "Fortgeschrittene Mikroökonomische Theorie")
- versteht Konzepte und Methoden der Wohlfahrts- und der Verteilungsgerechtigkeit, (Lehrveranstaltung "Wohlfahrts- und Verteilungsgerechtigkeit")
- erlangt fundierte Kenntnisse in der Theorie strategischer Entscheidungen. Ein Hörer der Vorlesung "Einführung in die Spieltheorie" soll in der Lage sein, allgemeine strategische Fragestellungen systematisch zu analysieren und gegebenenfalls Handlungsempfehlungen für konkrete volkswirtschaftliche Entscheidungssituationen (wie kooperatives vs. egoistisches Verhalten) zu geben. (Lehrveranstaltung "Einführung in die Spieltheorie").

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101398 - Einführung in die Volkswirtschaftslehre muss erfolgreich abgeschlossen worden sein.
Inhalt

Empfehlungen
Keine

Anmerkungen
Bitte beachten Sie, dass die Teilleistung T-WIWI-102609 - Advanced Topics in Economic Theory derzeit nicht angeboten wird.
8 Teilleistungen

8.1 Teilleistung: Abgas- und Schmierölanalyse am Verbrennungsmotor [T-MACH-105173]

Verantwortung: Dr.-Ing. Marcus Gohl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-101303 - Verbrennungsmotoren II
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2134150</th>
<th>Abgas- und Schmierölanalyse am Verbrennungsmotor</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Gohl</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>76--T-Mach-105173</th>
<th>Abgas- und Schmierölanalyse am Verbrennungsmotor</th>
<th>Prüfung (PR)</th>
<th>Gohl</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Hörerschein oder Möglichkeit einer mündlichen Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Abgas- und Schmierölanalyse am Verbrennungsmotor
2134150, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Vorlesung mit Powerpointfolien

Lehrinhalt

Arbeitsaufwand
Präsenzzeit: 24 Stunden
Selbststudium: 96 Stunden

Literatur
Die Vorlesungsunterlagen werden vor jeder Veranstaltung an die Studenten verteilt.
8.2 Teilleistung: Advanced Topics in Economic Theory [T-WIWI-102609]

Verantwortung: Prof. Dr. Kay Mitusch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie
M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Unregelmäßig
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2520527</td>
<td>Advanced Topics in Economic Theory</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Mitusch, Scheffel</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2520528</td>
<td>Übung zu Advanced Topics in Economic Theory</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Pegorari</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Advanced Topics in Economic Theory
2520527, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Die Veranstaltung wird in englischer Sprache angeboten:
The course deals with basic elements of modern economic theory. It is divided into two parts. The first part introduces the microeconomic foundations of general equilibrium à la Debreu ("The Theory of Value", 1959) and Hildenbrand/Kirman ("Equilibrium Analysis",1988). The second part deals with asymmetric information and introduces the basic techniques of contract theory. The course is largely based on the textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.

Arbeitsaufwand
Gesamtaufwand bei 4.5 LP ca. 135 Std.
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
Die Veranstaltung wird in englischer Sprache angeboten:
The course is based on the excellent textbook "Microeconomic Theory" (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green.
8.3 Teilleistung: Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte [T-MACH-106744]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Verantwortung: Dr.-Ing. Roland Kläger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von:
- M-MACH-101270 - Product Lifecycle Management
- M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Vorleser</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>Prüfung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-106744</td>
<td>Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte</td>
<td>Prüfung (PR)</td>
<td>Kläger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Min.

Voraussetzungen
Keine
8.4 Teilleistung: Analyse multivariater Daten [T-WIWI-103063]

Verantwortung: Prof. Dr. Oliver Grothe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101599 - Statistik und Ökonometrie
M-WIWI-104902 - Statistik

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Die Prüfung wird im Prüfungszeitraum des Vorlesungssemesters angeboten. Zur Wiederholungsprüfung im Prüfungszeitraum des jeweiligen Folgesemesters werden ausschließlich Wiederholer (und keine Erstschreiber) zugelassen.

Voraussetzungen
Keine

Empfehlungen

Anmerkungen
Die Veranstaltung wird nicht regelmäßig angeboten. Das für drei Jahre im Voraus geplante Lehrangebot kann auf der Lehrstuhl-Website nachgelesen werden.
8.5 Teilleistung: Analytisches CRM [T-WIWI-102596]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101422 - Vertiefung im Customer Relationship Management
M-WIWI-101460 - CRM und Servicemanagement
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lerntageveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstyp</th>
<th>Veranstaltungsnummer</th>
<th>Kursabbr.</th>
<th>SWS</th>
<th>Lehrveranstaltungsmodus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Vorlesung (V)</td>
<td>2540522</td>
<td>Analytisches CRM</td>
<td>2</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übung (Ü)</td>
<td>2540523</td>
<td>Übungen zu Analytisches CRM</td>
<td>2</td>
<td>Schweizer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstitel</th>
<th>Kursabbr.</th>
<th>Prüfungstyp</th>
<th>Prüfungstitel</th>
<th>Dozent</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)) und wird zur erreichten Punktzahl der bestandenen Klausur hinzugerechnet. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse über Datenmodelle und Modellierungssprachen (UML) aus dem Bereich der Informationssysteme werden vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Analytisches CRM
2540522, SS 2019, 2 SWS, Im Studierendenportal anzeigen
Lehrinhalt
In der Vorlesung Analytisches CRM werden Analysemethoden und -techniken behandelt, die zur Verwaltung und Verbesserung von Kundenbeziehungen verwendet werden können. Wissen über Kunden wird auf aggregierter Ebene für betriebliche Entscheidungen (z.B. Sortimentsplanung, Kundenloyalität, ...) nutzbar gemacht.

Voraussetzung dafür ist die Überführung der in den operativen Systemen erzeugten Daten in ein einheitliches Datenwarehouse, das der Sammlung aller für Analysezwecke wichtigen Daten dient. Die nötigen Modellierungsschritte und Prozesse zur Erstellung und Verwaltung eines Datawarehouses werden behandelt (u.a. ETL-Prozesse, Datenqualität und Monitoring). Die Generierung von kundenorientierten, flexiblen Reports für verschiedene betriebswirtschaftliche Zwecke wird behandelt.

Zwei Analyseverfahren der multivariaten Statistik bilden die methodische Basis, auf der zahlreiche Anwendungen des analytischen CRM aufbauen:

Als externe Datenquellen werden Kundenumfragen behandelt.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten ca. 135 Stunden:
Präsenzzeit
- Besuch der Vorlesung: 15 x 90min = 22h 30m
- Besuch der Übung: 7 x 90min = 10h 30m
- Prüfung: 1h 00m

Selbststudium
- Vor-/Nachbereitung der Vorlesung: 15 x 180min = 45h 00m
- Vorbereitung der Übung: 25h 00m
- Vorbereitung der Prüfung: 31h 00m

Summe: 135h 00m

Literatur
8.6 Teilleistung: Angewandte Informatik I - Modellierung [T-WIWI-102652]

Verantwortung: Prof. Dr. Andreas Oberweis
Prof. Dr. York Sure-Vetter

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101399 - Vertiefung Informatik
M-WIWI-101426 - Wahlpflicht Informatik
M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Prüfungsleistung</th>
<th>Vorlesungszeit</th>
<th>Einrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511030</td>
<td>Angewandte Informatik I - Modellierung</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Sure-Vetter, Koschmider, Schiefer, Oberweis</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511031</td>
<td>Übungen zu Angewandte Informatik I: Modellierung</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Sure-Vetter, Koschmider, Schiefer, Thoma, Käfer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungsart</th>
<th>Prüfung</th>
<th>Vorlesungszeit</th>
<th>Einrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900003</td>
<td>Angewandte Informatik I - Modellierung</td>
<td>Prüfung (PR)</td>
<td>Oberweis, Sure-Vetter</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900018</td>
<td>Angewandte Informatik I - Modellierung</td>
<td>Prüfung (PR)</td>
<td>Oberweis, Sure-Vetter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Beschreibung

Lehrinhalt

Arbeitsaufwand

Wirtschaftsingenieurwesen / Technische Volkswirtschaftslehre:
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Informationswirtschaft / Wirtschaftsinformatik
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur

Weiterführende Literatur:

Übungen zu Angewandte Informatik I: Modellierung

Beschreibung
Mehrere Übungen werden abgehandelt, welche die Themen, die in der Vorlesung Angewandte Informatik I - Modellierung behandelt werden, aufgreifen und im detail besprechen. Dabei werden den Studierenden praktische Beispiele demonstriert um einen Wissenstransfer der gelernten theoretischen Aspekte in die praktische Umsetzung zu ermöglichen.

Lehrinhalt

Arbeitsaufwand
Der Arbeitsaufwand für die gesamte Veranstaltung Angewandte Informatik I - Modellierung ist in der Beschreibung der Vorlesung hinterlegt.

Literatur

Weiterführende Literatur:
8.7 Teilleistung: Angewandte Informatik II – Internet Computing [T-WIWI-109445]

Verantwortung: Prof. Dr. Ali Sunyaev

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101399 - Vertiefung Informatik
- M-WIWI-101426 - Wahlpflicht Informatik
- M-WIWI-101628 - Vertiefung Informatik
- M-WIWI-101630 - Wahlpflicht Informatik
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 2511032</td>
<td>Angewandte Informatik II – Internet Computing</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2019 2511033</td>
<td>Übungen zu Angewandte Informatik II – Internet Computing</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2019 7900025 | Angewandte Informatik II - Internet Computing | Prüfung (PR) | Sunyaev |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Min.) nach §4(2),1 SPO.

Die erfolgreiche Lösung der Aufgaben im Übungsbetrieb ist empfohlen für die Klausur, welche jeweils zum Ende des Wintersemesters und zum Ende des Sommersemesters angeboten wird.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Angewandte Informatik II – Internet Computing
2511032, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V)
Lehrinhalt

Im zweiten Teil der Vorlesung werden aufstrebende und zukunftsweisende Technologien des Internet Computing tiefgründig beleuchtet. Hierzu zählen u.a.:

- Cloud Computing
- Edge & Fog Computing
- Internet der Dinge
- Blockchain
- Künstliche Intelligenz

Arbeitsaufwand
Wirtschaftsingenieurwesen / Technische Volkswirtschaftslehre:
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Informationswirtschaft / Wirtschaftsinformatik
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur
Wird in der Vorlesung bekannt gegeben
8.8 Teileistung: Anwendungen der Künstlichen Intelligenz [T-WIWI-109263]

Verantwortung: Prof. Dr. York Sure-Vetter

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101399 - Vertiefung Informatik
- M-WIWI-101426 - Wahlpflicht Informatik
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

Teileistung: Anwendungen der Künstlichen Intelligenz

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2511314</th>
<th>Anwendungen der Künstlichen Intelligenz</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Sure-Vetter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511315</td>
<td>Übung zu Anwendungen der Künstlichen Intelligenz</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Sure-Vetter, Weller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 18/19 | 7900091 | Anwendungen der Künstlichen Intelligenz | Prüfung (PR) | Sure-Vetter |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) oder einer mündlichen Prüfung (20 min) (nach §4(2), 1 o. 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Note einer bestandenen Klausur kann durch die erfolgreiche Teilnahme am Übungsbetrieb um bis zu 0,3-0,4 Notenpunkte verbessert werden.

Voraussetzungen

Keine.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Grundkenntnisse in Logik und Graphentheorie, wie sie z.B. in Grundlagen der Informatik erworben wurden, sind erforderlich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teileistung:

Anwendungen der Künstlichen Intelligenz

2511314, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Die Vorlesung gibt eine Einführung in die grundlegenden Konzepte von Künstlicher Intelligenz. Wesentliche theoretischen Grundlagen, Methoden und deren Anwendungen werden vorgestellt und erläutert.

Lehrinhalt

Arbeitsaufwand

- Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
- Präsenzzeit: 45 Stunden
- Vor- und Nachbereitung der LV: 67.5 Stunden
- Prüfung und Prüfungsvorbereitung: 37.5 Stunden

Übung zu Anwendungen der Künstlichen Intelligenz
2511315, WS 18/19, 1 SWS, Im Studierendenportal anzeigen

Beschreibung

Mehrere Übungen werden abgehandelt, welche die Themen, die in der Vorlesung Anwendungen der KI behandelt werden, aufgreifen und im Detail besprechen. Dabei werden den Studierenden praktische Beispiele demonstriert, um einen Wissenstransfer der gelernten theoretischen Aspekte in die praktische Umsetzung zu ermöglichen.

Lehrinhalt

Arbeitsaufwand

Der Arbeitsaufwand für die gesamte Veranstaltung Anwendungen der KI ist in der Beschreibung der Vorlesung hinterlegt.
8.9 Teilleistung: Applied Asset Management [T-WIWI-108445]

Verantwortung: Dr. Andreas Sauer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 3

Turnus
- Jedes Wintersemester

Version
- 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2530219</th>
<th>Applied Asset Management</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Sauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900061</td>
<td>Applied Asset Management</td>
<td>Prüfung (PR)</td>
<td>Sauer, Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Note ist die Note der schriftlichen Prüfung. Bei geringer Teilnehmerzahl ersetzt eventuell eine mündliche Prüfung die schriftliche Prüfung.

Voraussetzungen

Die Teilleistung T-WIWI-102879 "Asset Management" darf nicht begonnen sein.

Empfehlungen

Die Inhalte der Vorlesung „Investments“ werden vorausgesetzt.

Anmerkungen

Frühere Bezeichnung bis einschließlich Wintersemester 2017/2018: "Asset Management".

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Applied Asset Management

2530219, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Lehrinhalt

Die Vorlesung macht die Studierenden mit den Instrumenten, Methoden und Begriffen des professionellen Asset Managements vertraut und vermittelt die Anwendung der gelernten Methoden im Rahmen von praxisnahen Übungen.

Arbeitsaufwand

- Präsenzzeit: 30 Stunden
- Vor- /Nachbereitung: 45 Stunden
- Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur

8.10 Teilleistung: Auction & Mechanism Design [T-WIWI-102876]

Verantwortung: Prof. Dr. Nora Szech
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101499 - Angewandte Mikroökonomik
- M-WIWI-101501 - Wirtschaftstheorie
- M-WIWI-104908 - Volkswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2560550</th>
<th>Auction and Mechanism Design</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Szech</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2560551</td>
<td>Übung zu Auction and Mechanism Design</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Szech, Huber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Note ist die Note der schriftlichen Prüfung. Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Empfehlungen

Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

Anmerkungen

Die Lehrveranstaltung wird in englischer Sprache gehalten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auction and Mechanism Design

| 2560550, SS 2019, 2 SWS, [Im Studierenendenportal anzeigen](#) |

Lehrinhalt

Anmerkungen

Die Lehrveranstaltung wird in englischer Sprache gehalten.

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden.
Präsenzzeit: [32] Stunden
Vor- /Nachbereitung: [52] Stunden
Prüfung und Prüfungsvorbereitung: [51] Stunden
Literatur
8.11 Teilleistung: Aufbau und Betrieb von Leistungstransformatoren [T-ETIT-101925]

Verantwortung: Mitarbeiter N. N.
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-101165 - Energieerzeugung und Netzkomponenten
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Version: 1

Lehrveranstaltungen

| SS 2019 | 2307390 | Aufbau und Betrieb von Leistungstransformatoren | 2 SWS | Block (B) | Schäfer |

Prüfungsveranstaltungen

| SS 2019 | 7307390 | Aufbau und Betrieb von Leistungstransformatoren | Prüfung (PR) | Leibfried |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine
8.12 Teilleistung: Aufbau und Eigenschaften verschleißfester Werkstoffe [T-MACH-102141]

Verantwortung: Prof. Dr. Sven Ulrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2194643</th>
<th>Vorlesung (V)</th>
<th>Ulrich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102141</th>
<th>Prüfung (PR)</th>
<th>Ulrich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbau und Eigenschaften verschleißfester Werkstoffe</td>
<td>Prüfung (PR)</td>
<td>Ulrich</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 min)
keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Aufbau und Eigenschaften verschleißfester Werkstoffe
2194643, SS 2019, 2 SWS, im Studierendenportal anzeigen

Bemerkungen
Die Blockveranstaltung findet in folgendem Zeitraum statt:
03.04.- 05.04.2019
Mittwoch bis Freitag jeweils von 8:00-17:15 Uhr
Ort: KIT-Campus Nord, Geb. 681, SR 214, IAM-Angewandte Werkstoffphysik (IAM-AWP)
Lehrinhalt
Einführung

Werkstoffe und Verschleiß

Unlegierte und legierte Werkzeugstähle

Schnellarbeitsstähle

Stellite und Hartlegierungen

Hartstoffe

Hartmetalle

Schneidkeramik

Superharte Materialien

Neueste Entwicklungen

Arbeitsaufwand
Präsenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Literatur

Schneider, J.: Schneidkeramik, Verlag moderne Industrie, Landsberg am Lech, 1995

Kopien der Abbildungen und Tabellen werden verteilt.
8.13 Teilleistung: Ausgewählte Anwendungen der Technischen Logistik [T-MACH-102160]

Verantwortung: Viktor Milushev
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2118087 | Ausgewählte Anwendungen der Technischen Logistik | 3 SWS | Vorlesung (V) | Mittwollen, Milushev |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102160 | Ausgewählte Anwendungen der Technischen Logistik | Prüfung (PR) | Mittwollen |
| SS 2019 | 76-T-MACH-102160 | Ausgewählte Anwendungen der Technischen Logistik | Prüfung (PR) | Mittwollen |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (T-MACH-102163) / Elemente und Systeme der Technischen Logistik (T-MACH-102159) vorausgesetzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ausgewählte Anwendungen der Technischen Logistik
2118087, SS 2019, 3 SWS, **Im Studierendenportal anzeigen**

Beschreibung

Medien:
Ergänzungsblätter, Beamer, Folien, Tafel

Bemerkungen
Detailinfos zur Terminplanung in der Vorlesung / Aushang

Lehrinhalt
- Aufbau und Gestaltung von Maschinen der Intralogistik
- Statisches und dynamisches Verhalten
- Betriebliche Eigenschaften und Besonderheiten
- In den Übungen: Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten

Anmerkungen
Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (LV 2117095) vorausgesetzt
Arbeitsaufwand
Präsenzzeit: 36 Std.
Selbststudium: 84 Std.

Literatur
Empfehlungen in der Vorlesung
8.14 Teilleistung: Ausgewählte Anwendungen der Technischen Logistik - Projekt [T-MACH-108945]

Verantwortung: Viktor Milushev
Dr.-Ing. Martin Mittwollen

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau / Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Präsentation des bearbeiteten Projekts und Verteidigung (30min) nach §4, Abs. 2, Nr. 3 SPO

Voraussetzungen
Teilleistung T-MACH-102160 (Ausgewählte Anwendungen der Technischen Logistik) muss begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung **T-MACH-102160 - Ausgewählte Anwendungen der Technischen Logistik** muss begonnen worden sein.

Empfehlungen
Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (T-MACH-102163) / Elemente und Systeme der Technischen Logistik (T-MACH-102159) vorausgesetzt.
8.15 Teilleistung: Ausgewählte Kapitel der Optik und Mikrooptik für Maschinenbauer [T-MACH-102165]

Verantwortung: Dr.-Ing. Timo Mappes
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung

Voraussetzungen
keine
8.16 Teilleistung: Bachelorarbeit [T-WIWI-103067]

Verantwortung: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101601 - Modul Bachelorarbeit

Erfolgskontrolle(n) siehe Modulbeschreibung

Voraussetzungen siehe Modulbeschreibung

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearbeitungszeit</td>
<td>6 Monate</td>
</tr>
<tr>
<td>Maximale Verlängerungsfrist</td>
<td>1 Monate</td>
</tr>
<tr>
<td>Korrekturfrist</td>
<td>8 Wochen</td>
</tr>
</tbody>
</table>

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.
8.17 Teilleistung: Bahnsystemtechnik [T-MACH-102143]

Verantwortung: Prof. Dr.-Ing. Peter Gratzfeld

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich NFG Bahnsystemtechnik

Bestandteil von: M-MACH-101274 - Bahnsystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2115919 Bahnsystemtechnik</td>
<td>Grundlagenprogramm.</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2115996 Schienenfahrzeugtechnik</td>
<td>Grundlagenprogramm.</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2115919 Bahnsystemtechnik</td>
<td>Grundlagenprogramm.</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2115996 Schienenfahrzeugtechnik</td>
<td>Grundlagenprogramm.</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102143 Bahnsystemtechnik</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102143 Bahnsystemtechnik</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Prüfung: mündlich
Dauer: 45 Minuten
Hilfsmittel: keine

Voraussetzungen

Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bahnsystemtechnik

2115919, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Die in der Vorlesung gezeigten Folien stehen den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

Lehrinhalt

1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klothoide, Längsneigung), Bahnhöfe, (Bahnsteigleitungen, Bahnsteighöhen), Lichtraumprofil und Fahrzeugbegrenzung
5. Fahrdynamik: Zug- und Bremskraft, Fahrwiderstandskraft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)
8. Geschichte (optional)
Arbeitsaufwand
Präsenzzeit: 21 Stunden
Vor- /Nachbereitung: 21 Stunden
Prüfung und Prüfungsvorbereitung: 78 Stunden

Literatur
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

V Schienenfahrzeugtechnik
2115996, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Lehrinhalt
2. Antriebstechnik: Antriebsarten, elektrische und nichtelektrische Leistungsübertragung
3. Bremsstechnik: Aufgaben, Grundlagen, Wirkprinzipien, Bremssteuerung
4. Lauftechnik: Kräfte am Rad, Laufwerke, Fliehkkräfte, Achsanordnungen
 Beispiele von konkreten Fahrzeugen werden erläutert.

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Vor- /Nachbereitung: 21 Stunden
Prüfung und Prüfungsvorbereitung: 78 Stunden

Literatur
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

V Bahnsystemtechnik
2115919, SS 2019, 2 SWS, im Studierendenportal anzeigen

Beschreibung
Medien:
Die in der Vorlesung gezeigten Folien stehen den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

Lehrinhalt
1. Das System Bahn: Eisenbahn als System, Teilsysteme und Wechselwirkungen, Definitionen, Gesetze, Regelwerke, Bahn und Umwelt, wirtschaftliche Bedeutung der Eisenbahn
2. Betrieb: Transportaufgaben, Öffentlicher Personennahverkehr, Regionalverkehr, Fernverkehr, Güterverkehr, Betriebsplanung
3. Infrastruktur: Bahn- und Betriebsanlagen, Trassierungselemente (Gleisbögen, Überhöhung, Klothoide, Längsneigung), Bahnhöfe, (Bahnsteilänge, Bahnsteighöhen), Lichttraumprofil und Fahrzeugbegrenzung
5. Längsdynamik: Zug- und Bremskraft, Fahrwiderstands Kraft, Trägheitskraft, Typische Fahrzyklen (Nah-, Fernverkehr)
8. Geschichte (optional)

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Vor- /Nachbereitung: 21 Stunden
Prüfung und Prüfungsvorbereitung: 78 Stunden
Literatur
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

Schienenfahrzeugtechnik
2115996, SS 2019, 2 SWS, [Im Studierendenportal anzeigen](#)

Beschreibung

Medien:
Die in der Vorlesung gezeigten Folien stehen den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.

Lehrinhalt

1. Systemstruktur von Schienenfahrzeugen: Aufgaben und Einteilung, Hauptsysteme, Fahrzeugsystemtechnik
2. Wagenkasten: Funktionen, Anforderungen, Bauprinzipien, Bauweisen, Energieverzehrelemente, Schnittstellen
3. Fahrwerke: Kräfte am Rad, Achsanordnungen, Laufwerke
4. Antrieb: Fahrzeuge am Fahrdraht, Fahrzeuge ohne Fahrdraht, Zweikraftfahrzeuge
5. Bremsen: Aufgaben, Grundlagen, Wirkprinzipien, Blending, Bremssteuerung
6. Fahrzeugleittechnik: Definitionen, Netzwerkstrukturen, Bussysteme, Komponenten, Beispiele

Arbeitsaufwand

Präsenzzeit: 21 Stunden
Vor- /Nachbereitung: 21 Stunden
Prüfung und Prüfungsvorbereitung: 78 Stunden

Literatur
Eine Literaturliste steht den Studierenden auf der Ilias-Plattform zum Download zur Verfügung.
8.18 Teilleistung: Baubetriebstechnik [T-BGU-101691]

Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101004 - Grundlagen des Baubetriebs
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung-Code</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200410</td>
<td>Baubetriebstechnik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Gentes, Haghsheno, Schneider</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200411</td>
<td>Übungen zu Baubetriebstechnik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Gentes, Haghsheno, Schneider, Waleczko</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung-Code</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
<th>Dozent*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>8230101691</td>
<td>Baubetriebstechnik</td>
<td>Haghsheno, Gentes, Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung mit 90 Minuten

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
8.19 Teilleistung: Bauökologie I [T-WIWI-102742]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101467 - Bauökologie
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

- **WS 18/19**
 - 2586404: Bauökologie I (2 SWS, Vorlesung (V), Ströbele, Lützkendorf)
 - 2586405: Übung zu Bauökologie I (1 SWS, Übung (Ü), Ströbele)

Prüfungsveranstaltungen

- **WS 18/19**
 - 7900247: WS-Bauökologie I - Hauptklausur (Prüfung (PR), Lützkendorf)
 - 7900248: WS_Bauökologie I - Nachklausur (Prüfung (PR), Lützkendorf)

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Eine Kombination mit dem Modul *Real Estate Management* und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion wird empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V
Bauökologie I

2586404, WS 18/19, 2 SWS, *Im Studierendenportal anzeigen*

Beschreibung

Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsentzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
Weiterführende Literatur:

- Umweltbundesamt (Hrsg.): "Leitfaden zum ökologisch orientierten Bauen". C.F.Müller 1997
- IBO (Hrsg.): "Ökologie der Dämmstoffe". Springer 2000
- Feist (Hrsg.): "Das Niedrigenergiehaus – Standard für energiebewusstes Bauen". C.F.Müller 1998
- Bundesarchitektenkammer (Hrsg.): "Energiegerechtes Bauen und Modernisieren". Birkhäuser 1996
- Schulze-Darup: "Bauökologie". Bauverlag 1996
8.20 Teilleistung: Bauökologie II [T-WIWI-102743]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101467 - Bauökologie
M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen

| SS 2019 | 2585403 | Übung zu Bauökologie II | 1 SWS | Übung (Ü) | Ströbele |
| SS 2019 | 2585404 | Bauökologie II | 2 SWS | Vorlesung (V) | Lützkendorf, Ströbele |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Sommersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Es wird eine Kombination mit dem Modul Real Estate Management und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bauökologie II
2585404, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden
Literatur
Weiterführende Literatur:

- Schmidt-Bleek: "Das MIPS-Konzept". Droemer 1998
- Wackernagel et.al: "Unser ökologischer Fußabdruck". Birkhäuser 1997
- Braunschweig: "Methode der ökologischen Knappheit". BUWAL 1997
8.21 Teilleistung: Berufspraktikum [T-WIWI-102611]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsnachweis</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101419 - Berufspraktikum

Erfolgskontrolle(n)
Siehe Modulbeschreibung

Voraussetzungen
Keine
8.22 Teilleistung: Betriebsstoffe für Verbrennungsmotoren [T-MACH-105184]

Verantwortung: Dr.-Ing. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-101303 - Verbrennungsmotoren II
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2133108</td>
<td>Betriebsstoffe für Verbrennungsmotoren</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Betriebsstoffe für Verbrennungsmotoren</td>
<td>Prüfung (PR)</td>
<td>Kehrwald</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Betriebsstoffe für Verbrennungsmotoren</td>
<td>Prüfung (PR)</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, Dauer ca. 25 min., keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebsstoffe für Verbrennungsmotoren
2133108, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Einführung /Grundlagen

Kraftstoffe für Otto- und Dieselmotoren

Wasserstoff

Schmierstoffe für Otto- und Dieselmotoren

Kühlstoffe für Verbrennungsmotoren

Arbeitsaufwand

Präsenzzeit: 24 Stunden
Selbststudium: 96 Stunden

Literatur

Skript
8.23 Teilleistung: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [T-WIWI-102819]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg
Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101494 - Grundlagen BWL 1
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsschwerpunkt: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</th>
<th>SWS</th>
<th>Prüfungsform (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2610026</td>
<td>Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ruckes, Wouters</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2610027</td>
<td>Tutorien zu Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Strych</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsschwerpunkt: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900245</td>
<td>Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>Wouters, Ruckes</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).
Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Anmerkungen

Die Schlüsselqualifikation umfasst die aktive Beteiligung in den Tutorien durch Präsentation eigener Lösungen und Einbringung von Diskussionsbeiträgen.
Die Teilgebiete werden von den jeweiligen BWL-Fachverträtern präsentiert. Ergänzt wird die Vorlesung durch begleitende Tutorien.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen

2610026, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

- Einführung in die Finanzwirtschaft
- Bewertung von Anleihen
- Methoden der Investitionsentscheidung
- Bewertung von Aktien
- Portfoliotheorie
- Grundlagen des externen Rechnungswesens
- Methodik des externen Rechnungswesens
- Grundlagen des internen Rechnungswesens
- Kostenartenrechnung
- Kostenstellenrechnung
- Kostenträgerrechnung
- Kennzahlen des Rechnungswesens
Anmerkungen
Die Schlüsselqualifikation umfasst die aktive Beteiligung in den Tutorien durch Präsentation eigener Lösungen und Einbringung von Diskussionsbeiträgen.
Die Teilgebiete werden von den jeweiligen BWL-Fachvertretern präsentiert. Ergänzt wird die Vorlesung durch begleitende Tutorien.

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur
Ausführliche Literaturhinweise werden in den Materialien zur Vorlesung gegeben.
8.24 Teilleistung: Betriebswirtschaftslehre: Produktionswirtschaft und Marketing [T-WIWI-102818]

Verantwortung:
Prof. Dr. Wolf Fichtner
Prof. Dr. Martin Klarmann
Prof. Dr.-Ing. Thomas Lützkendorf
Prof. Dr. Martin Ruckes
Prof. Dr. Frank Schultmann

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101578 - Grundlagen BWL 2
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2500027</td>
<td>Tutorien zu BWL PM</td>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
<td>Klarmann, Strych, Assistenten</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2600024</td>
<td>Betriebswirtschaftslehre: Produktionswirtschaft und Marketing</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Klarmann, Schultmann, Fichtner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900207</td>
<td>Betriebswirtschaftslehre: Produktionswirtschaft und Marketing</td>
<td>Prüfung (PR)</td>
<td>Fichtner, Klarmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Beschreibung
Die Lehrveranstaltung setzt sich zusammen aus den Teilgebieten:

1. Marketing:

Behandelte Themen im Einzelnen:
- Marktforschung (z.B. Produktpositionierung, Marktsegmentierung)
- Verhaltensforschung (z.B. Beeinflussung durch soziokulturelle und physische Umweltaspekte)
- Marketingpolitische Instrumente (z.B. Produkt-, Preis-, Kommunikations- und Distributionspolitik),
- Besonderheiten internationaler Marketingaktivitäten (z.B. Vorteile und Risiken in internationalen Austauschbeziehungen),
- Entrepreneurship und Intrapreneurship (z.B. Vermarktung von Innovationen durch Unternehmensgründer vs. etablierte Unternehmen).

2. Produktionswirtschaft:

Behandelte Themen im Einzelnen:
- Einführung in das Teilgebiet (systemtheoretische Einordnung, allgemeine Aufgaben, Querschnittsthemen)
- Industrielle Produktion (Standortplanung, Transportplanung, Beschaffung, Anlagenwirtschaft, Produktionsmanagement)
- Elektrizitätswirtschaft (Energiebedarf und Energieversorgung, Energiesystemplanung, Technological Foresight, Kostenstrukturen)
- Bau- und Immobilienwirtschaft

3. Wirtschaftsinformatik:

Behandelte Themen im Einzelnen:
- Trends der Wirtschaftsinformatik
- Begriffsklärung Daten, Information, Wissen
- Information in Unternehmen: Produktions- und Wettbewerbsfaktor
- Informationsverarbeitung: Vom Agent zum Unternehmensnetzwerk
- Unternehmensnetzwerke
- Service Value Networks
- Market Engineering
- Social Networks and Services
Lehrinhalt
Die Lehrveranstaltung setzt sich zusammen aus den Teilgebieten:

Marketing
- Allgemeine Grundlagen
- Marketingstrategie
- Kosumentenverhalten
- Produktpolitik
- Preispolitik
- Kommunikationspolitik
- Vertriebspolitik
- Marketing Metrics

Produktionswirtschaft:

Behandelte Themen im Einzelnen:
- Industrielle Produktion - Motivation
- Grundbegriffe und Grundzusammenhänge
- Klassifikation industrieller Produktionssysteme
- Aufgaben und Ziele des Produktionsmanagements
- Produktionsplanung
- Spezielle Produktionssysteme
 - Fertigungsindustrie: Maschinenbau
 - Projektbasierte Industrie: Bauwirtschaft
 - Prozessindustrie: Energiewirtschaft

Anmerkungen
Die Schlüsselqualifikation umfasst die aktive Beteiligung in den Tutorien durch Präsentation eigener Lösungen und Einbringung von Diskussionsbeiträgen.

Die Teilgebiete werden von den jeweiligen BWL-Fachvertretern präsentiert. Ergänzt wird die Vorlesung durch begleitende Tutorien.

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur
Ausführliche Literaturhinweise werden gegeben in den Materialen zur Vorlesung.
8.25 Teilleistung: Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft [T-WIWI-102817]

Verantwortung:
- Prof. Dr. Petra Nieken
- Prof. Dr. Martin Ruckes

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101494 - Grundlagen BWL 1
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 3

Turnus
- Jedes Wintersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2600023</th>
<th>Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Lindstädt, Weinhardt, Strych, Graf</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>7900246</th>
<th>Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft</th>
<th>Prüfung (PR)</th>
<th>Lindstädt, Weinhardt</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
8.26 Teilleistung: BGB für Anfänger [T-INFO-103339]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101187 - Recht Wahlpflicht
M-WIWI-104903 - Recht

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Vorlesung</th>
<th>Dozent*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>24012</td>
<td>BGB für Anfänger</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Matz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltungsname</th>
<th>Prüfung</th>
<th>Prüfung (PR)</th>
<th>Dozent*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7500012</td>
<td>BGB für Anfänger</td>
<td>Prüfung (PR)</td>
<td>Matz, Dreier</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>7500041</td>
<td>BGB für Anfänger</td>
<td>Prüfung (PR)</td>
<td>Dreier, Matz</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BGB für Anfänger

24012, WS 18/19, 4 SWS, [Im Studierendenportal anzeigen]

Beschreibung

Lehrinhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 120 Stunden (4.0 Credits) davon 45 h Präsenz, 45 h Vor- und Nachbereitungszeit sowie 30 h für die Klausurvorbereitung

\begin{tabular}{|l|c|}
\hline
Aktivität & Arbeitsaufwand \\
\hline
Präsenzzeit & \\
Besuch der Vorlesung & 15 x 2 90min & 45h 00m \\
\hline
Vor- / Nachbereitung der Vorlesung & 15 x 150min & 37h 30m \\
Skript 2x wiederholen & 2 x 12h & 24h 00m \\
Prüfung vorbereiten & & 13h 30m \\
\hline
Summe & & 120h 00m \\
\end{tabular}

Literatur
Wird in der Vorlesung bekannt gegeben

Weiterführende Literatur
Literaturangaben werden in den Vorlesungsfolien angekündigt.
8.27 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin II [T-MACH-100967]

Verantwortung: Prof. Dr. Andreas Guber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>3</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2142883</td>
<td>Guber</td>
</tr>
<tr>
<td>Prüfn.</td>
<td>BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II</td>
<td>Guber</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-100967</td>
<td>Guber</td>
</tr>
<tr>
<td>Prüfn.</td>
<td>BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II</td>
<td>Guber</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (75 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin II

2142883, SS 2019, 2 SWS, im Studierendenportal anzeigen

Vorlesung (V)

Beschreibung

Medien:
Vorlesungsskript

Lehrinhalt

Einsatzbeispiele aus den Life-Sciences und der Medizin: Mikrofluidische Systeme:
Lab-CD, Proteinarrylisation,
Microarray, BioChips
Tissue Engineering
Biohybride Zell-Chip-Systeme
Drug Delivery Systeme
Mikroverfahrenstechnik, Mikroreaktoren
Mikrofluidische Messzellen für FTIR-spektroskopische Untersuchungen
in der Mikroverfahrenstechnik und in der Biologie
Mikrosystemtechnik für Anästhesie, Intensivmedizin (Monitoring)
und Infusionstherapie
Atemgas-Analyse / Atemluft-Diagnostik
Neurobionik / Neuroprothetik
Nano-Chirurgie
Arbeitsaufwand
Literaturarbeit: 20 Stunden
Präsenz: 21 Stunden
Vor- und Nachbearbeitung: 50 Stunden
Prüfungsvorbereitung: 30 Stunden

Literatur
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou
Fundamentals of Microfabrication
8.28 Teilleistung: BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III [T-MACH-100968]

Verantwortung: Prof. Dr. Andreas Guber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2142879</td>
<td>BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin III</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-100968</td>
<td>BioMEMS - Mikrosystemtechnik für Life-Sciences und Medizin III</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (75 Min.)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BioMEMS-Mikrosystemtechnik für Life-Sciences und Medizin III
2142879, SS 2019, 2 SWS, im Studierendenportal anzeigen

Beschreibung

Medien:
Vorlesungsskript

Lehrinhalt
Einsatzbeispiele aus dem Bereich der operativen Minimal Invasiven Therapie (MIT):
Minimal Invasive Chirurgie (MIC)
Neurochirurgie / Neuroendoskopie
Interventionelle Kardiologie / Interventionelle Gefäßtherapie
NOTES
Operationsroboter und Endosysteme
Zulassung von Medizinprodukten (Medizinproduktgesetz) und Qualitätsmanagement

Arbeitsaufwand
Literaturarbeit: 20 Stunden
Präsenz: 21 Stunden
Vor- und Nachbearbeitung: 50 Stunden
Prüfungsvorbereitung: 30 Stunden
Literatur
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005

Buess, G.: Operationslehre in der endoskopischen Chirurgie, Band I und II; Springer-Verlag, 1994

M. Madou
Fundamentals of Microfabrication
8.29 Teilleistung: Bionik für Ingenieure und Naturwissenschaftler [T-MACH-102172]

Verantwortung: PD Dr. Hendrik Hölscher
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2142140</th>
<th>Bionik für Ingenieure und Naturwissenschaftler</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Hölscher, Walheim, Greiner</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102172</th>
<th>Bionik für Ingenieure und Naturwissenschaftler</th>
<th>Prüfung (PR)</th>
<th>Hölscher</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Schriftliche oder mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bionik für Ingenieure und Naturwissenschaftler
2142140, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Beschreibung
Medien: Folien zur Veranstaltung

Lehrinhalt

Arbeitsaufwand
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 30 Stunden
Prüfung und Prüfungsvorbereitung: 30 Stunden

Literatur
8.30 Teilleistung: Börsen [T-WIWI-102625]

Verantwortung: Dr. Jörg Franke

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101402 - eFinance
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>1,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Voraussetzungen

Keine

Empfehlungen

Keine
8.31 Teilleistung: BUS-Steuerungen [T-MACH-102150]

Verantwortung: Simon Becker
Prof. Dr.-Ing. Marcus Geimer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-101266 - Fahrzeugtechnik
M-MACH-101267 - Mobile Arbeitsmaschinen
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen
SS 2019 2114092 BUS-Steuerungen 2 SWS Vorlesung (V) Geimer, Daiß

Prüfungsveranstaltungen
WS 18/19 76T-MACH-102150 BUS-Steuerungen Prüfung (PR) Geimer
SS 2019 76T-MACH-102150 BUS-Steuerungen Prüfung (PR) Geimer

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Voraussetzung zur Teilnahme an der Prüfung ist die Erstellung eines Steuerungsprogramms. Die Teilleistung mit der Kennung T-MACH-108889 muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108889 - BUS-Steuerungen - Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Anmerkungen
Lernziele:

Inhalt:
• Erlernen der Grundlagen der Datenkommunikation in Netzwerken
• Übersicht über die Funktionsweise aktueller Feldbusse
• Detaillierte Betrachtung der Funktionsweise und Einsatzgebiete von CAN-Bussen
• Praktische Umsetzung des Erlernten durch die Programmierung einer Beispielanwendung (Hardware wird gestellt)

Literatur:
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

BUS-Steuerungen

2114092, SS 2019, 2 SWS, [Im Studierendenportal anzeigen](#)

Vorlesung (V)

Lehrinhalt

- Erlernen der Grundlagen der Datenkommunikation in Netzwerken
- Übersicht über die Funktionsweise aktueller Feldbusse
- Detaillierte Betrachtung der Funktionsweise und Einsatzgebiete von CAN-Bussen
- Praktische Umsetzung des Erlernten durch die Programmierung einer Beispielanwendung (Hardware wird gestellt)

Anmerkungen

Die Veranstaltung wird um interessante Vorträge von Referenten aus der Praxis ergänzt.

Arbeitsaufwand

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literatur

Weiterführende Literatur:

8.32 Teilleistung: BUS-Steuerungen - Vorleistung [T-MACH-108889]

Verantwortung: Kevin Daiß
Prof. Dr.-Ing. Marcus Geimer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von:
M-MACH-101266 - Fahrzeugtechnik
M-WIWI-104907 - Ingenieurwissenschaften

Erfolgskontrolle(n):
Erstellung Steuerungsprogramm

Voraussetzungen:
keine
8.33 Teilleistung: CAD-Praktikum NX [T-MACH-102187]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-101270 - Product Lifecycle Management
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstaltungsform</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>CAD-Praktikum NX</td>
<td>2</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2019</td>
<td>CAD-Praktikum NX</td>
<td>3</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsform</th>
<th>Prüfungsart</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102187</td>
<td>CAD-Praktikum NX</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Praktische Prüfung am CAD Rechner, Dauer 60 min.

Voraussetzungen
Keine

Empfehlungen
Umgang mit technischen Zeichnungen wird vorausgesetzt.

Anmerkungen
Für das Praktikum besteht Anwesenheitspflicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CAD-Praktikum NX
2123357, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen
Das Praktikum wird mehrmals in der vorlesungsfreien Zeit als einwöchige Blockveranstaltung (täglich zwischen 08:00 und 17:00 Uhr, Raum 060.2 bzw. Raum 272.2, Gebäude 20.20) angeboten. Weitere Informationen werden auf der Homepage der Veranstaltung und per Aushang bekannt gegeben.

Lehrinhalt
Dem Teilnehmer werden die folgenden Kenntnisse vermittelt:

- Überblick über den Funktionsumfang
- Einführung in die Arbeitsumgebung von NX
- Grundlagen der 3D-CAD Modellierung
- Feature-basiertes Modellieren
- Freiformflächenmodellierung
- Erstellen von technischen Zeichnungen
- Baugruppenmodellierung
- Finite Elemente Methode (FEM) und Mehrkörpersimulation (MKS) mit NX

Anmerkungen
Für das Praktikum besteht Anwesenheitspflicht.
Arbeitsaufwand
Präsenzzeit: 35 Stunden
Selbststudium: 12 Stunden

Literatur
Praktikumsskript

CAD-Praktikum NX
2123357, SS 2019, 3 SWS, Im Studierendenportal zeigen

Lehrinhalt
Dem Teilnehmer werden die folgenden Kenntnisse vermittelt:

- Überblick über den Funktionsumfang
- Einführung in die Arbeitsumgebung von NX
- Grundlagen der 3D-CAD Modellierung
- Feature-basiertes Modellieren
- Freiformflächenmodellierung
- Erstellen von technischen Zeichnungen
- Baugruppenmodellierung
- Finite Elemente Methode (FEM) und Mehrkörpersimulation (MKS) mit NX

Anmerkungen
Für das Praktikum besteht Anwesenheitspflicht.

Arbeitsaufwand
Präsenzzeit: 35 Stunden
Selbststudium: 12 Stunden

Literatur
Praktikumsskript
8.34 Teilleistung: Customer Relationship Management [T-WIWI-102595]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101460 - CRM und Servicemanagement
- M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2540508</td>
<td>Customer Relationship Management</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2540509</td>
<td>Übung zu Customer Relationship Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>Prüfung (PR)</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7979242</td>
<td>Customer Relationship Management</td>
<td>Geyer-Schulz</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)) und wird zur erreichten Punktzahl der bestandenen Klausur hinzugerechnet. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten ca. 135 Stunden:

Präsenzzeit
- Besuch der Vorlesung: 15 x 90min = 22h 30m
- Besuch der Übung: 7 x 90min = 10h 30m
- Prüfung: 1h 00m

Selbststudium
- Vor-/Nachbereitung der Vorlesung: 15 x 180min = 45h 00m
- Vorbereitung der Übung: 25h 00m
- Vorbereitung der Prüfung: 31h 00m

Summe: 135h 00m

Literatur

Weiterführende Literatur:
8.35 Teilleistung: Data Mining and Applications [T-WWI-103066]

Verantwortung: Rheza Nakhaeizadeh
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WWI-101599 - Statistik und Ökonometrie
M-WWI-104902 - Statistik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4,5
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2019 2520375 Data Mining and Applications 2/4 SWS Vorlesung (V) Nakhaeizadeh

Erfolgskontrolle(n)
- Durchführung eines größeren empirischen Projektes als Gruppenarbeit
- Abgabe von Milestones und Gesamtergebnis
- Abschlusspräsentation im Umfang von ca. 45 Minuten

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data Mining and Applications
2520375, SS 2019, 2/4 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Part one: Data Mining
Why Data Mining?
- What is Data Mining?
- History of Data Mining
- Conferences and Journals on Data Mining
- Potential Applications
- Data Mining Process:
 - Business Understanding
 - Data Understanding
 - Data Preparation
 - Modeling
 - Evaluation
 - Deployment
 - Interdisciplinary aspects of Data Mining
- Data Mining tasks
- Data Mining Algorithms (Decision Trees, Association Rules,
 Regression, Clustering, Neural Networks)
- Fuzzy Mining
- OLAP and Data Warehouse
- Data Mining Tools
- Trends in Data Mining

Part two: Examples of application of Data Mining
- Success parameters of Data Mining Projects
- Application in industry
- Application in Commerce
Arbeitsaufwand
Gesamtaufwand bei 4.5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur

- Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.
- David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining, MIT Press, Fall 2000
8.36 Teilleistung: Datenbanksysteme [T-WIWI-102660]

Verantwortung: Prof. Dr. Andreas Oberweis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101399 - Vertiefung Informatik
M-WIWI-101426 - Wahlpflicht Informatik
M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungstyp</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Perioden</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>V</td>
<td>Datenbanksysteme</td>
<td>2</td>
<td>Sommer</td>
<td>2</td>
<td>Sommer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Ü</td>
<td>Übungen zu Datenbanksysteme</td>
<td>1</td>
<td>Sommer</td>
<td>1</td>
<td>Sommer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstyp</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Prüfungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>PR</td>
<td>Datenbanksysteme</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>SS 2019</td>
<td>PR</td>
<td>Datenbanksysteme</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Datenbanksysteme

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>SS 2019</th>
<th>2 SWS, Im Studierendenportal anzeigen</th>
</tr>
</thead>
</table>

Lehrinhalt

- Korrektheit von Daten (operationale, semantische Integrärität),
- Wiederherstellung eines konsistenten Datenbankzustandes,
- Synchronisation paralleler Transaktionen (Phantom-Problem).
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Vorlesung 30h
Übung 15h

Vor- bzw. Nachbereitung der Vorlesung 30h
Vor- bzw. Nachbereitung der Übung 30h
Prüfungsvorbereitung 44h
Prüfung 1h
Summe: 150h

Literatur

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Übungen zu Datenbanksysteme
2511201, SS 2019, 1 SWS, Im Studierendenportal anzeigen

Literatur
Jim Gray / Andreas Reuter: Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993
8.37 Teilleistung: Derivate [T-WIWI-102643]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101402 - eFinance
M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsstunden (SWS)</th>
<th>Veranstaltung</th>
<th>Prüfung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2</td>
<td>Derivate</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>SS 2019</td>
<td>1</td>
<td>Übungen zu Derivate</td>
<td>Uhrig-Homburg, Eska</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75min.) (nach §4(2), 1 SPOs) und eventuell durch weitere Leistungen als Studienleistung (§4(3) SPO). Details zur Ausgestaltung der Studienleistung werden ggf. im Rahmen der Vorlesung bekannt gegeben. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Derivate
2530550, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden
Literatur

Weiterführende Literatur:

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101424 - Grundlagen des Marketing, M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2572158</td>
<td>Dienstleistungs- und B2B-Marketing</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900081</td>
<td>Dienstleistungs- und B2B-Marketing</td>
<td>Prüfung (PR)</td>
<td>Klarmann, Kim</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900126</td>
<td>Dienstleistungs- und B2B-Marketing</td>
<td>Prüfung (PR)</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Dienstleistungs- und B2B-Marketing
2572158, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](#)

Beschreibung

Themen sind im Hinblick auf das Services-Marketing deshalb unter anderem:
- Methoden zur Messung von Dienstleistungsqualität (SERVQUAL, Gap-Modell, Mystery Shopping)
- Preissystemgestaltung für Services (z.B. Yield Management und Flatrate-Tarife)
- Management von Kundenkontaktdienstleistungen

Themen im Hinblick auf das B2B-Marketing sind unter anderem:
- Buying-Center Analyse und Einflussmessung im Buying Center
- Value-in-Use Bestimmung
- Competitive Bidding
- B2B-Branding
Lehrinhalt

Themen sind im Hinblick auf das Dienstleistungs-Marketing:

- Grundlegende Aspekte des Dienstleistungsmarketing
- Strategische Besonderheiten des Dienstleistungsmarketing
- Der erweiterte Marketingmix im Dienstleistungsbereich

Themen im Hinblick auf das B2B-Marketing sind:

- Grundlegende Aspekte des B2B-Marketing
- Organisationales Kaufverhalten
- Besonderheiten des Marketingmix im B2B-Bereich

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Teilleistung: Digital Services [T-WIWI-109938]

Einstellung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101422 - Vertiefung im Customer Relationship Management
- M-WIWI-101434 - eBusiness und Service Management
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-104900 - Betriebswirtschaftslehre
- M-WIWI-104913 - Information Systems & Digital Business: Servitization

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 4,5

Turnus
- Jedes Sommersemester

Version
- 3

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (§4(2), 1 SPOs).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
- siehe "Modellierte Voraussetzungen"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Anmerkungen
8.40 Teilleistung: Economics and Behavior [T-WIWI-102892]

Verantwortung: Prof. Dr. Nora Szech
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101499 - Angewandte Mikroökonomik
M-WIWI-101501 - Wirtschaftstheorie
M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Economics and Behavior</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>Übung zu Economics and Behavior</td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Prüfung Economics and Behavior</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>Prüfung Economics and Behavior (2)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Note ist die Note der schriftlichen Prüfung.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

Anmerkungen
Die Veranstaltung wird auf Englisch stattfinden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Economics and Behavior
2560137, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen]

Lehrinhalt

Anmerkungen
Die Veranstaltung wird auf Englisch stattfinden.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden.
Präsenzzeit: [32] Stunden
Vor-/Nachbereitung: [52] Stunden
Prüfung und Prüfungsvorbereitung: [51] Stunden
Literatur
8.41 Teilleistung: eFinance: Wirtschaftsinformatik für den Wertpapierhandel [T-WIWI-109941]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101402 - eFinance
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101434 - eBusiness und Service Management
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2540454, eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td>1 SWS, Übung (Ü)</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2540455, Übungen zu eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
siehe "Modellierte Voraussetzungen"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V eFinance: Wirtschaftsinformatik für den Wertpapierhandel
2540454, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Beschreibung
Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur

Weiterführende Literatur:
• Gomber, Peter (2000): "Elektronische Handelssysteme - Innovative Konzepte und Technologien". Physika Verlag, Heidelberg
8.42 Teilleistung: Einführung in das Operations Research I und II [T-WIWI-102758]

Verantwortung: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101418 - Einführung in das Operations Research
- M-WIWI-104899 - Operations Research

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
9

Turnus
siehe Anmerkungen

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2530043</td>
<td>Einführung in das Operations Research II</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
</tr>
<tr>
<td>2530044</td>
<td>Tutorien zu Einführung in das Operations Research II</td>
</tr>
<tr>
<td></td>
<td>SWS Tutorium (Tu)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Einführung in das Operations Research I</td>
</tr>
<tr>
<td></td>
<td>2+2 SWS Vorlesung (V)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7900156</td>
<td>Einführung in das Operations Research I und II</td>
</tr>
<tr>
<td></td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Empfehlungen

Es werden die Kenntnisse aus Mathematik I und II, sowie Programmierkenntnisse für die Rechnerübungen vorausgesetzt.

Voraussetzungen

Keine

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtklausur (120 min.) (nach §4(2), 1 SPO).
Die Klausur wird in jedem Semester (in der Regel im März und Juli) angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Die Modulnote entspricht der Note der schriftlichen Prüfung.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in das Operations Research II

Beschreibung

Nichtlineare Optimierung: Grundbegriffe, Optimalitätsbedingungen, Lösungsverfahren für konvexe und nichtkonvexe Optimierungsprobleme.
Dynamische und stochastische Modelle und Methoden: Dynamische Optimierung, Bellman-Verfahren, Losgrößenmodelle und dynamische und stochastische Modelle der Lagerhaltung, Warteschlangen.
Lehrinhalt
Ganzzählige und kombinatorische Optimierung: Grundbegriffe, Schnittebenenverfahren, Branch-and-Cut-Verfahren, heuristische Verfahren.
Nichtlineare Optimierung: Grundbegriffe, Optimalitätsbedingungen, Lösungsverfahren für konvexe und nichtkonvexe Optimierungsprobleme.
Dynamische und stochastische Modelle und Methoden: Dynamische Optimierung, Bellman-Verfahren, Losgrößenmodelle und dynamische und stochastische Modelle der Lagerhaltung, Warteschlangen.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 135 Stunden (4.5 Credits).
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur

Beschreibung
Beispiel für typische OR-Probleme.
Lineare Optimierung: Grundbegriffe, Simplexmethode, Dualität, Sonderformen des Simplexverfahrens (duale Simplexmethode, Dreiphasenmethode), Sensitivitätsanalyse, Parametrische Optimierung, Spieltheorie.

Lehrinhalt
Beispiel für typische OR-Probleme.
Lineare Optimierung: Grundbegriffe, Simplexmethode, Dualität, Sonderformen des Simplexverfahrens (duale Simplexmethode, Dreiphasenmethode), Sensitivitätsanalyse, Parametrische Optimierung, Multikriterielle Optimierung.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 135 Stunden (4.5 Credits).
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
8.43 Teilleistung: Einführung in die Energiewirtschaft [T-WIWI-102746]

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101464 - Energiewirtschaft
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5,5
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

| SS 2019 | 2581010 | Einführung in die Energiewirtschaft | 2 SWS | Vorlesung (V) | Fichtner, Sandmeier |
| SS 2019 | 2581011 | Übungen zu Einführung in die Energiewirtschaft | 2 SWS | Übung (Ü) | Lehmann, Kleinebrahm, Jochem, Sandmeier |

Prüfungsveranstaltungen

| WS 18/19 | 7981010 | Einführung in die Energiewirtschaft | Prüfung (PR) | Fichtner |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Energiewirtschaft
2581010, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

1. Einführung: Begriffe, Einheiten, Umrechnungen
2. Der Energieträger Gas (Reserven, Ressourcen, Technologien)
3. Der Energieträger Öl (Reserven, Ressourcen, Technologien)
4. Der Energieträger Steinkohle (Reserven, Ressourcen, Technologien)
5. Der Energieträger Braunkohle (Reserven, Ressourcen, Technologien)
6. Der Energieträger Uran (Reserven, Ressourcen, Technologien)
7. Der Endenergieträger Elektrizität
8. Der Endenergieträger Wärme
9. Sonstige Endenergieträger (Kälte, Wasserstoff, Druckluft)

Lehrinhalt

1. Einführung: Begriffe, Einheiten, Umrechnungen
2. Der Energieträger Gas (Reserven, Ressourcen, Technologien)
3. Der Energieträger Öl (Reserven, Ressourcen, Technologien)
4. Der Energieträger Steinkohle (Reserven, Ressourcen, Technologien)
5. Der Energieträger Braunkohle (Reserven, Ressourcen, Technologien)
6. Der Energieträger Uran (Reserven, Ressourcen, Technologien)
7. Der Endenergieträger Elektrizität
8. Der Endenergieträger Wärme
9. Sonstige Endenergieträger (Kälte, Wasserstoff, Druckluft)
Arbeitsaufwand
Gesamtaufwand bei 5,5 Leistungspunkten: ca. 165 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 135 Stunden

Literatur
Weiterführende Literatur:
Feess, Eberhard. Umweltökonomie und Umweltpolitik. ISBN 3-8006-2187-8
Teilleistung: Einführung in die Finanzwissenschaft [T-WIWI-102877]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101403 - Finanzwissenschaft
M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungskennzahl</th>
<th>Veranstaltungsbezeichnung</th>
<th>Zeitstunden</th>
<th>Lehrveranstaltungsform</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560131</td>
<td>Einführung in die Finanzwissenschaft</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungskennzahl</th>
<th>Veranstaltungsbezeichnung</th>
<th>Lehrveranstaltungsform</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>790fiwi</td>
<td>Einführung in die Finanzwissenschaft</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>790fiwi</td>
<td>Einführung in die Finanzwissenschaft</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO 2015.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Finanzwissenschaft

2560131, WS 18/19, 3 SWS, Im Studierenportal anzeigen

Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden.
Präsenzzeit: 30 Stunden
Vor-/Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 45 Stunden

Literatur
8.45 Teilleistung: Einführung in die Ingenieurgeologie [T-BGU-101500]

Verantwortung: Prof. Dr. Philipp Blum
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Perioden</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>Semestermodule</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6339057</td>
<td>Einführung in die Ingenieurgeologie</td>
<td>4 SWS, Vorlesung / Übung (VU)</td>
<td>Blum</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Perioden</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>8210_101500</td>
<td>Einführung in die Ingenieurgeologie</td>
<td>Prüfung (PR)</td>
<td>Blum</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min

Voraussetzungen
keine
8.46 Teilleistung: Einführung in die Spieltheorie [T-WIWI-102850]

Verantwortung: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101499 - Angewandte Mikroökonomik
- M-WIWI-101501 - Wirtschaftstheorie
- M-WIWI-104908 - Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungstyp</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Übungsveranstaltungsnummer</th>
<th>Übungsveranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Einführung in die Spieltheorie</td>
<td>2520525</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>2520526</td>
<td>Übungen zu Einführung in die Spieltheorie</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übung (Ü)</td>
<td>2520526</td>
<td>Übung (Ü)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstyp</th>
<th>Veranstaltungsnummer</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Prüfung (PR)</td>
<td>7900212</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Es werden Grundkenntnisse in Mathematik und Statistik vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Spieltheorie

2520525, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 30*4,5 Stunden.
Präsenzzeit: [32] Stunden
Vor- /Nachbereitung: [52] Stunden
Prüfung und Prüfungsvorbereitung: [51] Stunden
Literatur

Verpflichtende Literatur:

Ergänzende Literatur:
8.47 Teilleistung: Einführung in die Stochastische Optimierung [T-WIWI-106546]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Steffen Rebennack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>
| Bestandteil von: | M-WIWI-101414 - Methodische Grundlagen des OR
 M-WIWI-103278 - Optimierung unter Unsicherheit
 M-WIWI-104899 - Operations Research |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4,5</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2550470</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2550471</td>
<td>Übung zur Einführung in die Stochastische Optimierung</td>
<td>1</td>
<td>Übung (U)</td>
<td>Rebennack, Assistenten</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Lehrveranstaltung</th>
<th>Prüfungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900143</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>Prüfung (PR)</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen

Keine.
8.48 Teilleistung: Einführung in die Technische Mechanik I: Statik und Festigkeitslehre [T-MACH-102208]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-101259 · Technische Mechanik
M-WIWI-104907 · Ingenieurwissenschaften

Lehrveranstaltungen

| SS 2019 | 2162238 | Einführung in die Technische Mechanik I: Statik und Festigkeitslehre | 2 SWS | Vorlesung (V) | Fidlin |
| SS 2019 | 2162239 | Übungen zu Einführung in die Technische Mechanik I: Statik und Festigkeitslehre | 1 SWS | Übung (Ü) | Fidlin, Drozdetskaya |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102208-1 | Einführung in die Technische Mechanik I: Statik (75min) | Prüfung (PR) | Fidlin |
| WS 18/19 | 76-T-MACH-102208-2 | Einführung in die Technische Mechanik I: Statik und Festigkeitslehre (120min) | Prüfung (PR) | Fidlin |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) in der vorlesungsfreien Zeit des Semesters (nach §4 (2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Erlaubte Hilfsmittel: nicht-programmierbare Taschenrechner

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Technische Mechanik I: Statik und Festigkeitslehre
2162238, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Statik: Kraft · Moment · Allgemeine Gleichgewichtsbedingungen · Massenmittelpunkt · Innere Kräfte in Tragwerken · Ebene Fachwerke · Theorie des Haftens
8.49 Teilleistung: Einführung in die Technische Mechanik II: Dynamik [T-MACH-102210]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-101261 - Vertiefung ingenieurwissenschaftlicher Grundlagen
M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Wöchentliche Veranstaltungsstunden</th>
<th>Lehrveranstaltungstyp</th>
<th>Veranstaltungstitel</th>
<th>Lehrbeauftragter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2161276</td>
<td>Einführung in die Technische Mechanik II: Dynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Fidlin</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungstyp</th>
<th>Veranstaltungstitel</th>
<th>Lehrbeauftragter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102210</td>
<td>Einführung in die Technische Mechanik II: Dynamik</td>
<td>Prüfung (PR)</td>
<td>Fidlin</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Technische Mechanik II: Dynamik
2161276, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
- Skript zur Veranstaltung. (Skriftenverkauf des Studentenwerks)
- Folien zur Veranstaltung. (Verfügbar mit und ohne den in der Vorlesung gemachten Ergänzungen unter https://rzelearn-pub.rz.uni-karlsruhe.de
- Digitale Aufzeichnungen der Vorlesung. (Verfügbar über die Universitäts-Bibliothek)

Lehrinhalt
- Kinematische Grundbegriffe
- Kinetik des Massenpunktes
- Kinematik starrer Körper
- Ebene
- Kinetik des starren Körpers
- Stoßvorgänge
- Schwingungssysteme

Anmerkungen
Die Zahl der LP wurde von 4,5 auf 5 erhöht. (Ausgeblendet da nicht mehr neu; RB 30.04.2012)
Heimlicher, 4.4.11: Bereits im Vorgriff auf WS 2011/12 eingetragen. Unter Errata veröffentlicht.
Arbeitsaufwand
Gesamtaufwand bei 4,5 LP ca. 90 Std.

- Präsenzzeit: 45 Stunden
- Vor-/Nachbereitung: 20 Stunden
- Prüfung und Prüfungsvorbereitung: 25 Stunden
8.50 Teilleistung: Einführung in die Wirtschaftspolitik [T-WIWI-103213]

Verantwortung: Prof. Dr. Ingrid Ott
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101668 - Wirtschaftspolitik I
M-WIWI-104908 - Volkswirtschaftslehre

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Wirtschaftspolitik
2560280, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Theorie der allgemeinen Wirtschaftspolitik und Diskussion aktueller wirtschaftspolitischer Probleme:

- Ziele der Wirtschaftspolitik,
- Instrumente und Institutionen der Wirtschaftspolitik,
- Dreiklang regionaler, nationaler und europäischer Wirtschaftspolitik,
- spezielle Felder der Wirtschaftspolitik, insbesondere Wachstum, Beschäftigung, Ausstattung mit öffentlicher Infrastruktur und Klimapolitik.

Lehrinhalten

- Markteingriffe: mikroökonomische Perspektive
- Markteingriffe: makroökonomische Perspektive
- Institutionenökonomische Aspekte
- Wirtschaftspolitik und Wohlfahrtsökonomik
- Träger der Wirtschaftspolitik: Politökonomische Aspekte

Anmerkungen

Literatur
Siehe Veranstaltungsankündigung
8.51 Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen [T-BGU-101681]

Verantwortung: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
- M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
- M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>8280101681</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Voraussetzungen
bestandene Vorleistung in Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen
(online-Test: T-BGU-103541)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Teilleistung: Einführung in GIS für Studierende natur-, ingenieur- und
gewissensschaftlicher Fachrichtungen, Vorleistung [T-BGU-103541]

Verantwortung: Dr.-Ing. Norbert Rösch
 Dr.-Ing. Sven Wursthorn

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
 M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
 M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
 M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart Studienleistung
Leistungspunkte 3
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

| WS 18/19 | 6071101 | Einführung in GIS für Studierende natur-, ingenieur- und
gewissensschaftlicher Fachrichtungen, V/Ü | 4 SWS | Vorlesung / Übung (VÜ) | Rösch, Wursthorn |

Prüfungsveranstaltungen

| WS 18/19 | 8280101681 | Einführung in GIS für Studierende natur-, ingenieur- und gewissensschaftlicher Fachrichtungen | Prüfung (PR) | Rösch, Wursthorn |
| WS 18/19 | 8280103541 | Einführung in GIS für Studierende natur-, ingenieur- und gewissensschaftlicher Fachrichtungen, Vorleistung | Prüfung (PR) | Rösch, Wursthorn |

Voraussetzungen
keine
8.53 Teilleistung: Elektrische Energienetze [T-ETIT-100830]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von:
- M-ETIT-102379 - Elektrische Energienetze
- M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 6

Turnus
- Jedes Wintersemester

Version
- 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 2307371</td>
<td>Elektrische Energienetze</td>
</tr>
<tr>
<td>WS 18/19 2307373</td>
<td>Übungen zu 2307371 Elektrische Energienetze</td>
</tr>
</tbody>
</table>

| WS 18/19 7307371 | Elektrische Energienetze | Prüfung (PR) | Leibfried |
| SS 2019 7307371 | Elektrische Energienetze | Prüfung (PR) | Leibfried |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten.

Voraussetzungen
keine
8.54 Teilleistung: Elektroenergiesysteme [T-ETIT-101923]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102379 - Elektrische Energienetze
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrveranstaltungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Elektroenergiesysteme</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Leibfried</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übungen zu 2307391 Elektroenergiesysteme</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Görtz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Lehrveranstaltungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Elektroenergiesysteme</td>
<td>Leibfried</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>Elektroenergiesysteme</td>
<td>Leibfried</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine
8.55 Teilleistung: Elektrotechnik I für Wirtschaftsingenieure [T-ETIT-100533]

Verantwortung: Dr. Wolfgang Menesklou
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von:
- M-ETIT-101155 - Elektrotechnik
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2304223</td>
<td>Elektrotechnik I für Wirtschaftsingenieure</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Menesklou</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2304225</td>
<td>Übungen zu 2304223 Elektrotechnik I für Wirtschaftsingenieure</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Menesklou</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>SWS</th>
<th>Prüfungstitel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7304223</td>
<td>Elektrotechnik I für Wirtschaftsingenieure</td>
<td>Prüfung (PR)</td>
<td>Menesklou</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 2 Stunden.

Voraussetzungen
keine
8.56 Teilleistung: Elektrotechnik II für Wirtschaftsingenieure [T-ETIT-100534]

Verantwortung: Dr. Wolfgang Menesklou
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von:
- M-MACH-101261 - Vertiefung ingenieurwissenschaftlicher Grundlagen
- M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2304224 | Elektrotechnik II für Wirtschaftsingenieure | 3 SWS | Vorlesung (V) | Menesklou |

Prüfungsveranstaltungen

| WS 18/19 | 7304224 | Elektrotechnik II für Wirtschaftsingenieure | Prüfung (PR) | Menesklou |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 2 Stunden.
8.57 Teilleistung: Elemente und Systeme der Technischen Logistik [T-MACH-102159]

Verantwortung: Georg Fischer
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsmündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2117096</th>
<th>Elemente und Systeme der Technischen Logistik</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Mittwollen, Fischer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102159</th>
<th>Elemente und Systeme der Technischen Logistik</th>
<th>Prüfung (PR)</th>
<th>Mittwollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102159</td>
<td>Elemente und Systeme der Technischen Logistik</td>
<td>Prüfung (PR)</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20min) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

keine

Empfehlungen

Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (T-MACH-102163) vorausgesetzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Elemente und Systeme der Technischen Logistik

2117096, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Lehrinhalt

- Materialflussysteme und ihre fördertechnischen Komponenten
- Betrieb fördertechnischer Maschinen
- Elemente der Intralogistik (Bandförderer, Regale, Fahrerlose Transportsysteme, Zusammenführung, Verzweigung, etc.)
- Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen

Anmerkungen

Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (LV 2117095) vorausgesetzt

Arbeitsaufwand

Präsenz: 36Std
Nacharbeit: 84Std

Literatur

Empfehlungen in der Vorlesung
8.58 Teilleistung: Elemente und Systeme der Technischen Logistik - Projekt [T-MACH-108946]

Verantwortung: Georg Fischer
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau / Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsteilnahme anderer Art
Leistungspunkte: 2
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 2117097</td>
</tr>
<tr>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Projekt (PRO)</td>
</tr>
<tr>
<td>Mittwollen, Fischer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Präsentation des bearbeiteten Projekts und Verteidigung (30min) nach §4, Abs. 2, Nr. 3 SPO

Voraussetzungen

T-MACH-102159 (Elemente und Systeme der Technischen Logistik) muss begonnen sein

Modellisierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102159 - Elemente und Systeme der Technischen Logistik muss begonnen worden sein.

Empfehlungen

Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (T-MACH-102163) vorausgesetzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Elemente und Systeme der Technischen Logistik - Projekt
2117097, WS 18/19, SWS, Im Studierendenportal anzeigen

Beschreibung

Medien:
Ergänzungsblätter, Präsentationen, Tafel

Lehrinhalt

• Materialflussysteme und ihre fördertechnischen Komponenten
• Betrieb fördertechnischer Maschinen
• Elemente der Intralogistik (Bandförderer, Regale, Fahrerlose Transportsysteme, Zusammenführung, Verzweigung, etc.)
• Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen
• Eine selbständige Projektarbeit anfertigen, die das Themengebiet vertieft.

Anmerkungen

Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik“ (LV 2117095) vorausgesetzt
8.59 Teilleistung: Energieeffiziente Intralogistiksysteme (mach und wiwi) [T-MACH-105151]

Verantwortung: Dr.-Ing. Meike Braun
Dr.-Ing. Frank Schönung

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau / Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
- M-MACH-101269 - Einführung in die Technische Logistik
- M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
- Prüfung: mündlich

Leistungspunkte
- 4

Turnus
- Jedes Wintersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Energieeffiziente Intralogistiksysteme (mach und wiwi)</th>
<th>SWS</th>
<th>Prüfung (V)</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117500</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>2</td>
<td>Braun, Schönung</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Energieeffiziente Intralogistiksysteme (mach und wiwi)</th>
<th>Prüfung (PR)</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>Braun</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>Braun</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

keine

Empfehlungen

Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik“ wird empfohlen.

Anmerkungen

Bitte beachten Sie die Informationen auf der IFL Homepage der Lehrveranstaltung für evtl. Terminänderungen zu einer Blockveranstaltung und/oder einer Begrenzung der Teilnehmerzahl.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Energieeffiziente Intralogistiksysteme (mach und wiwi)

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117500, WS 18/19</td>
<td>2</td>
<td>Braun</td>
</tr>
</tbody>
</table>

Beschreibung

Medien:
- Präsentationen, Tafelanschrieb

Bemerkungen

Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik“ wird empfohlen.
Lehrinhalt

- Green Spply chain
- Intralogistikprozesse
- Ermittlung des Energieverbrauchs von Fördermitteln
- Modellbildung von Materialflusselementen
- Maßnahmen zur Steigerung der Energieeffizienz von Stetigförderern
- Maßnahmen zur Steigerung der Energieeffizienz von Unstetigförderern
- Dimensionierung energieeffizienter elektrische Antriebe
- Ressourceneffiziente Fördersysteme

Anmerkungen
Bitte beachten Sie die Informationen auf der IFL Homepage der Lehrveranstaltung für evtl. Terminänderungen zu einer Blockveranstaltung und/oder einer Begrenzung der Teilnehmerzahl

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literatur
Keine.
8.60 Teilleistung: Energiepolitik [T-WIWI-102607]

Verantwortung: Prof. Dr. Martin Wietschel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft
 M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3,5
Turnus: Jedes Sommersemester
Version: 3

Lehrveranstaltungen
SS 2019 2581959 Energiepolitik 2 SWS Vorlesung (V) Wietschel

Prüfungsveranstaltungen
WS 18/19 7981959 Energiepolitik Prüfung (PR) Fichtner

Erfolgskontrolle(n)
In allen Master-Studiengängen gilt: Die Prüfung wird für Erstschreiber letztmalig im Wintersemester 2017/18 angeboten. In den Bachelor-Studiengängen wird die Prüfung auch weiterhin angeboten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) nach §4(2), 1 SPO.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energiepolitik
2581959, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Bemerkungen
Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden

Literatur
Wird in der Vorlesung bekannt gegeben.
8.61 Teilleistung: Energieumsetzung und Wirkungsgradsteigerung bei Verbrennungsmotoren [T-MACH-105564]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-101275 - Verbrennungsmotoren I
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Jedes Wintersemester</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Jedes Wintersemester</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, 25 Minuten, keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energieumsetzung und Wirkungsgradsteigerung bei Verbrennungsmotoren

Lehrinhalt

1. Institutsvorstellung und Einleitung
2. Thermodynamik des Verbrennungsmotors
3. Grundlagen motorischer Prozesse
4. Ladungswechsel
5. Strömungsfeld
6. Wandwärmeverluste
7. Verbrennung beim Ottomotor
8. APR und DVA
9. Verbrennung beim Dieselmotor
10. Emissionen
11. Restwärmenutzung
12. Wirkungsgradmaßnahmen

Arbeitsaufwand

Präsenzzeit: 24 Stunden, Selbststudium 96 Stunden
8.62 Teilleistung: Enterprise Risk Management [T-WIWI-102608]

Verantwortung: Prof. Dr. Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101436 - Risk and Insurance Management
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4,5

Turnus
Jedes Wintersemester

Version
1

Erfolgskontrolle(n)
Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.

Voraussetzungen
Keine

Empfehlungen
Keine
Teilleistung: Entscheidungstheorie [T-WIWI-102792]

Verantwortung: Prof. Dr. Karl-Martin Ehrhart
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101499 - Angewandte Mikroökonomik
M-WIWI-104908 - Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2520365</th>
<th>Entscheidungstheorie</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Ehrhart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2520366</td>
<td>Übungen zu Entscheidungstheorie</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Ehrhart</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 18/19 | 7900223 | Entscheidungstheorie | Prüfung (PR) | Ehrhart |

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Es werden Vorkenntnisse im Bereich Statistik und Mathematik erwartet.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Entscheidungstheorie

2520365, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V)

Beschreibung

Lehrinhalt

In der Veranstaltung werden die Grundlagen der "Entcheidung bei Unsicherheit" gelegt. Im Zusammenhang mit der Darstellung der Entscheidungstheorien von Neumann/Morgenstern (Erwartungsnutzentheorie) und Kahnemann/Tversky (Prospect Theory) werden die Konzepte der Stochastischen Dominanz, Risikoaversion, Verlustaversion, Referenzpunkte etc. eingeführt. Bei allen Problemstellungen wird besonderer Wert auf die experimentelle Überprüfung der theoretischen Resultate gelegt. Zusätzlich wird in der Veranstaltung ein Überblick über die Entwicklungsgeschichte und die Grundlagen der Epistemologie (Erkenntnistheorie) insbesondere in Hinblick auf die Entscheidungstheorie gegeben.

Anmerkungen

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden
Literatur

- Ehrhart, K.-M. und S.K. Berninghaus (2012): Skript zur Vorlesung Entscheidungstheorie, KIT.
8.64 Teilleistung: Erzeugung elektrischer Energie [T-ETIT-101924]

Verantwortung: Dr.-Ing. Bernd Hoferer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-101165 - Energieerzeugung und Netzkomponenten
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart (V)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2307356</td>
<td>Erzeugung elektrischer Energie</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7307356</td>
<td>Erzeugung elektrischer Energie</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine
8.65 Teilleistung: Fachliche Voraussetzungen erfüllt [T-WIWI-106623]

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101599 - Statistik und Ökonometrie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Über diese Teilleistung wird ggf. die im Bachelor erbrachte Prüfungsleistung "Einführung in die Spieltheorie" verbucht. Dadurch entfällt im Master-Modul M-WIWI-101453 "Angewandte strategische Entscheidungen" die Bedingung, dass die Teilleistung "Advanced Game Theory" Pflicht im Modul ist.

Voraussetzungen
Keine
8.66 Teilleistung: Fahreigenschaften von Kraftfahrzeugen I [T-MACH-105152]

Verantwortung: Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101264 - Fahrzeugeigenschaften
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart Prüfungsleistung mündlich
Leistungspunkte 3
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>Wochenstunden</th>
<th>Prüfungstyp</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113807</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltung</th>
<th>Prüfungstyp</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105152</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>Prüfung (PR)</td>
<td>Unrau</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105152</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>Prüfung (PR)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fahreigenschaften von Kraftfahrzeugen I
2113807, WS 18/19, 2 SWS, Im Studierendenportal anzeigen Vorlesung (V)

Lehrinhalt

1. Problemstellung: Regelkreis Fahrer - Fahrzeug - Umgebung (z.B. Koordinatensysteme, Schwingungsformen des Aufbaus und der Räder)

2. Simulationsmodelle: Erstellung von Bewegungsgleichungen (Methode nach D'Alembert, Methode nach Lagrange, Automatische Gleichungsgenerierer), Modell für Fahreigenschaften (Aufgabenstellung, Bewegungsgleichungen)

3. Reifenverhalten: Grundlagen, trockene, nasse und winterglatte Fahrbahn

Arbeitsaufwand

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur

8.67 Teilleistung: Fahreigenschaften von Kraftfahrzeugen II [T-MACH-105153]

Verantwortung: Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101264 – Fahrzeugeigenschaften
M-WIWI-104907 – Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2114838</td>
<td>Fahreigenschaften von Kraftfahrzeugen II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105153</td>
<td>Fahreigenschaften von Kraftfahrzeugen II</td>
<td>1</td>
<td>Prüfung (PR)</td>
<td>Unrau</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105153</td>
<td>Fahreigenschaften von Kraftfahrzeugen II</td>
<td>1</td>
<td>Prüfung (PR)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fahreigenschaften von Kraftfahrzeugen II
2114838, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Lehrinhalt
1. Fahrverhalten: Grundlagen, Stationäre Kreisfahrt, Lenkwinkelsprung, Einzelsinus, Doppelter Spurwechsel, Slalom, Seitenwindverhalten, Unebene Fahrbahn

2. Stabilitätsverhalten: Grundlagen, Stabilitätsbedingungen beim Einzelfahrzeug und beim Gespann

Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur
8.68 Teilleistung: Fahrzeugkomfort und -akustik I [T-MACH-105154]

Verantwortung: Prof. Dr. Frank Gauterin

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101264 - Fahrzeugeigenschaften
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113806</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2114856</td>
<td>Vehicle Ride Comfort & Acoustics I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Prüfungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105154</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105154</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>Prüfung (PR)</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündlich

Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen
Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics I T-MACH-102206 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fahrzeugkomfort und -akustik I
2113806, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen
 Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Literatur
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

Vehicle Ride Comfort & Acoustics I
2114856, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
Teilleistung: Fahrzeugkomfort und -akustik II [T-MACH-105155]

Verantwortung: Prof. Dr. Frank Gauterin

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- M-MACH-101264 - Fahrzeugeigenschaften
- M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungnummer</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Vorlesungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2114825</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfungstyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics II T-MACH-102205 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugkomfort und -akustik II

2114825, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Arbeitsaufwand

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
Literatur
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen

Lehrinhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen

2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerkskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
8.70 Teilleistung: Fahrzeugmechatronik I [T-MACH-105156]

Verantwortung: Prof. Dr.-Ing. Dieter Ammon

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101264 - Fahrzeugeigenschaften
M-MACH-101265 - Fahrzeugentwicklung
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Lehrveranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018/2019</td>
<td>2113816</td>
<td>Fahrzeugmechatronik I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ammon</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Lehrveranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018/2019</td>
<td>76-T-MACH-105156</td>
<td>Fahrzeugmechatronik I</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Ammon</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftlich
Dauer: 90 Minuten
Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugmechatronik I
2113816, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen

Genaue Termine: siehe Institutshomepage.

Lehrinhalt

1. Einführung: Mechatronik in der Fahrzeugtechnik
2. Fahrzeugregelungssysteme
 Brems- und Traktionsregelungen (ABS, ASR, autom. Sperren)
 Aktive und semiaktive Federungssysteme, aktive Stabilisatoren
 Fahrdynamik-Regelungen, Assistenzsysteme
3. Modellbildung
 Mechanik - Mehrkörpersimulation
 Elektrik/Elektronik, Regelungen
 Hydraulik
 Verbundsysteme
4. Simulationstechnik
 Integrationsverfahren
 Qualität (Verifikation, Betriebsbereich, Genauigkeit, Performance)
 Simulator-Kopplungen (Hardware-in-the-loop, Software-in-the-loop)
5. Systemdesign (am Beispiel einer Bremsregelung)
 Anforderungen (Funktion, Sicherheit, Robustheit)
 Problemkonstitution (Analyse - Modellierung - Modellreduktion)
 Lösungsansätze
 Bewertung (Qualität, Effizienz, Gültigkeitsbereich, Machbarkeit)
Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur
1. Ammon, D., Modellbildung und Systementwicklung in der Fahrzeugdynamik, Teubner, Stuttgart, 1997
5. Roddeck, W., Einführung in die Mechatronik, Teubner, Stuttgart, 1997
8.71 Teilleistung: Fahrzeugreifen- und Räderentwicklung für PKW [T-MACH-102207]

Verantwortung: Dr.-Ing. Günter Leister

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- M-MACH-101265 - Fahrzeugentwicklung
- M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2114845</th>
<th>Fahrzeugreifen- und Räderentwicklung für PKW</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Leister</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102207</th>
<th>Fahrzeugreifen- und Räderentwicklung für PKW</th>
<th>Prüfung (PR)</th>
<th>Leister</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102207</td>
<td>Fahrzeugreifen- und Räderentwicklung für PKW</td>
<td>Prüfung (PR)</td>
<td>Leister</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fahrzeugreifen- und Räderentwicklung für PKW

2114845, SS 2019, 2 SWS, [im Studierendenportal anzeigen]

Bemerkungen

Voraussichtliche Termine:

siehe Institutshomepage.

Nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage.

Lehrinhalt

1. Die Rolle von Reifen und Räder im Fahrzeugumfeld
2. Geometrische Verhältnisse von Reifen und Rad, Package, Tragfähigkeit und Betriebsfestigkeit, Lastenheftprozess
3. Mobilitätsstrategie: Reserverad, Notlaufsysteme und Pannensets
4. Projektmanagement: Kosten, Gewicht, Termine, Dokumentation
5. Reifenprüfungen und Reifeneigenschaften
6. Rädertechnik im Spannungsfeld Design und Herstellungsprozess, Radprüfung
7. Reifendruck: Indirekt und direkt messende Systeme
8. Reifenbeurteilung subjektiv und objektiv

Arbeitsaufwand

Präsentzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
Literatur
Manuskript zur Vorlesung
8.72 Teilleistung: Fernerkundung, Prüfung [T-BGU-101636]

Verantwortung: Prof. Dr.-Ing. Stefan Hinz

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
- M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
- M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
- M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

SS 2019	6020241	Fernerkundungssysteme	1 SWS	Vorlesung (V)	Hinz
SS 2019	6020242	Fernerkundungssysteme, Übung	1 SWS	Übung (Ü)	Weidner
SS 2019	6020243	Fernerkundungsverfahren	2 SWS	Vorlesung (V)	Weidner
SS 2019	6020244	Fernerkundungsverfahren, Übung	1 SWS	Übung (Ü)	Weidner

Prüfungsveranstaltungen

| SS 2019 | 8284101636 | Fernerkundung, Prüfung | Prüfung (PR) | Weidner, Hinz |

Voraussetzungen

Bestandene Vorleistungen T-BGU-101637 Fernerkundungssysteme und T-BGU-101638 Fernerkundungsverfahren

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101637 - Fernerkundungssysteme, Vorleistung muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-BGU-101638 - Fernerkundungsverfahren, Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fernerkundungsverfahren, Übung
6020244, SS 2019, 1 SWS, im Studierendenportal anzeigen

Bemerkungen
GIS Labor IPF Geb20.40
8.73 Teilleistung: Fernerkundungssysteme, Vorleistung [T-BGU-101637]

Verantwortung: Prof. Dr.-Ing. Stefan Hinz
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernerkundungssysteme, Übung</td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfung (PR)</th>
<th>Übung (Ü)</th>
<th>Weidner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernerkundungssysteme, Vorleistung</td>
<td>6020242</td>
<td>SS 2019</td>
</tr>
<tr>
<td>Fernerkundungssysteme, Vorleistung</td>
<td>8284101637</td>
<td>SS 2019</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Durchführung einer Georeferenzierung

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
8.74 Teilleistung: Fernerkundungsverfahren [T-BGU-103542]

Verantwortung: Dr.-Ing. Uwe Weidner
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
- M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
- M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
- M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Version: 1

Voraussetzungen:
Vorleistung in Fernerkundungsverfahren

Modellierte Voraussetzungen:
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101638 - Fernerkundungsverfahren, Vorleistung muss erfolgreich abgeschlossen worden sein.
8.75 Teilleistung: Fernerkundungsverfahren, Vorleistung [T-BGU-101638]

Verantwortung: Dr.-Ing. Uwe Weidner
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
- M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
- M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>6020244</th>
<th>Fernerkundungsverfahren, Übung</th>
<th>1 SWS</th>
<th>Übung (Ü)</th>
<th>Weidner</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>8284101638</th>
<th>Fernerkundungsverfahren, Vorleistung</th>
<th></th>
<th>Prüfung (PR)</th>
<th>Weidner</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Durchführung einer Klassifizierung

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fernerkundungsverfahren, Übung

6020244, SS 2019, 1 SWS, [Im Studierendenportal anzeigen](#)

Bemerkungen

GIS Labor IPF Geb20.40
8.76 Teilleistung: Fertigungstechnik [T-MACH-102105]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-101276 - Fertigungstechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2149657</th>
<th>Fertigungstechnik</th>
<th>6 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Schulze, Zanger</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102105</th>
<th>Fertigungstechnik</th>
<th>Prüfung (PR)</th>
<th>Schulze</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102105-Mündl.</td>
<td>Fertigungstechnik</td>
<td>Prüfung (PR)</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (180 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fertigungstechnik
2149657, WS 18/19, 6 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Bemerkungen
Vorlesungstermine montags und dienstags, Übungstermine donnerstags.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.
Lehrinhalt
Ziel der Vorlesung ist es, die Fertigungstechnik im Rahmen der Produktionstechnik einzuordnen, einen Überblick über die Verfahren der Fertigungstechnik zu geben und ein vertieftes Prozesswissen der gängigen Verfahren aufzubauen. Dazu werden im Rahmen der Vorlesung fertigungstechnische Grundlagen vermittelt und die Fertigungsverfahren entsprechend ihrer Hauptgruppen sowohl unter technischen als auch wirtschaftlichen Gesichtspunkten behandelt. Durch die Vermittlung von Themen wie Prozessketten in der Fertigung wird die Vorlesung abgerundet.

Die Themen im Einzelnen sind:

- Qualitätsregelung
- Urformen (Gießen, Kunststofftechnik, Sintern, generative Fertigungsverfahren)
- Umformen (Blech-, Massivumformung, Kunststofftechnik)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung
- Prozessketten in der Fertigung

Eine Exkursion zu einem Industrieunternehmen gehört zum Angebot dieser Vorlesung.

Anmerkungen
Keine

Arbeitsaufwand
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

Literatur
Vorlesungsskript
8.77 Teilleistung: Financial Accounting for Global Firms [T-WIWI-107505]

Verantwortung: Dr. Torsten Luedecke
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2530242</td>
<td>Financial Accounting for Global Firms</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Luedecke</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2530243</td>
<td>Übung zu Financial Accounting for Global Firms</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Prüfungstyp</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900142</td>
<td>Financial Accounting for Global Firms</td>
<td>Prüfung (PR)</td>
<td>Luedecke</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900195</td>
<td>Financial Accounting for Global Firms</td>
<td>Prüfung (PR)</td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Note ist das Ergebnis der schriftlichen Prüfung.

Voraussetzungen

Keine

Empfehlungen

Grundkenntnisse in Finanzwirtschaft und Rechnungsweisen.

Anmerkungen

Die Teilleistung wird zum Wintersemester 2017/18 neu angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Financial Accounting for Global Firms

2530242, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](#)

Beschreibung

Lehrinhalt
Die Vorlesung wird auf Englisch gehalten und beinhaltet folgende Themen:

- The context of financial accounting for global firms
- The mechanics of financial accounting
- Accounting frameworks and concepts
- Content and presentation of financial statements
- Preparing financial statements
- Revenue recognition from contracts
- Tangible and intangible non-current assets
- Financial assets, liabilities, and equity
- Consolidation and the assessment of control
- Investment in associates and joint arrangements
- Business combinations
- Foreign currency translation

Literatur
Teilleistung: Financial Econometrics [T-WIWI-103064]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101599 - Statistik und Ökonometrie
M-WIWI-104902 - Statistik

Teilleistung: Financial Econometrics [T-WIWI-103064]

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung</td>
<td>4,5</td>
<td>Unregelmäßig</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §§4(2), 1 SPO).

Voraussetzungen
Keine

Empfehlungen
Die Veranstaltung findet in Englischer Sprache statt.

Anmerkungen
Die Vorlesung findet jedes zweite Sommersemester statt: 2018/2020...
Teilleistung: Financial Management [T-WIWI-102605]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101435 - Essentials of Finance
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
- SS 2019 2530216 Financial Management 2 SWS Vorlesung (V) Ruckes
- SS 2019 2530217 Übung zu Financial Management 1 SWS Übung (Ü) Ruckes, Schubert

Prüfungsveranstaltungen
- WS 18/19 7900060 Financial Management Prüfung (PR) Ruckes
- SS 2019 7900074 Financial Management Prüfung (PR) Ruckes

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Financial Management
2530216, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Darstellung analytischer Methoden und Theorien zur Investitionsrechnung und Unternehmensfinanzierung mit folgenden Schwerpunkten:
- Kapitalstruktur
- Auszahlungspolitik
- Bewertungsgrundlagen
- Investitionsentscheidungen
- Lang- und Kurzfristfinanzierung
- Budgetierung

Lehrinhalt
Darstellung analytischer Methoden und Theorien zur Unternehmensfinanzierung mit folgenden Schwerpunkten:
- Liquidität und Working Capital Management
- Lang- und Kurzfristfinanzierung
- Kapitalstruktur
- Auszahlungspolitik

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden
Literatur
Weiterführende Literatur:

Übung zu Financial Management
2530217, SS 2019, 1 SWS, Im Studierendenportal anzeigen

Bemerkungen
8.80 Teilleistung: Finanzintermediation [T-WIWI-102623]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 2530232 | Finanzintermediation | 2 SWS | Vorlesung (V) | Ruckes |
| WS 18/19 | 2530233 | Übung zu Finanzintermediation | 1 SWS | Übung (Ü) | Ruckes, Hoang, Benz |

Prüfungsveranstaltungen

| WS 18/19 | 7900063 | Finanzintermediation | Prüfung (PR) | Ruckes |
| SS 2019 | 7900078 | Finanzintermediation | Prüfung (PR) | Ruckes |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Finanzintermediation
2530232, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
- Gründe für die Existenz von Finanzintermediären,
- Analyse der vertraglichen Beziehungen zwischen Banken und Kreditnehmern,
- Struktur des Bankenwettbewerbs,
- Stabilität des Bankensystems,
- Makroökonomische Rolle der Finanzintermediation.

Lehrinhalt
- Gründe für die Existenz von Finanzintermediären,
- Analyse der vertraglichen Beziehungen zwischen Banken und Kreditnehmern,
- Stabilität des Bankensystems,
- Makroökonomische Rolle der Finanzintermediation
- Prinzipien prudentieller Bankenregulierung.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 45 Stunden
Vor – und Nachbereitung der LV: 67.5 Stunden
Prüfung und Prüfungsvorbereitung: 22.5 Stunden
Literatur
Weiterführende Literatur:

8.81 Teilleistung: Fluidtechnik [T-MACH-102093]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Felix Pult

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von:
- M-MACH-101266 - Fahrzeugtechnik
- M-MACH-101267 - Mobile Arbeitsmaschinen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 18/19</th>
<th>WS 18/19</th>
<th>2114093</th>
<th>Fluidtechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Geimer, Pult</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 18/19</th>
<th>WS 18/19</th>
<th>76T-MACH-102093</th>
<th>Fluidtechnik</th>
<th>Prüfung (PR)</th>
<th>Geimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommersemester 2019</td>
<td>SS 2019</td>
<td>76-T-MACH-102093</td>
<td>Fluidtechnik</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

keine

Anmerkungen

Lernziele:

Der Studierende ist in der Lage:

- die physikalischen Prinzipien der Fluidtechnik anzuwenden und zu bewerten,
- gängige Komponenten zu nennen und deren Funktionsweisen zu erläutern,
- die Vor- und Nachteile unterschiedlicher Komponenten aufzuzeigen,
- Komponenten für einen gegeben Zweck zu dimensionieren
- sowie einfache Systeme zu berechnen.

Inhalt:

Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und Hydraulische Schaltungen behandelt.

Im Bereich der Pneumatik werden die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und Steuerungen behandelt.

Literatur:

Skiptum zur Vorlesung Fluidtechnik, über die Lernplattform ILIAS downloadbar.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Lehrinhalt
Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und
- Hydraulische Schaltungen betrachtet.

Im Bereich der Pneumatik die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und
- Steuerungen betrachtet.

Arbeitsaufwand

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literatur

Skriptum zur Vorlesung *Fluidtechnik*
Institut für Fahrzeugsystemtechnik
downloadbar
8.82 Teilleistung: Foundations of Interactive Systems [T-WIWI-109816]

Verantwortung: Prof. Dr. Alexander Mädche
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101434 - eBusiness und Service Management
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-104900 - Betriebswirtschaftslehre
- M-WIWI-104913 - Information Systems & Digital Business: Servitization

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2540560 | Foundations of Interactive Systems | 3 SWS | Vorlesung (V) | Mädche |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Foundations of Interactive Systems
2540560, SS 2019, 3 SWS, [Im Studierendenportal anzeigen]

Beschreibung
Advanced information and communication technologies make interactive systems ever-present in the users' private and business life. They are an integral part of smartphones, devices in the smart home, mobility vehicles as well as at the working place.

With the continuous growing capabilities of computers, the design of the interaction between human and computer becomes even more important. This lecture introduces foundations on design processes and principles for interactive systems.

The lecture focuses on foundational concepts, theories, practices and methods for the design of interactive systems. The students get the foundational knowledge to guide the design of interactive systems in business and private life.
8.83 Teilleistung: Gasmotoren [T-MACH-102197]

Verantwortung: Dr.-Ing. Rainer Golloch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-101303 - Verbrennungsmotoren II
M-WIWI-104907 - Ingenieurwissenschaften

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine
8.84 Teilleistung: Geological Hazards and Risks für Nebenfachstudierende [T-PHYS-103117]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
M-WIWI-104904 - Physik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4060121</td>
<td>Geological Hazards and Risk</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gottschämmer, Daniell</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>4060122</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Gottschämmer, Daniell</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung mündlich

Voraussetzungen
keine
8.85 Teilleistung: Geschäftspolitik der Kreditinstitute [T-WIWI-102626]

Verantwortung: Prof. Dr. Wolfgang Müller
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
WS 18/19 2530299 Geschäftspolitik der Kreditinstitute 2 SWS Vorlesung (V) Müller

Prüfungsveranstaltungen
WS 18/19 7900064 Geschäftspolitik der Kreditinstitute Prüfung (PR) Müller, Ruckes
SS 2019 7900079 Geschäftspolitik der Kreditinstitute Prüfung (PR) Müller

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO)
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Geschäftspolitik der Kreditinstitute
2530299, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Der Geschäftsleitung eines Kreditinstituts obliegt es, unter Berücksichtigung aller maßgeblichen endogenen und exogenen Einflussfaktoren, eine Geschäftspolitik festzulegen und zu begleiten, die langfristig den Erfolg der Bankunternehmung sicherstellt. Dabei wird sie zunehmend durch wissenschaftlich fundierte Modelle und Theorien bei der Beschreibung vom Erfolg und Risiko eines Bankbetriebes unterstützt. Die Vorlesung 'Geschäftspolitik der Kreditinstitute' setzt an dieser Stelle an und stellt den Brückenschlag zwischen der bankwirtschaftlichen Theorie und der praktischen Umsetzung her. Dabei nehmen die Vorlesungssteilnehmer die Sichtweise der Unternehmensleitung ein und setzen sich im ersten Kapitel mit der Entwicklung des Bankensektors auseinander. Mit Hilfe geeigneter Annahmen wird dann im zweiten Abschnitt ein Strategiekonzept entwickelt, das in den folgenden Vorlesungssteilen durch die Gestaltung der Bankleistungen (Kap. 3) und des Marketingplans (Kap. 4) weiter untermauert wird. Im operativen Geschäft muss die Unternehmensstrategie durch eine adäquate Ertrags- und Risikosteuerung (Kap. 5 und 6) begleitet werden, die Teile der Gesamtbanksteuerung (Kap. 7) darstellen. Um die Ordnungsmäßigkeit der Geschäftsleitung einer Bank sicherzustellen, sind eine Reihe von bankenaufsichtsrechtlichen Anforderungen (Kap. 8) zu beachten, die maßgeblichen Einfluss auf die Gestaltung der Geschäftspolitik haben.
Lehrinhalt
Der Geschäftsleitung eines Kreditinstituts obliegt es, unter Berücksichtigung aller maßgeblichen endogenen und exogenen Einflussfaktoren, eine Geschäftspolitik festzulegen und zu begleiten, die langfristig den Erfolg der Bankunternehmung sicherstellt. Dabei wird sie zunehmend durch wissenschaftlich fundierte Modelle und Theorien bei der Beschreibung vom Erfolg und Risiko eines Bankbetriebes unterstützt. Die Vorlesung “Geschäftspolitik der Kreditinstitute” setzt an dieser Stelle an und stellt den Brückenschlag zwischen der bankwirtschaftlichen Theorie und der praktischen Umsetzung her. Dabei nehmen die Vorlesungssteilnehmer die Sichtweise der Unternehmensleitung ein und setzen sich im ersten Kapitel mit der Entwicklung des Bankensektors auseinander. Mit Hilfe geeigneter Annahmen wird dann im zweiten Abschnitt ein Strategiekonzept entwickelt, das in den folgenden Vorlesungssteilen durch die Gestaltung der Bankleistungen (Kap. 3) und des Marketingplans (Kap. 4) weiter untermauert wird. Im operativen Geschäfts muss die Unternehmensstrategie durch eine adäquate Ertrags- und Risikosteuerung (Kap. 5 und 6) begleitet werden, die Teile der Gesamtbanksteuerung (Kap. 7) darstellen. Um die Ordnungsmäßigkeit der Geschäftsführung einer Bank sicherzustellen, sind eine Reihe von bankenaufsichtsrechtlichen Anforderungen (Kap. 8) zu beachten, die maßgeblichen Einfluss auf die Gestaltung der Geschäftspolitik haben.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Weiterführende Literatur:
- Ein Skript wird im Verlauf der Veranstaltung kapitelweise ausgeteilt.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2014, Bankbetriebslehre, 6. Auflage, Springer
8.86 Teilleistung: Globale Optimierung I [T-WIWI-102726]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101413 - Anwendungen des Operations Research
- M-WIWI-101414 - Methodische Grundlagen des OR
- M-WIWI-104899 - Operations Research

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2550134</td>
<td>Globale Optimierung I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Stein</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2550135</td>
<td>Übungen zu Globale Optimierung I+II</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltung</th>
<th>Prüfungstyp</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900007_NK_WS1819</td>
<td>Globale Optimierung I</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs) und eventuell durch weitere Leistungen als Prüfungsleistung anderer Art (§4(2), 3 SPO). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung II" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103638 - Globale Optimierung I und II darf nicht begonnen worden sein.

Empfehlungen

Keine

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Globale Optimierung I

<table>
<thead>
<tr>
<th>Vorlesungscode</th>
<th>SS 2019</th>
<th>SWS</th>
<th>im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550134</td>
<td>2 SWS</td>
<td>2</td>
<td>Anzeige</td>
</tr>
</tbody>
</table>
Lehrinhalt

Teil I der Vorlesung behandelt Verfahren zur globalen Optimierung von konvexen Funktionen unter konvexen Nebenbedingungen. Sie ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Existenzaussagen
- Optimalität in der konvexen Optimierung
- Dualität, Schranken und Constraint Qualifications
- Numerische Verfahren

Die Behandlung nichtkonvexer Optimierungsprobleme ist Inhalt von Teil II der Vorlesung.

In der parallel zur Vorlesung angebotenen Rechnerübung haben Sie Gelegenheit, die Programmiersprache MATLAB zu erlernen und einige dieser Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Literatur

- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996
8.87 Teilleistung: Globale Optimierung I und II [T-WIWI-103638]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR
M-WIWI-104899 - Operations Research

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 9
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2019 2550134 Globale Optimierung I 2 SWS Vorlesung (V) Stein
SS 2019 2550136 Globale Optimierung II 2 SWS Vorlesung (V) Stein

Prüfungsveranstaltungen
WS 18/19 7900001_NK_WS1819 Globale Optimierung I und II Prüfung (PR) Stein

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPOs) und eventuell durch weitere Leistungen als Prüfungsleistung anderer Art (§4(2), 3 SPO). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Vorlesungen bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102726 - Globale Optimierung I darf nicht begonnen worden sein.
2. Die Teilleistung T-WIWI-102727 - Globale Optimierung II darf nicht begonnen worden sein.

Empfehlungen
Keine

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Globale Optimierung I
2550134, SS 2019, 2 SWS, im Studierendenportal anzeigen

Vorlesung (V)
Lehrinhalt

Teil I der Vorlesung behandelt Verfahren zur globalen Optimierung von konvexen Funktionen unter konvexen Nebenbedingungen. Sie ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Existenzaussagen
- Optimalität in der konvexen Optimierung
- Dualität, Schranken und Constraint Qualifications
- Numerische Verfahren

Die Behandlung nichtkonvexer Optimierungsprobleme ist Inhalt von Teil II der Vorlesung.

In der parallel zur Vorlesung angebotenen Rechnerübung haben Sie Gelegenheit, die Programmiersprache MATLAB zu erlernen und einige dieser Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Literatur

- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996
8.88 Teilleistung: Globale Optimierung II [T-WIWI-102727]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR
M-WIWI-104899 - Operations Research

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2550135 | Übungen zu Globale Optimierung I+II | 1 SWS | Übung (U) | Stein |
| SS 2019 | 2550136 | Globale Optimierung II | 2 SWS | Vortrag (V) | Stein |

Prüfungsveranstaltungen

| WS 18/19 | 7900152_NK_WS1819 | Globale Optimierung II | Prüfung (PR) | Stein |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs) und eventuell durch weitere Leistungen als Prüfungsleistung anderer Art (§4(2), 3 SPO). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung I" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103638 - Globale Optimierung I und II darf nicht begonnen worden sein.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Globale Optimierung II
2550136, SS 2019, 2 SWS, im Studierendenportal anzeigen

Vorlesung (V)
Lehrinhalt

Die globale Lösung konvexer Optimierungsprobleme ist Inhalt von Teil I der Vorlesung.

Teil II der Vorlesung behandelt Verfahren zur globalen Optimierung von nichtkonvexen Funktionen unter nichtkonvexen Nebenbedingungen. Sie ist wie folgt aufgebaut:

- Einführende Beispiele
- Konvexe Relaxierung
- Intervallarithmetik
- Konvexe Relaxierung per aBB-Verfahren
- Branch-and-Bound-Verfahren
- Lipschitz-Optimierung

In der parallel zur Vorlesung angebotenen Rechnerübung haben Sie Gelegenheit, die Programmiersprache MATLAB zu erlernen und einige dieser Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Literatur

- W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
- C.A. Floudas Deterministic Global Optimization Kluwer 2000
- R. Horst, H. Tuy Global Optimization Springer 1996
8.89 Teilleistung: Grundlagen der Fahrzeugtechnik I [T-MACH-100092]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101266 - Fahrzeugtechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Sem.
Sprache
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2113805</th>
<th>Grundlagen der Fahrzeugtechnik I</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Gauterin, Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113809</td>
<td>Automotive Engineering I</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin, Gießler</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-100092</th>
<th>Grundlagen der Fahrzeugtechnik I</th>
<th>Prüfung (PR)</th>
<th>Unrau, Gauterin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>Prüfung (PR)</td>
<td>Gauterin, Unrau</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftlich

Dauer: 120 Minuten

Hilfsmittel: keine

Voraussetzungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik I

2113805, WS 18/19, 4 SWS, Im Studierendenportal anzeigen

Vorlesung (V)

Lehrinhalt

1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanische Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentialie

Arbeitsaufwand

Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden
Literatur

Automotive Engineering I
V 2113809, WS 18/19, 4 SWS, im Studierendenportal anzeigen

Vorlesung (V)

Bemerkungen
In englischer Sprache.

Lehrinhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differential

Arbeitsaufwand
Präsenzzeit: 45 Stunden
Selbststudium: 195 Stunden

Literatur
8.90 Teilleistung: Grundlagen der Fahrzeugtechnik II [T-MACH-102117]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101266 - Fahrzeugtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2114835 | Grundlagen der Fahrzeugtechnik II | 2 SWS | Vorlesung (V) | Unrau |
| SS 2019 | 2114855 | Automotive Engineering II | 2 SWS | Vorlesung (V) | Gießler |

Prüfungsveranstaltungen

WS 18/19	76-T-MACH-102117	Grundlagen der Fahrzeugtechnik II	Prüfung (PR)	Unrau, Gauterin
WS 18/19	76T-MACH-102117-2	Automotive Engineering II	Prüfung (PR)	Gauterin, Unrau
SS 2019	76-T-MACH-102117	Grundlagen der Fahrzeugtechnik II	Prüfung (PR)	Unrau, Gauterin

Erfolgskontrolle(n)

schriftlich
Dauer: 90 Minuten
Hilfsmittel: keine
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik II
2114835, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur
Automotive Engineering II
2114855, SS 2019, 2 SWS, im Studierendenportal anzeigen

Lehrinhalt

1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Literatur

Weiterführende Literatur:

8.91 Teilleistung: Grundlagen der Informatik I [T-WIWI-102749]

Verantwortung: Prof. Dr. York Sure-Vetter
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101417 - Grundlagen der Informatik
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Übungen zu Grundlagen der Informatik I</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2500002</td>
<td>Gruppenunterricht zu Grundlagen der Informatik I</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Sure-Vetter, Färber, Nguyen, Weller</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2511010</td>
<td>Grundlagen der Informatik I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Sure-Vetter, Färber</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2511011</td>
<td>Übungen zu Grundlagen der Informatik I</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Sure-Vetter, Nguyen, Weller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Grundlagen der Informatik I</th>
<th>Prüfung (PR)</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900011</td>
<td>Grundlagen der Informatik I</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900035</td>
<td>Grundlagen der Informatik I</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1). Die Prüfungen wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Note einer bestandenen Klausur kann durch die erfolgreiche Teilnahme am Übungsbetrieb um bis zu 0,3-0,4 Notenpunkten verbessert werden.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Grundlagen der Informatik I

<table>
<thead>
<tr>
<th>Veranstaltungs-ID</th>
<th>SS 2019</th>
<th>SWS</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500002</td>
<td>SS 2019</td>
<td>SWS</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Beschreibung

Mehrere Übungen werden abgehandelt, welche die Themen, die in der Vorlesung Grundlagen der Informatik I behandelt werden, aufgreifen und im detail besprechen. Dabei werden den Studierenden praktische Beispiele demonstriert um einen Wissenstransfer der gelernten theoretischen Aspekte in die praktische Umsetzung zu ermöglichen.

Lehrinhalt

Folgende Themenbereiche werden abgedeckt:

- Objektorientierte Modellierung
- Logik (Aussagenlogik, Prädikatenlogik, Boolesche Algebra)
- Algorithmen und ihre Eigenschaften
- Sortier- und Suchverfahren
- Komplexitätstheorie
- Problemspezifikationen
- Dynamische Datenstrukturen

Arbeitsaufwand

Der Arbeitsaufwand für die gesamte Veranstaltung Grundlagen der Informatik I ist in der Beschreibung der Vorlesung hinterlegt.
Literatur

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Grundlagen der Informatik I

2511010, SS 2019, 2 SWS, [Im Studierendenportal anzeigen](#)

Beschreibung

Lehrinhalt

Folgende Themenbereiche werden abgedeckt:

- Objektorientierte Modellierung
- Logik (Aussagenlogik, Prädikatenlogik, Boolesche Algebra)
- Algorithmen und ihre Eigenschaften
- Sortier- und Suchverfahren
- Komplexitätstheorie
- Problemspezifikationen
- Dynamische Datenstrukturen

Arbeitsaufwand

- Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
- Präsenzzeit: 45 Stunden
- Vor – und Nachbereitung der LV: 67.5 Stunden
- Prüfung und Prüfungsvorbereitung: 37.5 Stunden

Literatur

Weitere Literatur wird in der Vorlesung bekannt gegeben.

Übungen zu Grundlagen der Informatik I

2511011, SS 2019, SWS, [Im Studierendenportal anzeigen](#)

Beschreibung

Mehrere Übungen werden abgehandelt, welche die Themen, die in der Vorlesung Grundlagen der Informatik I behandelt werden, aufgreifen und im Detail besprechen. Dabei werden den Studierenden praktische Beispiele demonstriert um einen Wissenstransfer der gelernten theoretischen Aspekte in die praktische Umsetzung zu ermöglichen.

Lehrinhalt

Folgende Themenbereiche werden abgedeckt:

- Objektorientierte Modellierung
- Logik (Aussagenlogik, Prädikatenlogik, Boolesche Algebra)
- Algorithmen und ihre Eigenschaften
- Sortier- und Suchverfahren
- Komplexitätstheorie
- Problemspezifikationen
- Dynamische Datenstrukturen

Arbeitsaufwand

Der Arbeitsaufwand für die gesamte Veranstaltung Grundlagen der Informatik I ist in der Beschreibung der Vorlesung hinterlegt.
Literatur

Weitere Literatur wird in der Vorlesung bekannt gegeben.
8.92 Teilleistung: Grundlagen der Informatik II [T-WIWI-102707]

Verantwortung: Dr. rer. nat. Achim Rettinger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101417 - Grundlagen der Informatik
M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511012</td>
<td>Grundlagen der Informatik II</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Rettinger</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511013</td>
<td>Tutorien zu Grundlagen der Informatik II</td>
<td>1</td>
<td>Tutorium (Tu)</td>
<td>Rettinger, Nguyen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsblock</th>
<th>Lehrveranstaltung</th>
<th>Prüfungstitel</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900012</td>
<td>Grundlagen der Informatik II</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900050</td>
<td>Grundlagen der Informatik II</td>
<td>Prüfung (PR)</td>
<td>Shukla</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO). Die Note der Klausur kann durch eine erfolgreiche Teilnahme am Übungsbetrieb verbessert werden. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiedergelegt werden.

Voraussetzungen

Keine

Empfehlungen

Der vorige Besuch der Lehrveranstaltung Grundlagen der Informatik I [2511010] wird empfohlen.

Eine aktive Teilnahme an den Übungen wird dringend empfohlen.

Anmerkungen

Die Vorlesung wird zu Beginn des Semesters 4-stündig und am Ende 2-stündig gelesen, um eine bessere Abdeckung des Inhalts in den Übungen zu gewährleisten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Informatik II
2511012, WS 18/19, 3 SWS, Im Studierendenportal anzeigen
Vorlesung (V)

Bemerkungen

Die Vorlesung wird zu Beginn des Semesters 4-stündig und am Ende 2-stündig gelesen, um eine bessere Abdeckung des Inhalts in den Übungen zu gewährleisten.

Lehrinhalt

Die Vorlesung beschäftigt sich mit formalen Modellen für Automaten, Sprachen und Algorithmen sowie mit realen Ausprägungen dieser Modelle, d.h. mit Rechnerarchitektur und -organisation (Hardware-Entwurf, Rechnerarithmetik, Architektur-Konzepte), Programiersprachen (verschiedene Sprachebenen von Mikroprogrammierung bis zu höheren Programmierebenen), Programmübersetzung und -ausführung, Betriebssysteme und Betriebsarten (Aufbau und Eigenschaften von Betriebssystemen, konkrete Betriebssystem-Aufgaben, Client-Server Systeme), Dateiorganisation und Datenverwaltung (Dateiorganisationsformen, Primär-/Sekundärorganisation).

Anmerkungen

Die Vorlesung wird zu Beginn des Semesters 4-stündig und am Ende 2-stündig gelesen, um eine bessere Abdeckung des Inhalts in den Übungen zu gewährleisten.
Arbeitsaufwand

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden

Präsenzzeit: 45 Stunden

Vor- und Nachbereitung der LV: 67,5 Stunden

Prüfung und Prüfungsvorbereitung: 37,5 Stunden

Literatur

Weiterführende Literatur:

Literatur wird in der Vorlesung bekannt gegeben.
8.93 Teilleistung: Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren [T-MACH-105044]

Verantwortung: Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Prof. Dr.-Ing. Egbert Lox

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-101303 - Verbrennungsmotoren II
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Bedarf</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2134138</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lox, Grunwaldt, Deutschmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Bedarf</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>Prüfung (PR)</td>
<td>Lox</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren 2134138, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
1. Art und Herkunft der Schadstoffe
2. Gesetzliche Vorgehensweisen zur Beschränkung der Schadstoffemissionen
3. Allgemeine Funktionsprinzipien der katalytischen Abgasnachbehandlung
4. Abgasnachbehandlung von stöchiometrischen Benzinmotoren
5. Abgasnachbehandlung von mageren Benzinmotoren
6. Abgasnachbehandlung von Dieselmotoren
7. Wirtschaftliche Rahmenbedingungen der katalytischen Abgasnachbehandlung

Arbeitsaufwand
Präsenzzeit: 36 Stunden
Selbststudium: 84 Stunden
Literatur
Skript, erhältlich in der Vorlesung

8.94 Teilleistung: Grundlagen der Mikrosystemtechnik I [T-MACH-105182]

Verantwortung: Dr. Vlad Badilita
Dr. Mazin Jouda
Prof. Dr. Jan Gerrit Korvink

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 2141861</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 76-T-MACH-105182</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n):
Schriftlich (Vertiefungsrichtung) bzw. mündlich (30 Minuten, Wahlfach)

Voraussetzungen: keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mikrosystemtechnik I
2141861, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](#)

Lehrinhalt
- Einführung in Nano- und Mikrotechnologien
- Silizium und Verfahren der Mikroelektronik
- Physikalische Grundlagen und Werkstoffe für die Mikrosystemtechnik
- Basistechnologien
- Silizium-Mikromechanik
- Beispiele

Anmerkungen
Klausuren und Praktika werden in der vorlesungsfreien Zeit durchgeführt. Die Termine werden zu Beginn des Semesters bekannt gegeben.

Arbeitsaufwand
Literaturarbeit: 20 Stunden
Präsenz: 21 Stunden
Vor- und Nachbearbeitung: 50 Stunden
Prüfungsvorbereitung: 30 Stunden

Literatur
Mikrosystemtechnik für Ingenieure, W. Menz und J. Mohr, VCH Verlagsgesellschaft, Weinheim 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
8.95 Teilleistung: Grundlagen der Mikrosystemtechnik II [T-MACH-105183]

| Verantwortung: | Dr. Mazin Jouda
| | Prof. Dr. Jan Gerrit Korvink |
| Einrichtung: | KIT-Fakultät für Maschinenbau
| | KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik |
| Bestandteil von: | M-MACH-101287 - Mikrosystemtechnik
| | M-WIWI-104907 - Ingenieurwissenschaften |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2142874 | Grundlagen der Mikrosystemtechnik II | 2 SWS | Vorlesung (V) | Korvink, Badilita |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-105183 | Grundlagen der Mikrosystemtechnik II | Prüfung (PR) | Korvink, Badilita |

Erfolgskontrolle(n)
Schriftlich (Vertiefungsrichtung) bzw. mündlich (30 Minuten, Wahlfach)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Mikrosystemtechnik II
2142874, SS 2019, 2 SWS, im Studierendenportal anzeigen

Vorlesung (V)

Lehrinhalt
- Einführung in Nano- und Mikrotechnologien
- Lithographie
- Das LIGA-Verfahren
- Mechanische Mikrofertigung
- Strukturierung mit Lasern
- Aufbau- und Verbindungstechnik
- Mikrosysteme

Arbeitsaufwand
Literaturarbeit: 20 Stunden
Präsenz: 21 Stunden
Vor- und Nachbearbeitung: 50 Stunden
Prüfungsvorbereitung: 30 Stunden

Literatur
Menz, W., Mohr, J., O. Paul: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 2005
M. Madou
Fundamentals of Microfabrication
Taylor & Francis Ltd.; Auflage: 3. Auflage. 2011
8.96 Teilleistung: Grundlagen der Produktionswirtschaft [T-WIWI-102606]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101437 - Industrielle Produktion I
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>5,5</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Sommersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Veranstaltungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2581950</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schultmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2581951</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Müller, Naber</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung (PR)</th>
<th>ECTS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7981950</td>
<td>2</td>
<td>Grundlagen der Produktionswirtschaft</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Produktionswirtschaft
2581950, SS 2019, 2 SWS, im Studierendenportal anzeigen

Beschreibung

Lehrinhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 165 Stunden (5.5 LP).
Präsenzzeit: 30 Stunden
Selbststudium: 135 Stunden
Literatur
Wird in der Veranstaltung bekannt gegeben.
8.97 Teilleistung: Grundlagen der Technischen Logistik [T-MACH-102163]

Verantwortung: Dr.-Ing. Martin Mittwollen
Jan Oellerich

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2117095</th>
<th>Grundlagen der technischen Logistik</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Mittwollen, Oellerich</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102163 | Grundlagen der technischen Logistik | Prüfung (PR) | Mittwollen |
| SS 2019 | 76-T-MACH-102163 | Grundlagen der technischen Logistik | Prüfung (PR) | Mittwollen |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

keine

Empfehlungen

Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Logistik

2117095, WS 18/19, 4 SWS, Im Studierendenportal anzeigen

Beschreibung

Medien:
Ergänzungsblätter, Präsentationen, Tafel

Bemerkungen

Vorlesung (3SWS) und Übung (1SWS); Übungstermine siehe ILIAS

Lehrinhalt

- Wirkmodell fördertechnischer Maschinen
- Elemente zur Orts- und Lageveränderung
- fördertechnische Prozesse
- Identifikationssysteme
- Antriebe
- Betrieb fördertechnischer Maschinen
- Elemente der Intralogistik
- Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen

Anmerkungen

Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.
Arbeitsaufwand
Präsenz: 48 Std
Nacharbeit: 132 Std

Literatur
Empfehlungen in der Vorlesung
8.98 Teilleistung: Grundlagen der Unternehmensbesteuerung [T-WIWI-108711]

Verantwortung: Gerd Gutekunst
Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101403 - Finanzwissenschaft
- M-WIWI-101423 - Topics in Finance II
- M-WIWI-101465 - Topics in Finance I
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Dozierende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560134</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Wigger, Gutekunst</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltungsname</th>
<th>Prüfungstyp (PR)</th>
<th>Dozierende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>790unbe</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>790unbe</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse über die Erhebung staatlicher Einnahmen vorausgesetzt. Daher empfiehlt es sich, die Lehrveranstaltungen „Öffentliche Einnahmen“ im Vorfeld zu besuchen.
8.99 Teilleistung: Grundlagen für mobile Business [T-WIWI-104679]

Verantwortung: Prof. Dr. Andreas Oberweis
Dr.-Ing. Gunther Schiefer

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101399 - Vertiefung Informatik
- M-WIWI-101426 - Wahlpflicht Informatik
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Veranstaltung</th>
<th>Kursleistung</th>
<th>Turnus</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2511226</td>
<td>Grundlagen für mobile Business</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Schiefer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2511227</td>
<td>Übungen zu Grundlagen für mobile Business</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Schiefer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900118</td>
<td>Grundlagen für mobile Business</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900001</td>
<td>Grundlagen für mobile Business</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min) oder ggf. mündlichen Prüfung nach §4(2) der Prüfungsordnung.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es muss eine von 2 Bedingungen erfüllt werden:
1. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Vorlesung und Übung werden integriert durchgeführt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen für mobile Business
2511226, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen
Vorlesung und Übung werden integriert angeboten.
Lehrinhalt
Die Vorlesung behandelt die Grundlagen für Mobile Business mit Schwerpunkt auf den (informations-)technischen Grundlagen. Diese werden mit dem wirtschaftlichen Hintergrund in Deutschland verzahnt.

Geplanter Inhalt:
1. Organisatorisches
2. Einführung & Definitionen
3. Mobile Geräte
4. Mobilfunktechnologie
5. Mobilfunkmarkt
6. Mobile Anwendungen
7. Digitale Funktechnologien
8. Ortung & Kontext

Anmerkung: Die oben angegebenen Lehrinhalte haben jeweils einen unterschiedlichen Umfang.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
Vorlesung 24h
Übungseinheiten 12h
Vor- bzw. Nachbereitung der Vorlesung 36h
Vor- bzw. Nachbereitung der Übungen 24h
Prüfungsvorbereitung 53h
Prüfung 1h
Summe: 150h

Literatur
 http://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/resources/ Mobile_Communications/course_Material/index.html
- Martin Sauter: Grundkurs Mobile Kommunikationssysteme (6. Aufl. 2015)
- Dodel, H., Häupler, D.: Satellitennavigation

Einige relevante Informationen im Web
- Bundesnetzagentur http://www.bundesnetzagentur.de
 u.a. Jahresbericht und Marktbeobachtung
- VATM-Marktstudien
 http://www.vatm.de/vatm-marktstudien.html
- Verbände, bspw. BITKOM (bitkom.org), eco e.V. (eco.de)
- Presse, bspw. Teltarif, Heise, Golem, ...
- Statistiken (Statista Lizenz des KIT)

Übungen zu Grundlagen für mobile Business
2511227, SS 2019, 1 SWS, Im Studierendenportal anzeigen

Bemerkungen
Die Übung wird in die zugehörige Vorlesung integriert.
Nähere Informationen siehe Vorlesungsbeschreibung
8.100 Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I [T-MACH-102116]

Verantwortung: Horst Dietmar Bardehle
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-101266 - Fahrzeugtechnik
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
<th>Wochentag</th>
<th>Ort</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
<th>Prüfungsprüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113814</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>01</td>
<td>Vorlesung (V)</td>
<td>Bardehle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kursnummer</th>
<th>Kursbezeichnung</th>
<th>Wochentag</th>
<th>Ort</th>
<th>Prüfung (PR)</th>
<th>Prüfungsprüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>01</td>
<td>Prüfung (PR)</td>
<td>Unrau, Bardehle</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>01</td>
<td>Prüfung (PR)</td>
<td>Bardehle, Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Gruppenprüfung

Dauer: 30 Minuten
Hilfsmittel: keine
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I
2113814, WS 18/19, 1 SWS, Im Studierendenportal anzeigen

Bemerkungen
Genaue Termine: siehe Institutshomepage.

Lehrinhalt
1. Historie und Design
2. Aerodynamik
3. Konstruktionstechnik (CAD/CAM, FEM)
4. Herstellungsverfahren von Aufbauteilen
5. Verbindungstechnik
6. Rohbau / Rohbaufertigung, Karosserieoberflächen

Arbeitsaufwand
Präsentzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden
Literatur
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8.101 Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II [T-MACH-102119]

Verantwortung: Horst Dietmar Bardehle
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101266 - Fahrzeugtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>1,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2114840 | Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II | 1 SWS | Vorlesung (V) | Bardehle |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102119 | Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II | Prüfung (PR) | Bardehle |
| SS 2019 | 76-T-MACH-102119 | Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II | Prüfung (PR) | Bardehle, Gauterin |

Erfolgskontrolle(n)
Mündliche Gruppenprüfung

Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II
2114840, SS 2019, 1 SWS, im Studierendenportal anzeigen

Bemerkungen
Voraussichtliche Termine:
siehe Institutshomepage.
Nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage.

Lehrinhalt
1. Karosserieeigenschaften / Prüfverfahren
2. Äußere Karosseriebauteile
3. Innenraum-Anbauteile
4. Fahrzeug-Klimatisierung
5. Elektrische Anlagen, Elektronik
6. Aufpralluntersuchungen
7. Projektmanagement-Aspekte und Ausblick
Arbeitsaufwand
Präsenzzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden

Literatur
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
8.102 Teilleistung: Grundsätze der Nutzfahrzeugentwicklung I [T-MACH-105160]

Verantwortung: Prof. Dr. Jörg Zürn
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-101265 - Fahrzeugentwicklung
- M-MACH-101267 - Mobile Arbeitsmaschinen
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>1,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2113812</td>
<td>Grundsätze der Nutzfahrzeugentwicklung I</td>
<td>1</td>
<td>Zürn</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-Nummer</th>
<th>Prüfungstitel</th>
<th>Prüfungstyp</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105160</td>
<td>Grundsätze der Nutzfahrzeugentwicklung I</td>
<td>Prüfung (PR)</td>
<td>Zürn</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105160</td>
<td>Grundsätze der Nutzfahrzeugentwicklung I</td>
<td>Prüfung (PR)</td>
<td>Zürn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Gruppenprüfung

Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der Nutzfahrzeugentwicklung I
Vorlesung (V)
2113812, WS 18/19, 1 SWS, [Im Studierendenportal anzeigen](#)

Lehrinhalt

1. Einführung, Definitionen, Historik
2. Entwicklungswerkzeuge
3. Gesamtfahrzeug
4. Fahrerhaus, Rohbau
5. Fahrerhaus, Innenausbau
6. Alternative Antriebe
7. Antriebsstrang
8. Antriebsquelle Dieselmotor
9. Ladeluftgekühlte Dieselmotoren

Arbeitsaufwand

Präsenzzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden
Literatur
8.103 Teilleistung: Grundsätze der Nutzfahrzeugentwicklung II [T-MACH-105161]

Verantwortung: Prof. Dr. Jörg Zürn
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-101265 - Fahrzeugentwicklung
M-MACH-101267 - Mobile Arbeitsmaschinen
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 1,5
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2019 2114844 Grundsätze der Nutzfahrzeugentwicklung II 1 SWS Vorlesung (V) Zürn

Prüfungsveranstaltungen
WS 18/19 76-T-MACH-105161 Grundsätze der Nutzfahrzeugentwicklung II Prüfung (PR) Zürn
SS 2019 76-T-MACH-105161 Grundsätze der Nutzfahrzeugentwicklung II Prüfung (PR) Zürn

Erfolgskontrolle(n)
Mündliche Gruppenprüfung
Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der Nutzfahrzeugentwicklung II
2114844, SS 2019, 1 SWS, im Studierendenportal anzeigen

Bemerkungen
Voraussichtliche Termine:
07.05.2019, 14.05.2019, 21.05.2019, 28.05.2019
Nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage.

Lehrinhalt
1. Nfz-Getriebe
2. Triebstrangzwischenelemente
3. Achssysteme
4. Vorderachsen und Fahrdynamik
5. Rahmen und Achsaufhängung
6. Bremsanlage
7. Systeme
8. Exkursion

Arbeitsaufwand
Präsenzzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden
Literatur

8.104 Teilleistung: Grundsätze der PKW-Entwicklung I [T-MACH-105162]

Verantwortung: Dipl.-Ing. Rolf Frech
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-101265 - Fahrzeugentwicklung
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 2113810</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
<td>Frech</td>
</tr>
<tr>
<td>WS 18/19 2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
<td>Frech</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Prüfung (PR)</th>
<th>Frech, Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 76-T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td></td>
</tr>
<tr>
<td>SS 2019 76-T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftlich
Dauer: 90 Minuten
Hilfmittel: keine
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung I
2113810, WS 18/19, 1 SWS, Im Studierendenportal anzeigen

Bemerkungen
Blockvorlesung an zwei Tagen. Raum und Termine werden noch auf der Institutshomepage bekanntgegeben.

Lehrinhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW I
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Arbeitsaufwand
Präsenzzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden

Literatur
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
Principles of Whole Vehicle Engineering I
2113851, WS 18/19, 1 SWS, Im Studierendenportal anzeigen

Bemerkungen
Blockvorlesung an zwei Tagen. Raum und Termine werden noch auf der Institutshomepage bekanntgegeben.
In englischer Sprache.

Lehrinhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Arbeitsaufwand
Präsenzzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden

Literatur
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
8.105 Teilleistung: Grundsätze der PKW-Entwicklung II [T-MACH-105163]

Verantwortung: Dipl.-Ing. Rolf Frech
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-101265 - Fahrzeugentwicklung
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
1,5

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2114842</th>
<th>Grundsätze der PKW-Entwicklung II</th>
<th>1 SWS</th>
<th>Vorlesung (V)</th>
<th>Frech</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2114860</td>
<td>Principles of Whole Vehicle Engineering II</td>
<td>1 SWS</td>
<td>Block-Vorlesung (BV)</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-105163 | Grundsätze der PKW-Entwicklung II | Prüfung (PR) | Unrau, Frech |
| SS 2019 | 76-T-MACH-105163 | Grundsätze der PKW-Entwicklung II | Prüfung (PR) | Frech, Unrau |

Erfolgskontrolle(n)
schriftlich

Dauer: 90 Minuten
Hilfsmittel: keine

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung II
2114842, SS 2019, 1 SWS, Im Studierendenportal anzeigen

Lehrinhalt
1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugproblematik
6. Gesamtfahrzeugeigenschaften

Arbeitsaufwand
Präsenzzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden

Literatur
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben.

Principles of Whole Vehicle Engineering II
2114860, SS 2019, 1 SWS, Im Studierendenportal anzeigen
Lehrinhalt
1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugerprobung
6. Gesamtfahrzeugeigenschaften

Arbeitsaufwand
Präsenzzeit: 10,5 Stunden
Selbststudium: 49,5 Stunden

Literatur
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben.
8.106 Teilleistung: Hydrologie [T-BGU-101693]

Teilleistung: Hydrologie [T-BGU-101693]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr.-Ing. Erwin Zehe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
</tbody>
</table>
| Bestandteil von: | M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
M-WIWI-104907 - Ingenieurwissenschaften |

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Turnus
Jedes Wintersemester

Version
2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td></td>
</tr>
<tr>
<td>6200513</td>
<td>Hydrologie [bauiBF4-WASSER]</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>Zehe, Wienhöfer</td>
<td></td>
</tr>
<tr>
<td>6200514</td>
<td>Übungen zu Hydrologie [bauiBF4-WASSER]</td>
</tr>
<tr>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td>Zehe, Wienhöfer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td></td>
</tr>
<tr>
<td>8230101693</td>
<td>Hydrologie</td>
</tr>
<tr>
<td>Prüfung (PR)</td>
<td>Zehe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 60 Minuten.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Hydrologie [bauiBF4-WASSER]
6200513, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](#)

Beschreibung

- Prozesse des Wasserkreislaufs und der Wasserbilanz, Grundlagen, Beobachtung, einfache Prozesskonzepte
- Prozesse der Wasserbilanz
- Niederschlagsentwicklung (Grundlagen, Messung, Auswertung von Niederschlagsdaten, Niederschlagsinterpolation)
- Abfluss und Abflussbildung (Idee des Einzugsgebiets, Abflussmessung, Abflussbildung in unterschiedlichen Naturräumen und Klimaten, Charakterisierung von Abflusszeitreihen)
- Bodenhydrologie (Kräfte auf das Bodenwasser, PF-WG Kurve)
- Modellkonzepte für Einzugsgebietshydrologie
- Direktabflussbildung: Hortonsche Infiltration, HBV Bodenspeicher, Koaxial-Diagramm
- Abflusskonzentration: Lineare zeitinvariante Systeme, Linearspeicher
- Basisabflussgeschehen
8.107 Teilleistung: Industrieökonomie [T-WIWI-102844]

Verantwortung: Prof. Dr. Johannes Philipp Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101499 - Angewandte Mikroökonomik
M-WIWI-101501 - Wirtschaftstheorie
M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
4,5
Turnus
Unregelmäßig
Version
1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Wasserfall</th>
<th>Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Industrieökonomie</td>
<td>2</td>
<td></td>
<td>Vorlesung (V)</td>
<td>Reiß, Hofmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übung zu Industrieökonomie</td>
<td>2</td>
<td></td>
<td>Übung (Ü)</td>
<td>Reiß, Hofmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester/Year</th>
<th>Prüfung</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Prüfung (PR)</td>
<td>Industrieökonomie</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch des Moduls Volkswirtschaftslehre [WW1VWL] wird vorausgesetzt.

Anmerkungen
Diese Lehrveranstaltung wird im Sommersemester 2018 voraussichtlich nicht angeboten werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Industrieökonomie
2560238, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 30*4,5 Stunden.
Präsenzzeit: [32] Stunden
Vor- /Nachbereitung: [52] Stunden
Prüfung und Prüfungsvorbereitung: [51] Stunden
Literatur

Verpflichtende Literatur:

Ergänzende Literatur:
8.108 Teilleistung: Information Engineering [T-MACH-102209]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-101270 - Product Lifecycle Management
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2122014 | Information Engineering | 2 SWS | Seminar (S) | Ovtcharova, Mitarbeiter |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102209 | Information Engineering | Prüfung (PR) | Ovtcharova |

Erfolgskontrolle(n)
Erfolgskontrolle anderer Art (schriftl. Ausarbeitung und Vortrag)

Voraussetzungen
Keine
Teilleistung: Informationssicherheit [T-WIWI-108387]

Verantwortung: Prof. Dr. Melanie Volkamer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101399 - Vertiefung Informatik
- M-WIWI-101426 - Wahlpflicht Informatik
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

Lehrveranstaltungen

| SS 2019 | 2511550 | Informationssicherheit | 2 SWS | Vorlesung (V) | Volkamer |
| SS 2019 | 2511551 | Übungen zu Informationssicherheit | 1 SWS | Übung (Ü) | Volkamer, Mayer |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) oder in Form einer mündlichen Prüfung (30min.) (nach §4(2), 2 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Durch die erfolgreiche Bearbeitung von Übungsaufgaben als Erfolgskontrolle anderer Art (§4 (2), 3 SPO 2007) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Informationssicherheit
2511550, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

- Grundlagen und Begrifflichkeiten der Informationssicherheit
- Verständnis der Schutzziele der Informationssicherheit und verschiedener Angriffsmodelle (inkl. zugehöriger Annahmen)
- Einführung in Maßnahmen zur Erreichung der jeweiligen Schutzziele unter Berücksichtigung verschiedener Angriffsmodelle
- Hinweis: Anders als in der Vorlesung IT Sicherheit werden Maßnahmen wie Verschlüsselungsalgorithmen nur abstrakt behandelt, d.h. Idee der Maßnahme, Annahmen an den Angreifer und die Einsatzumgebung
- Vorstellung und Analyse von Problemen der Informationssicherheit, die aus der Mensch-Maschine-Interaktion entstehen sowie Vorstellung des Lösungsansatzes Human Centered Security by Design
- Einführung in organisatorische Schutzmaßnahmen und einzuhalten den Standards für Unternehmen
Lehrinhalt

- Grundlagen und Begrifflichkeiten der Informationssicherheit
- Verständnis der Schutzziele der Informationssicherheit und verschiedener Angriffsmodelle (inkl. zugehöriger Annahmen)
- Einführung in Maßnahmen zur Erreichung der jeweiligen Schutzziele unter Berücksichtigung verschiedener Angriffsmodelle
- Hinweis: Anders als in der Vorlesung IT Sicherheit werden Maßnahmen wie Verschlüsselungsalgorithmen nur abstrakt behandelt, d.h. Idee der Maßnahme, Annahmen an den Angreifer und die Einsatzumgebung
- Vorstellung und Analyse von Problemen der Informationssicherheit, die aus der Mensch-Maschine-Interaktion entstehen sowie Vorstellung des Lösungsansatzes Human Centered Security by Design
- Einführung in organisatorische Schutzmaßnahmen und einzuhaltenden Standards für Unternehmen

Literatur

8.110 Teilleistung: Informationssysteme in Logistik und Supply Chain Management [T-MACH-102128]

Verantwortung: Dr. Christoph Kilger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau / Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Prüfungsnummer</th>
<th>Vorlesungs- / Prüfungstitel</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2118094</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Kilger</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Prüfungsnummer</th>
<th>Vorlesungs- / Prüfungstitel</th>
<th>Prüfung</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76T-MACH-102128</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Mittwochen</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102128</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Mittwochen</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102128</td>
<td>Informationssysteme in Logistik und Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Mittwochen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Informationssysteme in Logistik und Supply Chain Management

2118094, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Medien:
Präsentationen
Lehrinhalt
a) Überblick über logistische Prozesse und Systeme

- Was gehört alles zur Logistik?
- Welche Prozesse unterscheidet man?
- Was sind die grundlegenden Konzepte dieser Prozesse?

b) Grundlagen von Informationssystemen und Informationstechnik

- Wie grenzen sich die Begriffe IS und IT voneinander ab?
- Wie werden Informationssysteme mit IT realisiert?
- Wie funktioniert IT?

c) Überblick über Informationssysteme zur Unterstützung logistischer Prozesse

- Welche IT-Systeme für logistische Aufgaben gibt es?
- Wie unterstützen diese logistische Prozesse?

d) Vertiefung der Funktionalität ausgewählter Module von SAP zur Unterstützung logistischer Prozesse

- Welche Funktionen werden angeboten?
- Wie sieht die Benutzeroberfläche aus?
- Wie arbeitet man mit dem Modul?
- Welche Schnittstellen gibt es?
- Welche Stamm- und Bewegungsdaten benötigt das System?

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literatur
8.111 Teilleistung: Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen [T-MACH-105188]

Verantwortung: Karl-Hubert Schlichtenmayer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2150601</th>
<th>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Schlichtenmayer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-105188 | Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen | Prüfung (PR) | Lanza |

Erfolgskontrolle(n)
Schriftliche Prüfung (60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen
2150601, SS 2019, 2 SWS, im Studierendenportal anzeigen

Beschreibung
Medien:
Skrpt zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Lehrinhalt

Die Themen im Einzelnen sind:

- Einführung und gesellschaftliche Trends mit Auswirkungen auf das Sportwagengeschäft
- Automobile Produktionsprozesse – von der Idee bis zum Ende des Lebenszyklus
- Integrierte Entwicklungsstrategie und ganzheitliches Kapazitätsmanagement
- Management von Entwicklungsprojekten (Matrixorganisation, Multiprojektmanagement, Entwicklungscontrolling)
- Zusammenspiel zwischen Entwicklung, Produktion und Einkauf
- Rolle der Produktion aus Entwicklungsicht - Restriktion und Befähiger?
- Global verteilte Produktion und Entwicklung – Herausforderung China
- Methoden zur Identifikation von technologischen Kernkompetenzen
Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literatur
Vorlesungsfolien
8.12 Teilleistung: Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 [T-MACH-109054]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-101272 - Integrierte Produktionsplanung

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
9
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen
SS 2019
2150660
Integrierte Produktionsplanung im Zeitalter von Industrie 4.0
6 SWS
Vorlesung / Übung (VÜ)
Lanza

Prüfungsveranstaltungen
WS 18/19
76-T-MACH-109054
Integrierte Produktionsplanung im Zeitalter von Industrie 4.0
Prüfung (PR)
Lanza

Erfolgskontrolle(n)
Schriftliche Prüfung (120 min)

Voraussetzungen
Weder "T-MACH-108849 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" noch "T-MACH-102106 Integrierte Produktionsplanung" dürfen begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integrierte Produktionsplanung im Zeitalter von Industrie 4.0
2150660, SS 2019, 6 SWS, im Studierendenportal anzeigen

Beschreibung
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt

Bemerkungen
Vorlesungstermine dienstags 14.00 Uhr und donnerstags 14.00 Uhr, Übungstermine donnerstags 15.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.
Lehrinhalt
Im Rahmen dieser ingenieurwissenschaftlichen Veranstaltung wird die Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 vermittelt. Neben einer umfassenden Einführung in Industrie 4.0 werden zu Beginn der Vorlesung folgende Themenfelder adressiert:

- Grundlagen, Geschichte und zeitliche Entwicklung der Produktion
- Integrierte Produktionsplanung und durchgängiges digitales Engineering
- Prinzipien Ganzheitlicher Produktionssysteme und Weiterentwicklung mit Industrie 4.0

Darauf aufbauend werden die Phasen der Integrierten Produktionsplanung in Anlehnung an die VDI-Richtlinie 5200 vermittelt, wobei im Rahmen von Fallstudien auf Besonderheiten der Teilefertigung und Montage eingegangen wird:

- Systematik der Fabrikplanung
- Zielfestlegung
- Datenerhebung und -analyse
- Konzeptplanung (Strukturentwicklung, Strukturdimensionierung und Groblayout)
- Detailplanung (Produktionsplanung und -steuerung, Feinlayout, IT-Systeme in der Industrie 4.0 Fabrik)
- Realisierungsvorbereitung und -überwachung
- Hochlauf und -serienbetreuung

Abgerundet werden die Vorlesungsinhalte durch zahlreiche aktuelle Praxisbeispiele mit einem starken Industrie 4.0-Bezug. Innerhalb der Übungen werden die Vorlesungsinhalte vertieft und auf konkrete Problem- und Aufgabenstellungen angewendet.

Arbeitsaufwand
MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Literatur
Vorlesungsskript
8.13 Teilleistung: Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen [T-WIWI-108716]

Verantwortung: Prof. Dr. Melanie Volkamer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101399 - Vertiefung Informatik
M-WIWI-101426 - Wahlpflicht Informatik
M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungssprachtlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Prüfung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511552, Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen, 2 SWS, Vorlesung (V), Kulyk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900066, Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen, Prüfung (PR), Volkamer</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900089, Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen, Prüfung (PR), Volkamer</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) oder ggf. mündlichen Prüfung (30 min.) nach §4(2) der Studien- und Prüfungsordnung je nach Anzahl der teilnehmenden Studierenden. Voraussetzung für die Teilnahme an der Abschlussprüfung ist ein Seminarvortrag und die Teilnahme an der Diskussion.

Voraussetzungen
Keine.

Anmerkungen
Die Vorlesung wird nicht im Sommersemester 2019 gehalten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Vorlesung (V)

Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen
2511552, WS 18/19, 2 SWS, Im Studierendenportal anzeigen
Lehrinhalt
Die Lehrveranstaltung besteht aus zwei Teilen. Der erste Teil besteht aus sechs Vorlesungseinheiten, in denen die Grundlagen von E-Voting-Technologien und ihre Anwendung bei Wahlen in der Praxis erklärt werden. Folgende Themen werden abgedeckt:

- Überblick über die verschiedenen Arten von E-Voting-Systemen, ihre Vor- und Nachteile sowie Beispiele aus der Praxis.
- Weitere relevante Themen, unter anderem, Langzeit-Wahlgeheimnis, Benutzbarkeit, Einsatz neuer Technologien wie z.B. Blockchain.

Folgende Themen werden im Rahmen des Seminars verteilt:

- Bericht über ein bestimmtes E-Voting-System oder über den Stand der elektronischen Stimmabgabe in einem bestimmten Land. Der Bericht kann sich entweder auf technologische Aspekte (z.B. das kryptographische Protokoll) oder auf praktische Erfahrungen konzentrieren.

Anmerkungen
Terminablauf:
Grundlage-Vorlesungen: 24.4, 8.5, 15.5, 22.5, 29.5.
Themenvergabe: 29.5
Seminarvorträge: 19.6, 26.9, 3.7, 10.7
Abschlussvorlesung: 17.7

Arbeitsaufwand
Präsenz-Vorlesung: 12 St.
Vor- und Nachbereitungszeit: 48 St.
Präsenz-Seminar: 10 St.
Klausurvorbereitung: 20 St.

Literatur
Literatur wird in der Vorlesung verteilt.
Teilleistung: International Marketing [T-WIWI-102807]

Verantwortung: Dr. Sven Feurer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101424 - Grundlagen des Marketing, M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 1,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
WS 18/19 2572155 International Marketing 1 SWS Vorlesung (V) Feurer

Prüfungsveranstaltungen
WS 18/19 7900123 International Marketing Prüfung (PR) Klarmann
WS 18/19 7900128 International Marketing Prüfung (PR) Klarmann

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

International Marketing
2572155, WS 18/19, 1 SWS, Im Studierendenportal anzeigen

Beschreibung
Die erfolgreiche Durchführung von Marketingaktivitäten in internationalen Kontexten stellt die Mitarbeiter oft vor große Herausforderungen. Sie lernen im Rahmen dieses Kurses zunächst die Besonderheiten des internationalen Marketing kennen und anschließend, wie diese erfolgreich gemeistert werden können. Zu den Inhalten zählen unter anderem:

- Internationalisierungsstrategien
- Markteintrittsstrategien
- Standardisierung vs. Individualisierung
- Internationale Marktforschung

Lehrinhalt
Die erfolgreiche Durchführung von Marketingaktivitäten in internationalen Kontexten stellt die Mitarbeiter oft vor große Herausforderungen. Sie lernen im Rahmen dieses Kurses zunächst die Besonderheiten des internationalen Marketing kennen und anschließend, wie diese erfolgreich gemeistert werden können. Zu den Inhalten zählen unter anderem:

- Internationalisierungsstrategien
- Markteintrittsstrategien
- Standardisierung vs. Individualisierung
- Internationale Marktforschung

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).
Arbeitsaufwand
Gesamtaufwand bei 1,5 Leistungspunkten: ca. 45 Stunden
Präsenzzeit: 15 Stunden
Selbststudium: 30 Stunden

Literatur
8.115 Teilleistung: Internationale Finanzierung [T-WIWI-102646]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101402 - eFinance
M-WIWI-101423 - Topics in Finance II
M-WIWI-101465 - Topics in Finance I
M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen
SS 2019 2530570 Internationale Finanzierung 2 SWS Vorlesung (V) Walter, Uhrig-Homburg

Prüfungsveranstaltungen
WS 18/19 7900052 Internationale Finanzierung Prüfung (PR) Uhrig-Homburg

Erfolgskontrolle(n)
The Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
The Prüfung wird in jedem Sommersemester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Veranstaltung wird 14-tägig oder als Blockveranstaltung angeboten.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Internationale Finanzierung
2530570, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Lehrinhalt

Anmerkungen
Die Veranstaltung wird 14-tägig oder als Blockveranstaltung angeboten.
Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Weiterführende Literatur:

8.116 Teilleistung: Investments [T-WIWI-102604]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101435 - Essentials of Finance
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Investments</td>
<td>2 SWS</td>
<td>Vorlesung (V) Uhrig-Homburg</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übung zu Investments</td>
<td>1 SWS</td>
<td>Übung (Ü) Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Investments</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Investments
2530575, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Lehrinhalt

Literatur
Weiterführende Literatur:
8.117 Teilleistung: IT-Systemplattform I4.0 [T-MACH-106457]

Verantwortung: Dipl.-Ing. Thomas Maier
Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von:
M-MACH-101270 - Product Lifecycle Management
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
</tr>
<tr>
<td>SS 2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (Projektarbeit)

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>IT-Systemplattform I4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2123900, WS 18/19, 4 SWS, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Bemerkungen
Ort und Zeit der Lehrveranstaltung werden auf der Homepage bekannt gegeben.

<table>
<thead>
<tr>
<th>IT-Systemplattform I4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2123900, SS 2019, 4 SWS, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Bemerkungen
Teilnehmerzahl begrenzt auf max. 15 Personen. Es findet ein Auswahlverfahren statt.

Lehrinhalt
Industrie 4.0, IT-Systeme im Fertigungsumfeld (z.B. CAx, PDM, ERP, MES), Prozessmodellierung und -ausführung. Projektarbeiten im Team, praxisrelevante I4.0 Fragestellungen im Bereich Automatisierung, Fertigungsindustrie und Dienstleistungssektor.
8.118 Teilleistung: Keramik-Grundlagen [T-MACH-100287]

Verantwortung: Prof. Dr. Michael Hoffmann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 6
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-Code</th>
<th>Veranstaltung</th>
<th>Semesterwochenstunden</th>
<th>Uhrzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2125757</td>
<td>Keramik-Grundlagen</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-100287</td>
<td>Keramik-Grundlagen</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-100287</td>
<td>Keramik-Grundlagen</td>
<td>Prüfung (PR)</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min) zu einem festgelegten Termin.
Die Wiederholungsprüfung findet an einem festgelegten Termin statt.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Keramik-Grundlagen
2125757, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Folien zur Vorlesung:
verfügbar unter http://www.iam.kit.edu/km

Lehrinhalt

Arbeitsaufwand
Präsenzzeit: 45 Stunden
Selbststudium: 135 Stunden

Literatur

- Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
- Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
- S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
8.119 Teilleistung: Klimatologie [T-PHYS-101092]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
- M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
- M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
- M-WIWI-104904 - Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulcode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4051111</td>
<td>Klimatologie</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4051112</td>
<td>Übungen zu Klimatologie</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Ginete Werner Pinto, Ludwig, Mömken</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mindestens 50% der Übungsaufgaben.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
8.120 Teilleistung: Lager- und Distributionssysteme [T-MACH-105174]

Verantwortung: Prof. Dr.-Ing. Kai Furmans

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2118097</th>
<th>Lager- und Distributionssysteme</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Furmans</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-105174</td>
<td>Lager- und Distributionssysteme</td>
<td>Prüfung (PR)</td>
<td>Furmans, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105174</td>
<td>Lager- und Distributionssysteme</td>
<td>Prüfung (PR)</td>
<td>Furmans</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Lager- und Distributionssysteme
2118097, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Präsentationen, Tafelanschrieb

Lehrinhalt
- Einführung
- Hofmanagement
- Wareneingang
- Lagern und Kommissionieren
- Workshop zum Thema Spielzeiten
- Konsolidieren und Verpacken
- Warenausgang
- Added Value
- Overhead
- Fallstudie: DCRM
- Lagerplanung
- Fallstudie: Lagerplanung
- Distributionsnetzwerke
- Lean Warehousing

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
Literatur

ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISSE, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

Eine ausführliche Übersicht wissenschaftlicher Paper findet sich bei:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
8.121 Teilleistung: Lernfabrik Globale Produktion [T-MACH-105783]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>4</td>
<td>Lernfabrik Globale Produktion</td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar / Praktikum (S/P)</td>
<td>Lanz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td></td>
<td>Lernfabrik Globale Produktion</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lanz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):

- Wissenserwerb im Rahmen des Seminars (3 Leistungsabfragen je 20 min) mit Gewichtung 40%
- Interaktion zwischen den Teilnehmern mit Gewichtung 15%
- Wissenschaftliches Kolloquium (in Gruppen mit je 3 Studierenden ca. 45 min) mit Gewichtung 45%

Voraussetzungen
Erfolgreich absolvierte Erfolgskontrolle einer der folgenden Teilleistungen:

- Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 [T-MACH-108849 oder T-MACH-109054]
- Integrierte Produktionsplanung [T-MACH-102106]
- Globale Produktion und Logistik - Teil 1: Globale Produktion [T-MACH-105158]
- Qualitätsmanagement [T-MACH-102107]

Modellierte Voraussetzungen
Es muss eine von 5 Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102106 - Integrierte Produktionsplanung muss erfolgreich abgeschlossen worden sein.
3. Die Teilleistung T-MACH-102107 - Qualitätsmanagement muss erfolgreich abgeschlossen worden sein.
5. Die Teilleistung T-MACH-109054 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lernfabrik Globale Produktion
2149612, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:

Bemerkungen
Lehrinhalt

Inhaltliche Schwerpunkte der Vorlesung:

- Standortwahl
- Standortgerechte Fabrikplanung
- Standortgerechte Qualitätssicherung
- Skalierbare Automatisierung
- Lieferantenauswahl
- Netzwerkplanung

Arbeitsaufwand
e-Learning: ~ 24 h
Präsenzzeit: ~ 36 h
Selbststudiumszeit: ~ 60 h
8.122 Teilleistung: Logistics and Supply Chain Management [T-WIWI-102870]

Verantwortung: Dr. Marcus Wiens
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101437 - Industrielle Produktion I
- M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Prüfungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2581996</td>
<td>Logistics and Supply Chain Management</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Wiens</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2581997</td>
<td>Übung zu Logistics and Supply Chain Management</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Diehlmann, Lüttenberg</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>Prüfungstyp</th>
<th>Prüfungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7981996</td>
<td>Logistics and Supply Chain Management</td>
<td>Prüfung (PR)</td>
<td>Schultmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen (30min.) oder schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedes Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Logistics and Supply Chain Management
2581996, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Lehrinhalt

- Einführung: Grundlegende Begriffe und Konzepte
- Logistiksysteme und Supply Chain Management
- Risikomanagement in der Logistik
- vertiefende Anwendungen

Arbeitsaufwand
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden

Literatur
Wird in der Veranstaltung bekannt gegeben.
8.123 Teilleistung: Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen [T-MACH-102089]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
Kit-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-WIWI-101421 - Supply Chain Management
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2019 2118078 Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen 3 SWS Vorlesung (V) Furmans

Prüfungsveranstaltungen
WS 18/19 76-T-MACH-102089 Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen Prüfung (PR) Furmans, Mittwollen
SS 2019 76-T-MACH-102089 Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen Prüfung (PR) Furmans, Mittwollen

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Logistik - Aufbau, Gestaltung und Steuerung von Logistiksystemen
2118078, SS 2019, 3 SWS, im Studierendenportal anzeigen

Beschreibung
Medien:
Tafel, Datenprojektor. In Übungen ergänzend Nutzung von PCs.
Lehrinhalt
Einführung

- Historischer Überblick
- Entwicklungslinien
- Struktur

Aufbau von Logistiksystemen

Distributionslogistik

- Standortplanung
- Touren- und Routenplanung
- Distributionszentren

Bestandsmanagement

- Bedarfsplanung
- Lagerhaltungspolitiken
- Bullwhip-Effekt

Produktionslogistik

- Layoutplanung
- Materialfluß
- Steuerungsverfahren

Beschaffungslogistik

- Informationsfluss
- Transportorganisation
- Steuerung und Entwicklung eines Logistiksystems
- Kooperationsmechanismen
- Lean SCM
- SCOR-Modell

Identifikationstechniken

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Literatur

- Arnold/Isermann/Kuhn/Tempelmeier. Handbuch Logistik, Springer Verlag, 2002 (Neuausgabe in Arbeit)
- Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
- Domschke/Drexl. Logistik, Standorte, Oldenbourg Verlag, 1996
- Gudehus. Logistik, Springer Verlag, 2007
- Tempelmeier. Bestandsmanagement in Supply Chains, Books on Demand 2006
8.124 Teilleistung: Logistik in der Automobilindustrie [T-MACH-105165]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von:
M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2118085</th>
<th>Logistik in der Automobilindustrie (Automotive Logistics)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Furmans</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-105165</th>
<th>Logistik in der Automobilindustrie</th>
<th>Prüfung (PR)</th>
<th>Furmans, Mittwollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105165</td>
<td>Logistik in der Automobilindustrie</td>
<td>Prüfung (PR)</td>
<td>Mittwollen, Furmans</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Logistik in der Automobilindustrie (Automotive Logistics)

| 2118085, SS 2019, 2 SWS, [Im Studierendenportal anzeigen](#) |

Vorlesung (V)

Beschreibung

Medien:
Präsentationen, Tafelanschrieb

Bemerkungen
Die Veranstaltung wird im Sommersemester 2019 zum letzten Mal angeboten.

Lehrinhalt

- Bedeutung logistischer Fragestellungen für die Automobilindustrie
- Ein Grundmodell der Automobilproduktion und -distribution
- Logistische Anbindung der Zulieferer
- Aufgaben bei Disposition und physischer Abwicklung
- Die Fahrzeugproduktion mit den speziellen Fragestellungen im Zusammenspiel von Rohbau, Lackierung und Montage
- Reihenfolgeplanung
- Teilebereitstellung für die Montage
- Fahrzeugdistribution und Verknüpfung mit den Vertriebsprozessen
- Physische Abwicklung, Planung und Steuerung

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
Literatur
Keine.
8.125 Teilleistung: Logistiksysteme auf Flughäfen [T-MACH-105175]

Verantwortung: André Richter

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-101269 - Einführung in die Technische Logistik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 2117056 | Logistiksysteme auf Flughäfen (mach und wiwi) | 2 SWS | Vorlesung (V) | Richter |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-105175 | Logistiksysteme auf Flughäfen | Prüfung (PR) | Furmans |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Logistiksysteme auf Flughäfen (mach und wiwi)
2117056, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Medien:
Präsentationen

Lehrinhalt
Einführung
Flughafenanlagen
Gepäckbeförderung
Personenbeförderung
Sicherheit auf dem Flughafen
Rechtsgrundlagen des Flugverkehrs
Fracht auf dem Flughafen

Anmerkungen
Begrenzte Anzahl von Teilnehmern: Die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung (First come first derved)
Anmeldung über ILIAS erforderlich
Anwesenheitspflicht

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literatur
8.126 Teilleistung: Macroeconomic Theory [T-WIWI-109121]

Verantwortung: Prof. Dr. Johannes Brumm
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie
M-WIWI-101668 - Wirtschaftspolitik I
M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modul</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2560404</td>
<td>Macroeconomic Theory</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Brumm</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560405</td>
<td>Übung zu Macroeconomic Theory</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Pegorari</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Modul</th>
<th>Prüfung (PR)</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900264</td>
<td>Macroeconomic Theory</td>
<td>Prüfung (PR)</td>
<td>Scheffel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Erfolgreicher Abschluss aller fachlich entsprechenden Module aus dem Grundlagenprogramm.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Macroeconomic Theory

<table>
<thead>
<tr>
<th>Veranstaltungsnummer</th>
<th>Semester</th>
<th>Leistungspunkte</th>
<th>Modul</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2560404</td>
<td>WS 18/19</td>
<td>4,5</td>
<td></td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Beschreibung

Arbeitsaufwand
Gesamtaufwand bei 4,5 LP: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
Literatur und Skripte werden in der Veranstaltung angegeben.
8.127 Teilleistung: Management Accounting 1 [T-WIWI-102800]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101498 - Controlling (Management Accounting)
M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2579900</td>
<td>Management Accounting 1</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wouters</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2579901</td>
<td>Übung zu Management Accounting 1</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Riar</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>79-2579900-00</td>
<td>Management Accounting 1</td>
<td>Wouters</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>79-2579900-00</td>
<td>Management Accounting 1</td>
<td>Wouters</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO) am Ende von jedem Semester. Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Management Accounting 1

2579900, SS 2019, 2 SWS, Im Studierenendenportal anzeigen

Lehrinhalt
Die Lehrveranstaltung beschäftigt sich mit Fragestellungen des Controlling (Management Accounting) im Rahmen von Entscheidungsprozessen. Einige dieser Themen in der LV MA1 sind: Kurzzeitplanung, Investitionsentscheidungen, Budgetierung und Kostenrechnung.

Es werden internationale Lektüren/Publicationen in englischer Sprache verwendet.

Diese Fragestellung wird hauptsächlich aus der Perspektive der Nutzer von Finanzinformationen behandelt, nicht so sehr auch der Perspektive von Controllern, die diese Informationen erstellen.

Die Lehrveranstaltung baut auf Grundwissen von Buchhaltungskonzepten auf, die im Rahmen von betriebswirtschaftlichen Lehrveranstaltungen im Kernprogramm (Basis) erworben wurden. Der Kurs richtet sich an die Studierenden der Fachrichtung Wirtschaftsingenieurswesen.

Arbeitsaufwand
Gesamtaufwand: 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
- Zusätzlich werden Artikel auf ILIAS zur Vergütung gestellt.
8.128 Teilleistung: Management Accounting 2 [T-WIWI-102801]

Verantwortung: Prof. Dr. Marcus Wouters
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101498 - Controlling (Management Accounting)
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4,5
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Stunden</th>
<th>Prüfungseinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2579902</td>
<td>Management Accounting 2</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2579903</td>
<td>Übung zu Management Accounting 2</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfungseinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>79-2579902-00</td>
<td>Management Accounting 2</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>79-2579902-00</td>
<td>Management Accounting 2</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO) am Ende von jedem Semester. Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Empfohlen wird, die LV "Management Accounting1" vorab zu besuchen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Management Accounting 2
2579902, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Es werden internationale Lektüren/Publikationen in englischer Sprache verwendet.
Diese Fragestellung wird hauptsächlich aus der Perspektive der Nutzer von Finanzinformationen behandelt, nicht so sehr auch der Perspektive von Controllern, die diese Informationen erstellen.
Die Lehrveranstaltung baut auf Grundwissen von Buchhaltungskonzepten auf, die im Rahmen von betriebswirtschaftlichen Lehrveranstaltungen im Kernprogramm (Basis) erworben wurden. Der Kurs richtet sich an die Studierenden der Fachrichtung Wirtschaftsingenieurwesen.

Arbeitsaufwand
Gesamtaufwand: 135 Stunden
Präsenzzeit: [56] Stunden (4 SWS)
Vor- /Nachbereitung: [54] Stunden
Prüfung und Prüfungsvorbereitung: [25] Stunden

Literatur
- Zusätzlich werden Artikel auf ILIAS zur Vergüstung gestellt.
8.129 Teilleistung: Marketing Mix [T-WIWI-102805]

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101424 - Grundlagen des Marketing
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2571152</th>
<th>Marketing Mix</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Klarmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2571153</td>
<td>Übung zu Marketing Mix (Bachelor)</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Moosbrugger, Pade</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Note setzt sich zusammen aus der Note der schriftlichen Prüfung (zwei Drittel) und der Note der Präsentation (ein Drittel).

Voraussetzungen
Keine

Anmerkungen
Die Teilleistung ist Pflicht im Modul „Grundlagen des Marketing“.
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Marketing Mix
2571152, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
In dieser Veranstaltung erfolgt eine vertiefende Auseinandersetzung mit den vier Elementen des Marketing Mix. Die Veranstaltung ist entsprechend in vier Teile unterteilt: Produktmanagement, Pricing, Kommunikationsmanagement und Vertriebsmanagement. Dabei verfolgt die Veranstaltung grundsätzlich einen tool-orientierten Ansatz, d.h. der Schwerpunkt liegt auf der Vermittlung von Methoden und Instrumenten, mit denen man konkrete Herausforderungen in der Marktbearbeitung im Hinblick auf diese vier Instrumente lösen kann. Hierzu gehören z.B. die Conjoint-Analyse (Produktmanagement), Preisfestlegung (Preismanagement), Marktsegmentierung (Kommunikationsmanagement) und die Kundenzufriedenheitsmessung (Vertriebsmanagement).

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
8.130 Teilleistung: Maschinenkonstruktionslehre I und II für CIW [T-MACH-104739]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 7
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

| WS 18/19 | 2145179 | Maschinenkonstruktionslehre I (CIW/VT/MIT/IP-M) | 2 SWS | Vorlesung (V) | Albers, Matthiesen, Behrendt |
| SS 2019 | 2146195 | Maschinenkonstruktionslehre II (CIW/VT/MIT/IP-M) | 2 SWS | Vorlesung (V) | Albers |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-104739 | Maschinenkonstruktionslehre I und II | Prüfung (PR) | Albers, Matthiesen |

Erfolgskontrolle(n)
Schriftliche Klausur (90min) über die Inhalte von MKLI und MKLII für CIW.

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre I (CIW/VT/MIT/IP-M)

2145179, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
- Beamer
- Visualizer
- Mechanische Bauteilmodelle
Lehrinhalt
Einführung in die Produktentwicklung
Werkzeuge zur Visualisierung (Techn. Zeichnen)
Produkterstellung als Problemlösung
Technische Systeme Produkterstellung

- Systemtheorie
- Contact and Channel Approach C&C²-A

Grundlagen ausgewählter Konstruktions- und Maschinenelemente

- Federn
- Lagerung und Führungen
- Dichtungen

Begleitend zur Vorlesung finden Übungen statt, mit folgenden Inhalt:
Getriebeworkshop
Werkzeuge zur Visualisierung (Techn. Zeichnen)
Technische Systeme Produkterstellung

- Systemtheorie
- Contact and Channel Approach C&C²-A

Federn
Lagerung und Führungen

Anmerkungen

Vorlesungsumdruck:
Registrierten Studierenden wird die Produktentwicklung Knowledge Base PKB als digitale Wissensbasis zur Verfügung gestellt.

Über die ILIAS-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung, sowie Übungsbögen) entsprechend den Vorlesungsblöcken gebündelt zur Verfügung gestellt.

Arbeitsaufwand
Präsenzzeit: 42 h
Selbststudium: 80 h

Literatur

Vorlesungsumdruck:
Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8
Lehrinhalt
Dichtungen
Gestaltung
Dimensionierung
Bauteilverbindungen
Schrauben
Begleitend zur Vorlesung finden Übungen zur Vertiefung der Vorlesungsinhalte statt.

Anmerkungen
Vorlesungsumdruck:
Registrierten Studierenden wird die Produktentwicklung Knowledge Base PKB als digitale Wissensbasis zur Verfügung gestellt.

Über die ILIAS-Plattform des RZ werden alle relevanten Inhalte (Folien zu Vorlesung und Saalübung, sowie Übungsbäcker) entsprechend den Vorlesungsblöcke gebündelt zur Verfügung gestellt.

Arbeitsaufwand
Präsenzzeit: 42 h
Selbststudium: 80 h

Literatur
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek

Grundlagen von Maschinenelementen für Antriebsaufgaben;
8.131 Teilleistung: Maschinenkonstruktionslehre I, Vorleistung [T-MACH-102132]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart Studienleistung
Leistungspunkte 1
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>Übungen zu Maschinenkonstruktionslehre I (CIW/VT/MIT/IP-M)</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Albers, Matthiesen, Behrendt, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>Maschinenkonstruktionslehre I, Vorleistung (CIW / VT / MIT)</td>
<td>Matthesen, Albers</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Zum Bestehen der Vorleistung sind die Anwesenheit bei 3 Workshopsitzungen des MKL1-Getriebeworkshops sowie das Bestehen eines Kolloquiums zu Beginn jedes Workshops Voraussetzung. Zusätzlich ist die Teilnahme an einem Online-Test Voraussetzung.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre I (CIW/VT/MIT/IP-M)

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2145195, WS 18/19</td>
<td>1</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Beschreibung
Medien:
Beamer
Visualizer
Getriebe (Workshop)

Lehrinhalt
Getriebeworkshop
Werkzeuge zur Visualisierung (Techn. Zeichnen)
Technische Systeme Produkterstellung
- Systemtheorie
- Elementmodell C&CM
- Federn
- Lagerung und Führungen
Literatur

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.132 Teilleistung: Maschinenkonstruktionslehre II, Vorleistung [T-MACH-102133]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2146196 | Übungen zu Maschinenkonstruktionslehre II (CIW/VT/MIT/IP-M) | 2 SWS | Übung (Ü) | Matthiesen, Mitarbeiter |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102133 | Maschinenkonstruktionslehre II, Vorleistung (CIW / VT / MIT) | Prüfung (PR) | Matthiesen |

Erfolgskontrolle(n)
IP-MATH-CIW-NWT: Zum Bestehen der Vorleistung ist es erforderlich, dass eine Konstruktionsaufgabe als technische Handzeichnung erfolgreich absolviert wird.
MIT: Zum Bestehen der Vorleistung sind die Anwesenheit bei Workshopsitzungen sowie das Bestehen eines Kolloquiums zu Beginn jedes Workshops Voraussetzung.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre II (CIW/VT/MIT/IP-M)
2146196, SS 2019, 2 SWS, Im Studierenenportal anzeigen

Beschreibung
Medien:
Beamer
Visualizer

Lehrinhalt
Lager
Dichtungen
Gestaltung
Toleranzen und Passungen
Bauteilverbindungen
Literatur

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
8.133 Teilleistung: Materialfluss in Logistiksystemen [T-MACH-102151]

Verantwortung: Prof. Dr.-Ing. Kai Furmans

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
- M-MACH-101269 - Einführung in die Technische Logistik
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 18/19</th>
<th>Kurs-ID</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2117051</td>
<td>Materialfluss in Logistiksystemen (mach und wiwi)</td>
<td>4 SWS</td>
<td>Sonstige (sonst.)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 18/19</th>
<th>Kurs-ID</th>
<th>Kursbezeichnung</th>
<th>Prüfung (PR)</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102151</td>
<td>Materialfluss in Logistiksystemen</td>
<td>Furmans</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102151</td>
<td>Materialfluss in Logistiksystemen</td>
<td>Furmans</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich wie folgt zusammen:

- 40% Bewertung der Abschlussfallstudie als Einzelleistung,
- 60% Bewertung der Semesterleistung aus Bearbeitung und Verteidigung von 5 Fallstudien (Es werden jeweils die besten 4 aus 5 Leistungen gewertet):
 - 40% Bewertung der Fallstudienlösungen als Gruppenleistung,
 - 20% Bewertung der mündlichen Leistung in den Fallstudienkolloquien als Einzelleistung.

Eine detaillierte Beschreibung der Erfolgskontrolle findet sich unter Anmerkungen.

Voraussetzungen

keine

Empfehlungen

Empfohlenes Wahlpflichtfach: Wahrscheinlichkeitstheorie und Statistik

Anmerkungen

Nach Ende der Vorlesungszeit findet die Abschlussfallstudie statt. Diese umfasst den gesamten Semesterinhalt und wird von den Studierenden in Einzelarbeit an einem vorgegebenen Präsenztermin mit zeitlicher Begrenzung (4h) gelöst.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

- **Materialfluss in Logistiksystemen (mach und wiwi)**
 - Kurs-ID: 2117051, WS 18/19, 4 SWS, [Im Studierendenportal anzeigen](#)
Beschreibung

Medien: Präsentationen, Tafelanschrieb, Buch, Videoaufzeichnungen

Lehrinhalt
- Materialflusselemente (Förderstrecke, Verzweigung, Zusammenführung)
- Beschreibung vernetzter MF-Modelle mit Graphen, Matrizen etc.
- Warteschlangentheorie: Berechnung von Wartezeiten, Auslastungsgraden etc.
- Lagern und Kommissionieren
- Shuttle-Systeme
- Sorter
- Simulation
- Verfügbarkeitsrechnung
- Wertstromanalyse

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit: 30 h
Selbststudium: 100 h
Gruppenarbeit: 50 h

Literatur
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 2009
8.134 Teilleistung: Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie [T-MACH-105166]

Verantwortung: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart	Leistungspunkte	Turnus	Version
Prüfungsleistung mündlich | 4 | Jedes Wintersemester | 1

Lehrveranstaltungen

| WS 18/19 | 2149669 | Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie | 2 SWS | Vorlesung (V) | Steegmüller, Kienzle |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-105166 | Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie | Prüfung (PR) | Schulze |

Erfolgskontrolle(n)

Mündliche Prüfung (20 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie
2149669, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](https://ilias.studium.kit.edu/)

Beschreibung

Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt

Bemerkungen

Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.

Lehrinhalt

Die Themen im einzelnen sind:

- Leichtbaukonzepte
- Aluminium- und Stahl-Leichtbau
- Faserverstärkte Kunststoffe im RTM- und SMC-Verfahren
- Fügeverbindungen von Stahl und Aluminium
- Klebeverbindungen
- Beschichtungen
- Lackierung
- Qualitätssicherung
- Virtuelle Fabrik
Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
8.135 Teilleistung: Mathematik 1 - Abschlussklausur [T-MATH-102261]

Verantwortung: Dr. Martin Folkers
Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101676 - Mathematik 1
M-WIWI-104905 - Mathematik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3,5
Version: 1

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6700013</td>
<td>Mathematik 1 - Abschlussklausur</td>
<td>Prüfung (PR)</td>
<td>Folkers, Last, Winter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>6700014</td>
<td>Mathematik 1 - Abschlussklausur (Nachtermin)</td>
<td>Prüfung (PR)</td>
<td>Winter, Last, Folkers</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.136 Teilleistung: Mathematik 1 - Semesterklausur [T-MATH-102260]

Verantwortung: Dr. Martin Folkers
Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101676 - Mathematik 1
M-WIWI-104905 - Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| Semester | Veranstaltungsnummer | Veranstaltungsaufmittel | SWS | Veranstaltungstyp (V/U) | Unterrichtspersonaler
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>0135000</td>
<td>Mathematik 1 für die Fachrichtung Wirtschaftswissenschaften</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Folkers</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>0135100</td>
<td>Übungen zu 0135000</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Folkers</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsaufmittel</th>
<th>Prüfungstyp (PR)</th>
<th>Unterrichtspersonaler</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6700040</td>
<td>Mathematik 1 - Semesterklausur</td>
<td>Prüfung (PR)</td>
<td>Winter, Last, Folkers</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>6700065</td>
<td>Mathematik 1 - Semesterklausur (Nachtermin)</td>
<td>Prüfung (PR)</td>
<td>Winter, Last, Folkers</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
8.137 Teilleistung: Mathematik 2 - Abschlussklausur [T-MATH-102263]

Verantwortung: Dr. Martin Folkers
 Prof. Dr. Daniel Hug
 Prof. Dr. Günter Last
 PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101677 - Mathematik 2
 M-WIWI-104905 - Mathematik

Voraussetzungen
keine

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>1</td>
</tr>
</tbody>
</table>
8.138 Teilleistung: Mathematik 2 - Semesterklausur [T-MATH-102262]

Verantwortung: Dr. Martin Folkers
Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
- M-MATH-101677 - Mathematik 2
- M-WIWI-104905 - Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltnamen</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>0183000</td>
<td>Mathematik 2 für die Fachrichtung Wirtschaftswissenschaft</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Folkers</td>
</tr>
<tr>
<td>SS 2019</td>
<td>0183100</td>
<td>Übungen zu 0183000</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Folkers</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
8.139 Teilleistung: Mathematik 3 - Abschlussklausur [T-MATH-102264]

Verantwortung: Dr. Martin Folkers
Prof. Dr. Daniel Hug
Prof. Dr. Günter Last
PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101679 - Mathematik 3
M-WIWI-104905 - Mathematik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 7
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>0135200</th>
<th>Mathematik 3 für die Fachrichtung Wirtschaftswissenschaften</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wintersemester</td>
<td>0135300</td>
<td>Übungen zu 0135200</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Winter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>6700031</th>
<th>Mathematik 3 - Abschlussklausur</th>
<th>Prüfung (PR)</th>
<th>Winter, Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wintersemester</td>
<td>6700051</td>
<td>Mathematik 3 - Abschlussklausur (Nachtermin)</td>
<td>Prüfung (PR)</td>
<td>Winter</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.140 Teilleistung: Methoden zur Analyse der motorischen Verbrennung [T-MACH-105167]

Verantwortung: Jürgen Pfeil
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-101303 - Verbrennungsmotoren II
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2134134</td>
<td>Methods zur Analyse der motorischen Verbrennung 2 SWS Vorlesung (V) Pfeil</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Methoden zur Analyse der motorischen Verbrennung

2134134, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V)

Lehrinhalt

- Energiebilanz am Motor
- Energieumsetzung im Brennraum
- Thermodynamische Behandlung des Motorprozesses
- Strömungsgeschwindigkeiten
- Flammenausbreitung
- Spezielle Meßverfahren

Arbeitsaufwand

- Präsenzzeit: 24 Stunden
- Selbststudium: 96 Stunden

Literatur

Skript, erhältlich in der Vorlesung
8.141 Teilleistung: Mikroaktorik [T-MACH-101910]

Verantwortung: Prof. Dr. Manfred Kohl
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-101287 - Mikrosystemtechnik
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2142881</th>
<th>Mikroaktorik</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Kohl</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-101910</th>
<th>Mikroaktorik</th>
<th>Prüfung (PR)</th>
<th>Kohl</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

- mündliche Prüfung

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mikroaktorik

Vorlesung (V)
2142881, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Beschreibung

Medien:
Folienskript zur Veranstaltung.

Lehrinhalten

- Materialwissenschaftliche Grundlagen der Aktorprinzipien
- Layout und Designoptimierung
- Herstellungsverfahren
- ausgewählte Entwicklungsbeispiele
- Anwendungen

Inhaltsverzeichnis:
Die Vorlesung beinhaltet unter anderem folgende Themen:

- Mikroelektromechanische Systeme: Linearaktoren, Mikrorelais, Mikromotoren
- Medizintechnik und Life Sciences: Mikroventile, Mikropumpen, mikrofluidische Systeme
- Mikrorobotik: Mikrogreifer, Polymeraktoren (smart muscle)
- Informationstechnik: Optische Schalter, Spiegelsysteme, Schreib-/Leseköpfe

Arbeitsaufwand

Präsenzzeit: 1,5 Stunden /Woche
Selbststudium: 8,5 Stunden/Woche
Literatur
- Folienskript “Mikroaktorik”
- M. Kohl, Shape Memory Microactuators, M. Kohl, Springer-Verlag Berlin, 2004
Teilleistung: Mobile Arbeitsmaschinen [T-MACH-105168]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-101267 - Mobile Arbeitsmaschinen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsart</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2114073</td>
<td>Mobile Arbeitsmaschinen</td>
<td>4 SWS</td>
<td>Vorlesung</td>
<td>Geimer, Geiger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>76T-MACH-105168</td>
<td>Mobile Arbeitsmaschinen</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76T-MACH-105168</td>
<td>Mobile Arbeitsmaschinen</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-105168</td>
<td>Mobile Arbeitsmaschinen</td>
<td>Prüfung (PR)</td>
<td>Geimer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (45min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen

Anmerkungen

Lernziele:
Nach erfolgreicher Teilnahme an der Veranstaltung:

- kann der Studierende das breite Spektrum der mobilen Arbeitsmaschinen nennen
- kennt der Studierende die Einsatzmöglichkeiten und Arbeitsläufe der wichtigsten mobilen Arbeitsmaschinen
- kann der Studierende ausgewählte Teilsysteme und Komponenten beschreiben

Inhalt:

- Vorstellung der eingesetzten Komponenten und wichtigsten mobilen Arbeitsmaschinen
- Grundlagen und Aufbau der Maschinen
- Praktische Einblicke in die Entwicklung der Maschinen

Medien:
Foliensatz zur Vorlesung downloadbar
Buch "Grundlagen mobiler Arbeitsmaschinen", Karlsruher Schriftenreihe Fahrzeugsystemtechnik, Band 22, KIT Scientific Publishing

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mobile Arbeitsmaschinen
2114073, SS 2019, 4 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Skript zur Veranstaltung.
Lehrinhalt

- Vorstellung der benötigten Komponenten und Maschinen
- Grundlagen zum Aufbau der Gesamtsysteme
- Praktischer Einblick in die Entwicklung

Arbeitsaufwand

- Präsenzzeit: 42 Stunden
- Selbststudium: 184 Stunden
8.143 Teilleistung: Mobilität und Infrastruktur [T-BGU-101791]

Verantwortung: Prof. Dr.-Ing. Ralf Roos
Prof. Dr.-Ing. Peter Vortisch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- M-BGU-101067 - Mobilität und Infrastruktur
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart (Prüfungsleistung schriftlich)</th>
<th>Leistungspunkte</th>
<th>Turnus (Jedes Semester)</th>
<th>Version</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>6200404</td>
<td>Raumplanung und Planungsrecht</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Wilske</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200405</td>
<td>Übungen zu Raumplanung und Planungsrecht</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Wilske, Mitarbeiter/innen</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200406</td>
<td>Verkehrswesen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Vortisch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200407</td>
<td>Übungen zu Verkehrswesen</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Vortisch, Mitarbeiter/innen</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200408</td>
<td>Bemessungsgrundlagen im Straßenwesen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Roos, Zimmermann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>6200409</td>
<td>Übungen zu Bemessungsgrundlagen im Straßenwesen</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Plachkova-Dzhurova, Zimmermann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>8234101791</td>
<td>Mobilität und Infrastruktur</td>
<td>Roos</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 150 min.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

für Studierenden aus der Fakultät Wirtschaftsingenieurwesen wird die Teilnahme an den Übungsveranstaltungen empfohlen
8.144 Teilleistung: Modellbasierte Applikation [T-MACH-102199]

Verantwortung: Dr. Frank Kirschbaum

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
- M-MACH-101303 - Verbrennungsmotoren II
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
'take-home exam'; Kurzvortrag mit anschließender mündlicher Prüfung

Voraussetzungen
keine
8.145 Teilleistung: Modellbildung und Identifikation [T-ETIT-100699]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-101156 - Regelungstechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungslänge</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrkörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2 SWS</td>
<td>Modellbildung und Identifikation</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Hohmann</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>1 SWS</td>
<td>Übungen zu 2303166 Modellbildung und Identifikation</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Strehle</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungslänge</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrkörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td></td>
<td>Modellbildung und Identifikation</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Hohmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die Lehrveranstaltung.

Voraussetzungen
keine
8.146 Teilleistung: Modellieren und OR-Software: Einführung [T-WIWI-106199]

Verantwortung:
Prof. Dr. Stefan Nickel

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101413 - Anwendungen des Operations Research
M-WIWI-104899 - Operations Research

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2550490 | Modellieren und OR-Software: Einführung | 3 SWS | Praktikum (P) | Nickel, Bakker |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfung mit schriftlichem und praktischem Teil (nach §4(2), 1 SPO).
The Prüfung wird im Semester des Software-Praktikums und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen

Anmerkungen
Aufgrund der begrenzten Teilnehmerzahl wird um eine Voranmeldung gebeten. Weitere Informationen entnehmen Sie der Internetseite des Software-Praktikums.

Die Lehrveranstaltung wird regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Frühere Bezeichnung bis Sommersemester 2016: Software-Praktikum - OR-Modelle 1

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Modellieren und OR-Software: Einführung
2550490, SS 2019, 3 SWS, Im Studierenendenportal anzeigen | Praktikum (P)

Lehrinhalt
Die Lösung von kombinatorischen und nichtlinearen Optimierungsproblemen stellt wesentlich höhere Anforderungen an die hierfür entwickelten Lösungsverfahren als bei linearen Optimierungsproblemen.

Das Software-Praktikum gibt zudem einen grundlegenden Einblick in weitere gängige Modellierungs- und Programmiersprachen, die zur Lösung von Optimierungsaufgaben in der Praxis eingesetzt werden können.

Anmerkungen
Aufgrund der begrenzten Teilnehmerzahl wird um eine Voranmeldung gebeten. Weitere Informationen entnehmen Sie der Internetseite des Software-Praktikums.

Die Veranstaltung wird unregelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden
8.147 Teilleistung: Motorenmesstechnik [T-MACH-105169]

Verantwortung: Dr.-Ing. Sören Bernhardt
Einrichtung: KIT-Fakultät für Maschinenbau
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von:
- M-MACH-101303 - Verbrennungsmotoren II
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2019 2134137 Motorenmesstechnik 2 SWS Vorlesung (V) Bernhardt

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 0,5 Stunden, keine Hilfsmittel

Voraussetzungen
keine

Empfehlungen
T-MACH-102194 Verbrennungsmotoren I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Motorenmesstechnik
2134137, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Lehrinhalt
Die Studenten werden mit moderner Meßtechnik an Verbrennungsmotoren vertraut gemacht - insbesondere mit grundlegenden Verfahren zur Bestimmung von Motorbetriebsparametern wie Drehmoment, Drehzahl, Leistung und Temperaturmessungen
Die evtl. auftretenden Meßfehler- und abweichungen werden angesprochen.
Ferner werden die Abgasmessstechnik sowie Meßtechniken zur Bestimmung von Luft- und Kraftstoffverbrauch und die zur thermodynamischen Auswertung notwendige Druckindizierung behandelt.

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 100 Stunden

Literatur

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C
8.148 Teilleistung: Nanotechnologie mit Clustern [T-MACH-102080]

Verantwortung: Dr. Jürgen Gspann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von:
M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung
Anwesenheit in >70% der Vorlesung
Dauer: 1 Stunde

Hilfsmittel: keine Angabe

Voraussetzungen
keine
8.149 Teilleistung: Neue Aktoren und Sensoren [T-MACH-102152]

Verantwortung: Prof. Dr. Manfred Kohl
Dr. Martin Sommer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

WS 18/19 2141865 Neue Aktoren und Sensoren 2 SWS Vorlesung (V) Kohl, Sommer

Prüfungsveranstaltungen

WS 18/19 76-T-MACH-102152 Neue Aktoren und Sensoren Prüfung (PR) Kohl, Sommer

Erfolgskontrolle(n)
mündliche Prüfung (30 Min.)

Voraussetzungen
die keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Neue Aktoren und Sensoren

Vorlesung (V)

2141865, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Beschreibung

Medien:

Skript / Folienskript (Teil 2)
Lehrinhalt

Inhalt: Materialwissenschaftliche Grundlagen der Aktor- und Sensorprinzipien
- Layout und Designoptimierung
- Herstellungsverfahren
- ausgewählte Entwicklungsbeispiele
- Anwendungen

Inhaltsverzeichnis:
Die Vorlesung beinhaltet unter anderem folgende Themen:

- Piezokörper
- Magnetostriktive Aktoren
- Formgedächtnis-Aktoren
- Elektro-/Magnetorheologische Aktoren
- Sensoren: Konzepte, Materialien, Herstellung
- Mikromechanische Sensorik: Druck-, Kraft-, Inertial-Sensoren
- Temperatursensoren
- Mikrosensoren für die Bioanalytik
- Mechatronische Sensoren

Die Vorlesung richtet sich an Hörer aus den Bereichen Maschinenbau, Mechatronik und Informationstechnik, Materialwissenschaften und Werkstofftechnik, Elektrotechnik und Wirtschaftswissenschaften. Sie gibt eine umfassende Einführung in Grundlagen und aktuelle Entwicklungen auf der makrotechnischen Größenskala.

Arbeitsaufwand

Arbeitsaufwand Vorlesung:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literatur

- Vorlesungsskript "Neue Aktoren" und Folienskript "Sensoren"
- Donald J. Leo, Engineering Analysis of Smart Material Systems, John Wiley & Sons, Inc., 2007
8.150 Teilleistung: Nichtlineare Optimierung I [T-WIWI-102724]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Oliver Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>
| Bestandteil von: | M-WIWI-101414 - Methodische Grundlagen des OR
| | M-WIWI-103278 - Optimierung unter Unsicherheit
| | M-WIWI-104899 - Operations Research |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Nichtlineare Optimierung I</td>
<td>2 SWS</td>
<td>Vorlesung (V) Stein</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>Übungen zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (Ü) Stein, Mohr</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>Rechnerübung zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (Ü) Stein, Mohr</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Nichtlineare Optimierung I</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs) und eventuell durch weitere Leistungen als Prüfungsleistung anderer Art (§4(2), 3 SPO). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu *Nichtlineare Optimierung II [2550113]* erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Die Teilleistung T-WIWI-103637 "Nichtlineare Optimierung I und II" darf nicht begonnen worden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103637 - Nichtlineare Optimierung I und II darf nicht begonnen worden sein.

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Nichtlineare Optimierung I</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2550111, WS 18/19, 2 SWS, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>
Lehrinhalt
Die Vorlesung behandelt die Minimierung glatter nichtlinearer Funktionen unter nichtlinearen Restriktionen. Für solche Probleme, die in Wirtschafts-, Ingenieur- und Naturwissenschaften sehr häufig auftreten, werden Optimalitätsbedingungen hergeleitet und darauf basierende numerische Lösungsverfahren angegeben. Die Vorlesung ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Existenzaussagen für optimale Punkte
- Optimalitätsbedingungen erster und zweiter Ordnung für unrestringierte Probleme
- Optimalitätsbedingungen für unrestringierte konvexe Probleme
- Numerische Verfahren für unrestringierte Probleme (Schrittweitensteuerung, Gradientenverfahren, Variable-Metrik-Verfahren, Newton-Verfahren, Quasi-Newton-Verfahren, CG-Verfahren, Trust-Region-Verfahren)

Restrierte Optimierungsprobleme sind der Inhalt von Teil II der Vorlesung.
In der parallel zur Vorlesung angebotenen Rechnerübung haben Sie Gelegenheit, die Programmiersprache MATLAB zu erlernen und einige dieser Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Literatur
Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
8.151 Teilleistung: Nichtlineare Optimierung I und II [T-WIWI-103637]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
M-WIWI-101414 - Methodische Grundlagen des OR
M-WIWI-104899 - Operations Research

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 9
Turnus Jedes Wintersemester
Version 5

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550111</td>
<td>Nichtlineare Optimierung I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550112</td>
<td>Übungen zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550113</td>
<td>Nichtlineare Optimierung II</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550142</td>
<td>Rechnerübung zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
WS 18/19 7900151_HK_WS1819 Nichtlineare Optimierung I und II Prüfung (PR) Stein

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO) und eventuell durch weitere Leistungen als Prüfungsleistung anderer Art (nach §4(2), 3 SPO). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen
Keine.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102724 - Nichtlineare Optimierung I darf nicht begonnen worden sein.
2. Die Teilleistung T-WIWI-102725 - Nichtlineare Optimierung II darf nicht begonnen worden sein.

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nichtlineare Optimierung I
2550111, WS 18/19, 2 SWS, im Studierendenportal anzeigen
Lehrinhalt
Die Vorlesung behandelt die Minimierung glatter nichtlinearer Funktionen unter nichtlinearen Restriktionen. Für solche Probleme, die in Wirtschafts-, Ingenieur- und Naturwissenschaften sehr häufig auftreten, werden Optimalitätsbedingungen hergeleitet und darauf basierende numerische Lösungsverfahren angegeben. Die Vorlesung ist wie folgt aufgebaut:

- Einführende Beispiele und Terminologie
- Existenzaussagen für optimale Punkte
- Optimalitätsbedingungen erster und zweiter Ordnung für unrestringierte Probleme
- Optimalitätsbedingungen für unrestringierte konvexe Probleme
- Numerische Verfahren für unrestringierte Probleme (Schrittweitensteuerung, Gradientenverfahren, Variable-Metrik-Verfahren, Newton-Verfahren, Quasi-Newton-Verfahren, CG-Verfahren, Trust-Region-Verfahren)

Restringierte Optimierungsprobleme sind der Inhalt von Teil II der Vorlesung.

In der parallel zur Vorlesung angebotenen Rechnerübung haben Sie Gelegenheit, die Programmiersprache MATLAB zu erlernen und einige dieser Verfahren zu implementieren und an praxisnahen Beispielen zu testen.

Anmerkungen
Teil I und II der Vorlesung werden nacheinander inselben Semester gelesen.

Literatur
Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
8.152 Teilleistung: Nichtlineare Optimierung II [T-WIWI-102725]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR
M-WIWI-104899 - Operations Research

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Übungen zu Nichtlineare Optimierung I + II</th>
<th>SWS</th>
<th>Übung (U)</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550112</td>
<td>Übung (U)</td>
<td>Stein, Mohr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Nichtlineare Optimierung II</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900050_HK_WS1819</td>
<td>Prüfung (PR)</td>
<td>Stein</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs) und eventuell durch weitere Leistungen als Prüfungsleistung anderer Art (§4(2), 3 SPO). Details zur Ausgestaltung der Prüfungsleistung anderer Art werden ggf. im Rahmen der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Nichtlineare Optimierung I erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103637 - Nichtlineare Optimierung I und II darf nicht begonnen worden sein.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im gleichen Semester gelesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nichtlineare Optimierung II

Lehrinhalt

Die Vorlesung behandelt die Minimierung glatter nichtlinearer Funktionen unter nichtlinearen Restriktionen. Für solche Probleme, die in Wirtschafts-, Ingenieur- und Naturwissenschaften sehr häufig auftreten, werden Optimalitätsbedingungen hergeleitet und darauf basierende numerische Lösungsverfahren angegeben. Teil I der Vorlesung behandelt unrestringierte Optimierungsprobleme. Teil II der Vorlesung ist wie folgt aufgebaut:

- Topologie und Approximationen erster Ordnung der zulässigen Menge
- Alternativsätze, Optimalitätsbedingungen erster und zweiter Ordnung für restringierte Probleme
- Optimalitätsbedingungen für restringierte konvexe Probleme
- Numerische Verfahren für restringierte Probleme (Strafterm-Verfahren, Multiplikatoren-Verfahren, Barriere-Verfahren, Innere-Punkte-Verfahren, SQP-Verfahren, Quadratische Optimierung)

In der parallel zur Vorlesung angebotenen Rechnerübung haben Sie Gelegenheit, die Programmiersprache MATLAB zu erlernen und einige dieser Verfahren zu implementieren und an praxisnahen Beispielen zu testen.
Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

Literatur
Weiterführende Literatur:

- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993
8.153 Teilleistung: Öffentliche Einnahmen [T-WIWI-102739]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101403 - Finanzwissenschaft
- M-WIWI-101499 - Angewandte Mikroökonomik
- M-WIWI-101668 - Wirtschaftspolitik I
- M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2560120</td>
<td>Öffentliche Einnahmen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wigger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2560121</td>
<td>Übung zu Öffentliche Einnahmen</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Prüfungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>790oeff</td>
<td>Öffentliche Einnahmen</td>
<td>Prüfung (PR)</td>
<td>Prüfung</td>
<td>Wigger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>790oeff</td>
<td>Öffentliche Einnahmen</td>
<td>Prüfung (PR)</td>
<td>Prüfung</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Die Note entspricht der Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Es wird Kenntnis der Grundlagen der Finanzwissenschaft vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Öffentliche Einnahmen
2560120, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Beschreibung

Lehrinhalt
Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur
Weiterführende Literatur:

8.154 Teilleistung: Öffentliches Finanzwesen [T-WIWI-109590]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101403 - Finanzwissenschaft
M-WIWI-104908 - Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO 2015.

Voraussetzungen
T-WIWI-107763 "Kommunales Finanzwesen" darf nicht begonnen sein.

Anmerkungen
Frühere Bezeichnung bis einschließlich Wintersemester 2018/19 "Kommunales Finanzwesen".

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Öffentliches Finanzwesen
2560120, WS 18/19, 3 SWS, [Im Studierendenportal anzeigen](#)

Lehrinhalt
Die Veranstaltung *Kommunales Finanzwesen* (einschließlich kameraler und doppischer Betrachtungsweisen) befasst sich mit der Theorie und Politik der gesamten Einnahmen und Ausgaben, also von den Zuwendungen über den kommunalen Finanzausgleich bis hin zur Steuererhebung und Eigenbetrieben sowie Unternehmungen.

Literatur

- Diverse Veröffentlichungen des Innenministeriums und Finanzministeriums Baden-Württemberg.
8.155 Teilleistung: Öffentliches Recht I - Grundlagen [T-INFO-101963]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Nikolaus Marsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Informatik</td>
</tr>
</tbody>
</table>
| Bestandteil von: | M-INFO-101187 - Recht Wahlpflicht
 M-WIWI-104903 - Recht |

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>24016</td>
<td>Öffentliches Recht I - Grundlagen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td></td>
<td>Marsch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7500100</td>
<td>Öffentliches Recht I - Grundlagen</td>
<td>2</td>
<td>Prüfung (PR)</td>
<td></td>
<td>Marsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Beschreibung

Die Vorlesung umfasst Kernaspekte des Verfassungsrechts (Staatsrecht und Grundrechte) und des Verwaltungsrechts. In einem ersten Schritt wird der Unterschied zwischen dem Privatrecht und dem öffentlichem Recht verdeutlicht. Im verfassungsrechtlichen Teil werden schwerpunktmässig das Rechtsstaatsprinzip des Grundgesetzes und die Grundrechte besprochen (v.a. die Kommunikations- und Wirtschaftsgrundrechte). Im verwaltungsrechtlichen Teil werden die verschiedenen Formen des behördlichen Handelns (Verwaltungsakt; Öffentlichrechtlicher Vertrag; Rechtsverordnungen etc.) behandelt und ihre Voraussetzungen besprochen. Ferner werden die Rechtsschutzmöglichkeiten in Bezug auf behördliches Handeln erarbeitet. Die Studenten werden an die Falllösungstechnik im Öffentlichen Recht herangeführt.

Lehrinhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits).

- Präsenzzeit: Besuch der Vorlesung 15 x 90 min = 22 h 30 min
- Vor-/Nachbereitung der Vorlesung 15 x 120 min = 30 h 00 min
- Skript 2 x wiederholen & 2 x 10 h = 20 h 00 min
- Prüfung vorbereiten = 17 h 30 min
- Summe 90 h 00 min
8.156 Teilleistung: Öffentliches Recht II - Öffentliches Wirtschaftsrecht [T-INFO-102042]

Verantwortung: Prof. Dr. Nikolaus Marsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101187 - Recht Wahlpflicht
M-WIWI-104903 - Recht

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>24520</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Marsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7500052</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>Prüfung (PR)</td>
<td>Marsch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7500081</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>Prüfung (PR)</td>
<td>Marsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Öffentliches Recht II - Öffentliches Wirtschaftsrecht

24520, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Beschreibung

In einem ersten Schritt werden die wirtschaftsverfassungsrechtlichen Grundlagen (wie die Finanzverfassung und die Eigentums- und Berufsfreiheit) dargestellt. In diesem Rahmen wird auch das Zusammenspiel zwischen dem Grundgesetz und den Vorgaben des europäischen Gemeinschaftsrechts näher erläutert. Sodann werden die verwaltungsrechtlichen Steuerungsinstrumente analysiert. Als besondere Materien werden u.a. die Gewerbeordnung, das sonstige Gewerberecht (Handwerksordnung; Gaststättenrecht), die Grundzüge des Telekommunikationsgesetzes, die Förderregulierung und das Vergaberecht behandelt. Ein letzter Teil widmet sich der institutionellen Ausgestaltung der hoheitlichen Wirtschaftsregulierung.

Lehrinhalt

In einem ersten Schritt werden die wirtschaftsverfassungsrechtlichen Grundlagen (wie die Finanzverfassung und die Eigentums- und Berufsfreiheit) dargestellt. In diesem Rahmen wird auch das Zusammenspiel zwischen dem Grundgesetz und den Vorgaben des europäischen Gemeinschaftsrechts näher erläutert. Sodann werden die verwaltungsrechtlichen Steuerungsinstrumente analysiert. Als besondere Materien werden u.a. die Gewerbeordnung, das sonstige Gewerberecht (Handwerksordnung; Gaststättenrecht), die Grundzüge des Telekommunikationsgesetzes, die Förderregulierung und das Vergaberecht behandelt. Ein letzter Teil widmet sich der institutionellen Ausgestaltung der hoheitlichen Wirtschaftsregulierung.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits).
\begin{tabular}{|l|c|}
\hline

Aktivität & Arbeitsaufwand \\
\hline
Präsenzzeit & \\
Besuch der Vorlesung & 15 x 90min & 22h 30m \\
\hline
Vor- / Nachbereitung der Vorlesung & 15 x 120min & 30h 00m \\
Skript 2x wiederholen & 2 x 10h & 20h 00m \\
Prüfung vorbereiten & 17h 30m \\
\hline
Summe & 90h 00m \\
\hline
\end{tabular}
\caption{Arbeitsaufwand für die Lerneinheit "Öffentliches Recht II - Öffentliches Wirtschaftsrecht"}

Literatur
Wird in der Vorlesung bekannt gegeben.
Weiterführende Literatur
Wird in der Vorlesung bekannt gegeben.
8.157 Teilleistung: Operatives CRM [T-WIWI-102597]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101422 - Vertiefung im Customer Relationship Management
M-WIWI-101460 - CRM und Servicemanagement
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistung: Operatives CRM

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>2540522</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
</tr>
<tr>
<td>7900145</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)) und wird zur erreichten Punktzahl der bestandenen Klausur hinzugerechnet. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Der Besuch der Vorlesungen Customer Relationship Management und Analytisches CRM wird als sinnvoll erachtet.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Operatives CRM
2540522, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Abschließend wird ein kurzer Überblick über den Markt von CRM-Softwarepaketen gegeben.
Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten ca. 135 Stunden:

Präsenzzeit
- Besuch der Vorlesung: 15 x 90min = 22h 30m
- Besuch der Übung: 7 x 90min = 10h 30m
- Prüfung: 1h 00m

Selbststudium
- Vor-/Nachbereitung der Vorlesung: 15 x 180min = 45h 00m
- Vorbereitung der Übung: 25h 00m
- Vorbereitung der Prüfung: 31h 00m

Summe: 135h 00m

Literatur

Weiterführende Literatur:
8.158 Teilleistung: Optimierungsansätze unter Unsicherheit [T-WIWI-106545]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101413 - Anwendungen des Operations Research
- M-WIWI-103278 - Optimierung unter Unsicherheit
- M-WIWI-104899 - Operations Research

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>5</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modul</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Übung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550464</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Sinske</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550465</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Füllner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550466</td>
<td>Rechnerübungen zu Optimierungsansätze unter Unsicherheit</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Füllner</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Prüfungsleistung</th>
<th>Prüfungsleistung</th>
<th>Prüfungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900158</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>Prüfung (PR)</td>
<td>Prüfungsleistung</td>
<td>Prüfungsleistung</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen
Keine.

Anmerkungen
Der Vorlesungsturnus ist derzeit noch unklar.
8.159 Teilleistung: Optoelectronic Components [T-ETIT-101907]

Verantwortung: Prof. Dr. Wolfgang Freude
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von:
- M-MACH-101287 - Mikrosystemtechnik
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2309486</td>
<td>Optoelectronic Components</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Freude</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2309487</td>
<td>Optoelectronic Components (Tutorial)</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Freude</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Lehrveranstaltung</th>
<th>Prüfungstyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7309486</td>
<td>Optoelectronic Components</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen

keine

Empfehlungen

Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Optoelectronic Components

2309486, SS 2019, 2 SWS, im Studierendenportal anzeigen

Bemerkungen

Termindetails nach Vereinbarung
8.160 Teilleistung: Organisationsmanagement [T-WIWI-102630]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101425 - Strategie und Organisation
M-WIWI-101513 - Personal und Organisation
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 3,5
Turnus Jedes Wintersemester
Version 3

Lehrveranstaltungen
WS 18/19 2577902 Organisationsmanagement 2 SWS Vorlesung (V) Lindstädt, Burkardt, Jung

Prüfungsveranstaltungen
WS 18/19 7900049 Organisationsmanagement Prüfung (PR) Lindstädt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Im folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Organisationsmanagement
2577902, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
- Grundlagen des Organisationsmanagements
- Management organisationaler Strukturen und Prozesse: Die Wahl der Gestaltungsparameter
- Idealtypische Organisationsstrukturen: Wahl und Wirkung der Parameterkombination
- Management organisationaler Veränderungen

Lehrinhalt

Anmerkungen
Ab dem SS2015 ändert sich die Gewichtung für die Lehrveranstaltung "Organisationsmanagement" auf 3,5 ECTS. Die Anzahl der Semesterwochenstunden bleibt unverändert bei 2 SWS.

Arbeitsaufwand
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden
Literatur

Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.
8.161 Teilleistung: Personalmanagement [T-WIWI-102909]

Verantwortung: Prof. Dr. Petra Nieken
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101513 - Personal und Organisation
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungszeit</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2573003</td>
<td>Personalmanagement</td>
<td>2</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2573004</td>
<td>Übung zu Personalmanagement</td>
<td>1</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungszeit</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900200</td>
<td>Personalmanagement</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch des Moduls Betriebswirtschaftslehre wird empfohlen.
Es werden Grundkenntnisse in Mikroökonomie, Spieltheorie und Statistik empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Personmanagement
2573003, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Anmerkungen
Empfehlungen
Der vorherige Besuch des Moduls Betriebswirtschaftslehre wird empfohlen.
Es werden Grundkenntnisse in Mikroökonomie, Spieltheorie und Statistik empfohlen.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten ca. 135 Stunden.
Präsenzzzeit: 32 Stunden
Vor-/Nachbereitung: 52 Stunden
Prüfung und Prüfungsvorbereitung: 51 Stunden
Literatur

verpflichtende Literatur:

- Personnel Economics in Practice, Lazear & Gibbs, John Wiley & Sons, 2014
- Strategic Human Resources. Frameworks for General Managers, Baron & Kreps, John Wiley & Sons, 1999

Ergänzende Aufsätze und Fallstudien werden in der Vorlesung bekannt gegeben.
Verantwortung: Prof. Dr. Petra Nieken

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101513 - Personal und Organisation
M-WIWI-101668 - Wirtschaftspolitik I
M-WIWI-104900 - Betriebswirtschaftslehre

8.162 Teilleistung: Personalpolitik und Arbeitsmarktinstitutionen [T-WIWI-102908]

Verantwortung: Prof. Dr. Petra Nieken

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101513 - Personal und Organisation
M-WIWI-101668 - Wirtschaftspolitik I
M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>ECTS</th>
<th>Art</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2573001</td>
<td>Personalpolitik und Arbeitsmarktinstitutionen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Nieken</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2573002</td>
<td>Übungen zu Personalpolitik und Arbeitsmarktinstitutionen</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Nieken, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Art</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900202</td>
<td>Personalpolitik und Arbeitsmarktinstitutionen</td>
<td>Prüfung (PR)</td>
<td>Nieken</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

Voraussetzungen

Keine

Empfehlungen

Der vorherige Besuch des Moduls Betriebswirtschaftslehre wird empfohlen.

Es werden Grundkenntnisse in Mikroökonomie, Spieltheorie und Statistik empfohlen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Personalpolitik und Arbeitsmarktinstitutionen

Vorlesung (V)

2573001, SS 2019, 2 SWS, im Studierendenportal anzeigen

Lehrinhalt

Die Studierenden erhalten Kenntnisse über den Ablauf sowie die strategischen Aspekte bei kollektiven Lohnverhandlungen. Darüber hinaus werden ausgewählte Aspekte der Corporate Governance sowie der Mitbestimmung in Deutschland besprochen und analysiert. Im Rahmen der Veranstaltung werden außerdem aktuelle Fragen der Personalpolitik und Diskriminierung am Arbeitsmarkt aufgegriffen. Neben mikroökonomischen und verhaltensökonomischen Ansätzen werden empirische Studien mit Felddaten oder Labordaten kritisch diskutiert.

Anmerkungen

Findet turnusmäßig im Sommer statt.

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten ca. 135 Stunden.

- Präsenzzeit: 32 Stunden
- Vor-/Nachbereitung: 52 Stunden
- Prüfung und Prüfungsvorbereitung: 51 Stunden
Literatur
verpflichtende Literatur:

Ergänzende Aufsätze und Fallstudien werden in der Vorlesung bekannt gegeben.
8.163 Teilleistung: PH APL-ING-TL01 [T-WIWI-106291]

Einrichtung: Universität gesamt

Bestandteil von: M-WIWI-101404 - Außerplanmäßiges Ingenieurmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Einmalig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.164 Teilleistung: PH APL-ING-TL02 [T-WIWI-106292]

Einrichtung: Universität gesamt

Bestandteil von: M-WIWI-101404 - Außerplanmäßiges Ingenieurmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Einmalig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.165 Teilleistung: PH APL-ING-TL03 [T-WIWI-106293]

Einrichtung: Universität gesamt
Bestandteil von: M-WIWI-101404 - Außerplanmäßiges Ingenieurmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Einmalig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.166 Teilleistung: PH APL-ING-TL04 ub [T-WIWI-106294]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Einmalig</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-WIWI-101404 - Außerplanmäßiges Ingenieurmodul

Voraussetzungen
keine
8.167 Teilleistung: PH APL-ING-TL05 ub [T-WIWI-106295]

<table>
<thead>
<tr>
<th>Teilleistungsart:</th>
<th>Studienleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>0</td>
</tr>
<tr>
<td>Turnus:</td>
<td>Einmalig</td>
</tr>
<tr>
<td>Version:</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-WIWI-101404 - Außerplanmäßiges Ingenieurmodul

Voraussetzungen
keine
8.168 Teilleistung: PH APL-ING-TL06 ub [T-WWI-106296]

Einrichtung: Universität gesamt
Bestandteil von: M-WWI-101404 - Außerplanmäßiges Ingenieurmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Einmalig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.169 Teilleistung: PH APL-ING-TL07 [T-WIWI-108384]

Einrichtung: Universität gesamt

Bestandteil von: M-WIWI-101404 - Außerplanmäßiges Ingenieurmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Einmalig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.170 Teilleistung: Physik für Ingenieure [T-MACH-100530]

Verantwortung: Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von:
M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2142890 | Physik für Ingenieure | 2 SWS | Vorlesung (V) | Weygand, Dienwiebel, Nesterov-Müller, Gumbsch |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-100530 | Physik für Ingenieure | Prüfung (PR) | Gumbsch, Dienwiebel, Nesterov-Müller, Weygand |

Erfolgskontrolle(n)

schriftliche Prüfung 90 min

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Physik für Ingenieure
2142890, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V)
Lehrinhalt

1) Grundlagen der Festkörperphysik
 - Teilchen Welle Dualismus
 - Schrödingergleichung
 - Teilchen /Tunneln
 - Wasserstoffatom

2) elektrische Leitfähigkeit von Festkörpern
 - Festkörper: periodische Potenziale
 - Pauliprinzip
 - Bandstrukturen
 - Metalle, Halbleitern und Isolatoren
 - pn-Übergang

3) Optik
 - Quantenmechanische Prinzipien des Lasers
 - Lineare Optik
 - Nicht-lineare Optik
 - Quanten-Optik

Übungen (2142891, 2 SWS) dienen zur Ergänzung und Vertiefung des Stoffinhalts der Vorlesung sowie als Forum für ausführlichen Rückfragen der Studierenden und zur Überprüfung der vermittelten Lehrinhalte in Tests.

Arbeitsaufwand
Präsenzzeit: 22,5 Stunden (Vorlesung) und 22,5 Stunden (Übung 2142891)
Selbststudium: 97,5 Stunden und 49 Stunden (Übung 2142891)

Literatur
 - Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
 - Harris, Moderne Physik, Pearson Verlag, 2013
8.171 Teilleistung: Physikalische Grundlagen der Lasertechnik [T-MACH-102102]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
5

Turnus
Jedes Wintersemester

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Punkt</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2181612</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102102</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102102</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>Prüfung (PR)</td>
<td>Schneider</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung (30 min)

keine Hilfsmittel

Voraussetzungen

Empfehlungen
grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Physikalische Grundlagen der Lasertechnik
2181612, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Skr ipt zur Veranstaltung via ILIAS

Lehrinhalt
Aufbauend auf der Darstellung der physikalischen Grundlagen zur Entstehung und zu den Eigenschaften von Laserlicht werden die wichtigsten, heute industriell eingesetzten Laserstrahlquellen behandelt. Der Schwerpunkt der Vorlesung liegt auf der Darstellung des Lasereinsatzes in der Werkstofftechnik. Weitere Anwendungsgebiete, wie die Mess- und Medizintechnik, werden vorgestellt. Im Rahmen der Vorlesung wird eine Besichtigung des Laserlabors am Institut für Angewandte Materialien (IAM) angeboten.

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Festkörper-, Halbleiter-, Gas-, Flüssigkeits- u.a. Laser)
- Strahleigenschaften, -führung, -formung
- Laser in der Materialbearbeitung
- Laser in der Messtechnik
- Laser in der Medizintechnik
- Lasersicherheit

Die Vorlesung wird durch eine Übung ergänzt.
Anmerkungen
Im Rahmen des Bachelor- und Master-Studiums darf nur eine der beiden Vorlesungen "Lasereinsatz im Automobilbau" (2182642) oder "Physikalische Grundlagen der Lasertechnik" (2181612) gewählt werden.

Arbeitsaufwand
Präsenzzeit: 33,5 Stunden
Selbststudium: 146,5 Stunden

Literatur
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
8.172 Teilleistung: Platform Economy [T-WIWI-109936]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101434 - eBusiness und Service Management
M-WIWI-104900 - Betriebswirtschaftslehre
M-WIWI-104911 - Information Systems & Digital Business: Interaction
M-WIWI-104912 - Information Systems & Digital Business: Platforms

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Details zur Notenbildung werden zu Beginn der Veranstaltung bekannt gegeben.

Voraussetzungen
siehe "Modellierte Voraussetzungen"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-107506 - Plattformökonomie darf nicht begonnen worden sein.

Empfehlungen
Keine
8.173 Teilleistung: Plattformökonomie [T-WIWI-107506]

Verantwortung: Tim Straub
 Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101421 - Supply Chain Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungswoche</th>
<th>Veranstaltungskennzahl</th>
<th>Veranstaltung</th>
<th>Prüfung Type</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900213</td>
<td>Plattformökonomie</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900214</td>
<td>Plattformökonomie</td>
<td>Prüfung (PR)</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Details zur Notenbildung werden zu Beginn der Veranstaltung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

8.174 Teilleistung: Platzhalter 1 eBusiness und Service Management [T-WIWI-109808]

Einrichtung: Universität gesamt
Bestandteil von: M-WIWI-101434 - eBusiness und Service Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.175 Teilleistung: Platzhalter 1 Supply Chain Management [T-WIWI-109802]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101421 - Supply Chain Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.176 Teilleistung: Platzhalter 2 Supply Chain Management [T-WIWI-109803]

Einrichtung: Universität gesamt
Bestandteil von: M-WIWI-101421 - Supply Chain Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.177 Teilleistung: PLM für mechatronische Produktentwicklung [T-MACH-102181]

Verantwortung: Prof. Dr.-Ing. Martin Eigner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von:
- M-MACH-101270 - Product Lifecycle Management
- M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2122376</th>
<th>PLM für mechatronische Produktentwicklung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Eigner</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102181</th>
<th>PLM für mechatronische Produktentwicklung</th>
<th>Prüfung (PR)</th>
<th>Eigner</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

PLM für mechatronische Produktentwicklung
2122376, SS 2019, SWS, im Studierendenportal anzeigen

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 45.0 Stunden
8.178 Teilleistung: PLM-CAD Workshop [T-MACH-102153]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von:
- M-MACH-101270 - Product Lifecycle Management
- M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Quartal</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstaltungstyp (S/P)</th>
<th>Ausführung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>4</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Ovtcharova, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>2121357</td>
<td>PLM-CAD Workshop</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Quartal</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfungstyp</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102153</td>
<td>PLM-CAD Workshop</td>
<td>Prüfung (PR)</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrollen:
Prüfungsleistung anderer Art (benotet)

Voraussetzungen:
Keine

Anmerkungen:
Anwesenheitspflichtig und Teilnehmerzahl begrenzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

PLM-CAD Workshop
2121357, WS 18/19, 4 SWS, [Im Studierendenportal anzeigen](#)

Lehrinhalt
Im Rahmen des Workshops wird eine Produktentwicklung als Projektauftrag innerhalb des Produktlebenszyklus durch den Einsatz moderner PLM/PDM- und CAD- Systeme abgewickelt.

PLM-CAD Workshop
2121357, SS 2019, 4 SWS, [Im Studierendenportal anzeigen](#)

Lehrinhalt
Im Rahmen des Workshops wird eine Produktentwicklung als Projektauftrag innerhalb des Produktlebenszyklus durch den Einsatz moderner PLM/PDM- und CAD- Systeme abgewickelt.
8.179 Teilleistung: Polymerengineering I [T-MACH-102137]

Verantwortung: Prof. Dr.-Ing. Peter Elsner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen
WS 18/19 2173590 Polymerengineering I 2 SWS Vorlesung (V) Elsner, Weidenmann

Prüfungsveranstaltungen
WS 18/19 76-T-MACH-102137 Polymerengineering I Prüfung (PR) Elsner
SS 2019 76-T-MACH-102137 Polymerengineering I Prüfung (PR) Elsner

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Polymerengineering I
2173590, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen

Lehrinhalt
1. Wirtschaftliche Bedeutung der Kunststoffe
2. Einführung in mechanische, chemische und elektrische Eigenschaften
3. Überblick der Verarbeitungsverfahren
4. Werkstoffkunde der Kunststoffe
5. Synthese

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literatur
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
8.180 Teilleistung: Polymerengineering II [T-MACH-102138]

Verantwortung: Prof. Dr.-Ing. Peter Elsner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2174596</th>
<th>Polymerengineering II</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Elsner</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen
| WS 18/19 | 76-T-MACH-102138 | Polymerengineering II | Prüfung (PR) | Elsner |
| SS 2019 | 76-T-MACH-102138 | Polymerengineering II | Prüfung (PR) | Elsner |

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
keine

Empfehlungen
Kenntnisse in Polymerengineering I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Polymerengineering II
2174596, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
1. Verarbeitungsverfahren con Polymeren
2. Bauteileigenschaften
 Anhand von praktischen Beispielen und Bauteilen
2.1 Werkstoffauswahl
2.2 Bauteilgestaltung, Design
2.3 Werkzeugtechnik
2.4 Verarbeitungs- und Fertigungstechnik
2.5 Oberflächentechnik
2.6 Nachhaltigkeit, Recycling

Arbeitsaufwand
Der Arbeitsaufwand für die Vorlesung Polymerengineering II beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).

Literatur
Literaturhinweise, Unterlagen und Teilmanuskript werden in der Vorlesung ausgegeben.
8.181 Teilleistung: Practical Seminar Interaction [T-WIWI-109935]

Verantwortung: Prof. Dr. Alexander Mädche
 Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-104900 - Betriebswirtschaftslehre
 M-WIWI-104911 - Information Systems & Digital Business: Interaction

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Voraussetzungen
Keine.
Teilleistung: Practical Seminar Platforms [T-WIWI-109937]

Verantwortung: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-104900 - Betriebswirtschaftslehre
M-WIWI-104912 - Information Systems & Digital Business: Platforms

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Voraussetzungen
Keine.
8.183 Teilleistung: Practical Seminar Servitization [T-WIWI-109939]

Verantwortung: Prof. Dr. Alexander Mädche
Prof. Dr. Gerhard Satzger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-104900 - Betriebswirtschaftslehre
- M-WIWI-104913 - Information Systems & Digital Business: Servitization

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
The assessment of this course is according to §4(2), 3 SPO in form of a written documentation, a presentation of the outcome of the conducted practical components and an active participation in class. Please take into account that, beside the written documentation, also a practical component (e.g. implementation of a prototype) is part of the course. Please examine the course description for the particular tasks. The final mark is based on the graded and weighted attainments (such as the written documentation, presentation, practical work and an active participation in class).

Voraussetzungen
Keine.
8.184 Teilleistung: Praktikum Produktionsintegrierte Messtechnik [T-MACH-108878]

Verantwortung: Dr.-Ing. Benjamin Häfner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
| SS 2019 | 2150550 | Praktikum Produktionsintegrierte Messtechnik | 3 SWS | Praktikum (P) | Häfner |

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet)
Kolloquium

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Produktionsintegrierte Messtechnik
2150550, SS 2019, 3 SWS, Im Studierendenportal anzeigen

Beschreibung

Bemerkungen

Lehrinhalt

- Klassifikation und Anwendungsfälle relevanter Mess- und Prüfverfahren in der Produktion
- Machine Vision mittels optischer Sensoren
- Informationsfusion am Beispiel optischer Sensoren
- Robotergestützte optische Messungen
- Zerstörungsfreie Prüftechnik am Beispiel von akustischer Sensorik
- Koordinatenmesstechnik
- Industrielle Computertomographie
- Messunsicherheitsermittlung
- Analyse von Messdaten im Produktionsumfeld mittels Data-Mining
Arbeitsaufwand
Präsenzzeit: 31,5 Stunden
Selbststudium: 88,5 Stunden
8.185 Teilleistung: Praktikum zu Grundlagen der Mikrosystemtechnik [T-MACH-102164]

Verantwortung: Dr. Arndt Last
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau / Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-101287 - Mikrosystemtechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Art</th>
<th>Turnus</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>Praktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>Laborpraktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Last</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>Laborpraktikum zu Grundlagen der Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Last</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Prüfung (PR)</td>
<td>IMT-Labore, Campus Nord, Gebäude 307</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Prüfung (PR)</td>
<td>IMT-Labore, Campus Nord, Gebäude 307</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum zu Grundlagen der Mikrosystemtechnik

2143875, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](#)

Praktikum (P)

Bemerkungen

S. Homepage:
Termin: in der vorlesungsfreien Zeit
Ort: IMT-Labore, Campus Nord, Gebäude 307
Praktikumstermin in der ersten vollständigen Septemberwoche, also 3.-7.9.2018, Klausur voraussichtlich 13.9.2018
Lehrinhalt
Im Praktikum werden Versuche zu neun Themen angeboten:
1. Heißprägen von Kunststoff-Mikrostrukturen
2. Mikrogalvanik
3. Mikrooptik am Beispiel "LIGA-Mikrospektrometer"
4. UV-Lithographie
5. Optische Wellenleiter
6. Kapillarelektrophorese im Chipformat
7. SAW Gassensorik
8. Messtechnik
9. Rasterkraftmikroskopie
Jeder Studierende kann während der Praktikumswoche nur an fünf Versuchen teilnehmen.
Die Versuche werden an den realen Arbeitsplätzen am IMT durchgeführt und von IMT-Mitarbeitern betreut.

Arbeitsaufwand
Präsenzzeit: 21 Stunden + 2 Stunden Klausur
Selbststudium: 5 Stunden Praktikumsvorbereitung + 10 h Klausurvorbereitung

Literatur
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Bemerkungen
Teilnahmeanfragen an Frau Nowotny, marie.nowotny@kit.edu
Lehrinhalt
Im Praktikum werden Versuche zu neun Themen angeboten:
1. Heißprägen von Kunststoff-Mikrostrukturen
2. Mikrogalvanik
3. Mikrooptik am Beispiel "LIGA-Mikrospektrometer"
4. UV-Lithographie
5. Optische Wellenleiter
6. Kapillarelektrophorese im Chipformat
7. SAW Gassensorik
8. Messtechnik
9. Rasterkraftmikroskopie

Jeder Studierende kann während der Praktikumswoche nur an fünf Versuchen teilnehmen. Die Versuche werden an den realen Arbeitsplätzen am IMT durchgeführt und von IMT-Mitarbeitem betreut.

Arbeitsaufwand
Präsenzzeit: 21 Stunden + 2 Stunden Klausur
Selbststudium: 5 Stunden Praktikumsvorbereitung + 10 h Klausurvorbereitung

Literatur
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Bemerkungen
Teilnahmeanfragen an Frau Nowotny, marie.nowotny@kit.edu

Lehrinhalt
Im Praktikum werden Versuche zu neun Themen angeboten:
1. Heißprägen von Kunststoff-Mikrostrukturen
2. Mikrogalvanik
3. Mikrooptik am Beispiel "LIGA-Mikrospektrometer"
4. UV-Lithographie
5. Optische Wellenleiter
6. Kapillarelektrophorese im Chipformat
7. SAW Gassensorik
8. Messtechnik
9. Rasterkraftmikroskopie

Jeder Studierende kann während der Praktikumswoche nur an fünf Versuchen teilnehmen. Die Versuche werden an den realen Arbeitsplätzen am IMT durchgeführt und von IMT-Mitarbeitem betreut.

Arbeitsaufwand
Präsenzzeit: 21 Stunden + 2 Stunden Klausur
Selbststudium: 5 Stunden Praktikumsvorbereitung + 10 h Klausurvorbereitung

Literatur
Menz, W., Mohr, J.: Mikrosystemtechnik für Ingenieure, VCH-Verlag, Weinheim, 1997
Unterlagen zum Praktikum zur Vorlesung 'Grundlagen der Mikrosystemtechnik'

Verantwortung: Prof. Dr. Ute Werner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101436 - Risk and Insurance Management
- M-WIWI-104900 - Betriebswirtschaftslehre

Erfolgskontrolle(n)

Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.

Die Prüfung wird für Erstschreiber letztmalig im Sommersemester 2017 angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine
8.187 Teilleistung: Problemlösung, Kommunikation und Leadership [T-WIWI-102871]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101425 - Strategie und Organisation
M-WIWI-101513 - Personal und Organisation
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 2
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2577910</th>
<th>Problemlösung, Kommunikation und Leadership</th>
<th>1 SWS</th>
<th>Vorlesung (V)</th>
<th>Lindstädt</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>7900069</th>
<th>Problemlösung, Kommunikation und Leadership</th>
<th>1 SWS</th>
<th>Prüfung (PR)</th>
<th>Lindstädt</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (30min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Problemlösung, Kommunikation und Leadership
2577910, SS 2019, 1 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 2 Leistungspunkten: ca. 30*2 Stunden.
Davon Präsenzzeit: 12-14 Stunden
Rest für Vor-/Nachbereitung sowie Prüfungsvorbereitung

Literatur
Verpflichtende Literatur:
Die relevanten Auszüge und zusätzlichen Quellen werden in der Veranstaltung bekannt gegeben.

Ergänzende Literatur:
- Zelazny, Gene; Delker, Christel: Wie aus zahlen Bilder werden, 6. Aufl. Wiesbaden 2008
- Minto, Barbara: Das Prinzip der Pyramide: Ideen klar, verständlich und erfolgreich kommunizieren. 2005
8.188 Teilleistung: Product Lifecycle Management [T-MACH-105147]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von:
M-MACH-101270 - Product Lifecycle Management
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsthema</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Product Lifecycle Management</td>
<td>2121350</td>
<td>2</td>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung 90 Min.

Voraussetzungen

Keine

Lehrinhalt

Bei Product Lifecycle Management (PLM) handelt es sich um einen Ansatz zur ganzheitlichen und unternehmensübergreifenden Verwaltung und Steuerung aller produktbezogenen Prozesse und Daten über den gesamten Lebenszyklus entlang der erweiterten Logistikketten – von der Konstruktion und Produktion über den Vertrieb bis hin zur Demontage und Recycling.

Das Product Lifecycle Management ist ein umfassendes Konzept zur effektiven und effizienten Gestaltung des Produktlebenszyklus. Basierend auf der Gesamtheit an Produktinformationen, die über die gesamte Wertschöpfungskette und verteilt über mehrere Partner anfallen, werden Prozesse, Methoden und Werkzeuge zur Verfügung gestellt, um die richtigen Informationen in der richtigen Zeit, Qualität und am richtigen Ort bereitzustellen.

Die Vorlesung umfasst:

- Eine durchgängige Beschreibung sämtlicher Geschäftsprozesse, die während des Produktlebenszyklus auftreten (Entwicklung, Produktion, Vertrieb, Demontage, ...),
- die Darstellung von Methoden des PLM zur Erfüllung der Geschäftsprozesse,
- die Erläuterung der wichtigsten betrieblichen Informationssysteme zur Unterstützung des Lebenszyklus (PDM, ERP, SCM, CRM-Systeme) an Beispiel des Softwareherstellers SAP

Arbeitsaufwand

Präsenzz: 42 Stunden
Selbststudium: 128 Stunden

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

![Product Lifecycle Management](image-url)
Literatur

Vorlesungsfolien.

8.189 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-101270 - Product Lifecycle Management

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2123364</th>
<th>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Mbang</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung 20 Min.

Voraussetzungen

Keine

Anmerkungen

Teilnehmerzahl begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)

Vorlesung (V)

2123364, SS 2019, 2 SWS, [Im Studierendenportal anzeigen](#)

Bemerkungen

Blockveranstaltung mit integrierten Übungen.

Lehrinhalt

Die Vorlesung behandelt folgende Themen:

- Überblick zur Fahrzeugentstehung (Prozess- und Arbeitsabläufe, IT-Systeme)
- Integrierte Produktmodelle in der Fahrzeugindustrie (Produkt, Prozess und Ressource Sichten)
- Neue CAx-Modellierungsmethoden (intelligente Feature-Technologie, Template- & Skelett-Methodik, funktionale Modellierung)
- Automatisierung und wissensbasierte Mechanismen in der Konstruktion und Produktionsplanung
- Anforderungs- und Prozessgerechte Fahrzeugentstehung (3D-Master Prinzip, Toleranzmodelle)
- Concurrent Engineering, verteiltes Arbeiten
- Erweiterte Konzepte: Prinzip der digitalen und virtuellen Fabrik (Einsatz virtueller Techniken und Methoden in der Fahrzeugentstehung)
- Eingesetzte Systeme: Siemens NX

Zusätzlich ist unter anderem eine begleitende, praktische Industrieprojektarbeit auf Basis eines durchgängigen Szenarios (von der Konstruktion über die Prüf- und Methodenplanung bis hin zur Betriebsmittelfertigung) vorgesehen.

Neben der eigentlichen Durchführung der Projektarbeit, in der die Studenten/Studentinnen ein oder mehrere interdisziplinäre Teams bilden, werden dabei auch die Arbeitsabläufe, die Kommunikation und die verteilte Entwicklung (Concurrent Engineering) eine zentrale Rolle spielen.

Anmerkungen

Max. 20 Studenten, Anmeldung erforderlich (über ILIAS)
Arbeitsaufwand
Präsenzzeit: 32 Stunden
Selbststudium: 72 Stunden

Literatur
Vorlesungsfolien
8.190 Teilleistung: Produktion und Nachhaltigkeit [T-WIWI-102820]

Verantwortung: Dr. Jérémy Rimbon
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101437 - Industrielle Produktion I
M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2581960</th>
<th>Produktion und Nachhaltigkeit</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Rimbon</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>7981960</th>
<th>Produktion und Nachhaltigkeit</th>
<th>Prüfung (PR)</th>
<th>Schultmann</th>
</tr>
</thead>
</table>

Beschreibung

In dieser Vorlesung werden das betriebliche und das überbetriebliche Stoffstrommanagement behandelt. Im Mittelpunkt stehen

- die kosten- und ökologisch effiziente Ausgestaltung von Maßnahmen zur Vermeidung, Verminderung und Verwertung von Emissionen, Reststoffen und Altprodukten,
- die Erhöhung der Ressourceneffizienz.

Lehrinhalt

Themen:
- Stoffrecht
- Rohstoffe, Reserven und deren Verfügbarkeit
- Stoffstromanalysen (MFA/SFA)
- Stoffstromorientierte Kennzahlen/Ökoprofile, u.a. Carbon Footprint
- Ökobilanzierung (LCA)
- Ressourceneffizienz
- Emissionsminderung
- Abfall- und Kreislaufwirtschaft
- Rohstoffnahe Produktionssysteme
- Umweltmanagement (EMAS, ISO 14001, Ökoprofit) und Ökocontrolling

Arbeitsaufwand

Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden
Literatur
wird in der Veranstaltung bekannt gegeben
8.191 Teilleistung: Produktions- und Logistikcontrolling [T-WIWI-103091]

Verantwortung: Alexander Rausch
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-MACH-101269 - Einführung in die Technische Logistik
 M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem</th>
<th>Code</th>
<th>Übungsblock</th>
<th>SWS</th>
<th>AA</th>
<th>Termine</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2500005</td>
<td>Produktions- und Logistikcontrolling</td>
<td>2</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sem</th>
<th>Code</th>
<th>Übungsblock</th>
<th>SWS</th>
<th>AA</th>
<th>Termine</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>79-T-WIWI-103091</td>
<td>Produktions- und Logistikcontrolling</td>
<td>Prüfung (PR)</td>
<td>Furmans</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>79-T-WIWI-103091</td>
<td>Produktions- und Logistikcontrolling</td>
<td>Prüfung (PR)</td>
<td>Furmans, Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) nach §4(2), 1 SPO. Die Prüfung wird in jedes Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktions- und Logistikcontrolling

Beschreibung
Vorlesung mit Folienpräsentation (Skript) und Tafelanschrieb. Zusätzlich Übungen im Rahmen der Vorlesung.

Lehrinhalt
1. Overview of Controlling
2. Performance Measurement
3. Planning
4. Reporting
5. Deviation Analysis

Arbeitsaufwand
Gesamtaufwand: ca. 90 Stunden
32 SWS Vorlesung, zusätzlich ca. 65 Stunden Vor- und Nachbereitung der Vorlesungen und Übungen einschl. Klausurvorbereitung

Literatur
Vorlesungsbegleitendes Skript in ILIAS zum Download
Tafelanschrieb
8.192 Teilleistung: Produktionstechnisches Seminar [T-MACH-109062]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Prof. Dr.-Ing. Gisela Lanza
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-WIWI-101816 - Seminarmodul
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

| SS 2019 | 2149665 | Produktionstechnisches Seminar | 1 SWS | Seminar (S) | Fleischer, Lanza, Schulze, Zanger |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-109062 | Produktionstechnisches Seminar | Prüfung (PR) | Fleischer, Lanza, Schulze |

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):

- schriftliche Ausarbeitung (min. 80 Std. Arbeitsaufwand)
- Ergebnispräsentation (ca. 30 min)

Voraussetzungen
keine

Anmerkungen
Die spezifischen Themen werden auf der Homepage des wbk Institut für Produktionstechnik veröffentlicht.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktionstechnisches Seminar

2149665, SS 2019, 1 SWS, Im Studierendenportal anzeigen

Beschreibung
Die spezifischen Themen werden auf der Homepage des wbk Institut für Produktionstechnik veröffentlicht.

Lehrinhalt
Im Rahmen des Produktionstechnischen Seminars werden aktuelle Fragestellungen aus den drei wbk-Forschungsbereichen "Fertigungs- und Werkstofftechnik", "Maschinen, Anlagen und Prozessautomatisierung", sowie "Produktionssysteme" behandelt.

Arbeitsaufwand
Präsenzzeit: 10 Stunden
Selbststudium: 80 Stunden
8.193 Teilleistung: Programmieren I: Java [T-WIWI-102735]

Verantwortung: Prof. Dr.-Ing. Johann Marius Zöllner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101581 - Einführung in die Programmierung
M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511000</td>
<td>Programmieren I: Java</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511002</td>
<td>Tutorien zu Programmieren I: Java</td>
<td>1 SWS</td>
<td>Tutorium (Tu)</td>
<td>Zöllner, Struppek, Ulrich</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511003</td>
<td>Rechnerpraktikum zu Programmieren I: Java</td>
<td>2 SWS</td>
<td>Praktische Übung (PÜ)</td>
<td>Zöllner, Struppek, Ulrich</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2511004</td>
<td>Tutorien zu Programmieren I: Java</td>
<td>1 SWS</td>
<td>Tutorium (Tu)</td>
<td>Zöllner, Struppek, Ulrich</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfungstermin</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900018</td>
<td>Programmieren I: Java</td>
<td>Prüfung (PR)</td>
<td>Zöllner</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900042</td>
<td>Programmieren I: Java</td>
<td>Prüfung (PR)</td>
<td>Zöllner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Am Ende der Vorlesungszeit wird eine schriftliche Prüfung (60 min) (nach §4(2),1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine.

Anmerkungen

Die Anmeldung zur Teilnahme am Rechnerpraktikum (Vorbedingung zur Klausurteilnahme) findet bereits in der ersten Vorlesungswoche statt!

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Programmieren I: Java
2511000, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Vorlesung (V)
Lehrinhalt

Am Ende der Vorlesungszeit wird eine schriftliche Prüfung angeboten, für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Anmerkungen

Die Anmeldung zur Teilnahme am Rechnerpraktikum (Vorbedingung zur Klausurteilnahme) findet bereits in der ersten Vorlesungswoche statt!

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 45 Stunden
Vor- und Nachbereitung der LV: 67.5 Stunden
Prüfung und Prüfungsvorbereitung: 37.5 Stunden

Literatur

Bemerkungen
Räume und Termine werden noch bekannt gegeben.
8.194 Teilleistung: Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java [T-WIWI-102747]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Dietmar Ratz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101399 - Vertiefung Informatik</td>
</tr>
<tr>
<td></td>
<td>M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)</td>
</tr>
</tbody>
</table>

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 5

Turnus
- Jedes Sommersemester

Version
- 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2511020</td>
<td>Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
<td>2 SWS</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2511021</td>
<td>Tutorium zu Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
<td>1 SWS</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2511023</td>
<td>Rechnerpraktikum zu Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900020</td>
<td>Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900041</td>
<td>Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102748 - Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware darf nicht begonnen worden sein.

Anmerkungen
Die Anmeldung zur Teilnahme am Rechnerpraktikum (Vorbedingung zur Klausurteilnahme) findet bereits in der ersten Vorlesungswoche statt!

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java
- 2511020, SS 2019, 2 SWS, Im Studierendenportal anzeigen
Lehrinhalt

Anmerkungen
Die Anmeldung zur Teilnahme am Rechnerpraktikum (Vorbedingung zur Klausurteilnahme) findet bereits in der ersten Vorlesungswoche statt!

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 45 Stunden
Vor – und Nachbereitung der LV: 67.5 Stunden
Prüfung und Prüfungsvorbereitung: 37.5 Stunden

Literatur

Weiterführende Literatur:
- Weitere Literatur wird in der Vorlesung bekannt gegeben.
8.195 Teilleistung: Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware [T-WIWI-102748]

Verantwortung: Prof. Dr. Stefan Klink
Prof. Dr. Andreas Oberweis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101399 - Vertiefung Informatik
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
5

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstag</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511026</td>
<td>Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstag</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511027</td>
<td>Übungen zu Programmierung kommerzieller Systeme - Einsatz betrieblicher Standard-Software</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstag</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2511028</td>
<td>Rechnerübung zu Programmierung kommerzieller Systeme - Einsatz betrieblicher Standard-Software</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstag</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900019</td>
<td>Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungstag</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>7900049</td>
<td>Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Diese Veranstaltung kann nicht gleichzeitig mit Programmierung kommerzieller Systeme - Anwendungen in Netzen mit Java angerechnet werden.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Empfehlungen
Kenntnisse aus den Vorlesungen Grundlagen der Informatik I und II sind hilfreich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Programmierung kommerzieller Systeme - Einsatz betrieblicher Standardsoftware

Vorlesung (V)

2511026, WS 18/19, 2 SWS, im Studierendenportal anzeigen
Lehrinhalt

• Analyse von Kooperations- und Geschäftsprozesssszenarien
• Auswahl einer gegenstandsbezogenen Modellierungsmethode nach kommunizierbaren Kriterien
• Implementierung von Geschäftsprozess- und/oder Kooperationsmodellen auf einer Standardsoftware
• Erkennen und Abschätzen von Herausforderungen bei der Einführung der Systeme in die Organisation
• Evaluierung der Ökonomie der eingeführten Systeme

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden.
Besuch der Vorlesung 30h
Besuch der Übung 15h
Vor- bzw. Nachbereitung der Vorlesung 30h
Vor- bzw. Nachbereitung der Übung 15h
Rechnerübungen 30h
Prüfungsvorbereitung 29h
Prüfung 1h
Übung wird von Tutoren durchgeführt (Größe ca. 50 Studenten)

Literatur
• Hasenkamp, Stahlknecht: Einführung in die Wirtschaftsinformatik. Springer 2012.

Weitere Literatur wird in der Vorlesung bekannt gegeben.
8.196 Teilleistung: Project Workshop: Automotive Engineering [T-MACH-102156]

Verantwortung: Dr.-Ing. Michael Frey
Prof. Dr. Frank Gauterin
Dr.-Ing. Martin Gießler

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-101264 - Fahrzeugeigenschaften
M-MACH-101265 - Fahrzeugentwicklung
M-MACH-101266 - Fahrzeugtechnik
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

| WS 18/19 | 2115817 | Project Workshop: Automotive Engineering | 3 SWS | Vorlesung (V) | Gauterin, Gießler, Frey |
| SS 2019 | 2115817 | Project Workshop: Automotive Engineering | 3 SWS | Vorlesung (V) | Gauterin, Gießler, Frey |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102156 | Project Workshop: Automotive Engineering | Prüfung (PR) | Gauterin |

Erfolgskontrolle(n)

mündliche Prüfung
Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Project Workshop: Automotive Engineering

2115817, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Bemerkungen

Begrenzte Teilnehmerzahl mit Auswahlverfahren, in deutscher Sprache. Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Termin und Raum: siehe Institutshomepage.

Lehrinhalt

Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftssrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Anmerkungen

Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Arbeitsaufwand
Präsenzzeit: 49 Stunden
Selbststudium: 131 Stunden

Literatur

Skripte werden beim Start-up Meeting ausgegeben.

Bemerkungen
Begrenzte Teilnehmerzahl mit Auswahlverfahren, in deutscher Sprache.

Lehrinhalt
Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftsrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Anmerkungen
Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.

Arbeitsaufwand
Präsenzzeit: 49 Stunden
Selbststudium: 131 Stunden

Literatur

Skripte werden beim Start-up Meeting ausgegeben.
8.197 Teilleistung: Projektmanagement [T-BGU-101675]

Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- M-BGU-101004 - Grundlagen des Baubetriebs
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 6200106 | Projektmanagement [bauiBGP12-PMANG] | 2 SWS | Vorlesung / Übung (VÜ) | Haghsheno, Schneider |

Prüfungsveranstaltungen

| WS 18/19 | 8230101675 | Projektmanagement | Prüfung (PR) | Haghsheno, Schneider |

Erfolgskontrolle(n)
Schriftliche Prüfung mit 60 Minuten

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Keine
8.198 Teilleistung: Projektübung Angewandte Fernerkundung [T-BGU-101814]

Verantwortung: Prof. Dr.-Ing. Stefan Hinz
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von:
- M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
- M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
- M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
- M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>6020245</th>
<th>Projektübung angewandte Fernerkundung</th>
<th>2 SWS</th>
<th>Übung (Ü)</th>
<th>Assistenten, Hinz</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>8284101814</th>
<th>Projektübung Angewandte Fernerkundung</th>
<th>Prüfung (PR)</th>
<th>Weidner</th>
</tr>
</thead>
</table>

Voraussetzungen
Vorleistung in Fernerkundungsverfahren

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-101638 - Fernerkundungsverfahren, Vorleistung muss erfolgreich abgeschlossen worden sein.
8.199 Teilleistung: Prüfung zur Klimatologie [T-PHYS-105594]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
M-WIWI-104904 - Physik

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfungen nach § 4 Abs. 2 Nr. 1 SPO Bachelor Meteorologie

Voraussetzungen
Die Teilleistung Klimatologie muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101092 - Klimatologie muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine
8.200 Teilleistung: Pulvermetallurgische Hochleistungswerkstoffe [T-MACH-102157]

Verantwortung: Dr.-Ing. Rainer Oberacker
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2019 2126749 Pulvermetallurgische Hochleistungswerkstoffe 2 SWS Vorlesung (V) Schell

Prüfungsveranstaltungen
SS 2019 76-T-MACH-102157 Pulvermetallurgische Hochleistungswerkstoffe Prüfung (PR) Schell

Erfolgskontrolle(n)
mündlichen Prüfung, 20-30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Pulvermetallurgische Hochleistungswerkstoffe
2126749, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Die Vorlesung behandelt die Herstellung, den Aufbau, die Eigenschaften und die Anwendungsgebiete für pulvermetallurgisch hergestellte Struktur- und Funktionswerkstoffe aus folgenden Werkstoffgruppen: PM-Schnellarbeitsstähle, Hartmetalle, Dispersionsverfestigte PM-Werkstoffe, Metallmatrix-Verbundwerkstoffe auf PM-Basis, PM-Sonderwerkstoffe, PM-Weichmagnete, PM-Hartmagnete.

Arbeitsaufwand
Präsentenzzeit: 22 Stunden
Selbststudium: 98 Stunden

Literatur
- R.M. German. "Powder metallurgy and particulate materials processing. Metal Powder Industries Federation, 2005
8.201 Teilleistung: Qualitätsmanagement [T-MACH-102107]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 2149667 | Qualitätsmanagement | 2 SWS | Vorlesung (V) | Lanza |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102107 | Qualitätsmanagement | Prüfung (PR) | Lanza |

Erfolgskontrolle(n)
Schriftliche Prüfung (60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

- **Vorlesung (V)**
 - **Qualitätsmanagement**
 - 2149667, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](#)

Beschreibung

Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt

Bemerkungen

Vorlesungstermine montags 9:45 Uhr
Übung erfolgt während der Vorlesung

Lehrinhalt

Auf Basis der Qualitätspolitiken Total Quality Management (TQM) und Six-Sigma wird in der Vorlesung speziell auf die Bedürfnisse eines modernen Qualitätsmanagements eingegangen. In diesem Rahmen werden intensiv der Prozessgedanke in einer modernen Unternehmung und die prozessspezifischen Einsatzgebiete von Qualitätssicherungsmöglichkeiten vorgestellt. Präventive sowie nicht-präventive Qualitätsmanagementmethoden, die heute in der betrieblichen Praxis Stand der Technik sind, sind neben Fertigungsmesstechnik, statistischer Methoden und servicebezogenem Qualitätsmanagement Inhalt der Vorlesung.

Abgerundet werden die Inhalte durch die Vorstellung von Zertifizierungs- und rechtlichen Aspekten im Qualitätsbereich.

Inhaltliche Schwerpunkte der Vorlesung:

- Der Begriff "Qualität"
- Total Quality Management (TQM) und Six-Sigma
- Universelle Methoden und Werkzeuge
- QM in frühen Produktphasen - Produktentwicklung
- QM in Produktentwicklung und Beschaffung
- QM in der Produktion - Fertigungsmesstechnik
- QM in der Produktion - Statistische Methoden
- QM im Service
- Qualitätsmanagementsysteme
- Rechtliche Aspekte im QM
Anmerkungen
Keine

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
8.202 Teilleistung: Real Estate Management I [T-WIWI-102744]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101466 - Real Estate Management
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Turnus
Jedes Wintersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2586400</td>
<td>Real Estate Management I</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2586401</td>
<td>Übungen zu Real Estate Management I</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900249</td>
<td>WS_Real Estate Management I - Hauptklausur</td>
<td>Prüfung (PR)</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900250</td>
<td>WS_Real Estate Management I - Nachklausur</td>
<td>Prüfung (PR)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Anmerkungen
Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Immobilienwirtschaft und durch Exkursionen ergänzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Real Estate Management I
2586400, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Lehrinhalt

Anmerkungen
Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Immobilienwirtschaft und durch Exkursionen ergänzt.
Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
Weiterführende Literatur:

8.203 Teilleistung: Real Estate Management II [T-WIWI-102745]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101466 - Real Estate Management
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich

Leistungspunkte: 4,5

Turnus: Jedes Sommersemester

Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2585400</th>
<th>Real Estate Management II</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Lützkendorf, Worschech</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2585401</td>
<td>Übung zu Real Estate Management II</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Worschech</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Sommersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Es wird eine Kombination mit dem Modul *Bauökologie* empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Finanzwirtschaft und Banken
- Versicherungen
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

Anmerkungen

Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Wohnungswirtschaft und durch Exkursionen ergänzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Real Estate Management II

2585400, SS 2019, 2 SWS, *Im Studierendenportal anzeigen*

Beschreibung

Die Übung dient der Vertiefung und praktischen Anwendung der in der Vorlesung erworbenen Kenntnisse an Beispielen aus der Immobilienwirtschaft.

Lehrinhalt

Die Übung dient der Vertiefung und praktischen Anwendung der in der Vorlesung erworbenen Kenntnisse an Beispielen aus der Immobilienwirtschaft.
Anmerkungen
Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Wohnungswirtschaft und durch Exkursionen ergänzt.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 105 Stunden

Literatur
Weiterführende Literatur:

8.204 Teilleistung: Rechnungswesen [T-WIWI-102816]

Verantwortung: Dr. Jan-Oliver Strych
Einrichtung: KIT-Fakultät für Informatik
KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101578 - Grundlagen BWL 2
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2600002</th>
<th>Rechnungswesen I</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Strych</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2600003</td>
<td>Übung zu Rechnungswesen</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Strych</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>7900244</th>
<th>Rechnungswesen</th>
<th>Prüfung (PR)</th>
<th>Ruckes</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung über 90 Minuten (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnungswesen I
2600002, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
1. Grundlagen der Rechnungslegungsstandards
2. Jahresabschluss und Geschäftsbericht
3. Ausgewählte Themen der Bilanzierung
4. Operationale Effizienzanalyse
5. Bilanzanalyse
6. Wertorientierte Unternehmensführung
7. Steuern im Rechnungswesens
8. Bilanzpolitik und Compliance
9. Budgetierung und Benchmarking
10. Berichtswesen

Anmerkungen
Es wird empfohlen, grundlegende Kenntnisse zum externen Rechnungswesen zu haben.

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur

Verantwortung: PD Dr. Patrick Jochem
Prof. Dr. Russell McKenna

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101464 - Energiewirtschaft
M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3,5

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

WS 18/19
2581012
Renewable Energy – Resources, Technologies and Economics
2 SWS
Vorlesung (V)
McKenna, Jochem

Prüfungsveranstaltungen

WS 18/19
7981012
Renewable Energy-Resources, Technologies and Economics
Prüfung (PR)
Fichtner

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min., englisch, Antworten auf deutsch oder englisch möglich) nach § 4 Abs. 2 Nr. 1 SPO2015.

Voraussetzungen

Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Renewable Energy – Resources, Technologies and Economics
2581012, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

1. Einleitung: Potenzialbegriffe
2. Wasser
3. Wind
4. Sonne
5. Biomasse
6. Erdwärme
7. Sonstige erneuerbare Energien
8. Förderung erneuerbarer Energien

Lehrinhalt

1. Allgemeine Einleitung: Motivation, Globaler Stand
2. Grundlagen der Erneuerbaren Energien: Energiebilanz der Erde, Potenzialbegriffe
3. Wasser
4. Wind
5. Sonne
6. Biomasse
7. Erdwärme
8. Sonstige erneuerbare Energien
9. Förderung erneuerbarer Energien
10. Wechselwirkungen im Systemkontext
11. Ausflug zum Energieberg in Mühlburg
Arbeitsaufwand
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden

Literatur
Weiterführende Literatur:

8.206 Teilleistung: Seminar aus Rechtswissenschaften I [T-INFO-101997]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-WIWI-101816 - Seminarmodul
 M-WIWI-104903 - Recht

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>24389</td>
<td>IT-Sicherheit und Recht</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Schallbruch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2400041</td>
<td>Vertiefungs-Seminar Governance, Risk & Compliance</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Herzig</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2400061</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Bless, Boehm, Hartenstein, Mädche, Sunyaev, Zitterbart</td>
</tr>
<tr>
<td>SS 2019</td>
<td>24820</td>
<td>Aktuelle Fragen des Patentrechts</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Melullis</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7500035</td>
<td>Seminar aus Rechtswissenschaften II</td>
<td>Prüfung (PR)</td>
<td>Marsch</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7500182</td>
<td>Seminar aus Rechtswissenschaften II</td>
<td>Prüfung (PR)</td>
<td>Raabe, Dreier, Boehm</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7500159</td>
<td>Seminar aus Rechtswissenschaften I</td>
<td>Prüfung (PR)</td>
<td>Marsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit sowie ihrer Präsentation als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen
Keine

Anmerkungen
Es können alle Seminare des Instituts für Informations- und Wirtschaftsrecht (IIWR) belegt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

IT-Sicherheit und Recht
24389, WS 18/19, 2 SWS, Im Studierendenportal anzeigen
Lehrinhalt
Die Sicherheit der Informationstechnik ist zu einer Schlüsselfrage der Gestaltung der Informationsgesellschaft geworden. Die Abhängigkeit der Wirtschaft und des Staates vom Funktionieren von IT-Systemen und Internet, die zunehmende Komplexität der IT-Systeme, die Verteilung der Verantwortung auf unterschiedliche Beteiligte und die steigende Zahl von Cyberangriffen durch verschiedenste Akteure erschweren die IT-Sicherheit.

Themen für Seminararbeiten:

1. Das Recht auf Gewährleistung der Integrität und Vertraulichkeit informationstechnischer Systeme als "IT-Sicherheitsgrundrecht"
2. Datenschutz und Datensicherheit - IT-Sicherheit als Hilfsmittel zum Schutz des Persönlichkeitsrechts
3. Deutsches Computerstrafrecht und die Umsetzung der Cybercrime-Konvention des Europarats
4. IT-Sicherheit im Zivilrecht - wer haftet für Sicherheitsvorfälle?
5. Online-Shopping und seine Tücken (Fernabsatzzweck)
6. Schutz des Verbrauchers gegen unlautere Methoden im Internet (Spam, Abofallen)
7. IT-Sicherheit kritischer Infrastrukturen - rechtliche Absicherung unter besonderer Berücksichtigung des IT-Sicherheitsgesetzes
8. Das Bundesamt für Sicherheit in der Informationstechnik und seine rechtlichen Grundlagen nach Verabschiedung des IT-Sicherheitsgesetzes
9. Pässe und Personalausweise als gesicherte elektronische Identitäten
10. Elektronische Signaturen - praxisgerecht und überreguliert?
11. De-Mail und das De-Mail-Gesetz - ein sicherer elektronischer Kommunikationsraum?
12. IT-Sicherheit in der öffentlichen Verwaltung - Art. 91c GG und der IT-Planungsrat
13. Cyberabwehr als Aufgabe der Bundeswehr?
14. Europäische IT-Sicherheitsstrukturen - die IT-Sicherheitsagentur ENISA und die Diskussion über eine EU-Richtlinie für Netzwerk und Informationssicherheit
15. Behördenverantwortung für Cybersicherheit in Deutschland - Zuständigkeiten, Zusammenarbeitsformen, Trennungsgebote

Bitte melden Sie sich elektronisch an unter helga.scherer@kit.edu. Bitte geben Sie der Anmeldung drei Wunschtthemen an. Die Plätze werden in der Reihenfolge der Anmeldungen verteilt.

Die Verteilung der Themen erfolgt rechtzeitig vor Semesterbeginn. Die Teilnahme an der Vorbesprechung ist verpflichtend.

Arbeitsaufwand
ca. 100 – 120 h (2 – 4 Credits)

Vertiefungs-Seminar Governance, Risk & Compliance
2400041, SS 2019, 2 SWS, Im Studierendenportalanzeigen

Beschreibung
Lehrinhalt

Arbeitsaufwand
21 h Präsenzzeit, 60 h schriftliche Ausarbeitung, 9h Vortrag vorbereiten.

Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung
2400061, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Bemerkungen
Anmeldung über https://portal.wiwi.kit.edu/ys/2708

Aktuelle Fragen des Patentrechts
24820, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

Bemerkungen
Das Seminar wird als wöchentlich stattfindende Veranstaltung angeboten.

Arbeitsaufwand
Der gesamte Arbeitsaufwand beträgt ca. 75-100 h, davon sind 22,5 h Präsenzzeit.
8.207 Teilleistung: Seminar Betriebswirtschaftslehre (Bachelor) [T-WIWI-103486]

Verantwortung: Professorenschaft des Fachbereichs Betriebswirtschaftslehre
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101816 - Seminarmodul
- M-WIWI-104900 - Betriebswirtschaftslehre

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
3

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2530372</td>
<td>Investment Case Studies</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Ulrich</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2530580</td>
<td>Seminar in Finance</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Uhrig-Homburg, Mitarbeiter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2540254</td>
<td>Bachelor-Seminar aus CRM</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Geyer-Schulz, Ball, Schweigert, Schweizer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2540557</td>
<td>Literature Review Seminar: Information Systems and Service Design</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Mädche, Augenstein</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2545010</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Schwarzkopf, Terzidis</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2545011</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Böhrer, Terzidis</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2545012</td>
<td>Entrepreneurship Basics (Track 3)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Ziegler, Ntagiakou, Terzidis</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2572173</td>
<td>Seminar in Marketing & Innovation (Bachelor)</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Feurer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2573010</td>
<td>Seminar Personal und Organisation</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2573011</td>
<td>Seminar Human Resource Management</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2579905</td>
<td>Special Topics in Management Accounting</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Riar</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2581976</td>
<td>Seminar Produktionswirtschaft und Logistik I</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Glöser-Chahoud, Schultmann</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2581977</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Volk, Schultmann</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2581978</td>
<td>Seminar Produktionswirtschaft und Logistik III</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Wiens, Schultmann</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Keles</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2581981</td>
<td>Seminar Energiewirtschaft III</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Ardone</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2530293</td>
<td>Seminar in Finance (Bachelor, Prof. Ruckes)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Ruckes, Luedecke, Hoang, Scholz-Daneshgari, Strych, Schubert, Benz</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2530580</td>
<td>Seminar in Finance (Master, Prof. Uhrig-Homburg)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Uhrig-Homburg, Hofmann, Reichenbacher, Eska</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2540524</td>
<td>Bachelor Seminar aus CRM (nur Bachelor)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Geyer-Schulz, Schweigert, Schweizer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2571180</td>
<td>Seminar in Marketing und Vertrieb (Bachelor)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Klarmann, Assistenten</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2573010</td>
<td>Seminar Personal und Organisation (Bachelor)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2573011</td>
<td>Seminar Human Resource Management (Bachelor)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nieken, Mitarbeiter</td>
</tr>
</tbody>
</table>

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
SS 2019	2579904	Seminar Management Accounting	2 SWS	Seminar (S)	Hammann, Disch
SS 2019	2579905	Special Topics in Management Accounting	2 SWS	Seminar (S)	Mickovic, Riar
SS 2019	2581977	Seminar Produktionswirtschaft und Logistik II	2 SWS	Seminar (S)	Schultmann

Prüfungsveranstaltungen

WS 18/19	7500175	Seminar: Energieinformatik	Prüfung (PR)	Wagner
WS 18/19	7900001	Investment Case Studies	Prüfung (PR)	Ulrich
WS 18/19	7900009	Alternative and Big Data in Finance	Prüfung (PR)	Ulrich
WS 18/19	7900017	Seminar Smart Grid and Energy Markets	Prüfung (PR)	Weinhardt
WS 18/19	7900085	Entrepreneurship Basics (Track 1)	Prüfung (PR)	Terzidis
WS 18/19	7900087	Entrepreneurship Basics (Track 2)	Prüfung (PR)	Terzidis
WS 18/19	7900088	Entrepreneurship Basics (Track 3)	Prüfung (PR)	Terzidis
WS 18/19	7900157	Seminar Personal und Organisation (Bachelor)	Prüfung (PR)	Nieken
WS 18/19	7900160	Seminar in Marketing and Innovation (Bachelor)	Prüfung (PR)	Feurer
WS 18/19	7900161	Seminar Human Resource Management (Bachelor)	Prüfung (PR)	Nieken
WS 18/19	7900165	Seminar Digital Experience and Participation	Prüfung (PR)	Weinhardt
WS 18/19	7900168	Bachelor-Seminar aus CRM	Prüfung (PR)	Geyer-Schulz
WS 18/19	7900175	Seminar FED (Bachelor)	Prüfung (PR)	Uhrig-Homburg
WS 18/19	7900203	Seminar Finance auf den Punkt gebracht	Prüfung (PR)	Uhrig-Homburg
WS 18/19	7900233	Literatur Review Seminar: Information Systems and Service Design (Seminar)	Prüfung (PR)	Mädche
WS 18/19	7900265	Seminar Betriebswirtschaftslehre (Bachelor)	Prüfung (PR)	Weissenberger-Eibl
WS 18/19	7900283	Seminar Electronic Markets and User Behavior	Prüfung (PR)	Weinhardt
WS 18/19	7900285	Auswirkung von energetischen Maßnahmen auf die Miete nach dem Mietspiegel	Prüfung (PR)	Lützkendorf
WS 18/19	79-2579905-01	Special Topics in Management Accounting (Bachelor)	Prüfung (PR)	Wouters
WS 18/19	7981976	Seminar Produktionswirtschaft und Logistik I: Methodenbootcamp Sustainability	Prüfung (PR)	Schultmann
WS 18/19	7981977	Seminar Produktionswirtschaft und Logistik II: Nachhaltigkeitsmanagement	Prüfung (PR)	Schultmann
WS 18/19	7981978	Seminar Produktionswirtschaft und Logistik III: Current Topics in Risk and Crisis Management	Prüfung (PR)	Schultmann
WS 18/19	7981979	Seminar Energiewirtschaft I: Energieinformatik	Prüfung (PR)	Fichtner
WS 18/19	7981980	Seminar Energiewirtschaft II: Dekarbonisierung des Energiesystems	Prüfung (PR)	Fichtner
WS 18/19	7981981	Seminar Energiewirtschaft III: Energiewende - Herausforderungen in Deutschland und Europa	Prüfung (PR)	Fichtner
SS 2019	7900021	Seminar in Marketing und Vertrieb (Bachelor)	Prüfung (PR)	Klarmann
SS 2019	7900093	Seminar Smart Grid and Energy Markets	Prüfung (PR)	Weinhardt
SS 2019	79-2579904-01	Seminar Management Accounting (Bachelor)	Prüfung (PR)	Wouters
SS 2019	79-2579905-01	Seminar Special Topics in Management Accounting (Bachelor)	Prüfung (PR)	Wouters
Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspektrum des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkungen
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangegangenen Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangegangenen Semesters erforderlich ist.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Bachelor-Seminar aus CRM

Lehrinhalt
Dieses Seminar dient als Einführung in wissenschaftliches Arbeiten. Dafür werden zu Beginn Einführungstermine (verpflichtend) angeboten, welche einen Einblick in Wissenschaftstheorie, Literaturrecherche, Textsatz mit LaTeX und Ausarbeitung/Präsentation des Inhalts geben.

Inhaltlich orientiert sich das Seminar grob an Fragestellungen aus dem Customer Relationship Management. Der genaue Inhalt wird mit Beginn der Bewerbungsphase bekannt gegeben.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden:

Präsenzzeit
- Einführungstermine: 4 x 90min = 6h 00m
- Vortragstermine: 4 x 90min = 6h 00m

Selbststudium
- Vortrag vorbereiten: 8h
- Literaturrecherche: 40h
- Seminararbeit: 30h

Summe: 90h 00m

Literatur

Weiterführende Literatur:

Seminar in Marketing & Innovation (Bachelor)

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
Lehrinhalt
Im Rahmen des Seminars sollen die Teilnehmer lernen, sich einen systematischen Überblick über ein Literaturgebiet im Marketing zu verschaffen – eine wichtige Grundvoraussetzung für erfolgreiche Abschlussarbeiten. Zentrale Aspekte der Leistung sind die Identifikation relevanter Quellen, die Systematisierung der Literatur, das Herausarbeiten zentraler Erkenntnisse sowie die klare und einfache sprachliche Darstellung der Ergebnisse.

Anmerkungen
Studenten, die an Abschlussarbeiten am Lehrstuhl für Marketing interessiert sind, sollten auch ein Seminar absolviert haben. Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
werden im Seminar bekannt gegeben.

Seminar Personal und Organisation
2573010, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Seminarsthemen werden auf Basis aktueller Fragestellungen jedes Semester neu definiert. Eine Liste mit den aktuellen Themen finden Sie jeweils zu Semesterbeginn auf der Website des Lehrstuhls.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor- /Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Seminar Human Resource Management
2573011, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor- /Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Special Topics in Management Accounting
2579905, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Anmerkungen
24 Studenten maximal.
Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
Präsenzzeit: [28] Stunden (2 SWS)
Vor- /Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Literatur
Wird im Seminar bekanntgegeben.

Seminar in Finance (Master, Prof. Uhrig-Homburg)
2530580, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Im Rahmen des Seminars werden wechselnde, aktuelle Themen besprochen, die auf die Inhalte der Vorlesungen aufbauen. Die aktuelle Thematik des Seminars inklusive der zu bearbeitenden Themenvorschläge wird am Ende des vorherigen Semesters auf der Homepage der Abteilungen der Lehrveranstaltungsleiter veröffentlicht.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Wird jeweils am Ende des vorherigen Semesters bekanntgegeben.

Seminar Personal und Organisation (Bachelor)
2573010, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Seminarthemen werden auf Basis aktueller Fragestellungen jedes Semester neu definiert. Eine Liste mit den aktuellen Themen finden Sie jeweils zu Semesterbeginn auf der Website des Lehrstuhls.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor- /Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Papiere und Bücher

Seminar Human Resource Management (Bachelor)
2573011, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Seminarthemen werden auf Basis aktueller Fragestellungen jedes Semester neu definiert. Eine Liste mit den aktuellen Themen finden Sie jeweils zu Semesterbeginn auf der Website des Lehrstuhls.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden.
Präsenzzeit: 30 Stunden
Vor- /Nachbereitung: 45 Stunden
Prüfung und Prüfungsvorbereitung: 15 Stunden

Literatur
Ausgewählte Papiere und Bücher
Seminar Management Accounting
2579904, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.
Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.
Die Themen können im Rahmen des Seminarthemas frei gewählt werden.

Anmerkungen
24 Studenten maximal.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
Präsenzzeit: [30] Stunden (2 SWS)
Vor-/Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Literatur
Wird im Seminar bekanntgegeben.

Special Topics in Management Accounting
2579905, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Das Seminar ist eine Kombination aus Vorlesung, Diskussionen und Studentenpräsentationen.
Die Studierenden fertigen in kleinen Gruppen eine Seminararbeit an und präsentieren diese in der Abschlusswoche.
Die Themen werden vorgegeben.

Anmerkungen
24 Studenten maximal.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 30*3 Stunden.
Präsenzzeit: [28] Stunden (2 SWS)
Vor-/Nachbereitung (zum Schreiben des Aufsatzes): [60] Stunden

Literatur
Wird im Seminar bekanntgegeben.
8.208 Teilleistung: Seminar Data-Mining in der Produktion [T-MACH-108737]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-WIWI-101816 - Seminarmodul
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 3
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2151643</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2151643</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-108737</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>Seminar (S)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):
- schriftliche Ausarbeitung (min. 80 Std. Arbeitsaufwand)
- Ergebnispräsentation (ca. 30 min)

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Seminar Data-Mining in der Produktion
2151643, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
KNIME Analytics Platform

Bemerkungen

Lehrinhalt
Anmerkungen

Arbeitsaufwand
Präsenzzeit: 10 Stunden
Selbststudium: 80 Stunden

Beschreibung
Medien:
KNIME Analytics Platform

Bemerkungen
Die Termine und Fristen zur Veranstaltung werden auf der Homepage http://www.wbk.kit.edu/studium-und-lehre.php bekannt gegeben.

Lehrinhalt

Anmerkungen

Arbeitsaufwand
Präsenzzeit: 10 Stunden
Selbststudium: 80 Stunden
8.209 Teilleistung: Seminar Informatik (Bachelor) [T-WIWI-103485]

Verantwortung: Professorenschaft des Fachbereichs Informatik

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101816 - Seminarmodul
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Woche</th>
<th>Code</th>
<th>Titel</th>
<th>SWS</th>
<th>Modulart</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2512301</td>
<td>Linked Data and the Semantic Web</td>
<td>3 SWS</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Sure-Vetter, Acosta, Deibe, Käfer, Heling, Weller</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512311</td>
<td>Real-World Challenges in Data Science und Analytics</td>
<td>3 SWS</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Sure-Vetter, Nickel, Weinhardt, Zehnder, Brandt</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2512312</td>
<td>Kooperationsseminar: Innovative Anwendungen auf Einplatinencomputern sowie ihre ökonomische Relevanz</td>
<td>3 SWS</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Sure-Vetter, Ott, Weller, Bälz</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2513200</td>
<td>Seminar Betriebliche Informationssysteme: Programmieren 3 (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Oberweis, Zöllner, Drescher, Fritsch, Struppek</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2513400</td>
<td>Emerging Trends in Critical Information Infrastructures</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Weinhardt, Satzger, Nickel, Fromm, Fichtner, Sure-Vetter</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Weinhardt, Satzger, Nickel, Fromm, Fichtner, Sure-Vetter</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>2512300</td>
<td>Knowledge Discovery and Data Mining</td>
<td>3 SWS</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Sure-Vetter, Färber, Nguyen, Weller</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>2513200</td>
<td>Seminar Betriebliche Informationssysteme: Datenschutz und IT-Sicherheit (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Oberweis, Raabe, Volkamer, Aldag, Alpers, Fritsch, Mucha, Wagner, Schiefer</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>2513306</td>
<td>Data Science & Real-time Big Data Analytics</td>
<td>2 SWS</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Sure-Vetter, Riemer, Zehnder</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>2513400</td>
<td>Emerging Trends in Critical Information Infrastructures</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Lins, Sunyaev, Thiebes</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>2595470</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Weinhardt, Nickel, Fichtner, Satzger, Sure-Vetter, Fromm</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Woche</th>
<th>Code</th>
<th>Titel</th>
<th>Modulart</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7500175</td>
<td>Seminar: Energieinformatik</td>
<td>Prüfung (PR)</td>
<td>Wagner</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900038</td>
<td>Linked Data and the Semantic Web</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900042</td>
<td>Seminar Betriebliche Informationssysteme: Programmieren 3</td>
<td>Prüfung (PR)</td>
<td>Oberweis</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900044</td>
<td>Seminar Service Science, Management & Engineering</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900094</td>
<td>Ausgewählte Themen im Text Mining - Kooperationsseminar AIFB und ECON</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter, Ott</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900114</td>
<td>Emerging Trends in Critical Information Infrastructures</td>
<td>Prüfung (PR)</td>
<td>Sunyaev</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900121</td>
<td>Seminar "Privacy Awareness"</td>
<td>Prüfung (PR)</td>
<td>Volkamer</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900192</td>
<td>Data Science mit Open Data</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter</td>
<td></td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspeck des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkungen
Platzhalter für Seminarveranstaltungen des Instituts AIFB der KIT-Fakultät für Wirtschaftswissenschaften.

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

SS 2019	7900087	Seminar Betriebliche Informationssysteme: Datenschutz und IT-Sicherheit (Bachelor)	Prüfung (PR)	Oberweis
SS 2019	7900090	Data Science & Real-time Big Data Analytics	Prüfung (PR)	Sure-Vetter
SS 2019	7900092	Seminar Service Science, Management & Engineering	Prüfung (PR)	Sure-Vetter
SS 2019	7900094	Knowledge Discovery and Data Mining	Prüfung (PR)	Sure-Vetter

Linked Data and the Semantic Web

2512301, WS 18/19, 3 SWS, [Im Studierendenportal anzeigen](https://campus.kit.edu/)

Beschreibung

Die Linked Data Prinzipien sind eine Reihe von Praktiken für die Datenveröffentlichung im Internet. Linked Data baut auf der Web-Architektur auf und nutzt HTTP für den Datenzugriff und RDF für die Beschreibung von Daten und zielt darauf ab, auf Web-Scale-Datenintegration zu erreichen. Es gibt eine riesige Menge an Daten, die nach diesen Prinzipien veröffentlicht werden: Vor kurzem wurden 4,5 Milliarden Fakten mit Informationen über verschiedene Domänen, einschließlich Musik, Filme, Geographie, Naturwissenschaften gezählt. Linked Data wird auch verwendet, um Web-Seiten maschinell verständlich zu machen, entsprechende Annotationen werden von den großen Suchmaschinenanbietern berücksichtigt. Im kleineren Maßstab können auch Geräte im Bereich Internet of Things mit Linked Data abgerufen werden, was die einheitliche Verarbeitung von Gerätedaten und Daten aus dem Web einfach macht.

In diesem praktischen Seminar werden die Studierenden prototypische Anwendungen aufbauen und Algorithmen entwickeln, die verknüpfte Daten verwenden, bereitstellen oder analysieren. Diese Anwendungen und Algorithmen können auch bestehende Anwendungen von Datenbanken zu mobilen Apps erweitern.

Bemerkungen

Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
Lehrinhalt
Mögliche Themensind z.B.:

- Reisesicherheit
- Geodaten
- Nachrichten
- Soziale Medien

Real-World Challenges in Data Science und Analytics
2512311, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Beschreibung
Im Rahmen dieses Seminars bearbeiten Gruppen von Studierenden eine Case Challenge mit bereitgestellten Daten. Hierbei wird der typische Ablauf eines Data Science Projektes abgebildet: Integration von Daten, Analyse dieser, Modellierung der Entscheidungen und Visualisierung der Ergebnisse.

Während des Seminars werden Lösungskonzepte ausgearbeitet, als Softwarelösung umgesetzt und in einer Zwischen- und Endpräsentation vorgestellt. Das Seminar "Real-World Challenges in Data Science and Analytics" richtet sich an Studierende in Master-Studiengängen.

Bemerkungen
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Kooperationsseminar: Innovative Anwendungen auf Einplatinencomputern sowie ihre ökonomische Relevanz
2512312, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Beschreibung
Dieses Seminar wird kooperativ von dem Lehrstuhl für Web Science (AIFB) und dem Lehrstuhl für Wirtschaftspolitik (ECON) angeboten.

Bemerkungen
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
Lehrinhalt
Mögliche Themen sind z.B.:

- Smart Home Anwendungen
- Umweltmessungen
- Gestensteuerung
- Sicherheitssysteme

Seminar Betriebliche Informationssysteme: Programmieren 3 (Bachelor)
2513200, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Bemerkungen
Informationen zur Anmeldung sowie zum Inhalt der Veranstaltung werden auf der Veranstaltungsseite bekannt gegeben. An diesem Seminar dürfen nur Bachelor-Studierende teilnehmen.

Emerging Trends in Critical Information Infrastructures
2513400, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Beschreibung

Bemerkungen
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

Seminar Service Science, Management & Engineering
2595470, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Lehrinhalt

Auf der Website des KSRI finden Sie weitere Informationen über dieses Seminar: www.ksri.kit.edu

Arbeitsaufwand
Gesamtaufwand bei 4 Leistungspunkten: ca. 120 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur
Die Basisliteratur wird entsprechend der zu bearbeitenden Themen bereitgestellt.

Knowledge Discovery and Data Mining
2512300, SS 2019, 3 SWS, im Studierendenportal anzeigen

Beschreibung
Das Seminar beinhaltet verschiedene Methoden des Maschinellen Lernens und Data Mining. Teilnehmer des Seminars sollten grundlegende Kenntnisse des Maschinellen Lernens und Programmierkenntnisse besitzen.

Bemerkungen
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
Lehrinhalt
Mögliche Anwenendungsgebiete sind z.B.:
- Medizin
- Soziale Medien
- Finanzmarkt

Literatur
Detaillierte Referenzen werden zusammen mit den jeweiligen Themen angegeben. Allgemeine Hintergrundinformationen ergeben sich z.B. aus den folgenden Lehrbüchern:
- Mitchell, T.; Machine Learning

V Data Science & Real-time Big Data Analytics
2513306, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

V Emerging Trends in Critical Information Infrastructures
2513400, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.

V Seminar Service Science, Management & Engineering
2595470, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Auf der Website des KSRI finden Sie weitere Informationen über dieses Seminar: www.ksri.kit.edu

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden

Literatur
Die Basisliteratur wird entsprechend der zu bearbeitenden Themen bereitgestellt.
8.210 Teilleistung: Seminar Ingenieurwissenschaften (genehmigungspflichtig) [T-WIWI-108763]

Verantwortung: Fachverteuer ingenieurwissenschaftlicher Fakultäten
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101816 - Seminarmodul
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>Prüfungstitel</th>
<th>Prüfungsleistung</th>
<th>Prüfungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7311633</td>
<td>Seminar Wir machen ein Patent</td>
<td>PR</td>
<td>Stork</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>8245100014</td>
<td>Seminar Verkehrswesen</td>
<td>PR</td>
<td>Vortisch, Chlond</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-00002</td>
<td>Seminar für Bahnsystemtechnik</td>
<td>PR</td>
<td>Gratzfeld</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote setzt sich i.d.R. aus den benoteten und gewichteten Erfolgskontrollen zusammen.

Voraussetzungen

Siehe Modulbeschreibung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-103147 - Seminar Ingenieurwissenschaften (Master) darf nicht begonnen worden sein.
2. Die Teilleistung T-WIWI-102755 - Ingenieurwissenschaftliches Seminar (Bachelor) darf nicht begonnen worden sein.

Empfehlungen

Keine
8.211 Teilleistung: Seminar Mathematik (Bachelor) [T-MATH-102265]

Verantwortung: Dr. Martin Folkers
Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
M-WIWI-101816 - Seminarmodul
M-WIWI-104905 - Mathematik

Erfolgskontrolle(n)
Die Gesamtnote setzt sich i.d.R. aus den benoteten und gewichteten Erfolgskontrollen zusammen.

Voraussetzungen
keine
8.212 Teilleistung: Seminar Operations Research (Bachelor) [T-WIWI-103488]

Verantwortung: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101816 - Seminarmodul
M-WIWI-104899 - Operations Research

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursleiter</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Termine</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Stein, Mohr, Neumann</td>
<td>Seminar zu Methodische Grundlagen des Operations Research (BA)</td>
<td>SWS</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Stein, Mohr, Neumann</td>
<td>Seminar zur Mathematischen Optimierung (MA)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Rebennack, Assistenten</td>
<td>Seminar on Power Systems Optimization (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Nickel, Mitarbeiter</td>
<td>Seminar zur diskreten Optimierung</td>
<td>SWS</td>
<td>Block (B)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Lehrinhalt

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar: Aktuelle Themen des OR
2550491, WS 18/19, SWS, Im Studierendenportal anzeigen

Lehrinhalt
Die Seminarthemen werden zu Semesterbeginn in einer Vorbesprechung vergeben. Der Vorbesprechungstermin wird im Internet bekannt gegeben.

Anmerkungen
Das Seminar wird in jedem Semester angeboten.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.

Seminar zur diskreten Optimierung
2550491, SS 2019, SWS, Im Studierendenportal anzeigen

Lehrinhalt
Die Seminarthemen werden zu Semesterbeginn in einer Vorbesprechung vergeben. Der Vorbesprechungstermin wird im Internet bekannt gegeben.

Anmerkungen
Das Seminar wird in jedem Semester angeboten.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 15.0 Stunden

Literatur
Die Literatur und die relevanten Quellen werden zu Beginn des Seminars bekannt gegeben.
Verantwortung:
Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101816 - Seminarmodul
M-WIWI-104902 - Statistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>WS 18/19</th>
<th>Topics in Econometrics</th>
<th>2 SWS</th>
<th>Seminar (S)</th>
<th>Buse, Görgen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2521310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilspektrum des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Topics in Econometrics
2521310, WS 18/19, 2 SWS, im Studierendenportal anzeigen

Anmerkungen

Im Wintersemester 2018/19 wird die Lehrveranstaltung auf Englisch gehalten.
8.214 Teilleistung: Seminar Volkswirtschaftslehre (Bachelor) [T-WIWI-103487]

Verantwortung: Professorenschaft des Fachbereichs Volkswirtschaftslehre
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101816 - Seminarmodul
M-WIWI-104908 - Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>3</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Art</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2512312</td>
<td>Kooperationsseminar: Innovative Anwendungen auf Einplatinencomputern sowie ihre ökonomische Relevanz</td>
<td>3 SWS</td>
<td>Seminar / Praktikum (S/P)</td>
<td>Sure-Vetter, Ott, Weller, Bälz</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2520405</td>
<td>Topics in Experimental Economics</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Reiß, Hofmann, Mitarbeiter</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2521310</td>
<td>Topics in Econometrics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Buse, Görgen</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560140</td>
<td>Topics on Political Economics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Engel</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560141</td>
<td>Morals & Social Behavior</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Huber</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2560400</td>
<td>Seminar in Macroeconomics</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Brumm, Krause, Pegorari</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2561208</td>
<td>Ausgewählte Aspekte der europäischen Verkehrsplanung und -modellierung</td>
<td>1 SWS</td>
<td>Seminar (S)</td>
<td>Szimba</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2560553</td>
<td>Topics in Political Economics (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Maus</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2560555</td>
<td>Morals and Social Behavior (Bachelor)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
<td>Szech, Huber</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900094</td>
<td>Ausgewählte Themen im Text Mining - Kooperationsseminar AIFB und ECON</td>
<td>Prüfung (PR)</td>
<td>Sure-Vetter, Ott</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900132</td>
<td>Theorien der Macht und wirtschaftliche Macht</td>
<td>Prüfung (PR)</td>
<td>Fuchs-Seliger</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900139</td>
<td>Ausgewählte Aspekte der europäischen Verkehrsplanung und -modellierung</td>
<td>Prüfung (PR)</td>
<td>Mitusch</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900141</td>
<td>Seminar zur Voting Theory</td>
<td>Prüfung (PR)</td>
<td>Puppe</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900216</td>
<td>Seminar in Macroeconomics</td>
<td>Prüfung (PR)</td>
<td>Brumm</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900254</td>
<td>Topics in Econometrics. Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Schienle</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900257</td>
<td>Data Mining</td>
<td>Prüfung (PR)</td>
<td>Nakhaeizadeh</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900278</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Szech</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>7900282</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Szech</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>79191ee</td>
<td>Seminar Topics in Experimental Economics</td>
<td>Prüfung (PR)</td>
<td>Reiß</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>79sefi1</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900130</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Szech</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900131</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Szech</td>
</tr>
<tr>
<td>SS 2019</td>
<td>79sefi1</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>Prüfung (PR)</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019
486
Erfolgskontrolle(n)

- Regelmäßiger Teilnahme an den Seminarterminen
- Der Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden.
- Einem Vortrag zum Thema der Seminararbeit.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unterhttps://campus.kit.edu/.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Kooperationsseminar: Innovative Anwendungen auf Einplatinencomputern sowie ihre ökonomische Relevanz
Seminar / Praktikum (S/P)
2512312, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Beschreibung
Dieses Seminar wird kooperativ von dem Lehrstuhl für Web Science (AIFB) und dem Lehrstuhl für Wirtschaftspolitik (ECON) angeboten.

Bemerkungen
Die genauen Termine und Informationen zur Anmeldung werden auf der Veranstaltungsseite bekannt gegeben.
Lehrinhalt
Mögliche Themen sind z.B.:

- Smart Home Anwendungen
- Umweltmessungen
- Gestensteuerung
- Sicherheitssysteme

Topics in Experimental Economics
2520405, WS 18/19, SWS, [Im Studierendenportal anzeigen]

Lehrinhalt
Die Lehrveranstaltung vertieft die Kenntnisse in experimenteller Wirtschaftsforschung inhaltlich und methodisch. Es werden ausgewählte Themen aus der gegenwärtigen Forschung im Bereich der Experimentellen und verhaltensökonomischen Forschung behandelt und fortgeschrittene methodische Aspekte dargestellt.

Anmerkungen
Die Vorlesung wird in jedem zweiten Sommersemester angeboten, voraussichtlich erstmals im Sommersemester 2016.

Arbeitsaufwand
Gesamtaufwand bei 3 Leistungspunkten: ca. 90 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden

Literatur
Als Pflichtliteratur dienen ausgewählte Paper.

Topics in Econometrics
2521310, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen]

Anmerkungen
Im Wintersemester 2018/19 wird die Lehrveranstaltung auf Englisch gehalten.

Topics on Political Economics
2560140, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen]

Arbeitsaufwand
Ca. 90 Stunden.

Topics in Political Economics (Bachelor)
2560553, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Beschreibung
Da die Veranstaltung auf Englisch stattfindet, bitten wir Sie, für Details die englische Beschreibung zu konsultieren.

Arbeitsaufwand
Ca. 90 Stunden.

Morals and Social Behavior (Bachelor)
2560555, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Beschreibung
Da die Veranstaltung auf Englisch stattfindet, bitten wir Sie, für Details die englische Beschreibung zu konsultieren.

Bemerkungen
Teilnehmerzahl begrenzt auf 12 Studierende.
Anmerkungen
Die Bewerbung ist bis zum 29. Februar 2016 über das Seminarportal möglich.
(https://portal.wiwi.kit.edu/Seminare)

Arbeitsaufwand
Ca. 90 Stunden.
8.215 Teilleistung: Seminarpraktikum Digital Services [T-WIWI-105711]

Verantwortung:
- Prof. Dr. Wolf Fichtner
- Prof. Dr. Alexander Mädche
- Prof. Dr. Stefan Nickel
- Prof. Dr. Gerhard Satzger
- Prof. Dr. York Sure-Vetter
- Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-102752 - Fundamentals of Digital Service Systems
- M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Das aktuelle Angebot der Seminarpraktikathemen wird auf der Webseite www.ksri.kit.edu bekannt gegeben.
8.216 Teilleistung: Simulation gekoppelter Systeme [T-MACH-105172]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Yusheng Xiang

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-101265 - Fahrzeugentwicklung
M-MACH-101267 - Mobile Arbeitsmaschinen
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

SS 2019 2114095 Simulation gekoppelter Systeme 2 SWS Vorlesung (V) Geimer, Xiang

Prüfungsveranstaltungen

WS 18/19 76T-MACH-105172 Simulation gekoppelter Systeme Prüfung (PR) Geimer
SS 2019 76T-MACH-102172 Simulation gekoppelter Systeme Prüfung (PR) Geimer
SS 2019 76T-MACH-105172 Simulation gekoppelter Systeme Prüfung (PR) Geimer

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min) in der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Eine vorherige Anmeldung ist erforderlich, die Details werden auf den Webseiten des Instituts für Fahrzeugsystemtechnik / Teilinstitut Mobile Arbeitsmaschinen angekündigt. Bei zu vielen Interessenten findet eine Auswahl unter allen Interessenten nach Qualifikation statt.

Voraussetzungen
Voraussetzung zur Teilnahme an der Prüfung ist die Erstellung eines Berichts während des Semesters. Die Teilleistung mit der Kennung T-MACH-108888 muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108888 - Simulation gekoppelter Systeme - Vorleistung muss erfolgreich abgeschlossen worden sein.

Empfehlungen
Empfehlungswerte sind:

- Kenntnisse in ProE (idealerweise in der aktuellen Version)
- Grundkenntnisse in Matlab/Simulink
- Grundkenntnisse Maschinendynamik
- Grundkenntnisse Hydraulik
Lernziele:
Nach Abschluss der Veranstaltung können die Studierenden:

- eine gekoppelte Simulation aufbauen
- Modelle parametrieren
- Simulation durchführen
- Troubleshooting
- Ergebnisse auf Plausibilität kontrollieren

Die Anzahl der Teilnehmer ist begrenzt.

Inhalt:
- Erlernen der Grundlagen von Mehrkörper- und Hydrauliksimulationsprogrammen
- Möglichkeiten einer gekoppelten Simulation
- Durchführung einer Simulation am Beispiel des Radladers
- Darstellung der Ergebnisse in einem kurzen Bericht

Literatur:
Diverse Handbücher zu den Softwaretools in PDF-Form
Informationen zum verwendeten Radlader

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Leistungsbezeichnung:

Simulation gekoppelter Systeme
V 2114095, SS 2019, 2 SWS, [Im Studierendenportal anzeigen]

Lehrinhalt

- Erlernen der Grundlagen von Mehrkörper- und Hydrauliksimulationsprogrammen
- Möglichkeiten einer gekoppelten Simulation
- Durchführung einer Simulation am Beispiel des Radladers
- Darstellung der Ergebnisse in einem kurzen Bericht

Arbeitsaufwand

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literatur

Weiterführende Literatur:

- Diverse Handbücher zu den Softwaretools in PDF-Form
- Informationen zum verwendeten Radlader
8.217 Teilleistung: Simulation gekoppelter Systeme - Vorleistung [T-MACH-108888]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
 Yusheng Xiang

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau / Institut für Fahrzeugsystemtechnik / Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-101265 - Fahrzeugentwicklung
 M-WIWI-104907 - Ingenieurwissenschaften

Erfolgskontrolle(n)
Anfertigung Semesterbericht

Voraussetzungen
keine
8.218 Teilleistung: Software Engineering [T-WIWI-100809]

Verantwortung: Prof. Dr. Andreas Oberweis
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101399 - Vertiefung Informatik
- M-WIWI-101426 - Wahlpflicht Informatik
- M-WIWI-104901 - Informatik (KIT-Fakultät für Wirtschaftswissenschaften)

<table>
<thead>
<tr>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 2511206 Software Engineering 2 SWS Vorlesung (V) Oberweis</td>
</tr>
<tr>
<td>SS 2019 2511207 Übungen zu Software Engineering 1 SWS Übung (Ü) Oberweis, Fritsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19 7900026 Software Engineering Prüfung (PR) Oberweis</td>
</tr>
<tr>
<td>SS 2019 7900027 Software Engineering Prüfung (PR) Oberweis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) nach §4(2), 1 SPO. Sie findet in der ersten Woche nach der Vorlesungszeit statt.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es muss eine von 2 Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Software Engineering
2511206, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Die Vorlesung gibt einen Überblick über wesentliche Aspekte der systematischen Entwicklung großer Softwaresysteme. Auf folgende Themen wird eingegangen:

- Vorgehensmodelle der Softwareentwicklung
- Methoden und Werkzeuge für die Entwicklungsphasen: Anforderungsanalyse, Systemspezifikation, Systementwurf, Programmierung und Testen

Anmerkungen
Die LP der Lehrveranstaltung wurden zum Wintersemester 2014/15 auf 4 LP reduziert.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 120 Stunden.
Vorlesung 30h
Übung 15h
Vor- bzw. Nachbereitung der Vorlesung 30h
Vor- bzw. Nachbereitung der Übung 15h
Prüfungsvorbereitung 29h
Prüfung 1h
Summe: 120h

Literatur

Weitere Literatur wird in der Vorlesung bekannt gegeben.
8.219 Teilleistung: Sozialforschung A (WiWi) [T-GEISTSOZ-109048]

Verantwortung: Prof. Dr. Gerd Nollmann
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-101167 - Soziologie/Empirische Sozialforschung
M-WIWI-104906 - Geistes- und Sozialwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-/Seminarenummer</th>
<th>Lehrveranstaltungsthema</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>5011011</td>
<td>Sozialforschung: Ökonomische Ungleichheit</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Binder</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>5011014</td>
<td>Sozialforschung: Schöne neue Arbeitswelt? Erwerbstätigkeit in Deutschland: früher, heute und in Zukunft</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Ebner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-/Seminarenummer</th>
<th>Prüfungsthema</th>
<th>Prüfungstyp</th>
<th>Prüfungstermin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7400041</td>
<td>Sozialforschung A (WiWi)</td>
<td>Prüfung (PR)</td>
<td>Nollmann</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
8.220 Teilleistung: Sozialforschung B (WiWi) [T-GEISTSOZ-109049]

Verantwortung: Prof. Dr. Gerd Nollmann
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von:
- M-GEISTSOZ-101167 - Soziologie/Empirische Sozialforschung
- M-WIWI-104906 - Geistes- und Sozialwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>5011011</th>
<th>Sozialforschung: Ökonomische Ungleichheit</th>
<th>2 SWS</th>
<th>Seminar (S)</th>
<th>Binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>5011014</td>
<td>Sozialforschung: Schöne neue Arbeitswelt? Erwerbstätigkeit in Deutschland: früher, heute und in Zukunft</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Ebner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 18/19 | 7400046 | Sozialforschung B (WiWi) | Prüfung (PR) | Nollmann |

Voraussetzungen

keine
8.221 Teilleistung: Sozialstrukturanalyse (WiWi) [T-GEISTSOZ-109047]

Verantwortung: Prof. Dr. Gerd Nollmann
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von:
- M-GEISTSOZ-101167 - Soziologie/Empirische Sozialforschung
- M-WIWI-104906 - Geistes- und Sozialwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5011007</td>
<td>Sozialstrukturanalyse</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7400029</td>
<td>Sozialstrukturanalyse (WiWi)</td>
<td>Prüfung (PR)</td>
<td>Nollmann</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Sozialstrukturanalyse
5011007, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](#)

Bemerkungen
SQ-Anmeldung ab 17. Oktober
8.222 Teilleistung: Spezialveranstaltung Wirtschaftsinformatik [T-WIWI-109940]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101434 - eBusiness und Service Management
M-WIWI-104900 - Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungsbeschreibung.

Voraussetzungen
siehe "Modellierte Voraussetzungen"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102706 - Spezialveranstaltung Informationswirtschaft darf nicht begonnen worden sein.

Empfehlungen
Keine

Anmerkungen
Alle angebotenen Seminarpraktika können als Spezialveranstaltung Wirtschaftsinformatik am Lehrstuhl von Prof. Dr. Weinhardt belegt werden. Das aktuelle Angebot der Seminarpraktikathemen wird auf der Webseite www.iism.kit.edu/im/lehre bekannt gegeben.

Die Spezialveranstaltung Wirtschaftsinformatik kann anstelle einer regulären Vorlesung (siehe Modulbeschreibung) gewählt werden. Sie kann aber nur einmal pro Modul angerechnet werden.
8.223 Teilleistung: Spezialvorlesung Angewandte Informatik [T-WIWI-102910]

Verantwortung:
Prof. Dr. Andreas Oberweis
Prof. Dr. Harald Sack
Prof. Dr. Ali Sunyaev
Prof. Dr. York Sure-Vetter
Prof. Dr. Melanie Volkamer
Prof. Dr.-Ing. Johann Marius Zöllner

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101399 - Vertiefung Informatik
- M-WIWI-101426 - Wahlpflicht Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Semester</td>
<td>4</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 18/19 | 7900066 | Interdisziplinäre Sichtweisen auf verifizierbare elektronische Wahlen | Prüfung (PR) | Volkamer |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) oder ggf. mündlichen Prüfung (30 min.) nach §4(2) der Studien- und Prüfungsordnung.

Abhängig von der jeweiligen Veranstaltung, die mit dieser Platzhalter-Teilleistung verknüpft ist, ist es möglich, dass durch bestimmte Leistungen ein Notenbonus erzielt werden kann.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es muss eine von 2 Bedingungen erfüllt werden:

1. Das Modul M-WIWI-101417 - Grundlagen der Informatik muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-WIWI-101581 - Einführung in die Programmierung muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Die Platzhalter-Teilleistung "Spezialvorlesung Angewandte Informatik" ist mit Vorlesungen verknüpft, die nur temporär angeboten werden.

Die Teilleistung kann aber auch für die Anrechnung von externen Lehrveranstaltungen genutzt werden, deren Inhalt in den Bereich der Angewandten Informatik fällt, aber nicht einer anderen Lehrveranstaltung aus diesem Themenbereich zugeordnet werden kann. Eine Anrechnung ist jedoch nur dann möglich, wenn es sich um Leistungen aus einem vorangegangenen Studiengang oder aus einem Zeitstudium im Ausland handelt.
8.224 Teilleistung: Standortplanung und strategisches Supply Chain Management [T-WIWI-102704]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101413 - Anwendungen des Operations Research
- M-WIWI-101414 - Methodische Grundlagen des OR
- M-WIWI-101421 - Supply Chain Management
- M-WIWI-104899 - Operations Research

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2550486</td>
<td>Standortplanung und strategisches Supply Chain Management</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nickel</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2550487</td>
<td>Übungen zu Standortplanung und strategisches SCM</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Bakker</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungsbezeichnung</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900221</td>
<td>Standortplanung und strategisches Supply Chain Management</td>
<td>Nickel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4, 1 SPO).

Die Prüfung wird jedes Semester angeboten.

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Voraussetzungen

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Empfehlungen

Keine

Anmerkungen

Die Lehrveranstaltung wird in jedem Wintersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Lehrinhalt

Anmerkungen
Die Lehrveranstaltung wird in jedem Wintersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor- und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden

Literatur
Weiterführende Literatur:

- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
Teilleistung: Statistik I [T-WIWI-102737]

Verantwortung: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101432 - Einführung in die Statistik
- M-WIWI-104902 - Statistik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte: 5

Turnus: Jedes Sommersemester
Version: 1

Leververanstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Semesterwochenstunden</th>
<th>Typ</th>
<th>Erster/Vertreter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2600008</td>
<td>Statistik I</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Schienle</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2600009</td>
<td>Tutorien zu Statistik I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Schienle, Rüter, Bitzer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900140</td>
<td>Statistik I</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) nach § 4 (2), 1 SPO.

Bonus: Es ist geplant, dass ab dem Sommersemester 2018 durch die erfolgreiche Bearbeitung von vorlesungsbegleitenden Onlineaufgaben ein Notenbonus für die Statistik I-Prüfung erworben werden kann. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Statistik I
2600008, SS 2019, 4 SWS, Im Studierendenportal anzeigen

Beschreibung
- Deskriptive Statistik
- Elementare Wahrscheinlichkeitstheorie

Lehrinhalt
A. Deskriptive Statistik: Univariate und Bivariate Analyse
B. Wahrscheinlichkeitstheorie: Wahrscheinlichkeitsraum, bedingte Wahrscheinlichkeiten, Produktwahrscheinlichkeiten
C. Zufallsvariablen: Lage- und Formparameter, Abhängigkeitsmaße, konkrete Verteilungsmodelle

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
Präsenzzeit: 60 Stunden
Selbststudium: 90 Stunden
Literatur
Skriptum: Kurzfassung Statistik I

Weiterführende Literatur:

Tutorien zu Statistik I
2600009, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen
s. Institutsanschlag
Verantwortung: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101432 - Einführung in die Statistik
M-WIWI-104902 - Statistik

Erstellt von: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101432 - Einführung in die Statistik
M-WIWI-104902 - Statistik

Teilleistung: Statistik II [T-WIWI-102738]

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
5

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2610020</td>
<td>Statistik II</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Grothe</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2610021</td>
<td>Tutorien zu Statistik II</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Grothe, Rüter, Bitzer</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>2610022</td>
<td>PC-Praktikum zu Statistik II</td>
<td>2</td>
<td>Praktische Übung (PU)</td>
<td>Grothe, Rüter, Bitzer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900217</td>
<td>Statistik II</td>
<td>Prüfung (PR)</td>
<td>Grothe</td>
</tr>
<tr>
<td>SS 2019</td>
<td>7900029</td>
<td>Statistik II</td>
<td>Prüfung (PR)</td>
<td>Grothe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO).

Bonus: Es ist geplant, dass ab dem Wintersemester 2018/2019 durch die erfolgreiche Bearbeitung von vorlesungsbegleitenden Onlineaufgaben in der Prüfung Statistik 1 ein Notenbonus von bis zu einem Notenschritt erreicht werden kann. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Es wird dringend empfohlen, die Lehrveranstaltung Statistik I [2600008] vor der Lehrveranstaltung Statistik II [2610020] zu absolvieren.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Statistik II
2610020, WS 18/19, 4 SWS, Im Studierendenportal anzeigen

Lehrinhalt
D. Stichproben- und Schätztheorie: Stichprobenverteilungen, Schätzfunktionen, Punkt- und Intervallschätzung
E. Testtheorie: Allgemeine Prinzipien von Hypothesentests, konkrete 1- und 2-Stichprobentests
F. Regressionsanalyse: Einfache und multiple lineare Regression, statistische Inferenz.

Anmerkungen
In den Übungen und im Rechnerpraktikum wird der Vorlesungsstoff anhand von Beispielaufgaben vertieft.

Für weitere Informationen: http://glsstat.wiwi.kit.edu/
oder den zur Veranstaltung gehörenden Ilias-Kurs
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
Präsenzzeit: 60 Stunden
Selbststudium: 90 Stunden

Literatur
Skriptum: Kurzfassung Statistik II
Weiterführende Literatur:

Tutorien zu Statistik II
2610021, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Bemerkungen
im Wintersemester 16/17 findet das Tutorium im HS 62 Geb. 10.81 im Ersatzraum 305 statt (gleiche Etage)
8.227 Teilleistung: Statistische Modellierung von allgemeinen Regressionsmodellen [T-WIWI-103065]

Verantwortung: Dr. Wolf-Dieter Heller
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101599 - Statistik und Ökonometrie
M-WIWI-104902 - Statistik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 18/19 | 2521350 | Statistische Modellierung von Allgemeinen Regressionsmodellen | 2 SWS | Vorlesung (V) | Heller |

Prüfungsveranstaltungen

| WS 18/19 | 7900146 | Statistische Modellierung von allgemeinen Regressionsmodellen | Prüfung (PR) | Heller |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Statistische Modellierung von Allgemeinen Regressionsmodellen

2521350, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Anmerkungen

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden.
Präsenzzeit: 30 Stunden
Vor- /Nachbereitung: 65 Stunden
Prüfung und Prüfungsvorbereitung: 40 Stunden
8.228 Teilleistung: Steuerungstechnik [T-MACH-105185]

Verantwortung: Christoph Gönnheimer

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4

Turnus Jedes Sommersemester

Version 2

Lehrveranstaltungen
SS 2019 2150683 Steuerungstechnik 2 SWS Vorlesung (V) Gönnheimer

Prüfungsveranstaltungen
WS 18/19 76-T-MACH-105185 Steuerungstechnik Prüfung (PR) Fleischer

Erfolgskontrolle(n)
Schriftliche Prüfung (60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Steuerungstechnik
2150683, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Lehrinhalt
Die Vorlesung Steuerungstechnik gibt einen ganzheitlichen Überblick über den Einsatz steuerungstechnischer Komponenten in der industriellen Produktion.
Der erste Teil der Vorlesung befasst sich mit den Grundlagen der Signalverarbeitung und mit Steuerungsperipherie in Form von Sensoren und Aktoren, die in Produktionsanlagen für die Detektion und Beeinflussung von Prozesszuständen benötigt werden.
Der zweite Teil beschäftigt sich mit der Funktions-/Arbeitsweise elektrischer Steuerungen im Produktionsumfeld. Gegenstand der Betrachtung sind hier insbesondere die speicherprogrammierbare Steuerung, die CNC-Steuerung und die Robotersteuerung.
Den Abschluss der Lehrveranstaltung bildet das Thema Vernetzung und Dezentralisierung mithilfe von Bussystemen.
Die Vorlesung ist stark praxisorientiert und mit zahlreichen Beispielen aus der Produktionslandschaft unterschiedlicher Branchen versehen.
Die Themen im Einzelnen sind:
- Signalverarbeitung
- Steuerungsperipherie
- Speicherprogrammierbare Steuerungen
- NC-Steuerungen
- Steuerungen für Industrieroboter
- Verteilte/vernetzte Steuerungssysteme
- Feldbussysteme
- Trends im Bereich der Steuerungstechnik

Anmerkungen
Keine
Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
8.229 Teilleistung: Struktur- und Phasenanalyse [T-MACH-102170]

Verantwortung: Dr.-Ing. Susanne Wagner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>WS 18/19</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2125763</td>
<td>Struktur- und Phasenanalyse</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
</tr>
<tr>
<td>SS 2019</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Struktur- und Phasenanalyse
2125763, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Lehrinhalt
Die Vorlesung vermittelt die physikalischen Grundlagen zur Erzeugung und Detektion von Röntgenstrahlung sowie deren Wechselwirkung mit Materie. Sie gibt eine Einführung in die Kristallographie und erläutert verschiedene Mess- und Auswerteverfahren der Röntgenfeinstrukturanalyse. Es werden folgende Lerneinheiten behandelt:

- Entstehung und Eigenschaften von Röntgenstrahlen
- Kristallographie
- Grundlagen und Anwendung unterschiedlicher Aufnahmeverfahren
- Qualitative und quantitative Phasenanalyse (Identifizierung von Substanzen über ASTM-Karteien, Berechnung von Gitterkonstanten, quantitative Mengenanalyse)
- Texturbestimmung
- Röntgenographische Eigenspannungsmessungen

Arbeitsaufwand
Präsenzzeit: 30 Stunden
Selbststudium: 90 Stunden

Literatur
1. Moderne Röntgenbeugung - Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, Spieß, Lothar / Schwarzer, Robert / Behnken, Herfried / Teichert, Gerd B.G. Teubner Verlag 2005
8.230 Teilleistung: Strukturkeramiken [T-MACH-102179]

Verantwortung: Prof. Dr. Michael Hoffmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien
Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2019 2126775 Strukturkeramiken 2 SWS Vorlesung (V) Hoffmann

Prüfungsveranstaltungen
WS 18/19 76-T-MACH-102179 Strukturkeramiken Prüfung (PR) Hoffmann, Wagner, Schell
SS 2019 76-T-MACH-102179 Strukturkeramiken Prüfung (PR) Hoffmann, Wagner, Schell

Erfolgskontrolle(n)
mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Strukturkeramiken 2126775, SS 2019, 2 SWS, Im Studierendenportal anzeigen Vorlesung (V)

Beschreibung
Medien:
Folien zur Vorlesung:
verfügbar unter http://www.iam.kit.edu/km

Lehrinhalt
Die Vorlesung vermittelt einen Überblick über den Aufbau und die Eigenschaften der technisch relevanten Strukturkeramiken Siliciumnitrid, Siliciumcarbid, Aluminiumoxid, Zirkonoxid, Boronitrid und faserverstärkte Keramiken. Für die einzelnen Werkstoffgruppen werden die Herstellungsmethoden der Ausgangsstoffe, die Formgebung, das Verdichtungsverhalten, die Gefügeentwicklung, die mechanischen Eigenschaften und Anwendungsfelder diskutiert.

Anmerkungen
Die Vorlesung wird nicht jedes Jahr angeboten

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literatur
8.231 Teilleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltungsbeschriftung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Systematische Werkstoffauswahl</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Dietrich</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übungen zu 'Systematische Werkstoffauswahl'</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Dietrich, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltungsbeschriftung</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>Systematische Werkstoffauswahl</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Dietrich</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Systematische Werkstoffauswahl</td>
<td></td>
<td>Prüfung (PR)</td>
<td>Dietrich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen

Die beiden Teilleistungen "Werkstoffkunde I für Wirtschaftsingenieure" (T-MACH-102078) und "Werkstoffkunde II für Wirtschaftsingenieure" (T-MACH-102079) müssen bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102078 - Werkstoffkunde I für Wirtschaftsingenieure muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-MACH-102079 - Werkstoffkunde II für Wirtschaftsingenieure muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systematische Werkstoffauswahl

2174576, SS 2019, 3 SWS, Im Studierendenportal anzeigen

Vorlesung (V)
Lehrinhalt
Die wichtigsten Aspekte und Kriterien der Werkstoffauswahl werden behandelt und Leitlinien für eine systematische Vorgehensweise beim Auswahlprozess erarbeitet. Dabei werden u.a. folgende Themen angesprochen:

- Informationen und Einleitung
- Erforderliche Grundlagen der Werkstoffkunde
- Ausgewählte Methoden / Herangehensweisen der Werkstoffauswahl
- Beispiele für Materialindices und Werkstoffeigenschaftsschaubilder
- Zielkonflikt und Formfaktoren
- Verbundwerkstoffe und Werkstoffverbunde
- Hochtemperaturwerkstoffe
- Berücksichtigung von Fertigungseinflüssen
- Werkstoffauswahl für eine bestehende Produktionslinie
- Fehlerhafter Werkstoffauswahl und abzuleitende Konsequenzen
- Zusammenfassung und Fragerunde

Arbeitsaufwand
Der Arbeitsaufwand für die Vorlesung beträgt pro Semester 150 h und besteht aus Präsenz in der Vorlesung (30 h) sowie Vor- und Nachbearbeitungszeit zuhause (120 h).

Literatur
Vorlesungsskriptum; Übungsblätter; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
8.232 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-101156 - Regelungstechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Leistungsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2303155</td>
<td>Systemdynamik und Regelungstechnik</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Hohmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2303157</td>
<td>Übungen zu 2303155 Systemdynamik und Regelungstechnik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Kölsch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2303701</td>
<td>Tutorien zu 2303155 SRT</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td>Kölsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Leistungsträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7303155</td>
<td>Systemdynamik und Regelungstechnik</td>
<td>Hohmann</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine
8.233 Teilleistung: Taktisches und operatives Supply Chain Management [T-WIWI-102714]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research
M-WIWI-101421 - Supply Chain Management
M-WIWI-103278 - Optimierung unter Unsicherheit
M-WIWI-104899 - Operations Research

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>SS 2019</th>
<th>SS 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (V)</td>
<td>2550486</td>
<td>Taktisches und operatives SCM</td>
</tr>
<tr>
<td>Übungen zu Taktisches und operatives SCM</td>
<td>2 SWS</td>
<td></td>
</tr>
<tr>
<td>Übung (U)</td>
<td>2550487</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Pomes</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>WS 18/19</th>
<th>Taktisches und operatives Supply Chain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung (PR)</td>
<td>7900220</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).
Die Prüfung wird jedes Semester angeboten.
Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Voraussetzungen
Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Empfehlungen
Keine

Anmerkungen
Die Lehrveranstaltung wird in jedem Sommersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Taktisches und operatives SCM
2550486, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Lehrinhalt
Die Vorlesung vermittelt grundlegende quantitative Methoden der Standortplanung im Rahmen des strategischen Supply Chain Managements. Neben verschiedenen Möglichkeiten zur Standortbeurteilung werden die Studierenden mit den klassischen Standortplanungsmodellen (planare Modelle, Netzwerkmödelle und diskrete Modelle) sowie speziellen Standortplanungsmodellen für das Supply Chain Management (Einperiodenmodelle, Mehrperiodenmodelle) vertraut gemacht. Die parallel zur Vorlesung angebotenen Übungen bieten die Gelegenheit, die erlernten Verfahren praxisnah umzusetzen.

Anmerkungen
Die Lehrveranstaltung wird in jedem Sommersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Literatur
Weiterführende Literatur

- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988
8.234 Teilleistung: Technische Informationssysteme [T-MACH-102083]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von:
M-MACH-101270 - Product Lifecycle Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2121001</th>
<th>Technische Informationssysteme</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Ovtcharova, Mitarbeiter</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102083</th>
<th>Technische Informationssysteme</th>
<th>Prüfung (PR)</th>
<th>Ovtcharova</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Informationssysteme
2121001, SS 2019, 3 SWS, [Im Studierendenportal anzeigen](#)

Bemerkungen
Übungstermine nach Absprache mit den Studierenden

Lehrinhalt

- Informationssysteme und Informationsmanagement
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme
- Wissensmanagement und Ontologie
- Prozess Modelierung

Arbeitsaufwand
Präsenszeit: 31,5 Stunden, Selbststudium: 108 Stunden

Literatur
Vorlesungsfolien
8.235 Teilleistung: Umformtechnik [T-MACH-105177]

Verantwortung: Dr.-Ing. Thomas Herlan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 3
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2019 2150681 Umformtechnik 2 SWS Vorlesung (V) Herlan

Prüfungsveranstaltungen
WS 18/19 76-T-MACH-105177 Umformtechnik Prüfung (PR) Schulze

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Umformtechnik
2150681, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt

Bemerkungen
Vorlesungstermine freitags, wöchentlich.
Die konkreten Termine werden in der ersten Vorlesung bekannt gegeben und auf der Institutshomepage und ILIAS veröffentlicht.

Lehrinhalt

Die Themen im Einzelnen sind:
- Einführung und Grundlagen
- Warmumformung
- Umformmaschinen
- Werkzeuge
- Metallkunde
- Plastizitätstheorie
- Tribologie
- Blechumformung
- Fließpressen
- Numerische Simulation
Anmerkungen
Keine

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
Teilleistung: Unternehmensführung und Strategisches Management [T-WIWI-102629]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101425 - Strategie und Organisation
M-WIWI-104900 - Betriebswirtschaftslehre

Lehrveranstaltungen

SS 2019 2577900 Unternehmensführung und Strategisches Management 2 SWS Vorlesung (V) Lindstädt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Unternehmensführung und Strategisches Management
2577900, SS 2019, 2 SWS, Im Studierendenportal anzeigen

Beschreibung

• Grundlagen der Unternehmensführung
• Grundlagen des Strategischen Managements
• Strategische Analyse
• Wettbewerbsstrategie: Formulierung und Auswahl auf Geschäftsfeldebene
• Strategien in Oligopolen und Netzwerken: Antizipation von Abhängigkeiten
• Unternehmensstrategie: Formulierung und Auswahl auf Unternehmensebene
• Strategieimplementierung

Lehrinhalt

Anmerkungen
Ab dem SS2015 ändert sich die Gewichtung für die Lehrveranstaltung "Unternehmensführung und Strategisches Management" auf 3,5 ECTS. Die Anzahl der Semesterwochenstunden bleibt unverändert bei 2 SWS.

Arbeitsaufwand
Gesamtaufwand bei 3,5 Leistungspunkten: ca. 105 Stunden
Präsenzzeit: 30 Stunden
Selbststudium: 75 Stunden
Literatur

Die relevanten Auszüge und zusätzliche Quellen werden in der Veranstaltung bekannt gegeben.
8.237 Teilleistung: Verbrennungsmotoren I [T-MACH-102194]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-101275 - Verbrennungsmotoren I
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2133113</td>
<td>Verbrennungsmotoren I</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>4</td>
<td>Prüfung (PR)</td>
<td>Kubach, Koch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>4</td>
<td>Prüfung (PR)</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verbrennungsmotoren I

2133113, WS 18/19, 4 SWS, [Im Studierendenportal anzeigen]

Lehrinhalt
Einleitung, Historie, Konzepte
Funktionsweise und Thermodynamik
Charakteristische Kenngrößen
Luftpfad
Kraftstoffpfad
Energieumsetzung
Brennstoffe
Emissionen
Abgasnachbehandlung

Arbeitsaufwand
Präsenzzeit: 32 Stunden
Selbststudium: 88 Stunden
8.238 Teilleistung: Verbrennungsmotoren II [T-MACH-104609]

Verantwortung: Dr.-Ing. Rainer Koch
 Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-101303 - Verbrennungsmotoren II
 M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2134151</th>
<th>Verbrennungsmotoren II</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Koch</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-104609</th>
<th>Verbrennungsmotoren II</th>
<th>Prüfung (PR)</th>
<th>Kubach, Koch</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-104609</td>
<td>Verbrennungsmotoren II</td>
<td>Prüfung (PR)</td>
<td>Koch, Kubach</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, Dauer 25 Minuten, keine Hilfsmittel

Voraussetzungen

keine

Empfehlungen

Grundlagen des Verbrennungsmotors I hilfreich

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verbrennungsmotoren II

2134151, SS 2019, 3 SWS, Im Studierendenportal anzeigen

Lehrinhalt

Emissionen
Kraftstoffe
Triebwerksdynamik
Konstruktionselemente
Aufladung
Alternative Antriebskonzepte
Sonderverfahren
Kraftübertragung vom Verbrennungsmotor zum Antrieb

Arbeitsaufwand

Präsenzzeit: 31,5 Stunden
Selbststudium: 90 Stunden
8.239 Teilleistung: Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung [T-CIWVT-106058]

Verantwortung: Dr. Volker Gaukel
Einrichtung: KIT-Fakultät für Chemieingenieurwesen und Verfahrenstechnik
Bestandteil von: M-WIWI-101839 - Weiterfuhrende ingenieurwissenschaftliche Grundlagen
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

| WS 18/19 | 22213 | Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung (für LmCh, WiWi) | 2 SWS | Vorlesung (V) | Gaukel |

Prüfungsveranstaltungen

| WS 18/19 | 7220007 | Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung | Prüfung (PR) | Gaukel |

Erfolgskontrolle(n)
Erfolgskontrolle ist eine schriftliche Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verfahrenstechnische Grundlagen am Beispiel der Lebensmittelverarbeitung (für LmCh, WiWi)

Beschreibung
8.240 Teilleistung: Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen [T-MACH-102139]

Verantwortung: Dr. Patric Gruber
Prof. Dr. Peter Gumbsch

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoff- und Biomechanik

Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2181715 Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gruber, Gumbsch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Prüfung (PR)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102139 Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen</td>
<td>Gruber, Kraft, Gumbsch</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Versagensverhalten von Konstruktionswerkstoffen: Ermüdung und Kriechen

Lehrinhalt
1 Ermüdung, Ermüdungsmechanismen
1.1 Einführung
1.2 Statistische Aspekte
1.3 Lebensdauer
1.4 Stadien der Ermüdung
1.5 Materialwahl
1.6 Thermomechanische Belastung
1.7 Kerben und Kerbformoptimierung
1.8 Fallbeispiel: ICE-Unglück
2 Kriechen
2.1 Einführung
2.2 Hochtemperaturplastizität
2.3 Phänomenologische Beschreibung
2.4 Kriechmechanismen
2.5 Legierungseinflüsse

Vorlesung (V)
2181715, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Wirtschaftsingenieurwesen B.Sc.
Modulhandbuch mit Stand vom 01.04.2019

525
Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
- Fatigue of Materials, Subra Suresh (2nd Edition, Cambridge University Press); Standardwerk über Ermüdung, alle Materialklassen, umfangreich, für Einsteiger und Fortgeschrittene
8.241 Teilleistung: Versagensverhalten von Konstruktionswerkstoffen:
Verformung und Bruch [T-MACH-102140]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau / Institut für Angewandte Materialien / Computational Materials Science

Bestandteil von: M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsangabe</th>
<th>SWS</th>
<th>Lehrveranstaltungsart</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2181711</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Gumbsch, Weygand</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsangabe</th>
<th>Prüfungsgliederung</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102140</td>
<td>Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch</td>
<td>Prüfung (PR)</td>
<td>Weygand, Gumbsch, Kraft</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Empfehlungen
Vorkenntnisse in Mathematik, Mechanik, Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Versagensverhalten von Konstruktionswerkstoffen: Verformung und Bruch

Lehrinhalt

1. Einführung
2. Grundlagen der Elastizitätstheorie
3. Klassifizierung von Spannungen
4. Versagen durch plastische Verformung
 - Zugversuch
 - Versetzungen
 - Verfestigungsmechanismen
 - Dimensionierungsrichtlinien
5. Verbundwerkstoffe
6. Bruchmechanik
 - Bruchhypothesen
 - Linear elastische Bruchmechanik
 - Risswiderstand
 - Experimentelle Bestimmung der Rißzähigkeit
 - Fehlerfeststellung
 - Risswachstum
 - Anwendungen der Bruchmechanik
 - Atomistik des Bruchs
Arbeitsaufwand
Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Literatur

- Bruchvorgänge in metallischen Werkstoffen, D. Aurich (Werkstofftechnische Verlagsgesellschaft Karlsruhe), relativ einfach aber dennoch umfassender Überblick für metallische Werkstoffe
8.242 Teilleistung: Verzahntechnik [T-MACH-102148]

Verantwortung: Dr. Markus Klaiber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-101284 - Vertiefung der Produktionstechnik
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>2149655</th>
<th>Verzahntechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Klaiber</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102148</th>
<th>Verzahntechnik</th>
<th></th>
<th>Prüfung (PR)</th>
<th>Schulze</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verzahntechnik
2149655, WS 18/19, 2 SWS, [Im Studierendenportal anzeigen](https://ilias.studium.kit.edu/)

Beschreibung

Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt

Lehrinhalt

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
8.243 Teilleistung: Virtual Reality Praktikum [T-MACH-102149]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-101270 - Product Lifecycle Management
M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 18/19 | 2123375 | Virtual Reality Praktikum | 3 SWS | Projekt (PRO) | Ovtcharova, Mitarbeiter |

Prüfungsveranstaltungen

| WS 18/19 | 76-T-MACH-102149 | Virtual Reality Praktikum | Prüfung (PR) | Ovtcharova |

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet)

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Reality Praktikum
2123375, WS 18/19, 3 SWS, Im Studierendenportal anzeigen

Beschreibung

Medien:
Unterlagen zur Veranstaltung werden Praktikumsbegleitend zur Verfügung gestellt.

Lehrinhalt
Das Virtual Reality Praktikum besteht aus:
1. Einführung und Grundlagen in VR (Hardware, Software, Anwendungen)
2. Vorstellung und Nutzung von "3DVIA Virtools" als Werkzeug und Entwicklungsumgebung
3. Anwendung des neu erworbenen Wissens zur Selbständigen Entwicklung eines Fahrsimulators in VR in kleinen Gruppen

Arbeitsaufwand
Präsenzzeit: 31,5 Stunden
Selbststudium: 86 Stunden
8.244 Teilleistung: Volkswirtschaftslehre I: Mikroökonomie [T-WIWI-102708]

Verantwortung: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101398 - Einführung in die Volkswirtschaftslehre
- M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2610012</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungsbezeichnung</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>791vwl1</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>Prüfung (PR)</td>
<td>Reiß</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>792vwl1</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>Prüfung (PR)</td>
<td>Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO). In der Mitte des Semesters kann zusätzlich eine Übungsklausur stattfinden, deren Ergebnis zur Verbesserung der Note in der Hauptklausur eingesetzt werden kann. Die Einzelheiten dazu werden vom jeweiligen Dozenten rechtzeitig mitgeteilt.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Volkswirtschaftslehre I: Mikroökonomie
2610012, WS 18/19, 3 SWS, im Studierendenportal anzeigen

Beschreibung

In den beiden Hauptteilen der Vorlesung werden Fragen der mikroökonomischen Entscheidungstheorie (Haushalts- und Firmenentscheidungen) sowie Fragen der Marktttheorie (Gleichgewichte und Effizienz auf Konkurrenzmärkten) behandelt. Im letzten Teil der Vorlesung werden Probleme des unvollständigen Wettbewerbs (Oligopolmärkte) sowie Grundzüge der Spieltheorie vermittelt.

Lehrinhalt

In den beiden Hauptteilen der Vorlesung werden Fragen der mikroökonomischen Entscheidungstheorie (Haushalts- und Firmenentscheidungen) sowie Fragen der Marktttheorie (Gleichgewichte und Effizienz auf Konkurrenzmärkten) behandelt. Im letzten Teil der Vorlesung werden Probleme des unvollständigen Wettbewerbs (Oligopolmärkte) sowie Grundzüge der Spieltheorie und der Wohlfahrtsökonomie vermittelt.
Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 45 Stunden
Selbststudium: 105 Stunden

Literatur

- H. Varian, Grundzüge der Mikroökonomik, 5. Auflage (2001), Oldenburg Verlag
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson, München, 2005
8 TEILLEISTUNGEN

8.245 Teilleistung: Volkswirtschaftslehre II: Makroökonomie [T-WIWI-102709]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101398 - Einführung in die Volkswirtschaftslehre
 M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart (V)</th>
<th>Dozent(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2560015</td>
<td>Tutorien zu Volkswirtschaftslehre II</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td>Wigger, Zimmermann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2600014</td>
<td>Volkswirtschaftslehre II: Makroökonomie</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursbezeichnung</th>
<th>Prüfungskategorie</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>7900197</td>
<td>Volkswirtschaftslehre II: Makroökonomie</td>
<td>Prüfung (PR)</td>
<td>Ott</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Volkswirtschaftslehre II: Makroökonomie

2600014, SS 2019, 4 SWS, im Studierendenportal anzeigen

Beschreibung
Warum sind manche Nationen arm und andere wohlhabend? Was versteht man unter einem Währungskrieg? In welchem Verhältnis stehen Inflation und Bruttoinlandsprodukt zueinander – und was bedeuten diese Begriffe überhaupt? Diese und ähnliche Fragestellungen liegen im Fachbereich der Makroökonomik.

Lehrinhalt

Klassische Theorie der Gesamtwirtschaftlichen Produktion
- Kapitel 1: Bruttoinlandsprodukt
- Kapitel 2: Geld und Inflation
- Kapitel 3: Offene Volkswirtschaft I
- Kapitel 4: Arbeitslosigkeit

Wachstum: Die Ökonomie in der langen Frist
- Kapitel 5: Wachstum I
- Kapitel 6: Wachstum II

Konjunktur: Die Ökonomie in der kurzen Frist
- Kapitel 7: Konjunktur und die gesamtwirtschaftliche Nachfrage I
- Kapitel 8: Konjunktur und die gesamtwirtschaftliche Nachfrage II
- Kapitel 9: Offene Volkswirtschaft II
- Kapitel 10: Gesamtwirtschaftliches Angebot

Fortgeschrittene Themen der Makroökonomie
- Kapitel 11: Dynamisches Modell der Gesamtwirtschaft
- Kapitel 12: Mikroökonomische Fundierung
- Kapitel 13: Makroökonomische Wirtschaftspolitik

Arbeitsaufwand
- Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
- Präsenzzeit: 45 Stunden
- Vor – und Nachbereitung der LV: 67,5 Stunden
- Prüfung und Prüfungsvorbereitung: 37,5 Stunden

Literatur
Als Grundlage dieser Veranstaltung dient das bekannte Lehrbuch „Makroökonomik“ von Greg Mankiw vom Schäffer Poeschel Verlag in der aktuellen Fassung.
8.246 Teilleistung: Volkswirtschaftslehre III: Einführung in die Ökonometrie [T-WIWI-102736]

Verantwortung: Prof. Dr. Melanie Schienle
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
M-WIWI-101499 - Angewandte Mikroökonomik
M-WIWI-101599 - Statistik und Ökonometrie
M-WIWI-104908 - Volkswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Anzahl SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Volkswirtschaftslehre III: Einführung in die Ökonometrie</td>
<td>2</td>
<td>V</td>
<td>Schienle</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übungen zu VWL III</td>
<td>2</td>
<td>Üb</td>
<td>Schienle, Buse</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h (nach §4 (2), 1 SPO). Durch die Teilnahme an Bonusübungen kann ein Notenbonus erlangt werden.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Volkswirtschaftslehre III: Einführung in die Ökonometrie
2520016, SS 2019, 2 SWS, [Im Studierendenportal anzeigen](#)

Beschreibung
Behandelt werden die grundlegenden ökonometrischen Methoden, d.h. die bivariate und multiple lineare Regression und die dabei zu berücksichtigenden statistischen Kenngrößen. Dabei wird an zahlreichen Beispielen die Vorgehensweise bei der ökonometrischen Modellbildung und die Interpretation der Ergebnisse verdeutlicht.

Lehrinhalt
Behandelt werden die grundlegenden ökonometrischen Methoden, d.h. die bivariate und multiple lineare Regression und die dabei zu berücksichtigenden statistischen Kenngrößen. Dabei wird an zahlreichen Beispielen die Vorgehensweise bei der ökonometrischen Modellbildung und die Interpretation der Ergebnisse verdeutlicht.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
Präsenzzeit: 30 Stunden
Selbststudium: 120 Stunden

Literatur

- Schneeweiß: Ökonometrie ISBN 3-7908-0008-2

Weiterführende Literatur:
Weitere Empfehlungen werden in der Vorlesung mitgeteilt.
8.247 Teilleistung: Wasserbau und Wasserwirtschaft [T-BGU-101667]

Verantwortung: Prof. Dr. Franz Nestmann

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
- M-WIWI-101646 - Einführung in Naturgefahren und Risikoanalysen 1
- M-WIWI-101648 - Einführung in Naturgefahren und Risikoanalysen 2
- M-WIWI-104838 - Einführung in Naturgefahren und Risikoanalysen
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kurscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>6200511</td>
<td>Wasserbau und Wasserwirtschaft [bauiBFP4-WASSER]</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nestmann</td>
</tr>
<tr>
<td>WS 18/19</td>
<td>6200512</td>
<td>Übungen zu Wasserbau und Wasserwirtschaft [bauiBFP4-WASSER]</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Seidel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Kurscode</th>
<th>Vorlesungsbezeichnung</th>
<th>Prüfung (PR)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>8230101667</td>
<td>Wasserbau und Wasserwirtschaft</td>
<td>Nestmann</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung mit 60 Minuten

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Keine
8.248 Teilleistung: Werkstoffkunde I für Wirtschaftsingenieure [T-MACH-102078]

Verantwortung: Prof. Dr. Michael Hoffmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-101260 - Werkstoffkunde
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2125760</td>
<td>Werkstoffkunde I für Wirtschaftsingenieure</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Hoffmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102078</td>
<td>Werkstoffkunde I für Wirtschaftsingenieure</td>
<td>1</td>
<td>Hoffmann, Wagner, Schell</td>
</tr>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102078</td>
<td>Werkstoffkunde I für Wirtschaftsingenieure</td>
<td>1</td>
<td>Hoffmann, Bucharsky, Schell, Wagner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Prüfung zum Ende des Sommersemesters erfolgt schriftlich oder mündlich.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffkunde I für Wirtschaftsingenieure
2125760, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Beschreibung
Medien:
Skript/Folien zur Veranstaltung (erhältlich unter http://www.iam.kit.edu/km/289.php).

Lehrinhalt
- Einführung
- Atomaufbau und atomare Bindung
- Kristallstrukturen
- Kristallbaufehler
- Mechanisches Verhalten
- Physikalische Eigenschaften
- Übergänge in den festen Zustand
- Einführung in die Mischphasenthermodynamik
- Reale Zustandsdiagramme
- Eisenwerkstoffe
Literatur
Weiterführende Literatur:
Werkstoffwissenschaften, Schatt, Werner / Worch, Hartmut (Hrsg.) Wiley-VCH, Weinheim, ISBN-10: 3-527-30535-1
8.249 Teilleistung: Werkstoffkunde II für Wirtschaftsingenieure [T-MACH-102079]

Verantwortung: Prof. Dr. Michael Hoffmann

Einrichtung: KIT-Fakultät für Maschinenbau
KT-KT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Keramische Werkstoffe und Technologien

Bestandteil von: M-MACH-101261 - Vertiefung ingenieurwissenschaftlicher Grundlagen
M-MACH-101262 - Vertiefung Werkstoffkunde
M-WIWI-101839 - Weiterführende ingenieurwissenschaftliche Grundlagen
M-WIWI-104907 - Ingenieurwissenschaften

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>2126782</th>
<th>Werkstoffkunde II für Wirtschaftsingenieure</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Hoffmann</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 18/19</th>
<th>76-T-MACH-102079</th>
<th>Werkstoffkunde II für Wirtschaftsingenieure</th>
<th>Prüfung (PR)</th>
<th>Hoffmann, Wagner, Schell, Bucharsky</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>76-T-MACH-102079</td>
<td>Werkstoffkunde II für Wirtschaftsingenieure</td>
<td>Prüfung (PR)</td>
<td>Hoffmann, Wagner, Bucharsky, Rheinheimer, Schell</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (150min.) in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Prüfung zum Ende des Wintersemesters erfolgt schriftlich oder mündlich.

Voraussetzungen
Das Modul Werkstoffkunde I muss erfolgreich abgeschlossen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MACH-101260 - Werkstoffkunde muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffkunde II für Wirtschaftsingenieure
2126782, SS 2019, 2 SWS, im Studierendenportal anzeige

Beschreibung
Medien:
Skript und Folien zur Veranstaltung.
(Verfügbar unter http://www.iam.kit.edu/km/)
Lehrinhalt

Arbeitsaufwand
Präsenzzeit: 32 Stunden
Selbststudium: 118 Stunden

Literatur
Weiterführende Literatur:
8.250 Teilleistung: Werkzeugmaschinen und Handhabungstechnik [T-MACH-102158]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
- M-MACH-101286 - Werkzeugmaschinen und Handhabungstechnik
- M-WIWI-104907 - Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semesternummer</th>
<th>Veranstaltungscode</th>
<th>Lehrveranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>2149902</td>
<td>Werkzeugmaschinen und Handhabungstechnik</td>
<td>6</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semesternummer</th>
<th>Prüfungsveranstaltungscode</th>
<th>Prüfungstitel</th>
<th>Prüfung (PR)</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102158-MIT</td>
<td>Werkzeugmaschinen und Handhabungstechnik</td>
<td>Fleischer</td>
<td></td>
</tr>
<tr>
<td>WS 18/19</td>
<td>76-T-MACH-102158-WING</td>
<td>Werkzeugmaschinen und Handhabungstechnik</td>
<td>Fleischer</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (120 Minuten)

Voraussetzungen
"T-MACH-109055 - Werkzeugmaschinen und Handhabungstechnik" darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkzeugmaschinen und Handhabungstechnik

2149902, WS 18/19, 6 SWS, [Im Studierendenportal anzeigen](https://ilias.studium.kit.edu/)

Beschreibung

Medien:
Skript zur Veranstaltung wird über Ilias bereitgestellt

Bemerkungen

Vorlesungstermine montags und mittwochs, Übungstermine donnerstags.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.
Lehrinhalt

Die Themen im Einzelnen sind:

- Gestelle und Gestellbauteile
- Vorschubachsen
- Hauptantriebe und Hauptspindeln
- Periphery Einrichtungen
- Steuerungen und Regelung
- Messtechnische Beurteilung und Maschinenabnahme
- Prozessüberwachung
- Instandhaltung von Werkzeugmaschinen
- Sicherheitstechnische Beurteilung von Werkzeugmaschinen
- Maschinenbeispiele

Anmerkungen
Keine

Arbeitsaufwand
MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden
WiIng/TVWL:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden
8.251 Teilleistung: Wettbewerb in Netzen [T-WIWI-100005]

Verantwortung: Prof. Dr. Kay Mitusch

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101422 - Vertiefung im Customer Relationship Management
M-WIWI-101499 - Angewandte Mikroökonomik
M-WIWI-101668 - Wirtschaftspolitik I
M-WIWI-104908 - Volkswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4,5
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen
WS 18/19 2561204 Wettbewerb in Netzen 2 SWS Vorlesung (V) Mitusch
WS 18/19 2561205 Übung zu Wettbewerb in Netzen 1 SWS Übung (Ü) Wisotzky

Prüfungsveranstaltungen
WS 18/19 7900268 Wettbewerb in Netzen Prüfung (PR) Mitusch

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen 60 min. Prüfung in der vorlesungsfreien Zeit des Semesters (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine.

Empfehlungen
Grundkenntnisse und Fertigkeiten der Mikroökonomie aus einem Bachelorstudium der Ökonomie werden vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wettbewerb in Netzen
2561204, WS 18/19, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V)

Beschreibung

Lehrinhalt
Anknüpfend an die Mikroökonomie im Grundstudium (VWL 1) wird zunächst das "partialökonomische Modell" dargestellt, welches der adäquate Analyserahmen für die Industriöökonomik und viele wirtschaftspolitische Anwendungen ist. Sodann wird der für die Netzwerkökonomie zentrale Begriff der Kostensubadditivität (bzw. natürli des Monopol) dargestellt und in seinen Implikationen diskutiert. Weitere Themen: vertikale Beziehungen in Netzsektoren, Verkehrsmodellierung, Preise in Stromnetzen und Prinzipien der Infrastrukturfinanzierung nach Ramsey und Shapley.

Arbeitsaufwand
Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135.0 Stunden
Präsenzzeit: 30 Stunden
Vor – und Nachbereitung der LV: 45.0 Stunden
Prüfung und Prüfungsvorbereitung: 60.0 Stunden
Literatur

Literatur und Skripte werden in der Veranstaltung angegeben.
8.252 Teilleistung: Wohlfahrtstheorie [T-WIWI-102610]

Verantwortung: Prof. Dr. Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101501 - Wirtschaftstheorie
- M-WIWI-104908 - Volkswirtschaftslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2520517</td>
<td>Wohlfahrtstheorie</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Puppe, Rollmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2520518</td>
<td>Übung zur Wohlfahrtstheorie</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Puppe, Rollmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60min.) Prüfung (nach §4(2), 1 SPO) am Ende des Semesters sowie am Ende des auf die LV folgenden Semesters.

Voraussetzungen

Die Veranstaltungen Volkswirtschaftslehre I (Mikroökonomie) [2610012] und Volkswirtschaftslehre II (Makroökonomie) [2600014] müssen erfolgreich abgeschlossen sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-WIWI-102708 - Volkswirtschaftslehre I: Mikroökonomie muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-WIWI-102709 - Volkswirtschaftslehre II: Makroökonomie muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Keine

*Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wohlfahrtstheorie

2520517, SS 2019, SWS, [Im Studierendenportal anzeigen]

Lehrinhalt

Anmerkungen

Die Veranstaltung wird im zwei-jährigen Rhythmus angeboten.

Arbeitsaufwand

Gesamtaufwand bei 4,5 Leistungspunkten: ca. 135 Stunden

Präsenzzeit: 30 Stunden

Selbststudium: 105 Stunden
Literatur
Weiterführende Literatur: